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Speeding up ab initio diffusion Monte Carlo simulations by a smart lattice regularization
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One of the most significant drawbacks of the all-electron ab initio diffusion Monte Carlo (DMC) is that its
computational cost drastically increases with the atomic number (Z), which typically scales with Z∼6. In this
study, we introduce a very efficient implementation of the lattice regularized diffusion Monte Carlo (LRDMC),
where the conventional time discretization is replaced by its lattice space counterpart. This scheme enables us to
conveniently adopt a small lattice space in the vicinity of nuclei, and a large one in the valence region, by which a
considerable speedup is achieved, especially for large atomic number Z . Indeed, the computational performances
of the improved LRDMC can be theoretically established based on the Thomas-Fermi model for heavy atoms,
implying the optimal Z∼5 scaling for all-electron DMC calculations. This improvement enables us to apply the
DMC technique even for superheavy elements (Z � 104), such as oganesson (Z = 118), which has the highest
atomic number of all synthesized elements so far.
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I. INTRODUCTION

In recent years, the grand challenge in materials modeling
is to provide extremely accurate reference energetics often
well beyond the standard benchmark provided by the den-
sity functional theory (DFT) that notoriously is not enough
predictive in several materials of both scientific [1,2] and
technological interests [3,4]. This is also particularly impor-
tant in view of existing progress in machine learning algo-
rithms to define accurate classical force field potentials with
reference data as unbiased as possible [5–8]. For such prob-
lems, explicitly correlated wave-function-based approaches
are necessary [9–13], such as the ones used in quantum
chemistry and the ones relying on statistical approaches that
are known under the generic name “quantum Monte Carlo”
(QMC) [14]. In practice, for electronic systems containing
more than a handful of atoms, QMC remains the only possible
wave function based reference method, partly because of its
favorable scaling with system size and the fact that it can be
used efficiently on massively parallel supercomputers. One of
the most powerful QMC techniques is based on a systematic
ground-state projection of a carefully determined trial state
[15], using the so-called diffusion Monte Carlo (DMC) with
the fixed node approximation (FN). This choice represents a
good compromise between accuracy and efficiency because
FN is necessary for avoiding the well-known sign problem,
and gives the best (i.e., the lowest energy) variational state
with the same sign of the trial function. Despite this, FN
remains a highly expensive computational tool, especially for
systems containing nuclei with large atomic number Z .

*kousuke_1123@icloud.com
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Many sophisticated pseudopotentials have been developed
and intensively used so far [16–21] in order to avoid an almost
prohibitive computational cost. However, they are usually
determined within other schemes and require further approx-
imations (e.g., the locality [14]) that spoil the consistency of
the method and often sacrifice the variational principle. We
remark that several pseudopotentials used in QMC (e.g., the
so-called BFD ones [22,23]) are based on the Hartree-Fock
(HF) approximation that completely misses the correlation
energy. Their use can be therefore justified only empirically
and does not guarantee any consistency, namely that the FN
energy differences are consistent with or without pseudopo-
tentials.

All-electron calculations do not suffer from the above
problems, but they are rarely applied for atoms of large
atomic number Z in QMC due to the expensive computational
cost. The major drawback is that, in the electronic wave
function, the core and the valence regions are characterized
by very different length scales. Therefore, within the most
straightforward QMC algorithm, the smallest scale (∼Z−1)
should be adopted for the proposed random displacement of
the electrons, in order to avoid significant biases. How to treat
different length (time) scales in a system is one of the central
issues in computational physics, e.g., in molecular dynamics
(RESPA [24,25]) and ab initio calculations. In the ab initio
community, the Voronoi scheme [26], Becke fuzzy cells in-
tegration [27], and the multigrid technique [28] have been
applied to accelerate the computation with an accurate quadra-
ture in the vicinity of nuclei. Similarly, in the QMC commu-
nity, Umrigar et al. have devised an accelerated Metropolis
algorithm for the variational Monte Carlo (VMC) [29,30],
by which electrons in the vicinity of nuclei are displaced
with a step much shorter than the one used in the valence
region by employing spherical polar coordinates. They also
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devised a method for the diffusion Monte Carlo (DMC) [31]
by reducing the velocity in the vicinity of nuclei to prevent
from overshooting electrons. Despite that this improves the
accuracy by a sizable amount, the major drawback of the con-
ventional DMC is that the imaginary time step has to remain
necessarily the same both for the valence and the core region
[31] because it is difficult to decompose the propagation in
imaginary time into the sum of multiple operators acting on
different length scales. In this work, we will provide a solution
to the different time (length) scale problem in DMC that is
extremely relevant for its computational efficiency.

Lattice regularized diffusion Monte Carlo (LRDMC) can
straightforwardly handle different length scales of a wave
function [15,32], so that electrons in the vicinity of the
nuclei and those in the valence region can be appropriately
diffused. Henceforth this remedy is referred to as “double-grid
LRDMC,” and “single-grid LRDMC” refers to the simpler
version that adopts only a single lattice space as introduced
in Ref. [32]. Although the double-grid LRDMC was claimed
to solve the above drawback, no meaningful speedup has been
achieved so far. Indeed, the original double-grid LRDMC has
been used only for a very limited number of applications,
specifically for light elements, such as carbon [32] and sodium
[33] because, as shown later on, the original formulation leads
to significant and uncontrolled errors for heavy elements. In
the following, we introduce a strategy to handle different
length and time scales in electronic ground-state calculations
by having in mind the Thomas-Fermi theory, that is quite gen-
eral and allows in particular a much more powerful double-
grid LRDMC. After this appropriate treatment, this method
becomes applicable to any element without introducing sig-
nificant bias, while definitely accelerating the computation
especially for large atomic number Z .

II. BOOSTING THE DOUBLE-GRID LRDMC

In LRDMC, the original continuous Hamiltonian is reg-
ularized by an approximate one Ha such that Ha → H for
a → 0, where a is the lattice mesh size used to discretize the
continuous space [15,32]. Indeed, the kinetic part is approxi-
mated by a finite difference form:

�i ≈ �a,a′
i ≡ �

a,p
i + �

a′,1−p
i , (1)

where �
a,p
i and �

a′,1−p
i are discretized Laplacians by a small

lattice space (a) and a large one (a′), respectively. The function
p(�r), defining �

a,p
i and �

a′,1−p
i , parametrizes the probability

to use the smaller and therefore more accurate lattice space (a)
when an electron is close to a heavy nucleus. In the original
work, p(r) was chosen to be a simple Padé function [32]:

p(�r) = (
1 + r2

c |�r − �Rc|2
)−1

; (2)

instead a Gaussian-type function is employed in this work:

p(�r) = exp

(
−|�r − �Rc|2

2rc
2

)
, (3)

where �Rc is the position of the nucleus closest to the elec-
tron in �r, and rc is an important parameter determining the
electrons treated with the smaller lattice space a (henceforth

referred to as core electrons), in other words, the ones inside
the sphere of radius rc (see Appendix A).

The key parameters of the double-grid LRDMC are a′/a
and rc. A smaller rc and a larger ratio a′/a accelerate the
double-grid scheme as compared with the corresponding
single-grid one, whereas the bias (i.e., the difference between
the single-grid and the double-grid LRDMC energies at the
same a) is correspondingly increased. Therefore, a proper
determination of the two parameters is essential to balance
accuracy and efficiency of the double-grid LRDMC. a′/a was
originally parametrized as

a′

a
=

√
Z2

4
+ 1, (4)

with the Padé function p(�r) in Eq. (2) and rc = 1
2 Z [32], where

Z is the atomic number considered. However, as it is shown in
the following, the above choice is not suitable for large atomic
number (Z).

