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Marcelo Santillan3 , and Craig Scrivner3

1Department of Earth Sciences, University of Oregon, Eugene, OR, USA, 2Department of Earth and Space Sciences,
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Abstract Large earthquakes are difficult to model in real‐time with traditional inertial seismic
measurements. Several algorithms that leverage high‐rate real‐time Global Navigation Satellite Systems
(HR‐GNSS) positions have been proposed, and it has been shown that they can supplement the earthquake
monitoring effort. However, analyses of the long‐term noise behavior of high‐rate real‐time GNSS positions,
which are important to understand how the data can be used operationally by monitoring agencies, have
been limited to just a few sites and to short time spans. Here, we show results from an analysis of the noise
characteristics of 1 year of positions at 213 GNSS sites spanning a large geographic region from Southern
California to Alaska. We characterize the behavior of noise and propose several references noise models
which can be used as baselines to compare against as technological improvements allow for higher precision
solutions. We also show how to use the reference noise models to generate realistic synthetic noise that
can be used in simulations of HR‐GNSS waveforms. We discuss spatiotemporal variations in the noise and
their potential sources and significance. We also detail how noise analysis can be used in a dynamic quality
control to determine which sites should or should not contribute positions to an earthquake modeling
algorithm at a particular moment in time. We posit that while there remain important improvements yet to
be made, such as reducing the number of outliers in the time series, the present quality of real‐time HR‐
GNSS waveforms is more than sufficient for monitoring large earthquakes.

1. Motivation

There is broad interest in the international earthquake monitoring community in high rate (HR, epoch
length ≤1 sps) real‐time position estimation from global navigation satellite systems (GNSS) such as the glo-
bal positioning system (GPS) and others. It has been shown that HR‐GNSS displacement waveforms can sup-
plement measurements from traditional seismic networks based on inertial sensors and can be leveraged to
characterize moderate to large earthquakes in seconds to minutes. This interest arises because algorithms
that rely on inertial sensors “saturate” for large events, particularly at local and regional distances (e.g.,
Hoshiba &Ozaki, 2014, Trugman et al., 2019). Saturation means that large and very large events look similar
in inertial recordings and cannot be distinguished from one another in the first minutes following a signifi-
cant event. The exact causes for this are still a matter of some debate but are most likely that the long period
band of groundmotion (period >10 s) is not faithfully recorded by strong motion sensors in the near‐field. In
contrast, this low frequency energy which distinguishes large events is recorded with fidelity by HR‐GNSS
from the Nyquist frequency out to and including static, or permanent, offsets. As a result, many researchers
have studied and proposed algorithms based on HR‐GNSS that compute magnitude (Melgar et al., 2015),
focal mechanisms (faulting style) (Crowell et al., 2016; Riquelme et al., 2016), and slip distribution
(Grapenthin et al., 2014; Kawamoto et al., 2017; Minson et al., 2014) in real‐ or near real‐time based either
on the static offsets or the full 1‐Hz waveforms. Several of these algorithms have been systematically evalu-
ated (e.g., Hodgkinson et al., 2020) with both real and simulated events and are being used to complement
traditional seismic approaches in earthquake and tsunami early warning systems. Thorough reviews of these
issues can be found in Bock and Melgar (2016), Allen and Melgar (2019), and Larson (2019).

Measurements of ground motion from HR‐GNSS differ from those obtained by inertial seismic sensors in
fundamental ways. In the electro‐mechanical systems used in seismometry, the digitized acceleration or
velocity of a proof mass inside the instrument correlates directly, through a known transfer function, to
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the actual ground motion. HR‐GNSS positions are a wholly different kind of derived product. As a
space‐based geodetic approach, calculation of HR‐GNSS positions relies on measurement of the time of
flight of a microwave transmission between a satellite and a ground‐based antenna and receiver as well as
the phase with which the signal arrives. These measurements coupled with knowledge of ancillary variables
such as transmission delays through the troposphere and ionosphere, knowledge of the satellite clocks and
orbits, and others, are used by a positioning algorithm to solve a least squares problem and produce epoch by
epoch solutions of the station coordinates in a particular reference frame. Themost common reference frame
is the International Terrestrial Reference Frame (ITRF) which satellite orbits are generally computed in
(Altamimi et al., 2016). If the GNSS antenna is firmly coupled to the ground through a geodetic monument
and it experiences a sudden motion, such as the one produced by an earthquake, the position solutions can
be used to obtain displacement waveforms in local topocentric north, east, and vertical components of that
particular point of the surface of the Earth. While the concept behind GNSS positioning is in essence simple,
the estimation of the position of the antenna phase center using satellite signals, the practice is complex,
especially for high sample rates and in real‐time. Satellite orbits and clocks which determine the spatial
and temporal origin of the microwave signal used to solve for the position are not as well known in
real‐time as is necessary for precise positioning. As a result, a number of external corrections must be calcu-
lated using a reference regional network (e.g., Geng et al., 2013) and applied in real‐time for the positions to
achieve the cm‐level precision needed for earthquake monitoring.

