View metadata, citation and similar papers at core.ac.uk

-
brought to you by .{ CORE

provided by Universidade do Minho: RepositoriUM

Property-Based Testing for the Robot Operating System

André Santos
INESC TEC & University of Minho
Braga, Portugal
andre.f.santos@inesctec.pt

ABSTRACT

The Robot Operating System (ROS) is an open source framework
for the development of robotic software, in which a typical system
consists of multiple processes communicating under a publisher-
subscriber architecture. A great deal of development time goes
into orchestration and making sure that the communication inter-
faces comply with the expected contracts (e.g. receiving a message
leads to the publication of another message). Orchestration mis-
takes are only detected during runtime, stressing the importance
of component and integration testing in the verification process.
Property-based Testing is fitting in this context, since it is based
on the specification of contracts and treats tested components as
black boxes, but there is no support for it in ROS. In this paper,
we present a first approach towards automatic generation of test
scripts for property-based testing of various configurations of a
ROS system.

CCS CONCEPTS

« Software and its engineering — Software testing and de-
bugging; Publish-subscribe / event-based architectures; « Computer
systems organization — Robotics;

KEYWORDS

Software Testing, Test Automation, Property-based Testing, Robot
Operating System

ACM Reference Format:

André Santos, Alcino Cunha, and Nuno Macedo. 2018. Property-Based
Testing for the Robot Operating System. In Proceedings of the 9th ACM
SIGSOFT International Workshop on Automating TEST Case Design, Selection,
and Evaluation (A-TEST ’18), November 5, 2018, Lake Buena Vista, FL, USA.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3278186.3278195

1 INTRODUCTION

Software testing has become a staple in most quality assurance
processes, providing valuable feedback regarding the correctness of
the software under test. In particular, testing is often a mandatory
step in the verification of safety-critical systems [10].

With the recent developments in robotics, robots are taking their
place in various safety-critical application domains, such as health,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

A-TEST 18, November 5, 2018, Lake Buena Vista, FL, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6053-1/18/11...$15.00
https://doi.org/10.1145/3278186.3278195

Alcino Cunha
INESC TEC & University of Minho
Braga, Portugal
alcino.cunha@inesctec.pt

Nuno Macedo
INESC TEC & University of Minho
Braga, Portugal
nuno.m.macedo@inesctec.pt

industry and agriculture. As their capabilities increase, so does the
complexity of the software behind these systems. Considering the
possible dangers of human-robot interaction, and how expensive
the systems themselves are, ensuring that they are correct and
well tested is a necessity. However, developing a fairly complete
test suite for a robot, covering a wide variety of scenarios, can be
challenging, especially at the level of integration and system testing,
due to the heavy coupling of these systems on input and output
(sensors and actuators).

The Robot Operating System (ROS)! [11] is one of the most
popular open source frameworks for the development of robotics
systems, with thousands of users worldwide. It provides middle-
ware, libraries and tools that aim to shorten development time and
encourage re-use of existing components. A typical ROS system is
a set of independent processes (called nodes) communicating with
each other through message-passing. Most of the time, nodes com-
municate asynchronously in a publisher-subscriber fashion (called
topics), although a client-server model is available (called services).

Due to the distributed and re-usable nature of ROS components,
part of a ROS developer’s job is to integrate nodes, using configura-
tion files and name aliases, to ensure that topics and services match.
Component integration is a challenging task [4] that is very prone
to human error, and a common source of bugs. Such integration
bugs tend to be detected early on, as developers notice when a node
is not receiving expected messages. Nonetheless, these issues are
only detected manually with the assistance of runtime inspection
tools. In this regard, automated testing would decrease develop-
ment time, besides providing a systematic way to make sure that
the whole configuration adheres to an intended architecture.

There is some support in ROS for automated testing” using
popular testing libraries, such as Google’s gtest for C++ code and
unittest for Python code, but this is mostly appropriate for library
unit tests and node unit tests (testing the ROS interface of a single
node). ROS also provides simulation environments and message
replay tools, which alleviate hardware dependencies when testing.

Many desirable safety properties in a ROS system apply at the
interface and integration levels, and, thus, unit testing does not
suffice. For instance, consider a simple system in which a node
handles safety behaviours, while another node publishes sensor
readings and subscribes to actuator commands. This is the case, for
instance, with Kobuki®, a popular ROS robot used in research and
education. A desirable property for this system would be to ensure
that the safety controller node publishes a command (e.g. stopping)
after receiving a sensor message signalling a bump into an obstacle,
and that this message is received by the base node, to relay it to
the actuators. These properties can be further refined by adding

Lhttp://www.ros.org/
http://wiki.ros.org/Quality/Tutorials/UnitTesting
3http://kobuki.yujinrobot.com/

https://core.ac.uk/display/362636647?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3278186.3278195
https://doi.org/10.1145/3278186.3278195
http://www.ros.org/
http://wiki.ros.org/Quality/Tutorials/UnitTesting
http://kobuki.yujinrobot.com/

A-TEST ’18, November 5, 2018, Lake Buena Vista, FL, USA

timing constraints (e.g. the stop command being published within,
at most, one second after the bump).

