
Validating the Hybrid ERTMS/ETCS Level 3
Concept with Electrum

Alcino Cunha and Nuno Macedo

INESC TEC & Universidade do Minho, Portugal

Abstract. This paper reports on the development of a formal model
for the Hybrid ERTMS/ETCS Level 3 concept in Electrum, a lightweight
formal specification language that extends Alloy with mutable relations
and temporal logic operators. We show how Electrum and its Analyzer can
be used to perform scenario exploration to validate this model, namely to
check that all the example operational scenarios described in the reference
document are admissible, and to reason about expected safety properties,
which can be easily specified and model checked for arbitrary track
configurations. The Analyzer depicts scenarios (and counter-examples) in
a graphical notation that is logic-agnostic, making them understandable
for stakeholders without expertise in formal specification.

1 Introduction

The European Rail Traffic Management System (ERTMS) is a system of standards
for management and interoperation of signalling for railways by the EU, that aims
to replace the various national systems with a seamless European railway system1.
The European Train Control System (ETCS), the ERTMS control command
part, defines 3 levels of signalling that a system can operate on, depending on
the trackside equipment used, how the on-board systems communicate with the
trackside, and on which functions are processed on-board or by the trackside. In
Level 3, positive train detection (PTD) information, including the train position
and integrity information, is detected and reported by the on-board system
directly to the trackside, which, based on logical rather than physical track
block sections, decides whether it is safe to issue movement authorities (MA),
reporting them back to the on-board system via radio. By removing the need for
physical trackside detection, the implementation cost is reduced, while the use of
virtual blocks allows for arbitrarily small sections, improving the performance
and adaptability of the system.

For Level 3 to be feasible, PTD information must be reliable and the communi-
cation between the on-board and trackside systems guaranteed at all times. These
pre-conditions are not easily met, which has led to the proposal of a Hybrid Level
3 concept [2], that combines PTD information with limited trackside detection.
These trackside train detection sections (TTD) are then broken into smaller
virtual subsections (VSS). Each of these VSSs, besides being identified as free or
1 http://www.ertms.net/

http://www.ertms.net/

occupied, may also become ambiguous or unknown, whenever discrepancies in
the information are detected. This allows for trains with non-ideal equipment or
with communication problems to still use the line, albeit below full capacity.

This paper reports on the modelling and subsequent validation and verification
of the Hybrid ERTMS/ETCS Level 3 (HL3) concept in Electrum [5], and was
developed as an answer to the ABZ 2018 call for case study contributions. Electrum
is a lightweight formal specification language that extends Alloy [4] with mutable
relations and temporal logic operators. The result is a language as simple and
flexible as Alloy, but with improved support for the specification of reactive
systems and for the model checking of safety and liveness LTL properties. Its
Analyzer [3] provides support for both bounded (through SAT likewise Alloy) and
unbounded (through SMV) model checking, whose solutions (or counter-examples)
are presented back to the user in a unified graphical interface.

The resulting HL3 model, as well as relevant design decisions, are presented in
Section 2. Electrum concepts are presented as needed. Section 3 describes how the
model was validated using the Analyzer, including the encoding of the operational
scenarios, while Section 4 explores some desirable safety properties that can
be automatically verified. Section 5 discusses the results and some identified
challenges, and Section 6 points directions to future work. It should be noted
that the authors had no a priori domain knowledge, and that this work was
mainly based on the provided “Principles” document for the HL3 [2].

2 Modelling

The section presents an Electrum model for the HL3 concept, which is available
online2. Proper abstraction is key to achieve a model that is representative of the
system under study but that is still prone to being automatically analysed for
relevant properties and easily understood by all interested parties. In the HL3,
the main abstraction points arise from the mismatch between certain continuous
aspects of the rail traffic management domain and the necessarily discrete nature
of state-based modelling languages like Electrum. These include concerns with
train length changes, as well as real-time issues related to communication delays
and the use of timers to optimize the performance of the system. Relevant design
decisions regarding such issues are explained as the model is presented. The
Electrum language is also presented by example throughout the section. The
formal presentation of its syntax and semantics are presented elsewhere [5].

