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Abstract

Network science captures a broad range of problems related to things (nodes) and
relationships between them (edges). This dissertation explores real-world network
problems in disparate domain applications where exploring less obvious “hidden
networks” reveals important dynamics of the original network.

The power grid is an explicit network of buses (e.g., generators) connected by
branches (e.g., transmission lines). In rare cases, if k branches (a k-set) fail simul-
taneously, a cascading blackout may ensue; we refer to such k-sets as “defective”.
We calculate system risk of cascading failure due to defective 2-sets and 3-sets in
synthetic test cases of the Polish and Western US power grids. A stochastic group
testing algorithm (Random Chemistry) is used to efficiently sample defective k-sets in
the “hidden network” of all possible k-sets, and new methods are proposed to derive
bounds on the total number of defective sets from the obtained sample. We use copula
analysis, with a custom distance metric, to estimate risk when the k initiating outages
are spatially correlated and show that this realistic assumption increases the relative
contribution to risk of 3-sets over 2-sets.

In the power systems application, among others, computational costs vary when
testing defective vs. non-defective k-sets, a consideration that has not previously been
made when evaluating group testing algorithms. We develop a domain-independent
test problem generator that enables us to vary the number of defective k-sets, with
a tunable parameter to control the cost ratio of testing defective vs. non-defective
k-sets. We introduce a deterministic group-testing algorithm (SIGHT) capable of
sampling from this space, and show that both the number of defective sets and the
test cost ratio affect the relative efficiency of Random Chemistry vs. SIGHT. We
discuss various applications where each algorithm is expected to outperform the other.

Conversations can also be viewed as explicit networks of dialog (edges) between
speakers (nodes). We propose using second and third order Markov models based on
the sequence of speaker turn lengths to elucidate “hidden networks” of information
flow and reveal patterns of information sharing between participants. The proposed
method is demonstrated on a corpus of conversations between patients with advanced
cancer and palliative care clinicians. We demonstrate the efficacy of the model by
confirming known patterns of conversational discourse, identifying normative patterns
of information flow in serious illness conversation, and showing how these patterns
differ under a variety of contexts, including the expression of distressing emotion.
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Chapter 1

Comprehensive Introduction

Networks represent relationships between things. It is no surprise that such a simple

concept is ubiquitous in nature. While networks have been around since time immemo-

rial, the great mathematician Leonhard Euler is widely credited with formalizing the

study of networks (graph theory) in 1735 [1]. Euler was challenged with finding a

walking path that crossed each of seven bridges in Königsberg (near modern-day St.

Petersburg) exactly once, and in formulating a solution, abstracted the problem by

considering the things (land masses) and relationships between them (whether two

land masses are connected by a bridge) as a mathematical object.

Since Euler’s time, network science has matured as an important field of study with

profound impacts on the many disciplines where it is applied. The multidisciplinary

nature of the field has been embraced by the network science community [2, 3].

Some popular application domains include biology, social sciences, computer science,

engineering, and linguistics (Table 1.1).

Formally, a network (or graph) consists of a set of vertices (nodes) and edges

that connect pairs of vertices. Both nodes and edges can be assigned weights that
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Discipline Applications
biology metabolic networks [4, 5], genetic regulatory net-

works [6], food webs [7, 8], pollinator networks
[9, 10]

social science social networks [11, 12, 13]
computer science wireless networks [14], the internet [15, 16]
engineering infrastructure networks (transportation [17],

electricity [18], communication [19])
linguistics Language networks [20, 21]

Table 1.1: Multidisciplinary examples of various applications of network science.

indicate the strength of the relationships they represent. In the preceding definition,

an edge connects two (not necessarily distinct) vertices, but the graph concept can be

generalized. In a hypergraph, each edge can connect an arbitrary number of vertices.

In some cases, networks are readily apparent. Their nodes may represent physical

objects, where the relationships between them can be directly observed. Over the

past several decades, increases in computational power and improved computational

methods have allowed for the analysis of larger and more complex networks than

at any previous point. For certain problems, however, the outward-facing network

is insufficient by itself to formulate a solution. In some cases, less obvious “hidden

networks” may be defined to capture the dynamics of the original network. In this

dissertation we develop original methods to tackle problems where “hidden networks”

are used to gain insights about the original networks, with an emphasis on problems

from two specific application domains: (1) How to quantify the risk to the power grid

from cascading failures; and (2) How to model information flow in conversations.

Application-specific context is included in subsequent chapters, so in the remainder

of this Chapter, we introduce the problems which motivate this dissertation and explain

how “hidden networks” can be exploited. We then provide additional background on
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methodologies used in subsequent chapters, beyond what is already discussed in the

chapters themselves.

1.1 Power Networks

The electrification of society is regarded as one of the greatest engineering achievements

of the last century, with the US power grid considered the largest interconnected

machine in the world [22]. The explicit network structure of the power grid is comprised

of generators, loads, and substations (nodes, a.k.a. buses) connected by transmission

lines and transformers (edges, a.k.a. branches, or lines). Electricity is extracted from

and inserted into the network at buses and transported between buses by lines. The

physics of the grid necessitate that the instantaneous amount of power being produced

be equal to the amount being consumed at any given moment.

When a set of k out of N lines fail together, the electricity that was flowing through

those lines must be re-routed, which may cause additional failures when other lines

exceed their operating capacities. Within the power systems literature, such sets are

sometimes referred to as N − k contingencies. We also refer to these using the more

general term k-sets. In rare cases, even the failure of small k-sets may result in a

cascade that can propagate through the network resulting in a large blackout. We

refer to such k-sets as N − k malignancies, or by the more general term “defective

sets”. Due to their vast size and substantial social and economic costs, the risk that

large cascading failures pose to power systems is significant [23, 24, 25].

Quantifying the risk posed by defective k-sets is challenging, since the number

of N − k contingencies grows exponentially with the size of the network. The size
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of the search space and the relative scarcity of malignancies makes it infeasible to

efficiently identify them all. Thus, an efficient sampling strategy is required. From

a sample of defective sets, it is necessary to estimate the total number of defective

sets (at least up to a given maximum k), in order to estimate system risk. When the

failures of individual components of a defective set exhibit correlations, as they are

likely to when they share a common cause (such as a storm), one should account for

this in estimating risk. These problems are introduced in the following subsections.

1.1.1 Group testing and the “hidden” network

In order to efficiently sample defective sets (to estimate risk), the ‘Random Chemistry’

algorithm has been previously demonstrated to be effective, and so is used in Chapter

2. While not formally recognized as such when it was initially proposed, Random

Chemistry is a stochastic, adaptive group-testing algorithm capable of sampling

defective hyperedges from the “hidden network” of all k-sets.

The main premise behind group testing is that rather than test each element (or

subset) individually to determine which are defective, strategies are developed to

more rapidly find defective sets by testing pooled samples where it can be determined

whether the sample contains at least one defective subset. More formally, given the

universal set of elements V = {v1, . . . , vN}, consider the set D of all minimal defective

subsets of V , where minimal means that no smaller subset is also defective. Then, for

any set S ⊆ V there exists an oracle function TEST such that:
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TEST (S) =


1 if S ∩D 6= ∅

0 otherwise
(1.1)

Using TEST , the classic group testing research has focused on developing algo-

rithms for identifying defective elements and minimal defective subsets using the

fewest number of tests possible, by applying deterministic methods to iteratively test

pooled samples of V . The process continues until one (or all) minimal defective set(s)

are found, depending on the application. Deterministic group testing has been applied

in a variety of applications areas, including multichannel access [26, 27], DNA library

testing and sequencing [28], and diagnosis of infectious diseases such as influenza [29],

chlamydia and gonorrhea [30], HIV [31], and Covid-19 [32, 33]. In adaptive group

testing, the results of each test are considered when determining which subsequent

tests to perform. The ability to adapt the sequence of tests in response to previous test

results obtains greater efficiency than a fixed strategy, but there are some applications

where resources are limited and the responsiveness required for adaptive group testing

may be infeasible. In these cases, non-adaptive group testing strategies where the

sequence (and number) of tests is predetermined may still offer gains in efficiency over

testing each set individually.

While the common goal in group testing has been to minimize the total number

of tests required, this does not take into account that there may be different costs

associated with testing defective vs. non-defective sets (as is true for the power

systems problem). Furthermore, deterministic group-testing algorithms have not

been developed to handle problems with intractably large numbers of defective sets
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with variable k, where false-negative tests occur and an upper-bound on the size of

returned defective sets can be specified (all of which are true for the power systems

problem). Thus, it was not clear whether a deterministic, adaptive group testing

algorithm might perform better than the stochastic, adaptive group testing algorithm

Random Chemistry, in sampling from the hypergraph of all k-sets in an application

such as the power systems problem. In Chapter 3, we modify a current state-of-

the-art deterministic group testing algorithm to handle these issues and develop a

tunable, domain-independent, test-problem generator that is used in a first-of-its-kind

comparison between a stochastic and a deterministic group testing strategy with

variable test costs.

1.1.2 Estimating Defective Set Counts

The number of defective k-sets in the power systems application is too large for us

to be able to identify them all, even in moderately sized power grids. Thus, when

using a group testing approach to efficiently sample for defective k-sets, we can only

calculate an estimate of the total risk to the grid by first estimating the total number

of defective k-sets that exist, up to some maximum k, based on the collected sample

of them. (We note that Monte Carlo sampling methods do not require this, but are

much less efficient at finding defective k-sets than the group-testing approach [34, 35].)

The use of random sampling for predicting total set size has been widely studied

in a variety of contexts. In the biological sciences, mark-recapture describes a set of

methods that use the rate at which individuals are re-sampled from a population to

derive an estimate of population size [36]. The same methods can also be used to

estimate species richness [36]. Parametric methods of estimation (such as the non-
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linear curve fitting method used in previous work [35]) have been shown ineffective in

most practical situations where the underlying distribution of sampling probabilities is

unknown [37, 38, 39]. We have observed that some defective sets are more likely to be

identified via group testing than others, and so non-parametric methods are preferred.

Statistically, most of the information about undetected individuals is contained in

the frequencies of the least-encountered individuals in the sample, and thus most of the

popular methods use these frequencies to derive population estimates [39]. Because

some individuals in the population may have such low probabilities of capture as to be

undetectable, these estimators can only be expected to achieve a lower-bound on the

true number of individuals in a population [39]. In preliminary work, we experimented

with several methods, including jackknifing [40, 41], Chao’s improved method [38],

and coverage-estimator based methods [42, 43]; ultimately, we found Chao’s method

[44] to be most effective as a means of lower-bounding the estimate of the number of

N − 3 malignancies in the power systems problem, so we use this in Chapter 2. To

derive an upper-bound on this estimate, a novel method is proposed based on patterns

of sampling bias in group testing algorithms observed when the frequency distribution

of components within defective sets is heavy-tailed.

1.1.3 Risk for Correlated Component Outages

Given a sample of defective sets, and an estimated total count of defective sets,

we propose a copula method for estimating total risk in Chapter 2 for correlated

component outages. This method has two user-defined parts: a correlation function

that determines the strength of correlation between two components and a copula

function that determines how the probabilities of failure for each component of a
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defective set, along with the pairwise correlation between components of the set, are

combined to derive a joint probability of the whole set failing together.

The fundamental assumption in the copula method is that components that are

‘closer together’ are more likely to fail together than components that are ‘farther

apart’. In the case of common-cause events such as storms, spatially correlated damage

is expected [45], and this is what we assume for the proof-of-concept demonstration in

Chapter 2. However, the notion of distance should be interpreted more broadly. For

example, the distance apart in time of manufacture or installation for two components

can also be thought of as a form of (temporal) distance.

Euclidean distance is a measure of the shortest straight-line distance between two

points, making it a natural and intuitive way to measure the spatial distance between

two objects. Euclidean distance may capture the distance between two components

of the grid “as the crow flies,” but neglects topological and electrical considerations.

When we abstract the power grid to a graph, we can consider the shortest path between

two nodes (or edges) as the quickest way to navigate along the edges of the network

from one component to the other. There are several methods, such as Djikstra’s

algorithm, for efficiently calculating this distance for weighted or unweighted graphs.

Measures of electrical distance have been proposed to bridge the gap between the

topological structure of the network and the electrical properties of the grid [46] and

may better capture how changes to one component of the grid may affect another.

However, when modeling spatially-correlated damage caused by a common exoge-

nous source, such as a storm or earthquake, spatial distance is more relevant than

electrical distance. When measuring distance between line segments, rather than

points (as we desire to do for quantifying the distance between two transmission lines),
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it is unclear how Euclidean distance can be applied. In Chapter 2, we propose a

semi-metric such that the more closely the span of two lines overlap, the closer the

distance between them.

The correlation function controls how the strength of correlation varies with

distance. The correct correlation function will depend on the exogenous, common-

cause event being modeled. If, for example, the risk associated with the failure of

some software component of the grid is being modeled, correlation may be captured

by a Poisson-type distribution [47]. We demonstrate our method assuming spatial

correlation modeled with a negative exponential distribution, as further justified in

Chapter 2.

Given the pairwise correlation of each branch pair, the copula function ‘couples’

the probabilities of failure for each branch. Many classes of copula functions exist

and which is most appropriate for a particular application depends on the underlying

distribution of failure likelihood for each component (eg., [48, 49, 50]). The use of

copula functions was popularized in finance [51], and today they are applied in a wide

variety of contexts such as hydrology and water resource engineering [52], multi-source

image segmentation [53], and precipitation modeling [54, 55]. We demonstrate our

method in Chapter 2 as a proof-of-concept, assuming the familiar Gaussian Copula

function.

1.2 Conversation Networks

In contrast to the power grid, whose dynamics are governed by the laws of physics, a

conversation might seem disorderly and unpredictable. On the contrary, conversations

9



consist of sequences of highly coordinated turns, as described by sociologist Harvey

Sacks [56]. Our goal in this application domain is to develop a tool for understanding

and interpreting information flow in a conversation, with immediate applications to

analyzing conversations between seriously ill patients and palliative care clinicians.

A conversation can be abstracted as an explicit network by considering each

speaker as a node and interactions between speakers as edges. This explicit network

has been used as a tool for visualizing the strength of relationships between speakers

for pre-analysis of conversational dynamics [57]. Given the importance of sequence to

understanding conversation, methods for further analysis of conversational dynamics

must be capable of measuring how the conversation changes over time. Markov models

are one way to capture this sequential dependence relationship between turns.

1.2.1 Markov Models and the “Hidden Network”

Simply put, Markov models are used to model how a system probabilistically transitions

between a finite number of possible states. For example, given the phrase “to be or

not to be”, we can define a Markov model where each word represents a unique state,

and the probability of transitioning from one state to another is determined from the

observed word sequence (Fig. 1.1a). The state space diagram is typically labeled such

that the sum of the weights of all outgoing edges from each node equals one (as shown

by the black edge weights in Fig. 1.1). Such weights can be used as probabilities to

generate new sequences of words, or to determine if a given word sequence could have

been generated with the model (e.g., the sequence “to be or not to be or not to be”

could have been generated using the probabilities shown in Fig. 1.1a).

For our application, however, we “populate” the edges of Markov models with
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weights that represent percentages with which each transition is observed in some data

set, such that the sum of all edges equals 100% (as shown by the blue edge weights in

Fig. 1.1). These weights thus quantify patterns of occurrence in the observed data

(e.g., in this example, they quantify the transitions in the word sequence “to be or not

to be” but not the word sequence “to be or not to be or not to be”).

By definition, the current state of a Markov model is dependent only on the

previous state, however higher-order models can be considered by simply redefining

the state of the system based on the previous k states (called the kth-order model).

Fig. 1.1b shows a 2nd-order model of the same word sequence “to be or not to be”,

where each state is defined by a sequence of two words (only those two-word states

that are observed in the given word sequence are shown in the figure). As the order of

a model increases, the number of possible states (and transitions) grows exponentially,

so there are practical limitations to how much memory a model can incorporate.

Various methods exist for determining the optimal model order given a particular set

of observations [58, 59, 60, 61]. In some cases, higher dimensionality of some states

may prove useful while others will not. In these cases, variable-order Markov models

may be appropriate [62].

Hidden Markov Models are special types of Markov model, where the model is used

to predict some unknown (hidden) state(s). Hidden Markov models have been applied

to a wide variety of prediction and classification tasks such as pattern recognition

[63, 64, 65], protein structure prediction [66, 67, 68], speech emotion recognition [69],

and part-of-speech tagging [70, 71]. Hidden Markov models have also been applied to

prediction/classification problems in conversation analysis in a variety of ways (see

Chapter 4 for examples).
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Figure 1.1: State space diagrams for a simple example of (a) 1st- and (b) 2nd-order Markov
models based on the observed word sequence “to be or not to be.” Edge weights show
the probability of selecting an outgoing edge from a given node (shown in black) or the
overall percentage occurrence for each transition (shown in blue), for this individual phrase.
Transitions that did not occur in the observed sequence are not shown. Although there are 16
possible 2nd-order states using the 4 words “to”, “be”, “or”, “not”, states with 0% occurrence
in this phrase (e.g., “to or”, and “be to”) are not shown here.
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Despite sharing the word “hidden”, the “hidden network” that we will consider to

help understand information flow should not be confused with hidden Markov models.

Our goal is interpretation, rather than prediction or classification. Specifically, we

model a “hidden network” of information sharing patterns using a Markov model

based on binarized turn lengths, with turn length being a proxy for the amount of

information exchanged each speaker turn.

Figure 1.2 shows a context-free, graphical representation of (a) a real conversation

between a palliative care clinician and patient with advanced cancer and (b) a fictitious

conversation with two speakers and twelve speaker turns. The real conversation shows

naturally occurring patterns, such as the oscillation between short and long turns, that

we seek to capture with our model. Given the threshold of eight words, the fictitious

conversation is used to show how each turn can be binarized such that turns with

fewer than eight words are short (S) and turns with eight or more words are long (L).

In our example, this results in the turn-length sequence {S, S, S, L, S, L, S, L, L, L, S,

S}.

In Chapter 4, we introduce COnversational DYnamics Models (CODYMs), a novel

application of Markov models populated using observed sequences of short/long turns.

We use 2nd- and 3rd-order CODYMs to analyze information flow in conversations

between patients with advanced cancer and palliative care clinicians.

1.3 Dissertation Outline

This dissertation adopts a ‘journal format’ and thus the next three chapters represent

stand-alone, distinct works, each prepared individually for publication. Chapter
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Clinician
Patient

(a) A graphical representation of an actual conversation between a
clinician and a patient with advanced cancer, where each vertical column
represents a speaker turn, the height of the column is proportionate
to the number of words in that turn, and the color of each column
indicates the speaker (clinician-side turns in red, patient-side turns in
blue).
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(b) A graphical representation of a conversation, where each dot rep-
resents a word, each vertical column of dots represents a speaker turn
(colored by speaker), and a pre-determined threshold (here, eight words)
can be used to classify turns as short (if the turn contains fewer words
than the threshold) or long.

Figure 1.2
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2 presents the copula method for determining the risk of cascading failures when

component outages are correlated. The method is demonstrated on two test cases,

including a synthetic model of the Western US power grid. To apply the method

to this large test case, new methods were developed for estimating lower and upper

bounds on the number of defective 3-sets from a sample of such sets obtained via

stochastic, adaptive group testing. Chapter 3 gives further consideration to group

testing algorithms that can be used to identify defective hyperedges in hypergraphs,

demonstrating that the cost of defective vs. non-defective tests, and the prevalence

of defective k-sets, determine whether a stochastic or deterministic group testing

method is most efficient. Chapter 4 proposes a novel method for modeling information

flow patterns in conversations. The new method is demonstrated on a corpus of

conversations between patients with advanced cancer and palliative care clinicians.

The results confirm expected patterns in conversational discourse (validating the

model) and provide novel insights about the normative patterns of information flow

in serious illness conversation, and how these patterns are disrupted by the expression

of distressing emotions. We conclude this dissertation in Chapter 5, with a summary

of original contributions and ideas for future work, some with preliminary findings, on

each of these problems.
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Chapter 2

Risk of Cascading Blackouts Given

Correlated Component Outages

Abstract

Cascading blackouts typically occur when nearly simultaneous outages occur in k out
of N components in a power system, triggering subsequent failures that propagate
through the network and cause significant load shedding. While large cascades are
rare, their impact can be catastrophic, so quantifying their risk is important for grid
planning and operation. A common assumption in previous approaches to quantifying
such risk is that the k initiating component outages are statistically independent
events. However, when triggered by a common exogenous cause, initiating outages
may actually be correlated. Here, copula analysis is used to quantify the impact
of correlation of initiating outages on the risk of cascading failure. The method is
demonstrated on two test cases; a 2383-bus model of the Polish grid under varying
load conditions and a synthetic 10,000-bus model based on the geography of the
Western US. The large size of the Western US test case required development of new
approaches for bounding an estimate of the total number of N − 3 blackout-causing
contingencies. The results suggest that both risk of cascading failure, and the relative
contribution of higher order contingencies, increase as a function of spatial correlation
in component failures.



2.1 Introduction

Cascading power failures are typically initiated when a small number of k components in

a power system of N components disconnect nearly simultaneously, and the subsequent

rerouting of power flow triggers additional component outages. This process continues

until the system reaches a state of equilibrium. While most cascades do not propagate

extensively throughout the network, the rare cases when they do can cause massive

blackouts affecting millions of people. Due to their vast size and substantial social

and economic costs, the risk they pose to power systems is significant [1, 2, 3].

Networks with heterogeneous load profiles, such as power systems, are particularly

prone to cascades; without the right precautions, even a single node may trigger a

cascade [4]. To mitigate the risk posed by cascading failure, power systems are required

to operate such that no single component outage will cause a cascade (so-called N -1

security). While grid planners and operators are now also obligated to consider the

risk of cascading failure due to multiple contingencies (k > 1) [5], it is not yet clear

how to estimate this risk. For brevity, minimal N − k contingencies that result in

a cascading blackout are referred to as “malignancies”, while contingencies that do

not cause a blackout are referred to as “benign” [6]. By “minimal”, we mean that no

smaller subset of outages results in a blackout. Analysis of high order malignancies is

challenging due to the nonlinear ways in which cascades propagate, the vast number

of N − k malignancies, and the combinatorial search space of possible contingencies.

In addition to helping to quantify risk of cascading failure, studying N − k

malignancies may potentially inform mitigating actions. For example, prior research

into a simple model of cascading overloads in communication networks [7] suggests
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that the intentional removal of key components directly after initiating sets of outages

may reduce the size of subsequent cascades. In a power system model of the Polish

grid, optimally dispatching generation assuming a 50% reduction in line limits on the

3 branches that contribute the most to the risk of cascades from N − 2 malignancies

dramatically reduces the overall risk of cascading failure with only a modest increase

in operational costs [8].

Many previous approaches to cascading failure risk analysis (including our own)

assumed initiating component outages to be independent events [1, 8, 9, 10, 11].

However, N − k malignancies triggered by the same exogenous event, or “common

cause”, represent a significant source of risk to power systems [12], and can result in

spatial correlation in initiating outages. For example, extreme weather events can result

in spatially correlated damage [13], protection system failures can sometimes cause

multiple outages within a small geographic region [14], and terrorist attacks may be

spatially localized, such as in the 2013 sniper attack on the Metcalf substation near San

Jose, CA, where the perpetrators shot 17 transformers at the same substation [15]. Non-

spatial attributes, such as component age, may also induce correlations in component

failures [16, 17].