In the following, we briefly describe a strategy to speed
up a LRDMC calculation. First, we discuss how to properly
determine a′/a. Since the computational cost of LRDMC is
proportional to the inverse square of the lattice spaces (a and
a′), the acceleration of the double-grid vs single-grid LRDMC
(denoted as speedup) can be analytically estimated in terms of
a′/a and the average number of electrons in the core/valence
regions, according to the following relation:

speedup−1 = Ncore(rc)

Z
+ Nvalence(rc)

Z

(
a′

a

)−2

, (5)

where Ncore(rc) and Nvalence(rc) = Z − Ncore(rc) are the aver-
age numbers of electrons that are diffused with the smaller
(a) and the larger (a′) lattice spaces, respectively [34]. On
physical grounds, the average numbers of core and valence
electrons satisfy the inequality Ncore � Nvalence. On the other
hand, the systematic error of the double-grid scheme referred
to the corresponding single-grid one at the same a (denoted as
bias) cannot be analytically estimated. This is because it is a
very complicated function of a, a′, rc, and Z . It is, however,
possible to estimate an appropriate value according to the
following consideration: (i) If we chose a too large value of
a′/a, most of the computational time would be spent for the
core electrons, and we could certainly decrease the bias by a
smaller a′ without affecting much the efficiency. (ii) On the
other hand, if we chose a′/a (> 1) too close to 1, the bias
would be minimal (i.e., equal to the single-grid LRDMC),
but the speedup could be substantially increased by a larger
a′ without affecting the bias. Thus, we determine a′/a in a
way that the speedup becomes an appropriate percentage of

the maximun one [e.g., speedup = 1
2 ( Ncore(rc )

Z )
−1

], yielding

a′

a
=

√
lNvalence(rc)

Ncore(rc)
≡

√
l[Z − Ncore(rc)]

Ncore(rc)
, (6)

where l is an efficiency parameter independent of Z . We
found that l = 2.0 is an optimal value (see Appendix B in
detail). The determination of a′/a [Eq. (6)] is an excellent
compromise to balance acceleration and accuracy.

Next, we discuss a strategy to properly determine rc. Since
here we are interested in the asymptotic behavior of the
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TABLE I. LRDMC energies of He, Be, Ne, Ar, Kr, and Xe atoms obtained by the single- and double-grid schemes at a = (3.5Z )−1.

Lattice space Single grid Double grid (this work) Double grid (previous)

Element a ≡ (αZ )−1 α Energy (Ha) Energy (Ha) Bias (mHa)a Energy (Ha) Bias (mHa)a

He (Z = 2) 0.142 857 3.50 −2.903 732 1(62) −2.903 759 7(64) 0.0(0.0) −2.903 739 8(63) 0.0(0.0)
Be (Z = 4) 0.071 429 3.50 −14.667 247(31) −14.667 294(32) 0.0(0.0) −14.667 316(31) 0.1(0.0)
Ne (Z = 10) 0.028 571 3.50 −128.926 26(13) −128.927 19(14) 0.9(0.2) −128.927 45(14) 1.2(0.2)
Ar (Z = 18) 0.015 873 3.50 −527.495 42(18) −527.497 56(19) 2.1(0.3) −527.505 17(20) 9.7(0.3)
Kr (Z = 36) 0.007 937 3.50 −2753.771 51(78) −2753.773 54(74) 2.0(1.1) −2753.830 69(84) 59.2(1.1)
Xe (Z = 54) 0.005 291 3.50 −7234.8320(13) −7234.838 45(88) 6.4(1.6) −7235.0409(15) 208.9(2.0)

aThe difference in total energy between the single- and double-grid LRDMCs.

algorithmic accuracy and efficiency for large Z , it is con-
venient to adopt the Thomas-Fermi approximation [35], ac-
cording to which Ncore(rc) for Z1/3rc � 1 is given by (see
Appendix A in detail)

Ncore(rc) ∝ (Zrc)3/2. (7)

At this point, it is important to consider that the bias depends
on the two lengths, namely, the value of rc (the bias is minimal
for rc → ∞) and the value of a′ (the bias is minimal if
a′ = a � 1/Z). Now, these two contributions are expected to
be of the same order if we take a′ � rc because we can assume
that for r > rc, far from the core region, the wave function
is smooth and the Laplacian can be discretized with a lattice
space a′ � rc. This represents the most balanced choice, pro-
viding a good compromise between efficiency (smaller rc and
larger a′) and accuracy (the other way around). With the above
condition, by substituting the Thomas-Fermi expression of
Eq. (7) in Eq. (6) for a ∝ 1/Z , we obtain

rc � a′ � 1

Z

√
Z

(Zrc)3/2 , (8)

yielding rc ∝ Z−θ with θ = 5/7. Therefore, our choice in
the following is rc(Z ) = βZ−5/7, where β is a Z-independent
prefactor. Although the above discussion based on the
Thomas-Fermi model is exact only for Z → ∞, our VMC
calculations show that the scaling [i.e., Ncore(rc) ∝ Z3/7] is
empirically correct even for small Z (see Appendix A). The
prefactor β should be small enough so that the scaling is
valid in a wide range of Z values, even outside the asymptotic
power-law regime. Therefore, β = 0.75 is employed in this
study (see Appendix A).

As a summary, we determine rc(Z ) according to rc(Z ) =
βZ−5/7, with β = 0.75. Then, a corresponding appropriate
a′/a is determined according to Eq. (6). In this study, Ncore(rc)
and Nvalence(rc) are estimated by the Slater’s effective model
[36] with the exponents that Clementi et al. proposed based
on their HF calculations [37,38]. Since the computational cost
of the all-electron single-grid DMC has turned out to scale
with Z5.5−6.5 [39–41] and the single-grid LRDMC similarly
behaves, it is obviously very important to accelerate the
double-grid LRDMC for heavy elements. In the following,
we assume that the unbiased a → 0 fixed node estimate can
be obtained by a low-order polynomial fit of several energy
calculations corresponding to different a �� 1

Z . Since both
terms in Eq. (5) are proportional to Z−4/7 [Ncore(rc) ∝ Z3/7

and a′/a ∝ Z2/7], it is expected that the parametrization im-
proves the complexity of the single-grid LRDMC by ∼Z4/7 �
Z0.57, that represents a remarkable achievement especially for
large Z .

III. PRACTICAL TEST OF THE DEVELOPED
PARAMETRIZATION

In Table I, we show the LRDMC energies of He (Z = 2),
Be (Z = 4), Ne (Z = 10), Ar (Z = 18), Kr (Z = 36), and Xe
(Z = 54) atoms for a = (3.5Z )−1 obtained by the single-grid
(standard), the previous, and the double-grid parametrizations.
These results indicate that the double-grid LRDMC energies
obtained with the previous parametrization are significantly
biased, especially for large atomic number Z . On the other
hand, our parametrization suppresses these large biases, and
the obtained LRDMC energies are essentially consistent with
the single-grid ones for all Z , implying that the scaling
law derived by means of the Thomas-Fermi model (rc ∝
Z−5/7 and a′/a ∝ Z2/7) is in very good agreement with the
numerical simulation. Thus, our double-grid LRDMC accel-
erates the computation without introducing significant biases,
no matter how large is Z .

In practice, it is important to evaluate the actual com-
putational time required to obtain a given absolute error in
the total energy, as a function of the atomic number Z . We
measured the computational times for He, Be, Ne, Ar, Kr, and
Xe, wherein a = (3.5Z )−1 is employed [42]. This is consistent
with the typical setting of the time step in the standard DMC
(τ ∝ Z−2 [41]). Figure 1 shows that our parametrization ac-
celerates the single-grid LRDMC calculations by ×1.1, ×1.6,
×2.8, ×4.0, ×5.8, and ×7.5 for He, Be, Ne, Ar, Kr, and Xe,
respectively [43]. Our practical test shows that the single-grid
LRDMC scales with Z5.54, which is already slightly better
than the previous report for the standard DMC algorithm
(Z5.97 with τ ∝ Z−2 [41], where Umrigar’s improvement [31]
was employed). The double-grid parametrization improves
the scaling of the LRDMC from Z5.54 (single grid) to Z4.95

(double grid) though it does not introduce significant bias,
as described in the previous paragraph. The improvement of
the scaling (Z0.59) is consistent with our expectation (Z4/7 �
Z0.57). To our best knowledge, Z4.95 is the best scaling for the
all-electron FN calculations so far.
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FIG. 1. Computational costs (CPU times) of the single- and
double-grid LRDMC, measured at a = (3.5Z )−1. The figure shows
the logarithm of the CPU times required to obtain an absolute error
bar (1.0 mHa) in the total energy. The CPU times were measured
in seconds. The speedups are indicated below the blue triangles.
The scalings described here were obtained without including the
Og data.

