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Eulerian, Lagrangian and Broad continuous solutions

to a balance law with non-convex flux. I

Giovanni Alberti, Stefano Bianchini, Laura Caravenna

Abstract. We discuss different notions of continuous solutions to the balance law

∂tu + ∂x(f(u)) = g

with g bounded and f ∈ C2, extending previous works relative to the flux f(u) = u2.
We establish the equivalence among distributional solutions and a suitable notion of
Lagrangian solutions for general smooth fluxes. We eventually find that continuous
solutions are Kružkov iso-entropy solutions, which yields uniqueness for the Cauchy
problem. We also reduce the ODE on any characteristics under the sharp assumption
that the set of inflection points of the flux f is negligible. The correspondence of the
source terms in the two settings is matter of the companion work [2], where we include
counterexamples when the negligibility on inflection points fails.
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1. Introduction

Single balance laws in one space dimension mostly present smooth fluxes, although
the case of piecewise smooth fluxes is of interest both for the mathematics and for
applications. Source terms instead are naturally rough, and singularities of different
nature have a physical and geometrical meaning. As well, they might indeed make a
difference among the Eulerian and Lagrangian description of the phenomenon which
is being modeled, for the mathematics.

We are concerned in this paper with different notions of continuous solutions of
the PDE

∂tu(t, x) + ∂x(f(u(t, x))) = g(t, x) , (1.1)

where f ∈ C2(R) and the source term g is bounded. An essential feature of con-
servation laws is that solutions to the Cauchy problem do develop shocks in finite
time. Nevertheless, the source might act as a control device for preventing this shock
formation: exploiting the geometric interplay and correspondence with intrinsic Lip-
schitz surfaces in the Heisenberg group, [11, 5] show, for the quadratic flux, that
the Cauchy problem admits continuous solutions for any Hölder continuous initial
datum, if one chooses accordingly a bounded source term.

This framework of continuous solutions, with more regularity assumptions on the
source term, was already considered in [8] as the natural class of solutions to certain
interesting dispersive partial differential equations that can be recast as balance laws.
We believe that our study is relevant also in order to point out that, even in the
analysis of a single equation in one space dimension, the mathematical difficulties do
not only arise by the presence of shocks: also the study of continuous solutions has
important delicate points which are not technicalities. This fails the expectation that
the study of continuous solutions should be easy, and equation (1.1) is a toy-model
for more complex situations.

One can adopt the Eulerian viewpoint or the Lagrangian/Broad viewpoint:
roughly, the first interprets the equation in a distributional sense while the sec-
ond consists in an infinite dimensional system of ODEs along characteristics. We
compare here the equivalence among the formulations when u is assumed to be
continuous, but no more. We remark that even with the quadratic flux

f(z) = z2/2

in general u is not more than Hölder continuous, see [12], so that a finer analysis
is needed. Continuous solutions are regularized to locally Lipschitz on the open
set {f ′(u)f ′′(u) 6= 0}, exploiting the results of this paper, for time-dependent solu-
tions when the source term g is autonomous [1], but not in general. Examples of
stationary solutions which are neither absolutely continuous nor of bounded varia-
tion are trivially given by continuous functions u(x) for which f(u(x)) has bounded
derivative.

Correspondences among different formulations are already done at different levels
in [8, 19, 4, 5, 7] for the special but relevant case of the quadratic flux. We extend
the analysis with new tools. The issue is delicate because g in this setting lacks even
of continuity in the x variable, and characteristic curves need not be unique because
u lacks of smoothness. As a consequence, the source terms for the two descriptions
lie in different spaces:
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• in the Eulerian point of view g is identified only as a distribution in the
(t, x)-space;

• in the Lagrangian/Broad viewpoint it is the restriction of g on any charac-
teristic curve which must identify uniquely a distribution in the t-space—or
for a weaker notion only on a chosen family of characteristics that we call
Lagrangian parameterization.

The aim of this paper is to consider and to discuss when Eulerian, Broad and
Lagrangian solution of (1.1) that we just mentioned are equivalent notions, without
addressing what is the correspondence among the suitable source terms—if any. The
correspondence of the source terms, source terms which belong to different functional
spaces, is the subject of the companion paper [2], including counterexamples which
show that the formulations are not always equivalent.

We conclude mentioning that Broad solutions were introduced in [17] as general-
izations of classical solutions alternative to the distributional (Eulerian) ones, and
presented e.g. also in [6]. They were successfully studied and applied in different
situations where characteristic curves are unique; the analysis in situations when
characteristics do merge and split however was only associated to the presence of
shocks, and a different analysis related to multi-valued solutions was performed.
They were then considered for the quadratic flux by F. Bigolin and F. Serra Cas-
sano for their interest related to intrinsic regular and intrinsic Lipschitz surfaces
in the Heisenberg group. Our notions of Lagrangian and Broad solutions collapse
and substantially coincide with the ones in the literature when the settings overlap.
They are otherwise a nontrivial extension of those concepts, and most of the issues
in the analysis arise because of our different setting.

1.1. Definitions and setting

Since we are in a non-standard setting, we explain extensively the different notions
of solutions and we specify the notation we adopt. Even if this is an heavy block,
detailed definitions improve the later analysis. They will be also collected in the
Nomenclature at the end for an easy consultation.

Notation 1. We can assume below that u ∈ Cc(R+×R), because our considerations
are local in space-time. We adopt the short notation λ(t, x) = f ′(u(t, x)) for the
characteristic speed.

Notation 2. Given a function of two variables ϕ(t, x), one denotes the restrictions
to coordinate sections as

ϕe1
x : t 7→ ϕ(t, x) , ϕe2

t : x 7→ ϕ(t, x) .

Notation 3. Given a function of locally bounded variation ϕ(t, x), one denotes by

Dtϕ(dt, dx) , Dxϕ(dt, dx)

the measures of its partial derivatives. When it is not known if they are measures,
we rather denote the distributional partial derivatives by

∂tϕ(t, x) , ∂xϕ(t, x) .
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Classical partial derivatives are often denoted by

∂ϕ(t, x)

∂t
,

∂ϕ(t, x)

∂x
.

Definition 4 (Characteristic Curves). Characteristic curves of u are abso-
lutely continuous functions γ : R+ → R, or equivalently the corresponding curves
iγ(s) := (s, γ(s)), defined on a connected open subset of R and satisfying the ordi-
nary differential equation

γ̇(s) = λ(s, γ(s)) = λ(iγ(s)) .

The continuity of u implies that γ is continuously differentiable.
Notice that iγ is an integral curve of the vector field (1, λ).

Figure 1. Curves satisfying γ̇(s) = 1 almost everywhere might fail
to be Lipschitz continuous: characteristic curves are indeed required
to be absolutely continuous. Absolute continuity automatically im-
proves to C1-regularity, due to the continuity of the field. They are
then stable under uniform convergence.

Definition 5 (Lagrangian Parameterization). We call Lagrangian parameter-
ization associated with u a surjective continuous function χ : R+ × R → R, or
equivalently χ : R→ C(R+), such that 1

• for each y ∈ R, the curve χ(y) defined by t 7→ χ(t, y) = χe1
y (t) is a character-

istic curve:

χ̇e1
y (t) = ∂tχ(t, y) = f ′(u(t, χ(t, y))) = λ(t, χ(t, y)) = λ(iχ(y)(t)) ;

• for each t ∈ R+, y 7→ χ(t, y) = χe2
t (y) is nondecreasing.

1 There is no reason for asking the following condition only for L 1-a.e. y: if it holds for L 1-a.e. y
then it holds naturally for every y. As well, it would be odd requiring the second condition only
L 1-a.e. t.
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Definition 6. We call a Lagrangian parameterization χ absolutely continuous if
(i−1
χ )]L

2 � L 2. Equivalently, L 2-positive measure sets can not be negligible along
the characteristics of the parameterization χ: χ maps negligible sets into negligible
sets.

Remark 7. Even if χ generally is not injective, (i−1
χ )]L

2 is as well a well de-

fined Borel measure meaning that for all compact subsets K ⊂ R+ × R one defines
(i−1
χ )]L

2 := L 2(iχ(K)). Of course
(
(i−1
χ )]L

2
)

(∅) = 0 but one has also that if A
and B are disjoint compact subsets of the plane then for all t the intersection of
χ (A ∩ {t}) and χ (B ∩ {t}) is at most countable, due to the monotonicity of χe2

t :

L 1
(
χ(A ∩ {t}) ∩ χ(B ∩ {t})

)
= 0 for every t ⇒ L 2(iχ(A) ∩ iχ(B)) = 0 .

In particular

L 2 (iχ(A)) + L 2 (iχ(B)) = L 2 (iχ(A) ∪ iχ(B)) = L 2 (iχ(A ∪B)) .

This implies that (i−1
χ )]L

2 is countably-additive, and thus a measure. This justifies
our notation.

Notation 8. We fix the following nomenclature, that we extend at the end of the
paper:

X, k usually X is a subset R+ × R and k ∈ N ∪ {∞};
Ω open subset of R+ × R, usually it is also supposed to be bounded;

C(X) space of continuous functions on X;

Cb(X) space of bounded continuous functions on X;

C1/α(X) space of 1/α-Hölder continuous functions on X, where 0 < 1/α ≤ 1;

Ck(c)(Ω) space of k-times continuously differentiable (compactly supported) func-

tions on Ω;

Ck,1/α(Ω) space of k-times continuously differentiable (compactly supported) func-
tions on Ω whose k-th derivative which is 1/α-Hölder continuous in Ω;

L∞(X) space of bounded Borel functions g on X;

L∞B (X) space of equivalence classes gB made of those bounded Borel functions
which coincide L 1-a.e. when restricted to any characteristic curve of u;

L∞L (X) space of equivalence classes gL made of those bounded Borel functions
which coincide L 1-a.e. when restricted to {iχ(y)(t)}t>0, for every y ∈ R
and for a fixed Lagrangian parameterization χ;

L∞(X) space of equivalence classes gE of Borel bounded functions which coin-
cide L 2-a.e.

D(Ω) space of distributions on Ω;

M (X) space of Radon measures on X.

Notation 9. Notice there are the following natural correspondences

L∞(X)
[·]λ−−→ L∞B (X)

[·]χ−−→ L∞L (X)
g 7→ gB = [g]λ 7→ gL = [gB]χ = [g]χ
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and moreover

L∞(X)
[·]−→ L∞(X)

g 7→ gE = [g]

The same brackets denote also correspondences from any of the bigger spaces: brack-
ets identify the target spaces. The correspondences among L∞L (X), L∞B (X) and
L∞(X) do not exist in general. Trivially, sets which are L 2-negligible generally are
not L 1-negligible along any characteristic curve γ of (1.1). Moreover, there exists
a subset of the plane which has positive Lebesgue measure but which intersects
each characteristic curve of a Lagrangian parameterization in a single point. See [2,
§4.1-2]. A correspondence exists with absolute continuity.

Lemma 10. If a Lagrangian parameterization χ is absolutely continuous, for every
Borel functions g1, g2 ∈ L∞(X) such that [g1]χ = [g2]χ one has that [g1] = [g2] ∈
L∞(X).

Proof. It is an algebraic application of the definitions of the spaces in Notation 8.
�

Definition 11 (Distributional solution). Let gE ∈ L∞(Ω). If u ∈ C(Ω) satisfies∫∫
Ω
ϕt u+ ϕx f(u) =

∫∫
Ω
ϕgE ∀ϕ ∈ C∞c (Ω)

we say that u is a continuous distributional (or Eulerian) solution of (1.1).

Definition 12 (Lagrangian solution). A function u ∈ C(Ω) is called a continuos
Lagrangian solution of (1.1) with Lagrangian parameterization χ associated with u,
and Lagrangian source term gL ∈ L∞L (Ω), if

d

dt
u(t, χ(t, y)) = gL(t, χ(t, y)) in D

(
i−1
χ(y)(Ω)

)
for all y ∈ R.

Definition 13 (Broad solution). Let u ∈ C(Ω) and gB ∈ L∞B (Ω). The function
u is called a continuous broad solution of (1.1) if it satisfies

d

dt
u(t, γ(t)) = gB(t, γ(t)) in D

(
i−1
γ (Ω)

)
for all characteristic curves γ of u.