There is a dramatically increasing computational burden to assessing risk for N−k

malignancies as k increases, so it is important to understand the degree to which

higher-order (k > 2) malignancies contribute to risk, and thus how important it is

to consider them in risk estimation. Even though there are many more N − 3 than

N − 2 malignancies for any given system, when there is no correlation in initiating

outages the probability of N − 3 malignancies occurring is so much lower than that of

N − 2 malignancies that the impact of N − 3 malignancies on risk is negligible [9].
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However, as correlation in component outages increases, the impact of higher order

malignancies on risk will increase. To what degree should risk analysis take into

account the conditional probability of component failure, given a common cause?

There has been some prior work on ways to incorporate correlation into risk analysis.

In [18], correlation was incorporated by assuming 100% correlation of outages within

a fixed radius. In [13], spatial correlation was achieved by determining outage rates of

lines adjacent to initial failures probabilistically, according to a Poisson process. In [19],

a random field with spatial autocorrelation was used in a cascade model to assess risk

from common-cause events. Others [20] have simulated the impact of hidden relay

failures on cascading failure risk by allowing proximate lines to trip probabilistically.

Another approach to incorporating correlation into risk estimation is via copula

analysis. Popularized in the field of finance [21], copulas have been used in a wide

variety of disciplines to model the co-dependence of multiple variables [22, 23]. Within

the realm of power systems, copulas are a popular tool for uncertainty analysis. They

have been used in the modelling of stochastic generation, such as wind [24, 25, 26].

The impacts of variable infeeds on security assessment have also been considered

using copulas [27]. Li [28] suggests copulas as a useful way to incorporate correlation

between random variables in power systems risk analysis.

A flexible and generalizable approach to risk estimation given correlated component

outages was presented in [29] and used to estimate risk due to N − 2 malignancies in a

2383-bus model of the Polish grid. This paper extends that work in several significant

ways including: (i) incorporating the effects of N − 3 malignancies, (ii) studying

how the risk due to N − 3, relative to N − 2, malignancies changes as a function of

correlation in outage probabilities, and (iii) applying the method to a much larger and
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more geographically realistic 10,000-bus test case, which necessitated (iv) development

of new methods for estimating the total number of N − 3 malignancies.

This paper is organized as follows: methods for risk estimation using samples of

N − k malignancies, and the computationally efficient “Random Chemistry” (RC)

sampling method used in this work, are reviewed in Sections 2.2.1 and 2.2.2, respectively.

In Section 2.2.3 a method using copula analysis to incorporate initiating outage

correlations into risk estimation is presented, and in Section 2.2.4 an approach to

quantifying distance between transmission lines, when considering spatial correlation,

is described. The two test cases used to demonstrate the method are described in

Section 2.2.5; new methods for bounding the total number of N − 3 malignancies in

large systems are described in Section 2.2.6. Results and discussion are presented in

Sections 2.3 and 2.4, respectively.

2.2 Methods

2.2.1 Estimating Risk of Cascading Failure

This study uses the method for estimating risk of cascading failure from sampled

N − k malignancies presented in [9, 11], briefly reviewed below.

The risk due to a set of branches (transmission lines or transformers) ω can be

calculated as [30]:

Rω = pωsω (2.1)

where pω is the joint probability of the branches in ω failing and sω is the size of the

resultant blackout. Note that pω is itself a function of pi, the independent outage
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probability for each branch i ∈ ω, as well as any effect of correlation among branch

outage probabilities (as further defined in Section 2.2.3).

Blackout size sω is quantified as the total power (MW) unserved due to load

shedding. In this work, a cascading blackout is considered to have occurred when 5%

or more of the total load is shed in DCSIMSEP, a simulator of cascading outages in

power systems [31]. The risk posed to the system by all N−k malignancies comprising

branches ω, for a given k, is then:

Rk =
∑

ω∈Ωk

Rω (2.2)

where Ωk is the complete set of all N − k malignancies for the specified k. For

realistically-sized power systems it is not computationally tractable to find the entire

set Ωk for k > 2. However, if Ωsampled
k ⊂ Ωk is a large and representative subset of

size |Ωsampled
k |, comprising all unique N − k malignancies found by many iterations of

some sampling strategy, and if the size of the complete set of N − k malignancies |Ωk|

can be estimated, then risk R̂k associated with N − k malignancies, for a given k, can

be estimated as follows:

R̂k = |Ωk|
|Ωsampled

k |
∑

ω∈Ωsampled
k

Rω (2.3)

Estimating |Ωk| for k > 2 on large systems is itself a very challenging problem, as

discussed in Section 2.2.6.

Considering only malignancies with k ≤ kmax and assuming that non-minimal

supersets of malignancies do not substantially change the amount of load shed, as
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justified in [9], the risk of cascading failure can be approximated as:

R̂ =
∑

k∈{2..kmax}
R̂k (2.4)

In this work, kmax = 3.

2.2.2 Random Chemistry Sampling

For each k, there are
(

N
k

)
possible N−k contingencies, only a small proportion of which

are malignancies. While exhaustive search may be feasible (albeit time consuming) for

k = 2, it is computationally intractable for k > 2 in large power systems. Thus, many

iterations of the Random Chemistry (RC) sampling method were used to efficiently

identify large sets of N − k malignancies in each test case. RC is a stochastic set size

reduction algorithm for identifying a small minimal set of initiating events that trigger

some outcome of interest [32], and was first applied for identifying N − k malignancies

in power systems in [6]. For the reader’s convenience, the RC algorithm is briefly

reviewed below.

The RC algorithm uses a subset reduction scheme {a1, a2, . . . , afinal}. Subsets of

size a1 are randomly sampled from a universal set of N system components until one

such set is found that causes a blackout; if a1 is relatively large, this typically requires

few tries. A set of size ai+1 is then randomly sub-sampled from the preceding set

of size ai until a set is found that causes a blackout (or some maximum number of

sub-samples is tried, in which case the algorithm aborts), and so on for each subsequent

set size in the scheme.

If ai+1 = ai/c, for some constant c, then the algorithm requires only O(N logN)
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time to identify a subset of size afinal. As in [6], we use c = 2 from a1 down to

subsets of size 20 and then use c = 1.5 down to afinal. A bottom-up brute force search

of all subsets of a given size k is subsequently applied (conducted in randomized

order, starting from k = 2), exiting when the first minimal malignancy of size

k = {2, 3, . . . , afinal} is identified.

Repeated sampling with independent RC trials is performed to compile large

subsets of N − k malignancies (ΩRC
k ). Risk due to each k ≤ kmax is then calculated

using Ωsampled
k = ΩRC

k in (2.3) for estimating system risk with (2.4).

A comparison of risk estimation using RC sampling vs. Monte Carlo (MC) sampling

on a model of the Polish power system at peak winter load [33] showed that the RC

approach was at least two orders of magnitude faster than MC on this system, and did

not introduce measurable bias into the estimate [9, 11]. However, these previous studies

assumed branch outages were uncorrelated. Under that assumption, N−3 malignancies

contribute relatively little to the risk, despite the fact that |ΩRC
3 | � |ΩRC

2 |, since their

probability of occurrence is so much smaller than that of the N − 2 malignancies [9].

In this study, the universal set is assumed to comprise the set of N branches in

each test case, afinal = 5, and up to 20 sub-samples at each set size were allowed

before aborting an RC trial, as in [9, 11]. The specific set reduction scheme used for

each test case is given in Section 2.2.5. Note that kmax < afinal because, with the

number of RC trials performed, |ΩRC
k | was insufficient for estimating |Ωk| for k > 3.

2.2.3 Copula Analysis for Correlation

Copula functions couple multivariate distributions to the marginal distributions of

individual variables [34]. Given a set of k random variables, X = [X1, X2, . . . , Xk],
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where Pr(Xi ≤ ti) is the marginal probability that branch i fails, for some threshold

ti, then

FX(T) = Pr
(

k⋂
i=1

Xi ≤ ti

)
(2.5)

where T = [t1, t2, · · · , tk], represents the joint probability that k branches fail together.

Without loss of generality, it is assumed that ti = 0 for all i.

There are numerous classes of copula functions in popular use. For this demon-

stration of the method, a Gaussian copula was assumed, but alternative distributions

may be assumed where appropriate. Here, it is assumed that the inverse stress on

a transmission line i is a univariate Gaussian random variable Xi = N (µi, σi), with

mean µi and standard deviation σi, with the cumulative distribution function:

FXi
(xi) = 1

2

[
1 + erf

(
xi − µi

σi

√
2

)]
(2.6)

Given the independent probability pi of branch i going out, µi and σi are chosen such

that when Xi < 0, the branch goes out. In other words, µi and σi are chosen such

that FXi
(0) = pi for each branch i. Without loss of generality, it is assumed that

µi = 1,∀i, and each σi is then solved for as follows:

σi = −1
erf−1(2pi − 1)

√
2

(2.7)

A multivariate normal distribution X = N (µ,C) with mean µ = [µ1, µ2, . . . , µk] and

covariance matrix C is then used as the copula function to couple these univariate

marginal distributions (Fig. 2.1).
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Figure 2.1: A visual depiction of the copula method for two components i and j with
hypothetical Gaussian distributions of some performance attributes, Xi and Xj, which impact
whether each component is operational or in a failure state. The curves on the vertical
planes represent the marginal distributions of each component’s attribute, with the shaded
regions of these curves, (Xi ≤ ti) and (Xj ≤ tj), representing the failure state for each
component. The shaded gradient on the horizontal plane represents the density of the joint
distribution (copula) of the two variables, with darker shading representing higher probability
density. The probability mass within the red hatched area represents the region of joint failure
(X ≤ [ti, tj ]), with the red dotted line depicting the boundaries of this region.

In this study, it is assumed that the correlation between outages in branches i and

j decays exponentially with the distance between them dij, according to:

ρij = ρoe
−dij/L (2.8)

where ρo represents the maximum possible correlation coefficient (at distance zero) and

L represents the characteristic length, which controls the decay rate of the correlation;

L can be interpreted as the distance at which ρij reaches ρo/e (i.e., ≈ 36.8% of ρo)

(Fig. 2.2).

Eq. (8) can be adjusted to represent a wide range of exogenous common cause

events individually, or in combination, by adjusting the parameters ρo and L to
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Figure 2.2: Change in the correlation between two branches as a function of the distance
between them, assuming (2.8) with characteristic length L = 300 km and correlation ρo for
branches that are 0 km apart.

align with data for a particular set of threats. The exponential decay form captures

the spatially decaying nature of earthquakes [35], and can approximately capture

the impact of other threats that are likely to be geographically correlated, such as

tornados [36] and hurricanes [37].

The resulting correlation coefficient ρij calculated by (2.8), and the standard

deviations σi and σj calculated by (2.7), are used to calculate the pairwise covariance

between branches i and j as:

cov(i, j) = ρijσiσj (2.9)

Using (2.9) to find each element of the covariance matrix C, the probability density

function of the multivariate normal distribution (2.10) is used to form the copula.

f(x) = 1√
(2π)k|C|

exp
{
−1

2(x− µ)>C−1(x− µ)
}

(2.10)

35



Integrating (2.10) over the region in the joint distribution that represents outages of

all system components gives:

FX(0) =
0∫

−∞

0∫
−∞

· · ·
0∫

−∞

f(x1, x2, . . . , xk) dx1 dx2 . . . dxk (2.11)

where FX(0) represents the joint outage probability of k components Pr(X ≤ 0).

The multiple-integral in (2.11) represents the generalized solution for arbitrary k

and is equivalent to the cumulative distribution function of the multivariate normal

distribution, which can be solved efficiently in MATLAB using methods described

in [38]. In this work, k ∈ {2, 3}.

2.2.4 Defining Inter-Branch “Distance”

The definition of “distance” will vary based on the type of common cause threatening

the system. Assuming spatial correlation in branch outages here, without loss of

generality a modified version of the inter-branch distance metric defined in [29] is used.

Branches are assumed to be straight lines between the buses that form their endpoints.

Given branch U with endpoints (u1, u2) and branch V with endpoints (v1, v2), let the

distance from U to V be defined as

Dist(U, V ) =
∑2

i=1 d(ui, V ) +∑2
i=1 d(vi, U)

4 (2.12)
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where d(vi, U) is the minimum Euclidean distance from the point vi to the line segment

U = (u1, u2), calculated as:

d(vi, U) =


||vi − u1|| t ≤ 0

||vi − (u1 + tm)|| 0 ≤ t ≤ 1

||vi − u2|| t ≥ 1

(2.13)

where m = u2 − u1 and t = (vi−u1) •m
||m||2 , as illustrated in Figure 2.3.

u1 

u2 

v1 v2 

U 

V 

d(u1,V) 

d(v1,U) 

d(u2,V) 

d(v2,U) 

Figure 2.3: Visual example for calculating the distance between branches U and V with
endpoints (u1, u2) and (v1,v2), respectively.

This formulation defines a semi-metric since the triangle inequality does not hold in

some cases. However, all other formal requirements of a metric are met. Specifically:

1. Dist(U, V ) ≥ 0

2. Dist(U, V ) = Dist(V, U)

3. Dist(U, V ) = 0 ⇐⇒ U = V

The third identity implies branches U and V share the same endpoints, thus are parallel.

This Dist(U, V ) measure is consistent with what would be intuitively expected when
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considering spatially correlated damage. For example, in Fig. 2.4, Dist(A,B) >

Dist(C,D) and Dist(E,F ) > Dist(G,H).

Using the Dist(U, V ) measure, it is apparent that branch pairs that form malig-

nancies are much closer together than those of benign contingency pairs in both test

cases (Fig. 2.5). This property will exacerbate the effects of spatial correlation on risk

of cascading failure.

A              C 

B                  D 

E               G 

   H 
F 

Figure 2.4: Branch pairs used for pairwise distance examples described in the text.

Figure 2.5: Distance between the 540 and 564 branch pairs that form N − 2 malignancies in
the Polish and Western US test cases vs. a random sample of 1,000,000 benign branch pairs
from each test case. For clarity, medians are marked with crosshairs and each distribution
has been independently normalized to the same maximum width.
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2.2.5 Case Studies

This risk estimation approach is demonstrated on two publicly available test cases,

modeling the Polish and Western United States (US) transmission systems.

The Polish test case, examined in previous work on risk estimation [8, 9, 29],

contains 2383 buses and 2896 branches at a peak winter load and is distributed with

the MATPOWER simulation package [33]. The true spatial locations of branches

and buses are not publicly available for this test case, so hypothetical locations were

inferred based on a graph layout of the grid topology, assuming branches are straight

lines between buses (Fig. 2.6). This layout was then scaled to 670 × 670 km, the

approximate width/height of Poland, to simulate geographic distances. Some of the

transmission lines were overloaded in the Polish test case provided by [33], so the

adjusted base case described in [8] was used. Unless otherwise stated, references

to the “Polish test case” refer to this adjusted base case. As in [9], different load

levels were modeled in the Polish test case from 80% to 115% of the adjusted base

case by multiplying all line loads by a scalar factor and then re-running the security

constrained optimal power flow, to ensure the pre-contingency system at each load

level is N − 1 secure.

The Western US test case is a synthetic network based on the footprint of the

western Unites States and comes via the Electric Grid Test Case Repository [39].

This test case is much larger than the Polish test case, with 10,000 buses and 12,706

branches, and has a more realistic geographic layout (Fig. 2.7). As with the Polish test

case, some transmission lines were overloaded for the Western US test case provided

by [39], and so adjustments were made as described in [8]. Since the case did not
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Figure 2.6: Synthetic geographic layout of the Polish test case. Positionally, this layout is
arbitrary and has been centered at (0,0), however, units were scaled so that the diameter of
the geographic layout is roughly equal to that of Poland (in km).

include short and long-term emergency flow limits (“RateB” and “RateC”), they were

synthesized to be 110% and 150% of normal (“RateA”) limits, respectively.

Independent branch outage rates were not available for either the Polish or Western

US test cases. For the results presented here, all independent outage rates were set

equal to the mean outage rate of 0.9158 hours per year provided by the RTS-96 test

case [40]. These independent outage rates were deliberately assumed identical for all

branches in order to more clearly elucidate the impact of spatial correlations in outage

rates, as assessed using (2.4), for all combinations of L ∈ {0, 100, 200, 300} km and

ρo ∈ {0.00, 0.05, 0.10, 0.15}.

For the results shown here, the RC algorithm used the subset reduction scheme

{80, 40, 20, 14, 10, 7, 5} for the Polish model, as in [6, 8, 9, 11, 29]. For the larger

Western US model, the initial RC subset size a1 was raised to 320 to increase the

probability that the initial subset causes a blackout; thus, the Western US test case

used the subset reduction scheme {320, 160, 80, 40, 20, 14, 10, 7, 5}. We did 1,000,000
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Figure 2.7: Geographic layout of the synthetic 10,000 bus Western US test case.

RC trials for the Polish test case and 704,400 RC trials for the Western US model;

fewer RC trials were used for the larger test case because computation time was much

higher than for the Polish model (averaging 9.5 seconds per RC trial for the Western

US model vs. 2.35 seconds for the Polish model, on an Intel Core i5-3470 CPU @

3.2GHz with 8 GB of RAM).

2.2.6 Estimating |Ωk|

As described in Section 2.2.1, this approach to risk estimation requires an estimate

of the total number of N − k malignancies |Ωk|, for k ≤ kmax. There was no need to

estimate |Ω2|, since RC sampling identified the complete set of N − 2 malignancies Ω2

in both test cases, as evidenced by the flattening in the accumulation curves (Fig. 2.8

(top)), and later verified through brute force search for the Polish test case. The

set of unique N − 2 malignancies was complete after only 5,090 non-unique N − 2

malignancies had been found by RC sampling in the Polish test case (of 4,191,960
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possible N − 2 contingencies) and after only 9,364 non-unique N − 2 malignancies

had been found by RC sampling in the Western US test case (of 80,714,865 possible

N − 2 contingencies).
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Figure 2.8: (top) Accumulation curves for RC sampling of N − 2 malignancies in the Polish
and Western US test cases. In both cases, |ΩRC

2 | = |Ω2|; (bottom) Accumulation curves for
N − 3 malignancies found by RC sampling in the Polish and Western US test cases. In both
cases, |ΩRC

3 | � |Ω3|.

However, obtaining the entire set of N-3 malignancies is not computationally

tractable in either test case, due to the sheer size of these sets. It was initially argued

(incorrectly) in [6] that, if one has already identified i of the N − k malignancies using

independent RC trials, then the probability that the next identified N − k malignancy

has not previously been found is (|Ωk| − i)/|Ωk|, so one could infer |Ωk| from the

observed frequency with which unique malignancies were found (assuming sufficient

curvature in the accumulation curve). However, the assumption that independent

RC trials uniformly sample from the Ωk sets has since proven false. In subsequent

studies it was discovered that the accumulation curves were not exponential (as they

would be if the sampling were uniform), but could be better fit with a 4-parameter
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exponential Weibull curve to estimate |Ωk| [9]. While this non-linear curve-fitting

approach works for estimating |Ω3| in the Polish test case, the Western US test case is

so much larger that there is insufficient curvature in the N − 3 accumulation curve

(Fig. 2.8 (bottom)) to reliably fit a curve.

It has previously been noted that the frequency of occurrence of individual branches

in N − 2 malignancies is heavy-tailed [6, 41]. A similarly heavy-tailed distribution is

apparent in the distribution of occurrences of specific branch pairs inN−3 malignancies,

in both the Polish and Western US (Fig. 2.9).
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Figure 2.9: Histograms of the number of occurrences of distinct branch pairs in unique N − 3
malignancies found via RC in (top) the Polish test case and (bottom) the Western US test
case.

Further examination reveals that the set reduction scheme used in RC does,

indeed, introduce a sampling bias when sampling from such heavy-tailed distributions.

Specifically, the branch pairs that appear in disproportionately large numbers of N − 3

malignancies are systematically under-sampled by the RC algorithm. To illustrate

this, the 20 most frequently occurring branch pairs found in |ΩRC
3 | for the Western US
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test case were selected, and a brute force search of all possible N − 3 contingencies

that included each of these top 20 branch pairs (requiring O(N) computation time for

each branch pair) was performed. In Fig. 2.10, the proportion of N − 3 malignancies

found by RC that contain each of these branch pairs is plotted as a function of the

observed number of occurrences of the branch pairs in ΩRC
3 . A clear negative trend is

present, with N − 3 malignancies containing the most frequently occurring branch

pairs severely under-sampled relative to N − 3 malignancies containing less frequently

occurring branch pairs. While a thorough explanation of the causes of this sampling

bias are beyond the scope of this paper, here the bias is exploited to estimate both

lower and upper bounds on |Ω3|. (It is worth noting that, as |ΩRC
3 | approaches |Ω3|,

the sampling bias of branch pairs found in N − 3 malignancies decreases. However,

for large networks such as the Western US test case, it is not computationally feasible

to sample more than a small fraction of the N − 3 malignancies, so the sampling bias

remains high.)
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Figure 2.10: The relation between number of occurrences of specific branch pairs in N − 3
malignancies found by RC (x-axis) and the proportion RC has found of all N−3 malignancies
that include those pairs (y-axis), for the Western US test case. Only the 20 most frequently
occurring branch pairs are shown, with the star indicating the branch pair that occurred most
frequently in ΩRC

3 (Pairmax).
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Given that sampling probabilities are unequal, this problem is analogous to the com-

mon conservation biology task of estimating population sizes via mark-and-recapture

surveys in closed populations with heterogeneous sampling probabilities. There are

numerous techniques that have been developed for this kind of problem [42]. Here,

Chao’s method [43] is used, because it is known to be particularly robust to heteroge-

neous sampling probabilities. In the power system context, the “population” under

consideration is Ωk, the set of all N − k malignancies. Chao’s estimate is calculated

as |Ω3|Chao = |ΩRC
3 |+ n2

1/(2n2), where n1 is the number of N − 3 malignancies found

exactly once by RC sampling and n2 is the number of N−3 malignancies found exactly

twice by RC sampling. Chao’s method produces a lower-bound on the population size

within a fixed confidence interval [43], so it is assumed that |Ω3|Chao ≤ |Ω3|.

An upper-bound on |Ω3| can be estimated by taking advantage of the two observa-

tions demonstrated above: (i) certain branch pairs appear disproportionately often

in N − 3 malignancies (Fig. 2.9), and (ii) the most frequently occurring branch pairs

are under-sampled, relative to less frequent branch pairs (Fig. 2.10). Based on these

observations, the Random Chemistry Proportional (RCP) method is proposed as a way

to estimate an upper bound on |Ω3|, as follows: (i) apply RC sampling for a sufficient

number of trials such that the identity of the most frequently occurring branch-pair

(Pairmax) in the N − 3 malignancies of the growing set ΩRC
3 becomes stable (for the

Western US test case, Pairmax, indicated by the star in Fig. 2.10, became stable

after about 7000 RC trials), (ii) perform a brute force search of all possible N − 3

contingencies that include Pairmax (this requires only O(N) simulations) to determine

the true number of N − 3 malignancies that include Pairmax, (iii) compute what

proportion of all N −3 malignancies that include Pairmax were found by RC sampling,
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and finally (iv) we estimate the total number of N − 3 malignancies (referred to as

|Ω3|RCP ) by assuming that all other less-frequently occurring branch-pairs have found

this same proportion of the total number of N − 3 malignancies in which they occur.

Assuming that Pairmax is under-sampled, this method provides an overestimate, and

hence an upper-bound, on |Ω3|; i.e., it is expected that |Ω3|RCP > |Ω3|.

As the number of N − 3 malignancies found by RC sampling increases, |Ω3|Chao

and |Ω3|RCP can be seen to be converging (Fig. 2.11), thus increasing the confidence

in these as lower and upper bounds on the true value of |Ω3|. Risk estimates are

calculated for the rightmost values of |Ω3|Chao and |Ω3|RCP shown in Fig. 2.11, to

obtain approximate bounds on risk due to N − 3 malignancies for the Western US

test case.
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Figure 2.11: The accumulation curve of N − 3 malignancies found by RC is displayed below
the lower-bound (Chao’s method) and upper-bound (RCP method) estimates of |Ω3| for the
Western US test case.

