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ABSTRACT: Transposable elements (TEs) compose about half of the mammalian genome and, as embedded se-
quences, up to 40% of long noncoding RNA (IncRNA) transcripts. Embedded TEs may represent functional domains
within IncRNAs, providing a structured RNA platform for protein interaction. Here we show the interactome profile
of the mouse inverted short interspersed nuclear element (SINE) of subfamily B2 (invSINEB2) alone and embedded
in antisense (AS) ubiquitin C-terminal hydrolase L1 (Uchl1), an IncRNA that is AS to Uchl1 gene. AS Uchl1 is the
representative member of a functional class of AS IncRNAs, named SINEUPs, in which the invSINEB2 acts as
effector domain (ED)-enhancing translation of sense protein-coding mRNAs. By using RNA-interacting domai-
nome technology, we identify the IL enhancer-binding factor 3 (ILF3) as a protein partner of AS Uchll RNA. We
determine that this interaction is mediated by the RNA-binding motif 2 of ILF3 and the invSINEB2. Furthermore, we
show that ILF3 is able to bind a free right Arthrobacter luteus (Alu) monomer sequence, the embedded TE acting as
ED in human SINEUPs. Bioinformatic analysis of Encyclopedia of DNA Elements—enhanced cross-linking im-
munoprecipitation data reveals that ILF3 binds transcribed human SINE sequences at transcriptome-wide levels.
We then demonstrate that the embedded TEs modulate AS Uchll RNA nuclear localization to an extent moderately
influenced by ILF3. This work unveils the existence of a specific interaction between embedded TEs and an
RNA-binding protein, strengthening the model of TEs as functional modules in IncRNAs.—Fasolo, F., Patrucco, L.,
Volpe, M., Bon, C., Peano, C., Mignone, F., Carninci, P., Persichetti, F., Santoro, C., Zucchelli, S., Sblattero, D., Sanges,
R,, Cotella, D., Gustincich, S. The RNA-binding protein ILF3 binds to transposable element sequences in SINEUP
IncRNAs. FASEB J. 33, 13572-13589 (2019). www.fasebj.org
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A large portion of the mammalian genome is transcribed,
giving rise to a plethora of RNA molecules (1). Among
them, long noncoding RNAs (IncRNAs) represent the
largest and most heterogeneous class (2-4). IncRNAs are
arbitrarily defined as transcripts exceeding 200 nt in
length, without evidence of protein-coding capacity.
According to the LNCipedia database, the human genome
contains more than 118,000 IncRNAs, and this number has
increased rapidly (5, 6). Although only a minor portion of
IncRNAs have been associated to specific functional roles
in cells, it is unanimously accepted that they contribute
to gene expression regulation by an array of different
mechanisms (7, 8). In eukaryotes, IncRNAs have been
found to be prevalent as natural antisense (AS) transcripts
(NATs) (9). Specific NATs have been shown to regulate the
expression of their sense mRNAs via a range of mecha-
nisms that include the inhibition of transcription by steric
hindrance of the transcriptional machinery; the repression
of expression by competition for transcription factors; the
silencing of sense protein expression by RNA interference;
or the masking of specific signals on the sense RNA nec-
essary for splicing, stability, or degradation (10, 11).

Regardless of their mode of action, IncRNAs have been
proposed to work as modular scaffolds, recruiting and
coordinating different effectors through discrete RNA
domains with specific secondary structures (12). This
model has led to the quest to identify crucial RNA struc-
tures within IncRNAs and specific RNA-binding proteins
(RBPs) that can medjiate their activity.

In this context, transposable elements (TEs) have been
proposed as candidate domains that determine the function
of IncRNAs (13-16). Previously considered to bejunk, TEs are
now known to play pivotal roles in shaping genome diversity
(17). Interestingly, TEs compose a significant proportion of
the IncRNAs, constituting, on average, 40% of the IncRNA
nucleotide sequences (18, 19). Recent data demonstrate that
embedded TEs are critical modules within IncRNAs that
exert their function through protein binding. An embedded
Arthrobacter luteus (Alu) repeat modulates activity of AS
noncoding RNA in the INK4 locus by recruiting protein
components of the polycomb repressive complex (20).
Binding of Staufen, the double-stranded RBP (dsRBP), and
subsequent Staufen-mediated degradation are triggered by
the formation of double-stranded RNA (dsRNA) following
hybridization between mRNAs and IncRNAs containing
complementary Alu fragments (21, 22). Furthermore, het-
erogeneous ribonucleoprotein particle (hnRNP) C
and TAR DNA-binding protein 43 (TDP-43) were shown
to bind embedded Alu sequences preferentially in the
inverted orientation (23, 24). By using cross-linking im-
munoprecipitation (CLIP) sequencing, human antigen R
and ATP-dependent RNA helicase UPF1 were identified
as additional RBPs for inverted Alu sequences that reg-
ulate IncRNAs abundance and splicing (25).

One of the key features of genomes’ organization is that
most genes share their genomic region with another gene
on the opposite filament, forming sense-AS (S/AS) pairs
(2, 26). Almost 70% of protein-encoding genes present an
AS IncRNA on the opposite strand (26). In a growing
number of cases, AS IncRNAs have been shown to be re-
quired for proper regulation of coding genes, carrying
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genetic information that acts at distinct regulatory levels
(16, 27, 28).

We previously showed that the mouse IncRNA AS
ubiquitin C-terminal hydrolase L1 (Uchll) can enhance
translation of sense protein-coding Uchll mRNA through
the activity of an embedded TE of the short interspersed
nuclear element (SINE) B2 type (13). AS Uchll function
depends on 2 RNA domains: a 5’ overlapping sequence to
the sense transcript that drives the specificity of action and is
thus referred to as the binding domain (BD) and an em-
bedded inverted SINE of subfamily B2 (invSINEB2) in the
nonoverlapping region, which represents the effector do-
main (ED) and confers translation-enhancing activity (Fig.
1A). In the nonoverlapping sequence, AS Uchll also con-
tains a partial Alu element that is not required for translation
up-regulation activity and whose exact function is presently
unknown. In physiologic conditions, AS Uchll RNA accu-
mulates in the nucleus of neurons, whereas, upon stress, it
shuttles into the cytoplasm (13). AS Uchl1 is the represen-
tative member of a new functional class of IncRNAs, named
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Figure 1. Scheme of SINEUP AS Uchll constructs. A) The FL
clone for AS Uchll is shown. The overlapping region with
sense Uchll mRNA, representing the BD (green), spans 40 nt
of Uchll 5'UTR (gray) and 33 nt of the CDS (yellow). The
invSINEB2 is the ED (red) of SINEUP AS Uchll. B) AS Uchll
mutants are schematically depicted. The invSINEB2 contained
in AS Uchll and the mutant lacking the BD (AS Uchll A5')
have been employed as baits in phage display selection.
Deletion mutants of TEs have been employed for functional
studies. AS Uchll ASINEB2 and AAlu lack the embedded
invSINEB2 or Alu, respectively. AS Uchll ATE is deprived of
both repeats. CDS, coding sequence.
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SINEUPs, because they rely on a SINEB2 to up-regulate
translation and share the combination of BD and ED (16, 29).
Several natural SINEUPs have been identified in mouse (13,
16). Although SINEB2 sequences are not present in the hu-
man transcriptome, we recently showed that human
SINEUPs take advantage of the embedded free right Alu
monomer (FRAM) repeat element, which functions as an
ED in AS IncRNAs transcripts (30). It is noteworthy that, by
manipulating AS Uchll BD, synthetic SINEUPs with
invSINEB2 or FRAM EDs can be generated to act as trans-
lation enhancers of targets of choice (29, 31-33). Although
the molecular mechanisms underlying SINEUP subcellular
localization and activity remain unclear, SINEUPs are an
ideal model to study the relative contribution of pairing and
secondary structures in IncRNAs function. In this context,
we have recently showed that the invSINEB2 structure ex-
hibits several internal loops and hairpins that may serve as
structural motifs for specific recognition by unknown part-
ner molecules (34, 35). Furthermore, given the functional
conservation between 2 apparently unrelated embedded
TEs, the mouse invSINEB2 and the human FRAM, any
common protein partners may strengthen the hypothesis
they are acting as convergent functional domains.