Such properties can be specified and tested with manually crafted
test scripts, but this can prove to be cumbersome with the default
testing framework. A more efficient strategy is to exploit Property-
based Testing (PBT), a property-oriented testing method in which
common approaches use seemingly random input generators in a
systematic way, attempting to falsify properties specified by the
developers. Using random inputs may lead to redundant tests, but,
on the other hand, they have the potential to uncover defects that
a test developer would not come up with.

Our approach adapts this idea to the context of a ROS system.
Simply put, we take a set of nodes, ranging from a single node to an
entire application, and we consider it as a black box. The inputs for
this black box are open subscribed topics (topics where there are no
active publishers) and the outputs are open published topics (topics
where there are no active subscribers). Then we use Hypothesis* [8],
aPBT library, to find a sequence of ROS messages that either crashes
the configuration under test, or falsifies a specified property. Due to
the random nature of PBT, this approach is most suitable for pure
software nodes or hardware controllers using simulation.

Still, writing such tests for various ROS configurations would
be as error prone as orchestrating the systems themselves, since
node and topic names must be specified. Ideally, this task should
be automated, so that, for instance, typing mistakes are completely
avoided. As such, inspired by Model-based Testing approaches, we
propose an automatic test generation method from configuration
models extracted using HAROS® [13], a static analysis framework
for ROS applications. Our contribution, thus, is a prototype that
is capable of taking models of ROS configurations and generating
customisable, property-based test scripts for said configurations.

Throughout the paper, we will use a fictitious mobile ROS ro-
bot, called FictiBot®, as our running example. This robot is essen-
tially composed of two ROS nodes: fictibase, a low-level driver
node that directly controls the robot’s sensors and actuators; and
ficticontrol, a higher-level controller node that generates a ran-
dom robot command based on sensor readings. When both nodes
are properly integrated, the driver feeds the controller by publish-
ing sensor information, while the controller feeds the driver back
by publishing robot commands.

In the remainder of this paper, we start, in Section 2, by pro-
viding necessary background for understanding the problem and
our contribution. Then we present our prototype test generator,
in Section 3, going into detail on the test generation process, from
HAROS models to a concrete test script, but also describing the
inner workings of the test script itself. We compare our approach to
other relevant related work in Section 4. Finally, we wrap up with
a few conclusions and our directions of future work, in Section 5.

2 BACKGROUND

2.1 Property-based Testing and Hypothesis

Property-based Testing is a testing technique in which the testing
process is driven by the specification of generic properties that a

4https://github.com/HypothesisWorks/hypothesis
Shttps://github.com/git-afsantos/haros
®Source code available at https://github.com/git-afsantos/haros_tutorials

André Santos, Alcino Cunha, and Nuno Macedo

system should satisfy [7]. Properties are often assertions on how
outputs relate to inputs, and often fall into common patterns, such
as how two procedures achieve an equivalent result. A typical
example is that applying reverse on the reverse of a list returns
the original list, regardless of the list. This immediately contrasts
with typical example-based testing methods, where the goal is
to verify that the system behaves well for a number of crafted
scenarios. An advantage of PBT is that it requires a more formal
reasoning about the tested systems than traditional testing methods
do. The formulation of specifications, in turn, helps in documenting
and building hierarchical models of the system behaviour [2].

In practice, PBT libraries take the property-based test cases and
execute them repeatedly, in an attempt to find a counterexample
for the specification. Inputs are automatically selected from a large
corpus, possibly dynamically generated, and possibly selected at
random. Going back to the reverse example, that property would
be tested with lists of varying length and contents, ranging from
an empty list up to lists of a certain length limit.

PBT is most often applied in unit testing, although it has been
applied in testing of web services, for instance. It became popular
as a testing method with QuickCheck’ [5] for the Haskell program-
ming language. It fits very naturally with the pure functional pro-
gramming style of Haskell, although modern PBT libraries [2, 5, 8]
(QuickCheck included) are able to handle stateful systems and soft-
ware with side effects just as well. Hypothesis is an example of such
a PBT library, mostly for the Python programming language.

Stateful systems can be tested with Hypothesis using a con-
struct called a RuleBasedStateMachine. Test developers extend
the RuleBasedStateMachine class to add their own internal state,
to define set up and tearing down of class instances, and to define
allowed operations (state transitions, called rules in Hypothesis).
Additionally, rules can be decorated with preconditions, and invari-
ants can also be specified. Properties in this case are regular Python
assertions, written within rules or invariant definitions. The test
execution consists of Hypothesis repeatedly creating instances of
the state machine, and executing a sequence of rules with generated
inputs.