Similar approaches could conceivably be applied for estimating |Ωk| for k > 3,

however in this study |ΩRC
4 | and |ΩRC

5 | were insufficient to support this.
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2.3 Results

2.3.1 Set sizes of Ω2 and Ω3

Brute force search was used to verify that RC sampling found all N − 2 malignancies

in the Polish base test case, with |Ω2| = 540. It is assumed that RC sampling also

found all N − 2 malignancies in the Western US test case with |Ω2| = 564, since the

accumulation curve became flat (Fig. 2.8(top)). Using the non-linear curve-fitting

method of [9], |Ω3| is estimated to be ≈ 6.4× 104 in the Polish test case at the base

load. Using the Chao lower-bounding method [43] and the RCP upper-bounding

method (described in Section 2.2.6), it is estimated that 2.0× 105 ≤ |Ω3| < 2.9× 105

in the Western US test case.

2.3.2 Impact of N−2 Correlation and Load Level

on Risk

As shown in prior work [8, 9], the load levels on the Polish grid can greatly affect the

vulnerability of the network to cascading power failure due to N − 2 malignancies.

As noted in [9], risk varies non-linearly and non-monotonically with load, in part

due to variations in the proximity of generation to demand that result from optimal

power flow dispatch at different load levels. Risk actually tends to drop at very high

load levels because the security constrained optimal power flow results in more local

generation, thus reducing the flow on critical long-distance transmission lines that can

participate in many N − k malignancies when overloaded. For a direct comparison to
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Figure 2.12: Risk of cascading blackouts posed by spatially-correlated N − 2 malignancies
with a fixed characteristic length (L = 300 km) and varying values of maximum correlation
ρo for load levels from 80%-115% of the Polish base test case.

the results presented in [9], the impact of spatial correlation in N − 2 malignancies on

risk was assessed as a function of load in the Polish test case.

Changes in the system risk as a function of load at L = 300 km (the longest

characteristic correlation length tested) for 3 values of ρo are illustrated in Fig. 2.12.

Risk increased faster than linearly as a function of linearly increasing ρo, at each of

the given load levels. The largest percentage increase in system risk occurred at load

level 114%, while the greatest absolute increases in risk occur between load levels of

97%-112%, where there are the most N−2 malignancies. In general, while introducing

correlation in initiating outages magnifies the risk of cascading blackouts, it does not

fundamentally alter the overall shape of the risk curve as a function of load at L = 300

km.

When ρo = 0.15 (the largest ρo tested) and L was varied from 0 to 300 km, results

were superficially similar to those in Fig. 2.12, in that higher correlation increases risk

without changing the overall shape of the risk curve as a function of load. As was
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Figure 2.13: Risk of cascading blackouts posed by spatially-correlated N − 2 malignancies
with a fixed maximum correlation (ρo = 0.15) and varying values of characteristic length L
(in km) for load levels from 80%-115% of the Polish base test case.

the case when L was fixed, the largest percentage increase in system risk was found

to occur at load level 114%, and greatest absolute increases in risk occured between

load levels of 97%-112%. However, in this case risk increases slower than linearly with

linear increases in L, with the largest increases occurring for intermediate values of L

(Fig. 2.13). This occurs because increasing L beyond a certain point has diminishing

impact on correlation, as L approaches the radius of the network.

The super-linear increases in risk as a function of ρo and sub-linear increases in

risk as a function of L at the base load are clearly illustrated in Fig. 2.14.

2.3.3 Risk from N − 2 and N − 3 Malignancies

Risk of cascading blackouts posed by N − 2 and N − 3 malignancies was computed

for both the Polish base test case and the Western US test case, over all values of L

and ρo tested, using the set size estimates given in Sec. 2.3.1.

For the Polish test case (Table 2.1), the increase in estimated risk due to spatial
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Figure 2.14: Comparing change in risk of cascading blackouts for varying L (in km) with
ρo fixed at 0.15 (top x-axis) vs. varying ρo with L fixed at 300 km (bottom x-axis) for the
Polish base test case.

correlation ranges from 149% for the most modest level of correlation tested (L = 100

km, ρo = 0.05) to 582% in the most extreme case tested (L = 300 km, ρo = 0.15),

relative to the uncorrelated case.

Table 2.1: Risk Attributable to N − 2 and N − 3 Malignancies in the Polish Test Case for
Varying Levels of Spatial Correlation.

L (km)
ρo 0 100 200 300
0.00 0.0394 - - -
0.05 - 0.0586 0.0675 0.0720
0.10 - 0.0876 0.1142 0.1290
0.15 - 0.1314 0.1918 0.2293

For the Western US test case, (Table 2.2), the increase in lower (upper) bounds on

risk estimates varied from 129% (130%) for the most modest level of correlation tested

(L = 100 km, ρo = 0.05) to 428% (456)% in the most extreme case tested (L = 300
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Table 2.2: Estimated Lower Bounds (LB) and Upper Bounds (UB) on Risk Attributable
to N − 2 and N − 3 Malignancies in the Western US Test Case for Varying Levels of
Correlation.

L (km)
ρo 0 100 200 300

0.00
LB

UB

0.0654
0.0665

- - -

0.05
LB

UB
-

0.0846
0.0864

0.0950
0.0974

0.1019
0.1048

0.10
LB

UB
-

0.1148
0.1181

0.1444
0.1502

0.1654
0.1735

0.15
LB

UB
-

0.1631
0.1701

0.2293
0.2445

0.2801
0.3036

km, ρo = 0.15), relative to the uncorrelated case.

For both test cases, the general effect of L and ρo on risk that is described in

Section 2.3.2 also holds in these results. That is, risk tends to grow faster than linearly

with respect to ρo and slower than linearly with respect to L. The larger proportionate

increases in the Polish test case, relative to the Western US test case, occur because

the average distance between branches in malignancies are shorter than in the Western

US test case (Fig. 2.5), thus magnifying the impacts of spatial correlation.
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2.3.4 Relative Risk of N − 2 vs. N − 3 Malignan-

cies

It is expected that N − 3 malignancies will contribute more to risk when there is

spatial correlation in initiating outages, but it is not clear to what degree. There are

several factors that could potentially disproportionately affect the impact of N − 3

malignancies on risk when there is spatial correlation, relative to that of N − 2

malignancies, including: (i) size of blackouts caused by N − 3 vs. N − 2 malignancies;

(ii) the independent probability of branch outages in N − 3 vs. N − 2 malignancies;

(iii) the distance between branches in N − 3 vs. N − 2 malignancies. These factors

are each discussed in more detail below.

Blackout Sizes

If the sizes of blackouts resulting from N − 3 malignancies were larger than N − 2

malignancies, this could disproportionately increase the relative contribution of N − 3

malignancies to risk when spatial correlation is present. However, we have observed

that the sizes of cascading blackouts tend to follow similarly shaped distributions,

independent of the number of component outages in the triggering event, due to similar

patterns of network separation. This is illustrated by the distributions of blackout

sizes (as estimated by DCSIMSEP) caused by all N − k malignancies found by RC

sampling, for k ∈ {2, 3, 4, 5}, for both the Polish and Western US test cases (Fig. 2.15).

In both test cases, the median blackout size for the identified N − 3 malignancies was

actually lower than those caused by the N−2 malignancies. Specifically, for the Polish

test case, the median blackout size caused by N − 2 malignancies was 7,624 MW vs.

52



3,372 MW for those caused by identified N − 3 malignancies. In the Western US test

case, the median blackout size from N − 2 malignancies was 10,473 MW whereas from

the N − 3 malignancies it was 10,382 MW. These patterns and trends continue in the

identified sets of N − 4 and N − 5 malignancies (Fig. 2.15).
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Figure 2.15: Distributions of blackout sizes (in total MW load shed) caused by all N − k
malignancies (2 ≤ k ≤ 5) found by RC sampling, for the Polish and Western US test cases.
For clarity, medians are marked with crosshairs and each distribution has been independently
normalized to the same maximum width.

Independent Branch Outage Rates

In this study, independent outage rates were assumed to be homogeneous for all

branches. However, in a real system the distribution of independent outage rates

will be heterogeneous. If branches that are typically involved in N − 3 malignancies

are independently more likely to fail than those involved in N − 2 malignancies, this

could inflate the relative risk of N − 3 malignancies when spatial correlation is present.

While there is no obvious rationale for why this might be true, the observation that

branches that occur frequently in N − 2 malignancies also appear frequently in N − 3

malignancies is indirect evidence against this. For example, in the Polish network,

8 of the 10 most frequently occurring branches in N − 2 and N − 3 malignancies
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are shared, accounting for 44% and 24% of all N − 2 and N − 3 malignancies found,

respectively. Likewise, for the Western US test case, 9 of the 10 most frequently

occurring branches in N − 2 malignancies are also in the top 10 most frequently

occurring N − 3 malignancies, accounting for 49% and 29% of all N − 2 and N − 3

malignancies, respectively.

Distance Between Branches

The distance between branches in N − 3 vs. N − 2 malignancies will obviously impact

the degree to which spatial correlation will increase their relative contributions to risk.

In both the Polish and Western US test cases, median distances between all pairs

of branches occurring in identified N − k malignancies increases with k ∈ {2, 3, 4, 5}

(Fig. 2.16). Specifically, in the Polish test case the median distances between pairs of

branches were 76.1 km and 121.8 km, in N − 2 and N − 3 malignancies, respectively;

in the Western US test case the medians were 169.4 km and 494.6 km in the N − 2

and N − 3 malignancies, respectively. This helps to mitigate the increase in relative

risk from N − 3 vs. N − 2 malignancies that occurs as a result of spatial correlation.

Comparing Relative Risk with Correlation

For the Polish test case, < 1% of risk can be attributed to N − 3 malignancies

when there is no correlation whereas under the highest level of correlation considered

(L = 300 km, ρo = 0.15), the share of risk associated with N − 3 malignancies rises to

around 9% (Fig. 2.17). Similarly, for the Western US test case, N − 3 malignancies

account for 3%-5% of risk when there is no correlation, but between 16%-24% under

the maximal correlation (L = 300 km, ρo = 0.15) considered (Fig. 2.18).

54



Polish Western US
0

200

400

600

800

1000

1200

1400

1600

D
is

ta
nc

e 
(k

m
)

(N-2)
(N-3)
(N-4)
(N-5)

Figure 2.16: Distributions of pairwise distances among branches in all N − k malignancies
(2 ≤ k ≤ 5) identified by RC sampling, for the Polish and Western US test cases. For clarity,
medians are marked with crosshairs and each distribution has been independently normalized
to the same maximum width.
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Figure 2.17: Estimated percentage of risk attributable to N − 3 malignancies vs. N − 2
malignancies for the Polish Test Case under varying levels of correlation, including all
combinations of L ∈ {0, 100, 200, 300} km and ρo ∈ {0, 0.05, 0.10, 0.15}.

2.4 Discussion

Previous research into cascading failure risk demonstrated that N − 3 malignancies

constitute a relatively low proportion of risk compared to N − 2 malignancies, as-

suming initiating branch outage independence [9]. This suggests that, if initiating
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Figure 2.18: Shaded regions represent bounded estimates on the percentage of risk attributable
to N − 3 malignancies vs. N − 2 malignancies for the Western US Test Case under
varying levels of correlation, including all combinations of L ∈ {0, 100, 200, 300} km and
ρo ∈ {0, 0.05, 0.10, 0.15}.

outages are generally caused by independent events, limiting risk analysis to the

more computationally tractable N − 2 malignancies may be sufficient to capture the

majority of risk. However, in reality, common causes such as relay failures, weather

disturbances, earthquakes, fire, or spatially localized terrorist attacks may trigger

multiple near-simultaneous outages in geographic proximity that could potentially

result in cascading blackouts. For these cases an assumption of independence will

under-estimate cascading blackout risk.

This paper presents a method that uses copula analysis as a flexible, customizable

approach for incorporating correlation into risk calculations, building on preliminary

work presented in [29]. The impact of spatial correlation in N − 2 and N − 3 initiating

outages on risk of cascading blackouts is assessed in the Polish test case as well as the

much larger, and geographically more realistic, Western US test case.

The Western US test case has over four times as many branches as the Polish
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test case, and the increased computational cost of performing cascade simulations

combined with the substantially larger search space of N − 3 contingencies rendered

previously developed methods [6, 9] for estimating the set size of N − 3 malignancies

ineffective. Thus, extending the approach to include risk from N − 3 malignancies in

the Western US test case required new methods to estimate lower- and upper-bounds

on the total number of N − k malignancies, for k = 3.

The results indicate that when spatial correlation is present in initiating outages,

the relative contribution of N −3 malignancies to risk of cascading blackouts increases,

although the increase is partially mitigated by the fact that pairwise distances between

branches in N − 3 malignancies are greater than in N − 2 malignancies.

It is expected that the impact of even higher-order malignancies will similarly

increase with increasing spatial correlation, even though median pairwise distances

between branches in malignancies continue to increase with k. In principle, the

approaches to estimating lower and upper bounds on |Ω3| presented here for the

Western US test case could also be applied for estimating |Ωk| for k > 3, given a

sufficient number of RC trials. We are currently exploring these and other methods

on large synthetic networks to establish their limitations as a function of network

size and functional heterogeneity. While ignoring higher-order N − k malignancies

when component outages are correlated will likely underestimate the magnitude of the

risk of cascading failures, estimating |Ωk| for k higher than 3 (or possibly 4) on large

networks may not be computationally tractable, due to the sheer number of these

high-order malignancies. Preliminary work indicates that, for the Western US test

case, |Ω4| may be at least two orders of magnitude higher than |Ω3|.

The lack of accurate data regarding independent transmission line outage rates
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and the impacts of common cause events on those rates are an important limitation to

applying these methods in practice. Some such data are available to industry through

systems such as the NERC TADS database, but these data are typically unavailable

for research purposes. Increasingly, efforts are being made to better predict how

common-cause events such as weather-related events will impact the grid [44]. Such

knowledge will inform specific applications of the generalized framework introduced

herein.

The methods presented in this paper should work with any simulator (AC, DC, or

even something more sophisticated like a full dynamics cascading failure simulator).

However, more complicated simulation models require much larger input datasets

and tuning these models to get accurate results is a longer process (see [45, 46] for

illustrations of the challenges associated with dynamic modeling of cascading failure).

For example, in order to get an accurate model from an AC or dynamic power system

simulator one would need to accurately model all of the dynamic reactive power

elements, such as synchronous condensers and switched capacitor banks, in order to

get accurate results. The impact of these controls is that a system with large amounts

of reactive support will act more like a DC model with uniform voltage, than an AC

model without reactive support. Since the focus of this paper is primarily on the

computational method for risk analysis, rather than precise power systems details,

we have used a simulator based on the DC power flow. Based on our experience

with more complicated simulation models, we do not expect that a more complicated

simulator would produce qualitative differences in the results, although quantitative

differences would result since there are more mechanisms of cascading in an AC power

flow model.
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Future work will study the impact of parametric choices such as distance metrics,

correlation functions, and the underlying branch outage probability distributions. The

method will also be applied to study the risk of cascading failure in interdependent

networks, which are ubiquitous in human-engineered infrastructures [47]. For example,

coupling between communication and power networks can substantially impact their

robustness to cascading failures [48, 49]; the method presented herein could help to

quantify the impact of this coupling on risk in the presence of correlated component

outages. As new methods for measuring the risk of cascading failure in systems with

correlated initiating event probabilities emerge, there will be a need for comparisons

to better understand the relative computational efficiency and accuracy of these

approaches.
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Chapter 3

Group Testing for Efficiently Sam-

pling Hypergraphs When Tests Have

Variable Costs

Abstract

In the group-testing literature, efficient algorithms have been developed to minimize
the number of tests required to identify all minimal “defective” sub-groups embedded
within a larger group, using deterministic group splitting with a generalized binary
search. In a separate literature, researchers have used a stochastic group splitting
approach to efficiently sample from the intractable number of minimal defective sets
of outages in electrical power systems that trigger large cascading failures, a problem
in which positive tests can be much more computationally costly than negative tests.
In this work, we generate test problems with variable numbers of defective sets and
a tunable positive:negative test cost ratio to compare the efficiency of deterministic
and stochastic adaptive group splitting algorithms for identifying defective edges in
hypergraphs. For both algorithms, we show that the optimal initial group size is a
function of both the prevalence of defective sets and the positive:negative test cost
ratio. We find that deterministic splitting requires fewer total tests but stochastic



splitting requires fewer positive tests, such that the relative efficiency of these two
approaches depends on the positive:negative test cost ratio. We discuss some real-world
applications where each of these algorithms is expected to outperform the other.

3.1 Introduction

The field of group testing is thought to have originated from a single report by Dorfman

in which he proposed a novel method for efficiently screening soldiers for syphilis

during World War II [1]. Dorfman suggested mixing together blood samples from

multiple individuals so it would require just a single chemical test to determine if the

pooled blood sample contained syphilitic antigen. If the test came back negative, it

would indicate that none of the soldiers were infected, whereas a positive test result

would require subsequent tests to determine which soldiers were infected. Although

this initial proposal was never implemented, group testing has since been applied

to solve combinatorial search problems in a variety of disciplines [2]. Group testing

strategies are currently being explored to minimize the number of tests needed estimate

the prevalence of Covid-19 in large swaths of the population (e.g., [3, 4]). Finding

optimal group testing strategies that minimize the number of tests required to identify

“defective” individuals (or items, or minimal sets of items) has been a central focus in

the robust group-testing literature that has emerged. An implicit assumption of this

work is that the cost of positive tests is the same as the cost of negative tests. In this

paper, we examine so-called “adaptive” group testing algorithms for finding defective

edges in hypergraphs, where the results of previous tests are used to inform which

tests to perform next.

A hypergraph is a generalization of an ordinary graph, in which individual edges
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(so-called “hyperedges”) can connect an arbitrary number of nodes. Specifically, define

a hypergraph G(V,E) where each node in V represents one of the N individuals or

items of interest and each hyperedge in E connects a set of k nodes, or k-set. We

consider the most general case, where there exists an edge in E for every possible

subset of V . When using group-testing to identify defective edges in a hypergraph,

the aim is to identify minimal defective k-sets in E, where “minimal” means that no

smaller subset is defective.

Searching for defective edges in a graph G with |E| edges using group testing was

first considered by Aigner, who conjectured that no more than dlog2 |E|e+ c tests (for

some constant c) were required to find a single defective edge in G [5]. This was later

proven by Damaschke [6] and generalized to hypergraphs by Triesch [7]. The case of

finding all d > 1 defective edges in a graph, where d is known, was first addressed in

[8]. For the case when d is unknown, adaptive methods for finding all defective edges

were proposed for graphs in [9] and extended to hypergraphs in [10, 11]. All of the

aforementioned algorithms use deterministic splitting approaches.

One important real-world problem that can be framed as searching for defective

hyperedges in a hypergraph is the identification of minimal sets of k outages that

trigger cascading failures in power systems, as a means of estimating overall risk

of cascading failure. This real-world problem has several characteristics that have

not traditionally been considered in the standard group-testing literature: (i) The

number of minimal defective edges d is so large that it is computationally intractable

to identify them all, so sampling is required; (ii) G is non-uniform (i.e., k is variable,

in the k-sets defined by the hyperedges in E); (iii) the size of the defective sets

sought is lower-bounded by kmin = 2, since power systems are operated such that no
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single outage (k = 1) will result in a cascading failure; (iv) the size of the defective

sets sought is often upper bounded by kmax, due to computational limitations; (v)

tests can produce false negatives, wherein a set tests as non-defective even though it

contains a defective subset, (e.g., this can occur when a power grid is fragmented into

disconnected but independently functioning “islands” [12]); and, most importantly,

(vi) positive and negative tests may have very different costs.

The reason that test costs are so variable in the power systems problem is that

simulating each step of a cascade accrues additional computational costs, and positive

tests have larger cascades than negative tests, by definition. We illustrate an example

of this difference in the costs of positive and negative tests using DCSIMSEP [13] (Fig.

3.1), an open-source DC simulator that has been used in studying cascading power

outages [14, 15, 16, 17, 18, 19]. We note that a variety of types of DC and AC power

flow solvers and cascade models could theoretically be used to simulate cascading

failures in power grids, each with their own sets of advantages and disadvantages [20],

[21], [22], [23], [24],[25], [26]. If one were to use a more sophisticated AC simulator,

the relative difference between the computational cost of positive and negative tests

would be expected to be even greater, because each step of an AC simulator will be

more computationally costly than in a DC simulator [21].

In the power systems literature, one method that has been proposed to tackle the

problem of efficiently finding minimal defective k-sets is the Random Chemistry (RC)

algorithm [14, 15, 16, 17, 18, 19]. RC is a stochastic adaptive group testing approach.

To our knowledge, deterministic group-testing approaches have not previously been

applied to the power systems problem or other problems where the cost of positive

and negative tests is unequal.
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Figure 3.1: Run times required using DCSIMSEP to test 500 random non-defective sets and
500 random defective sets, for each of set sizes k ∈ {2, 96, 192}, on a synthetic model of the
Western U.S. power grid. To generate this data, a set was considered defective if there was
at least 5% of the load shed in DCSIMSEP. For clarity, medians are marked with crosshairs
and each distribution has been independently normalized to the same maximum width. See
Sec. 3.2.3 for a description of the simulator and the test case.

Although this work was originally motivated by the power systems problem

described above, there are other potential applications that share many of these

characteristics, including variable positive:negative test costs (see Sec. 3.4). Thus, the

aim of this study is to explore the general question regarding the relative computational

efficiency of deterministic and stochastic adaptive group-testing algorithms for sampling

minimal defective sets, in problems where there are large and unknown minimal

defective k-sets with variable k, the potential for false negatives exists, and in which

the relative computational costs of positive and negative tests may differ.

To that end, we create test problems with different numbers of minimal de-

fective hyperedges, low (but non-zero) frequencies of false negatives, and tunable

positive:negative test costs. We compare the RC stochastic adaptive group-testing

algorithm to a deterministic adaptive group-testing algorithm we refer to as SIGHT
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(Sampling Inspired by Group Hyperedge Testing). SIGHT is a minor adaptation of

traditional group testing strategies that have been designed to minimize the number

of required tests to find all minimal defective sets [7, 9, 10], with small modifications

to turn it into a sampling algorithm. Specifically, unlike [7, 9, 10], SIGHT (i) searches

for only one of an unknown number d of minimal defective k-sets, for kmin ≤ k ≤ kmax,

and (ii) is tolerant of false negatives (i.e., where a k-set that tests as non-defective

actually contains at least one minimal defective k-set).

This paper is organized as follows: The SIGHT algorithm is described in Section

3.2.1, the RC algorithm in Section 3.2.2, and the test problem generator is described in

Section 3.2.3. Experiments to compare the relative performance of the two algorithms

for finding minimal defective k-sets are described in Section 3.2.4, with results presented

in Section 3.3. We discuss the implications of our findings for some important

applications in Section 3.4 and summarize our conclusions in Section 3.5. Although

this study was originally motivated by the power systems problem described above,

the implications are relevant to any hypergraph sampling problem.