IV. APPLICATION TO SUPERHEAVY ELEMENTS

We are now able to apply the LRDMC and its extrapolation
(i.e., a → 0) to superheavy elements (Z � 104) within a
reasonable computational time. In this study, we deal with Og
(Z = 118) that has the largest atomic number of all the known
elements [44]. First, we evaluated the CPU time required to
obtain an absolute error bar (1.0 mHa) in the total energy
for Og. We found that, even when considering also Og,
the expected polynomial scaling of the double-grid LRDMC
remains, as shown in Fig. 1. The double-grid parametrization
allows us to speed up LRDMC for Og by more than an order
of magnitude (∼ten times), so that the calculation is now
possible and timely. Notice that, by including the Og data
in the extrapolations, we obtained Z5.66 and Z5.10 scaling for
the single- and double-grid LRDMC, respectively. They are
a little worse than those without including the Og data (i.e.,
Z5.54 and Z4.95). This slight increase in the exponents might
be related to the issue of polynomial scaling performances for
large number of electrons, within the conventional branching
algorithm adopted here [45]. These problems can probably
be solved by adopting a more efficient path-integral approach
[46]. Table II shows the extrapolated (a → 0) nonrelativistic
LRDMC energies of various elements including Og. The
details of the extrapolations are shown in Appendixes C and
D. The result shows that the correlation energies retrieved
at the LRDMC level scales with Ec ∝ Z1.26, which is close
to the exact one, Ec ∝ Z1.35 (up to Xe, see Appendix D).
This is consistent with the previous study [41] that shows the
DMC correlation energy scales with Ec ∝ Z1.26 up to Xe. Our
result implies that the DMC scheme can recover a satisfactory
correlation energy even when Z significantly increases. This
is a great advantage of the DMC method compared with

TABLE II. Nonrelativistic LRDMC energies of He, Be, Ne, Ar,
Kr, Xe, and Og obtained by the double-grid schemes with extrapo-
lation (a → 0). The Hartree-Fock and the corresponding correlation
energies (Ec) retrieved by the LRDMC calculations are also shown.
The unit of energy is Hartree.

Element HF a LRDMC Ec

He (Z = 2) −2.861 680 −2.903 720 0(53) 0.04
Be (Z = 4) −14.573 02 −14.667 261(25) 0.09
Ne (Z = 10) −128.547 10 −128.926 10(11) 0.38
Ar (Z = 18) −526.817 51 −527.496 04(28) 0.68
Kr (Z = 36) −2752.054 98 −2753.771 05(55) 1.72
Xe (Z = 54) −7232.138 36 −7234.8350(10) 2.70
Og (Z = 118) −46 324.355 82 −46 331.4380(53) 7.08

aSee Ref. [47].

the quantum chemistry ones, because, even within the gold-
standard CCSD(T) scheme, the correlation energy is rapidly
going down when Z increases (e.g., ∼20% for Kr [48]).
The implementation of the relativistic effect [49–52] will
make the double-grid LRDMC much more useful for studying
electronic structures of large atomic number elements in the
near future.

V. SUMMARY

In this study, we have introduced a powerful strategy to
deal with the different time and length scales in electronic
systems that has allowed us to establish an improved double-
grid lattice regularized diffusion Monte Carlo (LRDMC)
with careful balance between speedup and accuracy, yielding
unprecedented computations even for large atomic number
Z . The speedup of the LRDMC is predicted theoretically
within the standard Thomas-Fermi model for atoms with
large atomic number, and the calculation is indeed accelerated
in practice by a large amount, especially for large atomic
number Z . As a result, the computational scaling is improved
from Z∼5.5 (the single-grid LRDMC) to Z∼5 (the double-grid
LRDMC). The double-grid LRDMC has been applied to the
largest superheavy element with more than an order of mag-
nitude speedup. This technique can be used for polyatomic
systems more efficiently (see Appendix E). Our solution is
not based on a particular property of the DMC algorithm,
rather on the general and accepted Thomas-Fermi theory in
condensed matter physics. This implies that other electronic
structure packages could also take advantage of the proposed
approach for dealing with different length scales.
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FIG. 2. A two-dimensional schematic picture of the double-grid
LRDMC algorithm. Each electron at �r is displaced by a shorter (a)
or a longer (a′) lattice space according to the probability of p(�r)
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suddenly far from nuclei (e.g., Gaussian function), most electrons in
the vicinity of nuclei are displaced by a, and those far from nuclei
are by a′.
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APPENDIX A: THE SCALING OF THE NUMBER
OF ELECTRONS WITHIN rc OBTAINED BY THE

THOMAS-FERMI MODEL

In the double-grid LRDMC, the kinetic part is approxi-
mated by a finite difference form:

�i ≈ �a,a′
i ≡ �

a,p
i + �

a′,1−p
i , (A1)

where �
a,p
i and �

a′,1−p
i are discretized Laplacians by a small

lattice space (a) and a large one (a′), respectively [32]. The
function p(�r), defining �

a,p
i and �

a′,1−p
i , parametrizes the

probability to use the smaller (a) when an electron is close
to an heavy nucleus, and a large one (a′) far from a nucleus.
In this work, a Gaussian-type function was employed for p(r):

p(�r) = exp

(
−|�r − �Rc|2

2rc
2

)
, (A2)

where �Rc is the position of the nucleus closest to the electron
in �r, and rc determines the sphere in which the electrons are
treated with the smaller lattice space a (Fig. 2).

According to the Thomas-Fermi model [35], the electron
density of the atomic number Z can be represented by

ρ(r) = Z2 f

(
Z1/3r

b

)
, (A3)

where b is the constant value b = (9π2/128)1/3, f (x) is

f (x) = 32

9π3

(
χ (x)

x

)3/2

, (A4)

and χ (x) is the universal function independent of Z . There-
fore, when the Gaussian-type function [Eq. (A2)] is employed
for p(r), the number of electrons within rc is defined by

Ncore(rc) =
∫ ∞

0
dr 4πr2Z2 f

(
Z1/3r

b

)
exp

(
− r2

2r2
c

)
, (A5)

where we assume �Rc = 0 in Eq. (A2). Equation (A5) can be
rewritten using Z1/3r/b = x:

Ncore(rc) = Z
∫ ∞

0
dx x1/2χ (x)3/2 exp(−ξx2), (A6)

where ξ = (bZ−1/3/
√

2rc)
2
. χ (x) can be approximated by the

following polynominal expression at small x region (x � 1)
[35]:

χ (x) = 1 − Ax + · · · , (A7)

where A is the constant value A = 1.8858. If ξ is large enough
(i.e., Z1/3rc/b � 1), only the small x region contributes to the
integral and the high-order terms can be neglected. Therefore,
the above equation can be approximated by

Ncore(rc) � Z
∫ ∞

0
dx x1/2 exp(−ξx2). (A8)

Since the integral can be replaced by the gamma function,∫ ∞

0
dx x2s−1 exp(−ξx2) = 1

2
�(s)ξ−s, (A9)

the number of electrons within rc can be represented as:

Ncore(rc) � 1

2
Z�

(
3

4

)
ξ−3/4 ≡ 1

2

(
b√
2

)−3/2

�

(
3

4

)
(Zrc)3/2.

(A10)

By substituting rc with βZ−θ , we finally get the relation

Ncore(rc) � 1
2 (b

√
2β )−3/2�

(
3
4

)
Z (3/2)(1−θ ) ∝ Z (3/2)(1−θ ),

(A11)

and for θ = 5/7:

Ncore(rc) ∝ Z3/7. (A12)

Equation (A12) is valid only when the inequality ξ 
 1 is
satisfied. This depends on the prefactor β as well as the
atomic number Z . In practice, the prefactor β should be
small enough so that Ncore(rc) ∝ Z3/7 is valid in a wide range
of Z values, even outside the asymptotic power-law regime.
Figure 3 shows the plot of Ncore(rc) divided by Z3/7 obtained
by VMC calculations vs β for Ne, Ar, Kr, and Xe atoms.
This figure shows that β = 0.75 is small enough to satisfy the
above scaling.

The electron densities obtained by the VMC calculations
were validated by comparison with the experimental atomic
scattering factors (ASFs), as shown in Fig. 4. ASFs can be
readily calculated using the electron densities obtained by the
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FIG. 3. The plot of Ncore(rc )/Z3/7 obtained by VMC calculations
v.s β, showing that the scaling (Ncore(rc ) ∝ Z3/7) is satisfied at small
β region. β = 0.75 is employed in the present work.

ab initio VMC calculations according to the following relation
[53]:

ASF =
∫ ∞

0
4πr2ρ(r)

sin kr

kr
dr, (A13)

where k = 4π sin θ/λ, 2θ is the scattering angle and λ is
the wavelength. TurboRVB enables us to calculate a radial
distribution function as well as an electron density from a
many-body wave function.

