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ABSTRACT 
The demand to achieve improved drug product quality has been accelerated with the advent of 

quality by design (QbD) guidance launched by regulatory agencies around the world. This 

extends to freeze-drying processes, where bio-pharmaceutical products are dried under an 

extremely controlled environment. Freeze-drying, or lyophilization, is a low-temperature 

dehydration process that involves multistep transformations making use of the principles of 

heat & mass transfer. This often renders the process complicated and time-consuming, resulting 

in large operating costs.  

Multiple process analytical technology (PAT) tools have been introduced to monitor product 

quality attributes in batch dried vials, as these tools help in keeping an eye on the 

product/process to achieve acceptable product quality attributes. Despite significant advances, 

many topics remain to be addressed. One of them being the impact of spatial variations in the 

product attributes, thus rendering the accuracy of in-process results obtained from a single point 

on the vial surface questionable. Another being the aesthetic appearance of the product, 

specifically collapse inside the products, which is usually assessed by visual inspection. 

However, relying completely on human input can be fallible and unrealistic in the production 

environment as thousands of product vials roll out from the freeze-dryers. Failure to detect an 

aesthetic defect in the finished freeze-dried product cake may put a patient’s life at risk as any 

defect might be a result of product collapse or meltback affecting the drug safety and efficacy.  

This project consisted of two main areas of work. 1) Using NIR Chemical Imaging (NIR-CI) 

and NIR spectroscopy (NIRS) to investigate the spatial variability of moisture on the surface of 

the vials undergoing drying. Furthermore, it demonstrates the necessity of using multiple 

measurement points on the vial surface to quantify moisture inside the freeze-drying products. 

2) Using NIRS to identify the physical properties of the product, such as normal or collapsed 

product. This is performed by leveraging the ability of NIRS to exhibit unique spectra relative 

to the physical characteristics of the product. Two intensities of collapse were induced in the 

freeze-drying products, and the potential of NIRS in identifying the collapse during the process 

and in the finished freeze-dried products was demonstrated.  
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Results show the promising nature of the NIR-CI and NIRS in combination with the 

multivariate data analysis (MVDA) methods to monitor product quality attributes and better 

understand their variability. Overall, this thesis work presents a detailed investigation about the 

moisture distribution and collapse inside the freeze-dried products.  

Keywords: QbD; PAT; NIRS; NIR CI; Freeze-drying, Moisture distribution; Collapse; MVDA 
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RÉSUMÉ 

La demande d'amélioration de la qualité des produits pharmaceutiques a été accélérée avec 

l'avènement des directives de qualité par la conception (QbD) lancées par les agences de 

réglementation du monde entier. Cela s'étend aux procédés de lyophilisation, où les produits 

biopharmaceutiques sont séchés dans un environnement extrêmement contrôlé. La 

lyophilisation est un de déshydratation à basse température qui implique des transformations en 

plusieurs étapes utilisant les principe de transfert de chaleur et de masse. Cela rend souvent le 

procédé compliqué et long, ce qui entraîne des coûts d'exploitation importants. 

Plusieurs outils de technologie d'analyse de processus (PAT) ont été introduits pour surveiller 

les attributs de qualité du produit dans des flacons séchés par lots, car ces outils aident à garder 

un œil sur le produit / procédé pour obtenir des attributs de qualité de produit acceptables. 

Malgré des avancées significatives, de nombreux sujets restent à traiter. L'un d'eux est l'impact 

des variations spatiales dans les attributs du produit, rendant ainsi la précision des résultats en 

cours de procédé obtenus à partir d'un seul point sur la surface du flacon discutable. Un autre 

est l'aspect esthétique du produit, qui est généralement évalué par une inspection visuelle. 

Cependant, se fier entièrement à l'apport humain peut être problématique et irréaliste dans 

l'environnement de production, car des milliers de flacons de produit sortent des lyophilisateurs. 

Le fait de ne pas détecter un défaut esthétique dans le gâteau de produit lyophilisé fini peut 

mettre la vie d'un patient en danger, car tout défaut peut être le résultat de l'effondrement du 

produit (meltback) affectant l'innocuité et l'efficacité du médicament. 

Ce projet comprenait deux thèmes principaux. 1) Utilisation de l'imagerie chimique NIR (NIR-

CI) et de la spectroscopie NIR (NIRS) pour étudier la variabilité spatiale de l'humidité à la 

surface des flacons en cours de séchage. 2) Utilisation de NIRS pour identifier les propriétés 

physiques du produit, en tirant parti de la capacité du NIRS à présenter des spectres uniques par 

rapport aux caractéristiques physiques du produit. Deux intensités d'affaissement ont été 

induites dans les produits de lyophilisation, et le potentiel du NIRS dans l'identification de 

l'effondrement pendant le procédé et dans les produits lyophilisés finis a été démontré. 

Les résultats montrent la nature prometteuse du NIR-CI et du NIRS en combinaison avec les 

méthodes d'analyse de données multivariées (MVDA) pour surveiller les attributs de qualité 
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des produits et mieux comprendre leur variabilité. Dans l'ensemble, ce travail de thèse présente 

une étude détaillée de la répartition de l'humidité et de l'effondrement à l'intérieur des produits 

lyophilisés. 

Mots clés: QbD; PAT; NIRS; NIR CI; Lyophilisation, distribution de l'humidité du produit; 

Effondrement du produit; MVDA 
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1. INTRODUCTION 

1.1 Context and the research problem 

The global biopharmaceuticals market is a multibillion industry and is expected to grow 

approximately 10% to $446 billion by the middle of the next decade1.  Roughly 50% of 

biopharmaceutical products approved by FDA and EMA are freeze-dried2. Biotech 

formulations containing aqueous solutions and which are sensitive to heat are dried in a highly 

controlled low-temperature environment. This helps in achieving enhanced product stability for 

distribution and storage. But freeze-drying is a complex process and may result in in-process 

and in-storage instabilities if the drying cycle is not properly designed and monitored. To 

address such issues encountered in different pharmaceutical unit operations, regulatory 

guidelines such as ICH Q8/Q9/Q10 focused on quality by design (QbD) approach were 

introduced. Following these guidelines, it is expected that the quality of the product is built into 

the process rather testing only a few samples or batches at the end of the process. These 

guidelines answers the questions related the current procedures of the ICH Quality 

Implementation. Process analytical technology (PAT) tools are a vital part of QbD in achieving 

the product quality. US-FDA states that the PAT is "a system for designing, analyzing, and 

controlling manufacturing through timely measurements (i.e. inline/online) of critical quality 

and performance attributes of raw and in-process materials and processes with the goal of 

ensuring final product quality"3. The goal to achieve QbD can be achieved using a combination 

of PAT tools such as chemometric tools, process analyzers, endpoint monitoring tools, and 

knowledge management tools4. Since the launch of guidance on the use of PAT, researchers 

have put immense efforts in the development and implementation of PAT for monitoring the 

freeze-drying processes.  

PAT tools used in the monitoring of pharmaceutical freeze-drying operations are broadly 

classified into single vial and batch process monitoring technologies. Single vial focused 

techniques give information related to a given vial located at a specific position inside the freeze 

dryer, whereas the batch monitoring techniques yields the information of an overall batch 

undergoing the drying process. However, it was recently understood that vials exhibit variable 
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temporal drying profiles based on their spatial position inside the freeze-drying chamber, as 

there is a variability in pressure and temperature effects inside the freeze-dryer5,6,7,8. Neither 

single vial focussed, nor the batch monitoring approaches, can account for the spatial variations 

in the quality attributes of the product. These temporal differences result in variability in quality 

attributes of the products within a batch, which can be minor variations in the quality of the 

product or a major product defect. For instance, if the vials in the center of the chamber still 

contain traces of ice compared to vials on the sides of the product chamber, and if the shelf 

temperature is increased it will selectively cause collapse or product defects in the vials located 

at the center of the chamber. Despite significant advances, there is still no in-line monitoring 

method to monitor defects during the freeze-drying process. 

In light of this problem, this thesis centers on the evaluation of non-invasive NIR tools to 

implement them in-line to monitor freeze-drying processes. NIR chemical imaging and 

spectroscopy were used for the qualitative and quantitative examination of vials in order to 

clarify the spatial moisture variations on the surface of the vials during the freeze-drying 

process. Subsequently, NIR spectroscopy was evaluated to identify the physical characteristics 

of the product cake during the freeze-drying process. The ultimate objective of this thesis was 

to explore the potential of NIR tools and deepen our understanding of the freeze-drying products 

and the processes. 

1.2 Definition and objectives of the current research project 

Freeze-drying is a dehydration process that plays an important role in stabilizing the 

pharmaceutical formulations that are unstable in aqueous solutions. Residual moisture content 

(RMC) can have a significant impact on the quality of the product. It can alter the physical state 

of the in-process products resulting in cake defects, whereas in the finished products it may 

affect product stability via microbial growth. Considering the consequential nature of residual 

moisture, it is deemed as one of the most significant critical quality attributes (CQAs). Various 

studies indicate that RMC influences other quality attributes in the finished products9,10,11,12. 

RMC inside the product has been a topic of much work and NIR tools were developed and 

implemented for monitoring moisture inside the products during the process4,7,13,14,15 and inside 

the finished freeze-dried cakes16,17,18. Despite significant work in this field, many topics remain 
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to be addressed. One of them being the impact of spatial variations in product attributes, thus 

the accuracy of in-process results obtained from a single point on the vial surface remain 

questionable. Also, the aesthetic appearance of the product is subject to acceptance by visual 

inspection. However, relying completely on human input can be fallible in the production 

environment as thousands of product vials roll out from the freeze-dryers. Failure to detect an 

aesthetic defect in the finished freeze-dried product cake may put a patient’s life at risk as any 

defect might be a result of product collapse or meltback affecting drug safety and efficacy. 

The main goal of this project is to develop tools and methods to monitor quality attributes of 

the freeze-dried products.  

The core objectives of this project are: 

1. To determine the spatial variability of moisture in the in-process freeze-dried products. 

A combination of NIR tools-chemical imaging and NIR spectroscopy were used to 

investigate spatial moisture variability. This was achieved by studying the intra-vial 

spatial variability using NIR-CI images acquired at different measurement positions, 

and the comparative PLS figures of merit obtained using the NIR spectra obtained at 

multiple measurement positions. 

2. To identify the product state of in-process products and identify the characteristics of 

the finished freeze-dried products using NIR spectroscopy. This was achieved by 

inducing different degrees of melt back/collapse in products during freeze-drying and 

studying the product state/characteristics in the in-process and finished freeze-dried 

products. 

1.3 Original contributions 

This research work proposes a method to assess spatial variability of moisture within products 

during the freeze-drying process. This is needed to select an appropriate number of 

measurement spots on the product vial while working with point focused measurement PAT 

tools, more specifically while using NIR spectroscopic tools. This work also imparts 

understanding about the use of the NIR spectroscopy to identify the aesthetic appearance of the 

product both during the process and in the finished freeze-dried products. Contributions of this 

thesis work are presented in the form of research articles: 
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Paper 1: Peer-reviewed research article 

An investigation into the spatial distribution of Moisture in Freeze-dried products 

using NIR spectroscopy and chemical imaging.  

Paper 2: Research article 

Identifying collapse in freeze-dried products via NIR spectroscopy. 

1.4 Document structure 

This thesis is organized into five main chapters, following is the outline of each chapter 

Chapter 1 presents introduction and the context, motivation and the defined objectives of this 

research work.  

Chapter 2 consists of a review of the lyophilization process with emphasis on the critical quality 

attributes (CQA) and a special focus on the state of art tools/methods used throughout this 

thesis. 

Chapter 3 presents the research work detailing an Investigation into the spatial variability of 

moisture inside in-process freeze-dried samples using near infrared (NIR) chemical imaging 

(CI) and spectroscopy 

Chapter 4 presents the feasibility of using NIR spectroscopy to monitor the aesthetic appearance 

of in-process and the finished freeze-dried products.  

