
Contents lists available at ScienceDirect

NeuroImage: Clinical

journal homepage: www.elsevier.com/locate/ynicl

Atypical processing of uncertainty in individuals at risk for psychosis

David M. Colea,b,1,⁎, Andreea O. Diaconescua,c,d,1,⁎, Ulrich J. Pfeiffere, Kay H. Brodersena,
Christoph D. Mathysa,f,g, Dominika Julkowskie, Stephan Ruhrmanne, Leonhard Schilbachh,i,j,k,l,
Marc Tittgemeyerm,n, Kai Vogeleye,o, Klaas E. Stephana,m,p

a Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and Swiss Federal Institute of Technology (ETH) Zurich, Zurich,
Switzerland
bDepartment of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland
c Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
d Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Canada
e Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
f Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
g Interacting Minds Centre, Aarhus University, Aarhus, Denmark
h Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany
iGraduate School for Systemic Neuroscience, Munich, Germany
j International Max Planck Research School for Translational Psychiatry, Munich, Germany
k Ludwig-Maximilians-Universität München, Munich, Germany
l Kliniken der Heinrich-Heine-Universität/LVR-Klinik Düsseldorf, Düsseldorf, Germany
mMax Planck Institute for Metabolism Research, Cologne, Germany
n Cologne Cluster of Excellence in Cellular Stress and Aging associated Disease (CECAD), Germany
o Institute for Neuroscience and Medicine – Cognitive Neuroscience (INM3), Research Center Juelich, Juelich, Germany
pWellcome Centre for Human Neuroimaging, University College London, London, United Kingdom

A R T I C L E I N F O

Keywords:
At-risk mental state
Computational psychiatry
Decision-making
Hierarchical Bayesian learning
Prodromal
Volatility

A B S T R A C T

Current theories of psychosis highlight the role of abnormal learning signals, i.e., prediction errors (PEs) and
uncertainty, in the formation of delusional beliefs. We employed computational analyses of behaviour and
functional magnetic resonance imaging (fMRI) to examine whether such abnormalities are evident in clinical
high risk (CHR) individuals.

Non-medicated CHR individuals (n = 13) and control participants (n = 13) performed a probabilistic
learning paradigm during fMRI data acquisition. We used a hierarchical Bayesian model to infer subject-specific
computations from behaviour – with a focus on PEs and uncertainty (or its inverse, precision) at different levels,
including environmental ‘volatility’ – and used these computational quantities for analyses of fMRI data.

Computational modelling of CHR individuals’ behaviour indicated volatility estimates converged to sig-
nificantly higher levels than in controls. Model-based fMRI demonstrated increased activity in prefrontal and
insular regions of CHR individuals in response to precision-weighted low-level outcome PEs, while activations of
prefrontal, orbitofrontal and anterior insula cortex by higher-level PEs (that serve to update volatility estimates)
were reduced. Additionally, prefrontal cortical activity in response to outcome PEs in CHR was negatively as-
sociated with clinical measures of global functioning.

Our results suggest a multi-faceted learning abnormality in CHR individuals under conditions of environ-
mental uncertainty, comprising higher levels of volatility estimates combined with reduced cortical activation,
and abnormally high activations in prefrontal and insular areas by precision-weighted outcome PEs. This aty-
pical representation of high- and low-level learning signals might reflect a predisposition to delusion formation.
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1. Introduction

In standard classification schemes such as the Diagnostic and
Statistical Manual of Mental Disorders (DSM) and the International
Statistical Classification of Diseases and Related Health Problems (ICD),
schizophrenia and related psychotic disorders are defined as syn-
dromes, i.e., combinations of clinical symptoms and signs. It is widely
acknowledged that this phenomenological definition of schizophrenia
(and other mental disorders) amalgamates heterogeneous groups of
patients with possibly different pathophysiological mechanisms (van Os
and Tamminga, 2007; Insel, 2010; Owen, 2014; Stephan et al., 2016).
This may explain the diversity of clinical trajectories and treatment
responses across patients and calls for new approaches to dissect the
schizophrenia spectrum into subgroups or dimensions (Stephan et al.,
2009a; Insel et al., 2010; Kapur et al., 2012; Cuthbert and Insel, 2013).
One potential avenue to obtaining a formal understanding of differ-
ences in disease mechanisms across patients is the deployment of
mathematical (specifically: generative) models that can be applied to
non-invasive measures of behaviour and brain activity (Frässle et al.,
2018); in psychiatry, the clinical application of this translational neu-
romodeling approach is referred to as “computational psychiatry”
(Montague et al., 2012; Wang and Krystal, 2014; Stephan et al., 2015;
Adams et al., 2016). A computational approach to phenotyping patients
in a more fine-grained manner may be particularly relevant for the
early detection of individuals at risk, an increasingly important domain
of psychosis research (Klosterkotter et al., 2011; Fusar-Poli et al.,
2013a, 2015; Moorhead et al., 2013; Koutsouleris et al., 2015;
McGuire et al., 2015; Nieman and McGorry, 2015).

The clinical high risk (CHR) state is defined by the presence of either
attenuated psychotic symptoms, brief and self-limiting psychotic
symptoms, or a significant reduction of function under a family history
of schizophrenia (Fusar-Poli et al., 2013a). It is a construct pertaining to
the pre-psychotic phase, before a formal diagnosis (according to DSM or
ICD) can be made (Yung et al., 2005). Experimental studies and clinical
trials of CHR individuals are often logistically challenging, for several
reasons. For example, a diversity of strategies for diagnosis and clinical
management exists across centres, and the unresolved question of
whether CHR symptoms mandate the use of antipsychotics (Wood et al.,
2011; Kahn and Sommer, 2015; Nieman and McGorry, 2015) limits the
availability of non-medicated CHR individuals for research. Further-
more, not all CHR individuals seek medical help and, if they do, they
may not always be recognised due to frequent comorbidity, e.g., mood
impairments may overshadow psychotic symptoms (Falkenberg et al.,
2015a).

These issues lead to considerable difficulties in recruiting suffi-
ciently large, homogeneous samples of medication-free (particularly
antipsychotic-naïve) patients for clinical studies (Ruhrmann et al.,
2010; Klosterkotter et al., 2011; Fusar-Poli et al., 2013a, 2013b;
Nieman and McGorry, 2015). As a consequence, we still have a very
limited understanding of the neurobiological mechanisms that produce
CHR symptoms and the subsequent transition to full-blown psychosis
(Tsuang et al., 2013). A formal computational account of the cognitive
and neurophysiological aberrancies underlying the CHR state would be
highly beneficial, both for future research on pathophysiology and
clinical studies.

In recent years, theories on the development and maintenance of
psychotic symptoms have become increasingly enriched by testable
computational mechanisms and are beginning to converge on a few
central themes (Corlett et al., 2010). One major theory postulates that
the attribution of “aberrant salience” to objectively uninformative or
neutral events fuels the formation of delusions (Kapur, 2003). This
framework posits a key role for dopamine (DA) in mediating the mis-
attribution of salience in psychosis, consistent with longstanding the-
ories of dopaminergic dysfunction in schizophrenia (Grace, 1993;
Laruelle et al., 1996; Howes and Kapur, 2009) and specifically the idea
that contextually inappropriate phasic DA release triggers maladaptive

plasticity and learning (King et al., 1984; Heinz and
Schlagenhauf, 2010; Roiser et al., 2013; Winton-Brown et al., 2014).
This notion is consistent with a number of experimental findings in
schizophrenia, most of which correlate with positive symptoms, in-
cluding enhanced learning for neutral cues (assessed via behavioural
and autonomic responses) and increased activation of dopaminergic
and dopaminoceptive regions, including the ventral striatum and mid-
brain, in response to neutral cues (Jensen et al., 2008; Murray et al.,
2008; Roiser et al., 2009; Romaniuk et al., 2010; Diaconescu et al.,
2011).