An example of stateful testing in Hypothesis is provided in Fig-
ure 1. This is a naive example, asserting that trying to remove a
random integer from a list of integers will result in a list of the
same length or shorter. This property would be correct, in theory,
but calling remove in Python with an element that is not present
in the list results in an error. To fix this example, either the call to
remove must be guarded with a conditional, or the error handled.

2.2 The Robot Operating System

ROS is a multi-language framework, where nodes written in differ-
ent languages - the two most common ones being C++ and Python
- can interact seamlessly. A typical ROS system consists of a peer-
to-peer network of nodes, exchanging messages using topics for a
publisher-subscriber model, or services for a client-server model.
All nodes using a topic or service should exchange messages of the
same type. ROS provides a few basic message types, but users can
define their own using a message definition language. During the

"http://hackage.haskell.org/package/QuickCheck

https://github.com/HypothesisWorks/hypothesis
https://github.com/git-afsantos/haros
https://github.com/git-afsantos/haros_tutorials
http://hackage.haskell.org/package/QuickCheck

Property-Based Testing for the Robot Operating System

1 class ListMachine (RuleBasedStateMachine):
2 def __init__(self):
3 super (ListMachine , self).__init__ ()
| self.state = []
5 @rule(value=integers ())
def append(self, value):
self.state.append(value)
8 @rule(value=integers ())
9 def remove(self, value):
10 previous_length = len(self.state)
11 self.state.remove(value)
12 assert len(self.state) <= previous_length

Figure 1: Minimal Hypothesis example for stateful testing.

fictib:
=X (63

|contro|ler_cmd| |stop_cmd| |bumper| | laser | |wheel|

Y
N2

ficticontrol

Figure 2: ROS Computation Graph of FictiBot. Circles rep-
resent nodes, rectangles represent topics. Outgoing arrows
represent publications, incoming arrows represent subscrip-
tions.

project’s build phase, ROS tools generate source code for message
types in all target languages.

There is a special node in all ROS systems, called the ROS Master,
which is always started by default. Its purpose is to help set up the
network, by providing nodes with peer discovery, and to hold a
shared key-value store where nodes can read and write key-value
pairs (called parameters) at runtime. Collectively, nodes, topics,
services and parameters are called resources, and the network of
ROS resources is called the ROS Computation Graph®. Figure 2
shows a diagram of the Computation Graph for our FictiBot running
example. Note that the ROS Master is omitted from the diagram.

Computation Graphs are dynamic, meaning that resources can
join and leave at any time. Developers use XML-like files, called
launch files, to deploy sets of nodes and parameters into a Compu-
tation Graph (or to create a new one), using a tool called roslaunch.
Launch files also provide mechanisms to access environment infor-
mation, group resources under a namespace and deploy resources
conditionally. Another core feature of launch files is a name aliasing
mechanism, called remappings or remaps, which is fundamental to
orchestrate and re-use nodes. For instance, if a node is configured
with a remapping A — B, it would be transparently forwarded
to a resource named B upon requiring a resource named A. Veri-
fication of launch files is mostly limited to syntax and lookup of
node executables, which makes component integration all the more
challenging. Figure 3 shows an example launch file, used to deploy
the driver and controller nodes of our running example.

8http://wiki.ros.org/ROS/Concepts

A-TEST ’18, November 5, 2018, Lake Buena Vista, FL, USA

1 <launch> <l File "minimal.launch" ———— >
2 <node name="fictibase" pkg="fictibot_drivers”
type="fictibot_driver" />
<node name="ficticontrol” pkg="fictibot_controller"
type="fictibot_controller” />
+ </launch>

Figure 3: A minimal ROS launch file that deploys a driver
node and a higher-level controller node.

[fictibase
>

/teleop_cmd

v

A ¥

/wheel /bumper /laser /stop_cmd /controller_cmd
)

< v

A~

[ficticontrol
N\

Figure 4: Computation Graph of FictiBot as extracted by
HAROS. Nodes are shown in white and topics in green.

2.3 The HAROS Framework

HAROS is a framework for static analysis of ROS applications. As of
version 3.0, it is capable of extracting Computation Graph models
from the source code, although this feature is currently only avail-
able for C++ code. This works by the user defining Configurations
in YAML project files, essentially named lists of launch files which
are parsed in order. For each launch file, HAROS extracts the set of
participating nodes. Afterwards, the source code for each node is
parsed and the model extended with the usage of ROS primitives
(e.g. subscribing to a topic). As topics are detected, the associated
message type is determined and annotated too.

HAROS tries to resolve as many conditions and variables as
possible in static time, but, due to the dynamic nature of ROS, this
analysis is limited. Nodes may not be launched from a launch file if
a condition is not satisfied, and topics are created on demand, as
nodes call the ROS API with arguments that may be themselves the
result of some computation, or collected from external sources (e.g.
parameters). The resulting model marks conditional resources as
such (including the respective conditions) when HAROS is unable
to fully resolve them. To alleviate this issue, users can provide hints
when defining a configuration (e.g. topics that a node may subscribe
to), which are used by HAROS in the extraction process. Fortunately,
conditional topics are not very common in practice [12], and thereby
HAROS is able to cover a significant ROS corpus. Figure 4 shows
the diagram of our running example, as extracted and depicted by
HAROS.

