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Abstract (135 words) 

Motoneuron activity is modulated by histamine receptors. While H1 and H2 receptors have been 

widely explored, H3 histamine receptors (H3Rs) have not been sufficiently characterized. This 

paper targets the effects of the selective activation of H3Rs and their expression on the 

membranes of large ventral horn cells. The application of selective pharmacological agents to 

spinal cords isolated from neonatal rats was used to identify the presence of functional H3Rs 

on the membrane of physiologically identified lumbar motoneurons. Intra and extracellular 

recordings revealed that H3R agonist, α-methylhistamine, depolarized both single motoneurons 

and VRs, even in the presence of tetrodoxin (TTX), an effect prevented by H3R antagonist, 

thioperamide. Finally, immunohistochemistry located the expression of H3Rs on a 

subpopulation of large cells in lamina IX. This study identifies H3Rs as a new exploitable 

pharmacological target against motor disturbances. 

 

 

Keywords: motoneurons, motor pools, motor reflexes, spontaneous activity   

Abbreviations: CV, cresyl violet; DRG, dorsal root ganglion; H3Rs, H3 histamine receptors; 

P, postnatal; VR, ventral root  
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Histamine H3 receptors expressed in ventral horns modulate spinal motor output 

 

(2005 words) 

Histamine in the spinal cord is released by fibers descending from the tuberomamillary nucleus 

of the posterior hypothalamus, the exclusive location for histaminergic neurons (Haas et al., 

2008). Histamine-immunoreactive spinal fibers are located around the central canal (Inagaki et 

al., 1988) and scattered in the anterior horn of the lumbar cord, mainly condensed in lamina X 

(Seybold, 1985).  

In the mammalian spinal cord, the rhythmic patterns generated by neural circuits are modulated 

by histamine (Coslovich et al., 2018). Four metabotropic histamine receptors have been 

reported in the CNS (H1-4; Haas et al., 2008) and are also identified in the spinal cord (Taylor 

et al., 1982 for H1 subtype; Murakami et al., 1999 for H2; Cannon et al., 2007 for H3; Strakhova 

et al., 2009 for H4). So far, the effects of histamine on spinal motoneurons are thought to mainly 

rely on H1 and H2 subtypes (Constanti and Nistri, 1976; Taylor et al., 1982; Saito et al., 1984; 

Wu et al., 2012). Nevertheless, H3 histamine receptors (H3Rs) also play a functional role in the 

spinal cord (Harasawa, 2000; Hough and Rice, 2011) and may thus modulate ventral spinal 

neuron activity, as well. We explored this hypothesis using in vitro neonatal rat spinal cords, 

which allow to examine spinal and locomotor functions at both circuit and cellular levels 

(Brumley et al., 2017). H3Rs were studied on functionally-identified motoneurons using the 

selective pharmacological agonist for H3Rs, α-methylhistamine, at a concentration similar to 

what previously reported on in vitro CNS preparations (Brown et al., 1996; Takei et al., 2012; 

2017). Histological tools and selective staining assessed the presence of H3Rs on large-

diameter (>15 µm) cells in the ventral horns, while electrophysiological recordings from 

lumbar ventral roots (VRs) explored the involvement of H3Rs in modulating the output of 

lumbo-sacral networks.  

Experiments were performed on 39 isolated spinal cords of postnatal day (P) 0 - 4 rats, as 

previously reported (Dose et al., 2014; 2016). Procedures were approved by the International 

School for Advanced Studies (SISSA) ethics committee and are in accordance with the 

guidelines of the Italian Animal Welfare Act 24/3/2014 n. 26 implementing the European 

Union directive on animal experimentation (2010/63/EU). All efforts were made to minimize 

number and suffering of animals used. Cords were isolated from the midthoracic region to the 

cauda equina and placed in a small recording chamber at room temperature to be continuously 

superfused (5 mL/min) with a Krebs solution, composed as follows (in mM): 113 NaCl, 4.5 

KCl, 1 MgCl27H2O, 2 CaCl2, 1 NaH2PO4, 25 NaHCO3, and 11 glucose, gassed with 95 % O2-
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5 % CO2, pH 7.4. Tight-fitting suction electrodes allowed DC-coupled extracellular recordings 

from lumbar ventral roots (VRs; Dose et al., 2016). Intracellular recordings with sharp 

electrodes (electrode resistance = 38.82 ± 9.98 MΩ) were obtained from 34 motoneurons total, 

impaled from both left (l) and right (r) L3 - L5 segments (Dose et al., 2014). In control 

conditions, cells’ overall average resting potential was – 66.63 ± 9.22 mV, with membrane 

resistance of 32.03 ± 14.38 MΩ and antidromic spike amplitude of 65.50 ± 9.32 mV. Selective 

histaminergic agents were added to the superperfusing medium as needed. Histamine 

dihydrochloride (Murakoshi et al., 1985) and R-α-methylhistamine dihydrobromide (Dai et al., 

2006) were purchased from Tocris (Bristol, UK). Thioperamide maleate (Dai et al., 2006), and 

tetradotoxin (TTX) were bought from Ascent Scientific (Bristol, UK).  