2.1 Static Structural Components

In Electrum, likewise Alloy, structure is introduced through the declaration of
signatures, that represent sets of uninterpreted atoms, and fields, that create
relationships between multiple atoms. In Electrum such signatures may either be
static (by default) or variable (those marked as var), and can be restricted by

2 http://haslab.github.io/Electrum/ertms.ele

http://haslab.github.io/Electrum/ertms.ele

open util/ordering[VSS] as V
open util/ordering[TTD] as D

enum State
{ Unknown, Free, Ambiguous, Occupied }

sig VSS {
var state : one State,
var jumping : lone Train

}

sig TTD {
start : VSS,
end : VSS,

} { end.gte[start] }

fact trackSections {
all ttd:TTD-D/last |
ttd.end.V/next = (ttd.D/next).start

first.start = V/first and last.end = V/last
}

fun VSSs[t:TTD] : set VSS {
t.start.*V/next&t.end.*(∼V/next)

}
fun parent[v:VSS] : one TTD {
max[(v.*V/prev).∼start]

}

sig Train {
var pos_front : one VSS,
var pos_rear : one VSS,
var MA : one VSS

}
var sig connected in Train {}
var sig report_front,report_rear in Train {}

fun mute : set Train {
Train-(report_rear+report_front)

}
fun disintegrated : set Train {

report_front - report_rear
}

fun MAs[t:Train] : set VSS {
knownRear[tr].*V/next & (tr.MA).*V/prev

}

fun knownFront[t:Train] : one VSS {
{ v:VSS | t not in report_front since

(t in report_front and v = t.pos_front) }
}
. . .
fun occupied : set TTD {

{ d : TTD |
some VSSs[d]&Train.(pos_rear+pos_front) }

}

Fig. 1. Excerpt of the structure of the HL3 model.

simple multiplicity constraints. Static signatures represent the possible configura-
tions on which a system can act, and although they can still be loosely defined
and solved during the analysis process, they stay frozen throughout the evolution
of the system. In the HL3 model, as shown in Fig. 1, these represent the available
trains (signature Train) and the valid configurations of trackside train detection
sections (signature TTD) and virtual subsections (signature VSS). Tracks are simply
comprised by discrete sequences of VSS atoms, which in Electrum can be achieved
by imposing a total order. Fields start and end simply register exactly one

VSS in which a TTD starts and ends, respectively. This representation does not
consider any particular dimension of the blocks or trains, which essentially affects
reasoning about the minimum safe rear end position that occurs in transition
#11A and the start event of the ghost propagation timer [2].

Relational expressions combine such signatures and fields (and other constants)
using standard relational operators like union (+), intersection (&), difference
(-), join (.) or the binary converse (∼), or with transitive (^) or reflexive-
transitive (*) closure operators. Primed expressions refer to their value in the
succeeding state. Relational expressions can also be constructed by comprehension.
Primitive relational formulas are either inclusion (in) or equality (=) tests, or basic
multiplicity tests, which can be combined through common Boolean operators,
first-order quantifications or future and past LTL operators. Such formulas
can be imposed as axioms that always hold in a model through facts such
as trackSections, which universally quantifies over TTD elements to guarantee

that the complete track is partitioned. Functions and predicates can be used
for reusable expressions and formulas, respectively. For instance, function VSSs

calculates all the subsections of a TTD through transitive closure operations,
possible due to the imposed total order on VSS. This declarative definition allows
for the analysis of properties over every valid track partition within a finite
universe, a cumbersome task in languages without support for first-order logic.

2.2 Dynamic Structural Components

The dynamic structure of a model consists of the mutable elements of the system,
those whose state evolves in time. In Electrum such signatures and fields are
declared as var. In the HL3 model, as depicted in Fig. 1, these regard the physical
state of the trains and the state of the trackside and the on-board systems.

