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Abstract We discuss the possibility to define exact RG
equations for a UV regulated Wilsonian action based on a
proper time (PT) regulator function. We start from a func-
tional mapping which shows how each particular flow equa-
tion (and RG scheme) is associated to infinitely many scale
dependent field redefinitions, which are related to specific
coarse-graining procedures. On specializing to a sub-family
of one parameter PT regulators we briefly analyze few results
for the Ising Universality class in three dimensions, obtained
within a second order truncation in the derivative expansion
of the Wilsonian action.

1 Introduction

When a generating functional in a quantum field theory is
defined by means of a functional integral with a built-in cut-
off, its derivative with respect to the cutoff gives rise to a
Renormalization Group (RG) flow. The original idea is due
to Wilson [1], who defined an action S� depending on an
UV cutoff � in such a way that when S� is used in a func-
tional integral with a cutoff �, it gives the same partition
function independently on the choice of �. In other words,
the physical predictions at low energy are unchanged:

Z =
∫

[dϕ]�e−S�[ϕ] , �
d

d�
Z = 0 . (1)

The subscript � in the measure means that momentum inte-
grals are to be cut off in the UV at �. There is no unique
way to define the cutoff, but all these Wilsonian RG flows
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can be shown to satisfy some kind of differential equation,
usually called an Exact RG Equation (ERGE). One of the
oldest forms of the ERGE is due to Wegner and Houghton
[2]. Better-known in the context of particle physics is the
Polchinski equation [3], giving the flow of the interaction
part of the action.

A different class of equations arise when we consider the
generating functional of 1-particle irreducible correlators, the
Effective Action (EA) �. In this case one introduces in the
functional integral an IR cutoff, usually called k, and the func-
tional �k is called the Effective Average Action (EAA) [4]. It
satisfies an exact RG equation known as the Wetterich equa-
tion [5–8]. Employing various approximation schemes, these
exact equations can be used to derive many results in con-
densed matter, statistical and particle physics. For reviews,
see [9–13]. For applications to gauge theories see [14–16].

At one loop, in the Schwinger proper time (PT) represen-
tation of the effective action, one can introduce the cutoff
(either UV or IR or both) in the integral over the proper time,
rather than the integral over momenta [17,18]. The result-
ing “proper time RG equation” for the EAA is known not
to be exact [19–21], but nevertheless has been applied to
various problems from statistical physics [22,23] to gravity
[24], and gives comparable results to the various forms of
the ERGE. This is generally attributed to the fact that the one
loop approximation becomes exact when one considers inte-
gration over infinitesimal momentum shells [2]. Recently,
a PT-like equation for the Wilsonian action, rather than the
EAA, has been introduced in [25]:

�
dS�[ϕ]
d�

= Tr e−S(2)
� [ϕ]/�2

. (2)

It has been applied to issues of quantum gravity. Unlike previ-
ous PTRG equations, this one is claimed to be exact. We stress
that this would not be in contrast with the previous statement
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for the 1PI functional (EAA) because now the equation holds
for a Wilsonian action S�, which has to be used in the func-
tional integral of the low momentum modes. In this paper we
will examine by different means a more general family of
equations which can characterize the RG flow of the Wilso-
nian action S� and, as a simple quantitative test, apply it to
derive the scaling exponents of the Ising universality class.

2 Wilsonian PTRG equations

Consider a general family of PT flows

�
dS�[ϕ]
d�

= 1

2
Tr

∫ ∞

0

ds

s
r�(s)e−sS(2)

� [ϕ] . (3)

Here s is the Schwinger proper time,

r�(s) = �
dρk,�
d�

(4)

and ρk,�(s) is a suitably normalized regulator function
depending on an IR scale k and an UV scale �. It goes to zero
for s < 1/�2 (UV regularization) and s > 1/k2 (IR regular-
ization), and is roughly equal to one in between. Choosing
the regulator function

ρk,�(s) = θ(s − 1/�2) − θ(s − 1/k2) , (5)

one obtains de Alwis’ equation (2). We will now discuss
other choices of regulator. Let us consider the following 1-
parameter family of regulators (m ≥ 0),

ρk,�(s;m) = �(m,msk2) − �(m,ms�2)

�(m)
. (6)

Using the properties of the incomplete Gamma function we
obtain

r�(s;m) = 2

�(m)
(ms�2)me−ms�2

. (7)

Note that this object is actually dependent on the UV cut-
off � only, justifying the notation (4). We shall call this the
“A-scheme”. Inserting this choice of regulator in (3) and per-
forming the Mellin transform we get the following RG equa-
tion for the Wilsonian action S�,

�
d

d�
S�[ϕ] = Tr

(
m�2

S(2)
� [ϕ] + m�2

)m

. (8)

Note that for m = 1 this looks like the Wetterich Equation
with a massive regulator (which can define a flow for the IR
regulated effective average action in low dimensionality). In
the LPA approximation, the specific valuem = d/2+1 gives
essentially the same flow for the potential as the Wetterich
equation with an optimized regulator. One should not be mis-
led by these analogies, since S� has to be interpreted only
as a Wilsonian action (to appear inside a functional integral)

and not as an IR-regulated generator of the 1PI correlators
[26].