3 PROPERTY-BASED INTEGRATION
TESTING FOR ROS

Property-based Testing, as presented in Section 2.1, fits very natu-
rally in unit testing and, with the addition of stateful testing, can
even be used to test full components. To leverage PBT at the integra-
tion testing level, our approach is to consider the set of integrated

http://wiki.ros.org/ROS/Concepts

A-TEST ’18, November 5, 2018, Lake Buena Vista, FL, USA

ROS Computation
Graph

HAROS
Configuration
File
Test Script
ROS
Source
Code

ROS Message
Type Information

Figure 5: Workflow of the test generation process.

components as a black box, which can then be viewed as if it were
a single component with an expected behaviour. In ROS terms, the
idea is to choose a set of nodes (e.g. an entire system, or a subset
of it), identify subscribed topics to use as inputs, and published
topics to take as outputs. The test script should start a ROS node
itself, so that communication with the configuration under test
can be established. This approach brings forth a major challenge —
whereas PBT is often used to test single functions or synchronous
systems (the client-server model), we must deal with asynchronous
systems (the publisher-subscriber model).

Our main contribution is a test script generator, so that we com-
pletely avoid the risk of human error when specifying the archi-
tecture under test. We took a Model-based Testing approach to
accomplish this goal, using HAROS to construct configuration mod-
els from source code. As presented in the previous section, these
models include the nodes and topics that make up the Computation
Graph, annotated with message type information. The generator’s
task is to identify input topics, output topics, and to produce ROS
message generators that Hypothesis can use to create data. In order
to facilitate the whole process, we extended HAROS to include our
test generator as a built-in feature’. Figure 5 provides an overview
of the workflow we just described.

In the remainder of this section, we provide further details on
how the model is used to generate test scripts, as well as how the
test scripts work. Each step of the process is illustrated with our
FictiBot example.

3.1 Test Script Generation

Before the test script generation process begins, configuration mod-
els must be extracted. Thus, the first step, is to specify the intended
ROS configurations in the HAROS project files. As mentioned in
Section 2.3, this boils down to a list of launch files and optional
extraction hints. We assume that the user provides enough spec-
ification for the extracted model to be correct. Test settings that
play a role in the test generation process are also specified at this
stage. Figure 6 shows a HAROS project file using the launch file
presented in Figure 3 to construct the model depicted in Figure 4.
Since ROS promotes open and dynamic systems, where partic-
ipants can join and leave at any time, there is no clear definition
of what is a ROS application. Lists of launch files are possibly the
best candidate definition, which is why HAROS considers a Con-
figuration as the product of such lists. Providing a list of launch

“https://github.com/git-afsantos/haros/blob/dev-malke- tests/haros/gen_tests.py

André Santos, Alcino Cunha, and Nuno Macedo

project: haros_tutorials
2 packages:
3 — fictibot_drivers
4 — fictibot_controller
5 configurations:

6 minimal :
launch: [fictibot_controller/launch/minimal.launch]
tests: {minimal: {package: fictibot_tests}}

Figure 6: A minimal HAROS project file for the FictiBot ex-
ample.

files, instead of a simple list of nodes, is also advantageous for the
purposes of test generation, since the generated test script is able
to reproduce the configuration as it is in a normal setup. This is
an important detail, because the test routine requires launching
the same configuration multiple times, as we explain in Section 3.2,
and it must be accurate in doing so, including all ROS parameters
and evaluated variables.

After the model extraction takes place, the test generation pro-
cess begins. Identifying the list of participating nodes is straightfor-
ward, so the next step is to identify the input and output topics. We
treat the configuration under test as a black box. As such, our cur-
rent approach only considers open topics (topics with subscribers
but no publishers, or vice-versa) as candidates for testing. Further-
more, we also discard nodes and topics that the analysis could not
fully resolve.

For instance, when testing the whole minimal configuration
from our example, the only open topic is teleop_cmd, with a single
subscriber. The corresponding test script would generate a publisher
for this topic, and the testing would boil down to trying to make
the configuration crash with random messages on this topic. If we
tested each node in isolation, however, the generator would create
all the corresponding publishers and subscribers for each topic. We
considered generating publishers and subscribers for connected
topics as well, but this would interfere with the integration we are
supposedly testing for correctness.

The final step in the test generation process is to construct ROS
message generators for Hypothesis, called strategies in Hypothe-
sis terminology. PBT libraries, Hypothesis included, often provide
generators for common and basic types of data out of the box, but
custom or complex data types must be specified manually. ROS
messages follow a well-defined format'?, in which message fields
can be of a basic type (numbers and strings), another message type
(composition) or lists of one of the previous. As such, the genera-
tion of message strategies can be automated by traversing message
fields and producing the respective sub-strategy.