Each train has an exact physical position (not necessarily known by the
trackside) for its front and rear ends, represented by variable fields pos_front

and pos_rear, that point to exactly one VSS at each time. Variable sub-signatures
are used to represent the state of the PTD communication between each train
and the trackside. Variable signature connected represents trains connected to
the trackside at each instant, which will be modified by start (SoM) and end
of mission (EoM) events, while report_front and report_rear denote which
trains reported front and rear information at that instant, respectively. Dynamic
auxiliary function mute identifies all trains not communicating in each instant,
while function disintegrated identifies trains that failed to report their integrity
(no rear report). Other auxiliary functions combine this information to retrieve
the currently known information about a train. For instance, knownFront retrieves
the last reported front position of a train using the past operator since.

Besides PTD information, an optimization is implemented in HL3 to detect
the position of trains transitioning between TTDs, in order to avoid delays due
to “jumping trains” [2, p. 12]. This information is assumed to exist by the VSS
state machine (namely transition #2B). The field jumping on VSSs registers
such occurrences and is also used when retrieving train position information; its
content is fixed by a fact omitted from the excerpt.

HL3 proposes a state machine for VSSs, that combines the TTD and PTD
information to determine the current state of a VSS, which is then used to issue
MAs. This is encoded by field state that at each instant assigns to each VSS an
element from the enumeration State. Unlike PTD information, the state of TTDs
is considered safe: if there is a train located within it, it is reported as being
occupied. Although this communication may have delays, we have opted to make
it instantaneous and exact, as defined by function occupied. Implementing such
delay would be straight-forward, by encoding an action that denotes whether
TTD information has been received in each state, likewise the train PTD reporting
predicates that will be presented in Section 2.3. However, this would increase the
complexity of the model considerably and have little impact in the behaviour
specified in [2] (it slightly affects Scenario 5 as there is no delay on detecting
the free state of TTD20). Finally, the trackside system registers the end of the

var sig disconnect_ptimer in VSS {}
var sig integrity_loss_ptimer in VSS {}

var sig shadow_timer_A in TTD {}
var sig shadow_timer_B in TTD {}
var sig ghost_ptimer in TTD {}

var sig mute_timer in Train {}
var sig integrity_timer in Train {}

pred set_mute_timer {
mute_timer in mute

}
pred set_integrity_timer {
integrity_timer in disintegrated

}

pred set_shadow_timer_A {
shadow_timer_A in start_shadow_timer_A

}
fun start_shadow_timer_A : set TTD {

{ ttd : TTD | once {
previous ttd in occupied
ttd not in occupied
previous ttd.end.state = Ambiguous } }

}
. . .
pred set_timers {
set_mute_timer and set_disconnect_ptimer
set_integrity_timer and set_integrity_loss_ptimer
set_shadow_timer_A and set_shadow_timer_B
set_ghost_ptimer

}

Fig. 2. Excerpt of the timers specification in the HL3 model.

current MA for each train. All the VSSs that comprise a train’s MA are calculated
by the dynamic functions MAs using transitive closure operators.

To avoid performance deterioration due to communication fluctuations, HL3
implements a set of timers to avoid unnecessary state transitions. Each of these
timers has start and end events, and is assigned to either a VSS, a TTD or a train.
To model whether such timers have expired, for each of these elements variable
sub-signatures were introduced, as depicted in Fig. 2. For instance, variable
sub-signature mute_timer contains at each instant the trains for which that timer
is expired. A predicate for each type of timer denotes whether the start conditions
have been met. For those with dual start and stop events, this is straight-forward.
For instance, a mute_timer may be triggered if a train is mute. Other timers,
like the shown shadow_timer_A, must query over every previous state whether
the start condition was met using the past operator once. Predicate set_timers

aggregates all these predicates. The reference document states that, once expired,
timers remain so until the start conditions are met again [2, p. 14]. Yet, this
behaviour renders some of the scenarios inconsistent (see Section 3.3), so we have
opted not to implement it. No particular time duration was imposed on timers,
so only the possibility of expiration is modelled, and not its enforcement. Since
each step does not represent any particular real-time interval, the free expiration
allows for the designer to test different interleavings. Electrum has limited support
for integers, which could allow for the eventual codification of real-time timers.
However, during analysis these are translated into their bitwise representation so
that they can be handled by the SAT solvers, which encumbers the process for
complex integer expressions or larger integer values.