Computational treatments of aberrant salience have examined this
phenomenon in relation to prediction errors (PEs) about rewarding or
novel outcomes. This is motivated by the putative relation of outcome-
related PEs to phasic DA release and possible involvement in dysfunc-
tional learning in psychosis and schizophrenia (Schultz et al., 1997;
Pessiglione et al., 2006; Corlett et al., 2007, 2009a, 2010; Murray et al.,
2008; Gradin et al., 2011; Adams et al., 2013; Ermakova et al., 2018).
The dopaminergic PE signal is thought to represent a neural response to
deviation from an expected outcome (of rewards but also sensory fea-
tures; Iglesias et al., 2013; Gardner et al., 2018; Suarez et al., 2019) and
likely supports the updating of beliefs about the environment by in-
duction of synaptic plasticity (Montague et al., 2004), for example, via
modulation of NMDA receptors (Gu, 2002). However, predictions are
inevitably uncertain, and PEs should carry different weight, depending
on the precision (the mathematical inverse of uncertainty) of the un-
derlying prediction. Computationally, Bayesian frameworks offer a
formal account of this intuitive notion (Rao and Ballard, 1999;
Friston, 2008). These theories view perception and learning as a hier-
archically organised process, in which beliefs at multiple levels, from
concrete (e.g., specific stimuli) to more abstract aspects of the en-
vironment (e.g., probabilities and volatility), are updated based on
level-specific PEs and precisions. Specifically, under fairly general as-
sumptions (i.e., for all probability distributions from the exponential
family) a ratio of precisions (of bottom-up input vs. prior beliefs) serves
to scale the amplitude of PE signals and thus their impact on belief
updates (Mathys et al., 2011; Mathys, 2013); see Eq. (1) below.

Recent theories of perceptual abnormalities in schizophrenia have
built on Bayesian accounts of this sort, enriching traditional concepts of
aberrant salience with the crucial role of uncertainty (Stephan et al.,
2006; Corlett et al., 2009a, 2010; Fletcher and Frith, 2009;
Adams et al., 2013). One specific suggestion from these accounts is that
chronically over-precise low-level PE signals may be the starting point
of delusion formation, as they continue to induce unusual belief up-
dates, without diminishing over time. Put differently, persistently sur-
prising events may eventually require adoption of extraordinary higher-
order beliefs to be explained away (Corlett et al., 2007, 2010). Alter-
natively, high-order beliefs may be of abnormally low precision
(Adams et al., 2013; Sterzer et al., 2018; Diaconescu et al., 2019),
leading to lack of regularisation, which renders the environment see-
mingly unpredictable (e.g., extremely volatile) and enhances the weight
of low-level precision-weighted PE. Notably, these explanations are not
exclusive but could co-exist (specifically, they relate to the numerator
and denominator of the precision ratio in Eq. (1) below).

Here we investigated the presence of these putative abnormalities
during learning and decision-making under environmental uncertainty
(volatility) in the behaviour and brain activity of CHR individuals. To
this end, we combined fMRI of a probabilistic learning task under vo-
latility with computational modelling, hierarchical Gaussian filtering
(HGF), which emphasises the importance of uncertainty for updating a
hierarchy of beliefs via precision-weighted PE signals (Mathys et al.,
2011, 2014).
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2. Methods and materials

2.1. Participants

Thirteen CHR individuals (mean age 21.2 years± 3.3 s.d.; 4 female)
and thirteen healthy controls (mean age 27.2 ± 2.7; 7 female) were
included in the study. Given the slight differences in group composi-
tion, all statistical comparisons between the CHR participants and
controls in the fMRI analyses described below (Section 2.7) were con-
ducted with age and sex as covariates, in order to control for possible
confounding influences on neurobiology. Notably, all of the CHR in-
dividuals were completely antipsychotic-naïve; none had any lifetime
history of exposure to any antipsychotic medications at the time of
testing. Four of the CHR individuals (2 female) had previously received
medication for other mental health issues unrelated to psychosis. No
CHR individuals had any history of neurological disorder, and none of
the healthy controls had any history of neurological or psychiatric
disorder. All CHR individuals were part of the sample seeking help at
the early detection and intervention centre (FETZ) at the University
Hospital of Cologne. In order for an individual to be included in the
study CHR group, one or more of the following criteria of the Com-
prehensive Assessment of At-Risk Mental States (CAARMS; for details
see Yung et al., 2005) had to be fulfilled: attenuated positive symptoms
(APS), brief limited intermittent positive symptoms (BLIPS), or at least
one of two risk factors for psychosis (i.e., a positive family history of
psychosis or the patient had schizotypal personality disorder as defined
by DSM-IV) in combination with a significant decline in psychosocial
functioning maintained over the last month. The exclusion criteria were
past or present diagnosis of psychotic disorders, substance abuse or
dependence according to DSM-IV criteria, past or present use of anti-
psychotics, and any contraindications related to magnetic resonance
imaging measurements. A summary of demographic and clinical data is
provided in Table 1. All participants provided written, informed con-
sent to participate in the experiment, which was approved by the local
ethics committee of the Medical Faculty of the University of Cologne
(Cologne, Germany).

The clinical status of CHR individuals was established via a checklist
of inclusion criteria and clinical tests including the Structured Interview
for Prodromal Symptoms (SIPS; Miller et al., 2002, 2003). One male
individual in the patient group did not have his CHR status upheld upon
further clinical examinations at a standardised follow-up period of two
years; his data were thus excluded from all between-group fMRI ana-
lyses. Of the other twelve CHR individuals, three had transitioned to a
diagnosed psychotic disorder by follow-up, while three more had
withdrawn from the study before their follow-up status could be de-
termined. Scores on sub-scales of the SIPS assessing positive symptoms
and global assessment of functioning (SIPS-GAF) were compared with
data from the behavioural task and with a representative fMRI measure

of aberrant PE encoding in CHR, described below (Section 2.8), via
Pearson correlation analyses with one-tailed hypothesis testing, due to
the explicit directionality of our predictions that atypical neural re-
presentation of PEs would be associated with worsened clinical func-
tioning under CHR.

2.2. Behavioural task

While undergoing fMRI, each participant completed a probabilistic
learning task (Fig. 1A), which required trial-wise binary decisions be-
tween two fractal stimuli. On each trial, the same pair of fractal stimuli
were presented, each paired with a reward value (points) that varied
independently of the task contingency structure. Accrued points were
converted to monetary reward at the end of the experiment. During cue
presentation, participants had a maximum of 4 s to make a decision,
followed by a 5-second delay displaying the choice and a 2-second
presentation of the decision outcome (correct or incorrect). If no re-
sponse was made during the decision period, a time-out occurred and a
blank screen was displayed for 8 s, instead of the delay and outcome
screens. The inter-trial interval was jittered between 5 and 7 s. The
across-trial task structure incorporated ‘switches’, or reversals, in a
block-wise fashion in terms of which of the cues was most likely (80%
probability) or least likely (20%) to be the correct, rewarded choice on
that trial. It also incorporated a change of contingencies over time; this
volatility (or variance per unit time) induces higher-order (environ-
mental) uncertainty – about the probabilistic structure of the task, in
addition to informational uncertainty by trial-wise outcomes – and
determines the temporal evolution of a subject's learning rate
(Behrens et al., 2007; Mathys et al., 2014). The task consisted of 160
trials, with contingency blocks comprising between 14 and 46 trials
depending on which volatility pseudo-block they were contained within
(Fig. 1B). The task structure was fixed across all participants in terms of
the correct, rewarded choice on a given trial. Two early participants
(one patient and one control, both male) completed a slightly varying
version of the task that differed only in that there was no time-out for
responses; this did not lead to longer data acquisition in the majority of
trials, neither did it impact in any way the behavioural modelling de-
scribed in Section 2.3.