Here, we identify proteins that interact with the
invSINEB2 of AS Uchll. To this end, we employ RNA-
interacting domainome (RIDome), a high-throughput in-
teraction discovery platform that combines the selection of a
phage cDNA library displaying filtered open reading
frames (ORFs) with next-generation sequencing (NGS) (36)
(outlined in Supplemental Fig. S1). In brief, a phage library of
human OREFs is challenged with a biotinylated RNA bait
through multiple cycles of selection and amplification. ORF
inserts are collected from the selected phages and sequenced
by NGS, and the corresponding genes are ranked according
to read frequency. High-scoring ORFs indicate the effective
interaction with the RNA bait and can be easily rescued from
the phage library by inverse PCR. The interaction with the
target RNA can be then validated in vitro [e.g., by ELISA-and
surface plasmon resonance (SPR)-based assays] and with
functional assays in cell culture.

We find that the dsRBP IL enhancer-binding factor 3
(ILE3) is an interacting partner of AS Uchll. This in-
teraction specifically requires one of the 2 dsSRNA-binding
motifs (AsRBMs) of ILF3 and the invSINEB2 sequence in
AS Uchll. ILF3 also binds FRAM sequences, the embed-
ded TEs in human SINEUPs. By bioinformatics analysis of
enhanced CLIP (eCLIP) data for ILE3 from the Encyclo-
pedia of DNA Elements (ENCODE), we confirm that this
RBP is a major interacting protein of Alu sequences in
human. In addition, we also demonstrate that the em-
bedded TEs modulate AS Uchll RNA nuclear localization
to an extent moderately influenced by ILF3.

MATERIALS AND METHODS
Constructs
Plasmids expressing AS Uchl1 full-length (FL), ASUchll AB2, AS

Uchll AAlu, and AS Uchll ATE (previously referred to as ATOT)
were prepared as previously described in Carrieri ef al. (13).
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In vitro RNA synthesis and biotinylation

RNA baits used for biopanning experiments and successive
ELISA-based assays were synthesized by in vitro transcription
(MegaScript T7 Transcription Kit; Thermo Fisher Scientific, Wal-
tham, MA, USA). Template DNAs were prepared by PCR using
specific primer pairs in which the forward oligonucleotide was tailed
with a T7 RNA polymerase minimal promoter. Synthesized RNAs
were analyzed by electrophoresis, purified (MegaClear Kit; Thermo
Fisher Scientific), quantified by spectrophotometry, and biotinylated
at the 3’ end (Pierce RNA 3’ End Biotinylation Kit; Thermo Fisher
Scientific). RNA samples were stored at —80°C until use.

Biopanning procedures

The ORF phage library used in this study, as well the entire
procedure to produce and rescue phagemids, has been pre-
viously described (36-38). For biopanning experiments, phage
particles were suspended in PBS buffer at a concentration of 10"
colony-forming units per microliter, and for each selection we
used 10" phages. Selections were done using 2 SINEUP-related
RNA baits (shownin Fig. 1): ASUchl1 A5’ (the IncRNA AS Uchl1
sequence, depleted of the 73 bp of overlap; ~1100 nt) and
invSINEB2 (the sequence corresponding to the invSINEB2, em-
bedded in AS Uchll; ~170 nt).

Each selection experiment was preceded by a preclearing
step of subtracting from the library those phages that would
unspecifically bind either the magnetic particles or the plastic
tube. It was conducted as follows: 20 pl of streptavidin-coated
magnetic beads (New England Biolabs, Ipswich, MA, USA)
were washed in 10 mM Tris HCl pH 8.0, 1 mM EDTA, 250 mM
NaCl, 0.5% Triton X-100 (TENT buffer) and then incubated
with 1012 phages in 100 pl of TENT buffer for 30 min at room
temperature. Beads were then removed with a magnet, and
unbound phages were recovered and used for selection.

For biopanning experiments, the RNA baits were diluted to 30
nM in TENT buffer containing 100 U/l of the RNAse inhibitor
Superase-In (Thermo Fisher Scientific); then 100 pl (3 pmol) were
added to 20 pl of streptavidin magnetic beads and incubated for
20 min at room temperature. Selections were performed using 2
protocols that differ in the competitor used: single-stranded DNA
(ssDNA) from herring sperm or tRNA from Escherichia coli. The
beads were washed 3 times in TENT bulffer; then phages from the
precleared libraries were added to the RNA-conjugated beads
and incubated for 45 min at room temperature in the presence of
1 ng/pl of ssDNA or tRNA. Beads were then washed extensively
in TENT buffer. Bound phages were eluted by a treatment with
RNAse A (10 pg/ml in 10 mM Tris pH 8.0, 1 mM EDTA, 15 mM
NaCl) for 2 min at room temperature; then the supernatant
containing the phages released from beads was used to infect2 ml
of E. coli DH5« for 45 min at 37°C. The eluted phage pool was
amplified in DH5a cells, and the procedure was repeated for a
second round of selection; the stringency of selection was en-
hanced by increasing the number of washing steps. To avoid an
excessive restriction in the output diversity, only 2 cycles of se-
lection were performed for all protocols. After the second round
of selection, colonies growing on agar plates were harvested, and
plasmid DNA was isolated by standard miniprep procedure.
cDNA inserts were PCR-amplified with barcoded molecular
identifier—tagged primers and sequenced with an Illumina
SmartSeq platform (Illumina, San Diego, CA, USA).

Bioinformatics analysis of RIDome

Sequences were processed with the NGS Transcriptome Profile Ex-
plorer (NGS-Trex) system (https;/fiww.ngs-trex.disit.unipmn.it/Trex/cms/)
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as previously described (36, 39). Briefly, sequences were
mapped onto the human genome (U.S. National Center for
Biotechnology Information Build 36) using genomic mapping
(GMAP) software, and matching sequences were compared
with annotated genes. Each gene was then ranked according to
the number of supporting sequences (defined as coverage). For
genes present in both the selected libraries and in a reference
[nonselected (NS)] library, the fold enrichment was also cal-
culated. By using the “differentially expressed genes” tool, it is
indeed possible to query results for differentially represented
genes between 2 or more data sets. This tool provides a list of
differentially expressed genes within the selected libraries
compared with the reference. For each differentially expressed
gene, the tool provides the number of reads supporting the
gene in the reference (ref count), the number of reads sup-
porting the gene in the other samples (other count), the P value
evaluating the statistical significance of the differential ex-
pression, and the fold change (enrichment).

Bioinformatics analysis of eCLIP data

Human eCLIP data for ILF3 were downloaded from the ENCODE
project (40-42) for HepG2 (https:/fwww.encodeproject.org/experiments/
ENCSR786TSC/) and K562 cell lines (https://wuww.encodeproject.org/
experiments/ENCSR438KWZ/). For each cell line 2 replicate ex-
periments were performed. We downloaded the following in-
puts (normalized bed narrowPeak files): ENCFF340GPD (https://
www.encodeproject.org/filessyENCFF340GPD/), ENCFF841BJF
(https:/fwww.encodeproject.org/filessENCFF841BJF/), ENCFF353RQP
(https://www.encodeproject.org/files/ENCFF353RQP/), and
ENCFF623LPT (https:/fwww.encodeproject.org/files/ENCFF623LPT)).

