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Abstract. We consider the gravity water waves system with a one-dimensional periodic interface in
infinite depth, and present the proof of the rigorous reduction of these equations to their cubic Birkhoff
normal form [4]. This confirms a conjecture of Zakharov-Dyachenko [13] based on the formal Birkhoff
integrability of the water waves Hamiltonian truncated at degree four. As a consequence, we also obtain
a long-time stability result: periodic perturbations of a flat interface that are of size ε in a sufficiently
smooth Sobolev space lead to solutions that remain regular and small up to times of order ε−3.

1. Introduction

1.1. The equations. We consider an incompressible and irrotational perfect fluid, under the action
of gravity, occupying at time t a two dimensional domain with infinite depth, periodic in the horizontal
variable, given by

Dη :=
{

(x, y) ∈ T× R ; −∞ < y < η(t, x)
}
, T := R/(2πZ) .

The time-evolution of the fluid is determined by a system of equations for the free surface η(t, x) and
the function ψ(t, x) := Φ(t, x, η(t, x)), where Φ is the velocity potential in the fluid domain. According
to Zakharov [12] and Craig-Sulem [6] the (η, ψ) variables evolve under

∂tη = G(η)ψ , ∂tψ = −gη − 1

2
ψ2
x +

1

2

(ηxψx +G(η)ψ)2

1 + η2x
, (1.1)

where

G(η)ψ := (∂yΦ− ηx∂xΦ)(t, x, η(t, x))

is called the Dirichlet-Neumann operator. Without loss of generality, we set the gravity constant to
g = 1. It was first observed by Zakharov [12] that (1.1) are the Hamiltonian system

∂tη = ∇ψH(η, ψ) , ∂tψ = −∇ηH(η, ψ)

where ∇ denotes the L2-gradient, with Hamiltonian

H(η, ψ) :=
1

2

∫
T
ψG(η)ψ dx+

1

2

∫
T
η2 dx (1.2)

given by the sum of the kinetic and potential energy of the fluid. The mass
∫
T η(x)dx is a prime

integral and the subspace
∫
T η(x)dx =

∫
T ψ(x)dx = 0 is invariant under the evolution of (1.1).

We denote by Hs := Hs(T), s ∈ R, the standard Sobolev spaces of 2π-periodic functions of x, and,

we consider the flow of (1.1) on the phase space Hs
0 × Ḣs, where Hs

0 is the subspace of Hs of zero

average functions, and Ḣs is the homogeneous Sobolev space.
The aim of this note is to present the results obtained in [4], concerning a rigorous proof of a con-

jecture of Zakharov-Dyachenko [13], confirmed in Craig-Worfolk [7], on the approximate integrability
of the water waves system (1.1), see Theorems 2.1 and 2.2.
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1.2. The formal Birkhoff normal form Hamiltonian of [13, 7]. Consider the Hamiltonian (1.2),
introduce the complex variable

u :=
1√
2
|D|−

1
4 η +

i√
2
|D|

1
4ψ

where D := −i∂x, and let HC be the Hamiltonian expressed in (u, u). By a Taylor expansion of the
Dirichlet-Neumann operator for small η, see [6], one can write

HC = H
(2)
C +H

(3)
C +H

(4)
C + · · ·

where

H
(2)
C =

∑
j∈Z\{0}

ω(j)ujuj , ω(j) :=
√
|j|, H

(3)
C =

∑
σ1j1+σ2j2+σ3j3=0

Hσ1,σ2,σ3
j1,j2,j3

uσ1j1 u
σ2
j2
uσ3j3 ,

and H
(4)
C is a polynomial of order four in (u, u). Here uj , j ∈ Z \ {0}, denotes the j-th Fourier

coefficient of u, σj = ± are signs and we denote u+j = uj , u
−
j = uj . Note that in this Taylor expansion

there is a priori no control on the boundedness of the Hamiltonian vector fields associated to H
(`)
C ,

` = 3, 4, . . ..
Applying the usual Birkhoff normal form procedure for Hamiltonian systems, it is possible to find

a formal symplectic transformation Φ such that

HC ◦ Φ = H
(2)
C +H

(4)
ZD + · · · (1.3)

where all monomials of homogeneity 3 have been eliminated due to the absence of 3-waves resonant
interactions, that is, non-zero integer solutions of

σ1ω(j1) + σ2ω(j2) + σ3ω(j3) = 0 , σ1j1 + σ2j2 + σ3j3 = 0 , (1.4)

and the Hamiltonian H
(4)
ZD of order 4 is supported only on Birkhoff resonant quadruples, i.e.