2.3 System Evolution

The system evolves as the trains move and report PTD information, and the
trackside updates the states of the VSSs and the trains’ MAs. Actions that model
this behaviour can easily be represented in Electrum as declarative predicates

pred move [t:Train] {
t.pos_front’ in t.pos_front.(iden+V/next)
t.pos_rear’ in t.pos_front’.(iden+V/prev)
t.pos_rear’ in t.pos_rear.(iden+V/next)
{ t in connected

t in report_rear’ => t in report_front’
} or {

t not in report_front’
t not in report_rear’ }

t in connected iff t in connected’
}

pred som[t:Train] {
t not in connected
connected’ = connected + t
report_rear’ = report_rear + t
report_front’ = report_front + t
pos_front’ = pos_front
pos_rear’ = pos_rear

}

Fig. 3. Excerpt of the train evolution of the HL3 model.

pred states[vss:VSS] {
vss.state’ = (

n01[vss] => Unknown else
n02[vss] => Occupied else
n03[vss] => Ambiguous else
n04[vss] => Free else
n12[vss] => Occupied else
n05[vss] => Ambiguous else
n06[vss] => Free else
n07[vss] => Unknown else
n08[vss] => Ambiguous else
n09[vss] => Free else
n10[vss] => Unknown else
n11[vss] => Occupied else

vss.state)
}

pred n09 [v:VSS] {
v.state = Ambiguous
after (n09A[v] or n09B[v])

}
pred n09A [v:VSS] {

parent[v] not in occupied
}
pred n09B [v:VSS] {

some t:Train {
t not in disintegrated
v not in knownLoc[t]
previous v not in knownLoc[t]
parent[v] not in shadow_timer_A
parent[v] in start_shadow_timer_A }

}

Fig. 4. Excerpt of the VSS state machine specification in the HL3 model.

that relate the current state of variable elements with the succeeding one using
primed expressions. More advanced actions may freely use LTL operators.

A train in the developed model can be updated by 4 events, some of which
are presented in Fig. 3. SoM (som) and EoM (eom) actions simply connect or
disconnect a train to the trackside. A split action models the breaking up of
a train into two, affecting its integrity. A two-carriage train is modelled by two
trains that have had exactly the same state up to that point; during break up, the
front one will fail to report the rear position, resulting in lost integrity, and the
rear one will be disconnected from the trackside. Finally, the move action updates
the physical position of the train and may or not report PTD information to the
trackside. To keep the evolution of the system manageable, the train is allowed to
move forward at most one subsection in each step, and the rear is always kept at
most one subsection away from the front, although these restrictions could easily
be relaxed. A disconnected train never reports to the trackside, while connected
ones may or not do so; reports lacking rear information will model integrity loss
events. Although MA policies are beyond the HL3 concept, it is assumed that
trains may move outside assigned MA for operational reasons [2, p. 6]. Our model
assumes that a connected train moves within its MA, while disconnected ones
may disregard it. Notice that most of these actions are encoded as declarative

pred MAs {
all t:connected-mute_timer |
t.MA’ = t.MA or (knownFront[t].*next&t.MA’.*prev).state = Free or after OS[t]

all t:(Train-connected)+mute_timer |
t.MA’ = t.MA or t.MA’ = knownFront[t]

}
. . .
fact trace {
always {

set_timers and MAs and all v:VSS | states[v]
(all t:Train | move[t]) or (some t1,t2:Train | split[t1,t2] or som[t1] or eom[t1]) }

}

Fig. 5. Excerpt of the MA assignment and trace specification in the HL3 model.

predicates that allow for a range of behaviours at each instant. For simplicity
purposes, all trains are assumed to be in the track at all times (multiplicity
one on positions), so trains may not enter or leave the track. Modelling such
behaviour is easily done by creating additional “dummy” VSSs at the beginning
or end of the track, as in Scenarios 8 and 9.

