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Abstract

Masonry structures comprise a significant portion of the historical building stock all over the world. Previous
studies have clearly pointed out that unreinforced masonry buildings are vulnerable against extreme loading
conditions, such as seismic actions. Therefore, strengthening is inevitable in most cases for historical masonry to
withstand severe loads.

In this paper, the efficiency of fabric reinforced cementitious matrix (FRCM) is investigated experimentally by
using diagonal tension tests. Fourteen wallets (750x750x235 mm) were produced. Solid clay bricks, which were
collected from the structural walls of an early-20" century building under restoration, and a low-strength mortar,
which represents the historical mortar commonly used in similar historical brick masonry buildings located in
Istanbul, Turkey, were used to for constructing the specimens. By testing the specimens under monotonic diagonal
tension loads, the effects of different types of plasters on the wall surface, varying types of fibers used in textile
reinforcement and anchors used for the connection between FRCM and substrate are investigated. Although the
wallet samples have inherent shortcomings in representing overall component response accurately, still the

qualitative findings are enlightening in terms of the effectiveness of methods as well as failure types.
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1 Introduction

Earthquakes often cause significant damage or collapse to masonry structures built with traditional methods.
In regions with high seismic hazard, like most parts of Turkey, strengthening interventions are inevitable in order
to reduce seismic vulnerability, to protect the heritage structures and to avoid possible life losses. As is known,
strengthening procedure aims to improve strength and/or deformability of the structural system. Given the inherent
difficulties and disadvantages of the traditional strengthening methods (e.g., shotcrete jacketing and prestressed

wires), innovative strengthening techniques, such as the use of technical textiles as presented here, have been



reported to be faster, lighter and more efficient methods of structural strengthening. Recent experimental findings
indicated that the performance of masonry walls strengthened with fiber-reinforced polymers (FRP) is enhanced
remarkably in terms of shear strength and deformability (e.g., Ehsani et al. 1997; Triantafillou 1998; Valluzzi et
al. 2002; Faella et al. 2004; Ilki et al. 2008; Tomazevic et al. 2009; Roca and Araiza 2010; Ozsayin et al. 2011;
Proenga et al. 2012 and Simonic et al. 2015). As a result of extensive and promising research, the demand for
technical textiles in industry, together with polymers such as epoxy resins, has increased significantly in recent
years. Some negative aspects however prevent using organic binders for historical masonry structures, such as
inefficiency at low temperatures and on wet surfaces, lack of vapor permeability, high cost and potential risks to
human health. Moreover, the organic binders are incompatible with masonry units in terms of material chemistry
and strength, and most importantly, their application is irreversible. ICOMOS Charter- Principles for the Analysis,
Conservation and Structural Restoration of Architectural Heritage (2003) emphasizes the concept of the
reversibility for the intervention of the historical structures. Application of inorganic binder instead of organic one
avoids the aforementioned disadvantages as stated by Kouris and Triantafillou (2018) and Parisi et al. (2019).
Research on seismic upgrade of masonry structures with fabric reinforced cementitious mortar (FRCM) is
limited compared to research on strengthening with fiber-reinforced polymers (FRPs). Urban transformation
projects, touristic developments of old neighborhoods and re-use projects of historical structures, especially those
fro the 19" and the early 20" century in Turkey, led to a large-scale strengthening market for historical masonry
structures. Considering the high seismicity in the country, however, the engineering and the scientific practices do
not provide many options for effective strengthening of these structures. One of the issues is to find compatible
materials. The presented paper thus fills a gap in the literature regarding the experimental evidence on effectiveness
of FRCM on a specific composition of historical masonry walls, commonly found in Turkey. There have been
previous work on masonry walls strengthened with FRCM, as reported by Prota et al. (2006), Faella et al. (2010),
Papanicolaou et al. (2007 and 2011), Parisi et al. (2013), Ismail and Ingham (2014), Babaeidarabad et al. (2014a,
b), Sagar et al. (2017), Marcari et al. (2017) and Shabdin et al. (2018). The walls in all these studies were single
or double-sided strengthened with carbon, glass or basalt textile grids. The test results were analyzed in terms of
the enhancements in shear capacity, ductility and shear modulus and of failure modes. Although the outcome from
these studies, applicable to masonry in general, is that FRCM is a promising and efficient alternative strengthening
method for masonry walls, these studies do not focus on historical masonry in particular. Historical masonry here
refers to the 19" and early 20" century structures built when clay brick and mortar production processes were not
regulated, and industrial quality control procedures were not in place. Besides, at the time of construction of these
structures, at least in Turkey, seismic regulations and building standards were not in effect. All these practically
mean that, although contemporary masonry and historical masonry may seemingly look alike, the mechanical
characteristics at material and at structural levels are different. In any case, the number of available studies on
FRCM strengthened masonry walls is limited, as reported above, while the characteristics of the masonry structures
differ significantly in reality due to the variety of masonry materials and workmanship quality. Hence, in this paper
and departing from the rest of the literature, the efficiency of FRCM strengthening method is investigated
experimentally for historical brick masonry walls. In this study, original bricks collected from an early 20" century
registered historical building for constructing the wall specimens, and a low strength mortar for head/bed joints of
the wall specimens, which was designed to represent the mortar commonly used in the similar historical buildings,

were used.



Fourteen wallets of dimensions of 750x750x235 mm were constructed. All specimens were tested under
monotonic diagonal tension to determine in-plane shear response, qualitative differences among the strengthening
methods, and failure modes. Mesh versions of basalt and carbon grids are used to achieve proper adherence with
bonding matrix. For bonding textile, mortar is preferred since mortar is economical, compatible with masonry
units and recyclable with respect to polymer. Based on the results of the former studies, symmetric (double-sided)
strengthening is preferred. The effectiveness and mechanical characteristics of plaster (local and commercial), type
of textile (basalt and carbon) and anchorage application are determined experimentally. Although the wallets have
inherent limitations in accurately representing the actual behavior at component level, a comparison of an

analytical model with ACI 549.4R-13 (2013) is also presented for the sake of completeness.