APPENDIX B: ADJUSTMENT OF THE EFFICIENCY
PARAMETER l IN EQ. (6) IN THE MAIN TEXT

We compared the single-grid and the double-grid LRDMC
energies by changing the efficiency parameter l in Eq. (6) in

72

54

36

18

0

A
to

m
ic

 s
ca

tte
ri

ng
 f

ac
to

r

0.40.30.20.10.0

sin   / 

 Ne (Z=10) 
 Ar (Z=18) 
 Kr (Z=36) 
 Xe (Z=54) 
 Experiments 

FIG. 4. Atomic scattering factors obtained by the VMC calcula-
tions, and those obtained by scattering x-ray measurements [53].

FIG. 5. The energy differences between the single-grid and the
double-grid LRDMC for He, Ne, Ar, Kr, and Xe with various l in
Eq. (6) of the main text.

the main text in order to find a optimal value. The result is
shown in Fig. 5. Since the biases significantly increase as l
becomes larger than 3.0, we have concluded that l = 2.0 is an
optimal value to balance acceleration and accuracy.

APPENDIX C: A REMEDY FOR SMOOTH
EXTRAPOLATIONS

In order to improve the quality of the energy extrapolation
for a → 0, it is important to increase rc as a increases. This
is because if rc is fixed (i.e., a′/a is also fixed according to
Eq. (6) in the main text), a′ � rc is no longer satisfied in a
large a region, which introduces a large bias by the larger
lattice space a′ especially in the vicinity of the border between
the core and valence regions. A simple parametrization to
solve this problem is rc(a, Z ) = rc(Z ) f (a), where f (a) is an
arbitrary function satisfying f (0) = 1 and f (∞) = const. In
this study, a simple polynominal function,

f (a) = κ (Z · a)2 + 1

(Z · a)2 + 1
≡ κ · α−2 + 1

α−2 + 1
, (C1)

is employed, where κ is a prefactor, and a = (αZ )−1. There-
fore, rc(a, Z ) can be parametrized as

rc(a, Z ) = rc(Z ) f (a) ≡ β(κα−2 + 1)

α−2 + 1
Z−5/7. (C2)

Equation (6) in the main text indicates that Ncore(rc) should be
smaller than Nvalence(rc) for any a and Z , otherwise the double-
grid LRDMC becomes useless (i.e., a′/a < 1) in a certain
case. According to the Thomas-Fermi theory [35], Ncore(rc)
becomes equal to Nvalence(rc) at rc = 1.33Z−1/3. Therefore,
the following inequality should be satisfied for all Z and a
so that a′/a becomes larger than 1.0 even when l in Eq. (6) is
set to 1.0,

rc(a, Z ) < 1.33Z−1/3 (∀a ∈ a > 0,∀Z ∈ Z � 3). (C3)
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FIG. 6. LRDMC energies of (a) Be (Z = 4), (b) Ne (Z = 10), and (c) Kr (Z = 36) atoms obtained by the single-grid (red circles), the
previous (green triangles), and the (blue squares) double-grid algorithms. The broken lines represent extrapolations with a quadratic function
E (a2) = E0 + ka2.

Thus, we obtain κ < 2.69 for β = 0.75. κ = 2.5 is employed
here. The modified algorithm determines rc(a, Z ) using Z and
a according to Eq. (C2), then, a corresponding proper a′/a
is calculated by the obtained rc(a, Z ) according to Eq. (6)
in the main text, wherein Ncore(rc) and Nvalence(rc) are esti-
mated by the Slater’s effective models [36] with the expo-
nents that Clementi et al. proposed based on HF calculations
[37,38].

In Fig. 6 and Table III, we show the LRDMC energies of Be
(Z = 4), Ne (Z = 10), and Kr (Z = 36) atoms obtained by the
single-grid, the previous, and the double-grid algorithms with
the above remedy (l = 1.0, β = 0.75, κ = 2.5). The LRDMC
energies were extrapolated with a quadratic function E (a2) =
E0 + ka2, as shown in Fig. 6. We remark that in Fig. 6 the
LRDMC energies obtained by the previous parametrization
are significantly biased in the large a region especially in Kr

TABLE III. LRDMC energies of Be, Ne, and Kr atoms obtained by the single- and double-grid schemes. These LRDMC calculations were
performed by the double-grid scheme improved for smooth extrapolations (a → 0) described in Appendix C (l = 1.0, β = 0.75, κ = 2.5).
The obtained LRDMC energies were extrapolated with a quadratic function E (a2) = E0 + ka2, as shown in Fig. 6.

Lattice space Single grid Double grid (this work)

Element a ≡ (αZ )−1 α Energy (Ha) Energy (Ha) Bias (mHa)a Accelerationb a′/a rc(a, Z )

Be (Z = 4) a → 0 α → ∞ −14.667 191(22) −14.667 200(22) 0.0(0)
0.08 3.33 −14.667 249(32) −14.667 325(32) 0.1(0) ×2.0 1.733 0.313
0.10 2.50 −14.667 274(32) −14.667 257(32) 0.0(0) ×1.9 1.654 0.336
0.13 2.00 −14.667 368(32) −14.667 367(32) 0.0(0) ×1.8 1.580 0.362
0.18 1.43 −14.667 446(34) −14.667 444(34) 0.0(0) ×1.6 1.458 0.416
0.23 1.11 −14.667 678(36) −14.667 734(38) 0.1(1) ×1.5 1.372 0.466
0.25 1.00 −14.667 795(38) −14.667 866(38) 0.1(1) ×1.4 1.340 0.488

Ne (Z = 10) a → 0 α → ∞ −128.925 559(85) −128.925 996(87) 0.2(2)
0.03 3.33 −128.925 97(14) −128.926 38(14) 0.4(2) ×3.5 2.449 0.163
0.04 2.50 −128.926 53(14) −128.926 95(14) 0.4(2) ×3.3 2.352 0.175
0.05 2.00 −128.926 65(14) −128.927 36(14) 0.7(2) ×3.1 2.255 0.188
0.07 1.43 −128.927 76(15) −128.928 81(15) 1.0(2) ×2.7 2.080 0.216
0.09 1.11 −128.929 52(15) −128.931 04(16) 1.5(2) ×2.5 1.942 0.242
0.10 1.00 −128.930 63(15) −128.931 94(16) 1.3(2) ×2.4 1.887 0.253
0.12 0.83 −128.932 89(17) −128.934 22(17) 1.3(2) ×2.2 1.797 0.273
0.14 0.71 −128.934 89(19) −128.937 16(21) 2.3(4) ×2.1 1.731 0.289

Kr (Z = 36) a → 0 α → ∞ −2753.767 13(41) −2753.769 45(46) 2.3(0.6)
0.00278 10.00 −2753.767 70(76) −2753.768 91(65) 1.2(1.0) ×7.0 3.641 0.059
0.00556 5.00 −2753.768 56(60) −2753.770 25(64) 1.7(0.9) ×6.7 3.541 0.061
0.01250 2.22 −2753.773 69(58) −2753.778 37(86) 4.7(1.0) ×5.5 3.159 0.073
0.01667 1.67 −2753.779 37(75) −2753.787 84(69) 8.5(1.0) ×4.8 2.936 0.081
0.01944 1.43 −2753.784 12(73) −2753.790 63(73) 6.5(1.0) ×4.5 2.809 0.087
0.02222 1.25 −2753.789 51(77) −2753.795 14(73) 5.6(1.1) ×4.2 2.701 0.092
0.02500 1.11 −2753.794 12(82) −2753.801 90(85) 7.8(1.2) ×4.0 2.609 0.097

aThe difference in total energy between the single- and double-grid algorithms.
bThe accelerations were not measured by actual CPU times but the number of off-diagonal moves per a given time step tbra.
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TABLE IV. The nonrelativistic ground-state energies of He, Be,
Ne, Ar, Kr, Xe, and Og. The LRDMC calculations shown here
were performed by the double-grid scheme improved for smooth
extrapolations (a → 0) described in Appendix C (l = 2.0, β = 0.75,
κ = 2.5). We extrapolated the LRDMC energies with a quadratic
function E (a2) = E0 + ka2, as shown in Figs. 7 and 8.

