
Free Radicals Formed by H Atom Addition to Allenes as Determined 

by Muon Spin Spectroscopy 

Myles Scollon and Paul W. Percival* 

Department of Chemistry and TRIUMF, Simon Fraser University, Burnaby, BC V5A 1S6, Canada 

KEYWORDS Muonium, Allene, Reactivity, Muon spin spectroscopy, Hyperfine constant, Allyl, Vinyl 

 

ABSTRACT: Allyl and vinyl radicals are important intermediates in diverse areas of chemistry, ranging from combustion to syn-

thesis. However, questions remain about the competitive formation of these radicals from allenes. Here we present a study of proto-

typical allyl and vinyl radicals formed by H atom addition to allenes. They were studied by forming the analogous muonium ad-

ducts, since muonium (Mu) behaves as a light isotope of hydrogen, and muoniated species can be characterized by muon spin spec-

troscopy. Two techniques were employed: Transverse-Field Muon Spin Resonance (TF-μSR), and Muon Level Crossing Reso-

nance (µLCR), which allow for the measurement of muon hyperfine constants (hfcs) and other nuclear hfcs, respectively, and thus 

aid identification of the formed radicals. TF-μSR has already been used to determine that two radicals are formed by Mu addition to 

1,1-dimethylallene, but µLCR techniques were undeveloped at the time of that study, so assignments were based on ESR data of 

similar allyl and vinyl radicals. We report here the muon spin spectroscopy of multiple radicals detected from positive muon irradi-

ation of 1,1-dimethylallene and 1-methoxyallene in solution. The radicals were identified by comparison of muon and proton hfcs 

with ESR data and the results of DFT calculations. The conclusion is that muonium (and by extension, the H atom) can add to all 

three carbons of the allene system, albeit with preference for the central carbon. 

INTRODUCTION 

As part of an on-going examination of the reactivity of low-

valent main-group compounds towards free radical addition,1-4 

we planned to carry out comparative reactivity studies of some 

cumulated dienes, C=C=M (M = C, Si, Ge). As a first step we 

examined two substituted allenes: 1,1-dimethylallene (1) and 

1-methoxyallene (2). The ideal probe of reactivity is the H 

atom, because its small size and simple structure avoid addi-

tional electronic effects, i.e. it can be viewed as an unbiased 

probe. This is important for allenes in particular, because the 

selectivity of free radical attack is known to depend on the 

nature of the reactant – electrophilic radicals tend to add to the 

terminal carbons and nucleophilic radicals to the central car-

bon, although other factors can modify this principle.5,6 How-

ever, H is not commonly used as a reagent for solution studies 

because its generation (typically by photolysis or radiolysis) 

invariably produces other reactive radicals, and the ensuing 

reactions lead to multiple products. 

An alternative to the hydrogen atom is muonium, a single-

electron atom with a positive muon as the nucleus (Mu = µ+e–

). Despite the light nucleus (mµ = 0.1134 u) the reduced mass 

of the atom is close to that of H, so Mu can be viewed as a 

light isotope of hydrogen.7-11 The muon is radioactive (lifetime 

 = 2.2 µs) and has spin (I = ½), which makes it a very selec-

tive probe of complex reaction systems. When Mu adds to an 

unsaturated molecule the resulting muoniated radical can be 

detected by muon spin spectroscopy (µSR).12-15 Allyl radicals 

derived from dienes were among the earliest to be detected by 

µSR,12,16 and subsequent work included Mu addition to 1,1-

dimethylallene.17 However, these studies employed only the 

transverse-field muon spin rotation technique (TF-µSR), 

which allows the determination of the muon hyperfine con-

stant (hfc) but does not provide information on the hfcs of 

other spin-active nuclei (e.g. protons in alkyl and allyl radi-

cals). The necessary technique, avoided level-crossing reso-

nance (µLCR), was only subsequently developed and applied 

to organic radicals.18,19 The present paper reports the character-

ization of radicals derived from allenes using both TF-µSR 

and µLCR. 