When processing PTD reports, [2, p. 11] assumes that the front and rear
end reports are independent events, with the front one always being processed
first in case of simultaneous reports. Forcing this behaviour at all times would
however double the number of steps in the generated traces, which would possibly
encumber the solving process. Thus, besides the independent processing of front
information (represented by reports without rear information), our model also
allows the the simultaneous processing of front and rear reports. In fact, in the
operational scenarios, PTD reports are collapsed into a single step, and the
only scenario where this phenomenon is relevant is Scenario 9; in this case the
reporting event was forced to be split into two steps in its encoding, the first
missing rear information. Lastly, there are 3 events in [2] related to the integrity
of the train that trigger the same VSS state transitions (#7B and #8A) and
the integrity loss propagation timer (a train reports lost integrity, changed train
length or its wait integrity timer expired); as these always occur in conjunction,
they were abstracted into a single condition where the train fails to report the rear
information, which simplified the model without affecting the overall behaviour.

Predicate states in Fig. 4 updates the state of the VSSs by encoding the
state machine defined in [2, p. 6]. Depending on the current state of each VSS and
on the available PTD and TTD information, each transition condition is tested
in an order that preserves the imposed priorities. As an example, the condition
for transition #9 between ambiguous and free states is depicted in Fig. 4. Due to
the complexity (and occasional ambiguity) of these conditions, this construction
process was iterative with the encoding of the operational scenarios (Section 3.2).
Section 3.3 discusses some potential issues detected in [2] in this process.

The assignment of MAs is outside the scope of the HL3 concept [2], but the
validation of the model requires that some reasonable, even if loose, policy is
encoded. Its declarative definition (predicate MAs at Fig. 5) allows for alternative
behaviours. For connected trains, either the MA remains unchanged or is updated

Fig. 6. 3 succeeding steps of the HL3 operational Scenario 2.

to a VSS that is only separated from the front end of the train by free VSSs. To
model the on-sight (OS) operational mode, that gives full privileges to the driver,
the MA may also be set to the last VSS of the track (used in Scenarios 6 and 8).
For disconnected trains, either the MA is preserved, or removed altogether (by
assigning it the currently known position of the train).

All the actions are enforced through a fact trace (Fig. 5) that guarantees
that all solution traces are created from the application of these actions. These
usually encode interleaving semantics of actions, but since this would lead to an
explosion of steps in each trace, we allow all trains to move in each step.

3 Validation

A conceptual model must be validated against the requirements and with other rel-
evant stakeholders. The Electrum Analyzer provides support to generate solutions
to the model that satisfy provided properties, allowing for the specification and
exploration of scenarios, as well as providing a logic-agnostic graphical visualizer.

3.1 Scenario Visualisation

The Electrum Analyzer provides a graph visualiser for depicting the found instances,
whose appearance can be customisable through themes. This is essentially an

extension to the Alloy Analyzer to natively support infinite temporal traces
through loopbacks. These logic-agnostic graphical instances are understandable for
stakeholders without expertise in formal specification, and have previously proven
to be suitable for establishing a common interpretation of the requirements [7]. We
focused on providing a visualisation theme that allowed both software designers
and ERTMS/ETCS domain experts to communicate through a common scheme.

The Analyzer’s theme editor provides basic customisation functionalities
(e.g., changing the shape, colour and border of different signatures and fields).
Additional customizations can be performed by defining functions that return sets
of elements, whose result is calculated at static time by the visualizer. This enables,
for instance, drawing a VSS according to its current state, by creating functions
that for each state retrieves, by comprehension, VSSs elements for which that state
holds, e.g., fun occupied : set VSS {{vss:VSS | vss.state = Occupied}}.

Given the theme customizations, the Alloy Analyzer applies a graph represen-
tation algorithm and distributes nodes among layers, a process that is oblivious of
the underlying semantics of the nodes and edges. The only mechanism available
to the user to change the shape of this graph is to reverse the direction of edges. In
our HL3 model, this resulted in a graph that, although layered into TTDs, VSSs
and trains, did not preserve the order on TTD and VSS blocks, hindering the
readability of scenarios. To overcome this, we implemented a small modification
of the Electrum Analyzer where information regarding totally ordered sets (TTD
and VSS in HL3) is passed down to the visualizer and, when possible, used to
order such elements in the same graphical layer.