Hypothesis already handles basic types and lists, so we just had
to provide the corresponding value limits (e.g. a strategy for un-
signed 8-bit integer fields that generates values between 0 and 256).
To handle composition, we extended the generation algorithm with
recursion and caching. Although this is enough to achieve a work-
ing implementation, in some cases developers do not expect the full
range of values a type may provide, but intend for certain fields to
behave like an enumeration (e.g. LED flashing red, green, or turned
off). This is a known limitation of ROS, as it supports constants, but

WOhttp://wiki.ros.org/msg

https://github.com/git-afsantos/haros/blob/dev-make-tests/haros/gen_tests.py
http://wiki.ros.org/msg

Property-Based Testing for the Robot Operating System

I @strategies.composite
2 def fictibot_msgs_Custom (draw):
3 msg = fictibot_msgs.Custom ()
4 msg. state = draw(strategies.sampled_from ([0, 1, 2]))
5 msg.pose = draw(geometry_msgs_Pose2D ())
msg.bumpers = draw(ros_array(ros_bool, length=3))
return msg

Figure 7: Example of a generated message strategy.

not proper enumerations. Thus, we have implemented support for
users to define simple enumerations, using either literal values or
constants defined within a message type. This is a way to eliminate
many random tests that would provide little value in the end. On
the other hand, use of this feature must be pondered, as unexpected
inputs can help uncover more faults. Figure 7 shows the automat-
ically generated Hypothesis strategy for a custom message type,
illustrating enumerations (the state field), composition (the pose
field) and lists (the bumpers field).

3.2 The Test Script

The entry point of a test script performs only a few operations
before the test routine starts. First off, in order to use ROS interfaces,
the test script has to register itself as a ROS node. Then it creates
a TestSettings object and an InternalState object, which it
passed down to the test routine. TestSettings objects contain
configuration-specific data, such as the required launch files, or the
published topics. This is required, since the test routine is generic''.
In general, users shall not find the need to edit these, unless they
want to ignore a specific topic, for instance.

We cannot determine in advance which properties users might
want to verify, so the only way to specify custom properties, besides
not crashing, is to edit the test script and add assertions manually.
The InternalState class, which is just a template, is meant for this
purpose. Users can extend it, and define state variables and callback
functions for messages that the test node publishes or receives.
The idea behind this is to allow relatively complex properties to be
expressed, such as temporal properties (e.g. a message has arrived
within X seconds of a previous one), or properties that depend on
the history of exchanged messages (e.g. a message field contains
monotonic increasing values over time). Expressing properties this
way is also in line with the style advocated in Hypothesis stateful
testing. Figure 8 shows the generated InternalState template
when testing the ficticontrol node of our example in isolation.

We use Hypothesis’ RuleBasedStateMachine, as presented in
Section 2.1, to perform stateful testing. Since we are focusing on
the publisher-subscriber aspect of ROS, we define two simple op-
erations, publisht and spin, where publishT publishes a randomly
generated message on topic T, and spin (using a common termi-
nology in ROS), processes incoming messages and sleeps for a
given time, to achieve a certain loop rate. For each input topic, as
determined in the test generation process, a publish operation is
dynamically defined.

Hypothesis will repeatedly try various sequences of publisht
and spin operations, until a property is falsified or a limit is reached
and all properties are deemed true. This implies that, if the first

The core of the implementation can be found at https://github.com/git-afsantos/rosqc

A-TEST ’18, November 5, 2018, Lake Buena Vista, FL, USA

class InternalState (object):
2 def __init__(self):
3 self . on_setup ()
4 def on_setup(self):
pass
6 # event.topic: topic on which a message was sent/received
event.msg: the actual ROS message
event.time: ROS time when the message was sent/received
9 def on_controller_cmd(self, event):
10 pass # callback for the "
11 def on_stop_cmd(self, event):

controller_cmd" topic
12 pass # callback for the "/stop_cmd" topic
13 def on_laser(self, event):

14 pass
15 def on_bumper(self, event):

callback for the "/laser" topic

16 pass # callback for the "/bumper" topic
17 def on_wheel(self, event):
18 pass # callback for the "/wheel" topic

Figure 8: Example of a generated template class.

sequence of operations does not run into an error, there must be
a way to reset the complete internal state, so the second iteration
starts from a deterministic state. This is also one of the big design
challenges we faced. It is a simple matter in regular unit tests,
where it suffices to define custom set up and tear down functions
that manipulate the state as necessary. When testing a generic set
of ROS nodes — which are completely independent processes from
the testing script — there is no standard way to reset the internal
state of such nodes as required. Thus, we settled on a sensible,
although not very performant option, which is to shutdown the
whole configuration under test after a successful iteration, so that
the configuration can be restarted and likely be in a clean state. It
is mostly for this reason that we keep references to the original
launch files.