Note also that for m → ∞ the scale derivative of ρk,�(s)
becomes a Dirac delta distribution, or equivalently, one has
in (8) the representation of an exponential, so the flow equa-
tion reduces again to the one given in Eq. (2).

The cutoffs (5) only depend on s, k and �. It is also pos-
sible to introduce in the PT regulator some field dependence.
This is related to the idea of “spectral adjustment”. Let us start
by considering the derivative expansion of a generic Wilso-
nian action S�(ϕ), with S(2)

� (ϕ) = Z�(ϕ)(−�)+· · · . Here ϕ

has to be slowly varying on length scales of order p−1, where
p are the momenta appearing in −�. In Eq. (3), the regulator
ρ(s) suppresses the part of the integral with s < 1/�2, while
the exponential suppresses modes with Z� p2 > 1/s. Alto-
gether the suppression occurs for Z� p2 > �2. We see that if
Z� is sizable, the cutoff is not directly related to the spacetime
scale of the fluctuation: this scale is modulated by a flowing
field-dependent dynamical factor Z�. Let us consider instead
a more “spectrally adjusted” scheme obtained using a proper
time regulator ρ(Z�s). In this case the regulator suppresses
the part of the integral with s < 1

�2Z�
, which corresponds to

a suppression of the modes with p2 > �2. This is closer to
the original intent of cutting off the modes at the sliding scale
�. One observes that it is in the spectrally adjusted scheme
that the two steps in the renormalization procedure, namely
(1) coarse-graining and (2) rescaling, are tuned to each other
as desired for a comparison along the flow.

If we “spectrally adjust” in this fashion the cutoff (6)

ρk,�(s;m) = �(m,ms Zk(φ)k2) − �(m,ms Z�(φ)�2)

�(m)
.

(9)

we obtain

r�(s;m) = 2

�(m)

(
1 + 1

2
�

d

d�
log Z�(φ)

)

×(msZ�(φ)�2)me−msZ�(φ)�2
, (10)

We call this the “B scheme”. Then inserting in (3) we arrive
at the RG equation

�
d

d�
S�[ϕ] = Tr

[(
1 + 1

2
�

d

d�
log Z�

)

×
(

m�2Z�(φ)

S(2)
� [ϕ] + m�2Z�(φ)

)m]
. (11)

In the limit m → ∞ one gets

�
d

d�
S�[ϕ]=Tr

⎡
⎣

(
1 + 1

2
�

d

d�
log Z�(φ)

)
e
− S(2)

�
[ϕ]

�2Z�(φ)

⎤
⎦ .

(12)
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In the preceding discussion we have assumed that the
“spectral adjustment” is introduced at the level of the cut-
off function ρk,�. In principle, it could also be carried out at
the level of the infinitesimal RG transformation (4), or (7),
namely

r�(s;m) = 2

�(m)
(msZ�(φ)�2)me−ms�2

. (13)

This then leads to an RG equation that is similar to (12), but
without the term � d

d�
log Z�(φ). We will refer to it as the

“C scheme”.

3 Relation to formal coarse-graining schemes

The main goal of this Section is to investigate in a formal way
if the family of flow equations Eq. (3), can be interpreted as
Wilsonian flows. In general terms the coarse-graining proce-
dure for the Wilsonian action can be defined as

�
d

d�
e−S�[ϕ] =

∫
dx

δ

δϕ(x)

(
ψ�
x [ϕ]e−S�[ϕ]) , (14)

for some ψ�
x [ϕ]. This equation implies that the partition

function Z = ∫ [dϕ]e−S�[ϕ] is manifestly independent of
�. The specific form of the quantity in brackets leads to the
following general form for Wilsonian flow:

�
d

d�
S�[ϕ] =

∫
dx

(
δS�[ϕ]
δϕ(x)

ψ�
x [ϕ] − δψ�

x [ϕ]
δϕ(x)

)
. (15)

We also recall that this general Wilsonian flow is associated
to an infinitesimal field redefinition ϕ(x) → ϕ′(x) = ϕ(x)−
δ�
�

ψ�
x [ϕ]. Indeed starting from a given coarse-graining map

ϕ → b�(ϕ), transforming the field ϕ0 at the scale �0 into
the field ϕ at the scale � < �0, one can derive the following
relation [13,27]