2.3. Behavioural modelling

The computational framework adopted in this study was guided by
Bayesian theories of brain function that suggest that the brain maintains
and continuously updates a generative model of its sensory inputs
(Dayan et al., 1995; Rao and Ballard, 1999; Friston, 2005). In other
words, individuals are thought to update their beliefs about states of the
external world based on the sensory inputs they receive (perceptual
model); these beliefs, in turn, provide a foundation for making decisions
(response model; see Daunizeau et al., 2010).

A number of different hypotheses about how humans learn about
probabilistic stimulus-outcome contingencies were embodied in the
following model space (Fig. 2A). With regard to the perceptual model,
our main question was whether subjects’ models of reward probabilities
based on stimulus-outcome associations had a hierarchical structure
and accounted also for the volatility of these associations. We thus
compared (i) the classical Rescorla-Wagner (RW) reinforcement
learning model (Rescorla and Wagner, 1972), in which predictions
evolve as a function of PE and a constant learning rate (model M1) to
three Bayesian models of learning, which included (ii) a non-hier-
archical model, based on a reduced Hierarchical Gaussian Filter (HGF)
that assumes that subjects do not infer on the volatility of stimulus-
outcome probabilities (M2; see Diaconescu et al., 2014), (iii) a three-
level ‘canonical’ HGF (M3,4; see Mathys et al., 2011), and (iv) a three-
level ‘mean-reverting’ HGF in which volatility estimates drift towards a
subject-specific equilibrium (M5,6).

With respect to the response model, we followed previous work

Table 1
Summary of demographic, behavioural and clinical variables (mean± s.d.).

Measure CHR (n = 13) Controls (n = 13)

Demographics Age 21.2 ± 3.3 27.2 ± 2.7
Sex (M:F) 9:4 6:7

Behavioural
parameters

κ 1.07 ± 0.20 1.13 ± 0.19
ω −5.48 ± 1.74 −5.05 ± 2.27
ϑ 0.30 ± 0.04 0.31 ± 0.05
β 9.06 ± 4.26 7.03 ± 2.91
m3 2.49 ± 0.36 2.21 ± 0.35

=μ k
3
( 0) 1.29 ± 0.57 1.80 ± 0.56

Clinical variables SIPS positive
symptom sum

6.85 ± 3.05

SIPS negative
symptom sum

11.62 ± 3.66

SIPS-GAF 62.54 ± 10.14
SIPS total 31.23 ± 6.47
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Fig. 1. Probabilistic reversal-learning task. The behavioural paradigm consisted of: (A) within trial, a pair of fractal stimuli, each paired with a reward value,
requiring a decision from the participant via button press in order to obtain the reward; (B) across trials, the probabilistic contingency (dotted line) of which of the
two fractal cues was most likely to yield a reward occasionally underwent ‘reversal’, the regularity of which engendered pseudo-blocks of volatility modulation (blue,
violet and red panels). The reward values within trials were entirely independent of the stimulus-outcome contingencies.

Fig. 2. Hierarchical structure of the model space: perceptual models, response models and Bayesian model selection. (A) The models considered in this study
have a factorial structure that can be displayed as a tree: The nodes at the first level represent the perceptual model families (RW, 2-level non-volatility HGF, 3-level
HGF, and 3-level mean-reverting). The nodes at the second level represent the individual models. Two response model families were formalized under the HGF
models: the mapping of beliefs-to-decisions either (i) depended dynamically on the estimated volatility of the learning environment (“Volatility + decision noise”
model) or (ii) was a fixed entity over trials (“Decision noise” model). (B) Bayesian model selection (BMS) reveals M6, the mean-reverting HGF perceptual model in
combination with the “Volatility” decision model, to best explain the data.
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(Diaconescu et al., 2014) and considered two possible mechanisms of
how beliefs were translated into responses (Fig. 2A). Subjects’ choices
could either be affected by fixed decision noise (“Decision noise” model
family; M1-3,5) or the decision noise might vary trial-by-trial as a
function of the estimated volatility of the stimulus-outcome prob-
abilities (“Volatility” model family; M4,6).

2.3.1. Perceptual model: the Hierarchical Gaussian Filter
The HGF is a hierarchical model of learning, which allows for in-

ference on an agent's beliefs (and their uncertainty) about the state of
the world from observed behaviour (Mathys et al., 2011) and has been
used by several recent behavioural and neuroimaging studies on dif-
ferent forms of learning (Iglesias et al., 2013; Diaconescu et al., 2014,
2017; Hauser et al., 2014; Vossel et al., 2014; Schwartenbeck et al.,
2015; Lawson et al., 2017; Powers et al., 2017). The model proposes
that agents infer on the causes of the sensory inputs using hier-
archically-coupled belief updates that evolve in time as Gaussian
random walks where, at any given level, the variance (step size) is
controlled by the state of the next higher level (Mathys et al., 2011,
2014). A standard formulation of the HGF for standard binary decision
making tasks includes three levels, where the first (lowest) level en-
codes the probability of a trial outcome (here: whether a stimulus was
rewarded or not), the 2nd level represents the tendency of a stimulus to
be rewarded as a continuous quantity (in logit space), and the 3rd level
represents the volatility of this probability (Fig. 3; see also Mathys et al.,
2011).

The following subject-specific parameters determine how the above
states evolve in time: (i) κ determines the degree of coupling between
the second and third level in the hierarchy (x2 and x3) and the degree to
which the volatility estimate influences the subject's uncertainty about
the stimulus-reward probabilities; (ii) ω represents a constant (tonic)
component of the log-volatility of x2, capturing the subject-specific
magnitude of the belief update about the stimulus-outcome

probabilities that is independent of x3; (iii) ϑ is a meta-volatility para-
meter and determines the evolution of x3, or how rapidly the volatility
of the associations changes in time. Furthermore, we also estimated

=μ k
3
( 0), the subject's initial belief about volatility of the outcome prob-

abilities.
A key notion of the HGF is that subjects update their beliefs about

hierarchically coupled states in the external world by using a varia-
tional approximation to intractable full Bayesian inference
Mathys et al., 2011). The update rules that emerge from this approx-
imation have a structural form similar to RW reinforcement learning,
but with a dynamic (adaptive) learning rate determined by the next-
higher level in the hierarchy. Formally, at each hierarchical level i,
predictions (posterior means μi

k( )) on each trial k are proportional to
precision-weighted PEs, εi

k( ) (Eqs. (1) and (2)). The general form of this
belief update (with subtle differences for categorical quantities at the
lowest level) is the product of the PE from the level below

−
δi

k
1

( ) ,
weighted by a precision ratio ψi

k( ):

∝
−

μ ψ δΔ i
k

i
k

i
k( ) ( )

1
( )

(1)

=
−ψ

π
π

where
^

i
k i

k

i
k

( ) 1
( )

( ) (2)

Here,
−

π̂i 1
(k)

and πi
(k)represent estimates of the precision of the pre-

diction about input from the level below (e.g., precision of sensory
data) and of the prediction at the current level, respectively (for details,
see Mathys et al., 2011). This precision-weighting is critical for adap-
tive learning and emerges naturally from hierarchical Bayesian for-
mulations (Friston, 2008; Corlett et al., 2010; Mathys et al., 2011;
Adams et al., 2013; Iglesias et al., 2013). Simply speaking, PEs have a
larger weight (and thus updates are more pronounced) when the pre-
cision of the data (input from the lower level) is high, relative to the
precision of prior beliefs.