Chapter 5 presents the summary of preliminary evaluation trials using different NIR 

spectrometers for monitoring the product moisture in in-process freeze-dried products.    

Chapter 6 presents the overall conclusions and potential future work for this project. 
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2. STATE OF THE ART 

The main focus of this thesis work involves developing NIR based methods to investigate 

spatial variations in moisture distribution & monitor the aesthetic appearance of the freeze-

dried products. This work encompasses the use of NIR tools in tandem with chemometric 

methods to analyze properties of freeze-dried products, as data generated by the NIR tools alone 

is not enough to draw conclusions on the targeted properties. The first part of this chapter 

presents the freeze-drying operation and criticalities involved in monitoring the freeze-drying 

product/process, this is presented to enable one to understand the background of this research 

work. Then the basics of NIR based PAT tools, NIR spectroscopy and NIR chemical imaging, 

and their recent applications in the freeze-drying industry have been presented along with the 

chemometrics data analysis methods.  

2.1 Freeze-drying operation and the criticality of monitoring 

moisture inside the freeze-dried products 

Freeze drying is an important unit operation in the manufacturing of pharmaceutical injectable-

products, as it enhances product lyophilic nature and stability of the formulations19. The  

product is subjected to highly controlled process conditions inside the freeze-dryer in order to 

perform drying20. First, the liquid formulation is filled inside glass vials and the vials are half 

stoppered such that vapors can evacuate from the product. The vials are then placed on the trays 

and loaded on the shelves of the freeze-dryer. The shelves are cooled in a stepwise manner 

(typically -30 to -60°C) to freeze the product, which results in the formation of ice nuclei called 

nucleation phase and the solute is maximally freeze-concentrated. 

The product is subjected to drying in steps after freezing, ensuring the temperature of the 

product is below its critical temperature representing the maximum temperature that the product 

can withstand during drying without melting or collapsing the product. These temperature limits 

are product specific and are determined beforehand using methods such as freeze-drying 

microscopy, differential scanning calorimetry and dielectric resistance analysis. For details of 

these methods following reference could be consulted21. In general, frozen products are 

categorized as either crystalline or amorphous glass in structure. Crystalline products have a 
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defined “eutectic” freezing/melting point that is also its collapse temperature. Amorphous 

products have a corresponding “glass transition” temperature and their collapse temperature is 

typically a few degrees celsius warmer than the glass transition temperature. For freeze-drying, 

the frozen product is exposed to high vacuum to sublimate the ice where the frozen liquid 

transforms to a gaseous state directly without going through a liquid phase which is referred to 

as initial drying phase, called as primary drying22. The shelf temperature is elevated in the range 

of -30°C to -10°C which is done to provide suitable conditions for sublimation. The duration 

of the primary drying varies from hours to days depending upon the volume and nature of the 

product. Once the ice sublimation is finished the residual moisture bounded inside the product 

interstitial spaces is removed by desorption, also called secondary drying. In this step 

temperature of the shelf is elevated while maintaining the product temperature below glass 

transition temperature, typically between 0 to +40°C. Secondary drying usually takes a few 

hours and is relatively short compared to the whole length of the process. The product chamber 

is back-filled usually with nitrogen gas, and then vials are fully stoppered by pressing the 

shelves together hydraulically once the product is dried. Vials are unloaded and further sealed, 

labeled and packed after stoppering, and then stored under appropriate temperature conditions.  

Freeze drying equipment includes a temperature control system, vacuum System, product 

chamber, and condenser.  

 

Figure 2-1 Schematic view of a freeze-drying equipment (Adapted from Nathaniel Milton, Eli Lilly and 

Co23) 
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Figure 2-1 presents different components of the freeze-drying equipment. The temperature is 

controlled by refrigeration and heating systems. The refrigeration system cools the condenser 

coils and shelves in the product chamber for adsorbing sublimed vapors on the condenser coils 

and freezing product inside the vials. The heating system with the aid of heat exchanger applies 

small amount of heat to the shelves during the drying stages. Advanced shelf freeze dryers 

consisting of microprocessor-based controllers are capable of controlling the shelf temperature 

within ±1°C of the set point within the control range of -55°C to 65°C. 

The vacuum system consists of a separate vacuum pump connected to both an airtight condenser 

and a product chamber. Typically, vacuum levels for freeze drying are between 50mTorr and 

300mTorr with 100mTorr to 200mTorr being the most common range. The required pressure 

inside the product chamber is maintained through a controlled flow of nitrogen, called nitrogen 

breathing. 

The purpose of the condenser is to capture the vapors being sublimed off of the product. The 

condenser is maintained at a lower temperature relative to the product in the chamber, since 

vapors evacuating from the product chamber flows into the condenser chamber and gets 

deposited on the condenser coils in the form of an ice.  The temperature in the condenser is 

usually between -55°C and -85°C. 

The conditions under which the drying takes place determines the quality attributes in the 

finished freeze-dried products. Critical quality attributes, such as API state (e.g., protein 

conformation and stability), residual moisture content, freeze-dried product cake appearance, 

and reconstitution time are evaluated on randomly selected samples after the completion of the 

drying2. Studies have shown that moisture content is the most significant attribute that directly 

or indirectly affects other mentioned product quality attributes9,10,11,12. A product containing 

residual ice when subjected to secondary drying results in product collapse, and this affects the 

aesthetic appearance of the product10. The stability of the finished freeze-dried formulations is 

also affected by their excess residual moisture. The following reference24 presents a  review of 

different studies highlighting the criticality of residual moisture in the freeze-dried products.   
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2.2 NIR tools used as Process Analytical Technologies (PATs) 

for monitoring Freeze-dried products 

Considering the regulatory requirements for the aseptic manufacturing of biopharmaceutical 

products, non-invasive and non-destructive testing tools are considered a boon in monitoring 

the freeze-dried products. Over the last decades, near-infrared (NIR) spectroscopy in 

combination with the light-fiber optics, new in and on-line probe accessories, and chemometrics 

evaluation procedures has emerged as a powerful PAT tool in various pharmaceutical 

applications. The widespread use has been further enhanced with the advancement in 

technology such as miniaturized optics, small footprints, and wireless functionality, making it 

a widely used non-invasive and non-destructive tool in in-line monitoring applications25. 

Additionally, chemical imaging helps in studying the spatial variations on the surface of the 

product. Both techniques are complementary as NIR-CI provides spatial information related to 

moisture on the surface of the product, whereas spectroscopy allows penetrating the surface 

layers of the product.      

2.2.1 NIR Spectroscopy (NIRS) 

NIR spectroscopy is one of the most widely used PAT tools in manufacturing several different 

pharmaceutical formulations, it is embedded as an essential tool in monitoring various stages 

of pharmaceutical unit operations. The American Society of Testing and Materials (ASTM) 

defines the NIR region of the electromagnetic radiation as a narrow spectral region ranging in 

the wavelength range of 780-2520 nm. Many of the NIR spectral bands originate as a result of 

overtones and a combination of fundamental vibrations of C-H, O-H, N-H and S-H. For details 

about the principles and theoretical aspects of NIR measurement following reference may be 

consulted26. 

Guidelines specific to the use of NIRS have been published by regulatory agencies like 

European Medicines Agency (EMA) and FDA considering the increasing use of NIR as PAT 

in monitoring various pharmaceutical operations 27,28. NIR spectroscopy is used in-line for 

monitoring several different attributes such as in-line product moisture15,7, the progress of the 

drying operation4,29 and polymorphic forms of products which is caused by the change in the 
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process conditions30 during the freeze drying process. NIRS spectra sensitivity to various forms 

of water such as ice, liquid or vapour adds to its uniqueness in identifying normal (ice) or 

deviated (liquid) state of the product during the freeze-drying31. Figure 2-2 shows different 

energy levels of absorbance overtone bands of water exhibited with the change in its state31. 

The water absorbance band shifts from higher energy levels to lower energy levels when there 

is a change in the product’s physical state from liquid to ice. 

 

Figure 2-2 Absorbance overtone bands of water specific to its physical state in the NIR region 

(Reprinted with permission from31.Copyright ©2007,Taylor &Francis Group LLC) 

Besides, NIRS has sensitivities to the physical characteristics of products, and also to additional 

characteristics such as pore structure, which can helps in determining the normal or collapsed 

nature of the finished freeze-dried products. Despite the challenges in monitoring the freeze-

drying products/process such as an isolated space, and limited access to the product undergoing 

drying inside the freeze-dryer, it is possible to monitor product inside the freeze-dryer chamber 

with the present generation of the miniaturized spectrometers and carry out real time qualitative 

and quantitative studies. 

2.2.2 NIR Chemical Imaging (NIR-CI) 

NIR-CI (NIR Chemical Imaging) facilitates visualizing surface of the sample to map the 

distribution of chemical components at wavelengths between 700-2500nm. A NIR imaging 

system essentially consists of a light source, optics, a spectrograph, and an array detector26.  

NIR-CI is a new technique for the monitoring of freeze-dried products, and only a few studies 

have been reported for freeze-drying monitoring applications. However, a recent study32 
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specific to spin freeze-dried products, assessed the potential of NIR-CI in monitoring 

distribution of Mannitol solid form and moisture inside the freeze-dried products. Whereas, in 

the other pharmaceutical areas, researchers have successfully demonstrated the feasibility of 

using NIR-CI for different applications, a few of them include pharmaceutical powder blend 

concentration monitoring33, tablet uniformity34, and identifying the product polymorphic 

forms35. The advantage of chemical imaging lies in the ability to demonstrate qualitative surface 

heterogeneities with the quantitative information of the sample. However, the selectivity of the 

measurement method depends on the nature and distribution properties of samples.  

2.3 Chemometrics and Multivariate data analysis (MVDA) tools  

The biggest challenge in implementing analytical tools for monitoring any chemical processes 

is studying the vast number of variables to find the right variables that help to efficiently 

monitor and control processes. This is possible using Chemometrics, which is the science of 

extracting information from the acquired data with the use of mathematical and statistical 

procedures. Chemometrics is indeed an interdisciplinary branch that utilizes the knowledge 

from other sectors like multivariate statistics, applied mathematics, and computer sciences. 

Because of its multidisciplinary nature, chemometrics has emerged as an important subject in 

extracting information from the process data helping in enhanced process understanding thus 

enabling efficient process control.  

Chemometrics include36:  1) data preprocessing, 2) classification, 3) calibration, and 4) 

prediction and validation of the data.  Statistical multivariate projection methods, also called 

multivariate data analysis (MVDA) methods are often used for the data exploration and 

calibration. These methods are being increasingly used in the PARD (Processes, administration, 

research and development).36 Several MVDA methods have been developed in the recent years, 

review of these methods and their applications in various pharmaceutical processes has been 

presented by Rajalahti et.al. 37  

Vibrational spectroscopic methods such as NIR and Raman spectroscopy in combination with 

multivariate data analysis methods such as PCA and PLS are most commonly used to monitor 

the freeze-drying processes.7,38 In two separate studies published by Beer et.al4,29 simultaneous 

use of Raman and NIR spectroscopy was demonstrated in order to monitor quality attributes of 
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products during the freeze-drying process. In freeze-drying applications, PCA is generally used 

for data visualisation, and PLS is used for data interpretation.37 Other methods such as, partial 

least squares discriminant analysis (PLS-DA), linear discriminant analysis  (LDA),  

multivariate curve resolution (MCR) and classical least squares (CLS) have also been reported 

for studying the attributes of freeze dried products and processes.4,38,39 

A few of the MVDA methods used throughout this project are discussed in the following 

sections. 