ψ�
x [ϕ] = eS�[ϕ]

∫
[dϕ0] δ(ϕ − b�[ϕ0])

× �
db�[ϕ0](x)

d�
e−S�0 [ϕ0] . (16)

It is then natural to ask whether the general flow Eq. (15)
can be reduced to the PT flow in Eq. (3), and if so, what
conditions should ψ�

x [ϕ] satisfy.
Let us first recall what happens in the case of the Wilso-

nian flow considered by Polchinski [3]. In this case one can
directly guess the form of ψ�

x [ϕ] to be plugged in the general
formula (15):

ψ�
x [ϕ] = 1

2

∫
dz 
̇xz

δ��[ϕ]
δϕ(z)

, (17)

where
 is a suitably regulated propagator with a dot standing
for the derivative w.r.t. log � and ��[ϕ] is given by

��[ϕ] = −1

2

∫
dx ϕ(x)(−�x )ϕ(x) + SI�[ϕ] ,

S�[ϕ] = 1

2

∫
dx ϕ(x)(−�x )ϕ(x) + SI�[ϕ] . (18)

This choice leads to the desired flow equation

�
d

d�
SI�[ϕ] = 1

2

∫
dxdy 
̇xy

[
δSI�[ϕ]
δϕ(y)

δSI�[ϕ]
δϕ(x)

− δ2SI�[ϕ]
δϕ(y)δϕ(x)

]
. (19)

The same RG flow equation can be actually obtained also
by other choices of ψ�

x [ϕ], belonging to an infinite fam-
ily obtained adding to the expression in Eq. (17) a term
wx [ϕ]es�[ϕ], such that

∫
dx δ

δϕ(x)wx [ϕ] = 0. They corre-
spond to different (but equivalent, in generating the flow)
implementations of the coarse-graining procedure.

The Polchiski Wilsonian effective action S�, which sat-
isfies the above flow equation, gets, in general, both 1PI
(the second term) and 1PR (the first term) contributions. It
is known in this case that only in the sharp cutoff limit, if
the momenta flowing into a vertex of a 1PR term have sum
below the UV cutoff�, then such contributions are absent [6].
Similar considerations are valid for the Wegner–Houghton
Wilsonian action. Moreover the Polchinski action has a sim-
ple relation with the regulated generator of the connected
Green’s functions and with the effective average action [6].

Going back to the goal of this section, in order to interpret
in the Wilsonian sense the general PT flow Eq. (3), we would
have to rewrite it in the form given in the Eqs. (15) or (14).
Thus we must look for a solution of the following functional
equation∫

dx
δ

δϕ(x)

(
ψ�
x [ϕ]e−S�[ϕ])

= −e−S�[ϕ] 1

2
tr

∫ ∞

0

ds

s

[
r�(s)e−sS(2)

� [ϕ]] . (20)

Before moving to this task let us make a comment. The exis-
tence of a solution would make it possible to interpret this
particular PT regulated action S�, as a Wilsonian action, i.e.
an action which, inserted in a functional integral, not only
generates the partition function Z , but also all the possi-
ble correlators (connected and not connected) with momenta
below the scale �, i.e.

〈O1(x1) · · · On(xn)〉
= 1

Z

∫
[dϕ]�e−S�[ϕ]O1(x1) · · · On(xn) . (21)

From the structure of the flow equation one notes that in
general, contrary to the Polchinski action, this action gets
along the flow contributions which results into 1PI non local
vertices. We stress that the relation between the PT regulated
S� and the effective action � (eventually IR regulated) is
not trivial and certainly not so simple as for the Polchinski
Wilsonian action.
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3.1 Construction of a general solution

Let us then ask the following question: given a certain Wilso-
nian RG flow is it possible to reconstruct the associated
coarse-graining procedure which may be encoded in the
infinitesimal generator ψ�

x [ϕ]? We have already seen for the
specific case of a Polchinski RG flow that this procedure
is not unique. From the definition recalled above it is clear
that such a construction requires knowledge of the Wilsonian
action S�[ϕ] satisfying the RG flow equation, making this
problem hard to solve in practice. Nevertheless it is important
to know if at least the solution of this problem can exist.