2 Experimental program

2.1 Specimen description and outline of the tests

The experimental program included fourteen masonry wall specimens. To construct the masonry wall
specimens, the traditional masonry construction steps were replicated. As is seen in Fig. 1, each wall was composed
of eight brick rows bonded with seven bed mortar joints and five or six head mortar joints in each brick row. The
historical clay bricks are 110-120 mm wide, 230-240 mm long and 60-70 mm high. The average dimensions of
the brick are indicated in Fig. 2a. The thicknesses of the head and bed joints are 21 and 13 mm, respectively. The
nominal dimensions of each wall specimen are thus 750x750x235 mm (Fig. 1). Each masonry specimen has an
average thickness of 235 mm equal to the longest dimension of brick for preventing out of plane deformations and

adverse slenderness effects (Fig. 1).
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Fig. 1 The configuration of the masonry wall specimen with geometric features (dimensions in mm)

The variables of the test program were chosen as plaster type, fabric type and existence of transverse
anchorage, which connected FRCM to the wall surface. The test program and specimen characteristics are
presented in Table 1. Local mortar or commercially available cement-based plaster was applied to the surfaces of
the walls for plastering. Basalt or carbon grid materials were utilized as strengthening materials and their
appearances are shown in Fig. 2c-d. Additionally, to further improve the efficiency of the strengthening

intervention, basalt anchorage, which connected FRCM to the wall surface, was applied to several specimens. In
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Table 1, the specimens were symbolized in a way to show the test variables. Diagonal test (D)-Fiber type (0 for
unconfined state, B for basalt, C for carbon)-Plaster type (0 for without plaster, L for local mortar, T for commercial
mortar)-Transverse anchorage (0 for without anchorage, A for showing existence of anchorage)-Number of
identical specimens (1 or 2). For example, D-B-T-A (2) shows the second specimen which was strengthened with

basalt textile, commercial mortar and anchorage.

Table 1 Experimental program
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(a) Brick (b) Mortar specimens (c) Basalt open-grid (d) Carbon open-grid

Fig. 2 Samples of the components of the masonry wall

2.2 Material characterization

Flexural bending and compression tests were performed in order to identify the mechanical characteristics of
masonry components (brick, joint mortar and plaster mortars). The average flexural tensile strength of six full-size
bricks resulted in 1.7 MPa with a coefficient of variation of 0.42 (Mezrea et al. 2016). The average compressive
strength of fourteen half bricks was 9.0 MPa with a coefficient of variation of 0.26 (Mezrea et al. 2016). The clay
bricks were sampled and tested taking into account ASTM C 67-11 (2011).

Three types of mortar were used in this study for producing head/bead joints and plaster (Table 2). The mortar
(Type L* in Table 2) with the mix proportions of 1:2:15:2.9 (cement: lime: sand: water) by weight was used for
constructing the bed and head joints. These mix proportions have been adopted from the study of Ispir and Ilki
(2013) to properly represent the mortars of historical URM buildings constructed in the 19" and the early 20™



century in Turkey. The low strength is the apparent characteristic of this type historical mortar. With the exception
of the water content, these mix-proportions were also adopted to produce local mortar used for plastering of the
wall specimens (symbolized with Type L in Table 2) considering the fact that the use of similar materials to the
original materials is better for restoration works. The water ratio was increased to 3.72 for ensuring better
workability and bonding between the grid fabric and plaster. The second type of plaster (symbolized with T in
Table 2) was prepared by using a commercial ready mixed cement-based mortar. This plaster (T) produced with
the commercial mortar had the mixing ratios of 2.5:15 (powder: water) by weight. The average flexural and
compression strengths of each mortar type were determined experimentally at the ages of 28 and 90 days. For each
mortar type, four flexural bending tests and eight compression tests were performed, and their average results are
presented in Table 2 (Mezrea et al. 2016). The flexural bending tests were conducted on the specimens with the
dimensions of 160x40x40 mm. The compression tests were performed on the specimens, which were the remaining
half parts of the flexural test specimens. These tests were realized by considering the prescriptions of TS EN 1015-
11 (2000) and ASTM C 348-02 (2002). The main properties of the bidirectional basalt and carbon textile-
reinforced mortar are presented in Table 3, which are provided by the supplier based on the report of Trinatafillou

(2012). In Tables 2 and 3, StDev and CoV symbolize standard deviation and coefficient of variation, respectively.

Table 2 Mechanical properties of mortar

Flexural tests Compression tests
Age  Average Average
Mortar type (days) strength (Sl\tﬁf;) CoV strength (Sl‘\t/ﬁje;) CoV
(MPa) (MPa)
Joint: L* 28 0.46 0.02 0.04 1.40 0.30 0.21
) 90 0.56 0.03 0.05 1.56 0.19 0.12
Plaster: L 28 0.34 0.06 0.18 0.87 0.08 0.09
(local mortar) 90 0.41 0.02 0.05 1.09 0.03 0.03
Plaster: T 28 2.75 0.02 0.01 9.83 0.03 0.003
(commercial mortar) 90 4.77 0.05 0.01 10.37 0.04 0.004

Table 3 Mechanical characteristics of textile-reinforced mortar composite

Propert Symbol Unit Basalt FRCM Carbon FRCM

operty ymbo s Average StDev CoV Average StDev CoV
Modulus of elasticity E' GPa 940 417 0.44 730 147 0.20
(un-cracked)
Modulus of elasticity Er GPa 83.9 17.7 0.21 933 108 0.12
(cracked)
Ultimate tensile strength fhu MPa 1878 205 0.11 1373 203 0.15
Ultimate tensile strain £fu - 0.021 0.0008 0.04 0.017 0.0006 0.04
Fiber area by unit width A mm?/mm 0.032 ) ) 0.061 ) )