In spite of this seemingly added complexity when compared to inertial sensors, real‐time HR‐GNSS net-
works have proliferated to almost every tectonically active region (e.g., Barrientos & Pérez‐Campos, 2018)
and a variety of methods are employed to calculate the GNSS positions. There exists proprietary software
for positioning from a number of vendors as well as open source academic codes (e.g., Geng, Chen,
et al., 2019). However, in spite of the significant progress in positioning and in understanding how
HR‐GNSS can contribute to real‐time earthquake monitoring, as well the rapid expansion of real‐time net-
works, one important outstanding issue remains. What are the noise characteristics and long‐term behavior
and performance of the position solutions in a real‐world setting across a network with large geographic
aperture? Characterization of the actual real‐time performance of HR‐GNSS has only been performed in
small scale controlled settings such as shaketables and on individual station to station baselines (e.g.,
Bock et al., 2000, 2011; Genrich & Bock, 2006; Langbein & Bock, 2004). Tests of real‐time performance have
also been carried out in a simulated mode post hoc for large events (e.g., Fang et al., 2013). More recently,
Geng et al. (2017, 2018) analyzed month‐long 1‐Hz positions at several sites calculated post hoc with final
clocks and orbits. Melgar et al. (2019) studied the performance of 9 HR‐GNSS stations that were recorded
and positioned in a full end‐to‐end real‐time system and broadcast to end users for the 2019 M6.4 and
M7.1 Ridgecrest, California, earthquakes. When compared to post‐processed solutions, it was found that
the main features of the waveforms used for rapid source characterization, the peak ground displacement
(PGD) and the coseismic offsets compared favorably between real‐time and post‐processed data. However,
differences between real‐time and post‐processed positions were also apparent. Post‐processed solutions
are able to leverage final orbit and clock products as well as use iterative approaches and full time‐series fil-
tering to compute positions whereas RT‐GNSS positions can only utilize recursive filters and rely heavily on
phase ambiguity stability.

In this work, we explore this issue further. Wewill study the long‐term noise characteristics of truly real‐time
1‐Hz point position time series computed in the ITRF global reference frame by the Geodesy Lab at Central
Washington University (CWU) for a network of 213 stations (Figure 1) spanning from southern California to
Alaska. These data are streamed from the field site to CWU where positions are computed on the fly. The
solutions are rebroadcast to a number of users including the U.S. Geological Survey and the National
Oceanographic and Atmospheric Administration (NOAA). The data are streamed as well to the
Universities of Oregon and Washington where they are analyzed and archived. Here, we will discuss the
temporal and spatial behavior of noise in these HR‐GNSS solutions. We note that in traditional inertial seis-
mic sensing, “noise” reflects ambient vibrations of the ground. Meanwhile in the GNSS positioning displa-
cement solutions, we discuss in this work “noise” is dominated by imprecise knowledge of satellite orbits
and clocks needed to solve the positioning inverse problem, by the complex propagation of the electromag-
netic signals broadcast by the satellites through an ever‐changing ionosphere and troposphere, and by sec-
ondary arrivals of the electromagnetic waves to the antenna from reflections of the surrounding terrain.
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We emphasize that the performance we aim to characterized here is by definition a snapshot in time. GNSS
positioning technology is improving constantly, and it is our hope that the noise models we will demonstrate
can be used by others to benchmark improvements and progress. These proposed reference noise models can
potentially be used to determine the quality of the positioning solutions from a particular positioning
algorithm or at a particular station of interest. Finally, we will demonstrate how to use the reference
models to generate synthetic time series of noise which can be added to simulations of earthquake ground
motions to more accurately represent a real‐world scenario and to test rapid source estimation methods.