Fig. 3. Graphical representation of the winning model combination: “mean-reverting HGF” perceptual model and the “Volatility” response model. In this
graphical notation, circles represent constants and diamonds represent quantities that change in time (i.e., that carry a time/trial index). Hexagons, like diamonds,
represent quantities that change in time, but additionally depend on the previous state in time in a Markovian fashion. x1 represents the cue probability, x2 the cue-
outcome contingency and x3 the volatility of the cue-outcome contingency. Parameter κ determines how strongly x2 and x3 are coupled, ω determines the log-
volatility or tonic component of x2, ϑ represents the volatility of x3, and m represents the mean of the drift towards which x3 regresses to in time. The response model
parameter β represents the inverse decision temperature and determines the belief-to-response mapping.
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2.3.2. Mean-reverting HGF
The standard HGF, described above, already allows for representing

(and inferring) the precision of low-level PEs and prior beliefs and thus
offers the two components required to test our hypothesis. We can fi-
nesse this model further by using a variation of the classical HGF that
allows for inferring on drifts in a subject's beliefs towards an equili-
brium m (essentially the equivalent of an Ornstein-Uhlenbeck process in
discrete time). Here, we used this approach to examine the possibility
that CHR individuals might be characterised by a tendency to over-
estimate the volatility of the environment, which would further en-
hance the weight (precision) of low-level PEs and lead to an inflation of
uncertainty about probabilities over time. As described above, a sce-
nario of this sort may lead to later compensation, for example by
adopting high-order beliefs with inappropriately high certainty, and
may thus represent a risk factor for delusion formation.

The equations describing the generative model are summarised in
Fig. 3. Notably, the third level of this model includes subject-specific
parameters that represent the agent's individual starting estimate of
volatility, =μ k

3
( 0), as well as an equilibrium value, m3, which the agent's

estimate of volatility drifts towards and remains attracted to (Fig. 3).
The prior on m3 was equivalent to the prior on =μ k

3
( 0) (see Supple-

mentary Table 1), hence the model did not include any prior assump-
tion about the direction in which the equilibrium of volatility estimates
would be located, relative to the starting value of volatility. The higher
the value of m3, the higher the agent's average level of estimated vo-
latility and thus the greater the uncertainty of his/her estimates of
environmental probabilities over time. The hypothesis described above
– that CHR individuals are characterised by enhanced precision-
weighting of low-level PEs – implies that either the estimated precision
of sensory input is abnormally high or that the precision of beliefs is
abnormally low (see Eq. (2)). In the context of our task, the latter option
corresponds to increased uncertainty about cue-outcome contingencies.
This increase in uncertainty would be greater, the higher the value of
m3 and thus the higher the average level of estimated volatility, μ̂ k

3
( )
,

over time.

2.3.3. Response model
The response model embodies a (probabilistic) mapping from the

agent's beliefs to their decisions (Daunizeau et al., 2010). The prob-
ability that the subject behaves according to his/her prediction of the
outcome probabilities was described by a sigmoid function (Eq. (3)):

= =

+ −

p y μ
μ

μ μ
( 1| )

(1 )
k k

k β

k β k β
( )

1
( ) 1

( )

1
( )

1
( ) (3)

Here, β represents the inverse of the decision temperature: as β →
∞, the sigmoid function approaches a step function with a unit step at

=b 0.5(k) (i.e., no decision noise). As described above, we considered
two types of this belief-to-response mapping. The first “Decision noise”
model family assumes constant decision noise; that is, β becomes a
subject-specific free parameter. By contrast, the “Volatility” response
model family proposes that the decision temperature parameter βmight
vary trial-by-trial with the estimated volatility, −e μ k

3
( )
, such that the

larger the volatility, the lower the (inverse) decision temperature and
the higher the decision noise (see Diaconescu et al., 2014 for details). In
other words, the more stable the stimulus probabilities, the more de-
terministic the participant's belief-to-response mapping.

Using priors over the model parameters based on previous studies
with similar probabilistic learning paradigms (Iglesias et al., 2013;
Diaconescu et al., 2014; Supplementary Table 1), maximum a posteriori
(MAP) estimates of model parameters were obtained using the HGF
toolbox version 3.0. This MATLAB-based toolbox is freely available as
part of the open source software package TAPAS (https://www.tnu.
ethz.ch/en/software/tapas.html).

2.3.4. Bayesian model selection and computational regressors
We compared the full set of resulting models M1-6 using Bayesian

model selection (Stephan et al., 2009b), to determine which combina-
tion of perceptual and response models best explained the behavioural
dataset and would thus optimally inform the subsequent analysis of
fMRI data. Based on the model space outlined above (Fig. 2A), a total of
six different models were compared.

From the winning model (Fig. 2B), we extracted the trajectories of
several trial-wise computational quantities, estimated for each subject
individually: (i) the prediction about the next outcome, (ii) uncertainty
(Bernoulli variance) about the probability of the next outcome (‘1st-
level uncertainty’), (iii) their belief about the current volatility of the
environment (μ̂ k

3
( )
), (iv) their absolute precision-weighted PE regarding

the outcome on a given trial relative to their current beliefs about the
probability of that outcome (ε2), (v) their belief uncertainty (‘2nd-level
uncertainty’; σ2) and (vi) their signed precision-weighted PE regarding
the perceived volatility of the outcome on a given trial relative to their
current belief about that volatility (ε3). Each of these trajectories was
then used as a regressor (parametric modulator) in the single-subject
fMRI analyses described below (Section 2.7).

2.4. Behavioural analysis

We subjected the MAP estimates of the winning model to one-way
analysis of variance (ANOVA) assessments, in order to test for differ-
ences in decision and learning parameters between CHR individuals
and healthy controls. Our hypothesis described above implies that m3

itself and/or the meta-volatility parameter ϑwould be significantly
greater in the CHR group, suggesting that CHR participants in contrast
to controls perceive an increased environmental volatility over time. To
examine group differences in perceived (predicted) volatility induced
by basic reversals of probabilistic contingency, we also performed a 2
(group: CHR, control) × 3 (phase: stable, reversal, volatile) mixed-
factor ANOVA to examine group-by-phase interaction effects on μ̂ k

3
( )

(see the phases outlined in Fig. 1B). Additionally, we performed
equivalent ANOVAs for ε2, σ2 (informational uncertainty) and predicted
environmental uncertainty (see Supplementary Materials for details;
see also Eq. 27 in Mathys et al., 2011). The code for behavioural
modelling and analysis is accessible via GitLab at https://gitlab.ethz.
ch/dandreea/apup.

2.5. Image acquisition

Data were acquired on a 3 T Magnetom TIM Trio MRI scanner
(Siemens, Erlangen, Germany) at the Max Planck Institute for
Metabolism Research, Cologne. As the task was partially self-paced, a
slightly different number of volumes was acquired for each subject
(mean = 1217, approximately 40.5 min experiment duration). T2*-
weighted echo-planar images (EPI) sensitive to blood-oxygenation
level-dependant (BOLD) contrast were acquired during the task
(TR = 2 s; TE = 30 ms; flip angle = 90°; 30 axial slices; in-plane
resolution = 3.3 × 3.3 mm; slice thickness = 2.7 mm; slice
gap = 1.35 mm). Magnetic equilibration was accounted for via scanner
automatic dummy removal. Images were acquired in parallel to the
anterior-posterior commissural plane. Cardiac and breathing rates were
recorded peripherally during scanning. Anatomical T1-weighted vo-
lumes were also acquired for each subject (TR = 1.9 s; TE = 3.51 ms;
flip angle = 9°; field-of-view 256 × 256 × 128; voxel size
1.0 × 1.0 × 1.0 mm).

2.6. fMRI data preprocessing

Preprocessing of fMRI data was performed using FSL 5.0 (http://fsl.
fmrib.ox.ac.uk/fsl/fslwiki/; Centre for Functional Magnetic Resonance
Imaging of the Brain, University of Oxford, United Kingdom;
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Smith et al., 2004). This incorporated standard steps of high-pass fil-
tering (128 s cut-off), realignment of individual volumes to correct for
head motion, removal of non-brain tissue from the images and Gaussian
smoothing at 5 mm full-width half-maximum.