3.2 Methods

3.2.1 SIGHT

Group Testing Inspiration

In the simple case of a single minimal defective edge in a graph, Triesch proposed a

group testing halving procedure [7] that was later adapted by Johann [8] to find all d

defective edges (2-sets) in a simple graph in at most d(dlog2
m
d
e+ 7) tests, where d
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is known. The algorithm presented by Johann for finding a single minimal defective

edge in a subgraph G′ ⊂ G has subsequently been referred to as the TJ Procedure

[9, 10] and is the primary inspiration for the BinSearchSIGHT subroutine presented

in Sec. 3.2.1. The TJ procedure was first used to find all d defective edges, when d is

unknown, in simple graphs [9], and then extended to hypergraphs [10, 11]. SIGHT is

a minor adaptation of the TJ procedure, modified in two ways: (i) it is designed to

randomly sample a single defective k-set for kmin ≤ k ≤ kmax (as opposed to assuming

all defective sets of all sizes will be found), aborting if the minimal defective set has

k > kmax; and (ii) it is designed to be robust to false negative tests.

SIGHT Algorithm

SIGHT takes as input the universal set V of nodes, an initial subset size a0, and

the bounds kmin and kmax on the size of the defective k-sets one is searching for. It

returns either a minimal defective k-set (for kmin ≤ k ≤ kmax) or the empty set (if

the algorithm aborts). The only control parameter required by SIGHT is a0, which

establishes the size of the initial subset to be tested, where kmax ≤ a0 < N . The

algorithm is illustrated by the Psuedocode in Algorithm 1 and is described below.

The first step of the SIGHT algorithm (Alg. 1: line 1) calls the subroutine

SAMPLE(V, a0) (pseudocode not shown), which initializes a list S to a uniform

random sample, in random order, of a0 unique elements from V . In the following

description, the notation S[i] is used to refer to the ith element of S; S[i] is considered

to be left of S[j] for all i < j; and S[ : i] refers to the first i elements of S.

A list D is initialized to the empty list (Alg. 1: line 2). This list D will be used
1The use of short-circuiting logic in the conditional statement prevents unnecessary tests.
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Algorithm 1 SIGHT(V, a0, kmin, kmax)
1: S ← SAMPLE(V, a0)
2: D ← ∅
3: if ¬ isDefective(S) then
4: return ∅
5: end if
6: while |D| < kmax do
7: m← BinSearchSIGHT (S,D)
8: D ← D ++ S[m]
9: if |D| ≥ kmin ∧ isDefective(D) then 1

10: D ← bottomUpSIGHT (D, kmin, kmax)
11: return D
12: end if
13: S ← S[ :m− 1]
14: end while
15: return ∅

to accumulate known nodes from defective k-sets. In Alg. 1: line 3, the subroutine

isDefective(S) is called to test whether the list S is a defective set (although not

necessarily minimal). The algorithm isDefective(S) is specific to the application

problem, so is not shown here. It is expected to return TRUE if there is a minimal

defective k-set in S and FALSE otherwise; however, if false negatives can occur

then isDefective(S) may sometimes return FALSE even when S contains a minimal

defective set. If isDefective(S) returns FALSE, the algorithm aborts and returns

the empty set (Alg. 1: line 4). Otherwise, the algorithm calls the subroutine

BinSearchSIGHT (S,D) (Alg. 1: line 7).

The subroutine BinSearchSIGHT (S,D) (Algorithm 2), following [8, 9, 10], uses

a deterministic binary search to find the index of the leftmost element in S that is the

rightmost element of a defective k-set in D ++ S, where ++ denotes list concatenation.

The subroutine is implemented like a classic binary search, in that it first assigns left
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and right pointers l and r to the leftmost and rightmost elements of S, respectively

(Alg. 2: lines 1-2), and determines a test index, i, half way between l and r. But

unlike a standard binary search that assumes that the values of the elements of S

are in sorted order and performs a test on element S[i], here only the ordering of the

indices matters (the actual elements in S are deliberately in random order to prevent

the algorithm from biasing towards sets that include elements with low values) and

the test (Alg. 2: line 5) includes all elements of S with indices ≤ i as well as all

elements from the growing list D, to see whether D ++ S[ : r − i], is defective. If so, r

is reduced (Alg. 2: line 6); if not, l is increased (Alg. 2: line 8). The process repeats

until l and r converge to some index, which is returned.

Algorithm 2 BinSearchSIGHT(S,D)
1: l← 1
2: r ← |S|
3: while l < r do
4: i← d r−l

2 e
5: if isDefective(D ++ S[ : r − i]) then
6: r ← r − i
7: else
8: l← r − i+ 1
9: end if
10: end while
11: return r

After each call to the BinSearchSIGHT subroutine, SIGHT concatenates the

found element S[m] to D (Alg. 1: line 8). If the accumulated set D is found to be

defective and is at least size kmin (Alg. 1: line 9), then the algorithm has successfully

found a list D that contains a minimal defective k-set. However, in applications where

false negatives can occur, D may be non-minimal. To make the algorithm more robust

to false negatives, it then calls the subroutine bottomUpSIGHT (D, kmin, kmax) (Alg.
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1: line 10; pseudocode for bottomUpSIGHT not shown), which tests any subsets of D

of size kmin ≤ k ≤ kmax that have not already been tested, to ensure that the defective

subset returned is minimal (Alg. 1: line 11). If D is not defective, then S[m] and all

elements to its right are removed from S (Alg. 1: line 13) and the process is repeated

until either D tests as defective, or |D| exceeds kmax (Alg. 1: line 6), in which case

the defective set being found is too large and the algorithm aborts (Alg. 1: line 15).

Note that Alg. 1: lines 6, 9-12 comprise the minor differences between SIGHT and the

previous approach to group testing on hypergraphs given in [10], on which SIGHT is

based. Open source Matlab code for SIGHT is posted online [27].

Computational Complexity of SIGHT

The time complexity of isDefective(S) is application-dependent, so computational

complexity is here defined as a function of the number of tests required (i.e., calls

to isDefective(S)). Each call to BinSearchSIGHT takes no more than dlog2(a0)e

tests to find an element of the defective set, and this operation is performed at most

kmax times before either a defective set is found or the algorithm aborts. Additionally,

all subsets of D larger than kmin must be tested to ensure the defective set returned

is minimal. The resulting upper-bound on the number of required tests by SIGHT is

thus:

max(#Tests|SIGHT ) = kmaxdlog2(a0)e+
kmax∑

j=kmin

(
kmax

j

)
+ 1 (3.1)

In practice, this worst case is rarely realized. Since a0 < N , each run of SIGHT

requires O(logN) tests.

76



However, not all tests are necessarily equal. In some applications, such as the power

systems application described earlier, positive tests require much more computation

time than negative tests. The required number of positive tests per each run of SIGHT

is upper-bounded by:

max(#PositiveTests|SIGHT ) = kmaxdlog2(a0)e (3.2)

Note that this is explicitly a function of kmax.

3.2.2 Random Chemistry

Inspiration for RC

The basic idea for the RC algorithm was originally proposed by Kauffman [28] as a

hypothetical method for identifying minimal auto-catalytic sets of interacting molecules

from within a very large set of molecules. He suggested testing random half-sets until

the products of auto-catalysis were detected in one subset, and repeating this halving

process until a minimal auto-catalytic set was discovered (hence the moniker “Random

Chemistry”). Although not previously presented as such, this is an adaptive stochastic

group testing method.

Inspired by the RC idea, an RC algorithm was implemented for finding genetic

interactions between single nucleotide polymorphims that predispose for disease [29].

Later, a version of RC was implemented for finding a small set of transmission line

outages in electric power networks that trigger cascading power failure, requiring only

O(logN) tests per successful run [14].
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RC Algorithm

As in SIGHT, RC takes as input the set of nodes V and returns either a single minimal

defective k-set (for kmin ≤ k ≤ kmax), or the empty set (if the algorithm aborts). The

bounds on k are specified for RC exactly as they are in SIGHT. Pseudocode for RC,

as implemented in this study, is provided in Algorithm 3.

Algorithm 3 RC(V,A, kmin, kmax, tmax)
1: a0 ← A(0)
2: S ← SAMPLE(V, a0)
3: if ¬ isDefective(S) then
4: return ∅
5: end if
6: for i← 1, |A| do
7: ai ← A(i)
8: t = 0
9: flag ← false
10: while t < tmax ∧ ¬flag do
11: t← t+ 1
12: Snew ← SAMPLE(S, ai)
13: if isDefective(Snew) then
14: S ← Snew

15: flag ← true
16: end if
17: end while
18: if ¬flag then
19: return ∅
20: end if
21: end for
22: return bottomUpRC(S, kmin, kmax)

Like SIGHT, RC begins by drawing a random sample S of elements from V such

that |S| = a0 (Alg. 3: lines 1-2) and aborts, returning the empty set, if S does not
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contain a defective set (Alg. 3: lines 3-5). If an initial defective set S of size a0 is

found, subset reduction proceeds stochastically according to the set size reduction

scheme A (loop starting at Alg. 3: line 6).

The sampling loop in RC (Alg. 3: lines 10-17) stochastically attempts to find a

defective subset Snew of size ai, from set S of size ai−1. If no such subset is found

after tmax attempts, the algorithm aborts and returns the empty set (Alg. 3: lines

18-20). When a subset of size afinal is found that causes a cascade, a bottom-up search

is conducted (Alg. 3: line 22, which calls subroutine bottomUpRC(S, kmin, kmax),

pseudocode not shown), testing all subsets of size k, for k = kmin, . . . , kmax (in random

order for each k), returning either the first defective k-set found or the empty set,

if no minimal defective set of size ≤ kmax exists in S. The subroutine bottomUpRC

differs slightly from bottomUpSIGHT , in that bottomUpRC must test all subsets of

S until a defective subset is found or k > kmax. In SIGHT, some subsets of S have

already been tested during the binary search, so bottomUpSIGHT only needs to test

the subsets of S that have not been previously tested. Open source Matlab code for

RC, as implemented in this study, is posted online [30].

If there is exactly one minimal defective k-set, and the cost of each test is constant,

then one can derive an optimal set reduction scheme A for RC [31]. However,

in many applications (such as the power systems application) it is not possible to

analytically optimize A. In the work shown here, we use the subset reduction schedule

of ai = ai−1/c, where c = 2 for ai−1 > 20 (binary splitting) and c = 1.5 for ai−1 ≤ 20

(to increase success rate when groups get small), and specify tmax = 20, as proposed

in [14, 16, 17, 18, 19]. The initial set size a0 is tuned as a control parameter.
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Computational Complexity of RC

The RC algorithm requires a test of the initial subset, plus up to tmax tests for each of

the |A| − 1 reduction steps, plus additional tests for the bottom-up search of the set

of size afinal. Thus, the maximum potential number of tests required by an RC run is:

max(#tests|RC) = 1 + (|A| − 1)tmax +
kmax∑

k=kmin

(
afinal

k

)
(3.3)

In practice, (using the RC parameters specified in the experiments presented

here) only a few tests (� tmax) are typically required during each stage of the subset

reduction, and 2-sets are found most frequently (Section 3.3) even when kmax > 2, so

the average number of tests required is much lower than this (Section 3.3). As long as

ai = ai−1/c, for some constant(s) c > 1 (as implemented here), then |A| ∝ log(a0), for

some a0 < N . Under these circumstances, each RC run requires O(logN) tests.

In RC, each reduction step requires exactly one defective test, so the number of

defective tests required by a successful RC run is constant. For a reduction scheme

of length |A| followed by a brute force search until one defective set is found, the

maximum number of tests of defective sets required by an RC run is:

max(#defectiveTests|RC) = |A|+ 1 (3.4)

Assuming set sizes in A are fractionally reduced, 3.4 reduces to:

max(#defectiveTests|RC) ≤ dlog(a0)e+ 1 (3.5)
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Thus, the maximum number of defective tests is not a function of kmax, as it is

in SIGHT (compare to Eq. (3.2)). Given that there is some unknown probability of

aborting during any reduction step, the average number is less than this.

3.2.3 Tunable Test Problem Generator

We leverage DCSIMSEP as a convenient means of generating domain-independent test

problems with large and variable (but unknown) numbers of minimal defective k-sets

(for k ≥ 2). In a power systems application, DCSIMSEP works as follows. Given an

initial set of k outages (e.g., transmission line failures), DCSIMSEP iteratively checks

to see if some pre-defined threshold T for system failure is exceeded. For modeling

cascading power failures, T might be some percent of the load that is shed [16] (as

illustrated in Fig. 3.1) or some percent of components that become separated from

the grid [14]. If the threshold T is exceeded, the simulation terminates. If not, then

the simulator calculates how the power generation would change, how power flow

would be redistributed, and whether this would cause additional components to fail.

These iterations continue until either the threshold T is exceeded (a positive test),

the system achieves a new equilibrium (a negative test), or some maximum amount of

time has elapsed (also a negative test). DCSIMSEP has been shown to yield low, but

non-zero, frequencies of false negatives [16].

For the experiments presented here, we run DCSIMSEP on a large synthetic power

system, with a geographical topography based on the footprint of the 11-state western

Unites States transmission system, which is included in the Electric Grid Test Case

Repository [32]. The test case contains 10,000 buses (connection points, typically

substations, through which generators provide power and loads draw power from the
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network) and N = 12, 706 branches (transmission lines and transformers). We limit

our simulations to those in which k-sets comprise sets of extrinsically caused initiating

branch outages, and we specify initial conditions that guarantee that the system is

N − 1 secure, using the approach described in [16]; i.e. there are no defective 1-sets.

For the purposes of using DCSIMSEP as a general test problem generator, rather

than to model which k-sets cause cascading failures in power systems, we consider

a set defective if DCSIMSEP simply exceeds a specified number of iterations (T ).

Due to the intractable number of unique k-sets, it is not computationally feasible to

ascertain the exact numbers of minimal defective k-sets in these problems. However,

because the number of minimal defective k-sets will decrease as T increases, we are

able to create test problems with varying numbers of minimal defective k-sets with

k ≥ 2.

Rather than using runtimes from DCSIMSEP as a measure of the variable com-

putational costs of positive and negative tests, we assume that negative tests always

require 1 unit of time to run and that all positive tests require some pre-specified

constant units of time.

The resulting test problems and tunable P:N test cost ratios enable us to compare

the relative efficiency of the SIGHT and RC sampling algorithms on arbitrary problems

with different numbers of defective k-sets and different P:N test cost ratios.

3.2.4 Experiments

We report on results from 720,000 paired runs (i.e., starting from the same random

initial sets) of SIGHT and RC, with kmax = 4. Specifically, we report on 30,000 paired

runs for each initial set size a0 ∈ {16, 48, 80, 112, 144, 176} and each test problem
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threshold T ∈ {5, 15, 25, 35}. (We note that we also computed results for kmax ∈ {2, 3},

but only present results for kmax = 4, since the observed patterns were nearly identical

for kmax ∈ {2, 3} and kmax = 4 is the more general case.)

We record the number of positive and negative tests required for each run, where a

run comprises a single call to SIGHT (Alg. 1) or RC (Alg. 3) on a given combination

of a0 and T and either terminates successfully in a find (when a minimal defective

k-set, with k ∈ {2, 3, 4} is found) or is aborted. However, rather than reporting

metrics per run of SIGHT or RC, we report metrics per find, as the latter amortizes

in the cost of unsuccessful (aborted) runs by each sampling algorithm.

Since the resulting distributions of the number of positive tests and negative tests

required per find of a defective k-set (k ∈ {2, 3, 4}) were non-Gaussian, we used non-

parametric Mann Whitney U tests to assess whether median values were significantly

different between SIGHT and RC. Based on the median number of positive and

negative tests per find on each test problem, we compute the expected computational

costs of each algorithm at various P:N test cost ratios. Specifically, we assume that

the cost of each negative test is 1 unit of time and the cost of each positive test is one

of {1, 10, 50, 100}.

3.3 Results

RC and SIGHT found similar proportions of minimal defective 2-sets, 3-sets, and

4-sets over all initial set sizes a0 and all thresholds T tested (Fig. 3.2). The set size

reduction approaches of both group-testing algorithms result in a bias toward finding

smaller minimal defective k-sets, even though the total number of k-sets is known to
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increase with increasing k [19]. In most cases tested, both algorithms found 2-sets,

3-sets, and 4-sets in a ratio of roughly 6:3:1, although the proportion of higher order

k-sets found is notably lower at T = 5, the case where there are the most defective

k-sets, and at the smallest initial set size a0 = 16, where the probability of including a

higher order k-set is lowest.
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Figure 3.2: The proportion of k-sets of size k ∈ {2, 3, 4} found in 30,000 paired runs of
SIGHT (top) and RC (bottom) with kmax = 4, for each a0 ∈ {16, 48, 80, 112, 144, 176} and
each T ∈ {5, 15, 25, 35}.

Despite this similarity in proportions, the two algorithms are not necessarily finding

the same minimal defective sets, even though they start with identical random initial

sets in each paired run (Fig. 3.3). This occurs because of the large number of minimal

defective k-sets present in these test problems and the different set size reduction

approaches taken by the two algorithms. Not surprisingly, the proportion of identical

minimal defective sets found by SIGHT and RC drops as a0 increases, because the

number of minimal defective sets embedded in the initial set increases with increasing

a0. Similarly, for a0 ≥ 48, the proportion of identical sets found tends to increase

with larger T , since increasing T reduces the number of minimal defective sets in the

system.

In nearly all circumstances tested, both algorithms require many more negative
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Figure 3.3: The proportion of k-sets that were the same in 30,000 paired runs of SIGHT
and RC with kmax = 4, for each a0 ∈ {16, 48, 80, 112, 144, 176} and each T ∈ {5, 15, 25, 35}.

tests than positive tests per each successful find (the only exception being for SIGHT

with T = 5 and a0 > 80, due to the very large number of minimal defective sets

present in the initial sets). For both algorithms, the median number of negative tests

decreases rapidly as a0 increases from 16 to 48 and then tends to plateau (Fig. 3.4,

top row) while the number of positive tests required increases with increasing a0 (Fig.

3.4, bottom row). SIGHT nearly always required significantly fewer negative tests

than RC and exhibited less variability in the number of negative tests required per

find (Fig. 3.5). The exception is when a0 = 16 and T ≥ 15, where the median number

of negative tests was not significantly different; this occurs because the initial fail

rate was over 99% and thus dominated the number of negative tests required by both

algorithms. However, in all cases tested, SIGHT required significantly more positive

tests than RC and exhibited greater variability in the number of positive tests per

find (Fig. 3.6).

As expected, the initial failure rate (i.e., the frequency with which the initial

random set of size a0 tests as non-defective) decreases monotonically both as the

initial set size increases and as the number of defective sets decreases with increasing
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Figure 3.4: Median number of positive and negative tests required per successful find of a
minimal defective k-set of size k ∈ {2, 3, 4}. Note the differences in scaling of the y-axes.

T (Fig. 3.7). However, in runs where the initial set tests as defective, the failure rate

due to subsequent aborts increases with increasing a0 for both algorithms (Fig. 3.8;

see Appendix for a proof of why this occurs).

Determining the optimal initial set size (i.e., where expected runtime is lowest) is

non-trivial. As the P:N test cost ratio increases, the optimal initial set size becomes

smaller for both algorithms (Fig. 3.9, view top to bottom within each column). For a

given P:N test cost ratio, the optimal a0 becomes larger as the prevalence of minimal

defective k-sets shrinks due to increasing T (Fig. 3.9, view right to left within each

row ).

For nearly all combinations of a0 and T , the median number of total tests was

significantly lower (p < 0.005) for SIGHT than for RC (Fig. 3.9, top row). (The
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Figure 3.5: Distributions of number of negative tests required per successful find of a minimal
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distributions were not significantly different when T ≥ 15 and a0 = 16 or when

T = 35 and a0 = 48, because the exceedingly high initial failure rates (Fig. 3.7) mean

that negative tests on the paired initial sets dominate the required number of tests

per find for both algorithms.) Thus, if positive and negative tests require the same

computational cost, SIGHT is expected to be faster than RC. However, as the P:N

test cost ratio increases, RC is expected to become faster than SIGHT (Fig. 3.9, view

top to bottom) due to the higher number of positive tests required by SIGHT (Figs.

3.4, 3.6).
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Figure 3.6: Distributions of number of positive tests required per successful find of a minimal
defective k-set of size k ∈ {2, 3, 4}. Blue p-values are statistically significant (p < 0.05).
Note the differences in scaling of the y-axes.
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as non-defective. Since each paired run of SIGHT and RC started from the same initial
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3.4 Discussion

In this work we compare deterministic (SIGHT) and stochastic (RC) adaptive group-

testing algorithms on the problem of sampling minimal defective hyperedges (a.k.a.,
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k-sets), for k ≤ kmax, in problems where there are intractably large numbers of

defective k-sets (k > 1), false negatives can sometimes occur, and where the relative

computational cost of testing defective sets and non-defective sets may differ.

Both algorithms are similarly effective in finding minimal 2-sets, 3-sets, and 4-sets,

with a bias toward finding minimal defective k-sets with smaller k. While much of this

bias is introduced in the random selection of the initial set (because smaller minimal

defective k-sets are more likely to be included in the initial set), it is amplified during

set reduction by different mechanisms in the two algorithms. In RC, with every subset

reduction step there is a greater chance of preserving more smaller minimal defective

k-sets than larger ones, since it is more likely that a larger minimal defective k-set

will be disrupted during the sub-sampling procedure. Furthermore, the bottom-up

search of the set of size afinal at the end of RC, will always return one of the smallest

contained minimal defective k-sets. In contrast, the binary search step in SIGHT

searches for the leftmost element in S that is the rightmost element of a defective

k-set in D ++ S. Thus, the larger a minimal defective set is, the less likely it is to be

selected by this procedure.

As a deterministic algorithm, SIGHT will always identify the same minimal

defective k-set if starting from the same initial set; this is not the case for RC, where

sets are stochastically reduced. In these experiments, the two algorithms found the

same minimal defective k-sets less than half of the time in paired runs that started

from identical initial sets.

The computational efficiency of both algorithms varies considerably with the initial

set size a0, so it is important to try to optimize this control parameter. It is obvious

that, as a0 increases, the chances of aborting a trial due to the initial set being
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non-defective decreases (assuming false negatives are not predominant), as illustrated

in Fig. 3.7. However, this type of failure is relatively computationally cheap, since

it only requires a single test. In contrast, the percent of runs in which the initial set

tests as defective but that later abort (due to the minimal defective set being larger

than kmax) increases with increasing a0 (Fig. 3.8; see Appendix for a proof of why

this occurs). These latter types of failures can be quite computationally expensive,

since they require many tests. The optimal a0 finds the right balance between the

relative frequencies of these two types of failures.

Our empirical results show that the optimal a0, while similar for both algorithms

on the same problem, is problem-specific. For example, the optimal a0 is shown to be

smaller for problems that have more defective sets (given the same P:N cost ratio).

Similarly, the optimal a0 is shown to be smaller for problems with higher P:N cost

ratios (given the same number of defective sets).

Ultimately, the optimal a0 is determined by the combined effects of (i) the steady

increase in the number of positive tests required per find with increasing a0 (Fig. 3.4,

bottom row), (ii) the sharp drop in the number of negative tests required per find as

a0 increases from 16 to 48 (Fig. 3.4, top row), (iii) the (unknown) number of defective

sets present in the system, and (iv) the P:N test cost ratio. The complex interplay

of these factors is not possible to predict for real-world problems without simulating

them. Thus, we recommend doing a parameter sweep to select an appropriate a0,

when applying either SIGHT or RC to a new problem.

We note that when RC was first presented for the power systems problem, we

suggested that a0 be selected to be large enough to achieve a low initial failure rate

[14]. Accordingly, when we first applied RC to the large Western US Test case to assess
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the risk of cascading failure, a0 was chosen to be 320 in [18]. However, inspired by the

new insights provided by the current study, we later found that reducing a0 from 320

to 96 reduced run time per find, when using DCSIMSEP on this system, by nearly

half when kmax = 4 (and by even more when kmax < 4), even though using the smaller

a0 increased the initial failure rate from 29% to 97%. Run times would be expected to

be even more sensitive to a0 if using a more computationally expensive AC simulator

[21]. Assessing risk of cascading failure in a power system requires the identification of

many minimal defective k-sets [16], and risk must be reassessed frequently (each time

the load level changes) if it is to be mitigated [17]. Thus, choosing an appropriate a0

will have a large impact on the computational practicality of using any group sampling

approach to assess risk in power systems.