EXPERIMENTAL PROCEDURES 

Muon spin spectroscopy experiments were carried out at the 

TRIUMF cyclotron facility in Vancouver, using the HELIOS 

spectrometer installed at the M15 muon beam line. HELIOS 

incorporates a superconducting solenoid magnet whose axis is 

aligned parallel to the beam. For TF-µSR experiments the spin 

polarization of the beam is rotated 90° from its momentum, so 

that it is transverse to the magnetic field; µLCR experiments 

utilize the natural longitudinal spin orientation. The beam was 

tuned for positive muons of about 4.1 MeV, which is suffi-

ciently low that the muons stop in the sample, which was 

mounted in a helium-flow cryostat inserted into the solenoid 

bore. HELIOS employs plastic scintillator positron detectors 

which are arranged in a transverse geometry for TF-µSR, and 

forward–backward for µLCR, as described elsewhere.20  

Concentrated solutions of the two allenes (1,1-dimethylallene 

and 1-methoxyallene) were made by mixing the allenes with 

equal volumes of tetrahydrofuran (THF). They were degassed 

by the freeze-pump-thaw method before being sealed in stain-

less-steel target cells. 

Although the spin precession signals obtained from TF-µSR 

experiments are conveniently displayed as Fourier transform 

spectra (e.g. Figure 1) quantitative analysis was accomplished 
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by fitting the original signals in time space, using Wimda,21 a 

multi-parameter curve-fitting program for µSR histograms. 

µLCR spectra comprise plots of muon asymmetry as a func-

tion of magnetic field. Since square-wave field modulation 

was used (either ±48 G or ±96 G) the resonance signals were 

fitted (using Microsoft Excel) with the difference of two Lo-

rentzian curves. 

EXPERIMENTAL RESULTS 

Radicals derived from 1,1-dimethylallene 

TF-µSR experiments were performed at temperatures of 170, 

200, 230 and 260 K. The 260 K spectrum is shown in Figure 

1. It shows the characteristic precession signals of two distinct 

radicals, One has muon spin precession frequencies of 138.7 

MHz and 175.5 MHz, corresponding to a muon hyperfine 

constant (Aµ) of 36.8 MHz, and the other has precession fre-

quencies of 38.4 MHz and 276.6 MHz, corresponding to Aµ = 

238.2 MHz. At lower temperatures the smaller hfc decreases 

and the larger hfc increases, as shown in Table 1. These data 

are consistent with the values (at 210 K and 288 K) found by 

Rhodes et al.17 and assigned to the 1,1-dimethylallyl radical 1a 

and the substituted vinyl radical 1b (see Scheme 1). It is 1a 

that has the smaller hfc. 

 

Figure 1. Fourier transform TF-µSR spectrum obtained from a 

sample of 1,1-dimethylallene in THF at 260 K. The peak at 157 

MHz is due to muons in diamagnetic environments, whose spins 

precess at the muon Larmor frequency for the applied magnetic 

field (here 11.59 kG). The signals symmetrically arranged about 

the diamagnetic peak arise from muoniated free radicals. The 

inner, more intense pair corresponds to a muon hyperfine constant 

of 36.8 MHz. The outer, weaker pair corresponds to a muon hy-

perfine constant of 238.2 MHz. 

Table 1. Muon Hyperfine Constants (MHz) for the Two 

Radicals Derived from 1,1-Dimethylallene 

Temperature /K 1a 1b 

260 36.79(1)a 238.22(3) 

230 36.01(1) 246.16(3) 

200 35.27(1) 257.42(4) 

170 34.59(1) 272.69(7) 

aThe numbers in parentheses refer to statistical uncertainty 

from the fits. 

Although the Fourier transform signals of 1b appear to be 

weaker than those of 1a, this is mostly because the 1b lines are 

broader. Fits of the precession signals in time space confirm 

that radical 1b decays faster than 1a. From the ratio of the 

initial amplitudes of the precession signals we deduce that the 

relative yield of the radicals (1a/1b) is 1.2 ± 0.1. 