Histology and immunohistochemistry were performed on freshly isolated spinal cords fixed in 

4% paraformeldehyde (Fluka, Buchs, Switzerland) for 3 days. Samples were soaked overnight 

in cryoprotecting 30% sucrose (Fluka) water solution and embedded in OCT (Kaltek, Padova, 

Italy). From L4 level, serial 15 µm thick cross cryosections were cut rostrocaudally with a 2800 

Frigocut N cryostat microtome (Reichert-Jung GmbH, Nussloch, Germany) and mounted on 

polylysine (Sigma-Aldrich, St. Louis, MO, USA) precoated slices. Serial sections were 

processed alternatively for staining with 0.1% cresyl violet acetate (Sigma) water solution or 

H3R selective immunostaining (Suppl. Fig. 1). For immunohistochemical analysis, slices were 

rinsed in PBS 0.1 M and then sections were incubated in 0.3% H2O2 (BDH Laboratory 

Supplies, Poole, UK) solution in PBS, at room temperature, in order to block endogenous 

peroxidase activity. After washing, the sections were blocked with 3% normal goat serum 

(Vector Laboratories, Burlingame, CA, USA) and 0.25 % Triton X-100 (Bio-Optica, Milano, 

Italy) PBS solution for 2 hours and then incubated overnight with polyclonal antibody NLS476, 

RRID:AB_2264153 (Cricco et al., 2008; Novus Biologicals, Littleton, CO, USA) at a dilution 

of 1:200, in a humidified chamber, at room temperature. After washing, sections were 

incubated 2 hours in biotinylated secondary antibody (Vector Laboratories) at a dilution of 

1:200, and then rinsed. The slices were incubated in ABC solution (Vector Laboratories) for 1 

hour at room temperature. Bound antibodies were detected using DAB solution (Vector 

Laboratories). After immunohistochemical labelling, slices were then counterstained with 

haematoxylin to visualize cell nuclei (Suppl. Fig. 2). Control experiments included omission 

of the primary antibody. All slices were subjected to ethanol/xylene (Carlo Erba, Milan, Italy) 

cleansing and then examined via photomicroscopy (Zeiss, Gotingen, Germany). Large cells in 

lamina IX (putatively motoneurons) were morphologically identified as cells with a diameter 

greater than 15 µm. The number of H3R-positive large cells in ventral horns was calculated 
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based on immunostained sections (n = 84), whereas total number of large cells in ventral horns 

was calculated based on cresyl violet stained sections (n = 84), in a 350 x 400 µm area, using 

ImageJ software.  

Mean values from each spinal cord (P2-P4; n = 5) were then obtained. Since no differences 

were found between right and left spinal cord sides, mean values of those data were calculated 

and normality was assessed by means of Shapiro-Wilk test (p > 0.05).  

As for statistical analysis, all data are indicated as a mean ± SD, while n indicates the number 

of cells or spinal cords analyzed. Data were distinguished between parametric and non-

parametric, using a normality test. Then, all parametric values were analysed with either 

Student’s t-test (paired or unpaired) to compare two groups of data, or with ANOVA when 

groups were more than two. Non-parametric data was analysed with a Mann-Whitney test for 

two groups or, for multiple comparisons, with one-way ANOVA on ranks (Kruskal-Wallis) 

first, followed by a post hoc test (Dunnett's Method, Tukey Test). Results were considered 

significant when p < 0.05.  

To verify the presence of functional H3Rs in the spinal cord, we added the endogenous agonist, 

histamine, to the superperfusing medium. An immediate depolarization (about 15 mV) was 

observed, associated with the superimposed firing activity (Figure 1A, left) previously reported 

(Coslovich et al., 2018). After an extensive washout from histamine (at least 15 min), the 

application of α-methylhistamine (20 µM) induced an appreciable depolarization (about 4 mV), 

accompanied by action potentials (Figure 1A, right). Serial applications of histamine and α-

methylhistamine revealed that depolarizations induced by the first were significantly higher 

than the ones elicited by α-methylhistamine on the same cells (paired t-test, p = 0.03, n = 3).  