Element Method Total energy (Ha) Correlation (%)

He (Z = 2)a HFh −2.861 680 0
VMC-JSDi −2.903 527(9) 99.53(2)

DMCi −2.903 719(2) 99.99(0)
VMC-JSD −2.903 351 8(79) 99.11(2)

VMC-JAGP −2.903 443 1(70) 99.33(2)
LRDMC −2.903 720 0(53) 99.99(1)

Exactj −2.903 724 100

Be (Z = 4)b HFh −14.573 02 0
VMC-AGPk −14.665 04(4) 97.54(0)

DMCk −14.667 26(1) 99.89(0)
VMC-JAGP −14.665 828(42) 98.38(0)

LRDMC −14.667 261(25) 99.89(0)
Exactl −14.667 36 100

Ne (Z = 10)c HFh −128.547 10 0
VMC-JSDi −128.891(5) 88(1)

DMCi −128.9231(1) 95.94(3)
VMC-JSD −128.898 03(12) 89.55(12)

VMC-JAGP −128.903 54(44) 90.95(11)
LRDMC −128.926 10(11) 96.71(3)

Exactl −128.939 100

Ar (Z = 18)d HFh −526.817 51 0
VMC-JSDi −527.3817(2) 77.02(3)

DMCi −527.4840(2) 90.99(3)
VMC-JSD −527.419 37(25) 82.17(5)

VMC-JAGP −527.431 64(37) 83.84(5)
LRDMC −527.496 04(28) 92.63(4)
Exactn −527.55 100

Kr (Z = 36)e HFh −2752.054 98 0
VMC-JSDi −2753.2436(6) 57.28(3)

DMCi −2753.7427(6) 81.34(3)
VMC-JSD −2753.614 20(46) 75.14(2)

VMC-JAGP −2753.628 41(44) 75.83(2)
LRDMC −2753.771 05(55) 82.70(3)
Exacto −2754.13 100

Xe (Z = 54)f HFh −7232.138 36 0
VMC-JSDi −7233.700(2) 45.51(6)

DMCi −7234.785(1) 77.12(3)
VMC-JSD −7234.507 30(87) 69.03(3)

VMC-JAGP −7234.564 94(82) 70.71(2)
LRDMC −7234.8350(10) 78.58(3)
Exacto −7235.57 100

(Z = 36). On the other hand, our parametrization suppresses
these significant biases, and the obtained LRDMC energies in
the small a region (a → 0) are essentially unbiased for all Z .
In Table III, it is evident that rc(a, Z ) increases as a increases,
and a′/a decreases as a increases, by which the condition
a′ � rc is satisfied for any a and Z . In this way, unnecessary
large biases (i.e., not saving computational time) are sup-
pressed, and smooth extrapolations are achieved. Notice that
Table III indicates that this modified algorithm implies smaller

TABLE IV. (Continued.)

Element Method Total energy (Ha) Correlation (%)

Og (Z = 118)g HFh −46 324.355 82 0
VMC-JAGP −46 330.7920(19) 66.92(5)

LRDMC −46 331.4380(53) 71.01(16)
Exactp −46 334.33 100

aOur modified cc-pVDZ basis is composed of 3s1p (Z � 5.77) and
2s1p (Z � 1.275) for the determinant and Jastrow part, respectively.
bOur modified cc-pVDZ basis is composed of 7s4p1d (Z � 100.5)
and 5s3p1d (Z � 9.17) for the determinant and Jastrow part,
respectively.
cOur modified cc-pVDZ basis is composed of 6s4p1d (Z � 173.5)
and 3s3p1d (Z � 7.81) for the determinant and Jastrow part,
respectively.
dOur modified cc-pVDZ basis is composed of 8s8p1d (Z � 459.7)
and 6s6p1d (Z � 64.69) for the determinant and Jastrow part,
respectively.
eOur modified cc-pVDZ basis is composed of 11s11p6d (Z �
6582.01) and 7s8p4d (Z � 129.00) for the determinant and Jastrow
part, respectively.
fOur modified ADZP basis is composed of 15s16p9d2 f (Z �
19789.22) and 11s12p7d (Z � 335.98) for the determinant and
Jastrow part, respectively.
gOur modified cc-pVDZ basis is composed of 20s20p16d10 f (Z �
73546.30) and 18s16p12d7 f (Z � 15476.90) for the determinant and
Jastrow part, respectively.
hSee Ref. [47].
iSee Ref. [41].
jSee Ref. [61].
kSee Ref. [55].
lSee Ref. [61].
mSee Ref. [62].
nSee Ref. [63].
oSee Ref. [64].
pThis value was estimated by the extrapolation with the correlation
energies of He-Xe.

speedups as a increases. This is because rc(a, Z ) [Eq. (C2)]
becomes slightly larger than the original rc(Z ) due to f (a)
as a increases. However, the effect is negligible in practice
because small a calculations are much more important than
large ones (i.e., the computational cost is proportional to a−2).
Thus, within the remedy, the double-grid algorithm achieves
both acceleration and smooth extrapolation.

APPENDIX D: THE DETAILS OF VMC AND LRDMC
CALCULATIONS

The variational (VMC) and lattice regularized quantum
Monte Carlo (LRDMC) calculations for He, Be, Ne, Ar, Kr,
Xe, Og, and C6H6 were performed using TurboRVB [54]. In
the VMC calculations, we employed the Jastrow Slater (JSD)
or the Antisymmetrized Geminal Power (JAGP) [55] ansatz.
The ansatz is composed of a Jastrow and an antisymmetric
part (� = J�AS). The singlet antisymmetric part is denoted
as the antisymmetrized geminal power (AGP) that reads

�AGP(r1, . . . , rN )

= Â[�(r↑
1 , r↓

1 )�(r↑
2 , r↓

2 ) . . . �(r↑
N/2, r↓

N/2)], (D1)
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FIG. 7. LRDMC energies of (a) He (Z = 2), (b) Be (Z = 4), (c) Ne (Z = 10), and (d) Ar (Z = 18) atoms obtained by the double-grid
scheme improved for a smooth extrapolation (a → 0) described in Appendix C (l = 2.0, β = 0.75, κ = 2.5). The solid lines represent
extrapolations with a quadratic function E (a2) = E0 + ka2.

where Â is the antisymmetrization operator, and �(r↑, r↓) is
called the paring function. The spatial part of the geminal
function is expanded over the Gaussian-type atomic orbitals:

�AGP(ri, r j ) =
∑

l,m,a,b

f{a,l},{b,m}ψa,l (ri )ψb,m(r j ), (D2)

where ψa,l and ψb,m are primitive Gaussian atomic orbitals,
their indices l and m indicate different orbitals centered on
atoms a and b, and i and j are coordinates of spin-up and
-down electrons, respectively. When the JAGP is expanded
over p molecular orbitals where p is equal to half of the
total number of electrons (N/2), the JAGP coincides with
the JSD [15,56]. The Jastrow term is composed of one-body,
two-body, and three-/four-body factors (J = J1J2J3/4). The
one-body and two-body factors are used to fulfill the electron-
ion and electron-electron cusp conditions, respectively, and
the three-/four-body factor is employed to consider the further
electron-electron correlation. The one-body Jastrow factor

reads

J1(r1, . . . rN ) = exp

⎛
⎝∑

i,I,l

gI,lχI,l (ri )

⎞
⎠ ·

∏
i

J̃1(ri ), (D3)

J̃1(r) = exp

(∑
I

−(2ZI )3/4u
(
2ZI

1/4|r − RI |
))

, (D4)

where ri are the electron positions, RI are the atomic positions
with corresponding atomic number ZI , l runs over atomic
orbitals χ J

I,l centered on the atom I , and u(r) contains a
variational parameter b:

u(r) = b

2
(1 − e−r/b). (D5)

Notice that the homogeneous one-body Jastrow part [J̃1(r)]
is also used to modify the single-particle orbital in DFT
calculations to fulfill the electron-ion cusp condition explicitly
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FIG. 8. LRDMC energies of (a) Kr (Z = 36), (b) Xe (Z = 54), and (c) Og (Z = 118) atoms obtained by the double-grid scheme improved
for a smooth extrapolation (a → 0) described in Appendix C (l = 2.0, β = 0.75, κ = 2.5). The solid lines represent extrapolations with a
quadratic function E (a2) = E0 + ka2.