Using the developed theme3, the appearance of HL3 instances and counter-
examples in the Electrum Analyzer is that of the snapshot in Fig. 6 for the
operational Scenario 2. Both TTD sections and VSS subsection appear layered
and ordered, with different colours depending on their current state (a textual
label is also present). A train representation depicts (textually and graphically)
its position, reporting status and MA. Expired timers are also depicted. Figure 6
in particular denotes a split event, where two trains with a shared state break
up, leaving one disconnected (Train$0) and the other moving forward.

3.2 Modelling the Operational Scenarios

Electrum specifications can be animated through run commands that, given a
desirable property and a finite scope for the declared signatures, automatically
search for satisfying instances. Each signature scope denotes the maximum (or
exactly the) number of elements that will be considered by the Analyzer. When
performing bounded model checking, the maximum trace length that will be
considered is imposed by a scope on Time. Once a solution is found, additional
non-isomorphic solutions can be efficiently navigated through the Analyzer.

The HL3 concept [2] provides a set of operational scenarios that proved
essential to validate the model during development. All 9 scenarios were encoded

3 http://haslab.github.io/Electrum/ertms.thm

http://haslab.github.io/Electrum/ertms.thm

pred S2 {
let v11 = V/first, v12 = v11.next, v21 = v12.next, . . . {
some disj t1,t2:Train {
split[t1,t2]
always t1.MA = v32
t1 in report_front;t1 in report_front;. . .
t1 in report_rear and after (t1 not in report_rear and after (. . .))
t1.pos_front = v12;t1.pos_front = v12;. . .
t1.pos_rear = v12 and after (t1.pos_rear = v12 and after (. . .))
. . . } }

}

Fig. 7. Excerpt of the Scenario 2 specification in the HL3 model.

as predicates in Electrum in order to guarantee that our model was not over-
constrained, and were used as regression tests for any succeeding modifications.
These can be automatically generated by the bounded model checking procedures
of the Analyzer through the run commands available in the provided Electrum
model. Using the provided theme, these can visualized in a style similar to the
one presented in Fig. 6 for Scenario 2. The outcome of all 9 scenarios can be
consulted in Electrum’s website4. Some inconsistencies between the VSS state
machine and the operational scenarios were also detected during this process,
which are discussed in Section 3.3.

Specifying concrete instances with several steps in Electrum is verbose, since
LTL does not allow the reference to concrete time instants, requiring the creation
of formulas with nested after operators. This was manifest when developing the
HL3 model, where every scenario has at least 8 steps. This led us to explore
potential language extensions to help specifying such scenarios, including the
introduction of a new operator that acts as syntactic sugar during the specification
of the traces: rather than p and after (q and after r) one can now simply write
p;q;r. Figure 7 presents an excerpt of the predicate encoding Scenario 2, with
rear information encoded with standard LTL operators and front information
with the new operator. Running this predicate, which results in the trace depicted
in Fig. 6, can be done through the following command:

run S2 for 8 Time, exactly 2 Train, exactly 3 TTD, exactly 8 VSS

All operational scenarios have 3 TTD sections and 8 VSS subsections and
either 1 or 2 trains, so the scopes can be bound exactly in the commands. At
the beginning of the development of HL3, scope Time denoted the maximum
trace lengths that would be explored by the bounded analysis procedures, such
that a scope n on Time would launch an iterative process where traces up to
n are checked. This is important, since the absence of a counter-example for
length n does not entail its absence for some m < n. However, in the HL3 model
we are aware of the exact number of steps that comprises each scenario, and,
since this number is not particularly small (at least 8 states), the incremental
iterative process encumbers the solving process. Thus, the Analyzer was adapted

4 https://github.com/haslab/Electrum/wiki/ERTMS

https://github.com/haslab/Electrum/wiki/ERTMS

to support ranges or exact bounds for trace lengths, allowing for the faster
generation of scenarios. It should also be noted that according to bounded model
checking semantics [1], evidences for always constraints (or counter-examples
to eventually ones) require infinite traces, represented as a finite prefix that
loops back into itself. Thus, scenarios must not deadlock at the last state, but
somehow loop back into a previous state. This is not possible for every state (e.g.,
Scenario 9), meaning that the trace length scope may need to be increased.