2. Data and Analysis Method
2.1. Network and Positioning

Many continuous GNSS networks operate in the region spanned by this study (Figure 1; the U.S. West Coast,
Canada, and Alaska), and while an exact figure on the number of available sites is hard to come by and
changes frequently, it is likely on the order of ~1,000 stations (e.g., Blewitt et al., 2018). Of these, a subset
of 213 was chosen for a demonstration project for NOAA. This agency is interested in using GNSS to supple-
ment its local tsunami warning effort, and so, starting in 2017, positions for this subset of sites began to be
streamed in real‐time to the Tsunami Warning Centers in Hawaii and Alaska (Melbourne et al., 2018). In
order to analyze the performance of the data, starting in October 2018, the positions are also being streamed
to the University of Oregonwhere they archived as individual daily station files inminiSEED format for later
analysis.

The positions themselves are produced by Central Washington University's FastLane algorithm. The raw
GNSS data are telemetered from the field to the central location for a particular network operator such as
Boulder CO for UNAVCO Inc. sites or Berkeley CA, for UC Berkeley stations for example. From there,
the individual network operators stream the data to CWU in Ellensburg, WA, where Fastlane computes
the epoch by epoch position solutions and in turn serves them to other users such as NOAA and the UO.

The Fastlane positioning system (Santillan et al., 2013) produces precise point position (PPP; Zumberge
et al., 1997) estimates based primarily on GNSS carrier phase observables (currently only from the GPS con-
stellation) and satellite clock corrections provided by the real‐time service (RTS) of the International GNSS
Service (IGS). Fastlane uses a modified form of PPP (e.g., Kouba & Héroux, 2001) using only phase in posi-
tioning which greatly mitigates the influence of code multipath on positioning, resulting in
higher‐resolution positioning. Additionally, Fastlane uses only half the number of input observations, thus
reducing the overall computation of the position estimates which also translates into smaller latencies.

Figure 1. Distribution of real‐time stations analyzed in this study. The inset histogram shows how many days of
real‐time data are available for each station.
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Positions are computed in SI units (meters) in Earth Centered Earth Fixed reference frame (XYZ
coordinates). Prior to streaming out the solutions to users, these are rotated to a more familiar topocentric
local north, east, and vertical reference frame. An example year‐long waveform is shown in Figure 2.

2.2. Noise Analysis

First, we study simple time domain features of the real‐time waveforms such as the number and amplitude
of outliers. For every station, we count how frequently displacement levels of certain thresholds are exceeded
in order to quantify the frequency of occurrence of the large displacement excursions seen in Figure 2.
However, the bulk of our analysis focuses on the frequency domain.We employ the probabilistic power spec-
tra (PPSD) technique of McNamara and Buland (2004) for all sites. The PPSDmethod is common in seismol-
ogy to characterize the long‐term noise behavior of broadband sites. We take 20‐min windows at each site
and for each of the three components of motions and calculate the power spectra. This is repeated for every
time window available for each site and an empirical probability density function (PDF) of the distribution of
power at each frequency is obtained for every station. An example of the PPSD calculation for the same sta-
tion in Figure 2 is shown in Figure 3. The PPSD approach is desirable because it minimizes the need to “fix”
issues with the time series prior to calculating the spectra. As shown in Figure 2, there are outliers, steps, and
spikes, as well as gaps in the data. The PPSDwill naturally deal with these. A windowwith one of these beha-
viors will simply plot at a higher power. Meanwhile windows without these issues, which are more frequent,
will eventually illuminate the median behavior as well as the lowest possible expected noise.

After we obtain PPSDs for each of the 213 sites in this study and for each component of motion, we aggregate
all of them to obtain the overall behavior of the HR‐GNSS noise. From this regional PPSD, we can extract

Figure 2. Example time series for the east‐west component of station BILS. Plotted are successive close‐ups of the data
starting from the entire span and finishing with a 3‐hr period.
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reference noise models, for example, we select the first percentile from the regional PPSD and term this the
“low‐noise”model. Similarly, the 50th and 90th percentiles of the PPSD are used to define the “median” and
“high‐noise” models.

2.3. Generation of Synthetic Noise Time Series

Using the regional reference noise models, we demonstrate a simple method for generating synthetic time
series of noise that recreate the behavior observed in the real data. We follow the approach first proposed
by Boore (1983) and further detailed in Graves and Pitarka (2010) for generating stochastic time series in
seismology. The approach has three simple steps, first, we create a Gaussian white noise time series with
a specified sample rate (e.g., 1 Hz) and duration. Second, we apply the Fourier transform to the white noise
time series and keep the random phase spectrum but replace the white noise PSD with the reference noise
model PSD. Finally, we inverse Fourier transform to the time domain and recover a time series. While we
have proposed three reference models at the first, 50th, and 90th percentiles, we have also extracted noise
models for every 10th percentile. Example code for how to generate the noise time series is in
Melgar (2020) and its documentation (more information on tutorials is in the acknowledgments).