(one direction)

2.3 Application of the FRCM system

About six months after the production of the wallets, ten of them were strengthened with different FRCM
combinations. By adopting the prescriptions of the supplier, a strengthening procedure with two steps was applied.
The first step was to prepare the surfaces of each wall specimen before the application of FRCM system (Fig. 3)
and the second was to install the FRCM system (Fig. 4) as detailed in the following paragraphs.
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(@) (b)
Fig. 3 Surface preparation (a) grinding, (b) cleaning and (c) soaking

Firstly, the surfaces of each specimen were smoothened by a grinding machine (Fig. 3a), cleaned from
remaining particles (Fig. 3b), and soaked with water (Fig. 3c). Secondly, the surfaces of the specimen were
plastered with bonding matrix (i.e., local mortar or commercial mortar), Fig. 4a. Then, one layer of the open-grid
textile (basalt or carbon) was placed into the plaster on each surface by hand (Fig. 4b), and lastly the textile was
covered with a layer of plaster again (Fig. 4c). The composite thickness of the FRCM system was ~18 mm on each
surface. Thirty minutes after the completion of this strengthening procedure, the surfaces of the specimen were

soaked with water several times to avoid possible shrinkage cracks on mortar.

Fig. 4 Installation phases of FRCM system (a) plastering, (b) application of open-grid textile, and (c) application
of second layer plastering

To investigate the effect of transverse anchor connecting FRCMs onto the surface of the specimen, four
specimens (Table 1) were further strengthened with basalt anchors supplied by the manufacturer (Fig. 5a). The
locations of the transverse anchors were adjusted according to the known assumption: compression and tension
struts of a wall, which are perpendicular to each other, lie along the diagonals of the wall. The details of the basalt
anchors are illustrated in Fig. 5b. Firstly, the anchor holes with a diameter of 18 mm and a depth of 75 mm were
opened (Fig. 6a). Secondly, these holes were cleaned with air pressure. Thirdly, after each hole was filled with
local or commercial mortar, a basalt anchor was pushed with a steel bar into the hole (Fig. 6b-c). Then, to avoid
stress concentration around the anchor-end on the surface, the anchor-end was covered with a 200x200mm square

patch (Fig. 6d). Finally, the surface of the patch was covered with the finishing layer of plaster.
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Fig. 5 Anchorage details (a) basalt anchors, and (b) location of anchor holes

Fig. 6 Ancho(rz)ge application (a) anchor I(lz{es, (b) installation of anch((()?, (c) basalt anchor, and (d)((gluare patch
2.4 The test setup

The masonry wall specimens were tested under diagonal compression loading by following ASTM
E519/E519M (ASTM International 2010). In order to get the response of each wall, the instrumentation and test
setup in Fig. 7a-b were used. The specimen was placed into the test frame by rotating 45° (Fig. 7b). A hydraulic
jack with a load capacity of 500 kN was used to load the specimen. The applied load was measured by means of a
1000 kN load cell. Linear variable differential transducers (LVDTs) with a 50 mm capacity were installed to record
vertical and horizontal deformations (Fig. 7a). Additionally, four LVDTs with a 1000 mm gauge length were also
mounted at four corners of the test setup to measure the vertical deformations occurring along the diagonals parallel

to the direction of the applied load.
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Fig. 7 Diagonal tension test setup and the instrumentation

Loading shoe

3 Test results
3.1 Shear stress-shear strain curves

Using the test data obtained from four LVDTs placed in the middle of surfaces of each wall, shear stress-
shear strain curve is plotted in Fig. 8a. In order to understand the curve part containing shear strain less than 0.0015,
Fig. 8b is also drawn. Shear stress values are calculated using Eq. (1). T denotes shear stress, P denotes applied
load, 4. is the net area of the cross section of the masonry wall, which is computed in accordance with ASTM
E519/E519M-10 (2010) using Eq. (2). H and L are the height and length of the specimen, ¢ is the thickness of the
specimen and 7 is the percent of the gross area of the unit. # is computed as 0.97 using the experimental data given
in Mezrea (2014) for the solid brick units used in the presented study. Eq. (3) is utilized to compute shear strain
values. In Eq. (3), y denotes shear strain, 4V denotes vertical displacement, 4H denotes horizontal displacement

and g denotes gauge length.

__ PXcos45°

C An (M
4y = () tn ®)

_ AV+AH

g 3)

As shown in Fig. 8, the shear stress-shear strain curves of the unstrengthen (i.e. control) and strengthened
wallets are trilinear, while the response of the plastered wallets is nearly bilinear, as ideally exhibited in Fig. 9. For
the FRCM-strengthened wallets, as the masonry substrate and the FRCM system keep the full integrity between
them, the force response keeps increasing, leading to higher strength values eventually. The peak is achieved just
before the integrity is lost, and a descending second branch starts ending with a significant strength drop. The last

branch is almost a horizontal line up to the total failure of the wallet.



When the second (i.e. descending) branch of the stress-strain curves of the strengthened wallets is examined,
it was observed that the significant loss of strength is due to the cracks on the plaster, which in turn reduce the
effectiveness of the bond between wall and the FRCM system. Slip type of failure then initiates through a bed
mortar joint.