The files contain locations of peaks associated to ILF3
bindings mapped on the human genome (assembly GRCh38)
and their enrichment with respect to the input. Peaks were
annotated, also keeping in account the strand. Information on
the protocols and methods used to produce these data is
openly available on the ENCODE project website. Human
gene annotations (assembly GRCh38) in GFF3 format were
downloaded from Ensembl (43) (https://useast.ensembl.org/
index.html) and were relative to the Ensembl v.83. Repetitive
element annotations relative to the GRCh38 assembly were
obtained from the RepeatMasker (44) file transfer protocol
site (http://www.repeatmasker.org/).

We selected only peaks showing an enrichment value of P <
0.05 inboth replicates of a given cell line using R and bedtools (45)
(v2.26.0, parameters: -u). A custom-made script was written in R
(46) (v.3.3.2) making use of bedtools with the aim to uniquely
classify each ILE3 peak to overlap with specific genomic features
(genes and repeats). Each peak has been classified as belonging to
a single class with respect to the closest overlapping or flanking
gene. In cases in which peaks could be assigned to more than 1
class, we have used the following priority: coding exon concor-
dant > noncoding exon concordant > coding intron concordant
> noncoding intron concordant > coding discordant > non-
coding discordant > intergenic. The terms “concordant” and
“discordant” indicate whether the annotated strand of the peak is
in the same orientation of the overlapping transcript. Plots were
produced using the R libraries ggplot2 (47) (v.2.2.1) and cowplot
(48) (v.0.7.0). The overlaps found between ILF3 peaks and the
genomic features analyzed were visualized and inspected on the
Integrative Genomics Viewer (49) (v.2.3.92). Randomization
analyses were performed after obtaining the replicate common
peaks data set for HepG2 and K562. Each ILF3 peak from the 2
cell lines was randomized 100 times using bedtools (-noO-
verlapping; -excl). Comparisons between proportions of real and
randomized peaks were performed in R using Fisher’s exact test,
and the P value was corrected using the false discovery rate
method.
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Rescue of phagemid clones and subcloning into a
pPGEX vector

Phagemids clones were rescued from the selected libraries by in-
verse PCR as previously described (36, 37). Briefly, a pair of specific
back-to-back outward primers was designed for each of the tested
genes, centering on the nucleotide region identified by the over-
lapping reads. For each sample, 50 ng of the phagemid DNA min-
ipreps were used as template, and inverse PCR reactions were
performed with a Phusion High-Fidelity DNA Polymerase (Thermo
Fisher Scientific). PCR products were purified from agarose gel,
phosphorylated with T4 polynucleotide kinase, ligated by T4 DNA
ligase, and transformed into E. coli DH5aF'. Transformants were
screened by colony PCR and verified by Sanger sequencing.

For the bacterial expression of glutathione S-transferase (GST)
fusion products, ORF fragments were excised from the phagemid
DNA with the restriction endonucleases Ptel and Nhel (Thermo
Fischer Scientific), subcloned into a custom-designed pGEX-Flag
expression vector (36), and grown in a minifermenter as previously
described in Deantonio ef al. (50). The vector harbors a Flag epitope
tag (DYKDDDDK) for the C-terminal tagging of expressed proteins.

GST fusion protein expression and purification

OREF fragments subcloned in pGEX-Flag were transformed into
E. coli BL21(DES3) cells. Bacterial cultures (100 ml) were grown at
28°C until optical density at 600 nm reached 0.5 and then induced
with 1 mM isopropyl-B-p-thiogalactoside (IPTG)for 3 h. Bacteria
were collected by centrifugation, and pellets were suspended in
lysis buffer (PBS containing 1% Triton X-100, 200 wg/ml lyso-
zyme, 20 ug/ml DNAse, protease inhibitors), incubated at 4°C
for 30 min, and sonicated for 2-3 min. Cell debris was removed
by centrifugation and supernatants combined with glutathione-
agarose beads (MilliporeSigma, Burlington, MA, USA) at 4°C for
60 min under gentle rotation. After 3 washes in PBS-Tween 0.1%
followed by 3 more washes in PBS, GST fusion proteins were
eluted in elution buffer (50 mM reduced glutathione, 100 mM
NaCl, pH 8.0). Proteins were dialyzed against PBS and checked
for purity and concentration by SDS-PAGE. Quantitative densi-
tometry of Coomassie Blue—stained proteins was calculated with
Image] software (National Institutes of Health, Bethesda, MD,
USA) (51) using bovine serum albumin (BSA) as a reference for
protein quantification. GST fusion protein integrity was de-
termined by Western blotting using 2 different monoclonal an-
tibodies, targeting GST (clone GST-2; MilliporeSigma) and
Flag (clone M2; MilliporeSigma), respectively.

ELISA

Screening of selected clones in ELISA-based assays, either in the
phage format or as soluble GST fusion polypeptides, was per-
formed according to protocols previously described in Patrucco
et al. (36) with some modifications. Briefly, phage ELISA was
performed with Microlon plates (Greiner Bio-One, Kremsmiin-
ster, Austria) coated overnight at 4°C with 10 pwg/ml streptavi-
din. After blocking and rinsing wells in TENT buffer, biotinylated
RNA transcripts (5 pmol/well, diluted in 100 pl TENT buffer
implemented with RNAse inhibitors) were captured on the
plates. Phage-containing supernatants of individual clones, di-
luted 1:1 in TENT buffer with RN Ase inhibitors, were added to
the wells and incubated for 45 min. Following 3 washing steps,
incubation with horseradish peroxidase (HRP)-conjugated
anti-M13 monoclonal antibody (GE Healthcare, Waukesha, WI,
USA) for 60 min at room temperature was carried out. Signal was
revealed with 3,3',5,5'-tetramethylbenzidine and read at 450 nm
using a Victor X4 Multilabel Plate Reader (PerkinElmer,
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Waltham, MA, USA). ELISA on soluble GST fusion polypeptides
was performed similarly as above. After coating and capturing the
RNA transcripts, wells were subsequently incubated 60 min at
room temperature with the purified proteins, extensively washed in
TENT buffer, and again incubated 60 min with a mouse mono-
clonal anti-GST antibody (clone GST-2; MilliporeSigma) 1:5000 in
TENT buffer. Following 1-h incubation with an HRP-conjugated
secondary antibody (MilliporeSigma), the signal generated by
RNA-protein binding was detected as described above.

Affinity measurements

The dynamics of SINEUP-ILF3 interactions were characterized
by SPR using a Biacore T100 instrument (GE Healthcare) as
previously described in Patrucco et al. (36). The biotinylated
invSINEB2 RNA was immobilized on streptavidin-coated sensor
chips (Series S Sensor Chip SA; GE Healthcare). RNA was diluted
to a final concentration of 1 uM in 10 mM HEPES and150 mM
NaCl, pH 7.4 (HBS-N buffer, GE Healthcare), followed by heat-
ing at 80°C for 10 min and cooling to room temperature. The
sample was then diluted 500-fold in running buffer (10 mM
HEPES, pH7.4,150 mM NaCl, 1 mM DTT, 0.025% surfactant P20;
GE Healthcare) and injected over the sensor chip surface at 5 pl/
min at 25°C to generate an ~150 response unit.

GST-dsRBM2 was serially diluted in running buffer to the
concentrations 300-3.7 nM and injected at 25°C at a flow rate of
30 wl/min for 2 min. Analysis were performed in duplicate, and
any background signal from a streptavidin-only reference flow
cell was subtracted from every data set.

Cell culture and transfections

Human embryonic kidney (HEK) 293T/17 cells were obtained from
American Type Culture Collection (ATCC-CRL-11268) and cultured
in DMEM (Thermo Fisher Scientific) supplemented with 10% fetal
bovine serum (FBS; MilliporeSigma), penicillin, and streptomycin.