Definition 14. A continuous function u is both a distributional/Lagrangian/broad
solution of (1.1) when the source terms are compatible: if there exists a Borel function
g such that

gE = [g] , gL = [g]χ , gB = [g]λ .

Definition 15. We define z∗ ∈ R an inflection point of a function f ∈ C2(R) if
f ′′(z∗) = 0, but z∗ is neither a local maximum nor a local minimum for the function
z 7→ f(z)−f ′(z∗)(z− z∗). We denote by Infl(f) the set of inflection points of f , and
by clos(Infl(f)) its closure.

In principle, u could be a distributional solution of (1.1) with source gE and a
Lagrangian solution with source gL with gE and gL which do not correspond to a
same function g ∈ L∞(R+ × R): in this case, we would not say that u is both a
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distributional and Lagrangian solution to the same equation, because source terms
are different. We discuss the issue in [2], where we prove that if the inflection points
of f are negligible then whenever a same function is a Lagrangian solution and it is
a distributional solution then the source terms must be compatible.

1.2. Overview of the results

Now that the definitions are clear, we describe our results: in §1.2.1 we collect
the observations on Lagrangian parameterizations and Lagrangian/Broad solutions,
and in §1.2.2 we summarize the relations among the different notions of solutions
of (1.1).

Notice first that both the definitions above and the statements below are local
in space-time, as well as the compatibility of the sources that will be discussed
in [2]. This motivates the assumption that u is compactly supported, that we fixed
in Notation 1.

1.2.1. Auxiliary observations

We begin collecting elementary observations on the basic concept of Lagrangian
parameterization and Lagrangian/Broad solution, mostly for consistency.

Lemma 16. There exists a Lagrangian parameterization χ associated with any u ∈
Cb(Ω). In particular, one has the implication

continuous broad solution ⇒ continuous Lagrangian solution with gL = [gB]χ.

The converse implication holds under a condition on the inflection points of f , not
in general.

Proof. An explicit construction of a Lagrangian parameterization χ is part of §A.1.
It relies on Peano’s existence theorem for ODEs with continuous coefficients. If
gB ∈ L∞B (Ω) is the Broad source, then [gB]χ is immediately the Lagrangian source.
The converse implication does not always hold, see [2, §4.3] . �

Lemma 17. Let u ∈ C(clos Ω) and G > 0. Assume that through every point of a
dense subset of Ω there exists a characteristic curve along which u is G-Lipschitz
continuous. Then there exists a Lagrangian parameterization χ along whose char-
acteristics u is G-Lipschitz continuous.

The proof of this lemma is given in §A.1.

Lemma 18. Let u ∈ C(clos(Ω)) and G > 0. A sufficient condition for u being a
Lagrangian solution of (1.1) is the existence of a Lagrangian parameterization χ
such that

the distributions
d

dt
u(t, χ(t, y)) are bounded in D

(
i−1
χ(y)(Ω)

)
uniformly in y.

The proof of this lemma is given in §A.2.
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1.2.2. Main results

In the present paper we do not discuss existence of continuous solutions of (1.1),
but we assume that we are given a continuous function u: due to the lack of regu-
larity, the focus of this paper is in which sense it can be a solution of (1.1).

We first state one of the important conditions: we denote by (H) the assumption:

the set clos(Infl(f)) (see Definition 15) is L 1-negligible. (H)

Our results are roughly summarized by the following implications:

Broad
⇒ (Th. 16)

⇐ if (H) holds (§3)
Lagrangian

⇒ (§2)
⇐ (§4)

distributional.

The distinction among Lagrangian and distributional continuous solutions is mo-
tivated by the fact that the two formulations are different, and it is not that trivial
proving their equivalence. Moreover, Lagrangian and distributional source terms
do not correspond automatically, as we discuss in [2]. In particular, if we do not
assume the negligibility of inflection points we are not yet able to say that the La-
grangian and distributional source terms must be compatible. If, for example, the
flux function is analytic, then our work gives a full analysis.

We collect in the table below interesting properties of the solution. These prop-
erties depend on general assumptions on the smooth flux function f :

• whether f satisfies a convexity assumption named in [2] α-convexity, α > 1,
which for α = 2 is the classical uniform convexity;

• whether the closure of inflection points of f is negligible, as in (H) above.

α-convexity negligible inflections general case
absolutely continuous Lagran-
gian parametrization

7 [2, §4.1] 7 7

u Hölder continuous 3 [2, §2.1] 7 [2, §4.2] 7

u L 2-a.e. differentiable along
characteristic curves

3 [2, §2.2] 7 [2, §4.2] 7

u Lipschitz continuous along
characteristic curves

3 3 Theorem 30 7 [2, §4.3]

entropy equality 3 3 3 Lemma 42
compatibility of sources 33 [2, §2.2] 3 [2, §3]

We show in Corollary 21 that if the continuous solution u has bounded total vari-
ation then one can as well select a Lagrangian parameterization which is absolutely
continuous, for f ∈ C2.

2. Lagrangian solutions are distributional solutions

Consider a continuous Lagrangian solution u(t, x) of (1.1) in the sense of Defini-
tion 12. Let χ be a Lagrangian parameterization, gL ∈ L∞L (Ω) be its source term and
set G = ‖gL‖∞. We want to show that there exists gE ∈ L∞(Ω) with |gE(t, x)| ≤ G
such that u(t, x) is a distributional solution of

∂tu(t, x) + ∂x(f(u(t, x))) = gE(t, x) . (1.1)
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We do not discuss at this stage the compatibility of the source terms gL and gE .

Notation 19. We already observed in the introduction that we are considering local
statements. We directly assume therefore

• Ω = R+ × R;

• u compactly supported.

We set Λ = maxλ = max f ′(u). Recall that we set G = ‖gL‖∞.

2.1. The case of BV -regularity

In the present section we assume that u is not only continuous but also that it
has bounded variation. Under this simplifying assumption, we prove in Lemma 22
below that u is a distributional solution to (1.1), with the natural candidate for gE .
The proof is based on explicit computations. Computations of this section exploit
Vol’pert chain rule and the possibility to produce a change of variables which is
absolutely continuous, as we state in Corollary 21 below. It follows by the following
more general lemma.

Lemma 20. Consider a function w : R+ × R→ R such that

• the restriction we1
y belongs to C1,1(R+) for all y ∈ R;

• the second mixed derivative ∂tyw is a Radon measure.

Then, up to re-parametrizing the y-variable, there exists 0 ≤ H ∈ L∞loc(R+×R) such
that

Dyw = HL 2 , DtH = Dy

(
∂w

∂t

)
∈M (R+ × R) .

We rather prefer to prove the following corollary, which is more related to the
notation we adopt: the proof of Lemma 20 is entirely analogous. The irrelevant
disadvantage is that the commutation of the t- and y- distributional derivatives is
less evident than in the above lemma.

Corollary 21. Let u be a continuous Lagrangian solution of (1.1) such that ∂xu(t, x)
is a Radon measure. Then one can choose a Lagrangian parameterization χ which
is absolutely continuous (see Definition 6): this additional regularity allows the in-
jection

L∞L (Ω)
[·]−→ L∞(Ω) ,

gL = [g]χ 7→ gE = [g] = [gL] .

Moreover, for every test function Φ(t, y) ∈ C1
c (R+ × R) and for L 1-a.e. t one has

d

dt

∫
Φ(t, y)H(t, y) dy =

∫
Φ(t, y) Df ′(U e1

t (dy)) +

∫
∂Φ(t, y)

∂t
H(t, y) dy . (2.1)

Lemma 22. Under the assumptions of Corollary 21, u has locally bounded variation.
Moreover, denoting by gL = [g]χ a Lagrangian source, then one has

Dtu(dt, dx) + Dxf(u(dt, dx)) = g(t, x) dt dx.



10 G. Alberti, S. Bianchini, L. Caravenna

Note that Lemma 21 does not follow from the theory of ODEs with rough coef-
ficients because the notion of Lagrangian parameterization is more specific than a
solution of a system of ODEs. In this paper, where the focus is on the PDE (1.1),
we rather prefer to prove the lemma in the form of Corollary 21. We stress once
more that computations below, switching notations, prove indeed Lemma 20, proof
which could be slightly shortened in a more abstract setting.

Remark 23. Let U(t, y) := u(t, χ(t, y)) for some Lagrangian parameterization χ.
We notice that one can equivalently assume that either ∂xu or ∂yU(t, y) is a Radon
measure. This is a direct consequence of the slicing theory of BV functions, because
χe2
t (y) is monotone and the total variation of ue2

t (x) is equal to the total variation
of U e2

t (y).

Proof of Lemma 21. Let χ be a Lagrangian parameterization corresponding to
u. By assumption and by Remark 23, for L 1-a.e. t also the function

y 7→ u(iχ(y)(t)) =: U e1
t (y)

has locally bounded variation. Moreover, for every y by definition of Lagrangian
solution

t 7→ u(iχ(y)(t)) =: U e2
y (t)

is Lipschitz continuous. We deduce by the slicing theory of BV functions [3,
Th. 3.103] that also the function (t, y) 7→ U(t, y) has locally bounded variation.
We show now that the Lagrangian parameterization χ can be here assumed to be
absolutely continuous.

Step 1. Renormalization of y for absolutely continuity of χ. Consider the two
coordinate disintegrations of the measure on the plane given by DyU(t, y): by the
classical disintegration theorem [3, Th. 2.28] there exists a nonnegative Borel mea-
sure m ∈ M +(R) and a measurable measure-valued map y 7→ νy ∈ M +(R) such
that

DyU(dt, dy) =

∫
DU e1

t (dy) dt =

∫
νy(dt)m(dy) . (2.2)

The first equality is just the slicing theory for BV functions [3, Th. 3.107].

Claim 24. Consider the Lagrangian parameterization χ̄(t, y) := χ(t, h−1(y)) with h
defined by

h(y) := y +m((−∞, y]) + Dχe2
0 ((−∞, y]) .

Then one has that h]m� L 1 and h]Dχ
e2
0 � L 1 with densities bounded by 1.

Proof of Claim 24. Fix any a ≤ b. We first observe that

h(b)− h(a) = b− a+m((a, b]) + Dχe2
0 ((a, b])

≥ max
{
b− a , m((a, b]) , Dχe2

0 ((a, b])
}
≥ 0 .

This shows that Dh ≥ L 1, Dh ≥ m and Dh ≥ Dχe2
0 . Since U and χ are continuous

functions, then DyU and Dχe2
0 are continuous measures and therefore h is a contin-

uous function. Fix any a < b and suppose h(a′) = a, h(b′) = b. Then one verifies
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that

h]m([a, b])

b− a ≤ m([a′, b′])

h(b′)− h(a′)

≤ m([a′, b′])

b′ − a′ +m((a′, b′]) + Dχe2
0 ((a′, b′])

< 1 .

This concludes the proof for h]m, and h]Dχ
e2
0 is entirely similar. �

Claim 24 assures that one can re-parametrize the y-variable so that both m(dy)
and Dχe2

0 (y) are absolutely continuous with bounded densities. Let ϑ(y) and β(y) be
their Radon–Nikodym derivatives w.r.t. L 1 after, eventually, the re-parametrization
of y:

m(dy) =: ϑ(y) dy , Dχe2
0 (y) =: β(y) dy , ϑ, β ∈ L∞ . (2.3)

Step 2. Formula for Dyχ. In this step we prove Claim 25 below, which implies
that both the distributional partial derivatives of χ are absolutely continuous mea-
sures. The claim below yields then that χ is an absolutely continuous Lagrangian
parameterization. As χ(t, y) maps negligible sets into negligible sets, then one has
the inclusion stated in Lemma 10:

L∞L (R+ × R) ↪→ L∞(R+ × R) .