3. Results
3.1. Overall Noise Characteristics

The time series in Figure 2 show seemingly meter‐level accuracies in the positions; this is far too high to
satisfy the centimeter to decimeter requirement needed to monitor large events (e.g., Melgar et al., 2015;
Ruhl et al., 2018); however, if the data are plotted over shorter time scales, we can see that this is the result
of outliers and that in reality over time scales of minutes the data show centimeter‐level precision. To further
demonstrate this, we take every 20‐min segment, remove its mean, and count how frequently it exceeds dis-
placement thresholds of certain levels. We do this for all sites and all epochs. The distribution of positions in
the east direction and the cumulative density function are in Figure 4 and show that in spite of the outliers,
90% of the data have noise smaller than 20 cm.

Figure 5 shows the aggregate PPSD plot for all three components of motion for all stations. We note that as
first described by Genrich and Bock (2006), the real time positions have roughly red noise with a plateau at
periods longer than ~100 s and decreasing noise levels at shorter periods. The noise is generally lowest for the

Figure 3. Example PPSD for the east‐west component of displacement of station BILS (Figure 2). The color bar denotes
the percentage of spectra that fall within a certain power and period bin. The black lines are used as a reference and
denote the power of a Gaussian white noise time series with the specified standard deviation. The bar at the bottom
denotes the time‐spans covered by the data.

10.1029/2019JB019197Journal of Geophysical Research: Solid Earth

MELGAR ET AL. 5 of 15



east component, followed by the north component, with the highest noise levels in the vertical direction.
This is consistent with what is seen in post‐processed data (e.g., Bock et al., 2011; Melgar et al., 2019) and
is usually attributed to the geometry of the constellation of satellites. This is more clearly seen in Figure 6,
where the first, 50th, and 90th percentiles of the PPSDs for each component of motion are plotted
together. The average difference in noise between each component of motion is 3–7 dB. This is smaller
than the ~10 dB seen in post‐processed PPP solutions (Geng et al., 2017, 2018). We note that while the
time domain analysis of the outliers in Figure 4 suggests that noise levels in the 10‐ to 20‐cm range are
not uncommon, the frequency domain analysis shows a more nuanced perspective. At shorter periods,
shorter than 100 s, which are comparable with the duration of large earthquake, noise is much closer to
the ~5‐cm level. Meanwhile at shorter periods than that (e.g., 10 s), 1 cm or even subcentimeter level
noise is prevalent. In the supporting information, we provide tables with the noise values at 10th
percentile intervals (Dataset S1).

3.2. Spatiotemporal Characteristics of Noise

We are also interested in the variations of the noise distribution over long periods of time. Figure 7 shows the
spectrogram for the nearly year‐long time series at station BILS and for a period of 1 week. We find that,
while there can be short periods of higher or lower noise overall, the general spectral shape and the behavior

Figure 4. Number of outliers in the position waveforms in the east direction for different thresholds and for all sites and
all epochs. The black dashed line in the cumulative density function is the 90% level.

Figure 5. Aggregate PPSDs for the three components of motion for all stations in this study. The color bar denotes the proportion of spectra that fall within a
certain power and period bin. The continuous black lines denote the first, 50th, and 90th percentiles. The dashed lines are used as a reference and denote the
power of a time series of Gaussian white noise with specified standard deviation.
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of the noise is somewhat stable. At a particular period, the average standard deviation of the PSD throughout
the year is only 5–6 dB with larger excursion from this baseline behavior occurring only over short periods of
time (e.g., time period P1 in Figures 7 and 8). The time series of power at selected periods, also shown in
Figure 7, hint at regular variations in the noise behavior and also suggest that the temporal changes to the
noise covary between periods. This is especially obvious in the week‐long time series. In Figure 9, we explore
this further; we extract the time series of power spectral density at these three periods (2, 60, and 300 s) for

Figure 6. Comparison plot of the first, 50th, and 90th percentiles of the PPSD noise distribution for all sites from
Figure 5. The horizontal thin black reference lines are used as a reference and denote the power of a time series of
Gaussian white noise with specified standard deviation.