For RNA immunorecipitation (RNA-IP) experiments, 2.5 X
10° HEK 293T/17 cells were plated in 10-cm dishes and trans-
fected with AS Uchll FL plasmid using FuGene HD Transfection
Reagent (Promega, Madison, WI, USA), following the manu-
facturer’s instructions. RNA and proteins were extracted from
the same transfection in each replica.

For nucleocytoplasmic fractionation experiments, 4 X 10° cells
were plated in 6-well plates and transfected with AS Uchl1 FL, AS
Uchll AB2, AS Uchll AAlu, or AS Uchll ATE.

RNA-IP

Stock solutions were prepared with RNase-free water (treated
with diethylpyrocarbonate). Lysis and wash buffers were pre-
pared fresh and kept on ice; all steps, including centrifugation,
were performed at 4°C. Forty-eight hours following transfection,
cells were washed with PBS, collected by gentle scraping, and
centrifuged. Pellets were washed twice with PBS, and cells were
fixed in 1% formaldehyde (Mallinckrodt Pharmaceuticals, Dub-
lin, Ireland) in PBS for 10 min at room temperature with slow
mixing and then quenched in 0.25 M glycine (pH 7) at room
temperature for 5 min. Cells were subsequently harvested by
centrifugation at 3000 rpm for 4 min and washed twice with
ice-cold PBS. One hundred microliters of sheep anti-mouse
magnetic beads (Dynabeads M-280; Thermo Fisher Scientific)
were washed 3 times in washing bulffer (PBS, 0.1% BSA), blocked
with 3 washes in 0.5% BSA, and finally washed twice in RIP lysis
buffer (25 mM Tris HClpH 7.4, 150 mM KCl, 0.5% Igepal CA-630,
5 mM MgCl,, 0.5 mM DTT, protease inhibitors, and 20 U/ml
Superase RNA inhibitors). Coating with antibody or control IgG
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was carried out by overnight incubation of blocked beads with
20 pg of anti-ILF3 antibody (612154; BD Biosciences, San Jose,
CA,USA) or 20 n.g of mouse IgG (as a control) in a final volume of
180 pl. Lysis was performed using 1 ml RIP lysis buffer. Lysates
were solubilized by sonication with 2 short pulses (15 s). Between
the 2 cycles, samples were kept on ice for at least 2 min. Insoluble
material was removed by centrifugation at 13,000 rpm for 10 min.
Total lysate was precleared via incubation with 100 pl of un-
coated blocked beads for 30 min at 4°C with gentle rotation. After
recovery from beads, total lysate was split and incubated with
specific antibody or control IgG-coated beads overnight on a
rotary platform at 4°C. One-twentieth of total precleared lysate
was kept before splitting as immunoprecipitation input. Bead-
antibody-lysate complexes were washed 6 times (5 min the first
and last wash, 1 min the remaining washes) in a cold room. For
reversal of cross-linking and elution, beads containing the im-
munoprecipitation samples were resuspended in 100 pl of elu-
tion buffer (50 mM Tris-ClpH 7.0, 5mM EDTA, 10 mM DTT, and
1% SDS) and incubated at 70°C for 45 min. Supernatants were
recovered and resuspended in 1 ml of Trizol (Thermo Fisher
Scientific), and both RNA and proteins were extracted according
to the manufacturer’s instructions.

RNA isolation, reverse transcription, and real-time
quantitative PCR

RNA was extracted using Trizol reagent (Thermo Fisher Scientific)
according to the manufacturer’s instructions. RNA was eluted and
treated with Turbo DNA-Free Kit (Thermo Fisher Scientific) for 15
min at 37°C to avoid plasmid DNA contamination. RNA quality
was finally checked on a formaldehyde agarose gel.

c¢DNA was prepared from 250 ng of purified RNA using
iScript cDNA Synthesis Kit (Bio-Rad, Hercules, CA, USA)
according to the manufacturer’s instructions. For RNA-IP ex-
periments, equal volumes of DNAse-treated RNA samples were
used for reverse transcription. To monitor the efficiency of DN-
Ase treatment, an equal amount of each RNA sample was ret-
rotranscribed in the absence of reverse transcriptase.

Real-time quantitative PCR reaction was performed on di-
luted cDNA (1:2.5) using Sybr-Green PCR Master Mix (Bio-Rad)
and an iCycler IQ Real-Time PCR System (Bio-Rad). In RNA-IP
experiments, undiluted cDNA was used as real-time quantitative
PCR input.

Oligonuclotide sequences of primers for detection of glycer-
aldehyde 3-phosphate dehydrogenase (GAPDH) and AS Uchll,
ubiquitin C (UBC), and precursor rRNA (pre-rRNA) were as
previously described (13, 52 and 53). The cytochrome B (CytB)
gene was amplified using the forward primer, 5'-CAATGGC-
GCCTCAATATTCT-3’, and the reverse primer, 5'-AATGTATG-
GGTGGCGGATA-3'. Amplified transcripts were quantified
using the comparative C; method, and relative gene expression
was calculated with the AAC; method (54).

Western blot

For Western blot analysis, cell pellets were directly dissolved in
Laemmli sample buffer. For RNA-IP experiments, ILF3 immu-
noprecipitation efficiency was monitored by loading the whole
fraction of proteins recovered from the organic phase after Trizol
extraction, following resuspension in Laemmli sample buffer. All
lysates were briefly sonicated, boiled, and loaded on 10% poly-
acrylamide gels. Immunoblotting was performed with the fol-
lowing primary antibodies: anti-ILF3 (612154; BD Biosciences),
1:500 overnight, and anti-B-actin (A5441; MilliporeSigma),
1:2000. Signals were revealed after incubation with HRP sec-
ondary antibodies (Agilent Technologies, Santa Clara, CA, USA)
1:1000 for 1 h at room temperature, in combination with ECL (GE
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Healthcare). Image detection was performed with Alliance
LD2-77WL system (Uvitec, Cambridge, United Kingdom). Im-
age quantification was done using Image]J software.

Cell fractionation

Nucleocytoplasmic fractionation was performed as previ-
ously described in ref. 55. Fractions were extracted at 48 h
post-transfection, and RNA was isolated using Trizol reagent
(Thermo Fisher Scientific) following the manufacturer’s instruc-
tions. RNA was eluted and treated with Turbo DNAse (Thermo
Fisher Scientific). The purity of the nuclear and cytoplasmic
fractions was confirmed by real-time quantitative PCR on
GAPDH or CytB and pre-rRNA, respectively.

ILF3 knockdown

HEK 293T/17 cells (4 X 10°) were harvested on a 6-well plateand
cotransfected with 4 pug of AS Uchll plasmid and 4 ng of ILF3
small interfering RNA (siRNA) (Mission esiRNA, mouse ILF3;
MilliporeSigma) or control siRNA (All Stars Negative Control
siRNA; Qiagen, Germantown, MD, USA) with 10 pl of Lip-
ofectamine 2000 (Thermo Fisher Scientific) in serum-free DMEM
with no antibiotics. After 24 h, a second round of transfection was
performed, using 2 g of both plasmid and siRNA. On the fol-
lowing day, medium was changed with 10% FBS-DMEM. At48 h
from the second transfection, cells were collected for fraction-
ation. One-twentieth of the total cells was suspended in Laemmli
sample buffer for Western blot analysis of ILF3 protein levels in
silenced and control cells. Nucleocytoplasmic fractionation was
performed as previously described, and cell fractions were sus-
pended in 1 ml of Trizol.