Claim 25. The measure Dyχ(dt, dy) is given by the following formula:

Dyχ(dt, dy) = H(t, y) dt dy , L∞loc

(
i−1
χ (Ω)

)
3 H(t, y) ≥ 0 (2.4a)

H(t, y) = ϑ(y)

∫ t

0
f ′′(U(s, y)) νy(ds) + β(y) . (2.4b)

Proof of Claim 25. Being

χ̇e1
y (t) = f ′(U(t, y)) (2.5)

by Vol’pert chain rule [3, Th. 3.96] and (2.2) one has the following disintegration

Dyf
′(U(dt, dy)) = f ′′(U(t, y))DyU(dt, dy)

=

∫ {
f ′′(U(t, y))νy(dt)

}
m(dy) .

(2.6)
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One can compute Dyχ in the following way: write χ as a primitive and differentiate
under the integral. For every test function Φ(t, y)

−
∫∫

Φ(t, y) Dyχ(dt, dy) =

=

∫∫
∂Φ(t, y)

∂y
χ(t, y) dy dt

=

∫∫
∂Φ(t, y)

∂y

{∫ t

0
χ̇e1
y (s) ds+ χ(0, y)

}
dy dt

=

∫∫∫ t

0

∂Φ(t, y)

∂y

[
χ̇e1
y (s) + χe2

0 (y)/t
]
ds dy dt

(2.5)
=

∫ {∫∫ t

0

∂Φ(t, y)

∂y

[
f ′(U(s, y)) + χe2

0 (y)/t
]
ds dy

}
dt

= −
∫ {∫∫ t

0
Φ(t, y)

[
Dyf

′(U(ds, dy)) + Dχe2
0 (y)/t

]}
dt

The last step was allowed because U ∈ BV . Owing to (2.6), (2.3) we can now
proceed with

= −
∫ {∫∫ t

0
Φ(t, y) f ′′(U(s, y)) νy(ds)ϑ(y) dy

}
dt

−
∫ {∫∫ t

0
[β(y)/t] ds dy

}
dt

= −
∫∫ {

Φ(t, y)

[
β(y) + ϑ(y)

∫ t

0
f ′′(U(s, y)) νy(ds)

]}
dy dt .

Note that H is the function within the inner square brackets, thus we proved the
claim. �

Step 3. Time derivative of H. Definition (2.4b) of H does not directly allow
to differentiate H in the t variable, because the measure νy may not be absolutely
continuous. Nevertheless, this is possible from (2.4a), obtaining that DtH is a Radon
measure.

Claim 26. For every test function Φ(t, y) ∈ C1
c (R+×R) and for L 1-a.e. t one has (2.1)

d

dt

∫
Φ(t, y)H(t, y) dy =

∫
Φ(t, y) Df ′(U e1

t (dy)) +

∫
∂Φ(t, y)

∂t
H(t, y) dy . (2.7)

Proof of Claim 2.1. Consider the limit of the incremental ratios. Integrate by
parts in y before the limit, take then the limit in h and integrate by parts again in
y. By the weak continuity of

t 7→ Df ′(U e1
t (dy))

one has∫
Φ(t, y) Df ′(U e1

t (dy)) = lim
h↓0

1

h

{∫ ∫ t+h

t
Φ(t, y) Dyf

′(U(ds, dy))

}
. (2.8a)
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Remembering (2.3), (2.6) and then the definition (2.4b) of H one has∫∫ t+h

t
Φ(t, y)Dyf

′(U(ds, dy)) =

=

∫
Φ(t, y)

[∫ t+h

t
f ′′(U(s, y)) νy(ds)ϑ(y)

]
dy

=

∫
Φ(t, y) [H(t+ h, y)−H(t, y)] dy .

(2.8b)

Owing to (2.8) one can deduce that for L 1-a.e. t equation (2.1) holds:

d

dt

∫
Φ(t, y)H(t, y) dy =

= lim
h→0

1

h

{∫
Φ(t+ h, y)H(t+ h, y) dy −

∫
Φ(t, y)H(t, y) dy

}
= lim

h→0

1

h

{∫
Φ(t, y) [H(t+ h, y)−H(t, y)] dy

}
+

∫
lim
h→0

Φ(t+ h, y)− Φ(t, y)

h
H(t+ h, y) dy

(2.8)
=

∫
Φ(t, y) Df ′(U e1

t (dy)) +

∫
∂Φ(t, y)

∂t
H(t, y) dy . �

The proof of the absolute continuity of suitable Lagrangian parameterizations is
ended. �

Proof of Lemma 22. We now prove that the PDE (1.1) holds in distributional
sense. When ∂xu is a Radon measure, this implies by Vol’pert chain rule that u has
locally bounded variation. For every test function ϕ ∈ C∞c (Ω), one can apply in the
integral

〈∂tu+ ∂xf(u) , ϕ〉 = −
∫∫

Ω

[
∂ϕ(t, x)

∂t
u(t, x) +

∂ϕ(t, x)

∂x
f(u(t, x))

]
dt dx

the following change of variables, that one can assume absolutely continuous by
Corollary 21:

Ψ :

(
t
y

)
7→
(
t
x

)
:=

(
t

χ(t, y)

)
. (2.9)

Denote Φ(t, y) = ϕ(iχ(y)(t)) and U(t, y) = u(iχ(y)(t)). Remembering (2.5) one ob-
tains

〈∂tu+ ∂xf(u), ϕ〉 = −
∫∫

∂Φ(t, y)

∂t
U(t, y) Dyχ(dt, dy)

+

∫∫
f ′(u(iχ(y)(t)))

∂Φ(t, y)

∂y
U(t, y) dt dy

−
∫∫

∂Φ(t, y)

∂y
f(U(t, y)) dt dy .

(2.10)
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Step 1. y-derivatives. After integration by parts, the last two summands in the
right-hand side of (2.10) are just∫∫

Φ(t, y) Dy

[
f(U)− f ′(U)U

]
(dt, dy) . (2.11)

Notice that f ′(U)U is still a function with locally bounded variation, and that its
derivative can be computed by Vol’pert chain rule: it is equal to

Dy

[
Uf ′(U)

]
=
[
f ′(U) + Uf ′′(U)

]
DyU = Dyf(U) + U Dyf

′(U) ,

and therefore (2.11) becomes

−
∫∫

Φ(t, y)U(t, y) Dyf
′(U(dt, dy)) . (2.12)

Step 2. t-derivative. The first summand in the right-hand side of (2.10) is more
complex and requires the properties of H in (2.4), (2.1). Notice that Φ(t, y)U(t, y)
is absolutely continuous in time. By the additional regularity of H in (2.1) one has
the integration by parts

−
∫∫

∂Φ(t, y)

∂t
U(t, y) Dyχ(dt, dy) =

= −
∫∫

∂Φ(t, y)

∂t
U(t, y)H(t, y) dt dy

=

∫∫
Φ(t, y)

∂U(t, y)

∂t
Dyχ(dt, dy) +

+

∫∫
Φ(t, y)U(t, y) Dyf

′(U(dt, dy)) .

(2.13)

Thanks to the absolute continuity of χ (that one can assume by Corollary 21),

the term ∂U(t,y)
∂t in the third integral in (2.13) is just the Lagrangian source term

gL = [g]χ evaluated at iχ(y)(t). Therefore this integral can be rewritten just as∫∫
ϕ(t, x) g(t, x) dt dx .

The fourth integral in (2.13) instead cancels the two remaining terms in (2.10), by
their equivalent form (2.12). After this cancellation we find that (2.10) is just∫∫

ϕ(t, x) [Dtu+ Dxf(u)] (dt, dx) =

∫∫
ϕ(t, x) gL(t, x) dt dx . �

2.2. The case of continuous solutions: BV approximations

We provide in this section the proof that continuous Lagrangian solutions of the
balance law (1.1) are also distributional solutions, without assuming any BV regular-
ity. In order to prove it, we construct a sequence of approximations having bounded
variation, so that we take advantage of §2.1. We omit here the correspondence of
the source terms, discussed separately in [2].

Lemma 27. Let u be a continuous Lagrangian solution of (1.1) with source term
bounded by G. Then there exists a sequence of continuous functions uk(t, x), k ∈ N,
which are
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• functions of bounded variation;

• Lagrangian and Eulerian solutions of (1.1) with source terms bounded by G;

• converging uniformly to u as k ↑ ∞.

Corollary 28. Let u be a continuous Lagrangian solution of (1.1). Then it is a
continuous distributional solution of (1.1) and it does not dissipate entropy.

The above corollary states in particular that u is the unique Kružkov entropy
solution to the Cauchy problem (when its distributional source term is assigned).
We mention that in the case of the quadratic flux this statement can be derived
by [7]: the authors provide a smooth approximation for which also the source term
is converging in L 1(R2), refining a construction in [15] which extends to the Heisen-
berg group a technique originally introduced for the Euclidean setting by [9]. The
construction we adopt here is more direct but rougher: sources do not converge.

Proof of Corollary 28. We exploit the approximation {uk(t, x)}k∈N given in
Lemma 27. Consider any entropy-entropy flux pair η, q ∈ C1(R), that is, q′(z) =
η′(z)f ′(z). Since each uk is a function of bounded variation, Vol’pert chain rule
yields

Dtη(uk) + Dx(q(uk)) = η′(uk) (Dtuk + Dxf(uk)) = η′(uk) gEk ,

where we set gEk = Dtuk + Dxf(uk). Owing to Lemma 22, each gEk is given by
a function which is bounded by the constant G in the assumption of the present
corollary. Since uk converges uniformly to u, one has

η′(uk) gEk = ∂tη(uk) + ∂x(q(uk)) → ∂tη(u) + ∂x(q(u)) in D ′(Ω).

Since the sequence {gEk}k∈N is uniformly bounded, Banach–Alaoglu theorem im-
plies that there there exists a subsequence weak*-converging to some function
gE ∈ L∞(Ω), ‖gE‖L∞(Ω) ≤ G: then necessarily

∂tη(u) + ∂x(q(u)) = η′(u) gE .

The Eulerian source gE and the Lagrangian source gL can be identified also in
the limit under uniform convexity assumptions on the flux, see [2, §2.2]. Under the
negligibility assumption on the inflection points of f (H), they are just compatible:
see [2, §3 and §4.2]. �

Proof of Lemma 27. We construct an approximation of u by a patching proce-
dure. One needs first to construct the approximation on a patch, which is a strip
delimited by two characteristics. In it, we require that at each fixed time the ap-
proximating function is monotone in x, and it coincides with u on the boundary
of the strip. This allows to work with continuous functions having bounded vari-
ation. Repeating the construction in adjacent strips, when they get thinner the
approximating functions converge to u uniformly.

We recall that u can be assumed compactly supported, see Notation 19.
We expose first the limiting procedure for constructing a monotone approximation

within each strip, and then a second limiting procedure for converging to u when
strips become thinner. In the first step we describe the second limiting procedure,
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which is simpler, while from the second step on we describe how to provide the
monotone approximations.

Step 1. Patches decomposition. Fix two characteristics χe1
y1

(t), χe1
y2

(t) and define
the strip

Sy1y2 =
{

(t, x) ∈ R+ × R : χ(t, y1) ≤ x ≤ χ(t, y2)
}

(2.14)

where y1 ≤ y2. If one chooses for example yi = iδ for i ∈ Z and some δ > 0, then
one has the decomposition

R+ × R = ∪i∈ZSyiyi+1 .

Let |yi+1 − yi| ≤ δ. We construct in the next steps continuous functions uδ which
are

(1) Lagrangian solutions, with a new Lagrangian source still bounded by G;
(2) equal to u on the curves χe1

yi (t), i ∈ Z;
(3) nondecreasing in the x-variable in each open t-section of the set{

(t, x) : χe1
yi (t) < x < χe1

yi+1
(t) , u(iχ(yi)(t)) ≤ u(iχ(yi+1)(t))

}
;

(4) nonincreasing in the x-variable in each open t-section of the set{
(t, x) : χe1

yi (t) < x < χe1
yi+1

(t) , u(iχ(yi)(t)) ≥ u(iχ(yi+1)(t))
}

;

(5) ‖uδ − u‖L∞ ≤ ω(δ), where ω(δ) is a δ-modulus of uniform continuity of

U(t, y) = u(iχe1
y

(t)) .