Following these initial steps, we performed single-subject data ‘de-
noising’: artefact classification and rejection based on single-session
spatial independent component analysis (ICA) and machine learning
techniques, using the FSL ‘MELODIC’ and ‘FIX’ tools (Beckmann and
Smith, 2004; Salimi-Khorshidi et al., 2014). These steps were in-
corporated to remove any artefactual signal components that had sur-
vived conventional realignment and physiological noise correction
(where available; see Section 2.7). Details are provided, along with a
description of spatial normalisation procedures, in the Supplementary
Materials.

2.7. fMRI analysis

Single-subject fMRI analyses were conducted using the general
linear model (GLM) as implemented in SPM8 (http://www.fil.ion.ucl.
ac.uk/spm/software/spm8/; Wellcome Trust Centre for Neuroimaging,
University College London, United Kingdom). Base regressors for the
task were defined in terms of the onsets of the decision period, which
had a variable duration (0–4 s) and the outcome period, which had a
fixed duration (2 s). The decision period regressor was accompanied by
three parametric modulator regressors encoding for the subject's trial-
wise prediction of outcome, uncertainty at the 1st level of the HGF, and
expected volatility at the 3rd level. The outcome period regressor was
associated with three parametric modulators encoding for the absolute
(unsigned) outcome-related precision-weighted PE (ε2; (see
Iglesias et al., 2013), uncertainty at the 2nd level (σ2) and the volatility-
related precision-weighted PE (ε3). All parametric modulators were Z-
normalised (zero mean, unit standard deviation) before entering into
the GLM. Orthogonalisation was not performed. Temporal and disper-
sion derivatives of all regressors were added to the GLM of each subject
in order to account for variability in the onset and width of hemody-
namic responses. We performed physiological noise correction, based
on RETROICOR (Glover et al., 2000) of cardiac and respiratory mea-
surements (where available; 8 controls and 7 patients), using the
PhysIO toolbox in TAPAS (Kasper et al., 2017) to compute 18 additional
regressors that were included, along with six realignment parameters
representing head motion, as confound regressors in the GLM for each
subject.

Group analyses were conducted using second-level GLMs as im-
plemented in SPM8. Outcome-related contrast estimates from the sub-
ject-level analysis were entered into a 2 (diagnostic groups: CHR vs.
controls) × 4 (outcome-related variables: base regressor, ε2, σ2 (2nd-
level uncertainty), ε3) analysis of covariance (ANCOVA; unequal var-
iance assumed). Age and sex were included as covariates of no interest.
Decision-related contrast estimates were entered into a similar 2
(group: CHR vs. controls) × 4 (decision-related variables: base re-
gressor, prediction, 1st-level uncertainty, volatility estimate) analysis of
covariance (ANCOVA).

Contrasts of interest at the group level examined, for each compu-
tational regressor, (i) the average activation across groups
(CHR + controls) and (ii) significant differences between groups (CHR
vs. controls). For the latter analyses, we conducted whole-brain com-
parisons but also used contrast-masking to restrict the analysis to re-
gions showing significant average effects across groups (note that these
are orthogonal contrasts, thus avoiding problems of non-independent
inference). One exception to the latter approach was made in the
analysis of group differences in ε3, where (iii) we restricted analyses to
an anatomically defined masque of the anterior portion of the cingulate
cortex (defined using the probabilistic volume in the Harvard-Oxford
atlas provided with FSL and further masked by a study-specific group-
level EPI template). This a priori masque, which included the basal
forebrain, was motivated by previous observations of ε3-related

activation in the basal forebrain and anterior cingulate cortex
(Iglesias et al., 2013; Diaconescu et al., 2017; see also Behrens et al.,
2007). In line with the results of the same studies, we also employed
(iv) a similar a priori region of interest analysis of ε2- and ε3-related
activations using a masque of the dopaminergic midbrain. For each
contrast, we corrected for multiple comparisons across the respective
search volume – i.e., whole brain for (i), functional masks for (ii), and
the anatomical masque for (iii) and (iv) – using family-wise error (FWE)
correction at the cluster-level (p < 0.05, with a cluster-defining
threshold of p < 0.001).

2.8. fMRI association with clinical variables

We hypothesised that key clinical features of the CHR state might be
associated with the representation of low-level precision-weighted PEs
in brain regions that were (i) activated by these learning signals and (ii)
exhibiting aberrantly greater such activation in CHR relative to healthy
control participants. To this end, and in line with previous convergent
findings indicating a link between prefrontal cortical brain changes and
CHR (Benetti et al., 2009; Allen et al., 2012; Cannon et al., 2015), we
selected a prefrontal region comprising a cluster of differential fMRI
activation to ε2 (see Section 3. Results) in which to examine fMRI
contrast beta-value associations (via Pearson correlation) with SIPS
positive symptoms and SIPS-GAF measures, predicting that higher ε2-
related activation in this region would be associated with greater
symptom burden/severity.

3. Results

3.1. Behaviour

Initially, we applied a mixed-factor ANOVA with between-subject
and within-subject factors to directly measurable behaviour (accuracy
and reaction times, respectively) in order to test for significant main
effects or interactions (2 × 3 factorial design: group × task phase). No
main effects of group and no group × phase interactions were found.
For performance accuracy, we observed a main effect of phase (df = (2,
48), F = 5.59, p = 0.008 with Greenhouse-Geisser (GG) nonsphericity
correction, effect size =ηpartial

2 0.19), with reduced performance in
volatile compared to stable phases of the task. By contrast, the main
effect of phase for RT closely failed to reach significance (df = (2, 48),
F = 3.11, p = 0.07 with GG correction, =ηpartial

2 0.12). We then pro-
ceeded to computational analyses to test for group differences in latent
variables underlying learning and decision-making.

3.2. Behavioural modelling

Bayesian model selection gave a clear result, showing that the
mean-reverting HGF with a response model incorporating volatility
mapping (M6) was more likely to explain task behaviour than any other
model type (Fig. 2B). A summary of parameters from the inversion of
this winning model is provided for both groups in Table 1. Importantly,
model selection results were equivalent in both groups, allowing for a
direct comparison of parameter estimates across groups. Group average
belief-updating trajectories computed from the winning model M6, are
depicted in Figs. S1 and S2.

We investigated group differences in the parameters that (i) were
recovered well from simulations and (ii) particularly impacted learning
about volatility and thus the precision of high-order beliefs. While we
did not observe any group differences for the meta-volatility ϑ para-
meter (df = (1, 25), F = 0.54, p = 0.47, =ηpartial

2 0.02), we found a
significant difference in the mean-reversion equilibria values m3.
Relative to controls, CHR individuals exhibited reversion to sig-
nificantly higher equilibria levels (group: df = (1, 25), F = 4.29,
p = 0.049, =ηpartial

2 0.15; Fig. 4A). This effect remained significant,
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whether or not the single participant in the CHR group whose diagnosis
failed to be upheld at follow-up (and who was thus excluded from the
between-group fMRI analyses) was included. From Figs. S1 and S2, one
can observe that the belief trajectories for the estimated volatility ex-
tend to higher levels in CHR, relative to controls, consistent with the
group differences in the MAP estimates of m3.

Second, we investigated group × task phase interaction effects on
the phase-specific averages of predicted environmental volatility, or μ̂3,
following probabilistic contingency reversals, by performing a mixed-
factor ANOVA with between-subject and within-subject factors (with
GG nonsphericity correction). We found a significant group-by-phase
interaction effect (df = (2, 48), F = 5.71, p = 0.025, =ηpartial

2 0.19;
Fig. 4B), suggesting that, in comparison to controls, CHR individuals
display a significantly larger increase in perceived environmental vo-
latility following the first probability reversal. We also found a main
effect of phase (df = (2, 48), F = 41.68, p < 0.001, =ηpartial

2 0.63),
reflecting significant increases in perceived volatility for both groups
with increases in the volatility of the task schedule. Importantly, these

mixed-factor ANOVA results remained significant, whether or not the
single participant in the CHR group whose diagnosis failed to be upheld
at follow-up was included. In contrast, we found no significant group
main effects or interactions for the trajectories of ε2 and σ2 (see Figs. S3
and S4). However, we did find a significant group × task phase in-
teraction for predicted environmental uncertainty (see Fig. S5).