Immunofluorescence microscopy

Cells were fixed in 4% paraformaldehyde in PBS for 10 min at room
temperature, washed twice in PBS, and treated with glycine 0.1 Min
PBS for 5 min. Following 2 more washes in PBS, fixed cells were
permeabilized with 0.1% Triton X-100 for 4 min at room tempera-
ture and blocked with 0.2% BSA, 1% FBS, and 0.1% Triton in PBS for
5 min. Cells were subsequently incubated 90 min with anti-ILF3
(BD Bioscience) 1:50 in blocking solution, washed in PBS 3 times,
and finally stained with AlexaFluor 488- or AlexaFluor 594-labeled
anti-mouse or anti-rabbit secondary antibodies (Thermo Fisher
Scientific), 1:250 in blocking buffer. Nuclei were visualized with
DAPI (1 pg/ml). Anti-DJ-1 1:250 (56) was used to counterstain cell
cytoplasm. Images were captured with a confocal microscope
(Leica TCS SP2; Leica Microsystems, Buffalo Grove, IL, USA).

Statistical analysis

All data are expressed as means = sD for n = 3 replicas. Statistical
analysis was performed using Excel software. Statistically sig-
nificant differences were assessed by a Student’s f test. Values of
P < 0.05 were considered significant.

RESULTS

Identification of ILF3 as a
SINEUP-interacting protein

To identify proteins that interact with natural SINEUP
IncRNAs, we employed RIDome (36). The typical outcome
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of this approach is a list of genes representing putative
interacting proteins, ranked based on their enrichment
following selection, that will direct subsequent analyses
and validation of the best candidates.

The library used in this study has been already de-
scribed in our previous work (37). In brief, it was con-
structed with cDNAs from different human cell types
(mainly from colon, lung, and pancreas). In the filtering
step, cDNA was fragmented into a calibrated size of
100-600 bases and cloned into a vector that allows selec-
tion of ORFs that are in the correct frame and fold effi-
ciently in E. coli. With respect to canonical FL cDNA phage
libraries, this approach has the advantage of generating a
normalized library of protein domains (the Domainome)
that are homogeneous in terms of peptide length and se-
quence coverage. It is noteworthy that despite the fact the
library derives from only 3 human organs, almost all an-
notated RBPs and transcription factors are represented by
atleast 1 read (36). Therefore, the library can be considered
universal and, as such, can be used as a tool for the initial
identification of proteins interacting with any bio-
macromolecule of interest (protein, RNA, DNA, efc.), re-
gardless of its tissue or organism of origin. Selections were
performed using two 3’-biotinylated, in vitro—transcribed
RNA baits (Fig. 1B): AS Uchll A5’ (corresponding to the
mouse AS Uchll IncRNA originally discovered by us, in
which the 73 nt-long BD was deleted) and the invSINEB2
of AS Uchll (the sequence corresponding to the ED alone,
~170 nt). We avoided the use of FL. AS Uchll because its
function requires the formation of a dsRNA sequence. The
reproduction of paired S/AS transcripts as baits in an in
vitro assay would be challenging. Selections were per-
formed in the presence of tRNA or ssDNA, added as
competitors in biopanning solutions to prevent non-
specific binding of the bait. After 2 cycles of selections,
phagemid DNA was extracted from the eluted phage pool,
and ORF inserts were sequenced on an [llumina platform.
We analyzed ~100,000 reads from each selected library
with the NGS-Trex system (37, 39). Table 1 shows a
summary of the sequencing analysis. Sequences matching
annotated genes were first ranked according to the num-
ber of supporting reads, and genes represented by <20
reads in the selected libraries and by <4 reads in the NS
library were considered background noise of the phage
selection and thus discarded.

We then performed a fold enrichment analysis to assess
those genes whose ORFs were enriched after selection (37,
39). This analysis was carried out by comparing sequenc-
ing outputs of each selection with the NS library, the latter
serving as a reference. Results are represented as 4 dis-
persion graphs showing the fold enrichment and the total
number of reads for each represented gene (Fig. 2). In all
selections, ILE3 [also known as nuclear factor (NF) 90 or
110 or DRBP76] scored as the top gene, having been
enriched >1000-fold in 3 selections (Fig. 2A-C) and 60-fold
in the fourth (Fig. 2D). Three additional genes were
enriched exclusively as binders of the invSINEB2 sequence
in the presence of tRNA as competitor: adaptor related
protein complex 3 subunit 81, DNAJ heat shock protein
family member C7, and coiled-coil domain containing 124
(Fig. 2D). These were presenting features of parasitic
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TABLE 1. Summary of NGS resulls

Bait Competitor Total reads (n) Mapping reads (n) Mean length (nt) Genes (n) Genes that met threshold (n)
invSINEB2 (RNA 115,501 96,403 201 5255 218
invSINEB2 ssDNA 89,017 71,329 235 5129 198
AS Uchll A5’ ssDNA 94,695 74,686 258 3938 95
AS Uchll A5’ tRNA 137,116 110,929 241 5655 295
NS N/A 155,880 85,448 113 8128 3803

For each selection, the total number of reads, mapped reads, and their mean length are reported. The number of selected genes is shown as
well. Arbitrary parameters were applied to narrow the number of selected genes. Threshold was fixed to >4 reads and >20 reads for non-

significant and selected libraries, respectively. N/A, not applicable.

clones that grow faster than the average phage library
population, thus introducing biases in the selection pro-
cess (57). Nevertheless, they were included in the valida-
tion pipeline, which did not confirm their interaction with
invSINEB2 sequences in phage ELISA experiments, as
expected (unpublished results).

ILF3 is a well-known dsRBP involved in many aspects
of RNA biology. It presents 2 alternative forms, NFO0 and
NF110, generated by alternative splicing of the ILF3 gene.
They share common N-terminal and central sequences but

display specific C-terminal regions (reviewed in ref. 58).
They both contain 2 dsRBMs (referred to as dsRBM1 and
dsRBM2) (Fig. 3A). Itis of note that the analysis of reads by
NGS-Trex indicates a strong enrichment of ORFs over-
lapping the dsRBM2 of ILF3, as shown by the focus index
increase from 0.21 (NS library) to >0.7 (selected libraries)
(Fig. 3B). Importantly, because we screened a human li-
brary with a mouse RNA, it was necessary to verify that
human and murine ILE3 proteins share 92% identity and
95% homology and that the dsRBM2 is identical in the 2
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species (unpublished results), suggesting our data are
representative of AS Uchl1-ILF3 interaction in the mouse.

We then focused our study on ILF3 to further in-
vestigateits binding to AS Uchll. Firstly, the ILF3-dsRBM2
phage clones were rescued from the library by inverse
PCR, using a primer pair targeting dsRBM2. Secondly, the
binding to the invSINEB2 RNA was assessed by phage
ELISA. As negative control, we used 2 phage clones
expressing the RNA-recognition motifs of serine- and
arginine-rich splicing factor 5 (SRSF5) and hnRNPA3, 2
known RBPs that were not enriched during the library
selection. The phage expressing ILF3-dsRBM2 generated a
strong signal on invSINEB2 compared with the negative
control (wells coated with streptavidin alone), whereas the
binding of SRSF5 and hnRNPA3 to invSINEB2 was neg-
ligible (Fig. 3C). We next validated the binding capacity of
ILF3-dsRBM2 to bind to each of the 2 RNA baits in bio-
panning experiments. Results from phage ELISA experi-
ments indicate that ILF3-dsRBM2 binds both AS Uchl1 A5’
and the invSINEB2 sequences to a similar extent (Fig. 3D).
As further biochemical characterization, we compared the
binding profiles of the 2 dsRBMs of ILF3. DsRBM1 and
dsRBM2 were individually expressed as GST fusion pro-
teins and assayed in ELISA for their binding to the RNA
baits (Fig. 3E). The mouse-human dsRBM2-GST fusion
protein showed strong binding to both baits, whereas
binding to dsSRBM1-GST was much weaker. It is notable
that the binding to AS Uchll A5’ was characterized by a
higher signal-to-noise ratio than to the invSINEB2 alone.