From the monotonicity properties (3)-(4), if we apply the slicing theory for BV -
functions we notice that the functions uδ have locally bounded variation. Owing to
Lemma 22 they are also Eulerian solutions with source terms which are uniformly
bounded by G, the uniform bound for the Lagrangian sources owing to (1). By
the uniform estimates (5) and the constrain (2) on the boundary of the strips, they
converge uniformly to u as δ ↓ 0, proving the thesis.

Step 2. Monotone modification within a patch. We start the iterative procedure
for constructing the approximations uδ having bounded variation, that we describe
within a fixed strip

Sy1y2 = {(t, x) : χ(t, y1) < x < χ(t, y2)} . (2.15)

We modify in Sy1y2 the given Lagrangian continuous solution in order to get a
new continuous function which is still a Lagrangian solution, for a different source
which is still bounded by G. The additional property that we are trying to get,
piecewise, is a monotonicity in the x variable when t is fixed: we fix the values on
the boundary curves χe1

y1
(t), χe1

y2
(t); inside the stripe Sy1y2 we aim at substituting at

each time ue1
t (x) with a function ũe1

t (x) i) which is monotone in the x variable with
values from u(iχ(y1)

(t)) to u(iχ(y2)(t)) and ii) which is still a Lagrangian solution

with source term bounded by G. This new function ũ is now defined inside the
stripe Sy1y2 with a limiting procedure pictured in Figure 2 below.

Let {(tj , xj)}j∈N be a dense sequence of points within the strip Sy1y2 . The function
ũ is defined within the strip Sy1y2 as a uniform limit of functions ũj , for j ∈ N, which
we assign now recursively. We first state the basic operation that we will perform.
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Figure 2. First steps of the iterative procedure: the bold line is
the approximating function obtained by successive cuttings reaching
monotonicity properties

Claim 29 (Basic cut). Suppose u is a Lagrangian solution of (1.1) with source term
bounded by G and fix a characteristic curve γ̄ = χ(t, ȳ), where χ is a Lagrangian
parameterization of u. Then the two truncated functions, respectively from above
and from below,

uM (t, x) := u(t, x) ∧ u(iγ̄(t)) , um(t, x) := u(iγ̄(t)) ∨ u(t, x)

are still Lagrangian solutions of (1.1) with source term bounded by G.

We postpone the proof of Claim 29 to Page 18. The basic cut allows the iterative
procedure:

• set m(t) :=
[
u(iχ(y1)

(t))
]
∧
[
u(iχ(y2)

(t))
]
;

• set M(t) :=
[
u(iχ(y1)

(t))
]
∧
[
u(iχ(y2)

(t))
]
;

• set ũ0(t, x) := u(t, x) for (t, x) ∈ Sy1y2 and fix γ̄0(t) := χ(t, y1(t));

• let j ∈ N, set vj(t) = u(iγ̄j−1(t)), and define the truncated function

ũj(t, x) :=



vj(t) ∨ ũj−1(t, x) ∧M(t) if u(iχ(y1)
(t)) = M(t)

and χ(t, y1) ≤ x ≤ γ̄j−1(t),

m(t) ∨ ũj−1(t, x) ∧ vj(t) if u(iχ(y1)
(t)) = m(t)

and χ(t, y1) ≤ x ≤ γ̄j−1(t),

vj(t) ∨ ũj−1(t, x) ∧M(t) if u(iχ(y2)
(t)) = M(t)

and γ̄j−1(t) ≤ x ≤ χ(t, y2),

m(t) ∨ ũj−1(t, x) ∧ vj(t) if u(iχ(y1)
(t)) = m(t)

and γ̄j−1(t) ≤ x ≤ χ(t, y2).

Basically, the strip Sy1y2 is divided by γ̄j−1 into two sub-strips and in each sub-
strip ũj−1 is truncated from above and from below by the two boundary values
on the sub-strips. Owing to Claim 29 the function ũj is a Lagrangian solution
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of (1.1) with source term bounded by G. By the definition of Lagrangian
solution one can fix γ̄j as

– a characteristic curve of ũj
– through the point (tj , xj)

– along which ũj is G-Lipschitz continuous and

– which does not cross the previously chosen characteristics χ(·, y1),
γ̄1(t),. . . , γ̄j−1(t), χ(·, y2); this means that any two characteristics of
this set lie always on the same side of the pane with respect to each
other, when they differ.

Note before proceeding that ũj is monotone at each fixed time on the j + 2
points

iχ(y1)
(t) ,

{
iγ̄i(t)

}
i=1,...,j

, iχ(y2)
(t) . (2.16)

Because of this monotonicity, at later steps of the iteration the values of the
function ũj on the points (2.16) are not changed.

We obtained with the previous iterative procedure that

• each continuous function ũj is a Lagrangian solution and G still bounds its
source, thanks to Claim 29;

• the whole sequence {ũj}j∈N converges uniformly on Sy1y2 to a function ũ,
because u is uniformly continuous and the cutting procedure preserves the
modulus of continuity: similarly to the next item, for h > j one has the
estimate

‖ũj − ũh‖L∞(Sy1y2 ) ≤ ω
(

diam
(
Sy1y2 \ Im

{
iχ(y1)

, {iγ̄i}i=1,...,j , iχ(y2)

}))
and the curves (2.16) become dense in Sy1y2 by construction, so the right-hand
side goes to 0;

• ‖u− ũ‖L∞(Sy1y2 ) ≤ ω(y2− y1), where ω is a modulus of uniform continuity of

U(t, y), because by construction we have

‖u−ũ‖L∞(Sy1y2 )

≤ sup
(t,x)∈Sy1y2

{
|u(t, x)− u(iχ(y1)(t))|, |u(t, x)− u(iχ(y2)(t))|

}
≤ ω(y2 − y1) ≤ ω(δ);

(2.17)

• ũ is still a Lagrangian solution and that G still bounds its source by Corol-
lary 47;

• ũ is monotone in the x-variable at each fixed t because each ũj is monotone on
the points (2.16), which become dense in the interval [χ(t, y1), χ(t, y1)]. �

We are finally left with the proof of Claim 29.

Proof of Claim 29. Owing to Lemma 17, um(t, x) := u(iγ̄(t)) ∨ u(t, x) is a La-
grangian solution provided that we exhibit a characteristic curve, along which um
is G-Lipschitz continuous, through any point (t, x). For simplifying the exposition
suppose that the set {f ′(um) < f ′(u)} is empty, if not this region is treated similarly
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to below as a second step. Set

λm(t, x) := f ′(um(t, x)) ≥ λ(t, x) := f ′(u(t, x)).

Consider now the set Γ of curves through a point (t̄, x̄) obtained as the closure in
the C1 norm of the set all curves γ ∈ C1(R+) such that

• γ(t̄) = x̄;

• there exist an integer j, intervals I1, . . . , Ij , J0, . . . , Jj and values c1, . . . , cj ,
z0, . . . , zj such that J0 ∪ I1 ∪ J1 ∪ · · · ∪ Jj = R+ and{
γ(t) = χ(t, γ̄(t)) + ci , λm(iγ(t)) > λ(iγ(t)) if t ∈ Ii, i = 1, . . . , j,

γ(t) = χ(t, zi) if t ∈ Ji, i = 0, . . . , j.

This set of curves is not empty, for example because the curves of the Lagrangian
parameterization χ through (t, x) belongs to it. Moreover, the function um is G-
Lipschitz continuous on each γ described within the brackets: indeed, where λm > λ
necessarily um 6= u and hence by definition of um

um(γ(t)) =

{
u(iγ̄(t)) if t ∈ I1 ∪ · · · ∪ Ij ,
u(iχ(zi)(t)) if t ∈ Ji, i = 0, . . . , j,

and each function u(iγ̄(t)), u(iχ(z0)(t)), . . . , u(iχ(zj)(t)) is G-Lipschitz continuous by
assumption. As a consequence, um is G-Lipschitz continuous on each element of the
closure Γ. The curves defined by

γ+
m(t) := max

γ∈Γ
γ(t) for t ≥ t̄,

γ−m(t) := min
γ∈Γ

γ(t) for t < t̄,

still belongs to Γ, if suitably prolonged. In particular, um is G-Lipschitz continuous
along γm. This concludes the proof observing that γ+

m is necessarily a forward
characteristic curve of um, and γ−m a backward one, through (t̄, x̄). Indeed, each γ
in the definition of Γ is a C1 curve whose slope satisfies the implication

γ̇ ∈ {λ ◦ iγ , λm ◦ iγ} ⇒ γ̇+
m, γ̇

−
m ∈ {λ ◦ iγ , λm ◦ iγ} .

If we had γ̇+
m(t′) = λ ◦ iγ+

m
(t′) < λm ◦ iγ+

m
(t′) at some time t′ > t̄, then we would

contradict the extremity in the definition of γ+
m: considering

s′ = t̄ ∨max{s < t′ : γ̇+
m(s) = λm ◦ iγ+

m
(s))} ,

one can verify that there is an element of Γ which satisfies

γ̃+
m(t) =

{
γ+
m(t) for t̄ ≤ t ≤ s′,
γ̄τ (t) := γ̄(t)− [γ̄(s′)− γ+

m(s′)] for s′ < t ≤ s′′,
where

s′′ := t′ ∧min{s > s′ : λm ◦ iγ̄τ (s)) 6= λ ◦ iγ̄τ (s))} .
Notice that γ̃+

m is bigger than γm at time s′′ because ˙̃γ+
m(s′) = γ+

m(s′) and by con-
struction

˙̃γ+
m = λm ◦ iγ̄ = λm ◦ iγ+

m
(s) > λ ◦ iγ+

m
= γ̇+

m for s′ < t < s′′.

The other possibilities contradict analogously the definition of γm. �
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3. Distributional solutions are broad solutions,
if inflections are negligible

We provide in this section regularity results holding under the assumption that
f has negligible inflection points: we prove that u is Lipschitz continuous along
every characteristic curve and there exists a universal source which is fine for every
Lagrangian parameterization one chooses.

Without assumptions on inflection points, later §4 shows that distributional so-
lutions of

∂tu(t, x) + ∂x(f(u(t, x))) = gE(t, x) (1.1)

(with f ∈ C2(R), |gE(t, x)| ≤ G) are also Lagrangian solutions. Being a Lagrangian
solution allows to study u with tools from ODEs, but it is not completely satisfactory
by itself because one should be a priory careful in choosing the right Lagrangian
parameterization, and the correct source related to the parameterization: the results
of the present section are richer because here any Lagrangian parameterization is
allowed.

Being local arguments, we simplify the setting by assuming Ω = R+ × R, u
compactly supported.

3.1. Lipschitz regularity along characteristics

In the present section we point out that u is Lipschitz continuous along charac-
teristic curves if inflection points of f are negligible:

L 1(clos(Infl(f))) = 0 . (H)

See Example [2, §4.2] for an example when (H) fails.

Theorem 30. Assume that the non-vanishing condition (H) holds. Then any con-
tinuous distributional solution u of (1.1) is G-Lipschitz continuous along any char-
acteristic curve of u.

Proof. It takes a while to realize that the following is a partition of the real line
into the regions

D+ := r.i.
({
z ∈ R : ∃h̄ > 0 s.t. f(z + h)− f(z) ≥ f ′(z)h ∀h ∈ [−h̄, h̄]

})
,

D− := r.i.
({
z ∈ R : ∃h̄ > 0 s.t. f(z + h)− f(z) ≤ f ′(z)h ∀h ∈ [−h̄, h̄]

})
,

N := R \
(
D+ ∪D−

)
= clos(Infl(f)) .

By assumption N is Lebesgue negligible.
Consider any characteristic curve iγ(t) = (t, γ(t)) where γ̇(t) = f ′(u(t, γ(t))) and

t ∈ R+. We first follow a similar computation in [8] which shows that u(t, γ(t))
is ‖g‖∞-Lipschitz continuous on the connected components of the open set (u ◦
iγ)−1(D+), as in [5].