The reliability of tests also has a meaningful impact on the computational efficiency

of both algorithms, but for different reasons. In SIGHT, a false negative test may cause

an element of a minimal defective k-set to initially go undetected in the deterministic

binary search portion of SIGHT, such that the defective set eventually found in the

search is non-minimal. When this occurs, the element subsequently added to the

growing set D is not actually part of a minimal defective set. This is what necessitates

the need for the computationally costly final search of D to ensure that the defective

set returned is minimal.

In contrast, while false negative tests can increase the required number of tests at

a given set size for RC, the stochastic nature of subset selection in RC usually enables

it to find a defective set despite the presence of false negatives. The bottom-up search

of the final set of size afinal is always required by RC, whether or not false negatives

are present during the subset reduction steps.
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The time complexity of successful runs of SIGHT and RC is O(logN) in the number

of tests required, for both algorithms. However, this does not mean that their average

performances per find are the same. Overall, SIGHT requires fewer total tests than

RC but more tests of defective sets, under nearly all circumstances tested. Thus, which

algorithm is faster depends on the relative costs of testing defective vs. non-defective

sets.

In the electric power system application that initially inspired this study, testing

defective sets is generally much slower than testing non-defective sets, due to the high

computational cost of simulating cascading failures, as shown using DCSIMSEP in

Fig. 3.1. If using a more sophisticated AC simulator, this discrepancy will be even

higher, since AC simulators are much slower [21]. Thus, we expect that RC will be

faster than SIGHT for realistic problems in this power systems application, regardless

of the particular power systems simulator used.

We note that the important question of whether existing DC or AC simulators are

more appropriate for simulating cascading failures in power grids is outside the scope

of, and indeed not even relevant to, this work. Our results are independent of what

the minimal defective k-sets generated in these test problems represent.

Not all potential applications of these algorithms have higher costs for testing

defective sets. For example, group testing has been proposed as a method for per-

forming feature selection for classification tasks [33]. In this application, tests would

determine whether a set of features achieves a specified level of performance on the

classification task. “Defective” tests, in which a classifier exceeds the performance

threshold, may actually be faster than “non-defective” tests, since after the threshold

is reached classifier training can be aborted. Thus, it is expected that SIGHT would be
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(potentially much) faster than RC in the feature selection application. Group testing

has also been employed as a method for discovering synergistic reactions between

drugs [34, 35, 36, 37], an application in which the cost of tests is constant; hence,

since it requires fewer tests, SIGHT would be expected to outperform RC for this

application.

3.5 Conclusions

This work compares, for the first time, deterministic (SIGHT) and stochastic (RC)

adaptive group-testing methods for sampling minimal defective k-sets with variable

k ≤ kmax, where false negatives may be present, and where the computational costs

of testing defective and non-defective sets may differ. We develop a test problem

generator that enables us to vary the total number of minimal defective k-sets and we

use a tunable parameter to control the relative computational costs of testing defective

vs. non-defective sets.

Like RC, SIGHT is designed to sample from minimal defective sets of variable

but bounded k, rather than identifying all minimal defective k-sets (as in prior works

using deterministic group-testing on hypergraphs [10, 11]). In addition, the possible

presence of false negatives has been largely ignored in the literature on adaptive group

testing in graphs/hypergraphs [38, 39, 40], potentially causing them to fail. The slight

modifications necessary to handle these conditions are all that distinguish SIGHT

from its group testing ancestors [10, 11].

Both RC and SIGHT yielded similar distributions of minimal defective k-sets,

when searching the same random initial defective sets, and exhibited similar sampling
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bias toward finding minimal defective sets with lower k. The computational efficiency

of both algorithms is sensitive to the selection of the initial set size a0, which should

be determined empirically since it is shown to be problem dependent. Despite their

similarities, the computational properties of these two algorithms are shown to have

important differences.

The existing group testing literature has treated all tests as having equal cost, and

consequently the standard practice has been to try to develop deterministic algorithms

that minimize the number of tests per defective set found [2]. SIGHT was, in fact,

shown to require fewer total tests than RC. However, SIGHT was also shown to require

more tests of defective sets than RC. Thus, which method is faster depends on the

relative costs of testing defective vs. non-defective sets.

Our results indicate that the stochastic RC group testing algorithm is expected to

outperform the deterministic SIGHT group testing algorithm in the power systems

application that originally motivated this work, because positive tests are much more

computationally costly than negative tests. In other applications, such as feature

selection and drug discovery, where the cost of positive tests is less than or equal to

the cost of negative tests, SIGHT is expected to out-perform RC.

3.6 Appendix

Empirically, the percent of runs that abort partway through a run (after the initial

set tested as defective) increases with increasing a0, for both algorithms (see Fig. 8 in

the main text).

This occurs because the ratio of minimal defective sets of size (k + 1):k, in some
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set S, increases as the size of the set increases, for all k. To prove this, consider a

universal set V of elements and the set Ωk, which contains all minimal defective k-sets,

for a given k. Consider subset S ⊂ V where the set sizes |V | = N and |S| = M . The

expected number of minimal defective k-sets in S is |ΩS
k | =

(
M
k

)(
N
k

)
× |Ωk|. Now,

consider T ⊂ V where |T | = M + c, for some positive constant c. Then, it suffices to

show:

|ΩS
k+1|
|ΩS

k |
<
|ΩT

k+1|
|ΩT

k |

Proof.
( M

k+1)/( N
k+1)|Ωk+1|

(M
k )/(N

k )|Ωk|
<

(M+c
k+1 )/( N

k+1)|Ωk+1|
(M+c

k )/(N
k )|Ωk|

(
M

k + 1

)(
M + c

k

)
<

(
M

k

)(
M + c

k + 1

)

M − k
k + 1

(
M

k

)(
M + c

k

)
<
M − k + c

k + 1

(
M

k

)(
M + c

k

)

M − k < M − k + c

Consequently, the number of expected minimal defective sets in S will increase

more slowly for k ≤ kmax (as in a successful run) than for k > kmax (as in a run
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that aborts because the found defective k-set is too large). The net effect is that,

even though both RC and SIGHT are biased towards finding smaller k-sets, the rapid

increase in the number of minimal defective sets that are too large, with increasing a0,

results in an increase in the proportion of runs that are aborted part way through a

run in which the initial set was defective, for both SIGHT and RC.
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Chapter 4

A General Model of Conversational

Dynamics and an Example Applica-

tion in Serious Illness Communica-

tion

Abstract

Conversation has been a primary means for the exchange of information since ancient
times. Understanding patterns of information flow in conversations is a critical
step in assessing and improving communication quality. In this paper, we describe
COnversational DYnamics Model (CODYM) analysis, a novel approach for studying
patterns of information flow in conversations. CODYMs are Markov Models that
capture sequential dependencies in the lengths of speaker turns. The proposed method
is automated and scalable, and preserves the privacy of the conversational participants.
The primary function of CODYM analysis is to quantify and visualize patterns
of information flow, concisely summarized over sequential turns from one or more



conversations. Our approach is general and complements existing methods, providing
a new tool for use in the analysis of any type of conversation. As an important first
application, we demonstrate the model on transcribed conversations between palliative
care clinicians and seriously ill patients. These conversations are dynamic and complex,
taking place amidst heavy emotions, and include difficult topics such as end-of-life
preferences and patient values. We perform a versatile set of CODYM analyses that
(a) establish the validity of the model by confirming known patterns of conversational
turn-taking and word usage, (b) identify normative patterns of information flow in
serious illness conversations, and (c) show how these patterns vary across narrative
time and differ under expressions of anger, fear and sadness. Potential applications of
CODYMs range from assessment and training of effective healthcare communication
to comparing conversational dynamics across language and culture, with the prospect
of identifying universal similarities and unique “fingerprints” of information flow.

4.1 Introduction

Conversation is a fundamental form of human communication. Conversations are

highly complex phenomena [1], but use simple rules to maintain discourse [2]. Humans

have an innate ability to learn spoken language from infancy, yet despite the impor-

tance of conversations in our daily lives, achieving effective communication through

conversations can be difficult [3, 4]. Developing a better understanding of information

flow in different conversational contexts can help guide efforts to improve conversation

quality.

Conversation analysis (CA) became established as a discipline of study beginning

in the late 1970’s with the seminal work of Harvey Sacks and others, such as in

their formative 1978 paper [2], in which they present a framework for the process

of conversation. Sacks described conversation as being highly structured around

turn-taking, with participants being able to fluidly transition between turns without

turns overlapping. This fundamental property of conversation has subsequently been
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observed and measured across languages and cultures, revealing itself to be a universal

trait [5]. Sacks theorized that this discourse is maintained by a set of rules, or norms,

that are followed by participants and govern when the speaking floor is relinquished and

which participant may speak next. Perhaps the most important aspect of his framework

is the heavy focus on the sequential nature of conversation and the dependence of

each speaker turn on the turns that came before it [2].

The traditional conversation analytic approach to understanding sequence is to use

meticulous transcriptions of recorded conversations in order to study a pre-specified

conversational phenomenon and understand its normative patterns [6, 7]. For example,

in one early, influential study, Schegloff examined the opening sequence of turns in 500

telephone calls and attempted to explain the patterns he observed [8]. This approach

has been widely adopted and applied in diverse contexts, resulting in a vast body of

work comprising thousands of research papers. While the value and importance of this

inherently qualitative approach remains relevant today [6, 7, 9], quantitative methods

have gained increasing popularity in CA (e.g., [10, 11]). In particular, Markov Models

(MMs) inherently model sequential events [12], and so have been widely applied in

CA.

In a MM, the likelihood of a given event occurring is determined by the current

state of the system, and when an event does occur it causes the system to transition

to a new state [12]. The “order” of a MM defines the number of previous events

that are recorded in each state (i.e., the length of the “memory” in the model). In

most CA applications of MMs, state transitions are defined to take place between

some constant, fixed intervals of time. Examples of these include 1st-order MMs that

were used to classify dialog scenarios in conversations based on speech/silence states
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[13], and for identifying conversational structure within non-verbal states, such as

gaze patterns in four-person conversations [14], and 2nd-order MMs used to study

the effects of conversational speech/silence patterns on communication systems [15].

In contrast, sequences of speaker order in four-person conversations were used to

predict who the next speaker would be, using MMs up to order 5 [16]; 2nd-order

MMs proved significantly better than 1st-order MMs for this task, but little further

improvement was gained by moving to higher order models on this data set, and a

simple context-sensitive model based on speaker roles was shown to out-perform the

MMs.

While the examples above use MMs as a tool for making predictions or classifi-

cations regarding conversations, another approach to understanding the structure of

information flow involves classifying units of conversation by their functional roles (e.g.,

[17, 18]). Once these functional roles have been defined, 1st-order Markov models have

been used to understand the sequence of these functions in conversation [19, 20, 21].

Influence modeling is yet another Markov-based method, where individual Markov

chains for each speaker are coupled together to understand how speakers interact,

including understanding which speakers are most influential [22, 23, 24] and the

functional role of each speaker [25].

Visualizing data to aid interpretation has also grown in popularity [26], and

a number of methods have been proposed for visualizing conversational dynamics

[27, 28, 29]. Good visualizations allow complex data to be displayed in a more easily

digestible format, allowing readers to better recognize and understand patterns that

may not otherwise be apparent [30]. One popular tool for visualizing conversational

dynamics is Discursis [29], which uses conceptual recurrence plots for unsupervised
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identification and visualization of shared content between speaker turns in the analysis

of conversational discourse. This method has been used in a variety of contexts,

including the study of healthcare conversations [31, 32, 33, 34, 35, 36]. Discursis

visualizations portray the lengths of each speaker turn throughout an individual

conversation, along with the amount of overlap in content in these turns. Thus, the

size and complexity of Discursis visualizations vary for each conversation, and access

to full transcriptions are necessary to create these very detailed visualizations of

individual conversations.

In this paper, we describe the COnversational DYnamics Model (CODYM), a

novel approach for analyzing and visualizing information flow across sequences of

turns in one or many conversations, using 2nd-order and 3rd-order MMs of discretized

turn lengths. CODYMs are based on the assumption that the length of a speaker

turn is a simple proxy for the capacity of information conveyed in the turn, and

that the amount of information conveyed during a given turn is influenced by the

amount of information conveyed in previous speaker turns. The proposed method

is scalable and can be fully automated. Since CODYMs do not rely on knowledge

of the specific content of conversations, they do not compromise the privacy of the

conversational participants. However, CODYMs can also be contextualized to study

information flow patterns surrounding specific topics of interest, if such are known.

In contrast to previous applications of MMs to conversation analysis, the primary

function of CODYM analysis is to quantitatively summarize and visualize information

flow patterns throughout one or more conversation(s), rather than to make predictions

or classifications. Our approach is general and provides a new tool for use in the

analysis of any type of conversation.
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In healthcare communication, and especially in serious illness communication, the

quality of doctor-patient conversations can have profound tangible impacts [37, 38, 39].

Promoting high-quality communication in serious illness healthcare is considered

a national priority [40, 41], and there is an increasing recognition that automated

methods for analyzing clinical conversations, such as turn-taking analysis, could provide

useful feedback and insights for improving communication between clinicians and

patients [39, 42]. Thus, as an important first application, we apply CODYM analysis

to a corpus of 355 transcribed conversations between palliative care clinicians and

seriously ill patients, recorded as part of the Palliative Care Communication Research

Initiative (PCCRI) [43]. These conversations are dynamic, complex phenomena that

take place amidst heavy emotions such as anger, fear, and sadness [44]. They include

difficult topics such as end-of-life preferences and values, all while patients endure

suffering from the symptoms of their illness. We seek to answer the following questions.

What are the normative information flow patterns in serious illness conversations?

How do those patterns change during the course of a conversation? Do certain words

or topics tend to appear more in one information sharing pattern than another? How

does the expression of distressing emotion impact information flow? We show that

CODYM analysis provides a quantitative approach, with an intuitive interpretation,

that helps to answer these questions.

The remaining sections of this manuscript are organized as follows. We first de-

scribe the methods involved in CODYM analysis, and the PCCRI corpus of palliative

care conversations. We then present results of applying CODYM analysis to the

PCCRI corpus in various ways that demonstrate the model’s versatility, followed by a

discussion of the significance of our findings and their relation to the current literature.
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Finally, we close with some general conclusions and ideas for future work.

4.2 Methods

4.2.1 Conversational dynamics model

Due to the sequential nature of conversations [2], we expect that the amount of

information conveyed in each turn influences the amount of information conveyed in

subsequent turns. Here, we propose using the number of words in a speaker turn as a

simple proxy for the capacity of information that the turn can convey. We define a

COnversational DYnamics Model (CODYM) to be a Markov Model (MM), where

events are speaker turns of a given length and states comprise the lengths of some

number (defined by the order of the model) of previous turns. CODYMs thus model

the sequential patterns in turn lengths.

Any MM requires a discrete state-space, so turn lengths in a CODYM are discretized

into a finite number of bins. Although, in principle, turn lengths can be discretized

into any number of bins, the most appropriate number of bins will depend, in part,

on the size of the data set. In the PCCRI corpus used here, turn lengths follow a

heavy-tailed distribution, with a median turn length of 7 (Fig. 4.9). Here, we binarize

turn lengths into short (S) turns and long (L) turns, with short turns defined as those

with 1-7 words and long turns as those with 8 or more words. Using the median turn

length as the maximum length of short turns (a) creates a relatively balanced data

set with 53,751 short turns and 47,812 long turns, and (b) maximizes the Shannon
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entropy (a measure of information content) for the distribution of states in a 3rd-order

CODYM (Fig. 4.10). In preliminary experimentation with the PCCRI corpus, we

found that discretizing turn lengths into ternary bins (Short/Medium/Long) was

problematic because it both (a) created sample size issues by reducing the number of

turns associated with each transition, and (b) resulted in more complex models that

were difficult to interpret.

Note that the number of states in an N th-order CODYM of binarized turn lengths

has 2N states and 2N+1 transitions. For example, a 2nd-order CODYM has 4 states and

8 transitions, and a 3rd-order CODYM has 8 states and 16 transitions, as illustrated

in Fig. 4.1, where states are represented as nodes and transitions are represented as

directed edges in a network. We use 2nd- and 3rd-order CODYMs in our analyses for

the reasons explained below.
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Figure 4.1: Network representations of CODYMs. Network depictions of (a) 2nd-order
and (b) 3rd-order CODYMs, where turn lengths are binarized as short (S) or long (L). Nodes
(black circles) represent states that are defined by the lengths of the 2 or 3 previous turns,
respectively; edges (arrows) represent transitions between states and are labeled with the
length of the turn on that transition. The areas highlighted in yellow represent important sub-
networks we refer to as short two-way information exchanges (labeled “S 2-way”), one-way
information exchanges (labeled “1-way”), and long two-way information exchanges (labeled
“L 2-way”).

We use 3rd-order CODYMs for analyzing normative patterns in serious illness

conversations, and for examining how these patterns change both temporally and when

distressing emotions are expressed. We selected 3rd-order CODYMs for this because:
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(a) for dyadic conversations, such as between a patient and a clinician, having memory

of 3 previous turns can represent a complete back-and-forth exchange between the

2 sides; (b) higher-order models become difficult to interpret; (c) large state spaces

result in fewer observations of each state/transition, potentially resulting in small

sample sizes that may preclude accurate characterization of normative patterns (e.g.,

the median numbers of occurrences of the different states for each conversation in

the PCCRI corpus are 57, 28, 13, 6, and 3, for CODYMs of orders 1-5, respectively);

and (d) we found that features taken from 3rd-order CODYMs had greater predictive

power over those from 1st- or 2nd-order CODYMs on an emotion-based classification

task (described in more detail later), as shown in Table 4.2. On the other hand, a

2nd-order CODYM has half the number of transitions as a 3rd-order model (Fig. 4.1).

Thus, when studying patterns of word associations with transitions, we use 2nd-order

CODYMs to increase the number of words associated with each of the transitions.

Different sub-networks of a CODYM can be interpreted as distinct regimes of

information flow (highlighted in yellow in Fig. 4.1). For example, we refer to the center

loop (SL S−→LS L−→SL, in a 2nd-order CODYM, and SLS L−→LSL S−→SLS, in a 3rd-order CODYM)

as “one-way information exchanges”, because alternation between S and L turns in a

dyadic conversation implies that one party is conveying most of the information. We

refer to the leftmost self-loop (SS S−→SS, in a 2nd-order CODYM, and SSS S−→SSS, in a

3rd-order CODYM) as “short two-way information exchanges”. Conversely, we refer to

the rightmost self-loop (LL L−→LL, in a 2nd-order CODYM, and LLL L−→LLL, in a 3rd-order

CODYM) as “long two-way information exchanges”. As we will show, each of these

information flow regimes can be associated with different functions in conversations.
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4.2.2 Observing patterns of information flow

In most MMs, the weights on all outgoing edges of each given node sum to 1.0, where

each edge weight represents the probability that the node is left via that edge. This is

appropriate when MMs are used as generative models or to make predictions of future

states. However, with CODYMs our primary intent is to study patterns of information

flow through all states and transitions in an existing corpus of dialog, not to generate

simulated sequences of short and long speaker turns or to predict subsequent turn

lengths. Thus, in a CODYM, the weights on nodes and edges represent their respective

percentage frequencies of occurrence over all turns being analyzed. Consequently, the

sum of all edge weights (transition frequencies) in an entire CODYM is 100% and the

sum of all node weights (state frequencies) is also 100%.

We “populate” a CODYM by computing observed frequencies of each state/tran-

sition across a specified set of speaker turns. This set may comprise all turns in an

entire corpus of conversations, all turns for a given speaker, all turns within individual

conversations, or some other subset of turns that satisfy some pre-specified condition,

depending on the question being addressed. When different CODYMs are populated

separately for a number of conversations, they can be visualized as a single CODYM

populated with the mean weights for each of states and transitions, averaged over

all of the CODYMs populated from individual conversations. A CODYM of mean

frequencies can be interpreted as a representation of the overall “normative” pattern of

information flow in the set of conversations under study, assuming the distributions of

frequencies are uni-modal for each state and transition. Alternatively, when CODYMs

are populated from a subset of turns in the corpus, turns from multiple conversations
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may be pooled to increase sample sizes in the states/transitions; in this case, we

compute a single set of CODYM frequencies for the pooled data.

Where possible, we seek to determine whether a CODYM computed from observed

data exhibits state and/or transition frequency distributions that differ from what

would be expected if the given conversational feature of interest was independent of

prior sequences of turn lengths (the null hypothesis). How we determine “expected”

frequencies, and how we compare observed frequencies to them, depends on the

particular experiment. For example, we compare two sets of observed CODYM

frequency distributions, computed from turns with or without a given feature present,

using 2-sample Kolmogorov-Smirnov tests. However, in most cases, we generate

expected frequencies from appropriate null CODYMs, which are populated from data

that have been randomly sampled (or randomly reorganized) in such a way as to

disrupt any possible association between the conversational feature of interest and

previous sequences of turn lengths, while preserving other salient characteristics of the

data, such as sample size and the number of long and short turns used by patients and

clinicians. When comparing to null CODYMs created by random sampling, we derive

empirical probability distributions for null models computed from randomly sampled

data by generating 1000 random copies of each, using Monte Carlo (MC) simulations.

(Prior experimentation had shown that probability distributions were quite stable

when created with 1000 MC simulations). When we visualize these null CODYMs,

we display mean state and transition frequencies, averaged over all 1000 copies. If

observed state and/or transition frequencies are outside of the empirically derived

95% confidence interval from the distribution of 1000 corresponding null models, the

difference is considered to be statistically significant at the p < 0.05 level. To minimize
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confusion, we provide the specifics of how we determined expected values for each

type of experiment in the Results.

State space diagrams of CODYMs are displayed in one of two formats, based on

what we believe most effectively conveys the results we are trying to highlight. In

some cases, we display transition frequencies directly (%Observed or %Expected),

while in other cases we display mean observed transition frequencies minus the mean

expected frequencies of the corresponding null models (∆frequency = %Observed−

%Expected). In the former, all state weights sum to 100%, all transition weights

sum to 100%, and the color bars represent only positive percentages. In the latter,

transition weights sum to 0%, negative values indicate the degree to which the feature

of interest is under-represented on a given transition, and positive values indicate

the degree to which it is over-represented, relative to the corresponding null model.

We use different colormaps to help distinguish these two visualization techniques. In

both visualization formats, the thickness and color of transition arrows indicate the

magnitude of the corresponding transition weights, and nodes are sized according

to the frequency of their respective states. Where relevant, state and transition

frequencies that are statistically significantly different from the corresponding null

model are indicated by coloring states black (vs. gray) and drawing transition arrows

with solid lines (vs. dashed lines).

To assess how normative patterns in information flow may change over the course of

a conversation, we divide the turns of each conversation in the corpus into sequential

deciles of words (ten bins of narrative time, as in [45]), stratified by patient and

clinician turns. Note that different conversations have different numbers of turns, so

the number of turns per bin varies by conversation. Individually, conversations average
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only about 28 turns per decile, split approximately equally between patient turns and

clinician turns. Since 14 turns are inadequate to robustly determine frequencies on 16

transitions, we pool the data by summing the number of patient and clinician turns

per decile over all conversations. We then compute the frequencies of the pooled turns

on each of the 16 transitions in 3rd-order CODYMs, one per decile.