Figure 7. Top: yearlong spectrogram of positions for the east component of station BILS (Figure 2). For ease of interpretation we also plot the time series of power
for 3 selected periods, 2, 60, and 300 s. Bottom: same as the top but for a shorter time span of only 1 week. The time periods labeled P1, P2, and P3 enclosed in the
rectangles correspond to periods of high, medium, and low noise, respectively. Time series for these periods are in Figure 8.
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each site and calculate the spectra for each. We then stack them across all the sites to see if there are any
spectral peaks that are systematically present at all sites. There are several (Figure 9), of particular promi-
nence we note peaks at 1.96‐, 11.38‐, and 21‐ to 23‐hr periods. This “spectra of spectra” should not be inter-
preted to suggest position signals at these periods, rather they show that with a periodicity of, for example,
~2 hr, the entire spectra of the positions at all frequencies shift wholesale to higher or lower noise levels. The
spectra explain some of the temporal variability in the noise behavior, but we note, and will discuss further
on, that the time series are punctuated by short periods of very high noise (e.g., time period P1 in Figures 7
and 8) that occur at irregular intervals.

We also explore the spatial distribution of noise across the sites. Figure 10 is a map of the amplitude of the
noise at a period of 60 s across the entire network. We do not observe any strong spatial pattern with respect
to preferential locations or environments for low or high noise sites. For example, in the Southern California
cluster, there are many low noise sites (approximately−26 dB); however, in betweenmany of them are inter-
spersed high noise sites with power closer to −22 or −21 dB. The same is true in the other three clusters in
the Bay area, the Pacific Northwest, and Alaska. Additionally, we do not observe systematically higher noise
in any of the regions shown in Figure 10.

Figure 8. Left: example 10‐min‐long time series for periods of high, medium, and low noise for the east component of
station BILS. The time periods are highlighted as P1, P2, and P3 in the spectrogram on Figure 7. Right: PPSD for
station BILS, (same as Figure 3) with spectra for noise at time periods P1, P2, and P3. The dashed lines are used as a
reference and denote the power of a time series of Gaussian white noise with specified standard deviation.

Figure 9. Stacked spectra of the time series of power of the noise at 2‐, 60‐, and 300‐s periods (see Figure 7). The
individual spectra for each site are calculated for the entire time span and then all the sites are averaged together to
create the stack.
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3.3. Synthetic Noise Time Series

Figure 6 exemplifies three potential reference noise models fromwhich to choose.We define the first percen-
tile model as the “low” noise model, the 50th percentile as the “median” model, and the 90th percentile as
the high noise model. These can be used to generate arbitrarily long synthetic time series of noise to be
injected into simulations of earthquakes or any other potential application where high‐rate positions are
used or required (e.g., Melgar et al., 2016). Figure 11 shows by way of an example a three component
20‐min time series of median synthetic noise compared to a 20‐min window from station BILS. The figure
illustrates that the two are, as designed, very similar to each other.

4. Discussion
4.1. On the Characteristics of the Noise

Langbein and Bock (2004) and Genrich and Bock (2006) first analyzed the noise behavior of HR‐GNSS posi-
tions obtained from relative positioning (where the positions are with respect to a reference site). Those stu-
dies found that noise has a characteristic “dam” profile, with approximately flat power at long periods and
linearly decaying (in a log‐log sense) power at higher frequencies. In this study, we find that positions
obtained from PPP are consistent with these earlier findings. At periods longer than ~200‐s power is mostly
flat, suggesting mostly uncorrelated positions, with power decaying with a slope of −2 at shorter periods
(e.g., Figures 5 and 6). This power of two decay is characteristic of a random walk process (e.g.,
Agnew, 1992). Both the slope and the location of the spectral “corner” are consistent with earlier findings
from Genrich and Bock (2006), who analyzed instantaneous relative positions for three baselines in

Figure 10. Distribution of noise at 60‐s period in the California, Pacific Northwest, and Alaska regions.
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Southern California. It suggests that the primary source in the short period band up to ~200 s is a
combination of the troposphere and multipath. At very short periods (<5 s), there is an indication that the
spectra are beginning to flatten; this too would be consistent with Genrich and Bock (2006) and Bock
et al. (2011), who observed mostly white noise in 50‐Hz sampled GNSS at periods shorter than 1–2 Hz.
This white noise behavior is indicative that the noise sources at these higher frequencies are uncorrelated.