[33]. The two-body Jastrow factor is defined as

J2(r1, . . . rN ) = exp

⎛
⎝∑

i< j

v(|ri − r j |)
⎞
⎠, (D6)

where v(r) is

v(r) = 1
2 r(1 − Fr)−1 (D7)

and F is a variational parameter. The three-body Jastrow
factor is

J3/4(r1, . . . rN ) = exp

⎛
⎝∑

i< j

�Jas(ri, r j )

⎞
⎠, (D8)

and

�Jas(ri, r j ) =
∑

l,m,a,b

ga,l,m,bχ
Jas
a,l (ri )χ

Jas
b,m(r j ), (D9)

TABLE V. LRDMC energies of the benzene molecule (C6H6) obtained by the single and double-grid schemes at a = (3.5Zmax)−1.

Lattice space Single grid Double grid (this work)

Molecule a ≡ (αZmax)−1 α Energy (Ha) Energy (Ha) Bias (mHa)a Accelerationb

C6H6 0.047 619 3.50 −232.192 58(55) −232.194 24(56) 1.7(8) ×1.9

aThe difference in total energy between the single- and double-grid algorithms.
bThe acceleration of actual CPU time required for a fixed reference error in the total energy.
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FIG. 9. The correlation energies Ec as a function of atomic
number Z , giving Ec ∝ Z1.35, Ec ∝ Z1.24, and Ec ∝ Z1.26 for the exact
values, VMC, and LRDMC calculations, respectively. Notice that the
exact correlation energy of Og (the red blank circle) was estimated
by the extrapolation with those of He-Xe.

where the indices l and m again indicate different orbitals
centered on corresponding atoms a and b. In practice, the
coefficients of the three-/four-body Jastrow factor become
zero in atom calculations for a �= b because only one nucleus
exists in a system. In the present study, we employed the
cc-pVDZ (He, Be, Ne, Ar, Kr, and C6H6) and ADZP (Xe)
basis sets taken from the Basis Set Exchange [57], and the
nonrelativistic cc-pVDZ basis (Og) taken from the recent
work [58], both for the determinant and the Jastrow parts.
The variational JSD and JAGP wave functions were optimized
using the stochastic configuration in combination with the
linear method [59,60], by which all variational parameters in
the Jastrow and the determinant parts including the exponents
were optimized. In LRDMC calculations, the optimized JAGP
wave functions were used for the guiding functions. Table IV
shows the summary of our VMC and LRDMC calculations.

We employed the improved double-grid LRDMC for the
extrapolations (Appendix C) with l = 2.0, β = 0.75, and
κ = 2.5; on the other hand, we applied the simple double-
grid LRDMC, namely l = 2.0, β = 0.75, and κ = 1.0 for
the single-point calculations at a = (3.5Z )−1 (Table I in the
main text). The LRDMC energies were extrapolated with a
quadratic function E (a2) = E0 + ka2, as shown in Figs. 7
and 8. The exact correlation energies and those obtained by
our VMC and LRDMC calculations are plotted in Fig. 9.
Thanks to our careful optimizations, our VMC-JSD energies
are lower than the previous results, especially when Z be-
comes larger. Remarkably, the JAGP ansatz further improves
the variational energies. Our JAGP ansatz also improves the
LRDMC energies (i.e., the nodal surfaces) as well as the
variational energies.

APPENDIX E: AN APPLICATION OF THE DOUBLE-GRID
ALGORITHM TO A POLYATOMIC SYSTEM

The double-grid algorithm can also be applied to poly-
atomic systems such as molecules and crystals. For a poly-
atomic system, the smallest length scale is determined by
the heaviest atom in the system with Z = Zmax. Therefore,
in this case, we can change the definition of Rc in Eq. (3)
slightly, by considering only the distances of the electrons
with the heaviest atoms. In this way, when electrons are
close to the lighter elements, they always move with the
larger lattice space a′, without introducing a sizable bias.
Conversely, for rc, one can adopt the value calculated with
a single reference heavy atom, as we have done in this work.
It is clear, therefore, that a more significant speedup can be
achieved by using Eq. (5), especially when the number of
heavy atoms in the system is very small (e.g., transition-metal
porphyrin complexes, metallofullerenes). As the first step to
large systems, we considered the benzene molecule (Zmax =
6). Table V shows that the bias of the double-grid LRDMC is
as small as in the atomic cases while the computational time
is accelerated by ×1.9, significantly larger than the one � 1.5
estimated from Fig. 1, demonstrating that the double-grid
algorithm is already advantageous for polyatomic systems,
even without too heavy nuclei and too many light ones.

[1] B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and
J. Zaanen, Nature (London) 518, 179 (2015).

[2] S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and
A. Kis, Nat. Rev. Mater. 2, 17033 (2017).

[3] G. G. Naumis, S. Barraza-Lopez, M. Oliva-Leyva, and H.
Terrones, Rep. Prog. Phys. 80, 096501 (2017).

[4] S. Sorella, K. Seki, O. O. Brovko, T. Shirakawa, S. Miyakoshi,
S. Yunoki, and E. Tosatti, Phys. Rev. Lett. 121, 066402
(2018).

[5] J. Behler and M. Parrinello, Phys. Rev. Lett. 98, 146401
(2007).

[6] J. Schmidt, J. Shi, P. Borlido, L. Chen, S. Botti, and M. A.
Marques, Chem. Mater. 29, 5090 (2017).

[7] Y. Li, H. Li, F. C. Pickard IV, B. Narayanan, F. G. Sen, M. K.
Chan, S. K. Sankaranarayanan, B. R. Brooks, and B. Roux,
J. Chem. Theory Comput. 13, 4492 (2017).

[8] R. Kobayashi, D. Giofré, T. Junge, M. Ceriotti, and W. A.
Curtin, Phys. Rev. Mater. 1, 053604 (2017).

[9] S. Zhang, J. Carlson, and J. E. Gubernatis, Phys. Rev. Lett. 74,
3652 (1995).

[10] G. H. Booth, A. Grüneis, G. Kresse, and A. Alavi, Nature
(London) 493, 365 (2013).

[11] A. A. Holmes, H. J. Changlani, and C. J. Umrigar, J. Chem.
Theory Comput. 12, 1561 (2016).

[12] A. A. Holmes, N. M. Tubman, and C. J. Umrigar, J. Chem.
Theory Comput. 12, 3674 (2016).

[13] G. Carleo and M. Troyer, Science 355, 602 (2017).
[14] W. Foulkes, L. Mitas, R. Needs, and G. Rajagopal, Rev. Mod.

Phys. 73, 33 (2001).
[15] F. Becca and S. Sorella, Quantum Monte Carlo Approaches for

Correlated Systems (Cambridge University Press, Cambridge,
2017).

155106-11

https://doi.org/10.1038/nature14165
https://doi.org/10.1038/nature14165
https://doi.org/10.1038/nature14165
https://doi.org/10.1038/nature14165
https://doi.org/10.1038/natrevmats.2017.33
https://doi.org/10.1038/natrevmats.2017.33
https://doi.org/10.1038/natrevmats.2017.33
https://doi.org/10.1038/natrevmats.2017.33
https://doi.org/10.1088/1361-6633/aa74ef
https://doi.org/10.1088/1361-6633/aa74ef
https://doi.org/10.1088/1361-6633/aa74ef
https://doi.org/10.1088/1361-6633/aa74ef
https://doi.org/10.1103/PhysRevLett.121.066402
https://doi.org/10.1103/PhysRevLett.121.066402
https://doi.org/10.1103/PhysRevLett.121.066402
https://doi.org/10.1103/PhysRevLett.121.066402
https://doi.org/10.1103/PhysRevLett.98.146401
https://doi.org/10.1103/PhysRevLett.98.146401
https://doi.org/10.1103/PhysRevLett.98.146401
https://doi.org/10.1103/PhysRevLett.98.146401
https://doi.org/10.1021/acs.chemmater.7b00156
https://doi.org/10.1021/acs.chemmater.7b00156
https://doi.org/10.1021/acs.chemmater.7b00156
https://doi.org/10.1021/acs.chemmater.7b00156
https://doi.org/10.1021/acs.jctc.7b00521
https://doi.org/10.1021/acs.jctc.7b00521
https://doi.org/10.1021/acs.jctc.7b00521
https://doi.org/10.1021/acs.jctc.7b00521
https://doi.org/10.1103/PhysRevMaterials.1.053604
https://doi.org/10.1103/PhysRevMaterials.1.053604
https://doi.org/10.1103/PhysRevMaterials.1.053604
https://doi.org/10.1103/PhysRevMaterials.1.053604
https://doi.org/10.1103/PhysRevLett.74.3652
https://doi.org/10.1103/PhysRevLett.74.3652
https://doi.org/10.1103/PhysRevLett.74.3652
https://doi.org/10.1103/PhysRevLett.74.3652
https://doi.org/10.1038/nature11770
https://doi.org/10.1038/nature11770
https://doi.org/10.1038/nature11770
https://doi.org/10.1038/nature11770
https://doi.org/10.1021/acs.jctc.5b01170
https://doi.org/10.1021/acs.jctc.5b01170
https://doi.org/10.1021/acs.jctc.5b01170
https://doi.org/10.1021/acs.jctc.5b01170
https://doi.org/10.1021/acs.jctc.6b00407
https://doi.org/10.1021/acs.jctc.6b00407
https://doi.org/10.1021/acs.jctc.6b00407
https://doi.org/10.1021/acs.jctc.6b00407
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1103/RevModPhys.73.33
https://doi.org/10.1103/RevModPhys.73.33
https://doi.org/10.1103/RevModPhys.73.33
https://doi.org/10.1103/RevModPhys.73.33


