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Abstract 
 

STIMULATED GROWTH RESPONSE TO SAND BURIAL OF A COASTAL SHRUB  

By Dawn Nicole Keller, M.S. 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at 

Virginia Commonwealth University. 

Virginia Commonwealth University, 2020 

Major Adviser: Dr. Julie Zinnert, Assistant Professor, Biology 

Drivers of vegetation zonation on barrier islands are complex and interconnected.  Sand burial is a 

strong driver in dynamic coastal systems, especially in the foredune community.  However, it is not well 

understood how burial impacts the interdunal swales communities and it is especially difficult to 

separate the effects of burial from salinity.  Climate change is altering the frequency of overwash events 

as well as expanding the range of the native shrub, Morella cerifera, on the Virginia barrier islands.  To 

accurately forecast island response to climate change it is important to understand how the shrub 

responds to sand burial.  Juvenile and mature shrubs were experimentally buried at 0, ¼, ½, and ¾ 

height in a glasshouse to observe the growth response to burial independent of other factors.  Morella 

cerifera shrubs were largely unaffected at low burial levels (< ½ height) and were stimulated at high 

levels (≥ ½ height).  Shrubs recovered biomass deficits at low levels and prioritized vertical growth at 

high levels of burial.  Shrubs in both life stages also produced adventitious roots in response to burial, 

increasing production with burial severity.  Adult shrubs sacrificed belowground root biomass to support 

adventitious root and vertical growth at ¾ burial.  Young shrubs were able to have an elevated growth in 

all three zones without sacrifice at any burial level.  Morella cerifera exhibits a neutral, then positive 

response to sand burial and is resilient at both juvenile and mature stages.  Burial is therefore not a 

major driver of M. cerifera zonation on the Virginia barrier islands. 
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Introduction 
 Drivers of vegetation zonation in coastal systems have been a major focus of coastal ecology 

as researchers aim to understand feedback mechanisms between vegetation and coastal morphology 

(Cowles, 1899; Ehrenfeld, 1990; Hayden et al., 1995; Oosting & Billings, 1942; Stallins & Parker, 2003).  

Sediment deposition and salinity are two major drivers of vegetation patterns in coastal systems 

(Barbour & DeJong, 1977; Maun, 2004; Valk, 1974; Wilson & Sykes, 1999).  On barrier islands, sand and 

salt move across the landscape, interacting with vegetation to form a heterogeneous landscape.  The 

disparate distribution of abiotic factors leads to the formation of distinct vegetation communities 

(Moreno-Casasola, 1986; Oosting, 1954; Stallins & Parker, 2003; Young et al., 2011; Zinnert et al., 2017).  

Maximum exposure to abiotic stressors is experienced in the beach and foredune habitat, where 

vegetation is well adapted to the extreme conditions.  More diverse grassland communities exist in the 

interdunal swales, protected by dunes, which often lead to succession of shrub thickets and/or maritime 

forest.  Back-barrier marshes are often found on the bayside of islands.  Beyond the chronic stressors,  

coastal storms cause abrupt change to the system through high winds, increased salt spray, and 

overwash events (i.e., when storm surge crests the foredune and floods interior habitats), which deliver 

pulses of saltwater and sand deposition into low-lying swale and upland communities (Leatherman, 

1979; Matias et al., 2009).  The frequency of overwash events is a product of elevation, tidal reach and 

storm frequency.  Climate change is causing rising sea levels and is likely to bring an increase in severity 

and frequency of coastal storms to the North American Atlantic coast (Bender et al., 2010; Emanuel, 

2005).   