4.2.3 Contextualization of CODYMs

A CODYM is based exclusively on turn lengths, so is thus independent of what is

actually said or expressed during those turns. However, a CODYM can be used to

examine the information flow patterns involving different words, topics, expressions of

emotion, or more generally, “contextual events”.

We use two complementary approaches to study how word usage varies between

conversational regimes. In the first approach, we use an unsupervised cluster analysis to

determine which commonly used words have similar CODYM patterns of information

sharing. Of the 14,848 unique words that appear in the PCCRI corpus, we only

consider those that appear at least 100 times and for which the absolute value

of %Observed − %Expected is greater than 10; expected values are the observed

frequencies in a 2nd-order CODYM populated from all words over all turns in the

corpus (Fig. 4.2). We use this method for prefiltering words because: (a) requiring a

minimum number of occurrences ensures that a word is frequent enough in the corpus

to asses its typical usage; and (b) by considering only words whose information flow

patterns differ substantially from overall word frequencies, we focus on words that

have specialized usages with respect to the normative information flow pattern.

The resulting list of 114 words was clustered using a standard K-Means clustering

115



SS

SL

LS

LL

S (3.8)
L (17

.5)

S (4.7)

L (20.1)

S (2.9)

L 
(3
0.
5)

S (2.
5) L (18.0)

0 5 10 15 20 25 30
Frequency (%)

Figure 4.2: CODYM of word usage in PCCRI corpus. Frequencies of occurrence of
all words in the PCCRI corpus on transitions of a 2nd-order CODYM. Transition labels
indicate the length of the turn on that transition, parenthetically followed by the percentage
of word occurrence on that transition. Edge thickness and color indicate %Observed for each
transition, and node diameter indicates %Observed for each state.

algorithm (implemented with Python’s scikit-learn package, with default settings [46]),

using the 8 transition frequencies from 2nd-order CODYMs (computed for each of the

114 words) as the input features for clustering. Note that each of the 114 words are

weighted equally during this clustering, even though some words occurred much more

frequently than others. After qualitatively assessing cluster membership when using

between three and ten clusters, we determined that using six clusters resulted in the

most logically cohesive word groupings.

In the second approach, we populate CODYMs using frequencies of occurrence of

terms from pre-defined lists. In this work, we focus on two such lists of interest in

serious illness conversations: hedging terms and treatment terms.

There are many definitions of uncertainty terms and subtypes used in clinical

conversations (e.g., [47, 48, 49, 50]). Here we focus on a list of “hedging” terms, recently

developed for use in natural language processing of serious illness conversations, which

was found to be the most prevalent subtype of uncertainty expressed in the PCCRI

corpus [51]. According to this definition, hedging occurs in a conversation when the
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speaker makes a word choice to suggest something rather than state it as fact, such as

to say “I expect you will feel better” instead of “You will feel better”. Using the word

expect injects some uncertainty into the statement. Some examples of hedging terms

include expect, hint, imply, perceive, presume, speculate, suspect, and think. The

complete list of 35 hedging terms used in this study, and the frequency of occurrence

of each term in the PCCRI corpus, is shown in Table 4.3. See [51] for a detailed

description of how this list was compiled.

Treatment terms are those used to discuss medical care provided to patients. A

list of 51 treatment words occurring at least 100 times each in the PCCRI corpus was

previously prepared, and it was shown that these words vary temporally throughout

the PCCRI conversations, being most prevalent in deciles 4 and 5 [45]. Some examples

of treatment terms include antibiotics, ICU, chemo, fentanyl, machine, milligram,

procedure, radiation, and ventilator. The complete list of the treatment terms used in

this study (from [45]), and the frequency of occurrence of each term in the PCCRI

corpus, are shown in Table 4.4.

Note that specific hedging terms or treatment terms that are more frequent in the

overall corpus have a greater influence on resulting state and transition frequencies,

since CODYM frequencies were computed over all occurrences of all terms in a given

list. Thus, to assess robustness of the observed information patterns for both hedging

and treatment terms, we remove a random 10% of terms that occurred at least once in

the PCCRI corpus from each list and re-perform the analysis. This process is repeated

with a different 10% of terms removed each time, until all terms have been removed

at least two times.

In what is perhaps our most intriguing application of contextualization, we study
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how the expression of distressing emotions by patients affects patterns of information

flow, both locally (by comparing CODYM patterns between turns in which anger, fear

or sadness were or weren’t expressed) and globally (by comparing CODYM patterns

between entire conversations in which anger and/or fear were or weren’t expressed).

As part of the latter analysis, a Random Forest classifier (implemented using Python’s

Scikit-learn package with 100 trees and default settings [46]) was trained to distinguish

conversations that included anger and/or fear from those that didn’t, using normalized

conversation-level transition frequencies from 1st-order through 5th-order CODYMs as

input features. Each Random Forest was trained on a random 80% of conversations

from each class and tested on the remaining 20% of conversations from each class. This

process was repeated 1,000 times for each order CODYM, with different random 80-20

data splits. The distribution of observed testing accuracies in these 1000 Random

Forests was used to assess how consistently CODYM features could distinguish between

conversations with fear and/or anger and those without.

4.2.4 The PCCRI corpus

The Palliative Care Communication Research Initiative (PCCRI) is a multisite ob-

servational cohort study conducted between January 2014 and May 2016 [43]. The

study took place at two large U.S. academic medical centers, one in the Northeast and

one in the West. Any English-speaking patients who were hospitalized and referred

for inpatient palliative care consultation were eligible for this study, provided they

were diagnosed with a metastatic nonhematologic cancer, did not have a documented

exclusively comfort-oriented plan of care at the time of referral, were age 21 or over,

and were able to consent for research either directly or via health care proxy (if lacking
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capacity as determined by the clinical team). All members of the interprofessional

Palliative Care Inpatient Consult teams at both sites were eligible to participate.

A total of 240 hospitalized patients with advanced cancer at the time of referral

for inpatient palliative care consultation were enrolled in the study. Four withdrew,

three died, and two were discharged before completing the palliative care consultation.

Each consultation comprised one to three conversations between the patient, and

potentially family members and/or close friends of the patient, and the palliative

care team. More than one conversation occurred with the same patient when the

initial conversation was only a preliminary assessment or when a conversation was

interrupted prematurely (e.g., a patient was taken for x-rays) [43].

All conversations that were part of a palliative care consultation were audio

recorded. With prior informed consent from all study participants, digital recorders

were placed in unobtrusive locations in the rooms where the conversations took place

(e.g., on a tray table next to a patient’s bed); research assistants retrieved the recorders

at the end of the visit by the palliative care team. All audio recordings were later

transcribed verbatim and prepared in a standard format to facilitate natural language

processing. The speaker during each transcribed turn was tagged as either a patient

(which could include family members and/or close friends who were present in support

of the patient) or a clinician, except in rare occasions (< 1% of turns) when transcribers

could not determine whether the speaker was from the patient side or the clinician

side (these turns were excluded from analyses that stratified turns by patient and

clinician). In total, we examined 360 conversations that were recorded and transcribed

for 231 unique patients.

Of these, five transcripts were excluded from this study because either a high
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proportion of speaker turns were inaudible rendering the transcripts very incomplete,

or because the conversations were too short (less than 20 speaker turns long) to

perform meaningful analysis. The remaining 355 conversations, which were used in

our analyses, contained 1,464,167 total words (14,812 unique) in 101,563 total speaker

turns, with a median of 242 turns per conversation (Fig. 4.9).

Since transcribers were not always able to distinguish patients from family members

or friends, or which clinician was speaking, in this work we adopt the convention

that “patient” refers to anyone on the patient-side of the conversation and “clinician”

refers to anyone on the clinical team. Although there were up to 8 participants in a

conversation, patient turns were followed by clinician turns (and vice versa) during

86% of all transitions, closely resembling the alternating speaker pattern that would

be expected in dyads.

All speaker turns in which the patient was audibly perceived to be expressing

anger, fear, or sadness, had been previously labeled in the PCCRI transcripts, using

well-established and reliable human coding methods [52, 53]. Anger was defined to

include expressions of either frustration or anger. Fear was defined to be inclusive

of words and sounds indicating worry, anxiety, fear or terror. Sadness was defined

to include expressions with sad, disappointed, depressed, hopeless or discouraged

sentiments. Turns that included multiple sentiments were coded as such. Ambiguous

words or sounds that might indicate underlying emotion, or referred to emotions felt

in the past, were not included in our analysis.
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4.3 Results

4.3.1 Normative patterns of information flow

in serious illness conversations

CODYMs reveal normative patterns (“fingerprints”) of information flow in serious

illness conversations. The existence of such normative patterns is supported by the

uni-model distributions observed for all states and transitions in 3rd-order CODYMs,

for both patients and clinicians, indicating a prevailing pattern across all conversations

in the corpus (Figs. 4.12, 4.13, and 4.14). These patterns are similar, and yet distinct,

between patients and clinicians.

When interpreting the populated CODYMs, it is important to consider that only

42% of patient turns are long whereas 53% of clinician turns are long. Thus, to

create appropriate null models, we randomize the locations of specific turns (thereby

preserving the exact distributions of patient and clinician turn lengths), while main-

taining the overall sequential order of patient and clinician turn-taking in the actual

conversations. Null 3rd-order CODYMs are generated from 1000 randomized versions

of these conversations, stratified by patient and clinician turns.

Despite the skew apparent in most of these distributions (Figs. 4.12, 4.13, and

4.14), we elect to populate the CODYMs with the means (rather than medians) of

transition and state values, since this preserves the more intuitive properties that (a)

the sum of all edge weights in a CODYM is 100%, (b) the sum of all node weights

in a CODYM is 100%, and (c) for each node, the sum of weights of incoming edges

equals the sum of the weights of outgoing edges. We verified that using the means,
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rather than the medians, does not qualitatively change any insights or conclusions

drawn from the models (see Figs. 4.12, 4.13, and 4.14 for a comparison of mean vs.

median values).

When comparing the observed CODYMs (Fig. 4.3, left column) to the expected

values from the corresponding null models (Fig. 4.3, right column), states SLS and LSL,

and the transitions between these two states, occur more frequently in the observed

data than expected by chance in both patients and clinicians, whereas all other states

occur less frequently than expected by chance (Tables 4.5 and 4.6). This indicates that

conversations include more one-way information exchanges than would be expected

by chance, and that sometimes it is the clinician imparting more information and

sometimes it is the patient.

Despite the qualitative similarities between normative patterns of patients and

clinicians described above, all but two of the eight states and five of the sixteen

transitions are siginficantly different for the two speaker types (Tables 4.5 and 4.6).

Most notably, it is evident that the LSL state is the most frequent state prior to

a patient turn and is most often followed by a short patient turn (Fig. 4.3, upper

left) whereas the SLS state is the most frequent state prior to a clinician turn and

is most often followed by a long clinician turn (Fig. 4.3, lower left). This implies

that clinicians, rather than patients, are most often imparting more information in

one-way information exchanges. Other aspects of the normative CODYM patterns

are discussed in subsequent sections.
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Figure 4.3: CODYMs of normative patterns in PCCRI corpus. CODYMs of nor-
mative patterns of information flow for patient turns (top left) and clinician turns (bottom
left), averaged over all conversations in the PCCRI corpus. Null models were constructed
with the same turn length imbalance for patients and clinicians and the same sequential
order of patient and clinician turns in each conversation (right column). Edge thickness
and color indicate %Observed for each transition, as shown parenthetically on edge labels.
Node diameter indicates %Observed for each state, as shown by the node labels in bold. All
state and transition values were significantly different from their corresponding null models,
according to the empirically derived 95% confidence intervals, with the exception of state
SLL for clinicians (shown in gray).

4.3.2 Dynamic Changes in Normative Patterns

of Information Flow

Some transitions show distinct patterns of change in frequency across temporal deciles

of conversations (Figs. 4.4, 4.15, and 4.16). For example, the short two-way information

exchange, while occurring overall less frequently than expected by chance (Fig. 4.3),

occurs more frequently in the first and last decile of the conversation for both patient

turns (Fig. 4.4a) and clinician turns (Fig. 4.15). This is consistent with our observation
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that words associated with ritualistic openings and closings of a conversation are

over-represented in short two-way information exchanges (see Contextualization by

Word Clustering, in the next Section). For patient turns, we also see a decrease in

one-way information exchanges from patient-to-clinician from deciles 5 through 10

(Fig. 4.4b, ρ = −0.95, p = 0.004), but no corresponding significant increase in the

one-way information flow from clinician-to-patient over deciles 5 through 10 (Fig.

4.4c, p = 0.84). The complementary changes in one-way information flow patterns for

clinician turns exhibit nearly identical patterns (Figs. 4.15 and 4.16).
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Figure 4.4: Selected temporal changes in CODYMs of PCCRI corpus. Histograms
of temporal changes in transition frequencies for patient turns in 3rd-order CODYMs for
(a) short two-way information exchanges, (b) one-way information exchanges from patient-
to-clinician, and (c) one-way information exchanges from clinician-to-patient, over 10
conversational deciles that were subsequently averaged over all conversations in the PCCRI
corpus and normalized, such that the sum of all bins is 1.0. See Figs. 4.15 and 4.16 for
plots of temporal changes in all transition frequencies, for both patient and clinician turns.

4.3.3 Contextualization

Contextualization by word clustering

Unsupervised clustering was used to group 114 words (selected as previously described

in the Methods) into six clusters, based on the transition frequencies of individual

words in 2nd-order CODYMs. For each cluster, we generate a representative CODYM
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by averaging the transition frequencies for all words in the cluster (for the distribution

of transition frequencies in each cluster, see Fig. 4.17). We compare these to the

CODYM of occurrences of all words (Fig. 4.2), to see which transitions are over- or

under-represented. Because the CODYM of occurrences of all words is not formulated

from a distribution of random trials, it is not possible to empirically derive the

confidence interval to determine whether the differences between observed and expected

frequencies are significant. However, the purpose of the clustering is not to determine

which state/transition frequencies are significantly different from random, but to

observe which words share similar patterns of information sharing.

We find that many words with similar information flow patterns fill similar functions

in the context of information flow, and we refer to these clusters by monikers according

to these functions (Table 4.1, Fig. 4.5). A complete listing of words in each cluster and

their frequencies in the PCCRI corpus are shown in Table 4.7. Results are displayed in

Fig. 4.5 as ∆Frequency = %Observed−%Expected to accentuate how each cluster

differs from the norm. (The %Observed for each transition in each cluster are shown

in Table 4.8.)

Three similar clusters include words that often occur in S turns during one-way

information exchanges, linguistically referred to as “continuers” [54, 55, 56]. We

refer to these three clusters as “strong”, “moderate”, and “weak” continuers, based

on the degree to which the one-way information exchange pattern differs from that

in the CODYM of all word frequencies. The most specialized grouping, the strong

continuer cluster, comprises sounds of acknowledgment that serve to encourage the

primary speaker to continue (e.g., hm, aha). These words have the most extreme

specialization as continuers and are rarely used in other contexts, nearly always
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Table 4.1: Word clusters from CODYMs of PCCRI corpus. Six unsupervised clusters
of 114 words, based on similarities in transition frequencies in a 2nd-order CODYM. For
each cluster, we identify the number of words in the cluster, the percentage of turns that
included any words in the cluster that were long (L), and example words in the cluster. See
Table 4.7 for the complete lists of words in each cluster, and how many times each of these
words appeared in the PCCRI corpus.

Cluster Moniker # Words %L Example Words
Strong Continuers 4 10.8 hm, hmmm, mm, aha
Moderate Continuers 10 36.9 yeah, yes, yep, yup, ok, wow, huh
Weak Continuers 19 63.5 fine, right, sorry, no, beautiful,

meeting, appreciate
Openers/Closers 7 44.3 thank(s), meet, hi/hello, welcome, bye
Clinical Talk 51 95.5 um, comfort, symptoms, treatments,

chemotherapy, continue, disease
Potpourri 23 84.8 hurts, tylenol, concern, risk, confused,

scary, funny

occurring during S turns and, specifically, appearing in the SL S−→LS transition more

frequently than all other transitions combined. The moderate continuer group contains

positive affirmations (e.g., yeah, yes, yep, ok) that, while often used as continuers,

have a less extreme over-representation in the one-way information exchange, and not

infrequently (in over a third of turns) occur in L turns. The weak continuer cluster

contains some words that act as continuers in one-way information exchanges (e.g.,

right, no, nice, great, fine, exactly), but also occur in L turns nearly two thirds of

the time and contain some words that aren’t generally considered continuers (e.g.,

meeting, appreciate, appetite).

The “openings/closings” cluster contains words that are almost exclusively asso-

ciated with starts and ends of conversations, occurring nine times as often in short

two-way information exchanges, relative to the CODYM of all word frequencies. This

is consistent with our earlier observation that short two-way information exchanges

occur most often in the first and last deciles of conversations (Fig. 4.4).
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Figure 4.5: CODYMs of word clusters in PCCRI corpus. Differences in 2nd-order
CODYM information flow patterns of six clusters of words created by unsupervised clustering
(Table 4.1), relative to expected frequencies based on all words in the PCCRI corpus. Edge
thickness, color, and labels indicate the amount by which the frequencies differ from those of
all words in the corpus, ∆Frequency = %Observed − %Expected, where %Expected is as
shown in Fig. 4.2. Node diameter is proportional to %Observed.

The cluster we have dubbed “clinical talk” is the largest cluster, containing 51

of the 114 words considered. The words in this cluster most often occur during L
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turns in one-way information exchanges, with a slight under-representation in all other

transitions, relative to the model of all word frequencies. While many of the words in

this cluster specifically relate to clinical talk (e.g., comfort, symptoms, treatments,

chemotherapy), others are more general (e.g., sort, may, whether); the most prevalent

word in this cluster is “um”, a word often used for holding the floor during a L turn.

The remaining 23 words were grouped into a cluster we refer to as “potpourri”,

since the relationships between these words are less obvious than in the other clusters.

Although several of them described feelings (e.g., hurts, concern, confused, scary,

funny), the word risk, a word used predominantly by clinicians (Table 4.3), also

appears in this cluster. The general pattern of information flow in this cluster is

opposite of what was observed for the “clinical talk” cluster. Specifically, these words

are under-represented on the L turns of one-way information exchanges and slightly

over-represented on all the other transitions, more so on other L turns than on S turns,

with the greatest over-representation during long two-way exchanges.

Contextualization by hedging and treatment terms

To assess whether patients and clinicians use hedging and/or treatment terms dif-

ferently, we stratify the corpus into patient turns and clinician turns. We compare

observed CODYM transition frequencies to expected frequencies in null CODYMs,

where these null models were created from size-matched samples drawn according to

the known frequencies of each state/transition over all patient and clinician turns. In

this way, the null models capture the amount of random noise that would be expected

due to chance, given the sample size. As shown in Fig. 4.20, the mean frequencies

of these stratified null CODYMs are very similar to the single CODYM of the entire
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unstratified corpus already shown in Fig. 4.2, so are not shown in the main text.

Patients and clinicians used hedging terms 3,805 and 5,794 times, respectively.

Overall, hedging terms increased in frequency over the first half of the conversation,

especially when used by clinicians (for patients, the usage of hedging terms peaked in

decile 3); the use of hedging terms then remained high until decile 9 for both speaker

types, dropping in the last decile (Fig. 4.11). The differences in CODYM patterns

where hedging terms were used, relative to the CODYMs of all words, were similar for

patients and clinicians (Figure 4.6, left column). Hedging terms are generally used

2-3% more frequently than expected in L turns following another L turn, especially

during long two-way information exchanges. Patients, but not clinicians, used hedging

terms over 3% less frequently in the L turn of a one-way information exchange, than in

the corresponding null models. All other transitions with significant differences (Fig.

4.6, left column, solid transition arrows) had hedging terms slightly under-represented,

relative to the corresponding null models.

Patients and clinicians used treatment terms 4,247 and 10,469 times, respectively.

In contrast to the relatively similar CODYM patterns in their use of hedging terms,

patients and clinicians exhibited very different CODYM patterns in their use of

treatment terms (Figure 4.6, right column). Clinicians used treatment terms nearly

6% more frequently during L turns in one-way information exchanges (from clinician-

to-patient), with ≤ 1.3% absolute differences from expected for all other transitions,

nearly all significantly lower than expected (Figure 4.6, lower right, solid transition

arrows). Patients, however, used treatment terms over 3% more frequently than

expected on the SL L−→LL transition, but with ≤ 1.3% absolute differences from expected

for all other transitions, most of which were not significantly different from the null
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Figure 4.6: CODYMs for hedging and treatment terms in PCCRI corpus. Differ-
ences in 2nd-order CODYM patterns for hedging and treatment terms, relative to the means
of null models sampled from all words in the corpus, stratified by patient and clinician turns.
Edge labels indicate the length of the turn in the transition (S vs. L), parenthetically followed
by the observed discrepancy in the percentage occurrence. Dashed transition arrows, and
nodes colored gray, represent transitions and states where observed frequencies were not signif-
icantly different from expected, according to the empirically derived 95% confidence intervals.
Edge thickness, colors, and labels represent ∆Frequency = %Observed−%Expected. Node
diameter is proportional to %Observed.

model (Figure 4.6, upper right, dashed transition arrows).

The overall CODYM patterns shown in Fig. 4.6 were not qualitatively affected by

removal of different random sets of 10% of hedging terms or treatment terms. This

robustness to removal of random terms confirms that the observed patterns within

term groupings are not reliant on a particular subset of terms.
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Contextualization by expression of distressing emotion

In total, 208 conversations (58.6%) contained at least one patient turn where anger,

fear or sadness was detected, and in 102 conversations (28.7%) at least two of these

different types of distressing emotion were present. Conversations that had at least one

patient turn with a distressing emotion typically (89.4% of the time) had more than

one, with a heavy-tailed distribution indicating that a small number of conversations

had very high instances of emotion. It was also common to have multiple consecutive

patient turns where emotion was expressed. Consequently, the previous turns, used in

defining the state prior to a given transition where emotion was present, also often

included expressed emotions. This should be considered when interpreting the results

herein.

The expression of anger, fear, and sadness occurs during L patient turns 69.8%,

66.6%, 56.7% of the time, respectively, whereas only 42% of all patient turns were L

(Fig. 4.18). To compare CODYM patterns in patient turns with or without expression

of distressing emotions, we analyzed all patient turns with audibly expressed anger,

fear or sadness, relative to null CODYMs created by randomly sampling patient turns

in which no distressing emotion was present, but with the same number of patient

turns and same frequency of L turns as in those patient turns where distressing

emotion was detected. As a result of the higher proportion of patient L turns, the

resulting null CODYM models for expression of distressing emotion differ from the

normative CODYM pattern of discourse for all patient turns (compare the models in

Fig. 4.7, right column with Fig. 4.3, top right).

The observed CODYM patterns during turns where distressing emotion was

expressed (Fig. 4.7, left column) differ markedly from what would be expected due to
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the increased proportion of patient long turns alone (Fig. 4.7, right column). Note

that, for anger and fear, all but one state and most transitions differ significantly from

their respective null model. However, for sadness, only three states and fewer than

half of transitions are significantly different from the null model. The most notable

differences, present in all three emotions, are (a) an over-representation of expression of

distressing emotions during L patient turns in one-way patient-to-clinician information

exchanges, and (b) an under-representation during S patient turns in one-way clinician-

to-patient information exchanges. These differences are most extreme for turns in

which anger is expressed, and least extreme when sadness is expressed. Additionally,

fear is significantly under-represented during short two-way information exchanges,

relative to its null model. Expressions of anger, fear, and sadness all peak in deciles

4 and 5 (Fig. 4.19), and then decrease over the remainder of narrative time in the

conversations. The strong similarities in temporal patterns of the three emotions arise,

in part, because multiple turns were determined to include more than one of these

emotions.