2.3.1 Principal component analysis (PCA) 

Principal component analysis (PCA) is one of the most widely used multivariate statistical 

method that forms the basis for multivariate data analysis.40 It transforms the large number of 

original variables into a set of new orthogonal variables called principal components such that 

most of the information is contained in the first few components explaining maximum variance 

in the data.41 The first principal component (PC1) explains the largest variation in the data set, 

PC2 explains the second largest variation and so forth. 

In PCA analysis, a data matrix is modelled as42 

 

= 	 +  (2.1) 

                                                               

Where, T (N×A) is Scores, P (K×A) is loadings and E (N×A) is an error. 

 

The product of T and PT is equal to the sum of the considered PCs and E is an error matrix 

calculated after subtracting original matrix by the matrix originated after PCs were considered. 

E matrix has the same size as original matrix or X. The equation is given by 

                            =	 	 +	 	 …+ 	 +  (2.2) 
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The matrix product TPT models the structure and the residual matrix E contains the noise. The 

principal component scores of the first, second, third components (t1,t2,t3…) are columns of the 

score matrix T. The scores are coordinates of the observations in the model hyper plane. 

Alternatively, these scores may be seen as new variables which summarises the old ones and 

they are sorted in order of descending importance. The meaning to the scores is given by 

loadings. Loadings of the first, second, third components (p1,p2,p3…) build up the loading 

matrix PT. Loadings define the orientation of PC plane with respect to the original X-variables, 

and  informs the magnitude of correlation (large or small) and the manner in which the measured 

variables contribute to the scores. 

Prior to carrying out PCA analysis, data is typically pre-processed by centering and scaling to 

unit variance. Plots of the PCA show the relationship among observations’ including the 

outliers.  

2.3.2 Partial least squares (PLS) 

PLS is the regression extension of PCA, PLS stands for projection to latent structures by means 

of partial least squares. It is used to connect the information in two blocks of variables X and Y 

to each other by linear multivariate model43. PLS is mainly useful in dealing with the noisy, co-

linear and incomplete variables in both X and Y36. PLS models the relations between the X and 

Y blocks by means of score vectors, and it decomposes the (N×K) matrix of variables X and 

the (N×M) matrix of variables Y into the form represented as43 

= 	 +  (2.3) = +  (2.4) 

Where the T, U are (N×A) matrices of the p extracted score vectors respectively, the columns 

of P and C represents the matrices of loadings. E and F are just model residuals. In PLS, 

summary of the importance of X-variables for both Y and X is given by variable influence on 

projection (VIP) plot. The VIPs are a weighted sum of squares of PLS weights that are 

calculated by explained Y-variance in each dimension36. The attraction of VIP lies in its mode 

of providing information in the simplest form with only vector summarizing all the components 

and Y-variables.  

Several methods have been developed to calculate PLS model such as the NIPALS algorithm, 

SIMPLS and Kernel algorithm. However, the NIPALS algorithm developed by Wold et.al is 
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known to be simplest. Using this iterative approach, scores (T), loadings (P) and additional 

weights (W) which has the same dimensionality as loadings are calculated. The addition of 

weights in PLS is required to maintain the orthogonal scores. For the details about the NIPALS 

algorithms  Wold et.al43 work could be consulted.  

To validate the model fit and predictive ability of the developed calibration models following 

root mean square errors must be evaluated44: 

Root Mean Square Error of Calibration (RMSEC) – It gives a measure of the average difference 

between predicted and measured response values at the calibration stage; a model with a perfect 

fit will yield a RMSEC of zero. 

= −− − 1  

 

(2.5) 

where, ̂  is the model-estimated Y-values whereas i is the known Y-values; A = number of 

PLS factors; N is the number of samples in the test set   

Root Mean Square Error of Cross Validation (RMSECV) – It gives a measure of the average 

difference between predicted and measured response values of samples from the calibration 

subset that were placed aside; this provides more realistic estimates of the model’s prediction 

and optimal complexity performance of the model. 

= , −	  

(2.6) 

   

where, ̂ , 	= model-estimated Y-values without the calibration subset i.  

  

Root Mean Square Error of Prediction (RMSEP) – It gives a measure of the average 

difference between predicted and measured response values at the validation stage; it can be 

used to provide a reasonable assessment of the model’s prediction performance on future 

samples.  
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= −
 

(2.7) 

	
Here, N is the number of samples in the test set.   

 

2.3.3. Partial least squares discriminant analysis (PLS-DA)  

PLS-DA is a supervised classification method developed with an objective to separate different 

classes of observations on the basis of their X-variables. Similar to the PLS, in this method Y-

matrix encodes observations into different categories by means of dummy variables. Each class 

of observations in the dummy Y-matrix is denoted with ones and other classes as zeros, number 

of vectors in Y-matrix increases with the increase in the number of classes of observations. As 

presented in the example below, an X-matrix with three different classes of observations are 

attributed to the three variables of the Y-matrix. 

 

The PLS model is fitted between the (N×K) matrix of X and the dummy (N×M) matrix of Y, 

this way a discriminant plane is found in which observations are separated according to their 

respective classes45. More specifically, PLS-DA finds a linear regression model by projecting 

the predicted dummy variables and the observed variables into a new space46.  Through the 

obtained weights and loadings insights related to discrimination are achieved. PLS-DA holds 

well for the classification of samples based on their properties such as origin, activity and other 

physical characteristics36.   

2.3.4. Linear discriminant analysis (LDA) 

LDA, synonymously called Fischer’s LDA is an established supervised classification method 

for classification and discrimination of observations belonging to different classes. The main 

objective of LDA is to find a new dimension that best segregates different groups of the samples 
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projected onto it, maximizing the ratio between the sum of squares between and within the 

group46.  

Formally the projection matrix (PLDA) is calculated as following 

= det	det	  
(2.8) 

Where, P is the eigenvector, Sb is between class variance and Sw is within class covariance. 

LDA works well if all the observations are homogenous and the number of variables is much 

smaller than number of samples in the training set 47.  

The following table (Table 2-1) summarizes the recent studies that have reported the use of 

chemometric methods specific to the pharmaceutical freeze-drying processes and products 

monitoring.  

Table 2-1 Application of NIR-based Chemometric methods in freeze-drying 

Application Chemometric 
method 

Analysis Type Year & 
Reference 
number 

Design of Experiments based Near-
Infrared Spectroscopy models to 
monitor moisture content in the freeze-
dried products. 

PCA, PLS Qualitative and 
Quantitative 

2020 (48) 

Demonstration of NIR based 
multivariate model to obtain information 
on liposome structure and integrity, and 
determination of endpoints of primary 
and secondary drying. 

PCA Qualitative 2018 (49) 

Determination of endpoint of primary 
drying using in-line Near-Infrared 
Spectroscopy and mechanistic model 
produced using temperature as an input 
during the continuous freeze-drying. 

PCA Qualitative 2018 (50) 

Monitoring moisture content and 
distribution inside the spin freeze-dried 
vials using Near-Infrared Chemical 
Imaging 

PCA, PLS Qualitative 
Quantitative 

2018 (32) 

Demonstration of reliability of multi-
vial Near-Infrared approach in 

PLS Quantitative 2014 (7) 
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monitoring product moisture during the 
freeze-drying process 
Monitoring of changes induced in the 
multicomponent formulation, 
identification of solid state form of 
mannitol and sublimation of solvents 
during the drying process 

PCA Qualitative 2014 (30) 

Using NIR based models to distinguish 
formulations with varying virus 
pretreatments and virus volume. 

PCA,  
PLS-DA 

Qualitative 2013 (51) 

Using Near-Infrared probes to monitor 
moisture content inside multiple vials 
during the freeze-drying process. 

PCA, PLS Quantitative 2013 (15) 

Monitoring interactions between protein 
and lyoprotectant, and detection of 
protein unfolding during the freeze-
drying process. 

AWA Qualitative 2012 (15) 

Using DOE approach and combination 
of multiple PAT tools for freeze-drying 
process and formulation optimization: 
NIR for investigation of drying phase 
and selection of optimal process step 
temperatures 

PCA Qualitative 2011 (52) 

Study on complementary properties of 
Raman and NIR: NIR for monitoring 
drying steps and solid state 
characterization of mannitol 

PCA Qualitative 2009 (4) 

Study on complementary properties of 
multiple PAT tools: NIR for detection 
removal of hydrate water, determination 
of drying end point and solid-state 
characterization of mannitol 

PCA Qualitative 2009 (29) 
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ABSTRACT 

Near-infrared spectroscopy (NIRS) is a widely accepted method of measuring moisture in 

pharmaceutical freeze-dried products, both during the process and in the finished products. 

Multiple NIR measurement approaches have been introduced to monitor product moisture in 

freeze-dried vials. However, the spatial moisture gradients within a vial have not been 

investigated in depth. Like any other point-focused process analytical technology (PAT) tool, a 

spectrum produced by NIRS represents an average over a given area of the product vial. 

Implementing a point-focused NIR on any random position without proper understanding of 

spatial moisture variations within the vial may severely impact the reliability of the results. 

The present work focuses on understanding the moisture distribution within freeze-dried vials. 

We performed an investigation using NIR tools, NIR chemical imaging (NIR-CI), and NIRS to 

understand the spatial variations in moisture on the outer surface (i.e., periphery) of the freeze-

dried vials. To achieve this, the moisture distribution within individual vials was mapped using 

NIR images. Then, NIRS was used to determine the necessity of using multiple measurement 

points to produce robust models quantifying moisture inside freeze-dried products. Overall, the 

results confirm the non-homogenous distribution of moisture, as well as the non-uniform drying 

front, in the products undergoing freeze-drying. The findings from the NIRS-based partial least 

squares (PLS) models indicate that, to achieve reliable product/process information, 

measurements must be drawn from multiple measurement points on the surface of the freeze-

dried products. 

 
 
 
 Keywords: Freeze-drying, NIR, NIR Imaging, PAT, Chemometrics 
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RÉSUMÉ FRANÇAIS 
La spectroscopie proche infrarouge (NIRS) est une méthode largement acceptée pour mesurer 

l'humidité dans les produits pharmaceutiques lyophilisés, à la fois pendant le procédé et dans 

les produits finis. Plusieurs approches de mesure NIR ont été introduites pour mesurer 

l'humidité du produit dans les flacons lyophilisés. Cependant, les gradients d'humidité spatiaux 

dans un flacon n'ont pas été étudiés. Comme tout autre outil de technologie d'analyse de procédé 

(PAT), un spectre produit par NIRS représente une moyenne sur une zone donnée du flacon de 

produit. La mise en œuvre d'un NIR ponctuel sur n'importe quelle position aléatoire sans une 

bonne compréhension des variations spatiales d'humidité dans le flacon peut gravement affecter 

la fiabilité des résultats. 

Le présent travail se concentre sur la compréhension de la distribution de l'humidité dans les 

flacons lyophilisés. Nous avons effectué une enquête à l'aide d'outils NIR, d'imagerie chimique 

NIR (NIR-CI) et de NIRS pour comprendre les variations spatiales de l'humidité sur la surface 

externe (c'est-à-dire la périphérie) des flacons lyophilisés. Pour ce faire, la distribution de 

l'humidité dans les flacons individuels a été cartographiée à l'aide d'images NIR. Ensuite, le 

NIRS a été utilisé pour déterminer la nécessité d'utiliser plusieurs points de mesure pour 

produire des modèles robustes quantifiant l'humidité à l'intérieur des produits lyophilisés. 

Globalement, les résultats confirment la répartition non-homogène de l'humidité, ainsi que le 

front de séchage non-homogène, dans les produits en lyophilisation. Les résultats des modèles 

des moindres carrés partiels (PLS) basés sur le NIRS indiquent que, pour obtenir des 

informations fiables sur les produits / procédés, les mesures doivent être effectuées à partir de 

plusieurs positions sur la surface des produits lyophilisés. 