The left hand side of this equation can be seen as a diver-
gence of a vector field belonging to an infinite dimensional
vector space, i.e., has the structure∫

dx
δ

δϕ(x)
ux [ϕ] = f [ϕ] . (22)

Keeping in mind that the quadratic kinetic part of the Wilso-
nian action is defined by a UV regulated Laplacian (�)�, it is
convenient to define a slightly different object, which already
simplifies the analysis for the free theory case as discussed
in the next subsection,1

ux [ϕ] = Gxyvy[ϕ] (23)

where we have introduced the space–time ‘regulated’ Green’s
function Gxy satisfying

(−�x )�Gxy = δ(y) . (24)

One can assume that as in any finite dimensional vector
space, the vector field vx [ϕ] can be decomposed as a sum of
a “gradient” part and a divergenceless part as follows

vx [ϕ] = δ

δϕ(x)
h[ϕ] + (−�x )�wx [ϕ],

×
∫

dx
δ

δϕ(x)
wx [ϕ] = 0 . (25)

Then a particular solution of Eq. (22) using Eq. (25) can be
obtained solving an infinite dimensional Poisson-like equa-
tion∫

dxdy
δ

δϕ(x)
Gxy

δ

δϕ(y)
h[ϕ] = f [ϕ] , (26)

where the metric in field space is field independent (flat geom-
etry in field space) even if has a non trivial space–time depen-
dence. Since the determinant of the metric is field indepen-
dent one can see that the operator in field space above is
really a covariant Laplacian. We expect that this generalized
“elliptic” second order linear differential problem can have
solutions, unique at least from the physical point of view
when suitable boundary conditions are imposed.

1 We thank Tim Morris for this suggestion.

Let us write a functional Fourier transform for the scalar
h introducing a source J

h̃[J ] =
∫

[dϕ]e−iϕ·J h[ϕ] (27)

and similarly for the right hand side of Eq. (26), i.e. for f [ϕ].
Then one can formally rewrite this generalized Poisson equa-
tion as

− (J · G · J ) h̃[J ] = f̃ [J ] , (28)

where J · G · J = ∫
dxdy J (x)Gxy J (y), and derive its

solution

h[ϕ] = −
∫

[d J ]eiϕ·J 1

J · G · J f̃ [J ] . (29)

Using this setup for our original problem we can then
formally write

ψ�
x [ϕ] = eS�[ϕ]

(∫
[d J ]eiϕ·J −i J (x)

J · G · J f̃ [J ] + wx [ϕ]
)

,

(30)

where wx [ϕ] is an arbitrary divergenceless vector field
according to Eq. (25), which again can be chosen to improve
the behavior of the solution. Therefore we can see that for-
mally, given a Wilsonian flow, one can construct a coarse-
graining procedure which generates it. Moreover the coarse-
graining procedure is not unique, indeed there are infinitely
many. One can take eventually advantage of this freedom to
make the most sensible choice of coarse-graining from the
physical point of view.

One can even try to formalize this picture considering the
space of Wilsonian actions S and the space of Wilsonian RG
flowsV , where each point p ∈ V is the vector field functional
of the flow, e.g., associated to Eq. (15). Then one can consider
a fiber bundle spaceF such that, to each point p belonging to
its base V is associated a fiber related to the coarse-graining
generator ψ�

x . Like in a gauge theory an infinite set of ψ�
x is

associated to the same vector field p generating the Wilsonian
RG flow.

In summary at least formal solutions of Eq. (20) can be
constructed. This is true also in the spectrally adjusted cases
named B and C in the end of Sect. 2, which are the ones which
make it possible to interpret a proper time coarse-graining
in terms of a momentum coarse-graining in the derivative
expansion. This seems to confirm that the general PT regu-
lated flow Eq. (3) can represent a Wilsonian RG flow.

3.2 The free theory case

Given that a formal solution can be constructed, one may
ask which kind of requirements should be further imposed
on the field redefinitions by the Wilsonian coarse graining
procedure from a reasonable physical point of view. Clearly

123



Eur. Phys. J. C           (2020) 80:249 Page 5 of 9   249 

one would like to avoid possible pathological definitions.
This question can be posed in general and in particular for
the specific case of a proper time flow. First one can notice
that even in the Polchinski flow for a free theory, according
to Eqs. (17) and (18), there is some degree of non locality in
the redefinition of the fields, which depends on the regulator
properties encoded in 
. Further non local behavior, at least
in the IR regime, is expected in presence of new degrees of
freedom in the spectrum of the theory, such as bound states.