Notice that the scenario predicates do not completely fix the states. Instead,
they focus on establishing the movement of the train (as well as some timer and
MA events) and leave the VSS state machine act freely, whose state will be solved
by the Analyzer.

Electrum is also useful to explore scenarios with looser restrictions, when the
user wants to reason about model instances that satisfy certain properties. For
instance, to explore whether the existence of jumping trains is problematic (recall
that field jumping registers the occurrence of jumping trains) one can simply run:

run {eventually some jumping} for 8 Time, 3 Train, 3 TTD, 8 VSS

Alternative solutions, with arbitrary track configurations within the scope, can
then be quickly iterated, helping the user detect problematic instances.

3.3 Possible Issues with the HL3 Concept

Model validation allowed us to detect possible ambiguities or under-specifications
in the HL3 concept. Note that this analysis is essentially based on [2] without any
a priori domain knowledge. Two of these issues regard the VSS state machine
triggering conditions, namely #1A and #5A, that when codified as described in
the document result in a behaviour that does not match that of the operational
scenarios. Condition #1A triggers the transition between a free VSS into unknown
whenever the parent TTD is occupied without a train located or without MA
assigned. Yet some scenarios do not reflect this behaviour, like Scenario 7,
where VSS33 should transition to unknown since no train is located in the
occupied TTD30. Removing the second disjunct (or converting the condition
into a conjunction) results in the expected behaviour. Transition #5A between
unknown and ambiguous should be triggered whenever a train is located in the
VSS. For the remainder transitions, “located” was assumed to denote the last
known position of the train. Yet, several scenarios break under this interpretation
for #5A, like VSS22 at Scenario 4 that remains unknown even though the last
reported position of the train was that VSS. Only considering trains reporting to
be in that VSS in that instant matches the scenarios’ behaviour.

Another issue regards the indefinite expiration of timers. Although [2, p. 14]
states that expired timers remain expired until the start conditions are met again,
this behaviour does not seem to be followed in the operational scenarios. For
instance, in Scenario 9, if the ghost propagation timer remains expired, VSSs at
TTD30 should transition from free to unknown according to #1F.

4 Verification

Proper validation increased our confidence that the model effectively abstracts
the behaviour specified in the HL3 concept. The next logical step is to verify
whether such model behaves as expected. Similar to the run commands, check
commands in Electrum instruct the Analyzer to search for instances that break
a certain assertion within a fixed scope. However, there is no explicit notion of
correctness defined in [2]. Moreover, this correctness is dependent on behaviour
that is outside the scope of [2], namely the policy for extending and shortening
MAs, as well as how the train acts upon those MAs. As a consequence, this
exercise was mainly exploratory, although we hope that these preliminary results
can foment the discussion among domain experts and lead to more formally
defined safety requirements for implementations of the HL3 concept.

A reasonable correctness property is that, if PTD communication never fails
and the integrity of the trains is never compromised, then no states other than
free or occupied are assigned to the VSSs. In fact, it should be the case that every
VSS with a train on it is set as occupied and the others as free. Recall that we
had already imposed two (reasonable, in our perspective) assumptions regarding
MAs in Section 2.3: i) trains connected to the trackside always move within the
assigned MAs, and ii) to connected trains, the trackside will assign MAs between
the currently known position and a succeeding free VSS or grant an OS MA.
Proving these properties required the additional restriction iii) that OS MAs are
never assigned. This should be expected since this would allow trains to freely
move ignoring trackside information. Electrum allows the definition of assertions
as regular formulas, which given these pre-conditions can be encoded as:

assert trains_Occupied {
(init and always

(no mute and no disintegrated and no t:Train | after OS[t])) =>
always Train.(pos_front+pos_rear).state = Occupied }

check trains_Occupied for 8 VSS, 3 TTD, 2 Train, exactly 12 Time

where state predicate init forces all trains to be reporting and the track to have
a consistent state in the initial state.