By default, the test node already checks two simple properties.
The first property states that all nodes under test must be alive.
We make use of internal libraries of ROS to ping other nodes with
a timeout. The test fails if any node terminates (due to error or
otherwise) or becomes unresponsive. The second property we test
for is that the tested ROS interface is stable, i.e. the set of published
and subscribed topics should not change during the test run. It is
uncommon, in general, to come up with a use case in which closing
a topic is a requirement, and so we treat it as an error.

3.3 Preliminary Experiments

To evaluate the usefulness of our framework in a more realistic
scenario, we applied it to Kobuki, an education oriented mobile
ROS robot that comes out of the box with various different con-
figurations. At the most basic level, it simply runs the base node,
which is responsible for publishing sensor data and subscribing
to velocity commands, similar to the fictibase node from our
example. Other configurations, enabled in separate launch files,
add various features such as teleoperation, a safety controller, or
a random walk controller. We chose the safety controller as our
initial test target.

The safety controller subscribes to sensor topics (bumper, wheel
drops and cliff detection) and publishes velocity commands. Upon
receiving sensor messages, the callback functions simply update the
controller’s internal state with the new information. Its publishing

https://github.com/git-afsantos/rosqc

A-TEST ’18, November 5, 2018, Lake Buena Vista, FL, USA

Thread 1 Thread 2
Internal State
update read

(=) <= Y@ T E—— .
I

1

: received bumper lsensors triggered?

I

]

wait for
messages

. publish | velocity
received wheel drop
sleep

Figure 9: Model of Kobuki’s safety controller.

1 class InternalState (object):
2 def __init__(self):

3 self . on_setup ()

4 def on_setup(self):

5 self .bumper_left = False

6 self .bumper_right = False

7 self . bumper_center = False

8 # other boolean variables ...

9 def on_cmd_vel(self, event):

10 if event.msg.linear.x <= 0:

11 assert (self.bumper_left or self.bumper_right

12 or self.bumper_center or self.cliff_left
13 or self.cliff_right or self.cliff_center)
14 def on_events_bumper(self, event):

15 if event.msg.bumper == BumperEvent.LEFT:

16 self .bumper_left =

17 event.msg.state == BumperEvent.PRESSED
18 # repeat for bumper_center and bumper_right

19 def on_events_wheel_drop(self, event):

20 # update internal state

21 def on_events_cliff(self, event):

update internal state

Figure 10: Specification of a safety property with internal
state.

loop checks the internal state and publishes a zero velocity message
if a wheel is dropped, and a negative velocity message (backward
movement) when one of the other sensors is triggered. Figure 9
illustrates the node’s behaviour.

An immediate property to take out of this setup is that receiving a
message of negative velocity implies that the last published message
of bumper or cliff sensors should contain an active state. For the
sake of an illustrative example, we specified that a velocity of zero
or less implies a bump or cliff, as seen in Figure 10. Hypothesis
has been able to consistently find a minimal counterexample to
this property, which is sending a single wheel drop message and
waiting for the corresponding zero velocity message. Figure 11
shows a sample of the produced output.

We ran this experiment within a 32-bit virtual machine using a
single 2.0 GHz processor and 2 GB of memory. On average, the test
runs take about 62 seconds, of which more than 90% of the time is
spent setting up and tearing down the ROS configurations (spawn-
ing, killing and waiting for processes and network connections),

André Santos, Alcino Cunha, and Nuno Macedo

3 Falsifying example

state = RosRandomTester ()

6 state.pub__events__wheel_drop (msg={wheel: 1, state: 1})
7 state.spin ()

s state.teardown ()

10 Time spent on testing (s): 0.576339435
11 Time spent on sleeping (s): 5.8
12 Time spent setting up (s): 57.640097381

Figure 11: Counterexample produced by Hypothesis for an
incorrect property.

and only a minimal fraction is spent on the actual testing, pub-
lishing and waiting for messages. These results clearly show how
detrimental to performance our approach to resetting in-between
test iterations is. On the other hand, the fact that Hypothesis is able
to find a counterexample shows that our approach is feasible, even
if it needs optimisation.

4 RELATED WORK

Automated software testing is very appealing for its promise of
finding defects without much effort from the user, but, in [14],
Vincenzi et al. show that manual tests tend to be more effective.
Even though their work focuses on unit tests for Java programs,
we expect the picture to be the same in our context. They state
that automated and manual tests have a complementary aspect —
whereas manual tests are better to test specific scenarios, automated
tests can uncover unexpected faults. We support this view, since,
in our case, it would be very hard to test specific scenarios with
randomly generated messages.

A proposal for unit testing of publisher-subscriber architectures
is presented in [9]. Their proposal is based on Java programs, anno-
tated with preconditions, postconditions and invariants, specified in
Linear Temporal Logic. The testing framework mocks the publisher-
subscriber infrastructure, so that components can be tested in iso-
lation. Our approach differs in that we are focusing on the ROS
infrastructure, and thus we can make use of domain knowledge.
Besides, our approach does not require as much (neither as formal)
specification in order to function.