We shall then investigate what happens for the case of a
proper-time flow, but which could hold also for more general
class of flows. Let us then investigate in detail the case of a
free quadratic action for the case of a generic cutoff

S[ϕ] = 1

2
ϕ · (−�)� · ϕ,

f [ϕ] = −1

2
e−S�[ϕ] Tr

∫ ∞

0

ds

s

[
r�(s)e−s(−�)�

]
(31)

so that one can write

f̃ [J ] = −1

2
Tr

∫ ∞

0

ds

s

[
r�(s)e−s(−�)�

]

× (DetG)
1
2 e− 1

2 J ·G·J . (32)

Using Eq. (30) we can then write the solution for the “poten-
tial” h as

h[ϕ] = 1

2
Tr

∫ ∞

0

ds

s

[
r�(s)e−s(−�)�

] ∫
[d J ]eiϕ·J

× (DetG)
1
2

J · G · J e
− 1

2 J ·G·J

= N
∫

[d J̃ ]ei J̃ ·G− 1
2 ϕ 1

J̃ · J̃ e
− 1

2 J̃ · J̃ , (33)

where J̃ = G
1
2 J and we have defined the normalization

factor

N = 1

2
Tr

∫ ∞

0

ds

s

[
r�(s)e−s(−�)�

]
. (34)

One has to keep in mind that a functional derivative must be
taken to construct vx and the infinitesimal Wilsonian field
redefinition ��

x as well, so that in the integral in Eq. (33) the
singular region in the origin (in J̃ space) is harmless and one

could replace ei J̃ ·G− 1
2 ϕ →

(
ei J̃ ·G− 1

2 ϕ − 1 − i J̃ · G− 1
2 ϕ

)
,

given that non zero contributions in the integral in J̃ comes
from even integrands. One can then perform the Fourier trans-
form.

We follow here an alternative path in the computation by
introducing a parameter a to be set to 1

2 at the end in the
previous formal solution for h[ϕ]:

Ia[ϕ] = N
∫

[d J̃ ]ei J̃ ·G− 1
2 ϕ 1

J̃ · J̃ e
−a J̃ · J̃ , (35)

and, after taking a derivative w.r.t. a, perform the J̃ functional
integration

− d

da
Ia[ϕ] = N

∫
[d J̃ ]ei J̃ ·G− 1

2 ϕe−a J̃ · J̃

= N
√

π√
a
e− ϕ·(−�)�·ϕ

4a . (36)

Therefore Ia can be thought of as a function of S�[ϕ] =
1
2ϕ · (−�)� · ϕ. Re-integrating back in a one finds

Ia[ϕ] = −N
[

2e− ϕ·(−�)�·ϕ
4a

√
πa + π

√
ϕ · (−�)� · ϕ

erf

(√
ϕ · (−�)� · ϕ

4a

)
+ c[ϕ]

]
, (37)

where the last term is an a-independent functional. From a
direct integration it turns out to be a simple constant and can
be discarded. Setting a = 1/2 and ignoring also wx [ϕ] in
Eq. (25) one gets

ψx [ϕ] = e− 1
2 ϕ·(−�)�·ϕGxy

δh[ϕ]
δϕ(y)

= −N e− 1
2 ϕ·(−�)�·ϕ π√

ϕ · (−�)� · ϕ

×erf

(√
ϕ · (−�)� · ϕ

2

)
ϕx

= −N
√

2π

(
1 − 2

3
ϕ · (−�)� · ϕ

+ 7

30
(ϕ · (−�)� · ϕ)2

− 2

35
(ϕ · (−�)� · ϕ)3 + · · ·

)
ϕx . (38)

We note that in this free theory the coarse-graning is, as said,
a function of the free Wilsonian action, and therefore non
local, however this non locality is harmless in this case.

More generally, in presence of interactions, any analysis
is extremely complicated and it could be carried on only with
drastic simplifications. A fortiori in this case we should not
expect in general quasi locality in the action, e.g. in strongly
interacting theories where bound states appear in the spec-
trum. In such cases the flow equation is also bound to be non-
local. We note, however, that infinitely many coarse-graining
schemes give the same flow and that the freedom to intro-
duce the divergenceless vector in field space, as defined in
Eq. (25) may be helpful to eliminate some pathological non-
localities. Similar considerations can be applied in a quasi
local regime, i.e. when the action can be written as a power
series in derivatives.
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4 Working example: the Wilson–Fisher fixed point

It is interesting to apply this formalism to the determination
of critical exponents for the Wilson–Fisher fixed point. Let
us therefore consider the following euclidean action, which
represents the leading term in a derivative expansion:

S�[φ] =
∫

dd x

(
1

2
Z�(φ)∂μφ∂μφ + V�(φ)

)
, (39)

We will study the flow of this action with a modified type-A
regulator. In order to take into account the anomalous dimen-
sions, we shall assume that the field does not have the stan-
dard mass dimension d/2 − 1 but rather d/2 − 1 + η/2.
Then the prefactor Z�(φ) has dimension −η. Accordingly,
we modify the cutoffs of Eqs. (6) and (7) to

ρA
k,�(s;m) = �(m,msk2−η) − �(m,ms�2−η)