In the FRCM-strengthened specimens, the strength loss ratio for the specimens with local plaster is lower
than the ratio for the specimens with commercial plaster. The residual strength is however still significantly higher
than the strength of the reference specimens even after the stress drop. This can be attributed to the contribution

of the FRCM system even in the final branch.
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Fig. 8 Shear stress-shear strain curves
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Fig. 9 Idealization of shear stress-shear strain diagrams

The experimentally obtained mechanical characteristics of each masonry wall and corresponding average
values of the two identical specimens (denoted as “av”) are listed in Tables 4 to 6. Experimental test results are
given in terms of unreinforced shear strength (zmo), shear strength of strengthened specimen (zms), shear strain at
peak shear stress (ymo for unreinforced specimen with or without plaster and yus for strengthened specimen), shear
stress and related strain at the first cracking (zc- and y.), shear modulus (G) and energy dissipation (4). In the
literature, the shear stress at the cracking is considered as 75% of the shear strength (Papanicolaou et al. 2007;
Babaeidarabad et al. 2014a and Sagar et al. 2017) or 70% of the shear strength (Parisi et al. 2013 and Shabdin et
al. 2018). In this study, the shear stress at the cracking was taken as 70% of the shear strength (Table 4). To better
represent the ductility of a masonry wall, energy dissipation is used since it is more representative as compared to
the ductility ratio that is defined as the ratio of the strains at the specified stress levels. Energy dissipation is
calculated as the area under the stress-strain curve enclosed by a specified strain and corresponding stress. In this
study, energy dissipation was calculated at different levels of axial strain (0.5, 1.0, 1.5 and 2%) and comparisons
are made using the dissipated energy calculated for the area enclosed by 1.5% axial strain (Table 5).

The results presented in this study are based on the average values of the two identical specimens. Highly
scattered characteristics of masonry units and/or variety of labor could cause the large variations of strength and
strain responses even between the identical masonry wallets (Tables 4-5). For unreinforced masonry wallets, the
contribution of plaster to structural behavior can be evaluated by comparison between Series #1-2. Test results
show that the local mortar provides 50% enhancement for shear strength and 20% for the dissipated energy with
respect to the reference specimens. For the strengthened masonry walls plastered with local mortar, the
contribution of FRCM can be evaluated by considering the results of Series #2-3. The enhancements of shear
strength and dissipated energy are calculated as 43 and 76%, respectively, with respect to the specimen plastered
with local mortar. The influence of the plaster type can be identified with comparing Series #3 with Series #5. The
shear strength and dissipated energy of the strengthened specimens with commercial plaster (Series #5) is about
1.8 and 1.6 times higher than that with local plaster (Series #3), respectively. The contribution of the anchor can
be determined by taking into account the results of Series #3-Series #4 and Series #5-Series #6. The application
of the basalt anchor to the strengthened specimens with local plaster (commercial plaster) provided an additional

14 (39) % in shear strength and 16 (21) % in dissipated energy. Accordingly, the application of the anchor to the
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specimens with the plaster having relatively higher strength (commercial plaster) provided more shear strength
enhancement. The ratio of the shear strain at peak to the shear strain at cracking may be treated as an indicator of
the ductility (Table 4). This ratio is called the pseudo-ductility in Shabdin et al. (2018). According to the average
values of these ratios, it is possible to derive that the pseudo-ductility of the specimens with local plaster is higher
than that of the specimens with commercial plaster and the specimens with anchorage had lower pseudo-ductility
ratios with respect to the specimens without anchorage. Evaluating the results of Series #5 and Series #7 together
gives an insight related to the fiber type (basalt and carbon) influence. The fiber type cannot lead to significant
differences in the test outcomes (in terms of shear strength and energy dissipation) since the plaster was the weak
component of FRCM, cracks were developing in plaster. This prevented basalt and carbon fibers from reaching
their ultimate capacities. Among the tested specimens, Series #6 (the specimens strengthened with basalt open grid
embedded in commercial plaster and basalt anchor) displayed the best performance in terms of shear strength and
dissipated energy. As a conclusion, the evaluation of the tests results leads to the fact that the FRCM system
provides significant increase in shear strength, stiffness (shear modulus) and dissipated energy of the historical

masonry walls.

Table 4 Shear stress and shear strains of the specimens

Tmo OF

Specimen Specimen Series Tons Ymo OF - Yo Tins/ Vins ) Yer
code number (MPa) Yms Tmo

D-0-0-0 (1) 0.23 0.0094  0.16  0.0026 1.15 3.6
Reference D-0-0-0 (2)  Series #1 0.16 0.0048 0.11  0.0017 0.80 2.8

D-0-0-0(av) 0.20 0.0071  0.14  0.0022 1.00 32
Plaster: Local D-0-L-0 (1) 0.35 0.0019  0.24  0.0005 1.75 38
FRCM: - D-0-L-0 (2)  Series #2 0.25 0.0025  0.17  0.0006 1.25 42
Anchor: - D-0-L-0(av) 0.30 0.0022 021  0.0006 1.50 3.7
Plaster: Local D-B-L-0 (1) 0.43 0.0049 030 0.0012 2.15 4.1
FRCM: Basalt D-B-L-0 (2)  Series #3 0.43 0.0052  0.30  0.0009 2.15 5.8
Anchor: - D-B-L-0¢ay) 0.43 0.0051 030  0.0011 215 4.6
Plaster: Local D-B-L-A (1) 0.44 0.0021  0.31  0.0007 2.20 3.0
FRCM: Basalt D-B-L-A (2)  Series #4 0.54 0.0023  0.38  0.0006 2.70 38
Anchor: Basalt D-B-L-Aqy) 0.49 0.0022 035  0.0007 245 3.1
Plaster: Commercial D-B-T-0 (1) 0.86 0.0016  0.60  0.0006 4.30 2.7
FRCM : Basalt D-B-T-0 (2)  Series #5 0.72 0.0020  0.50  0.0005 3.60 4.0
Anchor: - D-B-T-0¢ay) 0.79 0.0018  0.55  0.0006 3.95 3.0
Plaster: Commercial D-B-T-A (1) 0.99 0.0019  0.69  0.0009 4.95 2.1
FRCM: Basalt D-B-T-A (2)*  Series #6 1.20 - 0.84 - 6.00 -
Anchor: Basalt D-B-T-Aqy) 1.10 - 0.77 - 5.50 -
Plaster: Commercial D-C-T-0 (1) 0.87 0.0017  0.61  0.0008 435 2.1
FRCM: Carbon D-C-T-0(2)  Series #7 0.71 0.0037 049  0.0006 3.55 6.2
Anchor:- D-C-T-0¢ay) 0.79 0.0027  0.55  0.0007 3.95 39

*Due to experimental error, the test results of D-B-T-A(2) wall with the exception of its shear strength could not be obtained.