 Overwash frequency is a major driver of vegetation zonation on barrier islands (Ehrenfeld, 1990; 

Fahrig et al., 1993; Miller et al., 2009).  It can be difficult to tease apart the influence of salinity and 

deposition in nearshore and dune environments as both are constant sources of stress often co-

occurring in marine coastal environments.  There is disagreement regarding which factor is more 
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important in determining vegetation zonation (Maun & Perumal, 1999; Wilson & Sykes, 1999), but there 

is no doubt that sediment deposition is a strong independent driver of vegetation zonation in marine 

coastal (Kent et al., 2001; Moreno-Casasola, 1986; Oosting, 1954) and inland systems (Brown, 1997; 

Cowles, 1899; Qu et al., 2017).  Sand movement decreases with distance from the shoreline and 

declining elevation on barrier islands (Young et al., 2011).  Generally, rates of sediment movement and 

frequency of overwash occurrence correlate well with species burial intolerance, thus burial tolerant 

species are often found closer to the shoreline (Ehrenfeld, 1990; Fahrig et al., 1993).    

Most coastal burial research has focused on dune species (Brantley et al., 2014; Brown & 

Zinnert, 2018; Franks & Peterson, 2003; Gilbert et al., 2008; Harris et al., 2017; Stallins & Parker, 2003) 

and illustrates the strong role sediment deposition plays in shaping the dune vegetation community.  

Limited attention has been paid to burial impacts on the plant communities behind dunes, especially 

woody species, which will be impacted by overwash with increases in sea-level rise and storm 

frequency/intensity.  In non-saline, sandy systems, burial is a major factor of woody plant zonation 

(Dech & Maun, 2005; Gilbert et al., 2008; Qu et al., 2017) and may be important in coastal woody 

vegetation zonation (Gilbert, 2007). 

 Sediment deposition is a source of stress to many coastal plants, apart from some dune-building 

grasses which have evolved to be burial dependent.  Deposition stresses plants by altering the micro-

environment through reductions in oxygen and temperature in the root zone as well as alterations in 

soil moisture and nutrient loads (Kurz, 1939; Maun, 1998).  If deep enough, burial may significantly 

reduce photosynthetic area and be a physical barrier against growth.  Surviving burial depends on the 

ability to reallocate resources to compensate for this stress, especially for lost photosynthetic tissues.  

Plants may do this by increasing vertical growth, increasing density (by sprouting new stems or 

branches), increasing photosynthetic rate of leaves, and/or developing adventitious roots in the burial 

space (Gilbert, 2007; Gilbert et al., 2008; Maun, 1998).  Often, these strategies come at the cost of 
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belowground biomass (D. Harris & Davy, 1988).  The strongest adaptation to burial is the ability to 

develop adventitious roots in the burial space.  Adventitious roots are new roots formed from non-root 

tissues.  As a response to burial or flooding, these roots develop off the stems (Steffens & Rasmussen, 

2016) and  are an adaptation thought to improve stability, aeration, and nutrient absorption (Ayi et al., 

2016; Steffens & Rasmussen, 2016).  Maun (1998) identified the development of adventitious roots as 

the determinant factor in whether woody plants survive burial.   

Certain patterns in sediment deposition, characterized in a variety of coastal species, include: i) 

an immediate decline if the species is not well adapted; ii) a delayed initial response followed by 

eventual decline after a certain depth or time threshold has been surpassed, or iii) a stimulated 

response that increases with burial for well adapted species (Dech & Maun, 2006; Gilbert & Ripley, 

2010).  Of course, all species have a maximum tolerance to burial beyond which death is unavoidable, 

even in species adapted to survive >100% burial.  Life stage plays an important role in survival.  

Seedlings have smaller energy and resource reserves to support compensatory growth and younger 

plants typically fair worse under proportional burial (Harris & Davy, 1988; Li, Werger, et al., 2010; Yu et 

al., 2019).  Few studies have examined the response of juvenile woody species, but if burial reduces 

seedling survival sufficiently, it can effectively hinder a species’ continuance, regardless of the resilience 

of mature plants.   

A major shift in the vegetation community has occurred on the mid-Atlantic and Gulf coast 

barrier islands.  At the Virginia Coast Reserve, woody vegetation cover, composed primarily of Morella 

cerifera (previously Myrica cerifera), increased 40% from 1984-2011 predominantly through grassland 

encroachment (Huang et al., 2018; Zinnert et al., 2016) and continues to expand today.  The primary 

driver of woody shrub encroachment into the interdunal swales is climate change, especially warmer 

wintertime temperatures, combined with engineering the microenvironment (D’Odorico et al., 2013; 
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Wood et al., 2020; Zinnert et al., 2011).  Establishment is typically limited to stable areas of the barrier 

islands where chronic sediment movement and disturbance frequency is lowest (Miller et al., 2008).   