In the aforementioned studies, the positions were mostly obtained with relative positioning, where a refer-
ence site is assumed to be fixed in space and can be used to eliminate orbit and atmosphere errors nearly
completely through a procedure known as double differencing. However, the PPP method employed by
FastLane cannot take advantage of this and is affected more by the orbit and atmosphere. In a more recent
study of post‐processed PPP solutions, over many days, Geng et al. (2017, 2018) found that the corner over
which there is a transition to flat power appears at a longer period likely closer to a few hours. This is because
atmospheric evolution is comparatively slow over time. However, in our study, because we are not using
post‐processed and cleaned positions but rather real‐time solutions obtained on‐the‐fly which can have out-
liers and other glitches in them (Figure 2), we cannot calculate the spectra on the longer time series. Rather,
we have to break them into shorter 20‐min segments and use the PPSD method. It remains possible that the
flat power corner occurs at longer periods in the FastLane solutions consistent with Geng et al. (2017, 2018);
however, we cannot resolve that in the real‐time data. As processing methods improve, this will be a feature
of the solutions to continue to evaluate. Nonetheless, this particular characteristic of the spectra takes place
at quite long periods, likely outside what is of importance for earthquake monitoring.

The long‐term behavior of the noise in Figure 7 is interesting. The spectrograms show a periodic variability
in the noise levels which is punctuated by irregularly spaced short intervals of time where there is a whole-
sale increase or decrease of noise. The time series of power in Figure 7 were collected at 2, 60, and 300 s,
which alternatively correspond to the short period somewhat flattened part of the spectrum, the linearly
decaying part of the spectrum, and the long period approximately flat part of the spectrum. The changes
in power at all of these periods co‐vary, even during periods (such as P1 in Figure 7) when there are large
increases in noise. This is perhaps unsurprising, Figure 8 shows that the noise increase is manifested as sev-
eral step‐like jumps, likely from errors in the ambiguity resolution procedure. We also see a gradual decay
after each step offset which is characteristic of “re‐convergence” after a cycle slip (e.g., Geng et al., 2013).

The irregular distribution of station noise in Figure 10 is somewhat surprising and will warrant further
study. A priori one would expect a geographic correlation between the noise levels and a number of potential
candidate parameters. For example, it is well known that the geometry of the constellation of GPS satellites
is less favorable for positioning at higher latitudes. Similarly, the ionosphere should be more active as one
approaches the poles. Yet we do not observe a systematic degradation of the northern sites. One would also
expect that multipath would correlate strongly with the noise performance of the stations. Yet, we do not see
a correlation between noise power and the signal to noise ratio in the L1 and L2 frequencies. We explore this
further in Figure 12. Here we plot the time series of power at 60‐s period for a 4‐day period for all sites in the
San Francisco Bay Area cluster. We see clearly that in this limited geographic region over length scales of
~100 km, the noise at many sites is highly correlated. Both episodes of elevated and reduced noise occur close
together in time between many sites. We calculate the correlation coefficient of all the time series to an

Figure 11. Twenty minutes of noise observed at station BILS (Figure 2) and 20 min of synthetic noise generated using the
median noise model from Figure 5. The time series for each direction of motion are offset for clarity.
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arbitrary site in the middle of the cluster (P223) and indeed we find high correlation (>0.75) between many
of the stations. This is true even for station CMBB which is 175 km from P223 and still exhibits a high (0.7)
correlation coefficient. In Figure 12, we also show themedian power at 60‐s period for the same 4‐day period.
We see clearly that the stations that do not follow the same regional variation in noise are those with highest
power. These noisy sites have a completely different evolution of noise with time.

Figures 10 and 12 show that a likely explanation for the noise behavior at a particular site is a weighted sum
of many factors. The strong correlations at ~100 km length scales are evidence of regional effects. This
includes period of disturbances in both the ionospheric and troposphere which would affect stations over
regions of this size. Similarly drifts in clocks and orbits will have a strong regional correlation. However, that
the absolute level of the noise at stations analyzed in this study exhibits poor correlation with obvious geo-
graphic features strongly suggests that this is an effect local to each site. The quality of the monument, and
the environment (vegetation, snow, buildings, and other microwave equipment) surrounding each site is
highly heterogeneous and can have an outsized effect in the positioning quality raising the noise floor
substantially.