�(m)
, (40)

and

r A� = (2 − η)
(m s �2−η)m

�(m)
e−m s �2−η

. (41)

We will call this a type-A’ regulator.
Expressing the functional trace in terms of a momentum

integral, the PT flow equation reads

�
d

d�
S�[φ] = 1

2

∫
dd x

∫
dd p

(2π)d
〈x |r� e−sS(2)

� [φ]|p〉〈p|x〉.
(42)

This can be evaluated by employing the derivative expansion
within the functional trace and then performing the momen-
tum integral. We will take into account all terms up to two
derivatives, i.e., we will calculate the flow of Z�(φ) and
V�(φ). Thus, for evaluating the functional trace, we need to
commute all derivatives to the right,

[∂μ, f (φ)] = f ′(φ)(∂μφ) (43)

in order to make use of the identity ∂μ|p〉 = i pμ|pμ〉 and
finally project the flow on the running of Z�(φ) and V�(φ).
The details of the derivation as well as the equations are
provided in the appendix, where the flow equations for the
dimensionless versions of Z� and V� (denoted z and v) are
given in Eqs. (61) and (62).

The fixed-point solutions are obtained by means of a mul-
tiple shooting method. In particular (see [8] for an extended
discussion), a large field expansion is assumed to be valid at
some fixed value of the field where the initial conditions are
set, and an inward numerical integration of the fixed point
Eqs. (61) and (62) is performed. At x = 0 instead the initial
condition for the outward integration is performed assum-
ing z(x = 0) = 1, z′(x = 0) = v′(x = 0) = 0. For

Fig. 1 The anomalous dimension η for the regulator considered (type-
A) in this work as a function of the proper-time parameterm. In them =
∞ limit we find η = 0.0294. The dashed line indicates η = 0.03629
obtained with conformal bootstrap method which is the most accurate
determination nowadays

actual calculations the Runge–Kutta integrator DO2PVF2

turned out to be rather efficient. Continuity at the fitting point
of the functions Z , V and their derivatives is obtained by
means of a globally convergent Broyden’s method.3 In par-
ticular a tolerance of 10−6 for the root finding algorithm has
been assumed. The result for the anomalous dimensions are
depicted in Fig. 1.

The critical exponent ν is instead almost constant as a
function of m and its value is ν = 0.613.

Let us also mention the equations for the other types
of coarse-graining schemes (type B and C) previously dis-
cussed. We shall derive the flow equations but postpone to
another work the full numerical analysis for these schemes.
We introduce a regulator, field dependent in general, of the
form, cf. Eq. (6),

r p�(s;m) = (
2 − η(1 − p) + α p�∂� ln Z�(φ)p

)
(m s Z�(φ)p �2−η(1−p))m

�(m)
e−m s Z�(φ)p �2−η(1−p)

.

(44)

The various classes of regulators can be distinguished in
terms of the parameters p and α. For p = 0 we have a
regulator of type-A while for p = 1 we have regulators of
type B or C for α = 1 or α = 0, respectively.

In addition, in the type-C regulator one can replace

∫
dd x r p�(φ) f (φ) (�φ)

→ −
∫

dd x
[
r p�(φ) f ′(φ) + β r p

′
� (φ) f (φ)

]
(∂μφ)(∂μφ).

(45)

2 Implemented by the NAG group (see https://www.nag.com for
details).
3 This is described for example in http://numerical.recipes.
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In the full type-C case one should keep β = 1. Histori-
cally, the PT flow equations used in the literature have been
derived heuristically by a simple RG-improvement of the
1-loop proper-time expression, [28–30] and that simplified
type-C scheme corresponds to setting β = 0. On the con-
trary, regulators of type A and B have never been used to
calculate the critical exponents for the Wilson–Fisher fixed
point.

The flow equations for v and z in these spectrally
adjusted coarse-graining schemes are given in the Appendix
in Eqs. (63) and (64) as a function of p, α and β.

5 Conclusions

We have argued that, at least at a formal level, the PTRG Eq.
(2) and its generalization (3) can indeed be seen as Wilso-
nian RG equations. In fact, we found that each such flow
can be associated to an infinite family of coarse-graining
procedures. In practical applications, this freedom could be
exploited to avoid certain pathologies.