Focus on the domain bounded by the curves iγ(t), iγ+ε(t) between times σ < τ . By
integrating suitable test functions converging to the indicator of the region described
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x

t

σ

τ

γ(t) γ(t) + ε

(t̄, x̄)

x

t

σ

τ

γ(t)γ(t) − ε

(t̄, x̄)

1

Figure 3. Balances on characteristic regions

in Figure 3.1 we obtain the equality∫ γ(τ)+ε

γ(τ)
u(τ, x)dx−

∫ γ(σ)+ε

γ(σ)
u(σ, x)dx−

∫ τ

σ

∫ γ(t)+ε

γ(t)
g(t, x)dxdt

= −
∫ τ

σ
[f(u(iγ+ε(t)))− f(u(iγ(t))]

− f ′(u(iγ(t))) [u(iγ+ε(t))− u(iγ(t))] dt

= −
∫ τ

σ
f ′′(ξ)

[u(iγ+ε(t))− u(iγ(t))]2

2
dt ,

where in the last integral ξ = ξ(t) ∈ [u(iγ(t))− u(iγ+ε(t))].
If either u(σ, γ(σ)) or u(τ, γ(τ)) belong to D+, by definition of D+ for τ − σ

sufficiently small the right-hand side is nonpositive: we obtain thus the inequality∫ γ(τ)+ε

γ(τ)
u(τ, x) dx−

∫ γ(σ)+ε

γ(σ)
u(σ, x) dx

≤
∫ τ

σ

∫ γ(t)+ε

γ(t)
g(t, x) dx dt ≤ ε‖g‖∞|τ − σ| .

Dividing by ε, and taking the limit as ε ↓ 0, the assumption that u is continuous
yields

u(τ, γ(τ))− u(σ, γ(σ)) ≤ ‖g‖∞|τ − σ| .
The converse inequality is obtained by considering the similar region between iγ−ε(t),
iγ(t): indeed this leads to an equation analogous to (3.1), but with right-hand side
having opposite sign.

We conclude from the above analysis that u(iγ(t)) is ‖g‖∞-Lipschitz continuous in
a neighborhood of any point belonging to the inverse image of D+. The same holds
in an analogous way for D−. This local Lipschitz continuity can be equivalently
stated by the inequality

L 1 (u(iγ(B))) ≤ GL 1 (B) (3.2)
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for all Borel subsets B of the open set O = (u ◦ iγ)−1 (D+ ∪D−). The thesis finally
follows by the negligibility of N : for every t1 ≤ t2

|u(iγ(t2))− u(iγ(t1))| ≤ L 1 (u(iγ([t1, t2])))

= L 1 (u(iγ ([t1, t2] ∩O))) + L 1(N)

(3.2)

≤ GL 1 ([t1, t2] ∩O) ≤ G(t2 − t1) . �

Remark 31. If u is 1/2-Hölder continuous, we see from (3.1) that u is Lipschitz
along characteristics independently of any assumptions on inflection points of f .

3.2. Construction of a universal source

We now assume the negligibility of inflection points (H). Under this assumption,
we generalize [5, §6] and we construct for general fluxes satisfying (H) a source term
for the broad formulation, without discussing its compatibility with the distribu-
tional source. Namely, we show that there exists g ∈ L∞(Ω) such that

d

dt
u(iγ(t)) = g(iγ(t)) in D(i−1

γ (Ω)) for every characteristic curve γ. (3.3a)

The compatibility of the sources will be instead matter of [2, §3], where we prove
that when inflection points are negligible there is a choice of such g so that moreover

∂tu(t, x) + ∂x(f(u(t, x))) = g(t, x) in D(Ω). (3.3b)

We deal here in §3.2 only with the ODE property (3.3a). We call such gB = [g]λ
universal source term, and (3.3a) shows that u is a broad solution of (1.1). We
mention nevertheless that if f is not α-convex, α > 1, then (3.3a) does not identify
in general a distribution, because there can be an L 2-positive measure set of points
where u is not differentiable along characteristics: in this set the proper definition
of the source will come from (3.3b).

Two remarks before starting. Owing to §3.1, under the sharp vanishing condi-
tion (H) on inflection points of f one gainsG-Lipschitz continuity along characteristic
curves for any continuous distributional solution u to the balance law

∂tu(t, x) + ∂x(f(u(t, x))) = gE(t, x) . (1.1)

It is not of course possible to require that the reduction of the balance law on char-
acteristics is satisfied for every g ∈ L∞(R+×R) such that gE = [g], because altering
g(t, x) on a curve provides the same distribution [g]: this is why we need to select a
good representative. Without the negligibility (H) the source term of a Lagrangian
parameterization might not work with a different Lagrangian parameterization and
there may exist no broad solution, see [2, §4.3].

We assume therefore the negligibility of inflection points (H) and we proceed as
follows: in §3.2.1 we construct a Souslin function g, which intuitively must sat-
isfy (3.3a); in §3.2.2 we construct an analogous Borel function ĝ, which is stronger
but more technical; in §3.2.3 we prove that the functions g and ĝ do satisfy (3.3a).

The construction for the compatibility condition (3.3b) comes in [2, §3].
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3.2.1. Souslin selection

This is the first idea: to define pointwise, but in a measurable way, a function
ĝ(t, x) such that t is a Lebesgue point for the derivative of the composition t 7→
u(t, γ(t)), with γ a characteristic function through (t, x), whenever there exists one
satisfying this differentiability property. As we just consider the derivative of this
composition at t fixed, we focus on the curve only in a neighborhood of t and, for
notational convenience, we translate its domain to a neighborhood of the origin.
Therefore, fixed some δ > 0, one applies a selection theorem to the set

G ⊂ [δ,+∞)× R× C1([−δ, δ];R)× [−G,G] , G := C ∩D

where

C :=

{
(t, x, γ, ζ) : γ(0) = x , γ̇(s) = λ(t+ s, γ(s))

}
(3.4a)

D :=

{
(t, x, γ, ζ) : ζ = lim

σ↓0

u(t± σ, γ(±σ))− u(t, x)

±σ

}
. (3.4b)

We first need a technical but important lemma about G . The selection theorem will
follow.

Lemma 32. G is Borel.

Proof. Focus first on the components (t, x, γ). The set C is closed thanks to the
continuity of λ.

We discretize the limit in the variable ζ, so that D is described as an Fσδ-set.

Claim 33. Existence and the values of the following two limits are the same:

lim
h↓0

u(t+ h, γ(h))− u(t, x)

h
, (3.5)

lim
n→∞

u(t+ hn, γ(hn))− u(t, x)

hn
, hn+1 := hn − h2

n , h1 := 1/2 . (3.6)

One can similarly have the full limit for h → 0 instead of h ↓ 0, that we study for
simplicity.

Proof of Claim 33. By Theorem 30, u is ‖g‖∞-Lipschitz continuous on charac-
teristic curves. Setting (t, x) = (0, 0) for notational convenience, then for every
h ∈ (hn+1, hn] there holds∣∣∣∣u(h, γ(h))− u(0, 0)

h
− u(hn, γ(hn))− u(0, 0)

hn

∣∣∣∣
=

∣∣∣∣ (1

h
− 1

hn

)[
u(h, γ(h))− u(0, 0)

]
− 1

hn

[
u(hn, γ(hn))− u(h, γ(h))

]∣∣∣∣
≤ 2G

hn − h
hn

.

By construction however

|hn − h| ≤ |hn − hn+1| = h2
n,
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yielding that the existence of the limit along {hn}n implies the existence of the limit
for any h ↓ 0. �

Notice that the claim would not hold choosing a generic h̃n ↓ 0 instead of {hn}n.
After observing that the limit is discrete, the classical differentiability constraint
in (3.4b) is

∀k ∃n s.t. ∀n̄ ≥ n
∣∣∣∣ζ − u(t± hn̄, γ(hn̄))− u(t, x)

±hn̄

∣∣∣∣ ≤ 2−k .

Therefore, D is equivalently described as the following Fσδ set

D =
⋂
k∈N

⋃
n∈N

⋂
n̄≥n

{
(t, x, γ, ζ) :

∣∣∣∣ζ − u(t± hn̄, γ(hn̄))− u(t, x)

±hn̄

∣∣∣∣ ≤ 2−k
}
.

Since the set within brackets is closed, G = C ∩D is Borel. �

Let E be the projection of G on the first two components R+ × R. The set
E is the set of points where there exists an absolutely continuous (time-translated)
characteristic curve having 0 as a density point for the derivative of u(t+s, γ(t,x)(s)).
The selection theorem below assigns to every point (t, x) where possible, which is to
every point in E, an absolutely continuous integral curve γ(t,x)(s) for the ODE

γ̇(t,x)(s) = λ(t+ s, γ(t,x)(s))

together with the Souslin function

(t, x) 7→ g(t, x) =
d

ds
u(t+ s, γ(t,x)(s))

∣∣∣
s=0

. (3.7)

Remark 34. We comment on what information on E comes from hypothesis on f :

(1) If f is α-convex, we will observe in [2, §3.2] that the projection E of G on
R+×R has full measure. This follows for the case of quadratic flux by a Rademacher
theorem in the context of the Heisenberg group [11, 5].

(2) If f is even strictly but not uniformly convex [2, §4.2] shows that E may fail
to have full measure. If (the closure of) inflection points of f are negligible, however,
the Lipschitz continuity of u along characteristics of Theorem 30 implies that

H 1(iγ(R) \ E) = 0

for every characteristic curve γ(t).

(3) For general fluxes not only E may not have full L 2-measure, but also iγ(R)\E
may not have full H 1-measure for some characteristic curve γ along which u is not
Lipschitz-continuous, see [2, §4.3].

The set E is considered also in [2, §3] for the compatibility of the source terms.

Corollary 35 (Selection theorem). For every δ > 0, there exists a map

(t, x) 7→ (γ(t,x)(s), g(t, x)) ∈ C1([−δ, δ];R)× [−G,G]

where

(t, x) ∈ E ⊂ [δ,+∞)× R , γ(t,x) ∈ C1([−δ, δ];R) , g(t, x) ∈ [−G,G] ,
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which is measurable for the σ-algebra generated by analytic sets and which satisfies
by definition

(t, x, γ(t,x)(s), g(t, x)) ∈ G .

Proof. The Borel measurability of G proved in Lemma 32 allows to apply to G
von Neumann selection theorem [18, Theorem 5.5.2], from [16], which provides the
thesis. �

Definition 36. We define as a Souslin universal source the function

g(t, x) = gt,x =


0 (t, x) /∈ E
0 u(t, x) ∈ N
gt,x (t, x) ∈ E, u(t, x) /∈ N .

The importance of the above selection theorem is due to the following relation.

Theorem 37. Assume that L 1(clos(Infl(f))) = 0. Then for every absolutely con-
tinuous integral curve γ of the ODE γ̇ = λ(iγ), one has that g(iγ) is well defined
L 1-a.e. and satisfies

u(iγ(s))− u(iγ(r)) =

∫ s

r
g(iγ(t))dt ∀0 ≤ r ≤ s .

Theorem 37 is fairly nontrivial because in (3.7) the universal source g(t, x) is
defined as the derivative of u along a chosen curve γ(t,x) which changes changing the
point (t, x), and it is not even defined on a full measure set! What is relevant for the
theorem is that the set where g is not defined, or not uniquely defined, is negligible
along any characteristic curve, which is that

gB = [g]λ

is well defined independently of the selection we have made. Different selections
may change g, but not gB. We postpone the proof of the theorem and of this fact
to §3.2.3, after showing that it is possible to define a Borel selection ĝ. Theorem 37
implies that g and ĝ give the same gB.

3.2.2. Borel selection

Before proving Theorem 37, for the sake of completeness we show that one can
define as well a Borel function, that we denote by ĝ(t, x) = ĝt,x, for which Theorem 37
still holds. This requires a bit more work than the previous argument: we do not
associate immediately to each point (where it is possible) an eligible curve and the
derivative of u along it, but something which must be close to it. We find then with
the proof of Theorem 37 that we end up with the same class gB = [ĝ]λ.