A number of our model parameters were estimated based on par-
ticipants’ choice behaviour. We also examined whether their actual
values could be recovered from synthetic data. Thus, we simulated re-
sponses based on all participants’ MAP parameter estimates, and then
fitted the model to those simulated responses. The results of the para-
meter recovery are included in Fig. S6. Several parameters could be
recovered well from the data: The second-level parameters encoding
tonic (ω) and phasic (κ) aspects of volatility and third-level parameters
determining the dynamics of the volatility trajectory, including the
equilibrium point m3 and the meta-volatility parameter ϑ were re-
covered from the data well. By contrast, the initial value on the vola-
tility =μ ,k

3
( 0) the initial variance on the volatility =σ k

3
( 0), and the inverse

Fig. 4. Behavioural parameter group differences. (A) Group differences in reversion equilibria values (m3): larger reversion equilibria values were detected in
CHR compared to controls (group: df = (1, 25), F= 4.29, p= 0.049, =ηpartial

2 0.15); and (B) Group-by-phase interactions of perceived environmental volatility (μ̂3):

A mixed-factor ANOVA (with Greenhouse-Geisser nonsphericity correction), which included between-subject and within-subject factors, found a significant main
effect of phase and a significant group × phase interaction (phase: df = (2, 48), F = 41.68, p = 1.113e-06, =ηpartial

2 0.63; group × phase: df (2, 48), F = 5.71,
p = 0.025, =ηpartial

2 0.19). See Section 3.2 in main text for details. No significant main effect of group was found (group: df = (1, 24), F = 3.42, p = 0.08,
=ηpartial

2 0.12). Jittered raw data are plotted for each parameter. The solid red line refers to the mean, the dotted red line to the median, the grey background reflects

1 SD of the mean, and the coloured bars the 95% confidence intervals of the mean. ‘*’ refers to group differences of significance level p < 0.05.

D.M. Cole, et al. NeuroImage: Clinical 26 (2020) 102239

8



decision noise parameter β could not be recovered from the data well.

3.3. fMRI

When pooling across both groups, we found that the computational
regressor associated with the precision-weighted outcome PE signal (ε2)
activated a set of bilateral cortical regions (Fig. 5A), similar to previous
analyses of the same type of PE from a sensory learning task
(Iglesias et al., 2013). More specifically, the nine clusters forming this
network were located bilaterally in inferior parietal cortex, anterior
insula, ventrolateral prefrontal cortex (vlPFC) extending also into right
dorsolateral prefrontal cortex (dlPFC) and superior frontal cortex
(spanning superior and middle frontal gyri), as well as in a region of left
cerebellum (p < 0.05, whole-brain cluster-level FWE-corrected, see
Section 2. Methods; Table 2). An additional region of interest analysis,
using an anatomically defined a priori masque of the midbrain
(Bunzeck and Düzel, 2006; Iglesias et al., 2013) revealed no significant
activation in this region.

In an additional analysis step, the whole-brain corrected activation
pattern was used as a functionally defined masque to restrict the sub-
sequent analysis of group differences in ε2 (group-by-PE interactions) to
regions showing a main effect of ε2 (note that the two contrasts are
orthogonal and thus do not cause non-independence problems for in-
ference). We found significantly greater activation (small volume FWE-

corrected p < 0.05) by ε2 in CHR patients, relative to controls, in areas
of left superior frontal cortex and left anterior insula (Fig. 5B; Table 2).
A distinct set of regions also survived whole-brain correction for this
contrast, revealing additional group differences in the left vlPFC (some
overlap with the pooled whole group region encoding ε2), precuneus,
dlPFC, frontal insulo-opercular cortex and right anterior insula ex-
tending into orbitofrontal cortex (OFC; Fig. 5B; Table 2). An additional
region of interest analysis focussing on the same a priori midbrain
masque described above similarly revealed no significant group dif-
ferences in activation. Although no significant outcome phase activa-
tion was found at the whole-group level for 2nd-level uncertainty (σ2),
this variable activated a region of the left fusiform gyrus significantly
more in CHR than in controls (whole-brain cluster-level FWE-corrected;
p = 0.046, peak t = 5.38; x = −28, y = −58, z = −10; 74 voxels).

Under whole-brain FWE-correction for multiple comparisons, a
number of whole-group average and group difference (controls > CHR)
effects were found for the precision-weighted probability PE (ε3), which
informs updates of beliefs about volatility (Table 2). At the whole-group
level, ε3 significantly activated regions of the bilateral posterior cin-
gulate cortex (PCC) and the left parahippocampal gyrus (Fig. 6A;
Table 2). The group contrast ‘ε3: controls > CHR’ revealed a more
widespread difference in the representation of volatility-related preci-
sion-weighted PEs in four additional regions, not overlapping with the
whole group average, comprising regions of left vlPFC, left frontopolar

Fig. 5. The neural representation of low-level/outcome-related precision-weighted PEs (ε2) in CHR patients and healthy controls. (A) A representative map
of significant (cluster-level FWE-corrected p < 0.05) group-level (CHR + controls) outcome-related activations modulated parametrically by ε2, calculated via one-
sample t-test (n = 25) and overlaid on an anatomical image calculated as the mean structural MRI of the whole group. (B) Significantly greater representation of ε2-
related activation in a sub-set of these and other regions in CHR patients relative to controls. Solid colour maps of group differences are binarised and indicate spatial
differences between whole-brain cluster-level corrected results (red) and results corrected using the group average map in ‘(A)’ for contrast-masking (dark blue).
Colour bar represents t-statistics. Axial and coronal slices are orientated in line with neurological conventions (R= right). (C) Significant negative correlation in CHR
patients (n = 13) between a clinical measure of current global functioning (SIPS-GAF) and ε2-related activation (beta-values, from the analysis as in panel ‘A’) in a
region of left (L) superior dlPFC also showing significant group differences (CHR > controls, from the independent analysis as in panel ‘B’).
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cortex, right superior temporal gyrus/temporoparietal junction and
right OFC extending into anterior insula (Fig. 6B; Table 2). Further-
more, within our a priori anterior cingulate cortex masque, the sub-
genual cingulate gyrus (Fig. 6B) displayed significantly greater activa-
tion to ε3 in controls than in CHR patients (small volume FWE-
corrected, p = 0.031, peak t = 5.08; x = −2, y = 16, z = −24; 40
voxels). In addition, an exploratory region of interest analysis using the
aforementioned midbrain masque revealed a trend-level cluster (small
volume FWE-corrected) of group differences in encoding (ε3: controls
> CHR) in the left substantia nigra/ventral tegmental area (SN/VTA) of
the midbrain (p = 0.087, peak t = 3.42; x = −2, y = −22, z = −20;

4 voxels; Fig. 6B).
Finally, when pooling across both groups we found that the pre-

dicted volatility μ̂ k
3
( )
during the decision phase of the probabilistic re-

versal learning task was associated with BOLD activation in a number of
regions including bilateral cuneus, precuneus, superior frontal cortex,
right superior temporal and right precentral gyrus/central sulcus
(Fig. 7A). Contrast masking using this whole group result to examine for
group differences revealed a cluster in posterior superior temporal
cortex displaying significantly greater volatility-related activation in
controls relative to CHR (Fig. 7B; Table 3). Two additional regions from
a whole-brain corrected group difference contrast, comprising right

Table 2
Regions showing main effects (average effect across groups) and group differences of ε2- (upper panel) and ε3-related (lower panel) activations during the outcome
phase. Upper panel: a contrast-masked (overlapping) subset of the ε2-related regions display significant group differences (CHR > controls; bold text). Additional
regions displaying significant whole-brain corrected group differences are highlighted in italics (non-overlapping) or bold italics (some overlap). Secondary and
tertiary values denote these various group difference effects. Lower panel: group differences in ε3-related activation (controls > CHR) do not overlap with average
effects and thus are shown only in italics in distinct rows from the main average effects across groups; dlPFC = dorsolateral prefrontal cortex; OFC = orbitofrontal
cortex; PCC = posterior cingulate cortex; TPJ = temporoparietal junction; vlPFC = ventrolateral prefrontal cortex; R = right and L = left hemisphere.