A depolarization of 4.40 ± 1.34 mV was recorded in 10 out of 34 recorded motoneurons, after 

154.03 ± 91.31 s from α-methylhistamine application. As data were collected from animals 

very close in age (P1-P3), the observed sensitivity to the agent in the 29% of recorded 

motoneurons did not appear to depend upon developmental stage, but rather upon different cell 

properties. In control conditions, the two groups of cells (sensitive and non-sensitive) showed 

similar membrane resistance (33.34 ± 16.91 mΩ, sensitive vs. 30.70 ± 13.85 mΩ non-

sensitive), but different resting membrane potentials (-59.73 ± 7.53, sensitive vs. -68.68 ± 9.38, 

non-sensitive; t-test; p = 0.010).  

To verify the presence of functional H3Rs on the motoneuron membrane, we blocked the action 

potential-mediated transmission with TTX (0.5-1 µM) before and during α-methylhistamine 

application (20 µM). In control conditions, TTX suppressed spontaneous tonic activity, 

abolished action potentials, and hyperpolarized cells. Addition of α-methylhistamine (20 µM; 
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Figure 1B) significantly depolarized 60% of motoneurons (mean depolarization 1.23 ± 0.79 

mV, paired t-test, p = 0.012, n = 6). In the presence of TTX, the extent of depolarization induced 

by α-methylhistamine was significantly smaller than the one induced by histamine (Figure 1C, 

paired t-test, p = 0.019, n = 5, 6).  

Since only a subgroup of cells showed to possess H3Rs, we examined their selective 

contribution to the overall output of motoneuronal pools. Thus, VR activity was extracellularly 

recorded during bath-application of H3R agonist, α-methylhistamine. In a sample cord in Fig. 

1D, VRs were depolarized by 367 µV, in accordance with the mean depolarization of 415 ± 64 

µV obtained from 11 experiments, where the selective activation of H3Rs did not elicit any 

alternating activity from VRs.  

In the presence of TTX, histamine (n = 8) and α-methylhistamine (n = 6) were always able to 

depolarize VRs (Figure 1E). This provides evidence that H3Rs, although functionally expressed 

only by a third of cells, once activated, play an important role in modulating overall spinal 

motor output. In additional five preparations, co-application of histamine, TTX and the 

selective antagonist for the H3R subtype, thioperamide, statistically reduced the depolarization 

induced by histamine (Figure 1E; one-way ANOVA followed by all pair-wise multiple 

comparison procedures with Tukey test; p = 0.005). The observation showed that H3Rs mediate 

part of the effects of histamine application. 

In summary, data indicate that, although H3Rs were functionally involved in modulating the 

29% of intracellularly-recorded motoneurons, their role is predominant as the overall VR motor 

output was indeed depolarized by H3R selective agents.  

Because electrophysiological experiments with TTX strongly indicated the presence of H3Rs 

on motoneuron membranes, we performed immunohistochemical labelling to visualize the 

distribution of H3Rs in the ventral spinal cord. Interestingly, H3Rs were expressed on the 

membrane of 35% of the large diameter (>15 µm) cells in lamina IX, as morphologically 

confirmed using cresyl violet staining (Figure 2, n = 84 cryosections from 5 spinal cords).  

Indeed, α-methylhistamine in TTX affected the activity of only a portion of functionally-

identified motoneurons, in line with the expression of H3Rs on the membranes of one third of 

large cells in the ventral horn, immunohistochemically labelled. 

The identification of H3Rs on motoneurons explains part of the motor behavior following 

pharmacological manipulation with selective histamine agents (Chiavegatto et al., 1998; 

Toyota et al., 2002) and opens a new path in exploring therapeutics to alleviate spinal cord 

pathologies. Histamine is well known to be involved in nociceptive and antinociceptive 

processing (Wei et al., 2016) and itch sensations (Lee et al., 2016; Luo et al., 2015). In 
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particular, H3Rs, acting on sensory afferents and sensory-responsive neurons in the spinal cord 

(Cannon et al., 2007), attenuate mechanically-induced nociception (Cannon et al., 2003). 

Moreover, H3R antagonism has been suggested as a potential mechanism for the treatment of 

neuropathic pain in preclinical rat models (Cowart et al., 2012; Hsieh et al., 2010). Our findings 

suggest that H3R agents also act on motoneurons in the ventral spinal cord to influence motor 

behavior and can represent promising pharmacological targets in the CNS, because of their 

characteristic of being constitutively active in vivo (Passani and Blandina, 2011). A direct effect 

of H3Rs on interneuronal spinal networks for locomotion should be excluded, since no 

locomotor-like alternating patterns (Taccola a Nistri, 2005) were elicited by α-methylhistamine 

alone. The inverse agonism of these receptors unveils their ability to modulate neuronal 

excitability, even in the absence of any endogenous histamine, as shown by innovative 

molecules that underwent preclinical testing for the treatment of cognitive disorders and 

feeding behavior (Arrang et al., 2007). 