Lemma 38. The (t, x)-projection E of G is Borel. For every ε > 0 there exists a
Borel function

(t, x) 7→ (γε,t,x, gε,t,x)

with

(t, x) ∈ S , γε,t,x ∈ C1([−δ, δ]) , gε,t,x ∈ [−G− ε,G+ ε]
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such that (t, x, γε,t,x, gε,t,x) ∈ C of (3.4a) and such that for |h| sufficiently small∣∣∣∣gε,t,x − u(t± h, γε,t,x(±h))− u(t, x)

±h

∣∣∣∣ < ε .

Definition 39. We define as a Borel universal source the function

ĝ(t, x) = ĝt,x =

0 if (t, x) /∈ E or u(t, x) ∈ N ,

lim inf
ε↓0

gε,t,x if (t, x) ∈ E and u(t, x) /∈ N ,

where gε,t,x is fixed in Lemma 38.

Proof of Lemma 38. We remind the following selection theorem [18, Th. 5.12.1].

Theorem 40 (Arsenin–Kunugui). Let B ⊂ X × Y be a Borel set, X,Y Polish,
such that Bx is σ-compact for every x. Then the projection on X of B is Borel, and
B admits a Borel function s : PXB → Y such that (x, s(x)) ∈ B for all x in the
projection PXB.

We verify the hypothesis of, and we apply the above selection theorem to the set⋃
n∈N

⋂
m>n

{
(t, x, γ, ζ) ∈ C :

∣∣∣∣ζ − u(t± hm, γ(±hm))− u(t, x)

±hm

∣∣∣∣ ≤ ε

2

}
, (3.8)

where C was defined in (3.4a) and {hn}n∈N immediately below that in (3.6). The
section

C(t̄,x̄) =
{

(t̄, x̄, γ, ζ) : γ(0) = x̄ , γ̇(s) = λ(t+ s, γ(s))
}

is locally compact as a consequence of the Arzelà–Ascoli theorem, because by the
boundedness of λ the curves are equi-bounded and equi-Lipschitz continuous, and by
the continuity of λ when they converge uniformly they also converge in C1([−δ, δ]).
For t, h fixed the set{

(γ, ζ) :

∣∣∣∣ζ − u(t± h, γ(±h))− u(t, x)

±h

∣∣∣∣ ≤ ε

2

}
is closed, therefore its intersection with C(t̄,x̄) is compact: this proves that each
(t, x)-section of (3.8) is σ-compact. The hypothesis of the theorem are satisfied: it
provides that the projection E of (3.8) on the first factor R+ × R 3 (t, x) is Borel
and that there exists a Borel subset of (3.8) which is the graph of a function s
defined on E. Since the projection from that graph to the first components R+ ×R
is one-to-one and continuous, the function s is a Borel section of (3.8), concluding
our statement. �

3.2.3. Proof of Theorem 37

We provide here the proof of Theorem 37 with gt,x either the Borel or the Souslin
one. Let us introduce the notation. We consider:

• γ̄(s) a characteristic curve for the balance law through (t, x) = (t, γ̄(t));

• ζ̄(s) = d
dsu(s, γ̄(s)) the derivative of u along γ̄, where it exists;
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• either γε̃,t,x(s) or γt,x(s): the characteristic curve of u through (t, x) given
either by Lemma 38 or by Corollary 35 (fix for example γε̃,t,x(s), which is
more complex);

• ζε̃(t+ s) = d
dsu(t+ s, γε̃,t,x(s)) the derivative of u along γε̃,t,x, where it exists;

where the derivative does not exists, set the function equal to e.g. 0;

• either ĝ(t, x) of Definition 39 or g(t, x) of Corollary 35 (fix ĝ(t, x), as we are
showing the proof with the Borel selection of §3.2.2).

We indeed know from Theorem 30 that u(iγ̄(s)) and u(iγε̃,t,x(s)) are G-Lipschitz
continuous. We prove first that for almost every t the derivative of u(iγ̄(t)) is
precisely ĝ(iγ̄(t)) if u(iγ̄(t)) is not an inflection point of f . After that, we exploit
again the negligibility assumption L 1(clos(Infl(f))) = 0 on the inflection points of
f and we conclude

u(iγ(s))− u(iγ(r)) =

∫ s

r
ĝ(iγ(t)) dt ∀0 ≤ r ≤ s .

Step 1: Countable decomposition. We give a countable covering of the set of
Lebesgue points t where the derivative ζ̄(t) of u(iγ̄(t)) exists but differs from ĝiγ̄(t).
The set can be described as⋃

ε>0

{
t : ∃ ζ̄(t) = lim

σ→0

u(iγ̄(t+ σ))− u(iγ̄(t))

σ
,
∣∣ĝiγ̄(t) − ζ̄(t)

∣∣ ≥ ε} .

In particular, dropping the condition that the derivative ζ̄(t) of u(iγ̄(t)) exists at t
we notice that this set is contained in⋃

ε>0

⋃
n∈N

{
t :

∣∣∣∣ĝiγ̄(t) −
1

σ

∫ t+σ

t
ζ̄

∣∣∣∣ ≥ ε , ∣∣∣∣ĝiγ̄(t) −
1

σ

∫ t

t−σ
ζ̄

∣∣∣∣ ≥ ε ∀σ ∈ (0, 2−n)

}
.

The proof now needs a further index because we are working with the Borel selection.
If we recall the Definition 39 of ĝt,x, and observe that along the characteristic curve
γε̃,t,γ̄(t) there holds

u(iγε̃,t,x(t± σ))− u(iγε̃,t,x(t)) =

∫ t±σ

t
ζε̃ ,

then we can add a condition which is always satisfied, and the last union can be
rewritten as ⋃

ε̃<ε

⋃
n∈N

{
t :

∣∣∣∣ĝiγ̄(t) −
1

±σ

∫ t±σ

t
ζ̄

∣∣∣∣ ≥ 3ε ,∣∣∣∣gε̃,iγ̄(t)
− 1

±σ

∫ t±σ

t
ζε̃

∣∣∣∣ < ε ∀σ ∈ (0, 2−n)

}
.

The union can as well be done on any sequences ε̃k < εk with εk ↓ 0: if

|ĝt,x − gε̃k,t,x| ≤ εk/3
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then one has the equivalent expression

⋃
ε̃k<εk

⋃
n∈N

{
t :

∣∣∣∣ĝiγ̄(t) −
1

±σ

∫ t±σ

t
ζ̄

∣∣∣∣ ≥ 3εk ,∣∣∣∣ĝiγ̄(t) −
1

±σ

∫ t±σ

t
ζε̃k

∣∣∣∣ < εk ∀σ ∈ (0, 2−n)

}
.

We arrived to the countable covering that we wanted to prove in this step. If one is
considering the Souslin selection clearly γε̃,t,x = γt,x and gε̃,t,γ̄(t) = gt,γ̄(t) = ζε̃k(t).

Step 2: Reduction argument. We prove that the set{
t : ĝ(iγ̄(t)) >

1

±σ

∫ t±σ

t
ζ̄ + 3ε ,∣∣∣∣ĝ(iγ̄(t))− 1

±σ

∫ t±σ

t
ζε̃

∣∣∣∣ < ε ∀σ ∈ (0, 2−n)

} (3.9)

cannot contain two points t1, t2 with |t1 − t2| ≤ 2−n. The case

ĝ(iγ̄(t)) <
1

±σ

∫ t±σ

t
ζ̄ − 3ε

is similar, arguing backwards in time. Then the thesis will follow: by the previous
step, the set of times where the derivative of u(iγ̄(t)) exists and it is different from
ĝiγ̄(t) will be at most countable. Therefore the derivative of u(iγ̄(t)) will be almost
everywhere precisely ĝiγ̄(t).

Step 3: Analysis of the single sets. By contradiction, assume that (3.9) contains
two such points, for example t1 = 0, t2 = ρ. Then, essentially two cases may occur.

Substep 3.1: Concavity/convexity region. We first consider the open region where
f ′′(u) ≥ 0. (The open region f ′′(u) ≤ 0 is entirely similar.) The restriction to the
open set is allowed because the argument is local: we consider later also the region
of inflection points. In particular, in this step we consider f ′(u) monotone in u, in
particular nondecreasing.

Compare γ̄ with the two curves given by the selection theorem through two fixed
points

(0, γ̄(0)) = (0, 0) , (ρ, γ̄(ρ)) = (ρ, 0) .

The x component is set 0 just for simplifying notations. We rename the characteristic
curves as

γ0(t) := γε̃,0,γ̄(0)(t) , ζ0(t) :=
d

dt
u(iγ0(t)) ,

γρ(t) := γε̃,ρ,γ̄(ρ)(t− ρ) , ζρ(t) :=
d

dt
u(iγρ(t)) .
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Notice that γ0(t), γρ(t) are tangent to γ̄ respectively at times 0, ρ because they are
characteristics. By (3.9), at respectively t = 0, t = ρ, one finds for t ∈ [0, ρ]

1

±σ

∫ t±σ

t
ζ0 ≥ ĝ(iγ̄(t))− ε ≥ 1

±σ

∫ t±σ

t
ζ̄ + 2ε ,

1

±σ

∫ t±σ

t
ζρ ≥ ĝ(iγ̄(t))− ε ≥ 1

±σ

∫ t±σ

t
ζ̄ + 2ε ,

which means that the derivative ζ̄ of u along γ̄ is lower than the ones ζ0, ζρ along
γ0, γρ:

u(iγ0(t))− u(0, 0) =

∫ t

0
ζ0

(3.9)

≥
∫ t

0
ζ̄ = u(iγ̄(t))− u(0, 0) ,

u(ρ, 0)− u(iγρ(t)) =

∫ ρ

t
ζρ

(3.9)

≥
∫ ρ

t
ζ̄ = u(ρ, 0)− u(iγ̄(t)) .

This means that for t in (0, ρ) one has

u(t, γ0(t)) ≥ u(t, γ̄(t)) , u(t, γ̄(t)) ≥ u(t, γρ(t)) .

Being f ′(u) nonincreasing in turn

f ′(u(t, γρ(t))) ≤ f ′(u(t, γ̄(t))) ≤ f ′(u(t, γ0(t))) .

Being characteristics, the functions above are just the slopes of the curves γρ, γ̄, γ0:

• integrating γ̄, γ0 between 0 (where they coincide) and t;

• integrating γρ, γ̄ between ρ (where they coincide) and t;

one obtains

γ̄(t) ≤ γ0(t) , γ̄(t) ≤ γρ(t) .
As a consequence of this and of the finite speed of propagation, γ0 and γρ must
intersect in the time interval [0, ρ], say at time ρ′. We can compute the value of u
at

(ρ′, γ0(ρ′)) = iγ0(ρ′) = iγρ(ρ
′) = (ρ′, γρ(ρ

′))

by the differential relation both on γ0, starting from 0, and on γρ, starting from ρ:
we have then

u(0, γ(0)) +

∫ ρ′

0
ζ0 = u(ρ′, γ0(ρ′)) = u(ρ′, γρ(ρ

′)) = u(ρ, γρ(ρ))−
∫ ρ

ρ′
ζρ .

Comparing the the first and last term of this chain of identities one deduces

u(ρ, γρ(ρ))− u(0, γ(0)) =

∫ ρ′

0
ζ0 +

∫ ρ

ρ′
ζρ .

However, the times 0, ρ belong by construction to the set (3.9), and therefore∫ ρ′

0
ζ0 +

∫ ρ

ρ′
ζρ > ρ′ ĝ(iγ̄(0)) + (ρ− ρ′) ĝ(iγ̄(ρ))− 2ε >

∫ ρ

0
ζ̄ + ε .

Since the right-hand side is just u(ρ, γρ(ρ))−u(0, γ(0))+ε, we reach a contradiction.

Substep 3.2: Inflection points. The previous step proves the statement in the
connected components of u−1(R \ N), where N = clos(Infl(f)). The assumption
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L 1(N) = 0 allows to show that inflection points do not matter. Indeed, by Theo-
rem 30 the composition U = u ◦ iγ is G-Lipschitz continuous: Lemma 41 below as-
sures therefore that u(iγ) is differentiable with 0 derivative L 1-a.e. on (u◦iγ)−1(N).
For every r < s, by the previous substep

u(iγ(s))− u(iγ(r)) =

∫ s

r
ζ(t) dt

=

∫
[r,s]∩(u◦iγ)−1(N)

ζ(t) dt+

∫
[r,s]\(u◦iγ)−1(N)

ζ(t) dt

=

∫
[r,s]∩(u◦iγ)−1(N)

0 dt+

∫
[r,s]\(u◦iγ)−1(N)

ĝ(iγ(t)) dt .