To further characterize the binding kinetics of the ILF3
mouse-human dsRBM2 to the invSINEB2, we used SPR. In
vitro biotinylated invSINEB2 RNA was immobilized on a
streptavidin-coated sensor chip analyzed on a Biacore
T100, as described in Materials and Methods. The resulting
sensorgram from invSINEB2-ILE3 interaction analysis did
not totally adjust to a 1:1 binding model, as shown in
Supplemental Fig. S2. However, data quality assessment
indicated that kinetic parameters values were reliable for
both interactions. Association rate (K,), dissociation rate
(kq), and equilibrium dissociation constant or affinity
constant K4 were calculated for the invSINEB2 RNA-ILF3
interaction after adjustment to this 1:1 binding model. A K4
of around 94.90 nM was calculated for this interaction,
with association (K,) and dissociation rate (kg) constants
equal to 3.84 X 10* (M/s) and 3.64 X 10° (s), respectively.

In summary, these results support a direct binding be-
tween the mouse invSINEB2 and the mouse-human ILF3
dsRBM2, which provides the specific domain mediating
the interaction with AS Uchll baits in vitro.

Upon ectopic expression, AS Uchl1 interacts
with ILF3 in HEK 293T/17 cells, and the
interaction requires the invSINEB2 sequence,
the ED of mouse natural SINEUPs

To validate and study AS Uchl1-ILF3 interaction in cells,
we used the FL. cDNA clone for AS Uchll (AS Uchl1-FL)
(13) and carried out an RNA-IP assay on endogenous ILF3
in HEK 293T/17 cells. Following AS Uchll-FL ectopic
expression and cross-linking of RNA-protein complexes,
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endogenous ILF3 was immunoprecipitated with specific
antibodies or control IgGs. The presence of target RNA in
ILF3 immunoprecipitates vs. control was quantified by
real-time quantitative PCR and normalized to the mRNA
level of the housekeeping gene UBC, previously described
inref. 45 as noninteracting with ILF3. As shown in Fig. 4A,
AS Uchll was specifically enriched in ILF3 immunopre-
cipitates, confirming that ILF3 and AS Uchll interact in
cells. Interestingly, Western blotting analysis showed a
marked preference for the NF90 isoform (Fig. 4B). We also
addressed the contribution of the embedded invSINEB2 to
ILF3 binding. To this end, we used a deletion mutant of
AS Uchll lacking the ED (AS Uchl1-ASINEB2) (13). As
expected, the removal of the invSINEB2 abolished almost
completely the binding of AS Uchll to ILF3 (Fig. 4A).
Taken together, these results confirmed that the interaction
between AS Uchll RNA and ILF3 occurs in cells upon AS
Uchll ectopic expression and that the invSINEB?2 is nec-
essary for the binding.

ILF3 interacts with FRAM, the ED of human
SINEUP, in vitro and in HEK 293T/17 cells

Recently, R12A-AS1, NAT to human protein phosphatase
1 regulatory subunit 12A, has been shown to be the rep-
resentative transcript for human natural SINEUPs. Its ac-
tivity is mediated by an embedded FRAM acting as ED.
FRAM, a human TE, supports SINEUP function when
transferred to a chimeric AS RNA with BD thatis AS to the
mRNA of interest, including the 1 encoding for the green
fluorescent protein (GFP) and called hminiSINEUP-GFP
(30) (Fig. 5A). Therefore, we investigated whether the
FRAM element, the invSINEB2 human functional coun-
terpart, is equally able to bind in vitro and upon ectopic
expression to ILF3.

After transcribing the FRAM element in vitro, RNA was
biotinylated and used in phage ELISA experiments as
previously described. Results from 3 independent experi-
ments are shown in Fig. 5B. After normalization to the
signal for the invSINEB2 sequence, we could observe a
similar binding to ILF3 for the human FRAM element.

An RNA-IP assay was then carried out on endoge-
nous ILF3 following the ectopic expression of both
synthetic hminiSINEUP-GFP having the FRAM ele-
ment as ED and a deletion mutant lacking the ED
(hminiSINEUP-GFP-AFRAM) in HEK 293T /17 cells. As
shown in Fig. 5C, hminiSINEUP-GFP was specifically
enriched in ILF3 immunoprecipitates, whereas the in-
teraction of hminiSINEUP-GFP to ILF3 was completely
abolished upon FRAM removal. ILE3 IP efficiency was
checked by Western blot performed with anti-DRBP76
(ILF3) antibody (Figure 5D). Taken together, these re-
sults confirmed that the interaction between FRAM
RNA and ILF3 occurs both in vitro and upon ectopic
expression of hminiSINEUP in HEK 293T /17 cells.

Bioinformatic analysis of eCLIP data for ILF3

We next wondered whether ILF3 can bind other SINEs
actively transcribed in the human genome. To this end, we
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domains: NF45-homology domain, nuclear localization signal (NLS), dsRBMs 1 and 2, RGG motif, and GQSY domain. B) Reads
alignment to ILF3 gene showed specific enrichment of dsSRBM2 (black arrows) in invSINEB2 library (middle) and AS Uchll A5’
library (bottom) but not in the NS library (top). Blue bars indicate the gene; green bars correspond to exons. C) Representative
phage ELISA experiment of the binding of the invSINEB2 sequence to ILF3 and the RNA-recognition motif of negative controls
(SRSF5 and hnRNPAS3). D) Analysis by phage ELISA of the binding of dsRBM2 to AS Uchll A5" and invSINEB2 RNA sequences.
E) Analysis by GST ELISA of the binding specificity of ILF3 dsRBM1 and mouse-human dsRBM2 to AS Uchll A5’ and invSINEB2
RNA sequences. Domains were produced as GST fusion polypeptides. Strep, streptavidin. Data indicate means * sp. Data are
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took advantage of the publicly available UV CLIP data K562 cell lines in physiologic conditions (42). We selected
generated by ENCODE (40, 41). Focusing on ILF3, we 14,224 total ILF3 peaks in HepG2 cells showing an en-
could find experimental data from human HepG2 and richment value of P < 0.05 in both replicates. Considering
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Figure 4. Validation of AS Uchll-ILF3 interaction in HEK
293T/17 cells. A) Endogenous ILF3 was coimmunoprecipi-
tated with ectopically expressed AS Uchll FL or AS Uchll
ASINEB? in HEK 293T/17. IgGs were used as control of
immunoprecipitation (IP) specificity. FL or mutated AS Uchll
enrichments in ILF3 IP fraction were quantified with real-time
quantitative PCR and expressed as (24 X 100 ILF3 IP =+
(QM") X 100 IgG. AC, was calculated on input. RNA content in
IP or IgG was normalized on UBC mRNA. B) ILF3 IP efficiency
was monitored by Western blot performed with anti-DRBP76
antibody, recognizing both 90 and 110 kDa ILF3 isoforms.
Data are representative of 3 independent experiments and
indicate means * sp. Differences of P < 0.05 were considered
significant.

the general mapping on the genome, more than 85%
(12,125) of these peaks resulted in overlap with repeated
elements. Randomization analysis demonstrated that
SINEs are by far the most enriched TE (P <1 X 107324 Fig.
6A). More than 88% (10,685) of repeat-overlapping peaks
were in overlap with a SINE (Fig. 6B), of which 57% (6095)
were on the reverse strand with respect to the SINE an-
notated strand. Most of the SINE-associated peaks over-
lapped with Alu elements, with the AluJ being the most
significantly enriched subfamily (Fig. 6B). We observed
also enrichments for many other SINE subfamilies, al-
though to a much lower extent.