When testing stateful systems, most PBT tools generate random
transitions based solely on the current state of the model. With the
integration of external test case generators, more information can
be taken into account, and more meaningful test sequences can
be generated. This testing method is presented in [1], and it is an
approach that we intend to explore further, since, in many cases,
purely random test cases might not make much sense in the context
of a ROS application. Our work differs mostly in that we are testing
asynchronous distributed systems, our test scripts are automatically
generated, and we check architecture-related properties as well.

Despite the importance of testing in robotics, research on the
topic is relatively scarce. In [3] the authors present a methodology
that bridges the gap between modern software testing techniques
and the basic unit testing seen in robotics environments. They apply
it to ROS, incorporating simulation environments as substitutes for

Property-Based Testing for the Robot Operating System

real hardware. In [6], this idea is extended to implement Model-
based Testing for ROS systems. As is our case, their work is aimed
at the integration testing level, but they focus on the navigation and
localisation capabilities of mobile robots only. Topological maps,
describing the places a robot should be able to move to, are used
to generate Timed Automata that simulate the robot’s behaviour.
Generated tests verify that the robot can move according to the
given map, and specific test scenarios can be manually specified,
but finding the causes of a test failure is left for the user. While our
approach is more user-friendly, in that it produces counterexamples
for violated properties, testing of navigation and localisation is
possibly one of the hardest features to implement correctly with
our approach. As such, our approach might be considered as a
complementary test method.

5 CONCLUSIONS AND FUTURE WORK

In this paper we presented our initial approach towards providing
a PBT tool for robotic software using ROS. Much of what happens
in a ROS system is dependent on messages exchanged between
components. This makes it so that specifying component contracts
is a given, even if implicitly. PBT brings forth an opportunity to
make such contracts explicit, besides providing a mechanism to
test them systematically.

Our preliminary results lead us to believe that PBT can be effec-
tively applied to ROS systems, despite the challenges of a dynamic,
asynchronous architecture. Testing in the ROS community consists
mostly of manual unit tests or test scripts that reproduce a specific
scenario in a simulated environment. Introducing automated ran-
dom testing helps uncover unforeseen faults and provides useful
counterexamples for user-specified properties. An interesting point
of future work would be to generate specific test cases for each
counterexample found.

Another benefit of our approach is to have an automated method
of verifying that a ROS configuration produces an expected Com-
putation Graph, where nodes and topics are well integrated. This
is a common source of bugs during development, as components
are re-used and reconfigured multiple times for different applica-
tions. On the other hand, we acknowledge that our proposed tool is
no substitute for manual testing, but rather a complementary test
method.

Regarding future work directions, there are a few paths in our
approach that can be further explored. First off, the languages
for user-specified properties and constraints should be extended,
for instance to allow other common message constraints, such as
ranges for numeric values. There is also the possibility of integrat-
ing proper Temporal Logic specifications (e.g. imposing an order
on published topics, even though the messages are random). Alter-
natively, we could integrate external test case generators, using a
similar approach to the one presented in [1].

Our current prototype can only generate test scripts for full
configurations. If a user wants to test just a subset of the nodes, a
new configuration has to be created for that purpose. We intend to
work on this matter, either by allowing constraints to be specified,
or by generating test scripts for all subsets of a given configuration
with either single nodes or nodes connected by at least one topic.

A-TEST ’18, November 5, 2018, Lake Buena Vista, FL, USA

Finally, our current method of resetting configurations between
test iterations is lackluster in terms of performance, where a great
deal of time is spent in setting up and tearing down processes. This
is an immediate target for optimisation, although more performant
solutions might not be as generic.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees for their
valuable comments and helpful suggestions. This work is financed
by the ERDF - European Regional Development Fund through the
Operational Programme for Competitiveness and Internationalisa-
tion - COMPETE 2020 Programme and by National Funds through
the Portuguese funding agency, FCT - Fundacéo para a Ciéncia e
a Tecnologia within project PTDC/CCI-INF/29583/2017 (POCI-01-
0145-FEDER-029583).