Fahrig et al. (1993) documented that the presence of M. cerifera on Hog Island, VA strongly 

correlated with very low overwash probability.  Characterizing M. cerifera thickets on Hog Island, VA the 

following year, Young et al. (1995) again correlated thicket establishment with accretion, showing that 

seedling recruitment occurred only after land stabilized.  Brantley et al. (2014) showed that M. cerifera 

seedlings on Hog Island were found in recovering overwash zones, but not in areas that had experienced 

significant overwash disturbance in the last 1-2 years.  It is unknown to what extent M. cerifera is truly 

intolerant of sediment burial, or if salinity is the primary limiter in overwash zones.  Morella cerifera is 

moderately tolerant of soil chlorides and salt spray (Sande & Young, 1992) and to extended saltwater 

flooding (Naumann et al., 2008; Tolliver et al., 1997).  Burial tolerance of M. cerifera has never been 

examined but is essential for modeling future responses of barrier islands to storms and sea-level rise 

scenarios.  

To better understand the controls of M. cerifera range expansion, I tested burial response of M. 

cerifera shrubs at two life stages.  I measured 

morphological growth response to multiple levels of 

burial to detect any threshold responses.  I 

hypothesized that M. cerifera would be mildly 

tolerant of burial, and would exhibit a neutral, then 

negative response with increasing burial depth 

(Figure 1).  Low levels (< ½ plant height) of burial 

would not induce a significant change in resource 

allocation or survival, but severe burial (> ½ pant height) would correspond with a decline in growth and 
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Figure 1 Hypothesized response curve of Morella cerifera 
to burial at two life stages. 

Low      High 
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survival.  I also predicted that seedlings would be more susceptible to burial and would experience 

higher mortality from burial.   

 

Methods 

Burial simulation   
To test Morella cerifera response at different 

life stages to sand burial, I applied four levels of sand 

burial, as a proportion of plant height.  Using a random 

number generator, individual shrubs were distributed 

among four treatment groups: no burial, ¼ burial, ½ 

burial, or ¾ burial (n=36 adults, n=34 seedlings) (Figure 

2).  Adult plants (2 gal pot, ~61 cm tall) were purchased 

in March 2019 from Cross Creek Nursery in Richmond, VA. Plants remained in plastic pots for the 

duration of the experiment and were grown in a glasshouse at Virginia Commonwealth University for 

two months prior to the start of the experiment.  Seeds were collected in fall 2018 from the Virginia 

Coast Reserve LTER and germinated in February 2019 in a CONVIRON growth chamber (25° - 30° C, 16hr 

day/8hr night cycle).  As seedlings grew, they were re-potted into individual 2.5 L plastic pots until all 

reached at least 10 cm tall.  I recorded initial height and diameter along two axes before trimming adult 

plants to 70 cm height and seedlings to 30 cm height.  All plants sat in plastic pots for watering during 

the experiment. 

To simulate burial, collars as tall as the sediment line (based on proportional burial treatments) 

were constructed around plants using vinyl, supported by bamboo dowels on adult shrubs and recycled 

plastic pots on seedlings.  Where needed, shrubs were trimmed to fit within the diameter of the collar.  

Control plants did not receive treatment.  Collars were filled with a 3:1 mix of play sand and sand 

collected from the beach of Hog Island, VA. All plants received water daily from the bottom.  Hoagland 

Figure 2 Schematic of proportional burial design for 
seedling and adult shrubs 
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nutrient solution (Hoagland & Arnon, 1950) was added to the water (20 ml for adults; 10 ml for 

seedlings) weekly in the first month of the experiment and pests were controlled with periodic spraying 

of Ortho Malathian 50 Plus.  The adult shrub experiment ran from May to October 2019; the seedlings 

experiment from August to November 2019. 