NAKANO, MAEZONO, AND SORELLA PHYSICAL REVIEW B 101, 155106 (2020)

[16] J. R. Trail and R. J. Needs, J. Chem. Phys. 142, 064110
(2015).

[17] J. T. Krogel, J. A. Santana, and F. A. Reboredo, Phys. Rev. B
93, 075143 (2016).

[18] J. R. Trail and R. J. Needs, J. Chem. Phys. 146, 204107 (2017).
[19] M. C. Bennett, C. A. Melton, A. Annaberdiyev, G. Wang, L.

Shulenburger, and L. Mitas, J. Chem. Phys. 147, 224106 (2017).
[20] M. C. Bennett, G. Wang, A. Annaberdiyev, C. A. Melton, L.

Shulenburger, and L. Mitas, J. Chem. Phys. 149, 104108 (2018).
[21] A. Annaberdiyev, G. Wang, C. A. Melton, M. Chandler

Bennett, L. Shulenburger, and L. Mitas, J. Chem. Phys. 149,
134108 (2018).

[22] M. Burkatzki, C. Filippi, and M. Dolg, J. Chem. Phys. 126,
234105 (2007).

[23] M. Burkatzki, C. Filippi, and M. Dolg, J. Chem. Phys. 129,
164115 (2008).

[24] M. E. Tuckerman, G. J. Martyna, and B. J. Berne, J. Chem.
Phys. 93, 1287 (1990).

[25] M. Tuckerman, B. J. Berne, and G. J. Martyna, J. Chem. Phys.
97, 1990 (1992).

[26] G. Te Velde and E. Baerends, J. Comput. Phys. 99, 84 (1992).
[27] A. D. Becke, J. Chem. Phys. 88, 2547 (1988).
[28] T. L. Beck, Rev. Mod. Phys. 72, 1041 (2000).
[29] C. J. Umrigar, Phys. Rev. Lett. 71, 408 (1993).
[30] M. Stedman, W. Foulkes, and M. Nekovee, J. Chem. Phys. 109,

2630 (1998).
[31] C. Umrigar, M. Nightingale, and K. Runge, J. Chem. Phys. 99,

2865 (1993).
[32] M. Casula, C. Filippi, and S. Sorella, Phys. Rev. Lett. 95,

100201 (2005).
[33] K. Nakano, R. Maezono, and S. Sorella, J. Chem. Theory

Comput. 15, 4044 (2019).
[34] The computational cost discussed here is not an actual CPU

time but the number of off-diagonal moves per a given time
step tbra. Actual CPU time is discussed later.

[35] L. D. Landau and E. Lifshitz, Quantum Mechanics: Non-
Relativistic Theory (Pergamon, London, 1958).

[36] J. C. Slater, Phys. Rev. 36, 57 (1930).
[37] E. Clementi and D. L. Raimondi, J. Chem. Phys. 38, 2686

(1963).
[38] E. Clementi, D. L. Raimondi, and W. P. Reinhardt, J. Chem.

Phys. 47, 1300 (1967).
[39] D. Ceperley, J. Stat. Phys. 43, 815 (1986).
[40] B. L. Hammond, P. J. Reynolds, and W. A. Lester, Jr., J. Chem.

Phys. 87, 1130 (1987).
[41] A. Ma, N. D. Drummond, M. D. Towler, and R. J. Needs, Phys.

Rev. E 71, 066704 (2005).

[42] This benchmark was performed using 8 Intel Xeon E5-2680v2-
2.8 GHTz CPUs (i.e., 320 cores) installed on a SGI cluster.

[43] The accelerations of actual CPU times are smaller than those
of acceptance ratios. This is because the double-grid LRDMC
consumes more CPU times when computing the discretized
Laplacians and potentials.

[44] S. A. Giuliani, Z. Matheson, W. Nazarewicz, E. Olsen, P.-G.
Reinhard, J. Sadhukhan, B. Schuetrumpf, N. Schunck, and
P. Schwerdtfeger, Rev. Mod. Phys. 91, 011001 (2019).

[45] N. Nemec, Phys. Rev. B 81, 035119 (2010).
[46] M. Boninsegni and S. Moroni, Phys. Rev. E 86, 056712 (2012).
[47] S. L. Saito, At. Data Nucl. Data Tables 95, 836 (2009).
[48] R. D. Johnson, III Computational Chemistry Comparison

and Benchmark Database, Release 19, National Institute of
Standards and Technology, http://cccbdb.nist.gov (accessed 7
November 2019).

[49] Y. Nakatsuka, T. Nakajima, M. Nakata, and K. Hirao, J. Chem.
Phys. 132, 054102 (2010).

[50] Y. Nakatsuka and T. Nakajima, J. Chem. Phys. 137, 154103
(2012).

[51] C. A. Melton, M. Zhu, S. Guo, A. Ambrosetti, F. Pederiva, and
L. Mitas, Phys. Rev. A 93, 042502 (2016).

[52] C. A. Melton, M. C. Bennett, and L. Mitas, J. Chem. Phys. 144,
244113 (2016).

[53] D. R. Chipman and L. D. Jennings, Phys. Rev. 132, 728
(1963).

[54] S. Sorella, TurboRVB:Quantum Monte Carlo Software for
Electronic Structure Calculations, https://people.sissa.it/
∼sorella/web (accessed 30 August 2019).

[55] M. Casula and S. Sorella, J. Chem. Phys. 119, 6500 (2003).
[56] M. Marchi, S. Azadi, M. Casula, and S. Sorella, J. Chem. Phys.

131, 154116 (2009).
[57] B. P. Pritchard, D. Altarawy, B. T. Didier, T. D. Gibson, and

T. L. Windus, J. Chem. Inf. Model. 59, 4814 (2019).
[58] P. Jerabek, O. R. Smits, J. Mewes, K. A. Peterson, and P.

Schwerdtfeger, J. Phys. Chem. A 123, 4201 (2019).
[59] S. Sorella, M. Casula, and D. Rocca, J. Chem. Phys. 127,

014105 (2007).
[60] C. J. Umrigar, J. Toulouse, C. Filippi, S. Sorella, and R. G.

Hennig, Phys. Rev. Lett. 98, 110201 (2007).
[61] C. L. Pekeris, Phys. Rev. 112, 1649 (1958).
[62] E. R. Davidson, S. A. Hagstrom, S. J. Chakravorty, V. M. Umar,

and C. F. Fischer, Phys. Rev. A 44, 7071 (1991).
[63] S. J. Chakravorty and E. R. Davidson, J. Phys. Chem. 100, 6167

(1996).
[64] E. Clementi and D. Hofmann, J. Mol. Struct.: THEOCHEM

330, 17 (1995).