The definition of the flow depends, as usual, on several
choices. Foremost among these is the choice of a regulator
function. Among all possible definitions, we have consid-
ered certain regulators based on incomplete Gamma func-
tions. Then, we have considered the freedom of introducing
a “spectral adjustment” either in the cutoff itself or in its
derivative with respect to log �. These spectral choices have
the advantage of making possible a more direct interpreta-
tion for the coarse-graining as a suppression of the modes
with p2 > �2. We have implemented the flow equation of
the Ising universality class, using a regulator without spectral
adjustment (type-A). Depending on the value of the param-
eter m the results for the anomalous dimension η and for the
exponent ν in the scheme-A are actually of a quality a bit
lower compared to other RG equations. From a preliminary
analysis they are improving moving to the spectrally adjusted
RG equations (type B and C). Such results will be discussed
elsewhere.
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Appendix: Derivative expansion

In this appendix the main steps to obtain the flow equation
in the derivative expansion are given. As this involves quite
some algebra, we use the Mathematica package xAct [31,
32]. However, in a first step we split the second functional
derivative into two pieces,

S(2)
� [φ] = S(2)

0 [φ] + δS(2)[φ], (46)

the first contains the box operator,

S(2)
0 [φ] = Z�(φ)�, (47)

and the second is the remainder,

δS(2)[φ] = − Z ′
�(φ)(∂μφ) ∂μ + Z ′

�(φ)(�φ)

− 1

2
Z ′′

�(φ)(∂μφ)(∂μφ) + V ′′
�(φ). (48)

This split allows us to only take into account finitely many
commutators when evaluating the exponential in Eq. (42), as
higher orders lie outside of our truncation. Using the Zassen-
haus (Baker–Campbell–Haussdorff) formula we find

e−sS(2)
� [φ] = e

s3
3 [δS(2)[φ],S(2)

0 [φ]]2− s3
6 [S(2)

0 [φ],δS(2)[φ]]2

e
s2
2 [S(2)

0 [φ],δS(2)[φ]]e−sδS(2)[φ]e−sS(2)
0 [φ] + O(∂3φ),

(49)

where [X,Y ]n+1 = [
X, [X,Y ]n

]
and [X,Y ]0 = Y . The

first two exponentials can be expanded to finite order, as
they contain at least one derivative of the field. For the third
exponential, we perform a second split. We rewrite δS(2)[φ]
as,

δS(2)[φ] = δS(2)
∂ [φ] + δS(2)

0 [φ], (50)

where δS(2)
∂ [φ] contains an actual operator,

δS(2)
∂ [φ] = −Z ′

�(φ)(∂μφ) ∂μ, (51)

while δS(2)
0 [φ] is just a number,

δS(2)
0 [φ] = Z ′

�(φ)(�φ) − 1

2
Z ′′

�(φ)(∂μφ)(∂μφ)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


  249 Page 8 of 9 Eur. Phys. J. C           (2020) 80:249 

+ V ′′
�(φ). (52)

So we can use the Zassenhaus Formula again,

e−sδS(2)[φ] = e− s2
2 [δS(2)

∂ [φ],δS(2)
0 [φ]]e−sδS(2)

∂ [φ]e−sδS(2)
0 [φ]

+ O(∂3φ), (53)

and as before, we can expand the first two exponentials to
finite order. Finally, we need to evaluate the most right expo-

nent in (49), e−sS(2)
0 . For this let us decompose

(
Z�(φ)�

)n ,

(
Z�(φ)�

)n =
4∑

i=0

ain Ii Z�(φ)n−mi�n−mi + O(∂3φ),

(54)

in terms of the invariants Ii containing up to two derivatives
of the field,

I0 =1, I1 = [�, Z�(φ)], I2 = [Z�(φ),�]2�,

I3 =[�, Z�(φ)]2Z�(φ)�, I4 = [�, Z�(φ)]2Z�(φ),

m0 = 0, m1 = 1, m2 = 2,

m3 = 3, m4 = 2. (55)

By induction one can show that the ain satisfy the recursion
relation,

a0
n+1 =1, a1

n+1 = a1
n + n,

a2
n+1 = − a1

n + a2
n − n(n + 1)

2
,

a3
n+1 = (n − 1)a1

n + a3
n,

a4
n+1 = a1

n + a4
n, (56)

with the initial conditions

a0
0 = a0

1 = 1, ai>0
0 = ai>0

1 = 0. (57)

The solution of this recursion reads

a0
n = 1, a1

n = n(n − 1)

2
,

a2
n+1 = −n(n − 1)(2n − 1)

6
,

a3
n+1 = n(n − 1)(n − 2)(3n − 5)

24
, a4

n+1

= n(n − 1)(n − 2)

6
. (58)

After determining the ain we can evaluate the exponential,

e−sS(2)
0 =

∞∑
n=0

(−s)n

n!
(
Z�(φ)�

)n

=
∞∑
n=0

(−s)n

n!
4∑

i=0

ain Ii Z�(φ)n−mi �n−mi + O(∂3φ)

=
4∑

i=0

Ii

∞∑
n=0

(−s)n

n! ain Z�(φ)n−mi�n−mi + O(∂3φ),

(59)

by using the identity

∞∑
n=0

nm

n! x
n = (x∂x )

mex . (60)