 

Figure 3 Examples of the burial set-up. The first two images are of adult shrubs buried at 50% (A) and 75% (B) of starting height.  
The third image is of technician Eddie Long tending to buried seedlings in a growth chamber (C). 

 

Measurements 
 I tracked morphological response in three regions of the plant: 1) growth above the burial line; 

2) adventitious root development in the buried portion; and 3) belowground root mass.  For 

aboveground growth, I recorded aboveground height to the sand line, diameter along two perpendicular 

axes, and counted the number at stems at the sediment surface, as well as the number of branches on 

seedlings.  These measurements were repeated at the conclusion of the experiment.  After taking final 

measurements, I harvested all biomass above the sediment line into paper bags.  Sand-buried biomass 

was recovered, the sediment removed, and adventitious roots separated from the plant. Aboveground 

and buried biomass was dried at 60° C for at least 24 hours and weighed. Due to extensive binding in 

A B C 
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belowground roots, root balls were broken up by hand and dried inside paper bags at 60° C for at least 

96 hours.  Roots were sifted from the soil through a 3.35mm sieve and weighed.   

Statistics 
All statistics were performed in R.  Extreme outliers were identified and removed using the 

identify_outliers method of rstatix package.  One-way Analysis of Variance was used to compare 

aboveground biomass, canopy volume, height, diameter, changes in stem count, branching (in seedlings 

only), adventitious root biomass, and belowground root biomass between burial treatments within each 

life stage.  When appropriate, Tukey post-hoc tests were used to differentiate treatment level.  Where 

ANOVA assumptions were violated, Kruskal-Wallis rank test with a Nemenyi post-hoc test was used.  

Regression analysis was also used to examine relationships between burial depth and adventitious root 

biomass and height.  Correlations between burial proportion, biomass production in the three zones of 

the plant, and final height were examined using Pearson’s correlation test  

 

Results 
All shrubs survived the experiment, regardless of burial severity. The ability of adult shrubs to 

regenerate aboveground biomass decreased at higher burial levels (F=26.98, p<0.0001; Figure 4a).  

Aboveground biomass in adult shrubs was affected only after ½ burial.  Plants buried at ¼ height were 

able to completely recover with no statistical differences from controls, producing only an average of 9% 

less biomass than the controls by the end of the experiment.  Adult shrubs at ½ and ¾ burial were 

significantly different from controls with 45% and 63% less aboveground biomass, respectively. 

Conversely, seedlings were able to overcome aboveground biomass deficits due to burial at all levels 

(F=3.08, p=0.584; Figure 4b).   

Despite these differences in aboveground biomass in adult plants, there was no difference in 

canopy volume (i.e., vertical and horizontal growth) between treatment groups at the end of the 
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experiment (F=0.81, p=0.50, Figure 5a).   Shrubs buried at ½ or ¾ height were slightly smaller on average 

than control or ¼ buried shrubs, but the difference were not significant.  Amongst the seedlings, the 

average final volumes of each treatment group were all within 18% of each other, which was not 

statistically significant (F=0.32, p=0.81, Figure 5b).  Disentangling vertical and horizontal growth revealed 

that burial stimulated height growth in both life stages.  In adults, the relationship between height and 

burial was moderate (r2=0.23, F=3.09, p=0.04; Figure 6a).  Shrubs in the ¾ burial group were 23% taller 

than controls at the end of the experiment.  Horizontal expansion was similar among all adult groups 

(F=0.77, p=0.51).  In seedlings, the relationship between height and burial was stronger than seen in 

adults (r2=0.37, F=5.69, p=0.003; Figure 6b).  Seedlings in the ¾ burial group were 40% taller than control 

plants after the three-month experiment and were significantly different from the controls and the ¼ 

burial group. There were no significant differences in horizontal expansion with burial (F=1.47, p=0.24).   

The number of live stems at the sediment surface decreased due to death at every burial level in 

adults, with the ½ burial group losing the most.  The difference was significant when compared to both 

the controls and the ¾ burial group (F=4.26, p=0.13, Table 1).  There were no differences in stem count 

in seedlings (F=0.58, p=0.64, Table 1), nor any evidence that burial affected branching in seedlings 

(X2=2.90, p=0.41, Table 2). 