155106-12

https://doi.org/10.1063/1.4907589
https://doi.org/10.1063/1.4907589
https://doi.org/10.1063/1.4907589
https://doi.org/10.1063/1.4907589
https://doi.org/10.1103/PhysRevB.93.075143
https://doi.org/10.1103/PhysRevB.93.075143
https://doi.org/10.1103/PhysRevB.93.075143
https://doi.org/10.1103/PhysRevB.93.075143
https://doi.org/10.1063/1.4984046
https://doi.org/10.1063/1.4984046
https://doi.org/10.1063/1.4984046
https://doi.org/10.1063/1.4984046
https://doi.org/10.1063/1.4995643
https://doi.org/10.1063/1.4995643
https://doi.org/10.1063/1.4995643
https://doi.org/10.1063/1.4995643
https://doi.org/10.1063/1.5038135
https://doi.org/10.1063/1.5038135
https://doi.org/10.1063/1.5038135
https://doi.org/10.1063/1.5038135
https://doi.org/10.1063/1.5040472
https://doi.org/10.1063/1.5040472
https://doi.org/10.1063/1.5040472
https://doi.org/10.1063/1.5040472
https://doi.org/10.1063/1.2741534
https://doi.org/10.1063/1.2741534
https://doi.org/10.1063/1.2741534
https://doi.org/10.1063/1.2741534
https://doi.org/10.1063/1.2987872
https://doi.org/10.1063/1.2987872
https://doi.org/10.1063/1.2987872
https://doi.org/10.1063/1.2987872
https://doi.org/10.1063/1.459140
https://doi.org/10.1063/1.459140
https://doi.org/10.1063/1.459140
https://doi.org/10.1063/1.459140
https://doi.org/10.1063/1.463137
https://doi.org/10.1063/1.463137
https://doi.org/10.1063/1.463137
https://doi.org/10.1063/1.463137
https://doi.org/10.1016/0021-9991(92)90277-6
https://doi.org/10.1016/0021-9991(92)90277-6
https://doi.org/10.1016/0021-9991(92)90277-6
https://doi.org/10.1016/0021-9991(92)90277-6
https://doi.org/10.1063/1.454033
https://doi.org/10.1063/1.454033
https://doi.org/10.1063/1.454033
https://doi.org/10.1063/1.454033
https://doi.org/10.1103/RevModPhys.72.1041
https://doi.org/10.1103/RevModPhys.72.1041
https://doi.org/10.1103/RevModPhys.72.1041
https://doi.org/10.1103/RevModPhys.72.1041
https://doi.org/10.1103/PhysRevLett.71.408
https://doi.org/10.1103/PhysRevLett.71.408
https://doi.org/10.1103/PhysRevLett.71.408
https://doi.org/10.1103/PhysRevLett.71.408
https://doi.org/10.1063/1.476862
https://doi.org/10.1063/1.476862
https://doi.org/10.1063/1.476862
https://doi.org/10.1063/1.476862
https://doi.org/10.1063/1.465195
https://doi.org/10.1063/1.465195
https://doi.org/10.1063/1.465195
https://doi.org/10.1063/1.465195
https://doi.org/10.1103/PhysRevLett.95.100201
https://doi.org/10.1103/PhysRevLett.95.100201
https://doi.org/10.1103/PhysRevLett.95.100201
https://doi.org/10.1103/PhysRevLett.95.100201
https://doi.org/10.1021/acs.jctc.9b00295
https://doi.org/10.1021/acs.jctc.9b00295
https://doi.org/10.1021/acs.jctc.9b00295
https://doi.org/10.1021/acs.jctc.9b00295
https://doi.org/10.1103/PhysRev.36.57
https://doi.org/10.1103/PhysRev.36.57
https://doi.org/10.1103/PhysRev.36.57
https://doi.org/10.1103/PhysRev.36.57
https://doi.org/10.1063/1.1733573
https://doi.org/10.1063/1.1733573
https://doi.org/10.1063/1.1733573
https://doi.org/10.1063/1.1733573
https://doi.org/10.1063/1.1712084
https://doi.org/10.1063/1.1712084
https://doi.org/10.1063/1.1712084
https://doi.org/10.1063/1.1712084
https://doi.org/10.1007/BF02628307
https://doi.org/10.1007/BF02628307
https://doi.org/10.1007/BF02628307
https://doi.org/10.1007/BF02628307
https://doi.org/10.1063/1.453345
https://doi.org/10.1063/1.453345
https://doi.org/10.1063/1.453345
https://doi.org/10.1063/1.453345
https://doi.org/10.1103/PhysRevE.71.066704
https://doi.org/10.1103/PhysRevE.71.066704
https://doi.org/10.1103/PhysRevE.71.066704
https://doi.org/10.1103/PhysRevE.71.066704
https://doi.org/10.1103/RevModPhys.91.011001
https://doi.org/10.1103/RevModPhys.91.011001
https://doi.org/10.1103/RevModPhys.91.011001
https://doi.org/10.1103/RevModPhys.91.011001
https://doi.org/10.1103/PhysRevB.81.035119
https://doi.org/10.1103/PhysRevB.81.035119
https://doi.org/10.1103/PhysRevB.81.035119
https://doi.org/10.1103/PhysRevB.81.035119
https://doi.org/10.1103/PhysRevE.86.056712
https://doi.org/10.1103/PhysRevE.86.056712
https://doi.org/10.1103/PhysRevE.86.056712
https://doi.org/10.1103/PhysRevE.86.056712
https://doi.org/10.1016/j.adt.2009.06.001
https://doi.org/10.1016/j.adt.2009.06.001
https://doi.org/10.1016/j.adt.2009.06.001
https://doi.org/10.1016/j.adt.2009.06.001
http://cccbdb.nist.gov
https://doi.org/10.1063/1.3298912
https://doi.org/10.1063/1.3298912
https://doi.org/10.1063/1.3298912
https://doi.org/10.1063/1.3298912
https://doi.org/10.1063/1.4757254
https://doi.org/10.1063/1.4757254
https://doi.org/10.1063/1.4757254
https://doi.org/10.1063/1.4757254
https://doi.org/10.1103/PhysRevA.93.042502
https://doi.org/10.1103/PhysRevA.93.042502
https://doi.org/10.1103/PhysRevA.93.042502
https://doi.org/10.1103/PhysRevA.93.042502
https://doi.org/10.1063/1.4954726
https://doi.org/10.1063/1.4954726
https://doi.org/10.1063/1.4954726
https://doi.org/10.1063/1.4954726
https://doi.org/10.1103/PhysRev.132.728
https://doi.org/10.1103/PhysRev.132.728
https://doi.org/10.1103/PhysRev.132.728
https://doi.org/10.1103/PhysRev.132.728
https://people.sissa.it/~sorella/web
https://doi.org/10.1063/1.1604379
https://doi.org/10.1063/1.1604379
https://doi.org/10.1063/1.1604379
https://doi.org/10.1063/1.1604379
https://doi.org/10.1063/1.3249966
https://doi.org/10.1063/1.3249966
https://doi.org/10.1063/1.3249966
https://doi.org/10.1063/1.3249966
https://doi.org/10.1021/acs.jcim.9b00725
https://doi.org/10.1021/acs.jcim.9b00725
https://doi.org/10.1021/acs.jcim.9b00725
https://doi.org/10.1021/acs.jcim.9b00725
https://doi.org/10.1021/acs.jpca.9b01947
https://doi.org/10.1021/acs.jpca.9b01947
https://doi.org/10.1021/acs.jpca.9b01947
https://doi.org/10.1021/acs.jpca.9b01947
https://doi.org/10.1063/1.2746035
https://doi.org/10.1063/1.2746035
https://doi.org/10.1063/1.2746035
https://doi.org/10.1063/1.2746035
https://doi.org/10.1103/PhysRevLett.98.110201
https://doi.org/10.1103/PhysRevLett.98.110201
https://doi.org/10.1103/PhysRevLett.98.110201
https://doi.org/10.1103/PhysRevLett.98.110201
https://doi.org/10.1103/PhysRev.112.1649
https://doi.org/10.1103/PhysRev.112.1649
https://doi.org/10.1103/PhysRev.112.1649
https://doi.org/10.1103/PhysRev.112.1649
https://doi.org/10.1103/PhysRevA.44.7071
https://doi.org/10.1103/PhysRevA.44.7071
https://doi.org/10.1103/PhysRevA.44.7071
https://doi.org/10.1103/PhysRevA.44.7071
https://doi.org/10.1021/jp952803s
https://doi.org/10.1021/jp952803s
https://doi.org/10.1021/jp952803s
https://doi.org/10.1021/jp952803s
https://doi.org/10.1016/0166-1280(94)03814-2
https://doi.org/10.1016/0166-1280(94)03814-2
https://doi.org/10.1016/0166-1280(94)03814-2
https://doi.org/10.1016/0166-1280(94)03814-2