To examine the impact of distressing emotions on information flow at the conver-

sation level, we focused on expressions of anger and fear, since expressions of sadness

caused relatively few significant differences at the turn level (as seen in Fig. 4.7). Out

of 355 conversations, 187 (53%) had at least one instance of anger or fear, creating a

relatively balanced data set. The distributions of CODYM transition frequencies for

conversations with at least one instance of anger or fear differed significantly from

the distributions of CODYM transition frequencies for conversations without any

expression of fear or anger, for 13 of 16 transitions (2-sample Kolmogorov-Smirnov test,

p < 0.05, Fig. 4.8a solid edges). In conversations with at least one expression of anger
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Figure 4.7: Turn-level CODYMs by emotional content in PCCRI corpus. Ob-
served and null CODYMs for patient turns with audibly perceptible expressions of distressing
emotion (anger, fear, and sadness) for the PCCRI corpus. Edge thickness and color indicate
%Observed for each transition, as shown parenthetically on edge labels. Node diameter
indicates %Observed for each state. Dashed transition arrows, and nodes colored gray, rep-
resent transitions and states where observed frequencies were not significantly from expected,
according to the empirically derived 95% confidence intervals.

or fear, transitions through states with a predominance of L turns, including long

two-way information exchanges, and transitions that perpetuate one-way information

exchanges, are over-expressed (shown in warm colors in Fig. 4.8a). Conversely, transi-

tions through states dominated by S, especially short two-way information exchanges,

are under-expressed (shown in cool colors in Fig. 4.8a). CODYMs from conversations

that are stratified by patient and clinician turns tell a more nuanced story. Not only

do these show a larger range in absolute differences of transition frequencies between
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conversations with and without anger or fear than in the unstratified CODYM model

(note the different ranges on the colorbars in Figs. 4.8a,b), but there are complemen-

tary changes in patients and clinicians. Most notably, conversations where anger or

fear are expressed have more one-way information flow from patients to clinicians (Fig.

4.8b, left) and less one-way information flow from clinicians to patients (Fig. 4.8b,

right), than do conversations with no anger or fear expressed. In addition, we see that

the patient extends long two-way information exchanges significantly more often in

conversations where they are expressing anger or fear.

The differences in CODYM transition frequencies between conversations with or

without expressions of anger or fear were significant enough to produce a signal with

predictive power. Random Forest classifiers, trained on conversation-level transition

frequencies of 1st- through 5th-order CODYMs, were able to predict which conversations

included any expression of anger and/or fear more often than expected by chance

(p < 0.05, Table 4.2). Prediction accuracy (averaged over 1000 trained classifiers) was

(a) slightly higher when using data from stratified vs. unstratified CODYMs, and

(b) generally increased with increasing CODYM order. For example, the 3rd-order

stratified transitions frequencies (shown in Fig. 4.8) yielded an average prediction

accuracy of 64.5%, whereas 5th-order stratified transition frequencies raised that to

67.3%. Even 1st-order stratified transition frequencies exhibited an average prediction

accuracy of nearly 60%.
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Figure 4.8: Conversation-level CODYMs by emotional content in PCCRI corpus.
Differences between conversations with and without at least one expression of anger or fear,
for 3rd-order CODYMs where (a) the data are not stratified by speaker role, and (b) each
conversation is stratified by patient and clinician turns. Edge labels indicate the length
of the turn in the transition (S vs. L), parenthetically followed by the observed difference
in the percentage occurrence. Dashed transition arrows, and nodes colored gray, represent
transitions and states where observed frequencies were not significantly different from expected,
according to the empirically derived 95% confidence intervals. Edge thickness, colors, and
labels represent ∆Frequency = (%Observed with anger or fear)−(%Observed without anger
or fear). Node diameter is proportional to %Observed with anger or fear present.

4.4 Discussion

We have shown how CODYM analysis enables one to quantify, visualize, and compare

high-level patterns in conversational dynamics from one or more conversations. We have

made a deliberate choice to keep CODYMs simple, requiring only sequences of binarized
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turn lengths and using memory of only 2-3 turns. We have made these choices in

order to facilitate interpretability, ensure adequate sample sizes, and to protect privacy.

Because of this, there are many important conversational features that CODYMs, as

defined here, do not directly incorporate, such as interruptions, overlapping speech,

conversational pauses, accent, intonation, gestures, facial expressions and eye contact,

all of which play some role in conversational discourse (e.g., see [57] for a discussion of

the importance of “connectional silences” in serious illness conversations). Although

any of the aforementioned features could be directly incorporated into a CODYM,

the state space of the resulting model would be larger, less well populated, and more

difficult to interpret. As illustrated by our analyses of hedging terms, treatment

terms, and expression of distressing emotion, even simple turn-length-based CODYMs

provide a means to consider additional verbal and non-verbal features, through

contextualization.

CODYM visualizations effectively summarize the overall patterns of sequential

dependencies in speaker turn lengths in concise plots, whose size and complexity are

independent of the number of turns being analyzed. This facilitates rapid identification

and comparison of patterns of information flow in sequences of turns that may include

all or parts of one or many conversations. Since CODYM construction does not

require access to detailed conversational content, the approach completely preserves

the privacy of conversational participants and can conceptually be incrementally

constructed in real-time, precluding the need for storage, or even transcription, of

conversations (as discussed further in Conclusions and Future Work). Although

CODYMs can be contextualized and can be used to study temporally discretized

patterns in information flow, they are not natively designed to capture the turn-level
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flow of concepts in individual conversations. CODYMs and Discursis [29] are thus

complementary methods for visualizing information flow in conversations at different

scales and levels of detail.

Through unsupervised word clustering, we discovered that related groups of words

often exhibit similar CODYM patterns. This, in itself, helps to validate that CODYMs

represent semantically meaningful patterns of information flow. Three of the emergent

clusters contained words that are specialized, to different degrees, for use in the short

turns of one-way information exchanges, consisting primarily of strong, moderate, and

weak continuers. This is consistent with conversation analytic theory, which suggests

continuers are words or phrases used by speakers to convey they are relinquishing an

opportunity to command the speaking floor, thus signaling the currently dominating

speaker to continue [54, 55, 56]. Words in the strong and moderate continuer clusters

alone appear 44,548 times in the PCCRI corpus (Table 4.7), accounting for 41.8%

of all short turns in the corpus. The short two-way information exchange appears

less frequently than expected by chance (Fig. 4.3), with one notable exception. Word

clustering identified a group of openers and closers that occur disproportionately

often during short two-way information exchanges (Fig. 4.5). The importance of

openers and closers in conversation was explored by some of the early pioneers of

conversation analysis [8, 58] and has been the subject of much attention since then

[59, 60, 61, 62, 63]. These ritualistic transitions into and out of a conversation serve an

important role, although little information need actually be exchanged. It is thus to be

expected that openers and closers appear most often in short two-way exchanges (Fig.

4.5), and that this information flow pattern occurs most commonly at the beginnings

and ends of conversations (Fig. 4.4a).
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Conversation has generally been observed to be asymmetric, with a single dominant

speaker holding the floor much of the time [64]. During these one-way information

exchanges in didactic conversations, the typical alternating pattern of speakers results

in one speaker taking all the long turns (being the “talker”) while the other takes the

short turns (being the “listener”). This is particularly true in institutional settings with

defined speaker roles [64], so we expect it will be prevalent in clinical conversations,

given the power dynamics between clinicians and patients. Consistent with this

expectation, one-way information exchanges from clinician-to-patient were observed

to be the most common information sharing pattern in the PCCRI corpus (Fig. 4.3),

and occurred throughout serious illness conversations at a roughly constant level (Fig.

4.4c). It is likely that these one-way clinician-to-patient information exchanges are

often used for delivering information and treatment options related to the patient’s

illness. Thus, it is not surprising that treatment terms are most often used when

clinicians are in the talker role (Fig. 4.6), and words commonly used in clinical

talk clustered together as words occurring most often during one-way information

exchanges (Fig. 4.5), presumably when the clinician is the talker.

Overall, patients adopt the talker role less often than clinicians do, although still

more frequently than expected by chance, in serious illness conversations (Fig. 4.3).

In pooled patient turns, over all conversations in the corpus, one-way information

exchanges from patient-to-clinician are most frequent near the centers of conversations

and then steadily decline (Fig. 4.4b). These temporal changes in patient as talker

are similar to the temporal patterns in the usage of treatment terms reported in [45],

and also roughly coincide with temporal patterns in the expression of distressing

emotions (Fig. 4.19). We also note that patient expressions of distressing emotion
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occur disproportionately often in long turns (Fig. 4.18), in particular during one-

way patient-to-clinician information exchanges (Fig. 4.7). In our previous work,

we observed that sentiment scores become increasingly positive over the course of

the PCCRI conversations, which was largely attributed to a decrease in the use of

disease-related terms that are ascribed negative sentiments [45]. We hypothesize that

the palliative care clinicians in the PCCRI, trained to be highly skilled communicators,

may be taking on the role of “good listener” [64] during portions of the conversation

in which difficult topics are being discussed, as a means of encouraging the patients to

express their values and preferences relating to available treatment options. After the

patient has finished expressing themselves and one-way patient-to-clinician information

exchanges abate, these serious illness conversations may then naturally come to a

close.

We also observed an increase in the overall frequency of one-way patient-to-clinician

information exchanges, along with a decrease in the prevalence of short two-way in-

formation exchanges and an increase in long two-way information exchanges, in

conversations where fear or anger are expressed (Fig. 4.8). While these differences at

the conversation level are modest, they are strong enough to have predictive power

in distinguishing conversations with anger or fear from those without. This is espe-

cially true when the data are stratified by patient and clinician turns; but even when

the speaker role is completely anonymized we find that differences in information

flow patterns can be a marker for expression of distressing emotions. Our findings

regarding the impact of distressing emotions on patterns of conversational dynamics

are important because anger, fear, and sadness manifest frequently in palliative care

conversations [53], and have been found to have therapeutic effects. Being able to
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process and express distressing emotions is linked to improved health outcomes for

patients with cancer [65], and it has recently been shown in the PCCRI corpus that

expression of anger, in particular, is associated with improvement in how much patients

feel heard and understood by the clinical team following a palliative care consult [44].

Uncertainty is prevalent in the discussion of prognosis [66] and treatment options

[67], where outcomes are often unknown. Effectively communicating this uncertainty

is essential to having patients fully informed before they make decisions regarding

their care [68, 69]. Helping patients to manage uncertainty is fundamental to patient-

centered communication and may be a key ingredient in the beneficial effects of

palliative care consultations on patient quality of life [67, 70, 71]. Hedging terms

are often used to soften claims and insert uncertainty into a statement, and are the

most prevalent subtype of uncertainty found in the PCCRI corpus [51]. As we found

previously, the general story arc of conversations in the PCCRI corpus moves from

discussion of symptoms, to treatments, to prognosis, to use of modal verbs, peaking

in deciles 2,4,6,9, respectively [45]. Here, we observed that the use of hedging terms

by clinicians is highest from deciles 5-9, coinciding with the parts of the conversations

where prognosis terms and modal verbs (indicators of possibility) are most frequent.

This suggests that clinicians may be using hedging terms in conveying prognostic

uncertainty.

Long two-way information exchanges represent conversational regimes where alter-

nating speakers are trading information. Although this is one of the least frequent

information sharing patterns in the corpus (Fig. 4.3), it is more frequent in conversa-

tions where audible patient expressions of anger and fear occur (Fig. 4.8) and in turns
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when commonly used words associated with feelings are expressed (Fig. 4.5). It is thus

interesting that long two-way exchanges are also over-represented when hedging terms

are used, for both patients and clinicians (Fig. 4.6). This may indicate that there is

bilateral sharing regarding uncertainty about difficult topics, as would be expected to

occur when clinicians are actively helping patients to manage their uncertainty.

4.5 Conclusions and future work

We have presented and validated a novel approach to quantify and visualize the

dynamics of information flow in conversations with CODYMs (COnversational DY-

namics Models). CODYMs are the first Markov Model to use speaker turn length as

the fundamental unit of information and to provide concise, high-level, quantitative

summaries of overall dependencies in sequences of speaker turn lengths. This new

approach facilitates identification and comparison of normative patterns of information

flow across sequences of turns from one or more conversations, in context-independent

or context-dependent ways. CODYMs complement existing qualitative and quantita-

tive approaches for studying conversational dynamics, and comprise a new tool for

conversational analysis. We provide open source code for populating, visualizing, and

contextualizing CODYMs [72].

We applied the method to a unique and important corpus of palliative care consul-

tations with seriously ill patients. We discovered normative patterns of information

flow in these conversations that differ between patients and clinicians, and between

conversations with and without expressions of distressing emotions. While these

normative patterns are interesting in their own right, they may also have practical
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applications. For example, it would be interesting to compare normative CODYMs

from in-person palliative care consultations to those conducted remotely, to see how

telehealth platforms impact the patterns of information flow between patients and clini-

cians. Similarly, CODYM analysis of mock consultations between clinicians-in-training

and actors portraying seriously ill patients could be used to assess how closely the

information flow patterns of these training scenarios reflect those observed in palliative

care consultations with real patients. If associations can be found between CODYM

patterns and quality indicators of healthcare conversations (e.g., the degree to which

patients feel heard and understood [73], a measure that is currently being considered

for widespread use [74]), these could provide valuable insights for institutions seeking

to improve the quality of conversations with seriously ill patients.

Achieving patient-centered care, in which clinical decisions are guided by patient

preferences, needs, and perspectives [75], has long been recognized as a means for

improving healthcare delivery [76]. Patient-centered communication, which includes

recognizing and responding to emotions, helping patients to manage uncertainty,

promoting reciprocal exchanges of information to create a shared understanding, and

helping patients make informed decisions regarding their care, is central to achieving

this aim [77]. However, it is not clear how to effectively measure or assess patient

centered communication [67]. In this work, we have shown how CODYM analysis

offers a new approach to quantifying and visualizing patterns of information flow

related to markers of patient centered communication, such as the rates of one-way

patient-to-clinician information exchanges and long two-way information exchanges,

and how these rates change when distressing emotions or uncertainty are expressed.

CODYMs may thus be helpful in assessing the degree to which clinical conversations
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are patient centered. For example, such an analysis could potentially be useful in

understanding observed racial and ethnic disparities in prognosis communication [78].

It is not clear whether the conversational “fingerprints” uncovered in the PCCRI

corpus are unique to serious illness conversations, or represent more general conver-

sational paradigms in healthcare or other contexts. We suspect that the frequency

of one-way patient-to-clinician information exchanges, and long two-way information

exchanges, may be higher in serious illness communication relative to conversations in

other clinical contexts (e.g., [79]). It will be fascinating to compare CODYMs across

a wide variety of corpora from different languages, cultures, and contexts (including

online conversations), to reveal which patterns of information flow in conversations

are universal, and which are unique to certain settings.

Conversation analysis has traditionally been a discipline reliant on manual transcrip-

tion of conversations with highly detailed annotations [6]. This is a resource-intensive

process that requires full access to the often very private content of conversations.

Indeed, the CODYM analyses presented here used transcriptions of audio-recordings of

sensitive serious illness conversations. However, we envision an alternate formulation

of CODYMs that uses turn duration (in seconds), in lieu of the number of words,

for defining turn lengths. A time-based definition of turn length would facilitate

real-time automation and analysis of conversational dynamics, precluding the need

for transcription or even storage of conversational audio, thus completely protecting

privacy. Large numbers of conversations are already taking place in a medium that is

natively capable of capturing conversational data appropriate for automated CODYM

analysis. For example, many popular video conferencing services already incorporate

tools that automate the detection of speaker turns, and such services have exploded
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in popularity in the wake of the Covid-19 global pandemic. Ongoing advances in the

automated detection of conversational features including speaker recognition [80, 81],

emotion [82, 83], conversational pauses [57], empathy [84, 85], gaze patterns [86],

and word recognition [87], will facilitate real-time analysis and contextualization of

CODYMs. Ultimately, we foresee a fully-automated pipeline for CODYM analyses,

with no compromise to the privacy of conversational content.

As more conversational data become available, whether as transcriptions or through

real-time processing, CODYMs will be a valuable tool for studying information flow

in a wide variety of contexts and contributing to our understanding of how to have

more effective conversations. Such a tool could be of practical utility in training

and assessment of high quality communication in healthcare and other application

domains, while also yielding new theoretical insights into conversational dynamics

across languages, cultures, and contexts.
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4.6 Supplemental Figures and Tables
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Figure 4.9: Words per turn in PCCRI corpus. The number of words per turn, for each
of the 101,563 turns in the PCCRI corpus.

Table 4.2: Classification using CODYMs from emotional content in PCCRI cor-
pus. Classification accuracy of trained Random Forests for predicting which conversations
contained at least one instance of anger or fear. Classifiers were trained using transition
frequencies of each conversation as input features, for CODYMs of orders one through
five. For each model order, we show the number of input features (# feat), and the mean
(µ) and the standard deviation (σ) of the % classification accuracy, averaged over 1000
trained classifiers, both for data unstratified by speaker type, and for stratified data (where
CODYMs were populated by patient and clinician turns, separately, for each conversation).
P -values are calculated from Z-scores based on µ and σ, relative to the null hypothesis that
the prediction accuracy is not better than random (i.e., ≤ 50%).

Unstratified Data Stratified Data
Order # feat. µ (%) σ (%) p # feat. µ (%) σ (%) p

1 4 58.8 5.3 0.048 8 59.5 5.5 0.042
2 8 60.3 5.2 0.024 16 62.4 5.5 0.012
3 16 64.4 5.5 0.004 32 64.5 5.3 0.003
4 32 64.2 5.2 0.003 64 64.8 5.6 0.004
5 64 65.4 5.3 0.002 128 67.3 5.2 < 0.001
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Figure 4.10: Binarization of turn length in PCCRI corpus. Shannon entropy (infor-
mation content) of transitions (red curve through circles, left y-axis) and the percentage of
long turns for varying short/long thresholds (blue curve through squares, right y-axis) in a
3rd-order CODYM of the PCCRI corpus. Shannon Entropy is calculated S =

∑
i fi log fi

for the frequency fi of each transition. The short/long threshold is defined such that for a
threshold, t, any turn with t or more words is considered long. For all experiments in this
study, we define short turns to be 7 or fewer words and long turns to be 8 or more words.
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Figure 4.11: Temporal use of hedging terms in PCCRI corpus. Temporal distribution
of all turns in the PCCRI corpus that include hedging terms for (a) patients, (b) clinicians,
and (c) all speakers across narrative time.
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Figure 4.12: State distributions in PCCRI corpus. The distribution of each state in a
3rd-order CODYM, stratified by patient and clinician turns, across all 355 conversations in
the PCCRI corpus. Each distribution is labeled by patient (P) or clinician (C) turns, the
state, and parenthetically the mean and median values, in that order.
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Table 4.3: Hedging terms. All “hedging terms” (from [51]) along with the number of times
each term was used by patients and clinicians in the PCCRI corpus. Note that terms ending
in a “*” represent roots and match any word that begins with this term. In addition, “allude
to” is a 2-word term.

Term Patient Clinician
think 2652 4204
guess 453 199
worr* 235 316
hope 162 293
expect 79 163
seem 78 159
imagine 41 108
consider 30 90
risk 21 115
doubt 18 8
suppose 16 7
predict 9 24
suggest 7 59
theor* 7 9
estimate 5 14
foresee 3 4
anticipate 2 42
assess 2 17
perceive 2 4
contemplate 1 2
presume 1 1
ponder 1 0
suspect 0 18
hint 0 2
speculate 0 1
imply 0 1
hypothesi* 0 1
prognosticate 0 0
presuppose 0 0
postulate 0 0
misjudge 0 0
misinterpret 0 0
infer 0 0
deem 0 0
allude to 0 0
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Table 4.4: Treatment terms. All “treatment terms” considered (from [45]), with the
number of times each term was used by patients and clinicians in the PCCRI corpus.

Term Patient Clinician Term Patient Clinician
hospice 413 1435 fentanyl 64 138
chemo 369 157 methadone 63 200
radiation 303 467 line 63 66
medicine 289 816 chemotherapy 58 350
surgery 236 199 machine 56 126
medication 195 459 treatments 54 469
dilaudid 186 363 ativan 48 67
treatment 181 586 milligrams 47 90
pills 161 177 liquid 47 76
tube 121 380 button 45 116
pill 120 114 medicines 43 402
morphine 111 212 ventilator 42 159
medical 107 455 trial 40 74
oxycodone 98 192 feeding 40 67
therapy 96 166 management 39 217
iv 93 304 treat 38 191
tylenol 85 83 icu 37 70
drug 83 45 fluids 34 83
oxygen 80 81 antibiotics 33 132
drugs 80 38 oral 21 82
medications 79 425 nutrition 20 107
dialysis 78 154 doses 17 135
patch 73 214 resuscitation 17 101
procedure 72 75 cpr 17 78
dose 66 430 milligram 9 33
meds 65 46
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Figure 4.13: Transition distributions of short turns in PCCRI corpus. The distri-
bution of frequencies on each short transition in 3rd-order CODYMs, stratified by patient
and clinician turns, across all 355 conversations in the PCCRI corpus. Each distribution is
labeled by patient (P) or clinician (C) turns, the transition, and parenthetically the mean
and median values, in that order.
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Figure 4.14: Transition distributions of long turns in PCCRI corpus.The distri-
bution of frequencies on each long transition in 3rd-order CODYMs, stratified by patient
and clinician turns, across all 355 conversations in the PCCRI corpus. Each distribu-
tion is labeled by patient (P) or clinician (C) turns, the transition, and parenthetically the
mean/median values.
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Table 4.5: Significance tests of state distributions in PCCRI corpus. P-values
comparing the state distributions of 3rd-order CODYMs in the PCCRI corpus, stratified
by patient and clinician (shown in Fig. 4.12), of observed patient vs. observed clinician,
observed patient vs. null patient, and observed clinician vs. null clinician models, using a
2-sample Kolmogorov–Smirnov Test.

State Patient vs. Clinician Patient vs. Null Clinician vs. Null
SSS <0.001 <0.001 <0.001
SSL <0.001 <0.001 <0.001
SLS <0.001 <0.001 <0.001
SLL <0.001 <0.001 <0.001
LSS <0.001 <0.001 <0.001
LSL <0.001 <0.001 <0.001
LLS 0.063 <0.001 <0.001
LLL 0.002 <0.001 <0.001
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Table 4.6: Significance tests of transition distributions in PCCRI corpus. P-
values comparing the transition distributions of 3rd-order CODYMs, stratified by patient and
clinician (shown in Figs. 4.13 and 4.14), of observed patient vs. observed clinician, observed
patient vs. null patient, and observed clinician vs. null clinician models using a 2-sample
Kolmogorov–Smirnov Test.