Scheme 1. Muonium addition to 1,1-dimethylallene (1) 

 

The same sample was also studied by µLCR at 170 K and 260 

K. Figure 2 displays field regions where resonances were de-

tected at 260 K. Such resonance signals occur at fields where 

muon and proton spin-levels mix. However, at very low field 

there are additional mechanisms which lead to loss of muon 

spin polarization, resulting in a curved background (the so-

called repolarization curve).15 For purposes of display the 

spectrum shown in Figure 2a has had this background re-

moved. In all, there are five resonances shown, some of them 

(two each in Figures 2a and 2b) close together so that the spec-

tral shapes overlap. The magnetic field at which each reso-

nance occurs depends on both the muon hfc Aµ and the proton 

hfc Ap:
18,19 
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where µ, p and e are the muon, proton, and electron gyro-

magnetic ratios, respectively. In principle the existence of two 

radicals, and thus two values of Aµ, leads to ambiguity in de-

termination of Ap. In practice, however, the choices are limited 

by expectations based on ESR literature. For example, the 

resonance close to 10 kG (Figure 2c) must be associated with 

radical 1b (Aµ = 238.2 MHz) since the alternative (Aµ = 36.8 

MHz) would imply unreasonable proton hfcs (-150 MHz or 

+222 MHz) for an allyl radical. Similar considerations lead to 

assignment of the four low-field resonances to radical 1a. 

A different type of ambiguity arises from the unsigned (abso-

lute value) nature of BLCR (Equation 1). In particular, the two 

resonances close to zero field (Figure 2a) provide different 

values of Ap according to whether Ap > Aµ or vice-versa. The 

results listed in Table 2 were chosen on the basis of published 

ESR data for the 1,1-dimethylallyl radical,22 with the alterna-

tives included as footnotes. 

Table 2. Proton Hyperfine Constants (Ap) Derived from 

the Muon Avoided Level-crossing Resonances Detected at 

260 K and 170 K 

 260 K 170 K 

Radical BLCR /kG Ap /MHz BLCR /kG Ap /MHz 

1a 0.248(5) 31.95(9) a 0.272(5) 29.33(10) b 

1a 0.407(4) 44.07(7) c 0.493(2) 43.49(4) d 

1a 3.969(2) -37.00(4) 3.866(3) -37.26(5) 

1a 4.082(3) -39.08(5) 3.982(3) -39.42(6) 

1b 10.058(6) 50.27(11) − − 

aAlternative value 41.14 MHz. bAlternative value 39.40 MHz. 
cAlternative value 29.02 MHz. dAlternative value 25.24 MHz. 

In most cases the relative magnitudes of Aµ and Ap are obvious 

and it is possible to determine their relative signs (a particular 



 

advantage of µLCR, in contrast to standard ESR spectra which 

provide only line splittings). Thus, the resonances close to 4 

kG (Figure 2b) imply negative proton hfcs, which are assigned 

to the -CH2 group of 1a. The pair of ambiguous positive hfcs 

is assigned to the -methyl groups on C1. The inequivalence 

of this pair of hfcs is consistent with the planar allyl structure 

of 1a (Scheme1). Furthermore, the hfcs are roughly half of the 

typical value (75 MHz)23 for a -CH3 group in a localized 

radical, consistent with a -orbital in which the unpaired spin 

density is shared between C1 and C3. 

 

Figure 2. Segments of the µLCR spectrum obtained from a sam-

ple of 1,1-dimethylallene in THF at 260 K. There are two over-

lapping resonances in each of (a) and (b) and a single one in (c). 

The highest-field resonance (recorded only at 260 K) is as-

signed to the protons of the muoniated methyl group (–

CH2Mu) attached to the  carbon of 1b. Their hfc (50.3 MHz) 

is consistent with the methyl proton hfc reported for the 

methylvinyl radical H2C=C•CH3 in liquid ethane at 101 K 

(54.6 MHz).24 It is instructive to compare our proton hfc with 

the muon hfc (Aµ = 238.2 MHz) for the same radical (1b). 