(Remember that ĝ = 0 on u−1(N) by definition.) This yields the thesis of Theo-
rem 37:

u(iγ(s))− u(iγ(r)) =

∫ s

r
ĝ(iγ(t)) dt ∀0 ≤ r ≤ s .

Lemma 41. Consider a Lipschitz continuous function U : R → R and a Lebesgue
negligible set N ⊂ R. Then the derivative of U vanishes L 1-a.e. on U−1(N).

Proof. Let TN be the set of Lebesgue points of U−1(N):

TN =

t̄ : lim
h↓0

H 1
(

[t̄− h, t̄+ h]× {ȳ} \ U−1(N)
)

h
= 0

 .

If U is G-Lipschitz continuous, then for t̄ ∈ TN one has

|U(t̄+ h)− U(t̄)|
h

≤ L 1
(
U([t̄, t̄+ h]) ∩N

)
h

+
L 1
(
U([t̄, t̄+ h]) \N

)
h

≤ 0 +
L 1
(
U([t̄, t̄+ h]) \N

)
h

≤ G L 1
(
[t̄, t̄+ h]× {ȳ} \ U−1(N)

)
h

.

The last term converges to 0 as h → 0 because t ∈ TN . This shows that u ◦ iγ(t)
is differentiable at every t̄ ∈ TN with 0 derivative: this concludes the proof of the
lemma because L 1-a.e. point of any Lebesgue measurable subset of R is a Lebesgue
point of the set. �

4. Distributional solutions are Lagrangian solutions

Consider a continuous distributional solution of

∂tu(t, x) + ∂x(f(u(t, x))) = gE(t, x) (1.1)

with f ∈ C2(R), |gE(t, x)| ≤ G. When inflection points of f are negligible, u is
Lipschitz continuous along any characteristic curve γ of u (Theorem 30). If not,
then we have cases when u is not Lipschitz continuous along some characteristics [2,
§4.3]), and the points where u may not be differentiable along any characteristic
curve might have positive L 2-measure.
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Here we work without the assumption on inflection points. We show first that
continuous distributional solutions do not dissipate entropy (Lemma 42). By ap-
proximation of the entropy, this reduces to the case of negligible inflection points,
where the solution is broad and therefore Lagrangian, and it exploits the consequent
BV -approximation of §2.

We show then in Lemma 45 that, given an entropy continuous distributional
solution u, one can find through each point a characteristic curve γ̄(t) along which u
is Lipschitz continuous. As a consequence, by §A.1 one can construct a Lagrangian
parameterization and deduce that u is a Lagrangian solution.

Lemma 42. Continuous distributional solutions of (1.1) do not dissipate entropy.

Proof. If the closure N of the inflection points of f is negligible, then by Theorem 37
a continuous distributional solution u is a broad solution, and by Lemma 16 it is
in particular a Lagrangian solution. By Corollary 28, derived from the monotone
approximations of Lagrangian continuous solutions, one has then that u satisfies the
entropy equality.

If the inflection points of f are not negligible, one can derive the thesis by an
approximation procedure. Fist notice that for every entropy-entropy flux pair (which
means for every function η ∈ C1,1(R) and every q ∈ C1,1(R) satisfying q′(z) =
η′(z)f ′(z)) one has the entropy equality

∂tη(u) + ∂x(q(u)) = η′(u) gE in D(R+ × R \ u−1(N))

by the previous step; indeed, in the open set R+×R\u−1(N), where we are claiming
that the PDE holds in the sense of distribution, u is valued where f does not have
inflection points and therefore one can apply Corollary 28.

Consider finally a decreasing family of open sets Ok = ∪j(akj , bkj ) ⊂ R such that

• N = clos(Infl(f)) ⊂ Ok for k ∈ N;

• |Ok \N | < 1/k.

One can approximate η in C1(R) with entropies ηk ∈ C1,1(R) which are linear in
Ok, for k ∈ N. For every interval (akj , b

k
j ) ⊂ Ok where ηk(u) = cku for some ck ∈ R,

for all k ∈ N one has

∂tηk(u) + ∂x(qk(u)) = ck [∂tu+ ∂xf(u)]

= ckgE = η′k(u) gE in D(u−1((akj , b
k
j ))),

∂tηk(u) + ∂x(qk(u)) = η′k(u) gE in D(R+ × R \ u−1(N)).

This shows that the entropy equality holds for the entropies {ηk}k∈N. When
ηk(u), qk(u), η′k(u) converge uniformly to η(u), q(u), η′(u), then the entropy equality
holds also for η. �

Corollary 43. If u is a continuous distributional solution of (1.1), then f ′(u)
is a continuous distributional solution of Burgers’s balance law with source term
f ′′(u) gE.
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While Lemma 42 above relies on the previous results of this paper, Lemma 45
below is instead self-contained. It is however based on maximum principle, that we
recall now.

Lemma 44. Suppose u, v are entropy solutions of the PDE

∂tu(t, x) + ∂x(f(u(t, x))) = gEu(t, x) ,

∂tv(t, x) + ∂x(f(v(t, x))) = gEv(t, x) ,

and that for some G ∈ R there holds

u(t = 0, x) ≤ v(t = 0, x) , −G ≤ gEu(t, x) ≤ gEv(t, x) ≤ G .
Then u(t, x) ≤ v(t, x).

Proof. See the proof of Theorem 3, Page 229, [13]. Alternative approaches are the
vanishing viscosity or the operator splitting, still exploiting the uniqueness of the
entropy solution. �

Lemma 45. Suppose u is a continuous entropy solution of the PDE

∂tu(t, x) + ∂x(f(u(t, x))) = gE(t, x)

with f ∈ C2(R), |gE(t, x)| ≤ G. Then at each point (t, x) there exists a characteristic
along which u is Lipschitz continuous.

Proof. The proof is obtained by constructing a piecewise affine approximation of
the desired characteristic curve. On the two consecutive edges of the linearized
curve, the Lipschitz regularity holds by the maximum principle, being an entropy
solution.

Step 1: Notation. We simplify the notation changing coordinates so that we are
looking for a characteristics curve throughout the point (0, 0), and defined between
the times t = −1, t = 1.

As the construction is local, we directly fix a square

Q = [−1, 1]2.

Let G = ‖gE‖L∞(Q). Set L = ‖f ′(u)‖L∞(Q) and M = ‖f ′′(u)‖L∞(Q). Notice that L
is an upper bound for the characteristic speed λ = f ′(u) in Q. Assume e.g. L < 1.

Step 2: Modulus of continuity for u and λ. As u is continuous, in the compact
region Q it is uniformly continuous. Let ω(δ) denote the following modulus of
continuity of u in Q:

max
Q

{
|t′ − t| , |x

′ − x|
L

}
≤ δ ⇒ |u(t, x)− u(t′, x′)| ≤ ω (δ) .

An analogous modulus of continuity for λ = f ′(u) is clearly given by Mω(δ):

|λ(t, x)− λ(t′, x′)| = |f ′(u(t, x))− f ′(u(t′, x′))|
≤M |u(t, x)− u(t′, x′)| ≤M ω(δ) .
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Step 3: Dependency regions. Let δ > 0 and (t̄, x̄) ∈ [−1 + δ, 1− δ]2. One draws a
backward triangle of dependency for an interval of time δ, delimited from below by
the segment t̄− δ:

T (t̄, x̄) =
{

(t, x) : t̄− δ ≤ t ≤ t̄ , x̄− L(t̄− t) ≤ x ≤ x̄+ L(t̄− t)
}
.

Noticing that the speed of propagation λ in the rectangle{
(t, x) : max

{
|t̄− t| , |x̄− x|

L

}
≤ δ
}

is, by definition of the modulus of continuity ω, bounded by λ(t̄, x̄) ± Mω(δ), a
smaller backward triangle of dependency is given by

Tδ(t̄, x̄) =
{

(t, x) : t̄− δ ≤ t ≤ t̄ ,
[λ(t̄, x̄)−M ω(δ)](t̄− t) ≤ x− x̄ ≤ [λ(t̄, x̄) +M ω(δ)](t̄− t)

}
.

The basis of Tδ has length 2M δ ω(δ), which is superlinear in δ.

Step 4: Comparison of u on adjacent nodes. Let ε > 0. The linear functions

u+(t, x) = u(t̄, x̄) +G(t− t̄)− ε , u−(t, x) = u(t̄, x̄)−G(t− t̄) + ε

satisfy both
u+(t̄, x̄) < u(t̄, x̄) < u−(t̄, x̄)

and the equations

∂tu−(t, x) + ∂x(f(u−(t, x))) = −G , ∂tu
+(t, x) + ∂x(f(u+(t, x))) = G .

If we had either u−(t, x) < u(t, x) or u+(t, x) > u(t, x) for all x belonging to a
ε-neighborhood of the basis of the small backward triangle of dependency Tδ, we
would contradict the maximum principle in Lemma 44. Therefore there exists a
point xε belonging to the interval(

x̄− [λ(t̄, x̄) +Mω(δ)]δ − ε , x̄+ [λ(t̄, x̄) +Mω(δ)]δ + ε
)
,

which is a ε-neighborhood of the basis of Tδ, where u(t, xε) is between u+ and u−:

u(t̄, x̄) +Gδ + ε = u−(t̄− δ, xε) ≤ u(t̄− δ, xε)
≤ u+(t̄− δ, xε) = u(t̄, x̄)−Gδ − ε .

As ε ↓ 0, a subsequence of {xε}ε↓0 must converge to a point x̂ belonging to the basis
of Tδ:

there exists x̂ ∈
[
x̄+ (λ(t̄, x̄)−Mω(δ))δ , x̄+ (λ(t̄, x̄)−Mω(δ))δ

]
such that |u(t̄− δ, x̂)− u(t̄, x̄)| ≤ Gδ. (4.1)

Step 5: Piecewise approximation. We construct here a piecewise affine approxi-
mation of a backward characteristic through (0, 0), specifying the nodes: for k ∈ N
we set (tk, xk) = (0, 0) and let

(ti, xi) :=

(
−k − i

k
, xi

)
, i = 0, . . . , k − 1,

be a point on the basis of T (ti+1, xi+1) which satisfies (4.1) where (t̄, x̄) = (ti+1, xi+1).
Thus

|u(ti, xi)− u(ti−1, xi−1)| ≤ G(ti − ti−1) for i = 0, . . . , k − 1, (4.2)
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By the choice of xi−1, for every k the slope

λi,k = k(xi − xi−1)

of each segment joining (ti−1, xi−1), (ti, xi) satisfies

λ(ti, xi)−Mω
(
k−1

)
≤ λi,k ≤ λ(ti, xi) +Mω

(
k−1

)
, (4.3)

It is in particular uniformly bounded by L+Mω(1). By the Arzelà–Ascoli theorem
the piecewise affine curve γk with edges {(ti, xi)}ki=0 converge uniformly as k ↑ ∞,
up to subsequence, to a continuous curve γ. As λ is continuous, Equation (4.3)
implies that the limit curve γ is also Lipschitz continuous with slope

γ̇(t) = λ(t, γ(t)) .

This just means that we approximated a backward characteristic curve.

Step 6: Lipschitz continuity of u along the curve. For each k ∈ N set

uk(ti) := u(ti, xi) , i = 0, . . . , k,

and define a function uk(t) linear in each interval (ti−1, ti), i = 1, . . . , k. Equa-
tion (4.2) implies that uk(t) is G-Lipschitz continuous. By the continuity of u and by
the uniform convergence to γ of the piecewise affine paths γk with edges {(ti, xi)}ki=0,
the function uk(t) converges uniformly to u(iγ(t)): one has therefore that u(iγ(t)) is
itself G-Lipschitz continuous.