Table 5 Dissipated energy capacities of the specimens

Specimen Specimen code Series A (x102 MPa)
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number 0.5% 1% 1.5% 2%

D-0-0-0 (1) 0.07 0.20 0.28 0.36
Reference D-0-0-0 (2) Series #1 0.06 0.13 0.19 0.24

D-0-0-0(ay) - - 0.24 -
Plaster: Local D-0-L-0 (1) 0.15 0.27 0.31 -
FRCM: - D-0-L-0 (2) Series #2 0.12 - 0.27 -
Anchor: - D-0-L-0(ay) - - 0.29
Plaster: Local D-B-L-0 (1) 0.15 0.34 0.47 0.66
FRCM: Basalt D-B-L-0 (2) Series #3 0.18 0.40 0.55 0.73
Anchor: - D-B-L-0¢ay) - - 0.51
Plaster: Local D-B-L-A (1) 0.18 0.42 0.61 0.80
FRCM: Basalt D-B-L-A (2) Series #4 0.26 0.41 0.57 0.72
Anchor: Basalt D-B-L-Aqy - - 0.59 -
Plaster: Commercial D-B-T-0 (1) 0.29 0.64 0.87 1.11
FRCM : Basalt D-B-T-0 (2) Series #5 0.33 0.56 0.74 0.94
Anchor: - D-B-T-0¢av) - - 0.81 -
Plaster: Commercial D-B-T-A (1) 0.48 0.61 0.98 1.17
FRCM: Basalt D-B-T-A (2)* Series #6 - - - -
Anchor: Basalt D-B-T-Aqy) - - 0.98 -
Plaster: Commercial D-C-T-0 (1) 0.37 0.72 1.00 1.31
FRCM: Carbon D-C-T-0 (2) Series #7 0.44 0.56 0.79 1.05
Anchor:- D-C-T-0¢av) - - 0.90 -

Since the modulus is one of the elastic properties of the material, and the shear modulus or modulus of rigidity
(G) indicates the stiffness degree of a material, it is computed on the linear part of shear stress-shear strain curve.
ASTM E519/519M-10 (2010) defines the modulus as the ratio of shear stress to shear strain, but it does not provide
any specified stress-strain range. Hence, some various moduli, which can be considered as chord moduli, were
calculated as the slope of the best-fitted line located between the specified shear stress-shear strain points (5-75%,
5-60%, 5-40% and 30-60% of maximum shear stress and corresponding shear strain) and accordingly, the average
shear modulus of each series is presented in Table 6. The ratio of the shear stress to shear strain at the cracking,
which is accepted as the end of the linear elastic behavior, is also given in Table 6. This can be considered as the
secant moduli. As is seen in Table 6, the application of the plaster and/or FRCM system supplied substantial
enhancements in the stiffness. Babaeidarabad et al. (2014a) reported that the stiffness increases with the increase
in the amount of fabric-reinforced cementitious matrix. The stiffness gains of the FRCM strengthened specimens
with commercial plaster is higher than those of the FRCM strengthened specimens with local plaster. The
anchorage increased the stiffness of the FRCM strengthened specimens with local plaster. Based on the comparison
of the moduli calculated at the different range with the secant moduli at the cracking, it is possible to use the secant
modulus at the cracking as shear modulus or the modulus calculated between 5-60% of maximum shear stress on
the stress-strain. In the range 5-60% of the maximum shear stress, the average of the modulus of elasticity of URM
walls (E) was determined as 184 MPa by Mezrea (2016). By substituting experimental shear and elasticity moduli
into Eq. (4), Poisson’s ratio (v) is obtained as 0.20 which can be considered as reasonable. Dizhur and Ingham

(2013) calculated the shear modulus of masonry walls as the slope of the line between the 5-70% of the shear
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strength on the shear stress-shear strain. Marcari et al. (2017) calculated the shear modulus as the secant modulus
between the 5-10% of the strength. Bosiljkov et al. (2005), Borri et al. (2011) and Ismail and Ingham (2014) also
experimentally observed considerable variation for the shear modulus. Bosiljkov et al. (2005) also reported that
diagonal shear tests are not suitable to assess stiffness features of reinforced masonry, which could explain the

significant variation.

Table 6 The shear moduli of the specimens

G (MPa)
Specimen series
Tl 5-75%  5-60%  5-40%  30-60%
Series #1 (D-0-0-0) 64 50 77 109 55
Series #2 (D-0-L-0) 350 320 424 522 339
Series #3 (D-B-L-0) 273 214 328 531 247
Series #4 (D-B-L-A) 500 474 585 735 483
Series #5 (D-B-T-0) 917 797 1032 1495 755
Series #6 (D-B-T-A) 767 681 830 1082 667
Series #7 (D-C-T-0) 786 788 866 954 785
- 2(1E+u) @

3.2 Failure mechanism

The crack development and failure modes of the wallet specimens are described here. Post-test pictures of
the unreinforced masonry walls (Series #1 and Series #2) and the strengthened walls with FRCM (Series #3-7) are
given in Fig. 10 and Fig. 11, respectively. The initial visible cracks of the reference specimens (Series #1) took
place between a brick and a small part of mortar joint around the upper steel shoe (Fig. 10a) just before reaching
peak stress (just before Point A indicated in Fig. 9). The load at the visible first crack was around 95% of the
maximum load and the width of this crack was 0.3-0.4 mm. After the specimens reached Point A (namely, during
the phase of Ilr in Fig. 9), the increase in the strain caused to the development of new cracks in a stair-stepped
shape following the head and bed joints, and through a bed mortar joint (Fig. 10a-b), and to the crack widening.
This level corresponds to a sudden load drop indicated in Fig. 9 (Point B). The drop ratio is about 30% of the peak
load. The failure mode, which was progressing gradually, was characterized with the splitting of the specimen into
two parts in the stair-stepped shape and a slipping through a bed joint (Fig. 10b). No damage to the bricks was
observed when the specimens were examined after the completion of the tests.