Recently, histamine has been reported to improve long-term recovery in a rat model of spinal 

injury, by decreasing the lesion area, inhibiting astrogliosis and glial scar formation, and 

improving locomotor recovery (Zhao et al., 2015). Although many of the effects were reversed 

by a treatment with a H1 receptor antagonist, the authors suggested that the overall protective 

role of histamine may be due to different histamine receptors in different cell types. Then, the 

modulation of H3Rs expressed in a subpopulation of large ventral horn cells could represent a 

potential neuroprotective strategy to rescue spinal tissue after damage (Kukko-Lukjanov et al., 

2006).  
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Figure 1. α-methylhistamine directly depolarizes a subset of recorded motoneurons and 

affects the motor output recorded from VRs. 

A.) After 84 s from the application of histamine (upper gray bar; 20 µM), a sustained 

depolarization (15.32 mV) with superimposed intense firing (3.97 Hz) is recorded from a rL5 

single motoneuron (resting potential = -65 mV). After 15 min of washout, the baseline returns 

to control level and only sporadic action potentials can be derived (trace break = 2 min). 

Application of α-methylhistamine (α-MH) slightly depolarizes the same cell (4.15 mV) with 

the occurrence of faster spiking activity. Based on the extent of depolarization induced by 20 

µM α-methylhistamine (α-MH), single motoneurons are a posteriori divided in sensitive and 

non-sensitive. B.) A different rL5 motoneuron (- 63 mV initial resting potential, Vm) is 

hyperpolarized (- 4.94 mV) by TTX (1 and then 0.5 µM) with the suppression of both 

spontaneous firing and tonic activity, as well. α-methylhistamine (α-MH, 20 µM) slightly 

depolarizes the motoneuron (2.56 mV) as indicated at a higher magnification in the insert 
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above. C.) Analysis of pooled data from different experiments during TTX perfusion indicates 

that the mean depolarization elicited by histamine (20 µM; dark gray bar) is significantly higher 

than the one induced by α-methylhistamine (20 µM; light gray bar; *, t test; p = 0.019; n = 5, 

6). D.) Application of α-methylhistamine (20 µM, 15 min application) induces comparable 

stable depolarizations with sporadic synchronous events among all VRs (VRrL2 = 349 µV; 

VRrL5 = 452 µV; VRlL5 = 321 µV; VRlL2 = 347 µV). After 5 min of the following washout, 

traces return to baseline and discharges are progressively attenuated, until mostly suppressed. 

E.) Histamine (20 µM) and α-methylhistamine (α-MH; 20 µM) depolarize VRs in the presence 

of TTX, while the selective H3R antagonist thioperamide (20 µM) abolishes the depolarization 

induced by histamine (*, one-way ANOVA followed by all pair-wise multiple comparison 

procedures with Tukey test; p = 0.005; n = 8, 6, 5). Note that A and B traces come from different 

motoneurons. 
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Figure 2. Immunostaining confirms that a subgroup of large cells in lamina IX contains 

H3Rs. A.) Cresyl violet staining of 15 µm thick cross cryosection of L4 spinal cord. Dotted 

rectangle delimiting lamina IX, in which large diameter (>15 µm) ventral horn cells are 

morphologically identified, is shown in C.) and E.) at a higher magnification. Scale bars: 250 

µm A.), 200 µm C.) and 100 µm E.), respectively.  

D.) Immunohistochemical detection by H3R marker on a serial slice from the same cord reveals 

diffuse labelling concentrated around a set of large ventral horn cells. Dotted rectangle 

delimiting lamina IX, is shown in F.) at a higher magnification. Scale bars: 200 µm D.) and 

100 µm. F.)  

B.) Quantification of mean number of H3R-positive cells among the total number of large 

ventral horn cells in lamina IX (motor neurons). Large cells in lamina IX were morphologically 

identified as cells with a diameter greater than 15 µm. Number of H3R-positive cells is 

significantly different from the total number of cells, morphologically identified in cresyl violet 

stained (CV+) sections (*; Student’s t-test, p < 0.001, n = 84 sections from five different cords).  

 

 

 

Supplementary Figure 1.  The cartoon schematizes the histological processing. Spinal cords, 

fixed in PFA, were cryosected rostrocaudally from L4 level. Serial 15 µm thick sections were 

processed alternatively for staining with cresyl violet or H3R selective immunostaining. After 

immunohistochemical labelling, slices were then counterstained with haematoxylin to visualize 

cell nuclei. 
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Supplementary Figure 2. Double staining by H3R antibody and haematoxylin shows the 

expression of H3R on four large lamina IX cells (black arrows). Scale bar: 50 µm.  
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