 Morella cerifera shrubs developed adventitious roots at all burial levels and life stages and 

increased adventitious root production with burial severity.  In adult plants, there was a moderate, 

positive relationship between burial depth and adventitious root production (r2=0.23, F=3.16 , p=0.04) 

and a stronger relationship in seedlings (r2 = 0.48, F =8.78, p < 0.001) (Figure 7).  Of all buried adult 

shrubs, 93% produced adventitious roots.  At low or moderate burial levels, average root production 

was low (0.32 ±0.14 g and 0.58 ±0.17 g, at ¼ and ½ burial respectively), but this was not statistically 

different from the highest (¾) burial level, which produced an average root biomass of 1.18 ±0.51 g.  Of 

the buried seedlings, 88% produced adventitious roots; the three that produced none were all in the ¼ 
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burial treatment group.  Like the adults, there were no statistical differences among ¼, ½, or ¾ burial 

levels in seedlings.  

 The impact of burial on belowground root biomass differed between the two life stages.  Adult 

shrubs in the ¾ burial group developed 31% less belowground root biomass than controls, which was 

statistically different from both the control and the ¼ burial groups (F=4.62, p=0.01, Figure 8a).  

Reduction in belowground root biomass under high burial correlated with increased adventitious root 

development (r= -0.45, p=0.007, Table 3), but no such correlation was present in seedlings (Table 4). 

Although buried seedlings also trended towards lower root biomass than unburied seedlings, the effect 

was not significant (F=1.58, p=0.22, Figure 8b).   

 

Discussion 
Climate change has precipitated major changes in coastal areas, especially along the Virginia 

barrier islands which represent a biogeographical boundary in northern and southern species 

distributions.  Sea level rise, increased coastal storm severity, and the proliferation of woody vegetation 

alter island ecology and have consequences for long-term island survival. My goal was to ascertain how 

the dominant, expanding shrub of the Virginia barrier islands, Morella cerifera, responds to sand burial.  

This knowledge is an important part of understanding the species’ resilience to overwash disturbance.  

Morella cerifera was assumed to be intolerant of overwash, based on observations that it was 

uncommon in areas of semi-frequent disturbance (Brantley, 2009; Fahrig et al., 1993).  Moderate 

tolerance to salinity and flooding have previously been established (Naumann et al., 2008; Sande & 

Young, 1992; Tolliver et al., 1997).  This is the first study to examine the response of M. cerifera to 

burial, despite evidence that burial can be a primary determinant of woody species zonation in other 

environments (Dech & Maun, 2005; Gilbert et al., 2008; Qu et al., 2017). 
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 My hypotheses of M. cerifera burial tolerance at two life stages were partially supported.  Low-

level burial (< ½ plant height) did not have any significant impact on plants, at either life stage, as 

hypothesized.  However, rather than the expected negative growth response and increased mortality at 

higher burial levels (> ½ plant height), shrub growth response was stimulated and there was no 

mortality, but adult growth was impacted more than seedlings.  At low burial, neither life stages were 

significantly impacted in any of the metrics I tracked.  Burial at ½ plant height appears to be an 

important threshold for M. cerifera’s response to sand burial in adult shrubs.  At this point, adults were 

no longer able to recover aboveground biomass but produced significant adventitious roots.  At ¾ burial, 

belowground root biomass in adult shrubs was reduced, likely to support this response.  Seedlings 

recovered aboveground biomass production at all burial levels and increased vertical height adventitious 

root production at ½ and ¾ burial, but this stimulated growth response did not come at the expense of 

belowground roots at any point. 

Aboveground Biomass 
At low burial, adult shrubs were sufficiently able to increase biomass production to overcome 

the buried leaves.  After ½ burial, this stimulated response was absent, and shrubs were unable to 

recover buried biomass. Though growth continued and no mortality occurred in adults, shrubs buried at 

½ and ¾ height had significantly less biomass.  Seedlings recovered biomass completely at all burial 

levels - evidence of a stimulated response and greater resilience to proportional burial than adults.  