H
(4)
ZD =

∑
σ1j1+σ2j2+σ3j3+σ4j4=0,

σ1ω(j1)+σ2ω(j2)+σ3ω(j3)+σ4ω(j4)=0

Hσ1,σ2,σ3,σ4
j1,j2,j3,j4

uσ1j1 u
σ2
j2
uσ3j3 u

σ4
j4
, Hσ1,σ2,σ3,σ4

j1,j2,j3,j4
∈ C . (1.5)

As observed in [13], there are many solutions to the constraints for the sum in (1.5). For example, if
σ1 = σ3 = 1 = −σ2 = −σ4, and up to permutations, there are trivial solutions of the form (k, k, j, j)
which give rise to benign integrable monomials |uk|2|uj |2, and the two parameter family of solutions,
called Benjamin-Feir resonances,⋃

λ∈Z\{0},b∈N

{
j1 = −λb2, j2 = λ(b+ 1)2 , j3 = λ(b2 + b+ 1)2, j4 = λ(b+ 1)2b2

}
. (1.6)

As a consequence, one could expect, a priori, the presence in (1.5) of non-integrable monomials sup-
ported on the frequencies (1.6). The striking property proved in [13], see also [7], is that the coefficients
Hσ1,σ2,σ3,σ4
j1,j2,j3,j4

in (1.5) for frequencies in (1.6) are actually all zero. The consequence of this “null condi-
tion” of the gravity water waves system in infinite depth is the following remarkable result:

Theorem 1.1. (Formal integrability at order four [13, 7]). The Hamiltonian H
(4)
ZD in (1.5)

has the form (2.8). The Hamiltonian HZD := H
(2)
ZD + H

(4)
ZD is integrable, possesses the actions |un|2,

n ∈ Z \ {0} as prime integrals, and, in particular, the flow of HZD preserves all Sobolev norms.

Unfortunately, this striking result is a purely formal calculation because the transformation Φ in
(1.3) is not bounded and invertible, and there is no control on the higher order remainder terms. Thus,
no actual relation can be established between the flow of H (which is well-posed, at least for short
times) and that of HC ◦ Φ.
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2. Statements of the results

We denote the horizontal and vertical components of the velocity field at the free interface by

V := ψx − ηxB , B :=
G(η)ψ + ηxψx

1 + η2x
, (2.1)

and the “good unknown” of Alinhac by

ω := ψ − TBη , (2.2)

where Tab denotes the paraproduct operator of Bony using the Weyl quantization1.
To state our first main result let us assume that, for some T > 0, we have a classical solution

(η, ψ) ∈ C0([−T, T ];H
N+ 1

4
0 ×ḢN+ 1

4 ) of the Cauchy problem for (1.1). The existence of such a solution
is guaranteed by the local well-posedness theorem of Alazard-Burq-Zuily [1] under the regularity
assumption

(η, ψ, V,B)(0) ∈ XN− 1
4

where we denote Xs := H
s+ 1

2
0 × Ḣs+ 1

2 ×Hs ×Hs. Define the complex scalar unknown

u :=
1√
2
|D|−

1
4 η +

i√
2
|D|

1
4ω ∈ C0([−T, T ];HN

0 ) . (2.4)

Theorem 2.1. (Birkhoff normal form). There exist N � K � 1 and 0 < ε� 1, such that, if

sup
t∈[−T,T ]

K∑
k=0

‖∂kt u(t)‖ḢN−k(T) ≤ ε , (2.5)

then there exist a bounded and invertible transformation B = B(u) of ḢN (T), which depends (non-
linearly) on u, and a constant C := C(N) > 0 such that

‖B(u)‖L(ḢN ,ḢN ) + ‖(B(u))−1‖L(ḢN ,ḢN ) ≤ 1 + C‖u‖ḢN , (2.6)

and the variable z := B(u)u satisfies the equation

∂tz = −i∂zHZD(z, z) + X≥4 (2.7)

where:

(1) the Hamiltonian HZD has the form HZD = H
(2)
ZD +H

(4)
ZD with

H
(2)
ZD(z, z) :=

1

2

∫
T

∣∣|D| 14 z∣∣2 dx
and

H
(4)
ZD(z, z) :=

1

4π

∑
k∈Z
|k|3
(
|zk|4 − 2|zk|2|z−k|2

)
+

1

π

∑
k1,k2∈Z,|k2|<|k1|
sign(k1)=sign(k2)

|k1||k2|2
(
− |z−k1 |2|zk2 |2 + |zk1 |2|zk2 |2

)
;

(2.8)

(2) X≥4 := X≥4(u, u, z, z) is a quartic nonlinear term satisfying the “energy estimate”

Re

∫
T
|D|NX≥4 · |D|Nz dx .N ‖z‖5ḢN (T) . (2.9)

1 More in general, for a symbol a = a(x, ξ), x ∈ T, ξ ∈ R, and u ∈ L2(T), we set

Ta(x,ξ)u := OpBW(a)u :=
1√
2π

∑
k∈Z

(∑
j∈Z

â
(
k − j, k + j

2

)
χ
( k − j
|k + j|

)
û(j)

) eikx√
2π

(2.3)

where â denotes the Fourier transform in x and χ is an even smooth cutoff function supported on [−10−2, 10−2].
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The main point of Theorem 2.1 is the construction of the bounded and invertible transformation
B(u) which recasts the water waves system (1.1) into the equation (2.7)-(2.9). Its main consequence
is to establish a rigorous relation between the flow of the full water waves system (1.1) and the flow of
(2.7), which is the sum of the explicit Hamiltonian vector field −i∂zHZD plus a remainder of higher
homogeneity. This remainder is under full control thanks to the energy estimate (2.9). In particular,
since HZD is integrable (see Theorem 1.1) we deduce, by Theorem 2.1, the following long time existence
result.

Theorem 2.2. (Long-time existence). There exists s0 > 0 such that, for all s ≥ s0, there is ε0 > 0
such that, for any initial data (η0, ψ0) satisfying

‖(η0, ψ0, V0, B0)‖Xs ≤ ε ≤ ε0

(the functions V0 := V (η0, ψ0), B0 := B(η0, ψ0) are defined by (2.1)), the following holds: there exists
a unique classical solution

(η, ψ, V,B) ∈ C0([−Tε, Tε], Xs)

of the water waves system (1.1) with initial condition (η, ψ)(0) = (η0, ψ0) and Tε & ε−3, satisfying

sup
[−Tε,Tε]

(
‖(η, ψ)‖Hs×Hs + ‖(V,B)‖Hs−1×Hs−1

)
. ε .

The existence time Tε = O(ε−3) goes well beyond the time of O(ε−1) guaranteed by the local
existence theory [5, 1]. It also extends past the natural time scale of O(ε−2) which one expects for
non-resonant equations, and that has indeed been achieved for (1.1) in [11, 9, 2, 8]. To our knowledge,
this is the first ε−3 existence result for water waves in absence of external parameters. For gravity-
capillary water waves, an almost global existence result of solutions even in x has been proved in
Berti-Delort [3] for most values of the parameters. We remark that Theorem 2.2 is obtained by a
different mechanism compared to previous works in the literature, e.g. [8, 10], as it relies on the
complete conjugation of (1.1) to (2.7) and not on the use of energies.

3. Sketch of the proof

In Theorem 2.1 we conjugate the water-waves system (1.1) to the equation (2.7)-(2.9) through
finitely many well-defined, bounded and invertible transformations. We now outline the main steps of
this procedure. For the sake of simplicity, we will use slightly different notations than in our paper
[4].