 

Mots clés : Lyophilisation, NIR, Imagerie NIR, PAT, Chimiométrie) 
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3.1 INTRODUCTION 

Freeze-drying, or lyophilization, is a low-temperature dehydration process that involves 

freezing a product, placing it in a relative vacuum, and then removing the resulting ice by 

sublimation53. It is often used in the pharmaceutical industry to dry thermally sensitive products, 

such as biopharmaceutical formulations54. During the freeze-drying process, liquid 

formulations are subjected to controlled multistep transformations, making use of the principles 

of heat and mass transfer. This is done to achieve a uniform, amorphous dry cake, which often 

renders the process complicated and time-consuming, resulting in high operating costs55,2. It is 

therefore crucial to monitor the product during the process to ensure that the desired critical 

quality attributes (CQAs) of the product are achieved56. 

In general, CQAs are related to the physical, chemical, biological, or microbiological properties 

of the drug product that define the final product quality57. The most common CQAs associated 

with freeze-dried products are potency and purity, reconstitution time, aesthetic appearance and 

residual moisture concentration (RMC) in the finished drug product58. Among these, RMC 

within the product has been the topic of much work, both in the products undergoing drying 

and also in the finished freeze-dried products. Various studies indicate that RMC influences the 

other quality attributes in the finished products9,10,11,12. Considering the importance of RMC in 

freeze-dried products, several process analytical technology (PAT) tools have been developed 

to directly or indirectly monitor product moisture during the freeze-drying process. 

Monitoring RMC is done on two levels: the individual vials (vial-focused monitoring) or the 

overall freeze-drying unit (batch monitoring). A review of both types of applications can be 

found elsewhere59. In contrast to vial-focused monitoring tools, batch monitoring tools have so 

far been preferred, as they comply with good manufacturing practices (GMP) requirements and 

provide information on the complete batch of vials19. Among the different batch monitoring 

tools, tunable diode laser absorption spectroscopy (TDLAS) shows promising results for the 

quantitative moisture characterization of a batch of vials10,60,61,62. However, research has shown 

that vials exhibit variable temporal drying profiles based on their spatial position inside the 

freeze-drying chamber, as there is variability in the pressure and temperature effects inside the 

freeze dryer5,6,7,8. Although TDLAS promises to obtain information related to the overall 

process, it cannot account for spatial variations or provide vial-specific information. Unlike 
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batch monitoring tools, point-focused tools such as near-infrared spectroscopy (NIRS) have 

successfully been demonstrated to monitor the moisture of specific vials during freeze-

drying13,4. In these works, the NIRS probe was implemented only on a single vial among the 

whole batch, and cannot account for variations between vials undergoing drying. Going a step 

further, Kauppinen et al.7,15 introduced an in-line multi-vial NIRS approach to study the 

variability in product moisture in several vials located in different positions throughout the 

freeze dryer shelf. Such an approach occupies a middle ground between single-vial and whole-

batch monitoring and enables increased understanding of product variability specific to the 

spatial locations inside the freeze dryer over the entire lyophilization run. 

Considering the potential of IR imaging to monitor spatial variations in the physical and 

chemical properties of the sample, several tools have been developed and implemented as 

PATs. IR thermal imaging has been used to monitor temperature gradients on the surface of 

individual vials as well as on the bulk product spread over the entire tray of a freeze-drying 

unit63. In both cases, spatial temperature variations were observed between the vials and within 

the bulk product. This further strengthens the rationale behind using the multi-vial NIR 

approach for monitoring moisture during the freeze-drying process, as the temperature is 

closely related to the residual moisture inside the vial. In another work, thermal imaging was 

used to show variability in the axial and radial temperature profiles of the vial throughout the 

drying process64. With the recent use of NIR chemical imaging (NIR-CI) in continuous freeze-

drying, the presence of an axial moisture gradient within the vials was observed as the product 

was deposited on the vial wall as a film32. 

The present study aims at investigating spatial moisture variations in freeze-dried vials and at 

determining the suitability of acquiring measurements on a single measurement spot using 

point-focused probes. This is because the product presentation in freeze-dried vials is 

significantly different from that in spin-dried vials, resulting in markedly different drying 

profiles. Here, we used NIR-CI and NIRS to accomplish these objectives. These techniques are 

complementary, as NIR-CI provides spatial information related to moisture on the surface of 

the product, whereas spectroscopy enables penetration into the surface layers of the product. 

The use of NIRS in combination with a partial least squares (PLS) regression is an established 

approach for quantifying moisture in freeze-dried products15,32. Images acquired using NIR-CI 
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were used to examine the spatial variability in the distribution of moisture on the surface of the 

product. NIRS data through quantitative moisture prediction was used to confirm the spatial 

moisture variabilities in the freeze-dried products. The images and spectra were acquired on the 

surface of the sample on six different sides (every 60° angle) by rotating the vial on a rotation 

stage. This allows inspection of the spatial variability in moisture around the whole 

circumference of the vial. Here, we show the spatial variability of moisture within the vials 

during the shelf freeze-drying process. Furthermore, we determine the robustness of single-

point NIR measurement while the product is undergoing batch freeze-drying. In the end, this 

work seeks to provide tools, and methods, to better understand spatial variations within freeze-

dried products. 

3.2 MATERIALS AND METHODS 

3.2.1 Materials 

Glycine (≥98.5%), a common pharmaceutical excipient, was purchased from Fischer Scientific 

Canada and was used without further treatment prior to the experiments. Deionized water was 

used as a solvent to prepare 15% (w/v) glycine solution. The solution was filled in 50-ml 

capacity glass bottles (DWK Life Sciences, Millville, NJ, USA), where 120 samples were 

prepared by pouring 20 ml glycine solution into the glass vials, resulting in a 1-inch product fill 

height in liquid form. 

3.2.2 Freeze-drying and sample collection procedure 

Prior to drying, the samples were first frozen in lab freezer (16.6 ft3 upright freezer, Frigidaire, 

Charlotte, NC, USA) at -18°C for 4 hours, then transferred to a -86°C freezer (MDF-U700VXC-

PA, Panasonic, Kadoma, Osaka, Japan) and frozen for another 4 hours. A stepwise freezing 

procedure was carried out to avoid vial breakage due to thermal shock and to allow complete 

crystallization of the product formulation65. 

Drying was performed using a ModulyoD laboratory-scale freeze dryer (Thermo Electron 

Corporation, Waltham, MA, USA). A total of 120 vials were used for the experiments. The 

samples were collected at different time points to achieve samples with moisture in the range 

of 85% to <1% (w/w). To produce samples with differing moisture levels while minimizing 

interruptions to the process, the vials were collected at 4-hour intervals to achieve samples with 
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a moisture spacing of ≈5% between the 85% and 20% (w/w) moisture range. In the latter stages 

of drying, the samples were collected more frequently, reducing the time to 2-hour intervals to 

achieve moisture spacing of ≈2% (w/w). 

Two vials were damaged during the drying process, and the remaining 118 vials were used in 

this study. The moisture content from the collected samples was determined using gravimetry, 

where the difference in the initial and final product weight was calculated66,67. All collected 

samples were stored in an -18°C freezer for further analysis. 

3.3.3 NIR-CI 

A NIR greyscale InGaAs area scan camera (Bobcat 320, Xenics Infrared Solutions, Leuven, 

Belgium) with a 25-mm infrared lens (Navitar, Rochester, NY, USA) was used as an imaging 

tool. The resolution of the camera was 320 × 256 pixels, and the operating wavelength range 

was 900–1700 nm. The shortwave IR (SWIR) camera was not equipped with a spectroscope, 

but a 1460 ± 11 nm selective wavelength bandpass filter (Spectrogon Inc., Mountain Lakes, NJ, 

USA) was mounted in front of the camera lens. This was done to selectively capture the images 

in the water combination overtone band region (1450–1500 nm) exhibited by water in near 

freezing and ice states31. These overtone bands are a result of stretching vibrations in the water 

molecule. The output from the NIR camera was a 2D greyscale image with varying pixel 

intensities relative to the moisture content on the surface of the vial. Thus, the image pixels 

representing moisture would have lower pixel intensities and appear darker than the pixels 

representing the dry product inside the vial. The sample presentation to the camera was 

controlled by optimizing parameters such as lighting, relative distances, and angles between the 

camera and the vial, as well as the acquisition parameters. To ensure image-to-image 

comparability, all parameters were kept constant throughout the measurements. 

3.3.3 NIR Spectroscopy 

A diffuse reflectance NIR spectrometer (MicroNIR 1700, Viavi Solutions, Inc., Milpitas, CA, 

USA) covering the wavelength range of 900–1700 nm was used. Each spectrum acquired by 

the probe consisted of an average of 128 spectra obtained with an integration time of 12 ms. 

Before acquiring the spectra, the NIR spectrometer was calibrated for 0% and 100% reflectance. 

For 0% reflectance (D), a spectrum was acquired in the absence of IR light; for 100% 
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reflectance (B), the NIR spectrum was recorded by shining the light on a white reflectance 

standard. Every raw spectrum (R) acquired from the sample during the measurements was 

internally corrected using the 0% and 100% reflectance spectra according to the following 

equation: 

= −−  (3.1) 

Where, C is the corrected spectra. 

3.3.4 Procedure to acquire images and spectra on the surface of the product 
vial 

To better understand spatial variability, NIR-CI and NIRS acquisitions were carried out at 

different positions on the vials. Measurements were carried out at 60° intervals around the 

cylindrical vials (Figure 3-1). Using both the NIRS and NIR-CI systems separately, spectra and 

images were acquired at different positions of the vial by rotating them on a fixed stage. 

Whereas the NIRS probe was positioned in direct contact with the vial, as the probe head size 

was equivalent to the product height inside the vial, the NIR-CI camera was located 

approximately 40 cm away to acquire a full picture of the vial. For illumination with the NIR 

camera, a 75-W halogen bulb was used. At each position on the vial, three replicate 

measurements were acquired and averaged prior to the analysis. 

 

Figure 3-1. Schematic representation of the vial showing the six angular positions and the field 

of view with the NIRS and NIR-CI tools. 
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3.3.5 Treatment of the NIR-CI images 

To correct for minor variations in the lighting conditions, the raw images were standardized 

based on the intensity of the image background with the following equation:  

= 100  (eq2), 

Where,  is the corrected image, X is a raw image, and b is the mean pixel intensity of the given 

portion (100 × 50) of the image background in the top corner (Figure 3-2). 

 

Figure 3-2. Typical vial illustrating a typical cake as well as the background reference area 

used for standardizing the images. 

After standardizing the images, the portion of the image representing the cake was cropped and 

used for the analysis. This area is based on the fill height (approximately 1 inch) and limited to 

a 60° window of the vial (Figure 3-2). Each cropped image consists of 55 × 79 pixels. As 

mentioned, NIR spectra and images were acquired at six positions (at 60° intervals) to capture 

the overall moisture of the vials. These six images could be averaged into a single image 

representing the drying front of a cylindrical vial (Figure 3-3). Otherwise, the six images could 

be concatenated into a larger (55 × 474) pixel image representing the full periphery of the vial 

(Figure 3-3). The NIR images were colored using a gradient coloring scheme, where the color 

bar increases with the dryness of the product; dark blue represents wet products whereas pale 

blue and yellow represent the dry product. 
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Figure 3-3. Representation of the averaged and concatenated images using a typical freeze-

dried sample (a single vial). The horizontal dimension of the image represents the diameter of 

the vial; the vertical dimension represents the product height inside the vial. 

3.3.6 Representation of the NIR spectra 

Spectra were obtained at six different angles on the surface of the samples; the combined dataset 

can be represented as a 3D matrix (Figure 3-4), where the x-axis represents the wavelength 

(nm), and the y- and z-axis represent sample spectra respective to the position/angle on the 

product vial. 