In case of the plastered specimens (Series #2), both the wall and the plaster resisted the applied stress up to
the level of the shear capacity of the unreinforced masonry wall. When the stress exceeded this level, the masonry
became ineffective. The first visible cracks initiated around the upper/lower corners of steel shoes in vertical
direction on the plaster just before Point D (Fig. 9). The load at the visible first crack was around 95% of the
maximum load and the crack width was 0.2-0.3 mm. Plaster provided the specimen to achieve higher shear
capacity with respect to the reference walls and relatively limited the first crack width. The elongation and
expansion of the first vertical cracks caused the removal of some parts of the plaster from the surfaces of the

specimens. Due to the extending and widening of the crack occurring along a bed joint, the plaster lost its integrity
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and the specimens failed suddenly in a brittle manner by exhibiting sliding failure mechanism. Fig. 10c-d shows

the crack pattern and failure mode of the plastered specimen.

@ (b) © (d)

Fig. 10 Appearances of the reference (a and b) and plastered specimens (c and d) after/during their tests

Fig. 11 exhibits the examples of the post-test shapes of the strengthened specimens. For the strengthened
specimens of Series #3, the first visible cracks formed around the upper and lower steel shoes as vertical cracks
with a crack width of 0.3-0.4 mm. These cracks took place at 90-95% of the maximum load. The strengthened
specimens resisted the applied load up to Point F by maintaining the integrity of masonry wall and FRCM
composite (Fig. 9). FRCM strengthening allowed the specimens to withstand high stress values. Just after Point F,
FRCM composite (textile grid and plaster) lost its integrity because relatively big parts of plaster fell due to the
development of new cracks and widening of existing cracks on the plaster. As strain was increasing, the onset of
a stair-stepped separation and/or a shear sliding along a bed joint observed. This level corresponds to a sudden
load drop (Point G) indicated in Fig. 9. The drop ratio is about 25% of the peak load. The examination of the
specimens after their tests showed the rupture of some grids at the mid-zones of the specimens, the existence of
several cracks in bricks near to the lower steel shoe and a local debonding of FRCM around the lower loading
plate from the masonry substrate, which was through a height of brick (~70 mm).

The crack development and failure mechanism of Series #4 (D+B+L+A) was almost the same as Series #3.
The differences were that the width of the first visible cracks was relatively thin (0.2-0.3 mm), the smaller part of
plaster fell, and the local debonding length of FRCM was higher (~180 mm). It is thought that these differences
may be due to the use of basalt anchors together with low strength plaster. The crack development of Series #5
(D+B+T) was similar to Series #4. The differences are that the cracks of Series #5 occurred in a smaller region,
and the sudden load drop of Series #5 is about 47% of the peak load, which is higher than that of Series #3 and
Series #4. This may be due to the use of plaster with relatively high strength. The combination of basalt grid and
relatively higher strength plaster (Series #5) provided a higher peak load with respect to Series #3 and Series #4.
However, the contribution of FRCM at Point F (Fig. 9) is not sufficient to prevent the load drop or reduce the drop
ratio. The crack developments of Series #6 (D+B+T+A) and Series #7 (D+B+C) were similar to Series #5. The
differences were that the crack widths of these series were relatively high (0.3-0.4 mm), that no debonding was
observed, and that the ratio of the sudden load drop of Series #5 (47%) is lower than that of Series #6 (62%) and
higher than that of Series #7 (35%). The fact that the discontinuous anchorage may reduce the connection between
FRCM and masonry substrate can result in the higher load drop for Series #6 (D+B+T+A).

In conclusion, the failure mode of the strengthened specimens was governed by shear sliding along a bed

joint and/or by a stair-shaped separation parallel to the applied load. Specimens plastered with the commercial
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mortar (Series #5-7) had micro cracks on masonry wall surface with respect to the local mortar plastered
counterparts (Series #3-4). The sudden degradation ratio of strength for specimens plastered with the commercial
mortar (Series #5-7) were higher compared to that for specimens plastered with the local mortar (Series #3-4). The
stress-strain relationship of the strengthened specimens is approximately linear at the range Illrrcm, which
indicates the fibers in FRCM were still effective and provided residual load carrying capacity. Although there is a
significant decrease in the load bearing capacity, the shear strength of the specimens strengthened with FRCM is
still remarkably higher compared to those of the plastered or reference walls. Although local debonding occurred
during some tests, it was not at critical levels to influence the overall behavior. Furthermore, as the dimensions of
a real wall will be larger than those of the walls tested here, it is considered that stresses with higher magnitudes
will propagate over a larger area and that the problem of debonding will not cause an undesirable situation. Briefly,
according to the test results obtained, it could be concluded that the mortar is an appropriate option to develop a

good bond between historical masonry substrate and textile grids.