3.1. Diagonalization up to smoothing remainders. We begin our analysis by paralinearizing
(1.1), writing it as a system in the complex variable U := (u, u), where u is given by (2.4). Using the
paralinearization of the Dirichlet-Neumann operator in [3], the new system for U is diagonal at the
highest order and has the form

∂tU = TA1(U ;x)∂xU + iTA1/2(U ;x)|D|1/2U + · · ·+R(U)U (3.1)

where A1 and A1/2 are 2× 2 matrices whose coefficients depend on U , with

A1(U ;x) = −diag(V (U ;x), V (U ;x)) , A1/2(U ;x) = diag(−1, 1) +O(U) ,

“· · · ” denote paradifferential operators of order ≤ 0, and R(U) is a matrix of smoothing operators
which gain an arbitrary large number ρ of derivatives. Here we are writing F = F (U ;x) to emphasize
the dependence (through U) on the spatial variable x ∈ T.



BIRKHOFF NORMAL FORM FOR GRAVITY WATER WAVES 5

We first diagonalize in (u, u) the sub-principal operator TA1/2(U ;x)|D|1/2, and then use an iterative

descent procedure to diagonalize all the operators of order 0, −1/2, and so on, up to order −ρ. The
outcome of this procedure is an equation of the form

∂tu = −TV1+V2∂xu− iT1+a1+a2 |D|1/2u+ · · ·+R(u, u) + X (u, u) (3.2)

where V1 and a1, resp. V2 and a2, are linear, resp. quadratic, functions of U , “· · · ” denote parad-
ifferential operators of order ≤ 0, R are smoothing (quadratic and cubic) vector fields which gain
ρ-derivatives, and X are remainder terms satisfying an energy estimate of the form (2.9). From now
on we will denote generically with R and X terms with these properties.

3.2. Reduction to constant coefficients and Poincaré-Birkhoff normal forms. The next step
is to reduce the paradifferential operators in (3.2) to be constant-in-x and integrable, that is of the
form

f(U ;D)u with f(U ; ξ) =
∑

n∈Z\{0}

f+−n,n (ξ)|un|2 , f+−n,n (ξ) ∈ C . (3.3)

To deal with the quasilinear transport term we conjugate (3.2) by the auxiliary flow Φθ of the parad-
ifferential transport equation

∂θΦ
θ = AΦθ , Φθ=0 = Id , A := Tb(u;x)∂x , b :=

β

1 + θβx
, (3.4)

with a real-valued function β(u;x) = β1(u;x) + β2(u;x) to be determined. Here βi, i = 1, 2, are
functions respectively linear and quadratic in u. The flow Φθ in (3.4), is well-posed for θ ∈ [0, 1],
bounded and invertible on Sobolev spaces. The conjugation through Φθ=1 corresponds to a paradif-
ferential change of variable given by the paracomposition operator associated to the diffeomorphism
x 7→ x+ β(u;x) of T. In the new variable v := Φθ=1u we obtain an equation of the form

∂tv = −TV1+V2∂xv − [∂t,A]v + · · · = −TV1+V2+βt+Q(β,V1)∂xv + · · · (3.5)

where Q(β, V1) is a quadratic expression in β and V1, the “· · · ” denote paradifferential operators of
order ≤ 1/2, smoothing remainders and vector fields satisfying (2.9). Note that the highest order

contribution comes from the conjugation of ∂t because the dispersion relation −i|D|1/2 has sub-linear
growth. This creates several difficulties in our Birkhoff normal form reduction compared, for example,
to [3] where the dispersion relation is super-linear. In light of (3.5) we look for β1, β2 solving

∂t(β1 + β2) + V1 + V2 +Q(β1, V1) = ζ(u) +O(u3) ,

where ζ(u) is constant-in-x. However, in general it is only possible to obtain

∂t(β1 + β2) + V1 + V2 +Q(β1, V1) =
∑

n∈Z\{0}

V+−n,n |un|2 +
∑

n∈Z\{0}

V+−n,−nunu−ne
i2nx +O(u3) ,

where V+−n1n2
are some coefficients depending on V . We then verify the essential cancellation2 V+−n,−n ≡ 0,

and reduce the equation (3.5) to the form

∂tv = −ζ(u)∂xv − iT
1+a

(1)
2

|D|1/2v + · · ·+R+ X , ζ(u) :=
1

π

∑
n∈Z\{0}

n|n||un|2 , (3.6)

that, at highest order, has only Birkhoff resonant cubic vector field monomials.
Using the flow (bounded and invertible) generated by a paradifferential “semi-Fourier integral op-

erator” A = iTβ(u)|D|
1
2 , for a suitable real function β, we also reduce to constant coefficients – and

in Birkhoff normal form – the dispersive term. Additional algebraic cancellations, which appear to

2 This can also be deduced using invariance properties of (1.1) such as the reversibility and preservation of the
subspace of even functions.