 

Figure 3-4. NIR spectra acquired on the vial surface at six different measurement angles 

represented in a 3D matrix. 
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3.4 RESULTS AND DISCUSSION 

3.4.1 Qualitative analysis of the NIR images 

Figure 3-5 represents average images of 10 categories of freeze-dried samples containing 

moisture in the range of 85% to <1% (w/w). These were obtained by averaging the images of 

the vials in each moisture category. As the products dried, a decrease in pixel intensity could 

be observed (from dark blue to pale blue), and the lighter pixels gradually moved from the top 

to the bottom of the product. The symmetric color gradients observed on the sides of the images 

may be linked to the curvature of the vials. This observation is in line with the mathematical 

models of top–down drying in vial freeze-drying68,69. In Figure 3-6, the histogram shows a 

linear relationship between product moisture, gravimetric measurement, and the average pixel 

intensity of the NIR-CI images, a surface measurement. This relation serves to strengthen the 

hypothesis that, on average, non-invasive measurement of the product at the vial periphery can 

be representative of the bulk of the powder within the vial. However, as illustrated in Figure 3, 

the moisture gradients imply that no single position at the periphery of a given vial can be a 

reliable indicator of the overall moisture content of that vial. 

 

Figure 3-5. Average images of freeze-dried samples containing moisture in the range of 85% 

to <1% (w/w). Averages represent all 118 samples divided into 10 different categories. 
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Figure 3-6. Histogram of the mean sample moisture vs. mean pixel intensity of NIR-CI images 

in the range of 85% to <1% (w/w) moisture. 

The individual NIR-CI images of the individual samples were compared to investigate the 

drying front and moisture distribution within the freeze-dried products. The images of the 

freeze-dried samples containing different moisture levels illustrate a variable drying profile on 

the surface of the batch-dried vials (Figure 3-7). On one hand, high-moisture samples, i.e., 

>45% (w/w), showed a relatively uniform drying front at the top of the images and exhibited 

homogenous moisture distribution. On the other hand, lower-moisture samples, i.e., ≤45% 

(w/w), exhibited a non-uniform drying front and heterogeneous moisture distribution on 

different sections of a given vial. For example, the 5% (w/w) moisture sample presented in 

Figure 3-7 clearly shows a high-moisture area (2.5 images shown in dark blue) surrounded by 

a larger low-moisture area (3.5 images shown in pale blue). 

This indicates a discrepancy between the drying profile and the amount of moisture present 

inside the samples. It also presents a clear problem with the notion of a horizontal drying front 

of the vials. Figures 3-7, 3-8, and 3-9 clearly show seemingly random drying fronts in which 

horizontal, vertical, and diagonal patterns are present, respectively. 

A possible reason for the non-homogenous moisture distribution on the product surface could 

be attributed to the orientation of the vial on the drying shelf. Rambhatla et al. have 

demonstrated inter-vial differences (edge effect on the freeze dryer shelf) in the sublimation 
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rates specific to spatial position on the freeze dryer shelf. This was attributed to the atypical 

heat transfer on the freeze dryer shelf; therefore, vials on the edges of the shelf may dry faster 

compared to the vials on the center of the shelf. A similar phenomenon may occur within a vial, 

causing the side of the vial exposed toward the outer edge of the dryer shelf to dry faster 

compare to that exposed towards the center of the drying chamber. 

 

Figure 3-7. Representative images of the freeze-dried samples containing moisture in the range 

of 85% to <1% (w/w). 
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Figure 3-8. Images of vials in the 3–11% (w/w) moisture range. This range presents the largest 

spatial variability. These vials are representative of the population. 

Furthermore, the moisture patterns of some of the batch freeze-dried vials containing low 

moisture levels, i.e., 5 ± 1% (w/w), show a different drying profile, although they have similar 

theoretical moisture levels, as illustrated in Figure 3-9. Thus, none of the vials presented a 

horizontal drying front, which leads to the conclusion that measurements must be acquired on 

multiple points around the periphery of each sample to ensure appropriate estimation of the 

drying level at a selected height of the vial. 

 

Figure 3-9. Images of a few representative vials containing similar moisture levels, i.e., 5 ± 1% 

(w/w). 
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This section presents a qualitative assessment of the use of NIR-CI to identify, map, and 

characterize the moisture distribution on the surface of freeze-dried vials. However, we stopped 

short of using this single-filter NIR-CI technology to produce a quantitative model predicting 

sample moisture, as there was huge variability in the moisture layout in the images acquired 

from the surface of the vials, rendering it impossible to determine an accurate moisture level 

for each image. Furthermore, imaging a cylindrical vial presents further challenges when 

building robust PLS models due to a relatively complex measurement setup for ensuring 

adequate lighting without overheating the frozen samples. 

For this reason, moisture in the batch–freeze-dried products was quantified using a NIR 

spectrometer. An important factor in considering the NIR spectrometer was its relatively higher 

sample penetration depth in comparison with the NIR-CI system. Using the same equipment 

setup as our experiments, Dalvi et al.33 performed a comparative penetration depth analysis to 

monitor the concentration of pharmaceutical powders. They showed that NIR-CI was sensitive 

to the first 0.75 mm of powder, whereas NIRS was sensitive to 1.5 mm of powder. Based on 

this, we assumed that the NIRS probe may also provide greater penetration depth in freeze-

dried samples. 

3.4.2 Quantitative analysis using NIRS 

The objective was to determine if NIRS can be used to predict the moisture of heterogeneous 

batch–freeze-dried samples. Having established the spatial variability through NIR-CI, multiple 

NIR spectra were used for each sample. We acquired six spectra (one at every 60°) around each 

vial. While it is possible to simply average the six spectra for each sample, it is time-consuming 

and labor-intensive. Furthermore, we sought to determine a middle ground to limit the number 

of acquisition points to monitor vials in situ. However, the impact of reducing the number of 

NIR spectra per vial needs to be understood. 

To answer this question, PLS regression models were used to study the quantitative relationship 

between NIR spectra and moisture in the freeze-dried samples. The original 3D data X matrix 

(111 wavelengths × 118 samples × 6 angles) was split into calibration and validation sets, both 

covering the full range of moisture levels. Spectra were pretreated using the Savitzky-Golay 

(SG) first derivative (15 points, second-order quadratic), and mean centered to minimize the 

baseline shifts. 
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To include spectra from a variable number of measurement angles, multiple PLS models were 

built taking into account an average of 1–6 measurement angles. Furthermore, the measurement 

points were randomly selected to account for the rotational ambiguity of the cylindrical vials. 

To illustrate, consider the case where a single angle was used per vial. This angle was randomly 

chosen for each of the 118 vials and was used to compute a PLS model predicting the 

gravimetric results (Y). This step was repeated 500 times to determine the variability of the 

results. Such a methodology was repeated using two, three, four, five, and six angles per vial. 

Using cross-validation70, we determined that a minimum of two principal components (PC) 

were required to build the PLS models. From the different combinations of PLS models 

obtained with variable angles, on average, the first component explains the majority of the 

variance (71%), and the second component explains 22% of the variance. 

To determine which wavelengths are most important to the model, we computed the PLS 

variable influence in projections (VIP) values. VIP variables with values > 1 are typically 

considered more important36. Figure 3-10 illustrates the case where all six angles are used. 

Large VIP values in the wavelength range of 1400–1600 nm are a result of the SG first 

derivative water overtone band exhibited by the ice in the sample. Furthermore, wavelengths < 

1200 nm exhibit VIP values > 1 resulting from weaker absorbance bands of water and other 

alkyl groups present inside the glycine formulation31. 

 
Figure 3-10. PLS VIP. Wavelengths with values >1 are considered important for predicting 

moisture. 
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The root mean square error of calibration (RMSEC) and prediction (RMSEP) of the PLS models 

were compared using a box and whisker plot (Figure 3-11). Three observations were drawn 

from this figure. The first was that the RMSE values decreased as the number of measurement 

angles increased. This is fully consistent with the fact that heterogeneous samples require more 

measurement points to be fully characterized. The second observation was that the RMSE 

values (i.e., height of the whisker box) decreased as the number of measurement angles 

increased. Again, while a single NIR spectrum may be biased, the odds that ≥2 measurements 

are all biased decrease rapidly, thus limiting the variability of the PLS results. The third 

observation was that the RMSEP results were similar, but slightly superior, to the RMSEC 

results. On average, RMSEP was 0.4% higher than RMSEC, indicating that the model appeared 

to be performing well in validation. 

The RMSE values decreased between one and four measurement angles, then plateaued when 

five or six angles were used. The error values indicate that constant figures of merit in the 

models were achieved only when the measurements acquired from different spatial positions 

were considered by the model. In this situation, it can be inferred from the error values that 

spectra from a minimum of four measurement positions is an appropriate bid for PLS 

quantification models. 

 

Figure 3-11. Box and whisker plot of the moisture predictions comparing the RMSEC and 

REMSEP values. 
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Based on these results, the spatial moisture variability within the batch–freeze-dried vials, while 

working with a point-focused surface measurement tool, should be considered. It is important 

to acquire measurements from multiple positions on the vials. As the specifics thereof depend 

on the vial geometry, processing parameters, and product properties, moisture mapping via 

NIR-CI appears to be prudent. Achieving useful models may be challenging, and careful 

consideration should be given to the product volume–vial size ratio, vial arrangement, and 

invasion of the probe inside the freeze-drying chamber. 

3.5 CONCLUSIONS 

Using a combination of NIR tools (spectroscopy and chemical imaging), this study sought to 

aid understanding the spatial moisture variability present in batch–freeze-dried vials. It also 

sought to determine the effects of spatial variability on the results obtained using single-point-

focused measurement tools, which is demonstrated through the PLS analytical figures of merits. 

To do so, 15% (w/v) glycine solution was used as a model formulation, and the vials were 

freeze-dried using a batch process. The vials were collected at different time points to achieve 

variable moisture levels. NIR images and spectra were acquired at six different angles around 

the vial surface to consider the spatial variabilities around the vial circumference. The NIR 

images were used for investigating the moisture distribution on the peripheral surface of the 

product, whereas the NIR spectra were used to confirm the spatial variations in moisture 

through the figures of merit of the PLS models. 

Qualitative analysis of the NIR images demonstrated the heterogeneous distribution of moisture 

on the surface of the batch freeze-dried vials. We observed that the drying front on the product 

surface was not horizontal as often hypothesized in mathematical models. Further, the PLS 

figures of merit obtained using NIRS quantification models indicated that measurements must 

be collected from multiple peripheral points, in this case four points, on the vial surface to 

achieve constant error values. This approach could be beneficial in the early implementation of 

point-focused PAT tools, as knowing the spatial variations between the vials and within the vial 

could allow appropriate positioning of PAT tools. 
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Further work will be needed to investigate the peripheral distribution of moisture between the 

vials relative to their spatial position inside the freeze dryer so that single-point-focused PAT 

tools can be appropriately implemented therein. Further investigation is also required to 

determine intra-vial spatial moisture variability in batch–freeze-dried products. 
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ABSTRACT 

Aesthetic appearance is a critical quality attribute (CQA) of a freeze-dried drug product and 

plays a key role in its release to the consumer. A collapsed cake may be a result of poorly 

designed process conditions or a change in physical parameters that may have gone unnoticed 

during the drying process. This work presents the application of near infrared spectroscopy 

(NIRS) and multivariate data analysis (MVDA) methods as potential process analytical 

technology (PAT) tools for testing collapse in freeze-dried products, both for in-process and 

finished freeze-dried products. The sensitivity of NIRS to the cake microstructure and physical 

state of water was leveraged for detecting and classifying collapse in products undergoing 

drying and in the finished freeze-dried products. Our results show the suitability of the NIRS 

for identifying in-process collapse/melt-back during freeze-drying and for classifying the 

collapse in the finished freeze-dried products. Comparative analysis of the NIR data using 

different MVDA methods showed the strong potential of linear discriminant analysis (LDA) 

for identifying the appearance of the in-process and finished freeze-dried products. 