Despite biomass differences, the canopy of all adult shrubs was approximately the same size by the end 

of the experiment.  This means burial elicited an increasingly strong growth response, even if the canopy 

was less dense at the higher burial levels.  Horizontal growth was similar regardless of burial depth, but 

burial prompted plants to grow taller relative to unburied.  This was true for seedlings, as well; plants 

grew taller, but not wider with burial.  Additionally, I found a burial effect on the number of stems in the 

½ burial group in adults.  However, this difference was fueled by several plants in the ½ burial group that 
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lost a large number of stems.  It may be a reflection of the fact that the middle of the shrub body has the 

most stems and therefore plants buried at that level experienced greater stem death than the ¼ burial 

or even the ¾ burial, which left very few stems above the sand line.  Whereas stem count decreased 

across all treatment groups in the adults, seedlings grew new stems in all groups, with no difference 

between treatments.  

Harris and Davy (1988) showed that burial can alter the nutrient allocation to plant organs, so it is 

possible, and perhaps worthy of further inquiry, that new tissue is constructed differently than pre-

existing tissue and that new tissue construction may differ in adults versus seedlings.  Stem elongation is 

a critical adaptation to burial survival, but this stimulated response due to loss of photosynthetic tissue 

is very costly.  Observing a tradeoff between elongation and tissue density, Gilbert et al. (2008) 

suggested that to reduce the cost of elongating stems to overcome burial, new tissue density is 

sacrificed.   

Adventitious Roots 
The lag in biomass production observed in adults, despite stimulated vertical growth, is likely a 

consequence of resources diverted to adventitious root production.  Burial caused plants to produce 

adventious roots at every burial level in adults, but significant production mirrored the reduction in 

aboveground biomass above ¼ burial.  The relationship between coastal burial and adventitious root 

development in woody species is not always positive or linear (Dech and Maun 2006).  Even among 

tolerant species, production may increase with burial to a point but decline beyond a certain threshold 

or decrease linearly as burial becomes more severe.  Mature M. cerifera produced adventitious roots in 

a strong, positive, linear relationship to burial, indicating a high tolerance up to at least ¾ burial.  

Seedlings also produced adventitious roots at all burial levels, with significant production at and above 

the ½ burial threshold.  They did not appear to make the tradeoff observed in adults (i.e., loss in 

aboveground biomass), but were able to increase aboveground biomass production with burial severity 
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so that all plants had roughly the same amount of aboveground biomass at the end of the experiment, 

regardless of adventitious root production.  

Belowground Biomass 
Belowground biomass was significantly reduced in adults at only the highest (¾ height) burial.  

This sacrifice of belowground production with increasing burial correlates with the production of 

adventitious roots (Table 3).  Resources are likely diverted in adults to these high priority responses 

when burial is severe.  In seedlings, there was no difference in belowground root biomass at any level, 

regardless of significant adventitious root production and stimulated aboveground biomass and vertical 

growth.  This suggests that young plants can ramp up photosynthesis enough to support stimulated 

growth responses, without needing to divert resources from other parts of the plant.  

Though I did not measure photosynthesis in this experiment, similar studies show a variety of 

photosynthetic responses to burial, but overall increased activity is typically minor and decreases over 

time (Gilbert & Ripley, 2010).  It is possible that some of the energy and resources from the buried 

portion of the plant are recycled to support increased growth in either aboveground biomass and/or 

adventitious roots (Gilbert et al., 2008). This experiment shows that, at least at ¾ burial, belowground 

biomass is reallocated in adult M. cerifera shrubs, which is in agreement with documented studies in 

other species (Gilbert & Ripley, 2010).  

My hypotheses of i) a neutral, then negative response to burial in M. cerifera shrubs and ii) higher 

mortality in seedlings were partially supported.  My results indicate that M. cerifera is tolerant of sand 

burial at both adult and seedling life stage, with seedlings exhibiting greater tolerance at all burial levels.  