Defining a reduced muon hfc, Aµ = 0.31413Aµ, to account for 

the different magnetic moments of the muon and proton, we 

find a hyperfine isotope effect of Aµ/Ap = 1.49, a typical value 

for the muoniated methyl group.10 Alternatively, comparing 

Aµ' to the methyl proton hfc of H2C=C•CH3 the isotope effect 

is 1.37. Such isotope effects are usually ascribed to a confor-

mational effect, a preference for the C-Mu bond to eclipse the 

orbital containing the unpaired electron on the neighbouring 

carbon. Incomplete averaging of methyl rotation results in 

temperature dependence of the hfcs: Aµ falls with temperature 

and Ap rises (as shown for the muoniated tert-butyl radical).25 

The muon hfcs listed in Table 1 are consistent with this. A 

roughly temperature-independent average for the CH2Mu 

group can be defined as <A> = (Aµ+2Ap)/3. For 1b this works 

out to be 58.5 MHz, reasonably close to the methyl proton hfc 

in H2C=C•CH3. 

A smaller, positive temperature-dependence is evident (Table 

1) for the muon hfc in 1a, where Mu is attached to C2. This is 

in accord with the previous µSR study17 as well as earlier ESR 

results on similar 1-substituted allyl radicals.22 It is consistent 

with torsional oscillations about C2, resulting in - overlap 

between the C-Mu(H) bond and the singly-occupied molecular 

orbital. 

Radicals derived from methoxyallene 

Allyl and vinyl radicals are also to be expected from addition 

of muonium to methoxyallene (2), but the lower symmetry of 

the mono-substituted allene results in E/Z isomerization. Fur-

thermore, to aid subsequent discussion we should not exclude 

the possibility of Mu addition to C1 as well as C3. Scheme 2 

shows the possible muoniated radical products. 

Scheme 2. Muonium addition to methoxyallene (2) 

 

TF-µSR spectra were obtained from the sample of methoxy-

allene in THF at temperatures of 210, 245, 280 and 300 K, as 

well as neat liquid methoxyallene at 260, 280 and 300 K. The 

strongest signals were observed at the lowest temperature, and 

these are displayed in Figure 3a. 

There are several notable differences from the dimethylallene 

case (Figure 1). First, although there is a weak precession sig-

nal at 53.4 MHz, the matching frequency on the high side of 

the diamagnetic signal is not discernable. This is also the case 

for another precession signal, at 118 MHz. The lack of a high 

frequency precession signal can arise when the formation rate 

of the muoniated radical competes with the change of preces-

sion frequency from its precursor (typically muonium), result-

ing in spin dephasing of the product.13-15 It is still possible to 

determine the muon hfc from the single radical precession 

frequency (R1) and the muon Larmor frequency: 
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where µ and e are the muon and electron Larmor frequen-

cies. The first signal corresponds to a muon hfc of 286.5 MHz, 

consistent with a muoniated methyl group in a vinyl radical, 

similar to 1b. The second signal, with muon hfc 156.7 MHz, 

has no equivalent in the dimethylallene system. It may also be 

a substituted vinyl radical, but with Mu attached to C1 instead 

of C3. Although very weak, the existence of this signal was 

confirmed with a sample of neat liquid methoxyallene, for 

which the radical formation rate was sufficient to give the 

upper radical precession frequency, as evident in Figure 3c. 

 

Figure 3. Fourier transform TF-µSR spectra obtained from (a) a 

sample of methoxyallene in THF at 210 K; (b) the same spectrum 

expanded; (c) pure liquid methoxyallene at 260 K. 

Yet another notable difference from dimethylallene is the dou-

bling of the allyl radical signals, as shown in the expanded plot 

of Figure 3b. This is consistent with the loss of symmetry 

caused by the methoxy substituent. The muon hfcs are listed in 

Table 3. 

Table 3. Muon Hyperfine Constants (MHz) for the Radi-

cals Derived from Methoxyallene a 

Temp./K Sample 2a 2b 2c 2d 

210 solution 34.03(1) 29.17(3) 286.5(1) 156.7(1) 

245 solution 34.86(2) 30.00(3) 272.9(1) − 

260 liquid 35.21(3) 30.40(6) − 154.0(1) 

280 solution 35.67(1) 30.76(2) 263.7(4) − 

280 liquid 35.65(2) 30.82(4) − 150.1(1) 

300 solution 36.12(2) 31.20(3) 258.4(5) − 

300 liquid 36.19(3) 31.44(4) − 148.7(1) 

aAssignment to specific radical structures relies on the results 

of DFT calculations. 