Step 7: Forward characteristic. We give two explanations for this step. First,
Lemma 42 ensures that there is no entropy dissipation: one can thus reverse the time.
Applying the above procedure for the reversed time one finds a forward characteristic
curve. If one does not want to apply that strong lemma, it is enough being able
to construct through each point (t, x) ∈ (0, 1) × (−1, 1) a backward characteristic
γ(t,x)(s) along which u is G-Lipschitz continuous. Having that, the function

γ(t) := inf
{
x : γ(t,x)(0) ≥ 0

}
with t ∈ (0, 1)

can be verified to be a characteristic curve passing through the origin. Moreover,
it is the uniform limit of characteristics along which u is G-Lipschitz continuous; in
particular, by the continuity, u is therefore G-Lipschitz continuous along γ itself. �

Corollary 46. Suppose u is a continuous distributional solution of the PDE

∂tu(t, x) + ∂x(f(u(t, x))) = gE(t, x)

with ‖gE‖L∞ ≤ G. Then u is also a Lagrangian solution, with a Lagrangian source
gL bounded by G.

Proof. Lemma 42 yields that u is entropic. One can then apply Lemma 45, pro-
viding through any point a characteristic along which u is G-Lipschitz continuous.
Lemmas 17, 18 finally show that u is a Lagrangian solution. �
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Appendix A. Three sufficient conditions
for the Lagrangian formulation

Given a continuous function u, we consider here some sufficient conditions for
satisfying the Lagrangian formulation. The section extends constructions in [5,
§Appendix].

A.1. A dense set of characteristics

Fix a continuous function u. For having a Lagrangian parameterization along
which u is G-Lipschitz continuous, one clearly needs through each point of the
domain a characteristic curve along which u is G-Lipschitz continuous. We prove
here that this is sufficient. This is Lemma 17 in the introduction.

Proof of Lemma 17. Simplify the domain to u ∈ Cc(R+ × R), as it is a local
argument, and let G > 0. We assume that there exists a curve γ(t,x)(s) through each

point (t, x) of a dense subset of R+ × R such that s 7→ u(iγ(t,x)
(s)) is G-Lipschitz

continuous. We are going to modify these characteristics in order to provide a
Lagrangian parameterization.

Consider an enumeration {(xrk , yrk)}k∈N of a countable set of points, dense in the
upper plane R+ × R, where the characteristic curves are given by hypothesis. We
associate recursively to each point of this set a characteristic curve γk(s) and we
define a linear order among those:

• let γ1(s) = γ(tr1 ,xr1 )(s) and write, for k ∈ N,

rk � r1 if xrk ≤ γ1(trk), r1 � rk if xrk ≥ γ1(trk);

• let h ∈ N and define the new characteristic curve γh+1(s) through
(trh+1

, xrh+1
) in order to preserve the order relation that we are establish-

ing:

γh+1(s) = min
rh�rk , k≤h

{
γk(s) , max

r`�rh , `≤h

{
γ`(s), γ(trh+1

,xrh+1
)(s)

}}
;

as γk(s), for k ≤ h, and γ(trh+1
,xrh+1

)(s) are characteristic curves along which
u is G-Lipschitz continuous by hypothesis, then also γh+1(s) is a characteristic
curve along which u is G-Lipschitz continuous;

• we set then, for k ∈ N,

rk � rh+1 if xrk ≤ γh+1(trk), rh+1 � rk if xrk ≥ γh+1(trk);

by construction this extends the relation defined in the previous items.

The set of uniformly Lipschitz continuous curves

C = {γk(s)}k∈N
is totally ordered and the images of these curves are dense in R+ × R. We can
complete this set in the uniform topology: the curves that we introduce with the
closure are still characteristic curves because of the continuity of f ′(u); as well, u is
G-Lipschitz continuous along them and they preserve the order, in the sense that
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any two curves do not cross each other but always lie on a fixed side, when they
differ. If {qk}k∈N is an enumeration of the rational numbers, the map

θ : clos(C )→ R

γ 7→
∞∑
k=0

γ(qk)

2−k

is continuous and strictly order preserving. In particular, it is invertible with con-
tinuous inverse.

One can then verify that a Lagrangian parameterization is provided by

χ(s, y) = [θ−1(y)](s) for s ∈ θ (clos(C )).

By construction t 7→ U(t, y) = u(t, χ(t, y)) is G-Lipschitz continuous for each y fixed:
the thesis thus follows by Lemma 18. �

A.2. Lipschitz continuity along characteristics

Fix a continuous function u. For having that u is a Lagrangian solution, one
clearly needs that t 7→ u(t, χ(t, y)) is Lipschitz continuous, uniformly in the y param-
eter, for some Lagrangian parameterization χ. We prove here that this is sufficient.
This is Lemma 18 in the introduction.

We are not concerned here with the compatibility of the source terms.

Proof of Lemma 18. Simplify the domain to u ∈ Cc(R+ × R), as it is a local
argument, and let G > 0. We want to show that if there exists a Lagrangian
parameterization χ such that

−G ≤ ∃ d

dt
u(t, χ(t, y)) ≤ G in D(i−1

χ(y)(Ω)) for all y ∈ R,

then one can find a function gL ∈ L∞L (Ω) such that

d

dt
u(t, χ(t, y)) = gL(t, χ(t, y)) in D(i−1

χ(y)(Ω)) for all y ∈ R.

Set U(t, y) = u(t, χ(t, y)) and consider G ∈ L∞(R+×R) such that, in the (t, y)-half
plane,

G(t, y) = ∂tU(t, y) in D(i−1
χ(y)(Ω)) for all y ∈ R.

We want to show that it can be chosen of the form G(t, y) = gL(t, χ(t, y)) for some
gL, which means that it is essentially single-valued on the level sets of χ. Fixed y,
we show the following: the set of times t where u has a Lebesgue point of classical
differentiability

(i) both along the characteristic curve γ(t) = χ(t, y),

(ii) and also along another characteristic curve γ̄(t), lying on a fixed side of γ(t),

(iii) with two different values of the derivative,

is at most countable. This is enough since characteristics of a same Lagrangian
parameterization are by definition ordered.
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Let ε, σ > 0. By a reduction argument it suffices to show the following claim: let
S(y) be the set of all t such that∣∣∣∣U(t+ h, y)− U(t, y)

h
−G(t, y)

∣∣∣∣ < ε ,

there exists γ(s) characteristic with γ(t) = χ(t, y),

and for every |h| ≤ σ there holds γ(t+ h) ≤ χ(t+ h, y),

u(t+ h, γ(t+ h))− u(t, γ(t))

h
−G(t, y) > ε ,

(A.1)

then S(y) does not contain two points t1, t2 closer than σ. Indeed, if we are com-
paring the value of the derivative of u along different characteristics of the param-
eterization χ, then an order condition is satisfied among characteristics. Moreover,
as we consider Lebesgue points of differentiability, with different values for the de-
rivative of u along χe1

y (s) and γ(s), up to a countable covering we are dealing with
sets like (A.1).

We prove the claim by contradiction: let

t1, t2 ∈ S(y) with 0 < t2 − t1 < σ.

The definition (A.1) of S(y) provides curves γ1, γ2 which intersect

γ0(s) := χ(s, y)

at times t1, t2 respectively, and which for t1 ≤ s ≤ t2 satisfy the additional properties

γ1(s) ≤ γ0(s) , u(s, γ1(s))− u(t1, γ1(t1)) > (G(t, y) + ε) (s− t1) ,

γ2(s) ≤ γ0(s) , u(t2, γ2(t2))− u(s, γ2(s)) > (G(t, y) + ε) (t2 − s) .
By the ordering imposed in (A.1) and by the uniform Lipschitz continuity implied
by the fact that they are characteristics, the curves γ1(s), γ2(s) necessarily meet at
some time t̄ ∈ [t1, t2]. One can then compute the difference U(t2, y) − U(t1, y) in
two ways:

• by applying the incremental relation in (A.1) relative to χ, which gives

U(t2, y)− U(t1, y) = U(t2, y)− U(t̄, y) + U(t̄, y)− U(t1, y)

< G(t2, y) (t2 − t̄) + G(t1, y) (t̄− t1) + 2ε ;

• by applying the incremental relation in (A.1) relative to γ1, γ2: denoting by
x̄ the value γ1(t̄) = γ2(t̄) when γ1 and γ2 intersect one has

U(t2, y)− U(t1, y) = u(t2, γ2(t2))− u(t̄, x̄) + u(t̄, x̄)− u(t1, γ1(t1))

> G(t2, y) (t2 − t̄) + G(t1, y) (t̄− t1) + 2ε .

The estimates that we obtain in these two ways are not compatible: we have reached
a contradiction. �

A.3. Stability of the Lagrangian formulation for uniform convergence of u

We state for completeness that Lagrangian solutions are closed w.r.t. uniform
convergence, provided the sources are uniformly bounded. We include this for com-
pleteness but it follows easily by the previous analysis of the section.
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Corollary 47. Let G > 0 and uk(t, x) be a sequence of continuous Lagrangian
solutions of

∂tuk(t, x) + ∂x(f(uk(t, x))) = gEk(t, x) (1.1)

with f ∈ C2(R), |gEk(t, x)| ≤ G. If uk converges uniformly to u, then u is a
Lagrangian solution with source term bounded by G.

Proof. We verify that through every point (t, x) ∈ R+ × R there exists a charac-
teristic curve γ(s) such that u(iγ(s)) is G-Lipschitz continuous: Lemma 17 then
provides a Lagrangian parameterization along which u is G-Lipschitz continuous,
and Lemma 18 gives the thesis.

As {uk}k∈N are Lagrangian solutions of (1.1) with sources uniformly bounded by
G, one can find for each k ∈ N a characteristic curve γk(s) of uk through (t, x)
satisfying

|uk(iγk(r))− uk(iγk(s))| ≤ G|r − s| . (A.2)

The family {γk(s)}k∈N is locally equi-Lipschitz continuous and equi-bounded, as
γk(t) = x. By the Arzelà–Ascoli theorem this family has a subfamily uniformly
convergent to a function γ(s). From the uniform convergence of the continuous
functions uk and γk, the relation

γk(r)− γk(s) =

∫ s

r
uk(iγk(q)) dq

goes to the limit and it implies that γ is characteristic curve for u. Moreover,
also (A.2) goes to the limit and it yields that u is G-Lipschitz continuous along
γ. �

Nomenclature

[·]λ, [·]χ, [·] projections on L∞B (X), L∞L (X), L∞(X) respectively, Notation 9,

χ Lagrangian parameterization for a continuous solution u to (1.1), Def-
inition 5,

clos(·) closure of a set,

D(Ω) distributions on Ω, Notation 8,

L∞(X) bounded functions on X, identified L 2-a.e., Notation 8,

Dt, Dx partial derivatives of a function of bounded variation, Notation 3,

γ, iγ characteristic curve, Definition 4,

g, gB, gL functions belonging to L∞(X), L∞B (X), L∞L (X) respectively, Nota-
tion 8,

g, gE distributional, bounded source term for the balance law (1.1),

Infl(f) inflection points of f , Definition 15,

λ the composite function f ′ ◦ u, Notation 1,

L 1, L 2 1- and 2-dimensional Lebesgue measure,

M (X) Radon measures on X, Notation 8,

Ω open subset of R+ × R (connected if needed),
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∂
∂t ,

∂
∂x classical partial derivatives, Notation 3,

∂t, ∂x distributional partial derivatives, Notation 3,

L∞(X) functions defined pointwise on X, Notation 8,

L∞B (X) functions coinciding L 1-a.e. on characteristics of u, Notation 8,

L∞L (X) functions coinciding L 1-a.e. on the Lagrangian parameterization χ,
Notation 8,

ϕe2
t (x) restriction of a function ϕ(t, x) to the second coordinate, Notation 2,

ϕe1
x (t) restriction of a function ϕ(t, x) to the first coordinate, Notation 2,

C(Ω) continuous functions on Ω, see also Cb, C
k, Ckc , Ck,1/α in Notation 8,

f flux function for the balance law (1.1),

u continuous solution, Notation 1,

X subset of R+ × R, usually Borel.
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