Contrary to my hypothesis and work on other species (Harris & Davy, 1988; Li, Zuidema, et al., 2010; Liu 

et al., 2008; Yu et al., 2019), M. cerifera seedlings seemed more resilient to proportional burial than 

adults.  Seedlings had a stronger stimulated growth response in height and adventitious root 

development than adults, and recovered their aboveground biomass deficit completely at all burial 
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levels.  New growth seemed to come at a lower cost than in adult plants since there was no parallel 

sacrifice to aboveground or belowground tissue mass.  The stronger response burial observed in 

seedlings may be partially explained by the differences in tissue structure between young and mature 

plants.  Mature shrubs have undergone secondary growth, which requires production of a lot of 

carbohydrates.  Juveniles are not burdened by these complex, secondary organs, which are expensive to 

produce and maintain, which may mean they can dedicate more resources to new primary production 

than adult shrubs  (Kozlowski & Pallardy, 1997). 

Although plant life history is a significant factor in recovery from overwash in many coastal species 

(Cheplick 2017), my results show that M. cerifera is resilient in both juvenile and mature forms.  I did not 

assess complete burial of seedlings, but short of that, these results suggest burial will not reduce M. 

cerifera’s competitive advantages in the barrier island landscape.  Instead, this experiment provides 

evidence of a neutral, then positive response to burial in M. cerifera shrubs.  Maun (1998) proposed a 

“multifactor hypothesis” which attributes increased plant ‘vigor’ after burial to a combination of 4 

factors: i) increased soil volume, ii) increased mycorrhizal activity, iii) increased soil resources, and iv) 

reactive plant response.  The experiment provides evidence that M. cerifera is capable of capitalizing on 

the new soil volume by producing adventitious roots and is adapted to allocate energy and resources to 

fuel a reactive growth response.  

This study suggests that burial is not a strong factor influencing the zonation of M. cerifera in coastal 

systems.  Although burial tolerance and exposure are often expected to co-occur, it is not always the 

case.  Sykes and Wilson (1990) found that the strength of that relationship varied on a species by species 

basis and Gilbert (2007) also found that species in stable dune systems where burial rate was low had a 

greater growth response than species in mobile dunes.  Gilbert (2007) also observed contrasting 

interactions between stimulated growth response to burial and nutrient availability among some coastal 

shrub species.  As a nitrogen-fixing shrub, stimulated growth in M. cerifera is likely uninhibited by 
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nutrient availability. Salinity, access to freshwater, and exposure to extreme wintertime temperatures 

are likely the primarily influence on M. cerifera zonation (Naumann et al., 2008; Sinclair et al., 2020; 

Wood et al., 2020; Woods et al., 2019).     

Woody encroachment into grassland, especially of a species like M. cerifera that tends to form 

monotypic thickets, is a major cause for concern regarding plant diversity and sediment transport (Field 

et al., 2012; Zhang & Dong, 2014).  Burial filters intolerant species from the landscape, resetting the 

conditions of competition and influences community composition on a multi-year scale (Cheplick, 2017).  

The strong, positive response of seedlings to burial may be evidence of an adaptation for colonization in 

frequent burial, in which case M. cerifera may have an advantage in the interdunal swales.  Morella 

cerifera is a fast-growing evergreen species, not only capable of surviving burial up to at least ¾ of its 

height but stimulated by it, especially at the younger life stage. Burial disturbance may hasten shrub 

encroachment, especially given that most overwash events occur during winter months when most 

other island species are dormant.  The persistence of M. cerifera seedlings after overwash may redirect 

the recovery trajectory of the grassland habitat towards a new steady state that is less diverse.  There is 

also reason to believe that shrub thickets may inhibit island rollover (Zinnert et al., 2019). Sediment 

transport is reduced by woody vegetation (Breshears et al., 2009; Field et al., 2012). The results of this 

experiment suggest a possible positive feedback loop between burial and shrub growth, which had been 

previously obscured by the limitation of M. cerifera stands by cold temperatures.  Further study must 

evaluate how community recovery in the interdunal swales is impacted by winter-time burial with 