Keywords: Freeze-drying, Cake collapse, NIRS, PAT, Chemometrics 

  

 

 

 

 

 

 

 

 

 

 

 

  



38 

 

RÉSUMÉ FRANÇAIS 
L'apparence esthétique est un attribut de qualité critique (CQA) d'un produit médicamenteux 

lyophilisé et joue un rôle clé dans sa diffusion chez le consommateur. Un gâteau effondré peut 

être le résultat de conditions de procédé mal conçues ou d'un changement de paramètres 

physiques qui peuvent être passés inaperçus pendant le processus de séchage. Ce travail 

présente l'application de la spectroscopie proche infrarouge (NIRS) et des méthodes d'analyse 

de données multivariées (MVDA) en tant qu'outils potentiels de technologie analytique de 

processus (PAT) pour tester l'effondrement des produits lyophilisés, à la fois pour les produits 

lyophilisés en cours de fabrication et finis. La sensibilité du NIRS à la microstructure du gâteau 

et à l'état physique de l'eau a été mise à profit pour détecter et classer l'effondrement dans les 

produits en cours de séchage et dans les produits lyophilisés finis. Nos résultats montrent la 

capacité du NIRS à identifier l'effondrement / refonte en cours de processus pendant la 

lyophilisation et à classer l'effondrement dans les produits lyophilisés finis. L'analyse 

comparative des données NIR utilisant différentes méthodes MVDA a montré le fort potentiel 

de l'analyse discriminante linéaire (LDA) pour identifier l'apparence des produits lyophilisés en 

cours de fabrication et ainsi que des produits finis. 

Mots clés: Lyophilisation, Effondrement du gâteau, NIRS, PAT, Chimiométrie  
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4.1 INTRODUCTION 

Following Quality by Design (QbD) guidelines,57 biopharmaceutical manufacturers put 

enormous effort in developing and implementing process analytical technology (PAT) tools for 

monitoring freeze-drying processes. These tools help monitor both processes and products to 

achieve the desired quality in the product.3 Despite significant technological advances, it is still 

not possible to ensure that 100% of freeze-dried cakes reach the critical quality attributes 

(CQA). International Council for Harmonisation of Technical Requirements for Registration of 

Pharmaceuticals for Human Use [ICH Q8 (R2)] defines a CQA as a property (i.e., physical, 

chemical, biological, or microbiological) or characteristic that should be within the appropriate 

range for ensuring the desired quality of the product.57 One CQA is the aesthetic appearance of 

the cake, described as a uniform and elegant cake structure of the dried product.71 Aesthetic 

appearance is determined while the product is undergoing the drying process. A possible factor 

affecting cake appearance is product collapse, defined as loss to cake microstructure that is 

established during freezing.72 An increased product temperature caused by early ramping into 

secondary drying results in product melt-back during the drying process, and may have a 

significant impact on the appearance of the cake.58 

In accordance with good pharmaceutical practice, the United States Pharmacopeia (USP) 

recommends inspecting all vials in a batch, also termed 100% batch inspection.73 Product 

acceptance with regards to its aesthetic appearance is subject to acceptance by visual inspection 

in the production environment. However, sole reliance on human intervention to inspect cake 

appearance can be fallible on the production line, as thousands of vials are produced. Failure to 

detect a cake defect in the finished cake, such as collapse or melt-back, can have a deleterious 

effect on the patient, as this defect might be the result of excess product moisture that may affect 

the drug’s safety and efficacy.73 In some instances, cake collapse may cause poor solubility and 

increased reconstitution time.74 Recently, Patel et al.71 summarized the challenges related to the 

visual inspection of lyophilized drug products and provided insights on acceptable cake 

appearance from an industrial perspective. 

Several offline tools have been developed for characterizing the appearance of freeze-dried 

cakes, but as these techniques are invasive and require longer testing times, they are only 

commonly used in the development stages.75 Here, we present the potential of near infrared 

spectroscopy (NIRS) in combination with multivariate data analysis (MVDA) methods for 
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identifying collapse in products during the process and in the finished freeze-dried cake. The 

proposed approach could provide assurance and accelerate the practice of visual inspection of 

freeze-dried cakes. 

4.2 MATERIALS AND METHODS 

4.2.1 Sample preparation and NIRS measurement procedure 

A 15% (w/v) glycine solution was used as a model formulation for the freeze-dried products. 

The samples were dried using a ModulyoD laboratory-scale freeze dryer (Thermo Electron 

Corporation, Waltham, MA, USA). Three categories of samples were produced: 1) partially 

collapsed cakes, 2) fully collapsed cakes, and 3) normal freeze-dried cakes; each category 

comprised 25–35 samples. Cake collapse was produced by manipulating the vials during 

drying. We observed that the degree of collapse was closely related to the amount of moisture 

in the freeze-dried samples; therefore, two different moisture levels were selected for inducing 

partial and full collapse (Figure 4-1).  

 

Figure 4-1 Representation of collapse in typical freeze-drying samples. (Left) Partially 

collapsed and (right) fully collapsed/melt-back samples. 

To induce partial collapse, samples containing 5 ± 2% (w/w) moisture were removed from the 

freeze dryer and left at room temperature (20°C) until cake shrinkage was observed. To induce 

full collapse, samples containing 20 ± 5% (w/w) moisture were removed from the freeze dryer 

and left at room temperature until cake melt-back was observed. The moisture content was 

determined by gravimetry, where the difference between the initial and final product weight 

was calculated66,67. 
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The NIR spectra were acquired using a diffuse reflectance NIR spectrometer (MicroNIR 1700, 

VIAVI Solutions, Inc., Milpitas, CA, USA) covering the wavelength range of 900–1700 nm. 

The measurements acquired consisted of an average of 128 spectra, with an integration time of 

12 ms. The vials assigned to partial and full collapse were scanned before and after collapse 

was induced. After the NIR spectra had been obtained, the vials were replaced in the freeze 

dryer to complete the drying cycle. Once dry, all three categories of the samples (Figure 4-2) 

were scanned to obtain the spectra for the different categories of finished freeze-dried products. 

NIR spectra were acquired in triplicate at 60° intervals around the cylindrical vials; later, the 

spectra obtained on each vial were averaged to obtain one spectrum per vial. 

 

Figure 4-2 Representation of typical finished freeze-dried samples. (Left) Normal cake, 

(center) partially collapsed, and (right) fully collapsed/melt-back samples. 

4.2.2 Data structure and Chemometric methods 

The dataset of the finished samples consisted of 92 spectra × 125 wavelengths, one for each of 

the 92 samples in the three categories: partially collapsed, completely collapsed, and normal 

products. The dataset of the in-process samples was composed of 114 spectra × 125 

wavelengths. The 114 spectra were: 32 completely collapsed samples and 25 partially collapsed 

samples, all of which were scanned twice (before and after product collapse). 

The raw and preprocessed spectra were examined to obtain information related to the collapse 

and melt-back in the freeze-dried cakes. This was carried out via chemometrics methods such 

as principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), 

and linear discriminant analysis (LDA), applied on the finished and in-process sample dataset 
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for classifying the samples into the different categories. PCA is a projection method for 

maximizing the variance of the X matrix (spectra), and does not take the Y matrix (CQA) into 

account. PLS-DA is a projection method for maximizing the covariance between X and Y, 

where Y is a diagonal matrix representing the class of each sample. LDA is a projection method 

for maximizing the separation of each X group based on the Y matrix, that is, a known class of 

each sample; however, this does not seek to maximize variance. All data analysis, spectral pre-

processing, and chemometric model building steps were performed using Python 3.7.  

4.3 RESULTS AND DISCUSSION 

4.3.1 Identifying and classifying collapsed vs normal finished freeze-dried 
products  

In the finished freeze-dried products, the spectral baseline information was used to classify 

complete collapse, partial collapse, and normal freeze-dried products. The spectra were simply 

mean centered prior to model building. Figure 4-3 (a, b, c) shows the comparative score plots 

of the different methods (PCA, PLS-DA, LDA); the samples are colored according to category 

(partial and full collapse, and normal freeze-dried). In all cases, two latent variables were 

sufficient for discriminating the spectra belonging to different categories. In PCA and PLS-DA, 

spectra separation could be seen on the first component axis (PC1), but the samples tended to 

overlap, as PCA and PLS-DA tend to maximize the variance and covariance between samples. 

A clear separation and clustering of spectra respective to the categories could be seen in the 

LDA score plot, as LDA tends to maximize the separation of the group of samples based on the 

known sample category. The LDA loadings (Figure 4-3 d) were mostly flat, which means that 

the entire baseline is used to separate the samples into different categories. And there is limited 

to no impact of moisture on different categories of the samples. The LD1 loadings separate the 

samples based on the product’s aesthetic appearance contributed by the baseline changes in the 

samples’ spectra. The LD2 loadings separate the samples based on the product concentration 

changes. The partially and completely collapsed samples had lower scores on the LD2 axis, as 

the product in some cases had shrunk and was not homogeneously distributed inside the glass 

vial. However, the higher LD2 scores of the normal freeze-dried products could be correlated 

with the higher product concentration, as the cake in this condition was intact and 

homogenously distributed in the glass vial. 
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Figure 4-3. Scores and loadings plot of finished freeze-dried products. (a) PCA score plot. (b) 

PLS-DA score plot. (c) LDA score plot. (d) LDA loadings plot. 

4.3.2 Identifying in-process collapse (meltback) in the products during the 
freeze-drying process  

In the in-process products, partial and complete collapse were identified using the spectral 

signature. The spectra of both categories of samples, obtained before and after collapse as 

induced, were pretreated using the standard normal variate (SNV). The spectra showed a 

distinct water overtone band when there was a change in the product’s physical state (from ice 

to liquid). Figure 4-4 shows comparative score plots of the different methods (PCA, PLS-DA, 

LDA); the samples are colored according to category (partial and full collapse, and normal 

freeze-dried). In all methods, two latent variables were sufficient for discriminating between 

the samples. 



44 

 

 

Figure 4-4 Scores and loadings plots of freeze-drying (in-process) products. (a) PCA score plot. 

(b) PLS-DA score plot. (c) LDA score plot. (d) LDA loadings plot 

In the PCA and PLS-DA score plots, the separation of the samples into different categories 

could be seen only on the PC-1 axis; however, the LDA score plot showed a clear separation of 

the samples on both the LD1 and LD2 axes. On the LD1 axis, the samples were separated into 

two broad categories. The LD1 loadings had higher weights at 1366 nm, indicating that the 

product concentration changes (the alkyl group, in this case) contributed to the separation seen 

on the LD1 axis. Samples existing in a full collapse state showed sedimentation of the product 

at the bottom of the vial; therefore, they had comparatively higher scores. The LD2 loadings 

indicate that the free moisture present in the samples’ interstitial spaces contributed to the 

grouping of spectra on the LD2 scores axis. The partially collapsed samples had higher LD2 

scores, as they contained larger amounts of free moisture, whereas samples prior to full collapse 

had lower scores, as they contained less free moisture. This is in accordance with the literature 

that presents NIRS ability in identifying the state and nature of water present inside the 

samples31 
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4.4 CONCLUSION: 

This study evaluates the potential of NIRS for identifying the cake defects encountered in the 

manufacturing of freeze-dried drug products. Defects in the products, such as partial and 

complete collapse, were produced by mimicking abnormal process conditions that might arise 

during the routine manufacturing process. The samples were tested during the process (in-

process) and after the process had been completed. The in-process samples were tested before 

and after collapse had been induced. The NIRS data were analyzed using PCA, PLS-DA, and 

LDA methods, and the comparative results from these three methods have been presented. 