At last, the dimensionless quantities x = φ�− d−2+η
2 ,

v = V�−d and z = Z�η where η is the anomalous dimen-
sion, are introduced. For a type-A cutoff (p = 0) the flow
equations for v and z read

v̇ = dv − 1

2
x(d + η − 2)v′

+2−d−1π−d/2(η − 2)mmz−d/2�
(
m − d

2

) (
m + v′′) 1

2 (d−2m)

�(m)

(61)

ż = −zη − 1

2
x(d + η − 2)z′ − 2−d−4π−d/2

× (η − 2)mmz−
d
2 −1 �(1 − d

2 + m)

3�(m)((
v(3)

)2
z2(d − 2(m + 1))(d − 2(m + 2))

+ (
m + v′′)2

(
((d − 18)d − 4)

(
z′

)2 + 24zz′′
)

−2(d − 10)v(3)z(d − 2(m + 1))z′
(
m + v′′)) (62)

For type-B and type C cutoff (p = 1) the flow equations
for v and z are significantly more involved. Unified formulae
read

v̇ = dv − 1

2
x(d + η − 2)v′ + γ

z

(
z

mz + v′′

)m− d
2

× (
αx(d + η − 2)z′ + 2z(αη − 2) + 2αż

)
(63)

where γ = mm�[m− d
2 ]/�[m]πd/222+d . The flow equation

for z instead reads

ż = β2−d−4δz−
d
2 +m−2 (

mz + v′′) 1
2 (d−2(m+3))

×
(
z2

(
α

(
d2 − 14d + 40

)
m2x(d + η − 2)

(
z′

)3

+ 2αmżz′
((

d2 − 14d + 40
)
mz′

− (d − 6)v(3)(d − 2(m + 1))
)

− 2αv(3)

× (d − 2(m + 1))v′′ (x(d + η − 2)z′′ + 2ż′
)

+m
(
z′

)2 (
2(d − 10)v′′(−4α + d(α(η + 2) − 2)

+2m(αη − 2) + 4) − α(d − 6)v(3)x(d + η − 2)

× (d − 2(m + 1))) + 2v′′z′
(
v(3)(−d

+2m + 2)(α(d + η − 2)

123
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+2m(αη − 2)) + 2α(d − 10)mx(d + η − 2)z′′

+4α(d − 10)mż′
)) + zv′′z′

(
2αż

(
2v(3) (−dm + d

+2m2 − 2
)

+ (d − 10)m(d + 2m − 6)z′
)

+2z′
(
α(m − 1)v(3)x(d + η − 2)(−d + 2m + 2)

+(d − 10)v′′(α(d + η − 2) + 2m(αη − 2))
)

+α(d − 10)mx(d + η − 2)(d + 2m − 6)
(
z′

)2

+2α(d − 10)v′′ (x(d + η − 2)z′′ + 2ż′
))

+2mz3
(
−αv(3)(d − 2(m + 1))

× (
x(d + η − 2)z′′ + 2ż′

)
+z′

(
−v(3)(d − 2(m + 1))(−α(3η + 2)

+d(αη + α − 2) + 8) + α(d − 10)mx(d + η − 2)z′′

+2α(d − 10)mż′
) + (d − 10)m

(
z′

)2

× (−α(η + 2) + d(αη + α − 2) + 4))

+2α(d − 10)(m − 1)
(
v′′)2 (

z′
)2 (

x(d + η − 2)z′ + 2ż
))

−2−d−5δz−
d
2 +m−2 (

mz + v′′) 1
2 (d−2(m+3))

(
z2

((
v(3)

)2

×
(
d2 − 2d(2m + 3) + 4

(
m2 + 3m + 2

))

+
(
d2 − 18d − 4

)
m2 (

z′
)2 − 2(d − 10)mv(3)

× (d − 2(m + 1))z′ + 48mv′′z′′
)

× +2zv′′ ((
d2 − 18d − 4

)
m

(
z′

)2 − (d − 10)v(3)

× (d − 2(m + 1))z′ + 12v′′z′′
) +

(
d2 − 18d − 4

) (
v′′)2 (

z′
)2

+ 24m2z3z′′
) (

αx(d + η − 2)z′ + 2z(αη − 2) + 2αż
)

−1

2
x(d + η − 2)z′ − ηz (64)

where γ = mm�[m− d
2 ]/�[m]πd/222+d and δ = mm�[1−

d/2+m]/�[m]3πd/2. Setting α = β = 1, α = 0 and β = 1,
α = β = 0 one obtains schemes B, C and simplified-C
respectively, as discussed in the end of Sect. 4.
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