REFERENCES

[1] Bernhard K. Aichernig, Silvio Marcovic, and Richard Schumi. 2017. Property-
Based Testing with External Test-Case Generators. In 2017 IEEE International
Conference on Software Testing, Verification and Validation Workshops (ICSTW).
337-346. https://doi.org/10.1109/ICSTW.2017.62

[2] Thomas Arts, John Hughes, Joakim Johansson, and Ulf Wiger. 2006. Testing tele-
coms software with quviq quickcheck. In Proceedings of the 2006 ACM SIGPLAN
workshop on Erlang. ACM, 2-10. https://doi.org/10.1145/1159789.1159792

[3] Andreas Bihlmaier and Heinz Wérn. 2014. Robot Unit Testing. In Simulation,

Modeling, and Programming for Autonomous Robots (SIMPAR 2012). Springer

International Publishing, 255-266. https://doi.org/10.1007/978-3-319-11900-7_

22

Jonathan Bohren, Radu Bogdan Rusu, Edward Gil Jones, Eitan Marder-Eppstein,

Caroline Pantofaru, Melonee Wise, Lorenz Mésenlechner, Wim Meeussen, and

Stefan Holzer. 2011. Towards autonomous robotic butlers: Lessons learned with

the PR2. In 2011 IEEE International Conference on Robotics and Automation. IEEE,
5568-5575. https://doi.org/10.1109/ICRA.2011.5980058
Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for
Random Testing of Haskell Programs. In Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming (ICFP "00). ACM, 268-279.
https://doi.org/10.1145/351240.351266
[6] Juhan Ernits, Evelin Halling, Gert Kanter, and Jiri Vain. 2015. Model-based
integration testing of ROS packages: A mobile robot case study. In 2015 European
Conference on Mobile Robots (ECMR). 1-7. https://doi.org/10.1109/ECMR.2015.
7324210
[7] George Fink and Matt Bishop. 1997. Property-based Testing: A New Approach
to Testing for Assurance. SIGSOFT Software Engineering Notes 22, 4 (July 1997),
74-80. https://doi.org/10.1145/263244.263267
[8] David R. Maclver. 2018.
https://github.com/HypothesisWorks/hypothesis.
[9] Anton Michlmayr, Pascal Fenkam, and Schahram Dustdar. 2006. Specification-
Based Unit Testing of Publish/Subscribe Applications. In 26th IEEE International
Conference on Distributed Computing Systems Workshops (ICDCSW’06). 34-34.
https://doi.org/10.1109/ICDCSW.2006.103
[10] David L. Parnas, A. John Van Schouwen, and Shu Po Kwan. 1990. Evaluation
of safety-critical software. Commun. ACM 33, 6 (June 1990), 636—-648. https:
//doi.org/10.1145/78973.78974

[11] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, and Andrew Y. Ng. 2009. ROS: An open-source Robot
Operating System. In ICRA Workshop on Open Source Software. https://www.
willowgarage.com/sites/default/files/icraoss09-ROS.pdf

[12] André Santos, Alcino Cunha, Nuno Macedo, Rafael Arrais, and Filipe Neves dos

Santos. 2017. Mining the usage patterns of ROS primitives. In 2017 IEEE/RS}
International Conference on Intelligent Robots and Systems (IROS). IEEE, 3855-3860.
https://doi.org/10.1109/IR0OS.2017.8206237

[13] André Santos, Alcino Cunha, Nuno Macedo, and Claudio Lourengo. 2016. A

framework for quality assessment of ROS repositories. In 2016 IEEE/RSY Inter-
national Conference on Intelligent Robots and Systems (IROS). IEEE, 4491-4496.
https://doi.org/10.1109/IROS.2016.7759661

[14] Auri M. R. Vincenzi, Tiago Bachiega, Daniel G. de Oliveira, Simone R. S. de Souza,

and José C. Maldonado. 2016. The Complementary Aspect of Automatically
and Manually Generated Test Case Sets. In Proceedings of the 7th International
Workshop on Automating Test Case Design, Selection, and Evaluation (A-TEST
2016). ACM, 23-30. https://doi.org/10.1145/2994291.2994295

[4

5

Hypothesis 3.57.

https://doi.org/10.1109/ICSTW.2017.62
https://doi.org/10.1145/1159789.1159792
https://doi.org/10.1007/978-3-319-11900-7_22
https://doi.org/10.1007/978-3-319-11900-7_22
https://doi.org/10.1109/ICRA.2011.5980058
https://doi.org/10.1145/351240.351266
https://doi.org/10.1109/ECMR.2015.7324210
https://doi.org/10.1109/ECMR.2015.7324210
https://doi.org/10.1145/263244.263267
https://github.com/HypothesisWorks/hypothesis
https://doi.org/10.1109/ICDCSW.2006.103
https://doi.org/10.1145/78973.78974
https://doi.org/10.1145/78973.78974
https://www.willowgarage.com/sites/default/files/icraoss09-ROS.pdf
https://www.willowgarage.com/sites/default/files/icraoss09-ROS.pdf
https://doi.org/10.1109/IROS.2017.8206237
https://doi.org/10.1109/IROS.2016.7759661
https://doi.org/10.1145/2994291.2994295

	Abstract
	1 Introduction
	2 Background
	2.1 Property-based Testing and Hypothesis
	2.2 The Robot Operating System
	2.3 The HAROS Framework

	3 Property-based Integration Testing for ROS
	3.1 Test Script Generation
	3.2 The Test Script
	3.3 Preliminary Experiments

	4 Related Work
	5 Conclusions and Future Work
	Acknowledgments
	References