(a) Series #3 (b) Series #4 (c) Series #5 (d) Series #6 (e) Series #7

Fig. 11 Appearances of the failure mechanisms of the strengthened masonry walls

4 Analytical work
4.1 ACI 549.4R-13 (2013) Approach

Although certain limitations exist in wallet tests for reaching widely applicable results, a cross-check with
ACI 549.4R-13 (2013) is still provided here for the sake of completeness. According to this, the nominal shear
capacity of the wall (V) is defined as the sum of the contributions provided by masonry substrate (¥:») and FRCM
(¥y) as given in Eq. (5). This equation is established by assuming that FRCM is effective only after the masonry
wall cracking (Silva et al. 2008; ACI 549.4R-13 2013; Babacidarabad et al. 2014a, b).

Vo=Vnt Vs ©)

The masonry contribution (V) is calculated taking into account the possible failure modes of the masonry
wall (Li et al. 2005; Silva et al. 2008; Babaeidarabad et al. 2014a, b). The failure modes are shear sliding, shear
friction, diagonal tension and toe crushing, which are estimated depending on the geometrical and mechanical
properties of the units and the mortar joints. Vi is taken as the minimum of the shear capacities determined with
respect to these modes. The possible failure modes and the related expressions to calculate in-plane shear capacity
are presented in Table 7. Shear sliding failure is characterized with a crack along a single bed joint due to the bond

failure between masonry units and a joint mortar. Shear sliding capacity (Vss) is calculated with the expression
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provided in Table 7. In this equation, 7z, is the bond strength between mortar joint and masonry unit, uo is the

coefficient of shear friction, 8 is the inclined angle between horizontal and main diagonal of the wall (degrees).

Table 7 Shear capacity expressions depending on failure modes

Failure mode Expression Note
” T, 2 2 (H + L) .
.1 — = n
Shear sliding ssT1_ptang’ ™" n 2
TO
Tom = ————
TO m om h
icti Vig=7————4 1+ 1.5u,—
Shear friction STl —pptan® ™ Hoyy
W = Ho
m- . h
1+ 1.5/10 W
: : _ tanf+/21.16+tan?6 L fi =0.67/fm
Diagonal tension v, = “RZLme 2 fra, (1) (Almeida et al. 2015)
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Toe crushin, =—— A
g Ve 3h+2wtand™ ™

Shear friction failure is appeared in the form of a stepped-stair crack caused by the loss of bond between
masonry units and bed/head mortar joints. Shear friction capacity (Vy) is calculated with the expression provided
in Table 7. In this equation, o~ is the modified bond strength of the mortar joint, x» is the modified coefficient
of shear friction, / is the height of the masonry unit and w is the length of the unit.

Diagonal tension failure takes place when the principal tension stress is equal to the tensile strength of the
wall. The expression is provided in Table 7 for the calculation of diagonal tension shear capacity (Va). In this
expression, s and " are the tensile and compressive strengths of masonry, respectively. L and H are the length
of the masonry wall in the direction of the shear force and the height of the wall, respectively. Toe crushing failure
occurs when the stress at a corner equals to the masonry compressive strength. Shear capacity controlled by this
type of failure (V%) is expressed in Table 7. In this expression, A is the interface loading area between the steel
shoe and the wall. As mentioned above, after calculating shear capacities corresponding to the shear failure modes,

the minimum shear load is considered as the shear capacity of the wall, Eq. (6).
Vin = min (Vs, Vg, Var, Vo) (6)
The contribution of FRCM (7)) to the nominal shear strength of the wall strengthened with FRCM (V%) is

calculated in accordance with ACI 549.4R-13 (2013) as given in Eq. (7). For the determination of the design tensile
strength (f#) and the design tensile strain (ex), Egs. (7-9) are provided by ACI 549.4R-13 (2013).

fro = Erépy (®)
&y < 0.004 ©)

In Eq. (7), nris the number of mesh layers, Ay is the area of mesh reinforcement by unit width effective in

shear, L is the length of the wall in the direction of applied shear force, fi is the design tensile strength of FRCM



shear reinforcement, Eris the tensile modulus of elasticity of the cracked FRCM, and &5 is the design tensile strain
of FRCM shear reinforcement.

For the design, ACI 549.4R-13 (2013) limits the shear load increment provided by FRCM with no more than
50% of the capacity of the unreinforced masonry as given in Eq. (10), and limits the sum of the unreinforced

masonry and FRCM shear load capacities with the capacity in case of toe crushing (7¢) as is seen in Eq. (11).

Vi = min(2n,AsLff,; 0.5V,) (10)
V., = min(V,, + V;; 1) (1)

4.2 Estimation of the shear strength

Following the approach presented above, the shear strength of the specimens are calculated and compared to
the experimental results. The geometrical and mechanical characteristics of a masonry wall, which are required
for the estimations, are as follows: the height (H), length (L) and thickness (¢) of the specimen are 750, 750 and
235 mm, respectively. The dimensions of the brick units (% and w) are taken as the average of the corresponding
ranges (65 and 115 mm). The angle between horizontal and main diagonal of the wall () is taken as 45°.
Substituting the geometrical characteristics of the wall into Eq. (2), 4» is calculated as 170,963 mm?. The interface
loading area between the steel shoe and the wall (4x) is calculated as 40,420 mm?. It should be noted that the net
length of the steel shoe is 86 mm. Considering the properties of the masonry wall, 7, and u, are assumed as 0.15
MPa and 0.4, respectively, in accordance with TSDC (Disaster and Emergency Management Authority, 2018). f"n
was determined as 1.6 MPa in Mezrea et al. (2016) for the unreinforced masonry wall constructed with the same
brick units and bed/head joint mortars as the presented study. Using the expression given in Table 7, f; is calculated
as 0.85 MPa.