Analysis of the mapping with respect to the annotated
genes revealed that about 98% (13,939) of the total peaks
werein overlap with atleast 1 genic region. Of these almost
96% (13,375) overlapped a coding gene, whereas 4% (564)
overlapped a noncoding one. Most of genic overlaps, with
respect to current annotation, were associated with in-
trons. Indeed, only 7% of the coding genic peaks (951
peaks in 443 genes) and 16% of the noncoding ones (90
peaks in 36 genes) were exonic. The majority of exonic
overlap was concordant with the strand of transcription
(98% for coding and 93% for noncoding peaks).

ILF3 BINDS EMBEDDED MOUSE AND HUMAN SINES

When we then considered the association of ILF3 peaks
overlapping SINEs embedded in annotated exons, we
obtained a total of 304 peaks overlapping SINEs in exons
from 172 coding genes and 48 peaks overlapping SINEs in
23 noncoding genes. In coding genes, 38% (118) of peaks
overlapped with embedded direct SINEs, whereas 60%
(183) overlapped with embedded inverted SINEs. In
noncoding genes, 25% (12) of peaks overlapped embed-
ded direct SINEs, whereas 70% (34) overlapped embed-
ded inverted SINEs. The few remaining peaks overlapped
on strands opposite to the annotated genes (Fig. 6C).
Comparable results were obtained from the analysis of the
K562 cell line (Supplemental Fig. S3). In Fig. 6D we show
the genomic organization for the S/AS pair genes in the
F-box and leucine-rich repeat protein 19 locus, where the
AS contains an embedded inverted SINE with an
ILF3-binding peak. The genomic organization of the
FBXL19 locus (Chrl6:30,918,900-30,949,000) from the
Ensembl genome browser is shown in Figure 6E.

Using independent methodology, these results confirm
ILF3 binding to SINEs embedded in coding and non-
coding genes. In addition, the data demonstrate that ILF3
binds with a statistically significant preference for inverted
elements.

Embedded TEs modulate AS Uchl1 RNA
nuclear localization, and its extent is
moderately influenced by ILF3

Because embedded TEs have been recently associated to
nuclear localization of IncRNAs (59), we investigated
whether the invSINEB2 is involved in AS Uchll RNA
subcellular localization. To this end, we carried out cell
fractionation from HEK 293T /17 cells transfected with AS
Uchll FL or with AS Uchl1 ASINEB?2. Levels innuclear and
cytoplasmic compartments were quantified by real-time
quantitative PCR and expressed as relative percentages of
total AS Uchll FL RNA. Purity of nuclear and cytoplasmic
fractions was controlled by monitoring levels of GAPDH
transcript and pre-rRNA, respectively. Real-time quanti-
tative PCR data indicate that most of AS Uchll RNA
(~70%) was nuclear-retained. Interestingly, AS Uchll
distribution was partially perturbed when the invSINEB2
was removed, with a 20% increase of cytoplasmic mutant
RNA compared with the FL variant (Fig. 7A).

Adjacent to the 3’ of the SINEB2 sequence, another TE, a
partial Alu repeat, is present in the AS Uchll third exon
(13). When an AS Uchll mutant lacking the Alu repeat [AS
Uchll AAlu (13); Fig. 1B] was ectopically expressed, no
statistically significant changes in subcellular localization
were observed, although a trend similar to the deletion of
the embedded invSINEB2 sequence was evident (Fig. 7B).

We finally investigated the effects of combined removal
of the invSINEB2 and Alu elements (Fig. 1B) on RNA lo-
calization, proving that the absence of both TEs provoked
a dramatic change of AS Uchll RNA distribution within
cells, with 60-70% of total RNA accumulated in the cyto-
plasmic fraction (Fig. 7C).

To assess whether ILF3 may regulate AS Uchll RNA
nuclear localization, we first carried out immunofluores-
cence analysis showing that endogenous ILF3 localizes in
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the nucleus of HEK 293T/17 cells, with no relevant signal
in the cytoplasm (Supplemental Fig. S4A), suggesting that
ILF3-AS Uchll RNA interaction is likely to occur in the
nucleus.

To test whether ILF3 was required for AS Uchl1 nuclear
entrapment, we ectopically expressed AS Uchll FL in
ILF3-silenced HEK293/17 cells and checked its subcellular
localization upon nucleocytoplasmic fractionation (Fig.
7D). In conditions of highly efficient ILF3 knockdown
(Supplemental Fig. S4B), data showed a 10-20% increase
of AS Uchll FL in the cytoplasmic fraction phenocopying
the effects of invSINEB2 removal. RNA distribution was
confirmed with 2 different control transcripts.

DISCUSSION

The diversity of IncRNAs’ activity and function mainly
depends on their modular architecture and their physical
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interactions with proteins. To understand the basic rules of
this molecular network, we need to identify RNA se-
quences able to independently fold into functional sec-
ondary structures and the proteins that interact with them
in a regulated fashion.

We and others have proposed that embedded TEs
may represent independent structural modules with
specific roles in IncRNAs, whose function is exerted
through RNA-protein interactions (14-16). We have
previously shown that in the murine AS Uchll
IncRNA, an embedded invSINEB2 acts as an ED thatis
required to increase translation of the target mRNA.
Here we aimed to identify proteins that interact with
this TE and anticipated that the data generated would
help to reveal aspects of the molecular mechanisms
governing the subcellular localization and activity
of SINEUPs. To this end, we took advantage of
the RIDome technology, recently proposed for in-
vestigating RNA-RBP interactions (36). By combining
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are below. C) The numbers of peaks in SINE-containing exons are displayed according to different classes of coding and
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in vitro phage display selection with NGS, this method
provides an unbiased, high-throughput approach
to study RNA-protein interactions. ORF phage li-
braries can faithfully represent whole proteomes or
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domainomes of cells, with the advantage of coupling
phenotype to genotype identification. Furthermore,
when ORF domain libraries are employed, the specific
domains involved in bait-binding can be identified.
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Because this approach allows multiple screenings tobe  of our selection procedure. The RNA baits were 1) the
run on selected transcripts domains, we carried out 4 invSINEB2 of AS Uchll, where it exerts its ED function
parallel selections, using 2 different RNA baits and 2 common to all mouse natural SINEUPs, and 2) AS
competitors to ensure reproducibility and robustness Uchll A5’, an RNA lacking the BD but including the
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ED in an embedded format. This construct provides
the backbone on which synthetic SINEUPs are built
(13, 29). Both RNA baits contain the invSINEB2 se-
quence. This choice was motivated by the possibility
that the embedded SINEB2 may fold differently than
the solitary element, giving rise to secondary struc-
tures that do not correspond to those formed in the
natural IncRNA. We avoided the use of FL AS Uchl1
because its function should require the formation of a
dsRNA sequence that would have obliged the use of
paired S/ AS transcripts as baits, a condition difficult
to reproduce in an in vitro assay. However, future
screenings should also investigate the repertory of
interactors of FL AS Uchll.