Finally, we note that there are other noise sources which will be specific to the positioning algorithm being
used. For example, the ~2‐hr peak (Figure 9) is likely due to the frequency with which the orbital parameters
in the broadcast ephemeris are updated. These updated values are used in the FastLane processing scheme
and introduce a regular periodic behavior. Indeed, an important point we stress is that the overall noise
behavior and shape of the spectra should roughly follow the “dam” profile irrespective of the positioning
algorithm being used. However, the details of the noise behavior will be strongly influenced by not just
the traditional sources of noise but also by the processing strategy. Deviations from the noise behavior we
detail here should not be unexpected.

Figure 12. (a) Time series of power at 60‐s period for the 4‐day time span from 26–30 June 2019 for station in the San
Francisco Bay Area cluster. The time series are colored by the correlation coefficient to a reference site inside the
cluster (station P223). (b) Locations of the stations in the cluster and median power at 60‐s period for the selected time
span. (c) Correlation between all sites to reference station P223.
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4.2. Implications for Positioning Algorithms

The noise models we propose are useful signposts which can be used to
compare against as improvements to GNSS positioning technologies are
developed. For example, broadcast of new frequencies by GNSS satellites
(Geng & Bock, 2013; Zhao et al., 2015) and positioning strategies that har-
ness multiple constellations (“true GNSS”) promise to provide substantial
improvements and reductions in noise (Geng et al., 2016; Geng, Guo,
et al., 2019; Odolinski et al., 2015). As this technology is incorporated into
permanent monitoring networks, it can be evaluated by comparison to
established baselines of noise behavior.

4.3. Comparison to Seismological Noise

The concepts behind this study were inspired by the techniques proposed
by McNamara and Buland (2004), who carried out a similar analysis for
noise at seismic sites in the continental United States and established its
systematic behavior. Because use of HR‐GNSS is becoming widespread
inmonitoring efforts in seismology, we have attempted to establish a simi-
lar baseline of behavior here. However, some critical conceptual differ-
ences warrant a few comments. The background seismic noise observed
at broadband sites on‐land are actual vibrations of the ground whose
sources are anthropogenic (Groos & Ritter, 2009), environmental
(Dybing et al., 2019), and from the interactions of the oceans with the
near‐shore solid Earth (e.g., Fan et al., 2019; Longuet‐Higgins, 1950).
This noise is of comparatively very small amplitude; at periods of 1 s, for
example, it is expected to have a power of −170 to −130 dB
(Peterson, 1993). This is several orders of magnitude below what we mea-
sure fromGNSS (−55 dB; Figure 5). We emphasize that the source of noise

in GNSS positions have nothing to do with actual high‐frequencymotions of the ground. It is true that longer
period deformation of the Earth such as that induced by tides can have centimeter to subcentimeter ampli-
tudes (e.g., Agnew, 2010); however, this is outside the frequency band of interest to monitoring large earth-
quakes. Rather, most of the noise comes from the variable delays to the microwave satellite signals
introduced by the troposphere and ionosphere and spurious reflections (multipath) of the microwaves off
of the surrounding terrain which occlude the main arrival to the GNSS antenna. Another large source of
noise is imperfect knowledge in real‐time of the satellite clocks and orbits. Long period noise induced by con-
stellation geometry is highly repeatable and can be reduced through sidereal filtering (Larson et al., 2007).
Assuming that technical improvements in mitigating these noise sources are possible, this large gap
(~70 dB) between background seismic noise and current GNSS noise suggests that the lower bound of what
could be observed lies far beyond what is possible now. There is essentially an unbounded room for
improvement.

4.4. Implications for Seismic Monitoring

Previous studies of the relative amplitudes of ground displacements at regional distances from medium to
large events (Crowell et al., 2013; Melgar et al., 2015; Ruhl et al., 2018) suggest that, in order for GNSS time
series to be of use for monitoring, precision of a few centimeters is necessary. For example, if the precision
were relatively poor, say 10 cm, the peak ground displacement scaling laws of Melgar et al. (2015) predict
that an M7 earthquake would be visible to any site within 91 km. That distance grows to 462 and
1,628 km forM8 andM9 earthquakes, respectively. The aggregate PPSDs in Figures 5 and 6 then suggest that
the current precision achieved by the real‐time GNSS solutions is sufficient for monitoring large events.