The results show the potential of NIRS for identifying the different cake defect intensities in 

the finished freeze-dried products, and also for identifying product collapse during freeze-

drying. Moreover, the comparative results showed that choosing the appropriate method is 

important for characterizing the samples into different categories based on their nature. Among 

the methods used, LDA was most appropriate for discriminating samples.    
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5. Preliminary experiments to assess the suitability of 
NIR spectrometers and test formulation for monitoring 
moisture inside the freeze-dried products  

 

 

Title in French 

Expériences préliminaires pour évaluer l'aptitude de spectromètres NIR et tester la formulation 

pour monitorer l'humidité à l'intérieur de produits lyophilisés 

Contributions to the thesis: Work in this chapter was intended to make a preliminary 

evaluation of several low-cost NIR spectrometers using a model formulation in order to identify 

a suitable NIR spectrometer for monitoring moisture in freeze-dried products. To carry out this 

work, mimicked freeze-dried samples with different moisture levels were used. Findings of this 

experiment helped in identifying an NIR spectrometer that can potentially be used for 

monitoring moisture in the freeze-dried products. In addition, this chapter provides a 

methodology that allows a one-to-one comparison between three different NIR spectrometers.  
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CHAPTER OVERVIEW 

NIR Spectroscopy (NIRS) is an established method to monitor moisture in in-process and in 

the finished freeze-dried products. In the past, several studies have reported the application of 

NIRS for monitoring moisture inside the freeze-dried products using pharmaceutical products. 

The selectivity of NIRS to monitor moisture inside the products depends on factors such as the 

NIR wavelength range, choice of formulation ingredients and spectral properties of NIR in 

implementing in the real-time process settings.  

The present work evaluates several low cost NIR spectrometers such as Viavi MicroNIR-1700, 

Spectral engines (N-1.7 & N-2.2), and SCIO-NIR to identify a suitable one for monitoring 

moisture inside the glycine model formulation. PLS based predictive models were built using 

data from different NIR spectrometers and their performance was determined by comparing the 

obtained PLS figures of merit. Comparison of NIR spectrometers’ PLS figures of merit was 

done in order to identify a NIR spectrometer suitable for monitoring moisture inside the freeze-

dried products. Results demonstrate the spectral selectivity and suitability of a NIR to monitor 

the moisture in freeze-dried products containing variable moisture levels. 
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RÉSUMÉ DU CHAPITRE EN FRANÇAIS 

La spectroscopie NIR (NIRS) est une méthode établie pour mesurer l'humidité dans les produits 

lyophilisés en cours de séchage et dans les produits finis. Dans le passé, plusieurs études ont 

présenté l'application du NIRS pour surveiller l'humidité à l'intérieur des produits lyophilisés à 

l'aide de produits pharmaceutiques. La sélectivité du NIRS pour surveiller l'humidité à 

l'intérieur des produits dépend de facteurs tels que la plage de longueurs d'onde NIR, le choix 

des ingrédients de formulation et les propriétés spectrales du NIR lors de la mise en œuvre dans 

les paramètres de processus en temps réel. 

Le présent travail évalue plusieurs spectromètres NIR à faible coût tels que le Viavi MicroNIR-

1700, les moteurs spectraux (N-1.7 et N-2.2) et SCIO-NIR pour identifier un spectromètre 

approprié pour la surveillance de l'humidité à l'intérieur de la formulation du modèle de glycine. 

Des modèles prédictifs basés sur des modèles PLS ont été construits à l'aide de données 

provenant de différents spectromètres NIR et leurs performances ont été déterminées en 

comparant les chiffres de mérite PLS obtenus. Une comparaison des valeurs de mérite des 

spectromètres NIR PLS a été effectuée afin d'identifier le NIR pour surveiller l'humidité à 

l'intérieur des produits lyophilisés. Les résultats démontrent la sélectivité spectrale et l'aptitude 

d'un NIR à surveiller l'humidité dans les produits lyophilisés contenant des niveaux d'humidité 

variables.  
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5.1 INTRODUCTION  

IR based Process analytical technologies (PAT) tools are increasingly popular to monitor the 

critical quality attributes (CQA) of the product during the freeze-drying, making it possible to 

monitor the progression of the process. NIR spectroscopy (NIRS) is one of the preferred 

methods to monitor the moisture in the freeze-dried products because of its non-product-

invasive and non-destructive nature.  Early work identified the potential of NIRS to determine 

the moisture inside the freeze-dried products with the precision equivalent to the Karl-Fischer 

(KF) titration method14. Most recently, Kauppinen et al15 demonstrated the implementing of 

multiple NIR probes on vials specific to spatial position inside the drying chamber, this was 

done to monitor moisture variability in vials during the freeze-drying process. Despite the 

existence of numerous studies on the use of the NIR probes, there are still challenges in 

implementing the probes in freeze-drying equipment:  

 The introduction of a probe inside the freeze-drying chamber presents challenges 

because of the presence of an isolated product chamber space and it requires major 

retrofitting to the drying chamber.  

 Maintaining the position of the NIR probe on the sample surface throughout the drying 

process.  

 Difficulties in transferring the technology from the lab scale to production scale.  

This study was focussed on exploring the low-cost NIRS that addresses all the challenges and 

allows easy adaptability inside the freeze-dryer. Furthermore, it promises to reduce the cost and 

enhance the technical feasibility of implementation. The selection of the NIRS specific to the 

formulation is crucial as there can be an interference of absorbance bands coming from 

formulation ingredients with the water overtone bands. 

Therefore, the objectives of this study are, 1) evaluate the suitability of model formulation for 

moisture quantification studies, 2) compare NIR spectrometers’ performance to identify a 

suitable NIRS for monitoring moisture inside the mimicked freeze-dried products.  

5.2 MATERIALS AND METHODS  

Glycine (≥98.5%), a pharmaceutical excipient, was purchased from Fischer Scientific Canada 

and was used as a model formulation for producing samples. Deionized water was used as a 
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solvent to prepare different moisture levels inside the samples. For this study, 50mL capacity 

glass vials were used (DWK Life Sciences, Millville, NJ, USA). Sample freezing was done in 

-18°C freezer (RCA, NY, United States). In order to achieve homogenous distribution of 

moisture in the damp samples a household coffee blender was used (Cuisinart-DCG-12BCEC, 

Woodbridge, ON, Canada).Three different NIR spectrometers were used for testing the 

experiments and the following are their specifications: 

Table 5-1 Working wavelength range of NIR spectrometers and their focused moisture band 

NIR Working wavelength range Focused moisture band 
MicroNIR (Viavi Solutions Inc.) 950-1650nm 1440-1470nm 
N-2.2 Sensor (Spectral Engines GmbH) 1750-2150nm 1900-1950nm 
ScioNIR (Consumer Physics Inc.) 760-1052nm 950-980nm 

5.2.1 Sample preparation: 

Both the calibration and validation samples were prepared in % (w/w) concentrations for a total 

sample weight of 50 grams (water + glycine). Calibration samples were prepared in triplicates 

for each moisture level, whereas, one sample per moisture level was prepared in the validation 

group. Proportions of glycine and water used to produce samples in the moisture range of 0-

30% (w/w) are presented in Table 5-2 & 3. 

Table 5-2 Proportions of water and glycine required for calibration samples 

Sample 
S.no 

Water 
weight (g) 

Glycine 
weight (g) 

Moisture  
(%) w/w 

1 0 50 0 
2 1 49 2 
3 2 48 4 
4 3 47 6 
5 4 46 8 
6 5 45 10 
7 6 44 12 
8 7 43 14 
9 8 42 16 
10 9 41 18 
11 10 40 20 
12 11 39 22 
13 12 38 24 
14 13 37 26 
15 14 36 28 
16 15 35 30 
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Table 5-3 Proportions of water and glycine required for validation samples 

Sample 
Number 

Water 
weight (g) 

Glycine 
Weight (g) 

Moisture 
(%) w/w 

1 1.5 48.5 3 
2 3.5 46.5 7 
3 5.5 44.5 11 
4 7.5 42.5 15 
5 9.5 40.5 19 
6 11.5 38.5 23 
7 13.5 36.5 27 

In order to achieve homogenous distribution of water inside the glycine, the weighed sample 

mixture was mixed in a coffee blender for 15 seconds, this was done by flattening the blades of 

the blender with a duct tape. Samples were filled in glass vials and labelled appropriately. 

Samples with >20% (w/w) moisture were prepared directly in a glass vial as it was relatively 

easy to mix the sample slurry with a spatula to achieve homogenous spread of moisture. 

Samples containing >20% (w/w) moisture concentration were frozen inside -18°C freezer for 2 

hours, whereas samples ≤20% (w/w) moisture were maintained at the room temperature; this 

was done to mimic the product form that exists during the freeze-drying process. To acquire 

the NIR measurements, initially samples with ≤20% moisture were scanned using an individual 

NIRS, later the frozen samples were taken out of the freezer one by one and the measurements 

were made ensuring the product was in the frozen state, each vial was kept in an ambient 

temperature environment for not more than one minute. NIR measurements were acquired 

around three different sides on each sample vial at an angle of approximately 120° and at each 

measurement angle 3 replicate spectra were acquired, the height of the NIR sensor was adjusted 

in a way to keep the sensor head always in the middle of the sample fill volume. 

5.2.2 Data analysis 

The following steps were used to analyse the data: 

Step 1. Pre-processing of Raw Spectra 

NIRS raw spectra were inspected to observe the spectral trend relative to the moisture 

concentration present inside the samples. Spectra obtained from each NIR spectrometer were 

pre-processed using several methods such as SNV, derivatives, and a combination thereof. 

After preprocessing, spectra were inspected to observe the trend in the water absorbance band 
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with the change in product-moisture concentration. Pre-processed spectra that exhibited an 

ascending trend in water absorbance maxima with the increase in water concentration was later 

used for PLS model building. All the spectral pre-processing and model building was done 

using SIMCA 14.1 (MKS Umetrics, Sweden). 

Step 2.   Chemometric and statistical analysis 

Several PLS calibration models were built using data obtained from different pre-processing 

methods such as SNV, derivatives, their combinations, the best among the developed models is 

presented in the following section. To include possible variations in the model, all the spectra 

were included, although a few of the replicate scans seemed to deviate in terms of water band 

absorbance intensity.  

The reference moisture content for the samples was taken based on gravimetrically acquired 

moisture values presented in Tables 5-2 & 3.  

To choose the appropriate number of components in a PLS-model, an optimum balance between 

model fit and predictive ability was considered, reference for the goodness of model fit was 

taken by the parameters, explained variation (R2) and goodness of prediction by parameter 

predicted variation (Q2), the point where there was a good agreement between the R2 and Q2 

values was used as a basis for selecting the appropriate number of components. Cross validation 

was done to avoid overfitting the model. Additionally, residual component plots were inspected 

to ensure there was no significant pattern in the error matrix.     

Step 3. Validation of the developed PLS model: 

The accuracy of the model is demonstrated by the RMSECV and RMSEP. To obtain the 

RMSECV, cross-validation was done using a random grouping method in which the training 

set was divided into 7 subgroups such that each group contained observations with random 

moisture levels. The RMSECV was obtained by a repeated protocol in which a model is trained 

with 6 subgroups to predict the values of the kept out subgroup. To compute the RMSEP, 

external validation was done using the spectra obtained from the validation sample group 

containing water concentration in the range of 3-19% (w/w), mentioned in Table 5-3. 
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5.3 RESULTS AND DISCUSSION 

In the MicroNIR spectra, water show a prominent absorbance band in the wavelength range of 

1400-1500 nm (Figure 5-1 a) another small peak is observed at 1170nm and it is related to a 

weak water absorbance band.  

 

Figure 5-1 (a) MicroNIR raw spectra of freeze-dried samples with 0-30% (w/w) Moisture. (b) 

PCA score plot of MicroNIR spectra; spectra and data points in PCA plot are labelled and 

colored according to theoretical moisture%.   