Using the expressions in Table 7, the shear capacities of the unreinforced masonry wall without plaster are
calculated as 42.7,27.3, 78.2 and 35.0 MPa due to the failures of shear sliding, shear friction, diagonal tension and
toe crushing, respectively. In accordance with Eq. (6), the nominal shear capacity of the wall is 27.3 kN due to the
shear friction failure. The experimentally obtained shear strength of the wall is 33 kN by exhibiting a combined
failure mechanism of the shear friction and shear sliding failure. It is considered that the plaster contribution (7))
should also be taken into account when calculating the shear capacity of the plastered specimens. For this, the
approach presented by Almeida et al. (2015) is adopted (Eq. 12). The approach estimates the plaster contribution
using the expression given in Table 7 for diagonal tension failure. Accordingly, ¥, and nominal shear capacity of
the wall (V,p) with local plastering are computed as 6.0 and 33.3 kN, respectively. The experimental shear capacity
of URM wall with local plastering is 53.8 kN due to shear sliding. V), and Vi, of the wall with commercial
plastering are computed as 69.5 and 96.8 kN, respectively. The ratios of experimental shear capacity to analytical
one (E/A4) are given in Table 8 for the URM wall with and without plastering. The difference between analytical
and experimental shear capacities may be due to the combined failure mechanisms observed in the tests.

Vinp =V +V, (12)

The contribution of FRCM composite material (¥7) to the shear capacity is calculated using Egs. (6-9). For
the specimens strengthened with basalt and carbon FRCM, the values of Vrare calculated as 32.2 and 68.3 kN,
respectively. Then, using Eq. (5), the nominal shear capacities of the masonry walls strengthened with FRCM are
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calculated and presented in Table 8. It should be noted that while using Eq. (5), the contribution of plaster is
considered by substituting Vi in place of V. As is seen in Table 8, the E/A4 ratios for the strengthened specimens
are calculated in the range of 0.9-1.2. These ratios indicates that the analytical results are in good agreement with
the experimental results. To use the allowable maximum tensile strain (0.004) and to consider plaster contribution
in the analytical estimations may be ensured this agreement. Accepting the fiber tensile strain of 0.004 may be
realistic because the cracking in the plaster prevented the fibers from reaching their ultimate tensile strain
capacities.

The analytical estimations listed in Table 8 is calculated based on the allowable maximum tensile strain
(0.004) prescribed by ACI 549.4R-13 (2013). Adopting this allowable strain and no considering plaster
contribution, the E/A4 ratios were calculated between 1.3-1.6 by Babaeidarabad et al. (2014a), 2.3 by Almeida et
al. (2015) and 1.5 by Sagar et al. (2017). Almeida et al. (2015) calculated the £/4 ratio as 1.5 by considering the
plaster contribution.

When following ACI 549.4R-13 (2013) design limits given in Egs. (9-10), the nominal shear capacity of all
strengthened walls are calculated as 35 kN, and the governing failure mode is determined as toe crushing. In this
state, the E/A ratios are between 2.2 and 4.2. Adopting these design limits of ACI 549.4R-13 (2013), Babacidarabad
et al. (2014a) calculated E/A ratios as 2.9 and 3.5. The ratios calculated here (2.2-4.2) and calculated by
Babaeidarabad et al. (2014a) indicate that the design approach of ACI 549.4R-13 (2013) is conservative.

Table 8 The shear capacity of the masonry walls tested

) Experimental (E) Analytical (4) E/A

Specimen .
¥ (kN) V (kN) Ratio

D-0-0-0 333 27.8 1.2
D-O-L-O 53.8 33.8 1.6
D-B-L-O 76.2 65.5 1.2
D-B-T-O 146.6 129.0 1.1
D-C-T-O 144.8 165.1 0.9

5 Conclusions

Effectiveness of fabric reinforced cementitious mortar (FRCM) strengthening method is investigated for the
shear behavior of the historical brick masonry walls in this study. The specimens were built with authentic
historical solid clay bricks and original-like low-strength mortar. The mortar is considered to represent the
historical mortar commonly used in the typical walls of the 19" and early 20" century historical URM buildings
built in Turkey. Diagonal tension tests of fourteen specimens were performed with the aim of gaining insights
regarding the effect of plaster type, fiber type and presence of anchorage on the shear behavior of the tested walls.

The test results exhibit a significant influence on the mechanical characteristics by the plaster. The use of
commercial plaster, which has higher compressive/tensile strength with respect to the local plaster, led to higher
shear strength and dissipated energy capacities with respect to the local plaster. The average shear strength and
dissipated energy capacities of the FRCM specimens plastered with commercial mortar are 1.84 and 1.59 times

higher than those of the specimens plastered with local mortar, respectively.
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Although different fibers (i.e. carbon and basalt) have been used in the tests, the difference was not apparent.
This is due to the early cracking of the plaster, a characteristic response of FRCM strengthened walls, an issue that
hinders the influence of the fiber type. The crack development and failure mechanisms have thus been similar for
the specimens strengthened with basalt and carbon fibers. The only difference presented itself in the average ratio
of the load drop, where FRCM specimens with basalt fibers had 1.34 times higher drop than that of the specimens
with carbon fibers.

The application of the basalt anchor presented an additional improvement in shear strength and dissipated
energy, especially in the specimens plastered with commercial mortar having higher compressive/tensile strengths
with respect to the local mortar. In case of the FRCM specimens plastered with the local mortar, average shear
strength and dissipated energy capacities of the FRCM specimens with anchors were 1.15 and 1.14 times higher
than those of the specimens without anchors, respectively. In case of the FRCM specimens plastered with the
commercial mortar, average shear strength and dissipated energy capacities of the FRCM specimens with anchors
were 1.21 and 1.39 times higher than those of the specimens without anchors, respectively.

The responses of the tested specimens clearly indicate that the strengthening of historical brick masonry walls
with FRCM system is an efficient and promising alternative to improve lateral resistance in terms of shear strength
and dissipated energy. Future studies should focus on possible measures to prevent the abrupt strength drops and

possible ways of increasing the effectiveness of the anchors.
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