Hyperfine constants for the two 1-methoxyallyl radicals (H-

substituted equivalents to 2a and 2b) have been reported by 

Sustmann et al.26,27 The allylic (C2) protons have hfcs in the 

ratio 1.15, very close to our value of 1.17. Similarly, two dis-

tinct 1-methylallyl radicals have been detected by ESR after 

H-abstraction from the cis and trans forms of 2-butene.28 De-

spite other differences in the spectra, the hfc of the proton in 

the allylic (C2) position is reported to be almost the same for 

the two isomeric methylallyl radicals, in contrast to our results 

for the muon hfc in the methoxyallyl radicals (2a and 2b). The 

positive temperature-dependence of the muon hfc in 2a and 2b 

is the same as noted earlier for 1a. 

The higher muon hfcs assigned to radicals 2c and 2d are con-

sistent with expectations for a muoniated methyl group (2c, 

similar to 1b) and a radical in which Mu and the methoxy 

group are attached to the same carbon (2d). In the latter case 

the preferred conformation has an increased dihedral angle 

between the C-Mu bond and the -orbital containing the un-

paired electron. 

In principle the above explanation for the different muon hfcs 

of the vinyl radicals could be tested by determining the proton 

hfcs for the substituted methyl groups from µLCR spectra. 

However, no convincing resonances were detected in the ex-

pected field ranges, presumably because the weak signals were 

lost in noise. The best µLCR signals for methoxyallene in 

THF are shown in Figure 4. The two resonances (at 3.844 kG 

and 3.967 kG) can be attributed to the three protons attached 

to C1 and C3 in 2a (the most abundant radical as indicated by 

TF-µSR spectra). The lower-field signal is 1.4 times more 

intense than the other, consistent with a degeneracy factor of 

2.18 The corresponding proton hfcs are -35.9 ± 0.1 MHz (two 

equivalent protons) and -38.2 ± 0.1 MHz, very close to values 

found for 1a. 

COMPUTATIONAL RESULTS 

Proton hyperfine constants for various allyl and vinyl radicals 

were calculated to confirm the assignments discussed above. 

Gaussian-1629 was used to optimize radical geometries, using 

DFT at the UB3LYP/6-311G(d,p) level, after which single-

point calculations with the EPR-III basis set were used to de-

termine hyperfine constants. Although this basis set has been 



 

optimized for the computation of hfcs by DFT methods, it 

does not account for vibrational effects.30 These are often ig-

nored for proton hfcs but can be substantial for Mu. The 

agreement between computed and ESR experimental values 

(Table 4) validates the method, and the comparison with our 

µSR results shows that the Mu/H isotope effect is small for 

radical 1a. This is not the case for 1b, where there is a con-

formational isotope effect in the CH2Mu group. Taking the 

average hfc for the group, we calculated 60.6 MHz, which can 

be compared with 58.5 MHz for our experimental result. ESR 

results for related methyl-substituted vinyl radicals are 54.6 

MHz23 and 61.5 MHz.31 

 

Figure 4. Weak resonances in the µLCR spectrum obtained from 

a sample of methoxyallene in THF at 275 K. 

Table 4. Comparison of Calculated Hyperfine Constants 

(MHz) for 1,1-Dimethylallyl with Experimental Data for 

Radical 1a 

 calc.a ESRb µSRc 

H/Mu 11.2 10.6 11.6d 

CH3 (trans) 44.7 43.0 44.1 

CH3 (cis) 36.2 34.6 32.0 

H (trans) -40.6 (-)39.1e -39.1 

H (cis) -38.3 (-)37.1e -37.0 

aUB3LYP/6-311G(d,p)//UB3LYP/EPR-III. bAverage of values 

for 153 K and 363 K (Krusic et al.22). cThis work, values at 260 K. 
dReduced muon hyperfine constant. e Assumed negative. 