PE-associated fMRI activations Brain region Cluster size (2 mm3

voxels)
p (FWE-corrected) t-value of peak

voxel
x, y, z coordinates (MNI)

fMRI activations associated with ε2 L inferior parietal 382 < 0.001 5.59 −38, −54, 42
L anterior insula/opercular cortex 140; 30; 90 0.002; 0.019; 0.019 5.30; 3.95; 4.47 −28, 22, −2; −32, 22, 0; −44,

18, 4
R inferior parietal 620 < 0.001 5.23 40, −46, 38
L medial lateral cerebellum 103 0.010 5.09 −38, −60, −42
R vlPFC (and dlPFC) 175 < 0.001 4.86 26, 50, 2
R anterior insula/OFC 156; 87 0.001; 0.022 4.71; 4.08 30, 24, −2; 32, 16, −14
L superior frontal 156; 30 0.001; 0.019 4.45; 4.06 −24, 0, 58; −30, 2, 58
R superior frontal 77 0.039 4.27 34, 8, 60
L vlPFC 92; 252 0.017; < 0.001 3.94; 5.10; −36, 58, 6; −48, 44, −4
L precuneus 136 0.002 4.58 −8, −86, 32
L dlPFC 171 < 0.001 4.59 −50, 12, 32

fMRI activations associated with ε3 PCC 723 < 0.001 5.17 −2, −56, 14
L parahippocampal gyrus 103 0.010 4.07 −32, −40, −14
L vlPFC 326 < 0.001 5.35 −48, 46, −4
R sup. temporal gyrus/TPJ 73 0.049 5.04 54 −20, 4
L frontopolar cortex 132 0.002 4.83 −18, 50, 18
R OFC/anterior insula 108 0.008 4.43 32, 20, −16

Fig. 6. Failures of monitoring and incorporating environmental uncertainty (volatility) in probabilistic learning by CHR relative to control individuals:
prediction error response. (A) A representative map of significant (cluster-level FWE-corrected p < 0.05) group-level (CHR + controls) outcome-related acti-
vations modulated parametrically by precision-weighted volatility-related prediction error (ε3), calculated via one-sample t-test (n = 25) and overlaid on an
anatomical image calculated as the mean structural MRI of the whole group. (B) Greater neural representation of high-level/volatility-related precision-weighted PEs
(ε3) during decision feedback in healthy controls relative to CHR patients, (main) in a network of regions identified using whole-brain cluster-level correction, (inset)
in a region of subgenual anterior cingulate identified under correction for an a priori anterior cingulate masque (bottom centre) and in a left midbrain region
identified under correction for a dopaminergic midbrain masque (trend level p = 0.087, bottom right). Double inset, green: representative sagittal slice depicting
anatomical anterior cingulate cortex masque used as search volume in statistical analysis and multiple comparison correction. Colour bars represent t-statistics.
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visual cortex extending into precuneus and a left medial cerebellar re-
gion, also showed significantly greater volatility-related modulation of
decision-phase activation in controls than in CHR individuals (Fig. 7B,
Table 3). Finally, within our a priori midbrain masque we found one
region of SN/VTA (small volume FWE-corrected p = 0.046, peak
t = 3.97; x = 4, y = −22, z = −18; 9 voxels; Fig. 7B) that showed
significantly greater encoding of predicted volatility in control partici-
pants relative to CHR.

3.4. fMRI association with clinical variables

Following our hypothesis that key clinical features of the CHR state
might be associated with the representation of low-level precision-
weighted PEs in prefrontal regions, we extracted subject-level fMRI
analysis beta-values of ε2–related activation from the cluster of left
superior dlPFC that also displayed a significant group difference in this
ε2 encoding representation (CHR > controls). We then performed
Pearson correlation analysis of these beta-values with sub-scales of the
SIPS. We found a significant negative correlation between these fMRI
data and the SIPS-GAF measure of current global functioning

(r = −0.53, one-tailed p < 0.05; Fig. 5C), as well as a significant po-
sitive correlation between the fMRI data and the degree of decline in
these SIPS-GAF scores within the past year (r = 0.60, one-tailed p <
0.05; see Fig. S7). In other words, the higher the low-level outcome-
related PE encoding in dlPFC, the lower the current functioning (and
the greater the recent decline in functioning) and thus the greater the
symptom burden or severity at the time of testing.

4. Discussion

The CHR state is characterised by attenuated or brief, self-limiting
psychotic symptoms, including delusional beliefs. While delusions are
thought to reflect the endpoints of aberrant learning and inference
processes, with evidence for links to dopaminergic mechanisms in full-
blown schizophrenia (Murray et al., 2008; Romaniuk et al., 2010;
Gradin et al., 2011), it is not clear whether cognitive disturbances of
this sort are already evident in the CHR state.

The specific hypothesis tested in this paper derives from concepts of
hierarchical Bayesian inference that play a prominent role in theories of
schizophrenia (Stephan et al., 2006, 2009a; Corlett et al., 2009a, 2010;

Fig. 7. Failures of monitoring and incorporating environmental uncertainty (volatility) in probabilistic learning by CHR relative to control individuals:
decision tracking. (A) A representative map of significant (cluster-level FWE-corrected p < 0.05) group-level (CHR + controls) decision-related activations
modulated parametrically by estimated volatility, calculated via one-sample t-test (n = 25) and overlaid on an anatomical image calculated as the mean structural
MRI of the whole group. (B) Greater neural representation of estimated volatility during probabilistic decision-making in healthy controls relative to CHR patients,
(main) in a network where solid colour maps of group differences are binarised and indicate spatial differences between whole-brain cluster-level corrected results
(red) and results corrected using the group average map in ‘(A)’ for contrast-masking (dark blue), and (inset) in a midbrain region identified under correction for a
dopaminergic midbrain masque (p < 0.05). Colour bars represent t-statistics.

Table 3
Upper panel: regions showing main effects of estimated volatility-related activation during the decision phase, a subset of which display contrast-masked group
differences (controls > CHR; bold text); Lower panel, in italics: additional regions showing controls > CHR differences, identified using whole-brain correction;
R = right and L = left hemisphere.

Activations assoc. with μ̂ k
3
( ) Brain region Cluster size (voxels) p (FWE) t-value x, y, z

Decision-phase volatility estimate controls + CHR Bilateral cuneus 512 < 0.001 4.90 8, −84, 22
R posterior superior temporal 131; 18 0.002; 0.037 4.78; 4.49 62, −18, 6; 58, −34, 10
Bilateral precuneus 181 < 0.001 4.36 −2, −54, 52
R precentral gyrus/central sulcus 105 0.009 4.28 28, −30, 60
Bilateral superior frontal 172 < 0.001 4.16 −8, 0, 58
R anterior superior temporal 181 < 0.001 4.03 58, 2, −2

Decision-phase volatility estimate controls > CHR Right visual/intracalcarine/precuneal cortex 158 0.001 4.76 4, −60, 2
L anterior medial cerebellum 104 0.009 4.75 −10, −64, −32
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Fletcher and Frith, 2009; Adams et al., 2013). The central idea here is
that the brain instantiates a generative model of its sensory inputs, i.e.,
a model that makes predictions about the environment and how its
(hidden) state gives rise to sensations. Perceptual inference rests on
inverting the model to determine the most likely cause of sensory input;
learning serves to update beliefs such that future sensory inputs can be
better predicted. Importantly, under very general assumptions, these
belief updates have a generic form: they are proportional to prediction
error, weighted by a precision ratio that serves as a dynamic learning
rate and balances the expected precision of low-level (e.g., sensory)
input against the precision of prior beliefs (see Eqs. (1) and (2); see also
Mathys et al., 2014). The corollary from this general update rule is that
unusually pronounced belief updates can arise from two sources: by
assigning too much precision to sensory inputs, or by overly uncertain
prior beliefs.