6 MASSIMILIANO BERTI, ROBERTO FEOLA, AND FABIO PUSATERI

be intrinsic to the water waves system (1.1), show that the new dispersive term is exactly −i|D|
1
2 .

All paradifferential operators of order ≤ 0 are also reduced to constant coefficients – and in Poincaré-
Birkhoff normal form – using flows generated by Banach space ODEs. Eventually we obtain the
equation

∂tz = −ζ(z)∂xz − i|D|
1
2 z + r−1/2(z;D)[z] +R+ X (3.7)

where r−1/2 is an integrable symbol of order −1/2. Note that (3.7) is in cubic Poincaré-Birkhoff-
normal form (it is not Hamiltonian, since we performed non-symplectic transformations) up to the
smoothing (quadratic and cubic) vector fields R, and an admissible remainder X which satisfies (2.9).

3.3. Poincaré-Birkhoff normal forms. Next, we apply Poincaré-Birkhoff normal form transfor-
mations, generated as flows of Banach space ODEs, to eliminate the non-resonant quadratic and cubic
nonlinear terms in R, arriving at

∂tz = −ζ(z)∂xz − i|D|
1
2 z + r−1/2(z;D)[z] +Rres(z) + X

Rres(z) :=
∑

σ1n1+σ2n2+σ3n3=n,
σ1ω(n1)+σ2ω(n2)+σ3ω(n3)=ω(n)

cσ1σ2,σ3n1,n2,n3
zσ1n1

zσ2n2
zσ3n3

einx . (3.8)

In the construction of these transformations we see the appearance of the divisor σ1ω(n1)+σ2ω(n2)+
σ3ω(n3)− ω(n) 6= 0. Note that this expression may degenerate rapidly close to a resonances, such as
in the case σ1 = 1 = σ3, σ2 = −1, and n1 = k, n2 = −k, n3 = j, n = j + 2k, with j � k, which
gives |ω(n1)−ω(n2) +ω(n3)−ω(n)| ≈ j−1/2. The loss of derivatives induced by these near resonances
is compensated by the smoothing nature of the remainder R. Also note that the presence of the
non-trivial 4-waves Benjamin-Feir resonances (1.6) in the normal form (3.8) constitutes a potentially
strong obstruction to control the dynamics for times of O(ε−3).

3.4. Normal form identification. One could expect, in analogy with Theorem 1.1, to be able
to check by direct computations that the coefficients cσ1σ2σ3n1,n2,n3

in (3.8) vanish on the Benjamin-Feir
resonances. However, after having performed all the (non-symplectic) reductions described above,
such a computation appears rather involved. We then prove this vanishing property through a novel
uniqueness argument for the cubic Poincaré-Birkhoff normal form. This argument, which relies on
the uniqueness of solutions of the quadratic homological equation (1.4), shows that the cubic terms
in (3.8) coincide with the Hamiltonian vector field of (2.8):

− ζ(z)∂xz + r−1/2(z;D)[z] +Rres(z) = −i∂zH
(4)
ZD . (3.9)

In particular Rres(z) is supported only on trivial resonances. Finally, the boundedness properties of
all the transformations that we constructed in order to arrive at (3.8), and the identity (3.9), lead to
Theorem 2.1.

3.5. Long-time existence. Theorem 2.2 follows by the quintic energy estimate

‖u(t)‖2
ḢN ≤ CN‖u(0)‖2

ḢN + CN

∫ t

0
‖u(τ)‖5

ḢN dτ , (3.10)

combined with the local existence theory [1] and a standard boostrap argument. The energy estimate
(3.10) is obtained by the boundedness of B,B−1 in (2.6), which give

‖z‖ḢN ≈ ‖u‖ḢN

(provided ‖u‖ḢN � 1), the equation (2.7) for z, the integrability of the Hamiltonian (2.8), and the
control (2.9) on the remainders.
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