Spectra of the frozen samples >20% (w/w) moisture exhibit no clear separation of spectra and 

there was an overlap in spectral response, this was due to sedimentation of product at the bottom 

of the vial. A PCA model was built using the MicroNIR spectra in order to evaluate the effect 

of product sedimentation in frozen samples on their spectral response. In the PCA score plot 

(Figure 5-1 b) PC1 and PC2 explained a total of 98% variance. The score plots shows that the 

samples with water concentration in the range of 0-20% (w/w) are well separated on a PC1 axis 

based on the amount of water present in them, whereas all the frozen samples with water 

concentration in the range of 22-30% (w/w) seem to closely cluster with no clear trend. This 

confirms the heterogeneous distribution of moisture inside the frozen samples. 

However, a few of the replicate spectra of the samples <20 % (w/w) water seem to show 

overlapping spectral response with the other sample concentrations, despite these deviations all 

the spectra were retained for the model building. 

In the SE N-2.2 NIR and ScioNIR spectra (Figure 5-2 a & b) water shows an absorbance band 

at approximately 1950 nm and 960nm. Similar to MicroNIR, spectra of SE N-2.2 NIR and 

ScioNIR (Figure 5-2 a) also show no clear segregation in spectra of samples >20% (w/w) 
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moisture. Therefore, for all NIRS, spectra of samples with moisture concentration in the range 

of 0-20% (w/w) were used for building PLS models.  

 

Figure 5-2 (a) SE N-2.2 NIR raw spectra of freeze-dried samples with 0-30% (w/w) moisture. 

(b) ScioNIR raw spectra of freeze-dried samples with 0-30% (w/w) moisture; spectra are 

labelled and colored according to theoretical moisture%.   

Calibration models for MicroNIR and SE N-2.2 NIR spectrometer were built using first 

derivative spectra, and for the ScioNIR standard normal variate pre-processed spectra were 

used. 

PLS calibration models were built separately for each NIR spectrometer. In the MicroNIR 

spectrometer, wavelengths <1100nm were excluded from building PLS models as there was no 

clear trend in the spectra. In the SE N-2.2 spectrometer, all the wavelengths were taken into 

account. Whereas, in ScioNIR spectrometer wavelengths lower than 950nm were excluded as 

there was a more prominent absorbance band contributed by the alkyl group present inside the 

product. In all the cases PLS based calibration models with two latent variables showed R2adj 

values ranging between 0.91 to 0.96. And the maximum RMSEC was ≤1.82% (w/w) moisture. 

And the calibration models used for predicting the test dataset showed RMSEP of ≤2% (w/w) 

moisture. Detailed PLS figures of merit are presented in Table 5-4. 

Table 5-4 Summary PLS figures of merit of different NIRS  

NIR Pre-treatment 
method 

No of 
PC 

R2 Q2 RMSEC RMSECV RMSEP 

MicroNIR 1st Derivative 2 0.99 0.98 0.69 0.69 1.01 
Spectral 
Engines (SE) 
N-2.2 

1st Derivative 2 0.92 0.91 1.85 1.84 2.02 

ScioNIR SNV 2 0.96 0.96 1.24 1.23 1.32 
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Among the three evaluated NIRS, PLS figures of merit were comparatively better for MicroNIR 

spectrometers, and it was observed that there was no interference of glycine functional groups 

on the water absorbance band. Also, a clear separation in spectra respective to the amount of 

moisture present inside the samples was observed. 

5.4 CONCLUSIONS 

Conventional NIRS tools require major retrofitting to the freeze-drying equipment to monitor 

product-moisture during the process, however, by using small size tools, retrofitting to the 

equipment can be avoided. This enhances the feasibility of implementing NIRS for real-time 

monitoring of the freeze-drying products and processes. The study sought at assessing the 

feasibility of using mini NIR spectrometers to predict moisture inside the simulated freeze-

drying samples via PLS calibration models. Results of this experiment with three different low-

cost NIR spectrometers demonstrate their abilities in measuring the amount of water present 

inside the samples in the concentration range of 0-20% (w/w). Among the evaluated NIR 

spectrometers, MicroNIR showed better separation in spectra respective to the amount of 

moisture present in the samples. And comparatively better PLS figures of merit were seen, 

which indicates the possible potential of MicroNIR in real-time monitoring of moisture in the 

freeze-drying products.  

Further work will be needed with In-process freeze drying samples in order to assess the 

capabilities of these NIR sensors for freeze-drying monitoring, however, these initial trials with 

the simulated samples open the doors for considering the low-cost NIR probes for freeze-drying 

monitoring. 
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6. CONCLUSION 

PAT tools are increasingly being explored and developed to monitor pharmaceutical 

manufacturing operations in order to achieve high quality products. The intent behind 

continuous PAT development is not just to comply with current regulatory requirements but 

also to enhance the process understanding so that the products and processes can be efficiently 

monitored and controlled. Knowing the criticality of moisture on product stability and its impact 

on several different quality attributes in products, numerous PAT tools have been developed 

focussed on monitoring and quantifying moisture inside the freeze-dried products. In order to 

obtain robust results using point focussed measurement tools, further exploration is needed to 

determine the spatial intra-vial distribution of moisture in the freeze-dried products. In addition, 

there is a need to explore tools that can potentially be used for monitoring collapse in products 

during the freeze-drying and in the finished freeze-dried products; such that the batch failure 

can be avoided and the practice of visual inspection of 100% of vials in the batch can be 

accelerated.     

Part of this thesis focuses on the use of a combination of NIR tools (Chemical imaging and NIR 

spectroscopy) to investigate the spatial distribution of moisture inside the freeze-dried vials. 

Qualitative and quantitative studies were carried out to gain in depth understanding about the 

intra-vial moisture distribution in the freeze-dried vials. These studies showed the usefulness 

of NIR CI in studying the spatial moisture on the surface of the vials. The results confirm the 

non-homogenous distribution of moisture, as well as the non-uniform drying front, in the 

products undergoing freeze-drying. Findings from the NIRS-based partial least squares (PLS) 

models indicate that, to achieve reliable product/process information, measurements must be 

drawn from multiple measurement points on the surface of the freeze-dried products. 

Later work was aimed at evaluating NIRS for monitoring the collapse inside the freeze-dried 

products. Results show the potential of NIRS in identifying different intensities of cake defects 

in the finished freeze-dried products, and also in identifying the product collapse during the 

freeze-drying process. Besides, from the comparative results obtained using different MVDA 

methods, it was understood that in order to classify samples based on their nature into different 

categories it is crucial to choose an appropriate method. Owing to the LDA’s nature of 
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maximizing separation between sample groups it was found to be the most appropriate method 

to discriminate normal and collapsed categories of freeze-dried samples. 

Overall, this thesis work presents interesting findings of the freeze-dried products using NIR 

tools (Chemical imaging and spectroscopy). During freeze-drying cycle development stage, 

presented approach of investigating the spatial distribution of moisture inside the freeze-dried 

products enables appropriate positioning of point focussed PAT tools and targeting the right 

sample inside the freeze-drier. Besides, the implementation of NIRS in monitoring the product 

collapse during freeze-drying helps in mitigating product defects. Also, this helps in reassuring 

existing practice of 100% visual inspection of finished product vials in the production 

environment.    

Conclusion en Français 
Pour obtenir des produits de haute qualité, les outils PAT sont de plus en plus explorés et 

développés pour surveiller les opérations de fabrication pharmaceutique. L'intention derrière le 

développement continu de PAT n'est pas seulement de se conformer aux exigences 

réglementaires actuelles, mais d'améliorer la compréhension des procédés afin que les produits 

et les processus puissent être efficacement monitorés et contrôlés. Connaissant l’importance de 

l'humidité sur la stabilité et son impact sur plusieurs attributs de qualité différents dans les 

produits, de nombreux outils PAT axés sur la surveillance et la quantification de l'humidité à 

l'intérieur des produits lyophilisés ont été développés. Afin d'obtenir des résultats robustes en 

utilisant des outils de mesure focalisés sur un point, une exploration plus approfondie est 

nécessaire en ce qui concerne la distribution spatiale intra-flacon de l'humidité dans les produits 

lyophilisés. En outre, il est nécessaire d'explorer des outils qui peuvent être utilisés pour 

surveiller l'effondrement des produits pendant la lyophilisation et dans les produits lyophilisés 

finis; de sorte que la défaillance du lot puisse être évitée et que la pratique de l'inspection 

visuelle de 100% des flacons du lot puisse être accélérée. 

Une partie de cette thèse se concentre sur l'utilisation de la combinaison d'outils NIR (imagerie 

chimique et spectroscopie NIR) pour étudier la distribution spatiale de l'humidité à l'intérieur 

des flacons lyophilisés. Des études qualitatives et quantitatives ont été menées pour acquérir 

une compréhension approfondie de la distribution de l'humidité intra-flacon dans les flacons 
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lyophilisés. Ces études ont montré l'utilité du NIR CI pour étudier l'humidité spatiale à la 

surface des flacons. Les résultats confirment la répartition non homogène de l'humidité, ainsi 

que le front de séchage non homogène, dans les produits en lyophilisation. Les résultats des 

modèles des moindres carrés partiels (PLS) basés sur le NIRS indiquent que, pour obtenir des 

informations fiables sur les produits / procédés, les mesures doivent être effectuées à partir de 

plusieurs points de mesure sur la surface des produits lyophilisés. 

Des travaux ultérieurs visaient à évaluer le NIRS pour surveiller l'effondrement à l'intérieur des 

produits lyophilisés. Les résultats montrent le potentiel du NIRS dans l'identification de 

différentes intensités de défauts de gâteau dans les produits lyophilisés finis, et également dans 

l'identification de l'effondrement du produit pendant le processus de lyophilisation. En outre, à 

partir des résultats comparatifs obtenus à l'aide de différentes méthodes MVDA, il a été compris 

que pour classer les échantillons en fonction de leur nature dans différentes catégories, il est 

important de choisir une méthode appropriée. En raison de la nature de la LDA de maximiser 

la séparation du groupe d'échantillons, il a été jugé plus approprié de distinguer les catégories 

normales et regroupées d'échantillons lyophilisés. 

Dans l'ensemble, ce travail de thèse présente des découvertes intéressantes sur les produits 

lyophilisés à l'aide d'outils NIR (imagerie chimique et spectroscopie). Au cours de la phase de 

développement du cycle de lyophilisation, cette approche d'étude de la distribution spatiale de 

l'humidité à l'intérieur des produits lyophilisés permet le positionnement approprié des outils 

PAT focalisés et ciblant le bon échantillon à l'intérieur du lyophilisateur. En outre, la mise en 

œuvre du NIRS aide à surveiller l'effondrement des produits lors de la lyophilisation et dans les 

produits finis. En outre, cela contribue à rassurer la pratique existante d'inspection visuelle à 

100% des flacons dans l'environnement de production.  
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7. FUTURE WORK 

This thesis provides tools and methods for investigating the spatial distribution of moisture on 

the surface of the freeze-dried vials and identifying collapse inside the freeze-dried products. 

The following research can be potentially carried out in the future: 

i. Considering NIR CI findings related to the spatial distribution of moisture on the surface of 

vials, PAT scientists can use this work as a proof of concept during the development stages to 

identify the most appropriate vial and most appropriate position on the vial for implementing 

point focussed PAT tools. This can be done by imaging vials located at different representative 

positions (i.e. corner, middle, and on the center of the freeze-dryer shelf) and identifying the 

best suitable vial and measurement spot on the vial surface for monitoring moisture from the 

start until the end of the freeze-drying process. 

ii. Further evaluation of NIRS for identifying collapse inside the freeze-dried products can be 

focussed on inducing different levels of collapse inside the freeze-dried products and exploring 

the potential of NIRS in the real-time process settings. 
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