Figure 13 shows an example of the potential performance. There we plot the three component HR‐GNSS dis-
placements for station CCCC which was processed in real‐time with Fastlane and recorded both the M6.4
and M7.1 Ridgecrest CA earthquakes at 35 and 50 km from the source (Goldberg et al., 2019; Melgar
et al., 2019). We also plot the spectra for the waveforms and themedian noise models. This shows clearly that
the waveforms are reliable. Melgar et al. (2019) showed that while there were some small but appreciable

Figure 13. Real‐time three‐component displacements at station CCCC
during the 2019 M6.4 and M7.1 Ridgecrest CA earthquakes plotted as
seconds since the earthquake origin time (OT). Also shown are the spectra
of the waveforms compared to the median noise model.
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differences between the real‐time and post‐processed high‐rate solutions, the features of the waveformsmost
used in monitoring remained consistent in both sets of solutions.

Another important use of the work discussed here for monitoring is in making objective and automated
assessments of the station positioning quality. Figure 8 exemplifies how an otherwise well‐behaved sta-
tion can, for limited periods of time, have elevated noise levels which can have detrimental effects on
any algorithm using it to model an earthquake source. Monitoring agencies can use either the global
noise model, or a station by station noise model, and set percentile cutoffs, perhaps at a few selected per-
iods. If the noise rises above that threshold for some period of time, the station can be quarantined or
“black listed” so that it does not contribute solutions to a source modeling algorithm should an earth-
quake occur in that time. Later as the station noise drops to an acceptable level it can be removed from
the black list. Similarly, sites that are routinely above some threshold level will likely need to be serviced
or altogether removed from contribution to any real‐time monitoring effort. The particulars of this thresh-
olding approach will need to be carefully studied as more real‐time data accumulates. For example, over
what length of a time window should PSDs be used to assess station quality remains to be worked out.
Shorter time windows allow for faster updates but introduce more uncertainty in the spectral estimation
(e.g., Prieto et al., 2009).

For the Fastlane algorithm in particular, one important challenge remains as it continues to contribute solu-
tions to monitoring agencies. The large outliers seen in Figure 2 are not the norm (e.g., Figure 4) but they are
large enough that should they occur during an earthquake they could introduce significant errors into the
modeling. This problem has been noted in real‐time monitoring efforts elsewhere (Kawamoto et al., 2017).
This in general will not be an issue for the computation of coseismic offsets, as a moving average or median
filters can be employed (i.e., Crowell et al., 2016); however, for PGD scaling, significant outliers or cycle slips
can influence the derived magnitude estimates. During the Ridgecrest earthquakes, there were no occur-
rences of this in any of the real‐time waveforms. However, continued effort in making the positioning strat-
egy more robust is ongoing.

5. Conclusions

Large earthquakes are difficult to model in real‐time with traditional inertial seismic measurements. Several
algorithms that leverage high‐rate RT‐GNSS positions have been proposed, and it has been shown that they
can supplement the earthquake monitoring effort. However, analyses of the long‐term noise behavior of
high‐rate RT‐GNSS positions, which are important to understand how the data can be used operationally
by monitoring agencies, have been limited to just a few sites and to short time spans. Here, we have shown
results from an analysis of the noise characteristics of 1 year of positions at 213 RT‐GNSS sites spanning a
large geographic region from Southern California to Alaska. We have characterized the noise and proposed
several references noise models which can be used as baselines to compare against as technological improve-
ments allow for higher precision solutions. We have also shown how to use the reference noise models to
generate realistic synthetic noise that can be used in simulations of HR‐GNSS waveforms. Additionally,
we find that while variations in the noise have a strong spatial correlation, the absolute level of noise at a
site does not. This is evidence that local effects (monumentation, station conditions, multipath, etc.) likely
dominate the noise behavior. Further, we have shown how this noise analysis can be used in a dynamic qual-
ity control to determine which sites should or should not contribute positions to an earthquake modeling
algorithm at a particular moment in time. Overall, while there remain important improvements yet to be
made, such as reducing the number of outliers, we find that the present quality of real‐time HR‐GNSS wave-
forms is more than sufficient for monitoring large earthquakes.

Data Availability Statement

Additional data for this study come from the Bay Area Regional Deformation Network (BARD) (doi:
10.7932/BARD) operated by the UC Berkeley Seismological Laboratory, which is archived at the Northern
California Earthquake Data Center (NCEDC) (doi: 10.7932/NCEDC). The synthetic GNSS noise generation
code is part of the MudPy package archived at Zenodo and can be found online (https://doi.org/10.5281/
zenodo.3703200). The Github repository for the code is also at https://github.com/dmelgarm/MudPy and
a tutorial on how to run the code is found online (https://github.com/dmelgarm/MudPy/wiki/Generate-
synthetic-HR-GNSS-noise.
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