This perspective allows for formalising the long-standing concept of
“aberrant salience” (Kapur, 2003; Heinz and Schlagenhauf, 2010) and
predicts that the initial phase of delusion formation could be equally
characterised by abnormally high low-level precision (‘sensory preci-
sion’) or by abnormally low precision of higher-level, prior beliefs
(‘belief precision’). As indicated by Eqs. (1) and 2, these two factors
both work in the same direction by elevating the weights of PEs and
thus enhancing belief updates. A chronic persistence of either factor
could eventually lead to highly unusual beliefs, or necessitate a com-
pensatory adoption of beliefs. For example, constant surprise about
events in the world might eventually only be resolved by the adoption
of unusual and rigid higher-order beliefs (see, e.g., Corlett et al.,
2009b). Conversely, high-order beliefs of abnormally low precision
(Adams et al., 2013) render the environment seemingly unpredictable
(e.g., more volatile) and boost the weight of lower-level PEs.

Using a combination of computational modelling of behaviour and
fMRI, this study examined these hypothetical abnormalities of learning
and inference in non-medicated CHR individuals, compared to control
subjects. Firstly, computational modelling of behaviour indicated that,
across the duration of the task, CHR individuals converged to sig-
nificantly higher levels in their beliefs about volatility. Secondly, con-
cerning the fMRI results, we found evidence for both aberrantly en-
hanced neural encoding of low-level precision-weighted PEs and
aberrantly attenuated encoding of high-level precision-weighted PEs in
CHR individuals.

When testing for the average effect of low-level outcome-related PEs
(ε2) across groups, we found activation in a set of fronto-parieto-insular
cortical regions, in line with previous findings (Iglesias et al., 2013;
Diaconescu et al., 2017). We found a significant group difference in the
degree of this activation within lateral and superior frontal, insular and
precuneal cortex, with CHR individuals displaying increased ε2-related
activation compared with controls. The possibility that this increase in
ε2-related activation might be a prominent pathophysiological char-
acteristic of the CHR state is supported by our observation that beta
magnitudes of low-level PE encoding in left superior dlPFC were sig-
nificantly correlated with more burdensome clinical scores of pro-
dromal symptoms (SIPS-GAF). One mechanistic explanation for the
observed overweighting (in terms of neural encoding) of low-level PEs
could be a reduced precision of higher-level beliefs in CHR individuals;
in other words, CHR may be characterised by abnormal estimates of
environmental uncertainty.

Accordingly, with respect to activations by higher-level precision-
weighted PEs (ε3) that inform updates of volatility estimates, we indeed
found opposing effects, in that many of the same regions – dlPFC, vlPFC
and insula, as well as additional effects in temporoparietal junction, the
subgenual cingulate and, marginally, the dopaminergic midbrain –
displayed greater ε3–related activations in controls, relative to CHR
individuals. Taken together, our behavioural and fMRI findings related
to higher-order beliefs therefore suggest that CHR individuals may
perceive the volatility of the environment differently from controls. The
mechanism underlying the observed constellation of an increased ‘set

point’ of estimated volatility (according to the behavioural data) and
reduced activation in response to high-level precision-weighted PEs (ε3)
that inform updates of volatility estimates, remains to be clarified but
suggests a neurobiological difference in the processing of volatility.

Collectively, our results indicate that associative learning under
volatility in the CHR state is characterised by higher estimates of en-
vironmental volatility (as expressed at the behavioural level) and overly
high low-level precision-weighted PE activations (at the neural level).
These effects may reflect an enhanced tendency towards belief updating
and might explain the empirically observed “jumping to conclusions”
bias in CHR individuals (Broome et al., 2007; Winton-Brown et al.,
2015). More generally, this cognitive style may represent a risk factor
for delusion proneness.

A final finding is more difficult to interpret: in contrast to the be-
havioural results, which suggest that CHR individuals’ updates of vo-
latility were converging to significantly higher levels than those of the
controls, fMRI activations by volatility estimates were generally lower
in CHR individuals during decision-making. These relative deactiva-
tions by volatility were found in several regions, including temporal
and occipital cortices, as well as the midbrain. It is presently not clear
how this reduced neural representation of volatility during decision-
making is related to the behavioural evidence for increased volatility
updating. Generally, however, this atypical cortical representation of
volatility does support the general notion that processing of high-level
uncertainty is abnormal in CHR individuals.

Our study has some strengths but also several important limitations
that deserve mentioning. Regarding strengths, we implemented strict
inclusion criteria that limited recruitment to those CHR individuals who
had never been exposed to antipsychotic medication. Given the po-
tential relation of low-level prediction errors and precision to dopamine
function, this step avoided a potentially critical confound. Additionally,
we took several steps to maximise the sensitivity of our analyses, in-
cluding careful correction for physiological noise based on ICA and
RETROICOR, orthogonal contrast masking and a priori hypotheses
about the encoding of specific computational signals in specific anato-
mical regions of interest. Concerning limitations, while not markedly
lower than previous fMRI studies on the CHR state, which have typi-
cally examined up to 18 participants (for example, see Allen et al.,
2010; Roiser et al., 2013; Schmidt et al., 2013; Falkenberg et al., 2015b;
Modinos et al., 2015; Ermakova et al., 2018), our sample size would
nonetheless have to be regarded as rather small. We thus emphasise
that our results should be treated with caution until replicated in ad-
ditional samples. A second issue is that the two groups were not per-
fectly matched with regard to age and sex. We controlled for these
differences by including these variables as covariates of no interest in
all group-level fMRI analyses. In addition, although none of the sample
reported substance abuse or dependence according to DSM-IV criteria,
in future studies it would be prudent to acquire more detailed in-
formation regarding participants’ histories of illicit drug use, which
may be a determining factor in their development of psychosis symp-
toms (e.g., Arseneault et al., 2002). Finally, it is also notable that the
SIPS clinical questionnaire we incorporated into our analyses is com-
prised of a number of different sub-scales, and the reported significant
association between one of these (SIPS-GAF) and our fMRI measures of
low-level precision-weighted PE encoding would not survive Bonferroni
correction for testing all scales. It should thus be treated as a pre-
liminary result that requires confirmation by future studies.

In conclusion, our findings contribute to advancing a mechanistic
understanding of cognitive abnormalities during the CHR state. Using
computational modelling, functional neuroimaging and clinical mea-
sures, we found that behaviour and brain activity of individuals at risk
for psychosis, relative to healthy control subjects, shows preliminary
evidence for two potential mechanisms – increased low-level precision
(of outcome PEs) and greater updates in high-level uncertainty (i.e.,
volatility) – that converge in their impact and render an individual
more prone to adjusting high-order beliefs. In addition, we provide
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empirical evidence that individual neural representations of outcome-
related learning signals (low-level precision-weighted PEs) correlate
with individual differences in symptom severity. These findings support
previous proposals focusing on the importance of aberrant salience
(Kapur, 2003; Roiser et al., 2013) and imprecise higher-order beliefs
(Adams et al., 2013) for delusion proneness. The present results may
usefully inform future investigations that employ computational and
biophysical models to study prediction errors and uncertainty in larger
CHR samples and examine the relevance of these quantities for pre-
dicting conversion to psychosis in prospective designs.
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