encroaching shrub species.  The burial tolerance of M. cerifera recorded here can also be incorporated 

into predictive models for barrier island response to disturbance. 
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Figure 1 Hypothesized response curve of Morella cerifera to burial at two life stages. 
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Figure 2 Schematic of proportional burial design for seedling and adult shrubs 
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Figure 4 Examples of the burial set-up. The first two images are of adult shrubs buried at 50% (A) and 75% (B) of starting height.  
The third image is of technician Eddie Long tending to buried seedlings in a growth chamber (C). 
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Figure 5 Effect of burial proportion on (a) adult and (b) seedling aboveground biomass above the sediment line.  Bars represent 
mean ±SE and letter codes denote statistical significance (p<0.05) among treatments. 
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Figure 6 Effect of burial proportion on (a) adult and (b) seedling canopy volume. Bars represent ±SE. 
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Figure 7 Relationship between burial proportion and plant height in (a) adults and (b) seedlings.  Shading around the regression 
line represents standard error. 
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Figure 8 Relationship between burial proportion and adventitious root biomass in (a) adults and (b) seedlings. Shading around 
the regression line represents standard error. 
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Figure 9 Effect of burial proportion on (a) adult and (b) seedling belowground biomass.  Bars represent ±SE and letter code  
denote statistical significance (p<0.5) among treatments. 
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Tables 
 

Table 1 Mean stem change and final stem count for adults and seedlings 

 
Burial 
Proportion 

 
Mean 
Change 

SE 
Mean 
Total 
Stems 

SE 

Adults 

0  -2.78 0.78 3.89 2.03 

1/4  -4.48 0.68 8.89 4.59 

1/2  -8.44 2.01 9.78 4.63 

3/4  -3.12 1.08 6.38 3.34 

Seedlings 

0  -0.25 0.16 1 0 
1/4  0 0 1 0 
1/2  0 0 1 0 
3/4  0 0 1 0 

 

 

Table 2 Mean branches on seedlings 
Burial 
Proportion 

Mean 
Branches 

SE 

0 3.75 1.26 
1/4 3.88 1.63 
1/2 2.56 0.78 
3/4 1.33 0.69 
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Table 3 Pearson 's correlation coefficient matrix for burial proportion, biomass production in 

three plant zones, and height in adult plants. Asterisks indicate significance levels. 

  
Correlation 
Coefficient P 

Burial Proportion Aboveground Biomass -0.84 <0.001 *** 
Burial Proportion Adventious Roots +0.48 0.004 ** 
Burial Proportion Belowground Biomass -0.51 0.002 ** 
Burial Proportion Height +0.32 0.054 
Aboveground Biomass Adventious Roots -0.32 0.07 
Aboveground Biomass Height -0.09 0.63 
Aboveground Biomass Belowground Biomass +0.48 0.004 ** 
Adventitious Roots Belowground Biomass -0.45 0.007 ** 
Adventitious Roots Height +0.36 0.032 * 
Belowground Biomass Height -0.28 0.096 

Significance Codes: 0.05 ‘*’    0.01 ‘**’    0.001 ‘***’ 
 

 

 

 

Table 4 Pearson 's correlation coefficient matrix for burial proportion, biomass production in 

three plant zones, and height in seedling plants. Asterisks indicate significance levels. 

  
Correlation 
Coefficient P 

Burial Proportion Aboveground Biomass -0.15 0.40  
Burial Proportion Adventious Roots +0.68 <0.001 *** 
Burial Proportion Belowground Biomass -0.27 0.12 
Burial Proportion Height +0.60 <0.001 *** 
Aboveground Biomass Adventious Roots +0.17 0.35 
Aboveground Biomass Belowground Biomass +0.56 <0.001 *** 
Aboveground Biomass Height +0.27 0.13 
Adventitious Roots Belowground Biomass +0.07 0.68  
Adventitious Roots Height +0.53 0.002 ** 
Belowground Biomass Height +0.14 0.43 

Significance Codes: 0.05 ‘*’    0.01 ‘**’    0.001 ‘***’ 
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