Table 5 compares our experimental data for the muoniated 

radicals formed from 1-methoxyallene with our calculations 

for radicals 2a–2d. The apparent disagreement for 2c and 2d 

can be ascribed to the muonium conformation effect. Thus, the 

calculated value listed for CH2Mu in 2c is an average of three 

proton hfcs, corresponding to free rotation of the methyl group 

in the high-temperature limit. In contrast, the reduced muon 

hfc is 30% higher, indicating a preferred conformation with 

enhanced overlap of C-Mu with the orbital containing the un-

paired electron. There is an inverse effect for 2d, since in this 

case the methoxy substituent takes the preferred orientation. 

A more extensive report of computational results can be found 

in the file of Supporting Information. 

Table 5. Comparison of Calculated and Experimental Val-

ues of Hyperfine Constants (MHz) for Radicals Derived 

from 1-Methoxyallene 

 nucleus calc.a ESRb expt.c 

2a H/Mu 10.1 10.2 11.2 

2a H (cis  2) -40.2, -36.3 36.7 -35.9d 

2a H (trans) -43.3 39.2 -38.2d 

2b H/Mu 9.7 8.8 9.7 

2c CH2Mu 63.3e  82.8 

2d CHMuOMe 66.8f  47.2 

aUB3LYP/6-311G(d,p)//UB3LYP/EPR-III. bSustman et al.26,27 

values at 213 K. cThis work; reduced muon hfc at 280 K unless 

otherwise specified. dThis work; proton hfc at 275 K. eAverage 

conformation. fAverage of two conformations. 

FURTHER DISCUSSION 

Given the general importance of allenes in organic synthesis 

and, specifically, the recent interest in their functionalization 

via radical addition,6,32 it would be desirable to understand the 

factors that determine the regioselectivity of radical addition to 

allenes. It has long been known that the nature of the attacking 

radical affects the selectivity of reaction at the centre versus 

the terminal carbons.5 By using the H-atom analogue, muon-

ium, we eliminate this factor. The general expectation is that H 

atoms add to alkenes and dienes to form the most stable radi-

cal products, and this is well supported by studies utilizing 

muonium.16,33 A recent review6 asserts that this principle also 

applies to allenes: “thermodynamics largely controls the selec-

tivity in radical additions to allenes”. However, our results do 

not support this view. Radical 1a is lower in energy than 1b by 

93 kJ mol-1, yet the relative yields are almost equal (55%, 

45%). We therefore conclude that the competition is governed 

by kinetics. i.e. it is the activation energies rather than the re-

action energies that determine the products. In similar vein, 

the lack of Mu addition to C1 of dimethylallene is explained 

by a higher activation energy (no doubt due to steric hin-

drance) rather than the conventional explanation of the greater 

stability of the tertiary radical over the primary. In contrast, C1 

and C3 of methoxyallene are both open to attack, as evident by 

the detection of both 2c and 2d, in addition to the more abun-

dant allyl radicals 2a and 2b. 

As a caveat we point out that the above discussion assumes 

that the detected radicals are all formed by direct addition of 

muonium to the allenes. In principle, two-step ionic pathways 

exist in the end-of-track muon radiolysis spur: either µ+ at-

tachment followed by charge neutralization, or initial electron 

attachment followed by muon addition.34,35 One possible indi-

cation of such an ionic pathway is delayed formation of the 

radical product. This is rare, but in recent years we have re-

ported several instances of related behaviour, where the ampli-

tudes of precession frequencies vary sinusoidally with the 

delay between the muon stop and the time window used to 

Fourier transform the data. 14,36-38 Careful examination of the 

allene data set revealed some effect for radicals 2b and 2d but 

not the others. The phenomenon of oscillating signal ampli-

tudes is under examination in other systems where the effect is 

more marked. For the current work we can only remark that 

we cannot rule out the possibility of a small contribution to 

radical formation via an ionic reaction mechanism. 



 

CONCLUSIONS 

By using muonium as an H-atom analogue we have shown 

that unbiased free radical attack can occur at all three carbons 

of the allene system. Furthermore, the competition is kinetical-

ly controlled. This is relevant to the use of allenes in organic 

synthesis, in particular their functionalization via radical addi-

tion. 
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