By using this approach, after several rounds of se-
lection, ILF3 was the most enriched gene in the data set.
Although its ORFs were enriched >1000-fold in 3 se-
lections, the extent of enrichment was substantially
lower in the screening for binders of the invSINEB2
sequence in the presence of tRNA as competitor. The
cause of this difference remains unclear. ELISA exper-
iments confirmed the interaction between the invSI-
NEB2 and ILF3 in vitro. ILE3 is a ubiquitously expressed
dsRBP. Initially identified as a transcription factor in the
IL-2 promoter-binding complex (60, 61), ILF3 was later
found to be involved in diverse processes besides
transcription, including splicing and translation, and
more generally in RNA metabolism, including trans-
port, localization, and stability (58). Protein isoforms
are generated by a combination of alternative splicing
and differential polyadenylation events, with the most
abundant splicing variants known as NF90 and NF110,
of 90 and 110 kDa, respectively. These proteins differ by
an additional ~200 aa in the NF110 C terminus.
RNA-binding capability mainly relies on the 2 dsRBMs,
referred to as dsRBM1 and dsRBM2 (62). Our data
suggest a direct binding between the dsRBM2 of ILF3
and the IncRNA AS Uchll. Alignments of ILF3 reads
relative to both invSINEB2 and AS Uchll A5’ selection
outputs showed exclusive mapping on dsRBM2,
whereas sequencing of the NS library confirmed that
such enrichment was exclusively maintained after
stringent selection. The binding of ILF3-dsRBM2 to the
invSINEB2 was also validated experimentally in vitro
by ELISA. Interestingly, interaction of dSRBM2 with AS
Uchll A5’ was characterized by a better signal-to-noise
ratio compared with the invSINEB2 alone. We specu-
late that it might be linked to a more appropriate RNA
folding, when present in an embedded format, or to a
role of the adjacent Alu sequence. Importantly, no
binding was observed between dsRBM1 and any por-
tion of AS Uchll sequence in vitro.

By SPR analysis we measured invSINEB2-ILF3
binding kinetics in vitro. A K4 of around 0.1 pM was
calculated for this interaction, although the K, and kq4
constants were slightly different. This value is in
agreement with recently published data, where a K4 of
160 nM has been measured for the interaction between
ILF3 (NF90) and a dsRNA (63). It should be noted,
however, that the affinity of ILF3 for a dsRNA is
strongly dependent on the nature of the dsRNA

ILF3 BINDS EMBEDDED MOUSE AND HUMAN SINES

substrate, and it is considerably modulated by complex
formation with NF45 with binding affinities reported in
the range 0.1-2.5 pM (63-65). The fact that the invSI-
NEB2 RNA-ILF3 complex does not completely adjust
to a 1:1 model could be due to a range of factors, like
multiple binding sites on the ligand (RNA), a confor-
mational change after a first contact between the 2
molecules, or a heterogeneous sample preparation,
among others. Further experiments are required to
elucidate these points.

ILE3-AS Uchll interaction and its reliance on the
embedded TE were then demonstrated by experiments
in HEK 293T/17 cells upon ectopic expression of the
IncRNA transcript. A reproducible enrichment of AS
Uchll RNA was revealed in endogenous ILF3 immu-
noprecipitates, which was substantially reduced on
deletion of invSINEB2. Although AS Uchll is a mouse
transcript and ILF3 synthesized from the phage library
and in HEK 293T/17 cells is of the human type, we
considered these results also representative of the in-
teraction in mouse given the 92% identity and 95%
homology between human and mouse ILF3 protein
sequences and the 100% conservation of dsRBM2, the
invSINEB2 BD of ILF3. Future ILF3 immunoprecipi-
tation experiments should be carried out in mouse cells
to experimentally prove the interaction of the FL. rodent
protein with AS Uchll. Nevertheless, because SINEB2
sequences are not present in the human transcriptome,
we also demonstrated that ILF3 was able to bind
FRAM, the ED in human natural SINEUPs. Although
SINEB2 and FRAM do not present extensive homology
at the primary sequence and there is no clear consensus
sequence for ILF3 binding, our results suggest that they
form conserved secondary structures that are able to
bind common interacting partners. This result is rele-
vant under the hypothesis that embedded TEs can act
as convergent functional domains.

We then asked whether ILF3-FRAM interaction is a
representative example of a larger pattern of ILF3
binding to SINE sequences in the mammalian tran-
scriptome. To this end we took advantage of ENCODE
eCLIP data for ILF3 in 2 human cell lines. In general,
ILF3 binding to SINEs was extremely strong, proving a
highly significant and specific preference of ILF3 for
transcribed fragments containing these elements. The
presence of multiple additional ILF3 binding interac-
tions with introns, coding exons, noncoding non-AS
exons, and SINEs on the transcribed strand probably
reflects the extensive functional diversity of the ILF3
gene in addition to an incomplete annotation of the
transcriptome. It remains to be determined whether
different levels of enrichment for Alu families reflect
distinctive RNA secondary structures and protein
binding profiles, opening up an interesting topic of
investigation on the diversity of functional roles of
embedded Alus in IncRNAs.

Earlier data have demonstrated that TEs of the
SINEs and Alu families are involved in the RNA as-
sociation with nuclear protein complexes, which sub-
sequently control RNA export and cytoplasmic
availability (66, 67). More recently, SINEs have been
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shown to drive nuclear retention of IncRNAs (59).
Because AS Uchll is enriched in the nucleus of neurons
in vitro and in vivo (13), we monitored AS Uchll dis-
tribution upon ectopic expression in HEK 293T/17
cells, proving that it accumulates in the nucleus as
well. Importantly, a moderate but significant cyto-
plasmic accumulation occurred upon removal of the
invSINEB2.

Recently, inverted repeat Alu elements embedded in
long intergenic noncoding RNA-p21 have been shown
to fold into specific structures required for RNA nu-
clear localization. Mutations disrupting such second-
ary structures resulted in altered long intergenic
noncoding RNA-p21 distribution (66, 68). According to
this model, tandem invSINEB2 and Alu elements
would provide heterodimeric repeats (69) dictating AS
Uchll nuclear localization. We thus hypothesized that
a partial Alu sequence present at the 3’ of the SINEB2
may participate in AS Uchll nuclear retention. Alu’s
deletion did affect AS Uchll subcellular localization,
although its effect did not reach statistical significance,
probably because of the large variation between ex-
perimental replicas. However, combined removal of
the invSINEB2 and Alu elements significantly altered
AS Uchll RNA distribution with about 70% shuffling
to the cytoplasmic compartment.

As previously shown for other cellular systems
(70-72), ILF3 is almost exclusively localized in cell nu-
clei of HEK 293T/17 cells. Therefore, we investigated
whether the ILF3—-AS Uchll RNA interaction may be
involved in AS Uchll nuclear retention. When ILF3 was
silenced with siRNAs, a reproducible and significant
10-20% increase in cytoplasmic content of AS Uchll
was observed, phenocopying the removal of the
invSINEB2. Several reasons may account for the mod-
erate influence of ILF3 removal on AS Uchll nuclear
restriction. Firstly, ILF3 has multiple functions exerted
through a complex pattern of protein interactions. We
may envision that other partners are mediating ILF3
influence of RNA nuclear localization. Secondly, we are
ectopically expressing a cDNA clone, which may result
in loss of the potential regulatory interplay between
splicing and nuclear retention. In addition, recent
works suggest that regulated chemical modifications
play a crucial role in RNA nuclear export (73). At
present, nothing is known about AS Uchll RNA
post-transcriptional modifications and whether they
are accurately reproduced in an ectopically expressed
RNA.

Therefore, the structural requirements for the embed-
ded heterodimeric repeat composed of the invSINEB2 and
the truncated Alu remain to be defined, along with the
identity of additional protein partners and the details of
their interactions with ILF3. In addition, future studies will
investigate the biologic significance of a 20% increase in
cytoplasmic AS Uchll RNA, including its effect on the
ability to regulate endogenous protein levels of its RNA
sense target.

In summary, through the identification of ILF3 as a
binding partner of mouse invSINEB2 and human
FRAM embedded in SINEUP IncRNAs, we provide
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strong evidence that TEs act as functional modules in
IncRNAs. By detailed bioinformatic analysis of eCLIP
data, we showed that ILF3 binding sequences are highly
enriched for SINEs embedded in human transcripts. We
then demonstrated that nuclear localization of AS Uchl
RNA depends on embedded TEs and is moderately
influenced by ILF3. This work paves the way for further
studies on the biologic role of interactions between
ILF3 and embedded TEs in IncRNA dynamics and
function.
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