Transition Patient vs. Clinician Patient vs. Null Clinician vs. Null
SSS S−→SSS 0.811 <0.001 <0.001
SSS L−→SSL <0.001 <0.001 <0.001
LSS S−→SSS <0.001 <0.001 <0.001
LSS L−→SSL <0.001 <0.001 <0.001
SLS S−→LSS <0.001 <0.001 <0.001
SLS L−→LSL <0.001 <0.001 <0.001
LLS S−→LSS 0.504 <0.001 <0.001
LLS L−→LSL <0.001 <0.001 <0.001
SSL S−→SLS <0.001 <0.001 <0.001
SSL L−→SLL 0.187 <0.001 <0.001
LSL S−→SLS <0.001 <0.001 <0.001
LSL L−→SLL <0.001 <0.001 <0.001
SLL S−→LLS 0.014 <0.001 <0.001
SLL L−→LLL <0.001 <0.001 <0.001
LLL S−→LLS <0.001 <0.001 <0.001
LLL L−→LLL 0.627 <0.001 <0.001
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Figure 4.15: Temporal changes in transitions of short turns in PCCRI corpus.
Histograms of transition frequencies of all short turns in 3rd-order CODYMs over 10
conversational deciles (normalized, such that the sum of all bins is 1.0), stratified by the
patient and clinician turns in the PCCRI corpus.
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Figure 4.16: Temporal changes in transitions of long turns in PCCRI corpus.
Histograms of transition frequencies of all long turns in 3rd-order CODYMs over 10 conver-
sational deciles (normalized, such that the sum of all bins is 1.0), stratified by the patient
and clinician turns.
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Table 4.7: Complete word clusters from CODYMs of PCCRI corpus. All words
appearing in each of the six unsupervised clusters of 114 words, based on similarities in
transition frequencies in a 2nd-order CODYM. Words are parenthetically followed by the
number of times each occurred in the PCCRI corpus. To comply with HIPPA privacy
protection, all names and dates were anonymized; “p_name” refers to the name of any
patient or family member, “u_name” refers to the name of an unknown speaker, and
“u_date’‘ refers to any specific date.

Cluster Moniker
(# words)

Unique Words
(# occurrences in PCCRI corpus)

Strong Continuers
(4 words) hm (1987); hmm (1896); mm (1263); aha (277)

Moderate Continuers
(10 words)

yeah (15367); okay (12332); oh (3607); uh (3288); yes (2611);
huh (527); absolutely (402); wow (354); yup (334); yep (303)

Weak Continuers
(19 words)

right (9663); no (6009); p_name (2578); nice (1032); great (775);
fine (679); sorry (630); exactly (465); alright (438); meeting (266);
true (247); appreciate (210); correct (191); please (188);
perfect (150); appetite (141);beautiful (129);u_date (118); boy (114)

Openers/Closers
(7 words)

thank (1232); meet (565); hi (404); thanks (192);
welcome (135); hello (125); bye (111)

Clinical Talk
(51 words)

um (5993); also (1350); sort (978); may (907); comfort (685);
symptoms (623); treatments (525); whether (423);
chemotherapy (409); continue (337); disease (267);
methadone (263); focus (256); lungs (251); means (233);
treat (230); acting (228); system (194); symptom (186);
machine (183); oncology (182); likely (176); safe (170); fix (163);
recommend (159); show (158); illness (157); page (148); folks (145);
decided (139); controlled (135); outpatient (133); homes (130);
setting (126); clinic (125); further (124); belly (124); approach (124);
death (122); spot (120); consider (120); kept (117); ended (114);
words (109); example (108); icu (106); cpr (105); finally (105);
depending (103); depressed (102); stronger (101)

Potpourri
(23 words)

well (5239); old (263); 5 (204); u_name (178);hurts (176); tylenol (170);
totally (169); agree (165); friend (165); button (159); lives (144);
middle (142); concern (141); card (138); risk (137); cold (117);
covered (116); fair (116); hit (115); confused (107); scary (104);
mg (104); funny (103)
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Table 4.8: Mean transition frequencies in word clusters of PCCRI corpus. Mean
transition frequencies (%) for 2nd-order CODYMs for all words in the PCCRI corpus (ALL),
and for the words in each of the six clusters: Strong Continuers (SC), Moderate Continuers
(MC), Weak Continuers (WC), Openers/Closers (OC), Clinical Talk (CT), and PotPourri
(PP).

Transition ALL SC MC WC OC CT PP
SS S−→SS 3.0 13.3 14.2 11.0 27.6 1.3 4.4
LS S−→SS 2.7 7.4 8.5 7.0 12.7 1.3 4.0
SL S−→LS 3.3 50.9 26.7 12.1 11.1 1.1 3.9
LL S−→LS 2.0 17.6 13.8 6.3 4.4 0.9 2.9
SS L−→SL 18.1 2.0 8.5 15.5 17.1 15.9 20.0
LS L−→SL 35.8 2.0 11.1 21.4 12.5 47.7 24.5
SL L−→LL 17.7 4.0 10.0 13.7 7.7 15.1 19.5
LL L−→LL 17.4 2.9 7.2 12.9 6.9 16.8 20.8
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Figure 4.17: Distributions of transition frequencies in word clusters of PCCRI
corpus. Transition frequencies, by word cluster, for all words in the PCCRI coprus that
are used 100 or more times, and whose transition frequencies differ by at least 10% from
expected. The ordering of clusters (from left to right) in the figure match the ordering of
cluster names (from top to bottom) in the legend.
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Figure 4.18: Turn length by emotion in PCCRI corpus. Percentage of turns in which
distressing emotion (anger, fear, sadness) are expressed that are long, compared to all patient
turns.
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Figure 4.19: Temporal expressions of emotion in PCCRI corpus. Temporal distri-
bution of turns in the PCCRI corpus that include patient expressions of (a) anger, (b) fear,
and (c) sadness across narrative time.
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Figure 4.20: CODYMs of word usage in stratified PCCRI corpus. State and tran-
sition frequencies of all words in the PCCRI corpus, stratified by patient and clinician turns.
Transition labels indicate the length of the turn on the transition, parenthetically followed
by the percentage of word occurrence on that transition. Edge thickness and color indicate
%Observed for each transition, and node diameter indicates %Observed for each state. 1000
null models were created according to these frequencies to determine expected values for
comparison to frequencies of hedging or treatment terms.
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Chapter 5

Conclusions

5.1 Summary of Contributions

The primary, original contributions of this dissertation are organized by chapter and

bulleted here:

5.1.1 Chapter 2

• Proposed copula analysis for calculating risk given spatially correlated outages.

• Defined a semi-metric for determining the distance between two line segments

that conforms to expectations in the context of a common-cause event threatening

an electric transmission system.

• Demonstrated risk analysis on a larger (>3× from previous work) synthetic

power systems test case that included more realistic topography.

• Developed novel methods for identifying lower- and upper-bound estimates of
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defective 3-sets (N − 3 malignancies) in large networks, such as used here.

• Using aforementioned methods, demonstrated that:

– Incorporating spatial correlation between component outages into risk

estimation of cascading failure can lead to a substantial increase in risk.

– Under the assumption of correlated component outages, higher-order defec-

tive sets contribute proportionally more to overall risk.

5.1.2 Chapter 3

• Introduced SIGHT, a novel deterministic group-testing algorithm for identifying

defective hyper-edges (sets) in a hypergraph where:

– Defective sets are too numerous to tractably enumerate.

– Defective sets are variably sized, but with a known lower-bound.

– An upper-bound size of defective sets to be found can be specified.

– Tests can produce false negatives.

• Created a domain-independent, test problem generator with variable numbers of

defective k-sets for k > 2, an unknown number of false negatives (k-sets that test

as negative but actually do contain a minimal defective k-set), and a tunable

negative:positive test cost ratio.

• Showed that Random Chemistry (RC) is more efficient in applications where the

positive:negative cost ratio of tests is high (due to a lower positive:negative test

use ratio than SIGHT), such as the power systems application from Chapter 2,
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but that SIGHT is expected to outperform RC in applications where the cost

ratio is low.

• When the defective:non-defective cost ratio is high, group-testing algorithms

are best parameterized to have a low initial set size (a0), resulting in a high

initial failure rate, contrary to previosly adopted heuristics. We find that for the

Western US test case, reducing a0 from 320 to 96 acheives a nearly 2× speedup.

5.1.3 Chapter 4

• Introduced CODYM analysis, a novel, Markov-based method for quantifying,

visualizing, and interpreting information flow patterns in conversations. The

model is uniquely characterized by:

– Markov states that are defined using speaker turns of variable length rather

than a fixed interval of time.

– a context-independent model that preserves the privacy of conversational

participants.

– ease of automation.

– semantically interpretable visualizations for understanding information flow

patterns, including one-way exchanges and short/long two-way exchanges.

• Used unsupervised word clustering to reveal groups of words that have specialized

usage related to their information sharing patterns, thus validating that CODYMs

capture semantically meaningful patterns related to:
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– Conversational “openers” and “closers” that share similar patterns, over-

represented in short two-way exchanges.

– Groups of “continuers” that appear frequently in the short turns of one-

way exchanges, naturally stratified into three clusters by the degree of

specialization of the words in each cluster.

– “Clinical talk” that occurs most frequently during the long turns of one-way

exchanges, especially when the clinician is speaking.

– A “portpouri” cluster that was less well-defined, but contained some words

related to feelings/risk that occur more frequently on long one-way ex-

changes.

• Revealed conversation-wide normative patterns of serious illness conversations:

– One-way information flow is over-represented for both patients and clinicians

and depressed for all other information sharing patterns, relative to what

is expected by chance.

– One-way flow is more often from clinician-to-patient than from patient-to-

clinician, as expected given the institutional setting and pre-defined roles

of conversational participants.

• Revealed dynamic changes in normative patterns over the course of serious illness

conversations:

– Short two-way exchanges are most numerous at the beginning and ends of

conversations, corresponding to conversational openings and closings.
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– One-way information flow from patient-to-clinician (but not from clinician-

to-patient) decreases through the second half of the conversation, a possible

indication that the patients have sufficiently expressed themselves as the

conversations naturally wind down to a close (a marker of patient-centered

care).

• Examined information flow patterns of:

– Treatment terms, which are used frequently by clinicians in the long turns

of one-way exchanges, but not by patients, indicating a distinction in how

these terms are used between patient and clinician.

– Hedging terms, which are used more frequently in long two-way exchanges,

by both patients and clinicians, indicating a possible bilateral sharing

regarding uncertainty about difficult topics (a marker of patient-centered

care).

• Showed that patient expressions of distressing emotion are associated with

deviations from the normative information flow patterns (in ways that are

consistent with patient-centered care):

– Locally (during the turns in which emotion is expressed), the dominant

pattern of one-way information flow flips from clinician-to-patient to patient-

to-clinician.

– Globally (comparing conversations with expressed emotion to those with-

out), long two-way exchanges and one-way exchanges from patient-to-

clinician occur more frequently, while short two-way exchanges and one-way

exchanges from clinician-to-patient occur less frequently.
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5.2 Future Work and New Preliminary

Findings

5.2.1 Chapter 2

This dissertation proposed several new methodologies using “hidden networks” to

address challenging problems in disparate fields of study, but additional work is needed

to both fully apply and validate these methods. We presented a copula-based method

for quantifying risk to the electric transmission system from cascading failures, given

correlated outages, but have thus far only applied this method to grid models that are

either synthetic or lacking in topographical features. While most real-world data from

actual transmission systems are typically not available to academic researchers due to

security restrictions, acquiring data about the correlation of component failures in

order to make better informed choices about which correlation and copula functions

may be a good next step towards applying these methods in a practical setting.

As we consider larger, more complex infrastructures, the number of components

(and defective sets) is sure to increase, making it more challenging to predict the

number of defective sets. Because it is intractable to enumerate all defective sets,

it is not feasible to validate estimation methods from cascading simulations. This

necessitates the development of a new test problem in which group testing can be

applied but where the number of defective sets can be determined a priori without

the need to fully enumerate them. Specifically, a desired test case would have the

following properties:
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1. There exists a function that can determine if an arbitrarily large set has any

defective subsets.

2. The number of defective sets, for k > 3, may exceed 107.

3. The exact number of defective k-sets can be derived efficiently.

4. There can be orders of magnitude more defective k+ 1-sets than defective k-sets.

5. A defective k-set can be arbitrarily large.

6. The frequency with which elements appear in defective sets is heavy-tailed.

In order to mimic the observed trends in the distribution of defective sets in the

power systems application, a test case should be capable of generating defective sets

of varied size, where the number of defective k-sets are large and increase by an

order of magnitude with k (as has been observed in the Polish and Western US test

cases). Furthermore, in the real power grid a small number of components are typcially

responsible for a large proportion of the risk associated with the system, which must be

reflected in our test case in order to generate the heterogeneous sampling probabilities

that result when appying group-testing to the problem. Our test function should

have 100% reliability, though some small rate of error can be stochastically added to

simulate the false-negatives that may occur in practice.

Consider a universal set of elements V = {i ∈ Z+ | i ≤ N} and a special value

α. I define a defective set to be one S ⊂ V such that if the product of the elements

in S are divisible by α, then the set is defective. Based on this definition, our “test”

function is trivially defined to return 1 when a (non-minimal) defective set is found

(and 0 otherwise):
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f(S) =


1 if (∏S) | α = 0

0 otherwise
(5.1)

This definition of defective sets meets most of the criteria above, except it is not

immediately clear how to efficiently calculate the number of such sets that exist for a

given N and α. I conjecture that for the general case, there is no efficient solution,

however by imposing certain restrictions on our choice of α, I have found efficient

solutions that may be suitable for further study of set-size estimation methods. For

example, when α = p1p2p3p4 where each pi is a unique prime number, a linear-time

algorithm exists for quantifying the number of defective sets. This special case will

result in defective sets up to size 4. It is yet to be determine if such a test case is

sufficient for assessing algorithms for predicting set size, or whether test cases with

larger defective sets are needed.

Another important step in improving set size estimation is to better understand

the heterogeneity of group testing algorithms when used to collect a large sample

of defective sets. It has been noted in this work that defective sets with ‘risky’

branches (that appear frequently in defective sets) are under-sampled by group testing

algorithms. In fact, when the total set of malignancies is known, the sampling bias

introduced by group testing algorithms can be directly calculated.

Consider the minimal example of a 4-bus network with three N − 2 malignancies,

namely Ω2 = {(1, 2), (1, 3), (2, 4)}. Consider the subset reduction scheme S =

{4, 3, 2}. The initial four possible subsets of size 3 each have a 25% chance of being

selected (Table 5.1, col 1). Each of these subsets contains a malignancy, so RC will

be successful on its first attempt. Each subset of 3, however, does not have the same

180



number of N − 2 malignancies and may fail on the first attempt. Since RC will

re-sample until finding a malignancy, the chances of any N − 2 being sampled from a

given subset of 4 is inversely proportional to the number of N − 2 malignancies in

each subset. The likelihood of each malignancy being chosen from the subsets of 3,

along with overall probabilities of being selected, are shown in Table 5.1 cols 3-5.

Frequency

Sets of 3 Sub-sets of 2 [1 2] [1 3] [2 4]

[1 2 3] [1 2] [1 3] [2 3] 1
2

1
2

[1 2 4] [1 2] [1 4] [2 4] 1
2

1
2

[1 3 4] [1 3] [1 4] [3 4] 1

[2 3 4] [2 3] [2 4] [3 4] 1

Total Sampling Probability (%) 25 37.5 37.5

Table 5.1: Minimal example of Random Chemistry introducing sampling bias whereby some
malignancies are more likely to be sampled than others. Malignancies are highlighted in
yellow.

As has been demonstrated, we can brute-force calculate the sampling bias for small

examples of Random Chemistry, for a single reduction step. Calculations akin to

those in Table 5.1, however, require enumerating all
(

N
s

)
ways of reducing from a set

of size N to s, and all
(

N
s

)(
s
k

)
ways of reducing from each set of size s to a set of size

k. In order to improve upon the efficiency of this calculation, an accurate estimation

of bias can be derived by randomly sampling sets of size s, although a full description

is beyond the scope of this work.

In the simple example where only defective 2-sets are present, we can define a

‘Malignancy Graph’ where each edge corresponds to a defective set. We have observed

in preliminary experimentation that a strong negative correlation exists between the
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amount of observed sampling bias of a defective set and the Page Rank centrality of

the corresponding edge in the Malignancy Graph. This has led us to interpret sampling

bias as a new form of centrality, which we refer to as ‘bias centrality’, where the most

central nodes/edges in the Malignancy Graph are under-sampled by group-testing

algorithms. More work is needed to determine additional properties of bias centrality,

including the effects on bias of multiple set size reduction steps and higher-order

defective k-sets (k > 2).

5.2.2 Chapter 3

In Chapter 3, we have performed a first-of-its-kind comparison between stochastic

(Random Chemistry, or RC) and deterministic (SIGHT) group-testing algorithms and

described the effects of both the number and relative cost of tests involving defective

vs. non-defective sets on algorithmic performance, using a domain-independent test

problem. In addition to the domain-independent comparison of Chapter 3, in a

separate study we compared RC and SIGHT in the application domain of power

systems that initially inspired this work [1]. Here, we describe some of the key results

of that study.

Our auxiliary study used the same test case of the Western US and same methods

for simulating cascades as in Chapter 2. We performed 290,000 paired simulations

of RC vs. SIGHT with initial set sizes, a0, ranging from 48 to 192. As described

previously, each step of the cascade is simulated sequentially, thus for each addition

step, additional computational resources are required. It is thus not surprising that

tests of defective sets take longer than non-defective sets, as shown in Chapter 3.

In our previous work, the effects of the testing cost ratio on initial set size had not
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been considered [2]. Prior convention had assumed that an initial set size should be

chosen such that, most of the time, the initial set contains a defective subset, so in

the work in Chapter 2 we had set a0 to 320. However, in Chapter 3, we discovered

that the optimal a0 varies with the specifics of the problem. A subsequent parameter

sweep on the Western US test case revealed that a0 = 96 minimized run times for

both RC and SIGHT (Fig. 5.1), even though this increased the initial fail rates to over

97%. This increase in efficiency was due to the reduced chance of more costly ‘aborts’

(requiring more defective tests) later in the sequence of tests performed by either

RC or SIGHT. On the Western US test case, using a0 = 96 rather than a0 = 320,

reduced the time per find using RC by almost half. At the optimal a0=96, we found

that RC outperformed SIGHT in all of the circumstances considered in the power

systems application, even when using a fast DC simulator, despite SIGHT needing

fewer overall tests (Fig. 5.1).

We used the observed ratio of defective:non-defective turns per find for each

algorithm (for kmax ∈ {2, 3, 4}) to determine the testing cost ratio required for one

algorithm to outperform the other (Fig. 5.2). SIGHT becomes more competitive

to RC for smaller kmax, but the high test cost ratio of DCSIMSEP still favors RC

in all scenarios considered. It would be interesting to replicate these experiments

using a more sophisticated AC cascade simulator, should one become available that is

appropriate for this scale of simulation. As stated in Chapter 3, we expect that a more

computationally AC intensive simulator will favor Random Chemistry over SIGHT

even more than the results shown here, since the average cost ratio of defective:non-

defective tests will be higher.
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Figure 5.1: The median number of tests (top row) and median run time, in seconds (bottom
row), per defective set found by RC and SIGHT on the Western U.S. power systems test case,
for a0 ∈ {48, 64, 80, 96, 112, 128, 144, 160, 176, 192} stratified by kmax ∈ {2, 3, 4} (columns).
The cost due to aborted runs in between successful finds is included in these metrics. The
empirically minimum data points for each algorithm are circled.

5.2.3 Chapter 4

While the risk estimation methods in power systems have thus far only been applied

to synthetic test problems, our novel method for modeling information flow in conver-

sations has been demonstrated on a real-world corpus of serious illness conversations.

We demonstrated the method, revealing patterns of information flow in a variety of

contexts, but as new conversational features become available, CODYM analysis may

inform additional insights into the PCCRI corpus. For example, connectional silences

are pauses in a conversation that “feel comforting, affirming, and safe” [3] and have
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Figure 5.2: The expected ratio of run time for RC:SIGHT as a function of the ratio of
the cost of testing defective sets:non-defective sets. The highlighted regions indicate where
SIGHT is expected to be faster than RC. Results are shown for kmax ∈ {2, 3, 4}.

been found to have clinical significance in patient communication [4, 5, 6]. Methods for

identifying and coding connectional silences in the PCCRI corpus have been recently

developed [3, 7] and as these data become available, CODYM analysis could be used

to consider the information flow pattern surrounding connectional silences.

In Chapter 4 we stated that it remains to be seen whether the normative patterns

observed in the PCCRI corpus capture a conversational “fingerprint” that is unique to

serious illness conversations, or whether some of the observed patterns of information

flow are ubiquitous across all conversations. Preliminary analysis indicates there

185



is at least one corpus that breaks with the normative patterns observed in serious

illness conversations. On a corpus of transcripts from 553 oral arguments from the US

Supreme Court [8], courtesy of Cornell’s ‘ConvoKit’ [9] (which excluded transcripts

shorter than 20 speaker turns), the median turn length is 22 words (compared to 8

words in serious illness conversations). If we use a short-long threshold of 22 words,

we observe that one-way information flow is under-represented in the observed data

compared to what would be expected by chance while short two-way information

exchanges, and especially long two-way information exchanges, are over-represented

in 3rd-order CODYMs (Fig. 5.3).
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Figure 5.3: CODYMs of normative patterns of information flow for turns of non-justices
(top left) and justices (bottom left), averaged over all conversations in the SCOTUS corpus.
Null models were constructed with the same turn length imbalance for non-justices and
justices and the same sequential order of non-justice and justice turns in each conversation
(right column). Edge thickness and color indicate %Observed for each transition, as shown
parenthetically on edge labels. Node diameter indicates %Observed for each state, as shown
by the node labels in bold. All state and transition values were significantly different from
their corresponding null models, according to the empirically derived 95% confidence intervals,
with the exception of transition SSS L−→SSL for non-justices (indicated by the dashed edge).

Using median turn length for each corpus effectively normalizes them independently
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to account for differences in average turn length between differing corpora. This

normalization may be useful for elucidating the patterns that occur within each corpus.

If the same threshold (8 words) used in Chapter 4 were used on this corpus, nearly 74%

of turns would be long and the resulting CODYM would be less revealing. But when

performing other analyses (such as comparing word use), it may be more important to

preserve the short/long threshold between corpora. For example, with a threshold of

22 words, short two-way information exchanges have a different semantic interpretation

compared to the 8-word threshold used for the PCCRI coprus. Balancing the ability

of a fixed threshold to preserve semantic meaning of short/long vs. allowing variable

thresholds to prevent the washing out of patterns within a corpus will be a challenge

that must be addressed before widespread comparisons across corpora can occur.

Like most of the corpora included in Cornell’s ‘ConoKit’ [9], the Supreme Court

corpus is rich in metadata. As a demonstration of the versatility of CODYM analysis,

further study can compare differences in information flow between individual justices,

between justices appointed by Republican vs. Democractic presidents, between cases

were justices rule in favor of vs. against plaintiffs, whether justices dissent from the

majority or not, and whether they are male or female. Essentially any conversational

feature can be considered in the context of information flow.

While there are a growing number of corpora of conversational transcripts available

(for example, see [9, 10, 11, 12, 13]), transcription is a labor-intensive process and

may be prohibitive in many circumstances, including cases where the privacy of

conversational participants must be preserved. Thus, in Chapter 4, we proposed an

alternative formulation of CODYM analysis that uses turn duration (rather than word

counts) to define the state space. Using a simple amplitude threshold for the voice
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signal of a speaker should permit the identification of the start and end of speaker turns

without compromising the anonymity of conversational participants. Identification

of the current speaker in a conversation is a native feature of many tele-conferencing

services currently in popular use. It is therefore feasible to perform CODYM analysis

on any of the thousands of conversations happening remotely on a daily basis. A

new startup video conferencing company, InSpace, has been identified as a potential

research partner and discussions are underway about incorporating capabilities for

CODYM analysis into their platform. The study of remote conversations has taken

on new significance in the wake of the Covid-19 global pandemic, where these new

technologies have been rapidly adopted without full consideration of how they impact

the ways we share information.

In both the power systems and conversation analysis applications, the general-

izability of the ‘hidden networks’ concept has been demonstrated. Additionally, we

conclude by offering new avenues of exploration. The universality of networks, and of

computing more generally, allow multidisciplinary research, such as this dissertation,

to happen. Such collaborations between researchers in different fields will be needed

to tackle the increasingly complex challenges that the world will be facing in the years

to come.
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