More interesting safety properties allow failures in communication or non-
integral trains, which necessarily involves reasoning about timers. Recall that
our model, in order to be flexible, did not impose any particular duration on the
timers, i.e., the number of steps that the starting condition must hold in order to
the timer to expire. Since timer duration necessarily affects the correctness of the
system, our safety assertions assumed a conservative approach where every timer
expires instantaneously (predicate auto_timer). Guaranteeing these properties
required however the additional pre-condition that iv) disconnected trains do
not move outside the assigned MA. This allowed us to show that, even with
problematic trains, the state is correctly assigned to the VSSs, for instance, that
the free state is never assigned to a VSS with a train on it:

assert timers_Free {
(init and always (auto_timer and

(all t:Train | t.pos_front in MAs[t] and not (after OS[t]))) =>
always Train.pos_front.state != Free }

More complex assertions could test alternative timer durations and reason about
possible interleaving issues among different kinds of timers.

5 Discussion

Being an extension to Alloy, it is important to compare the verbosity and
readability of Electrum models with those developed in standard Alloy. Thus,
a similar encoding of the HL3 concept was developed in Alloy as well5, which,
given the complexity of the case study, enabled us to clearly picture the cons
and pros of the two languages. The static structural components of the system
are identical in either Electrum or Alloy. Differences arise when modelling the
dynamic components, as Alloy requires time, evolution and dynamic properties to
be explicitly modelled. This would require the explicit declaration of the signature
Time and the conversion of all variable signatures and fields to a state idiom [4],
where, e.g., field pos_train would be declared with type VSS one → Time. Then,
temporal formulas must explicitly quantify over time instants. For instance the
trains_Occupied assertion in Alloy would take the shape:

assert trains_Occupied {
(init[first] and all s:Time | no mute[s] and

no disintegrated[s] and no t:Train | OS[s.next,t])) =>
all s:Time | Train.((pos_front+pos_rear).s).(state.s) = Occupied }

The tradeoff is that Electrum does not allow quantification over time instants.
In most cases there is an alternative encoding for such expressions using stan-
dard LTL. For instance, in Alloy one can retrieve the last state s in which a
train reported, treat it as a first-level entity throughout relational formulas and
expressions, and use it to query the state of the system at that state, as in a
function that retrieves the VSSs currently known to be occupied by a train:

fun knownLoc[s:Time,t:Train] : set VSS {
let s1 = max[s.*prev&t.report_front] |
t.pos_front.s1 + t.pos_rear.s1 }

Electrum does not allow explicit references to time instants, but the same behaviour
was encoded using the since past operator (Fig. 1). Other expressions are
necessarily more verbose in Electrum. For instance, evaluating a field r over every
instant except t can be encoded in Alloy as r.(Time-t) = a, while in Electrum it
would have to be expanded into a sequence of after expressions.

The Analyzer allowed for the automatic generation of scenarios and checking
of assertions through bounded and unbounded model checking. All analyses were
run in a quad-core Intel Core i5-4200U Haswell with 4GB RAM, the bounded
relying on MiniSAT 2.2.0 and the unbounded on nuXmv 1.1.1. All the 9 scenarios
were generated by bounded model checking procedures, since their exact trace
5 http://haslab.github.io/Electrum/ertms.als

http://haslab.github.io/Electrum/ertms.als

length is known, with performance times ranging from 20s for Scenario 1 to
276s for Scenario 9. The safety properties presented in Section 4 were verified
through both bounded and unbounded model checking, since the latter provides
additional correctness guarantees but has worse scalability. For instance, property
trains_Occupied, for 5 VSS, 2 TTD and 2 Train elements is verified by the bounded
procedure in 49s and by the unbounded in 1273s. Note that such analysis considers
every possible track configuration with that number of sections, 8 for this scope.
Previously we proposed an automatic decomposed solving strategy [6] that solves
each of these configurations in parallel, which allowed the unbounded performance
to be cut down to 73s. A larger scope, with 8 VSS and 3 TTD elements can be verified
in 20m by the bounded procedure, analysing all 42 valid track configurations.

Bounded model checking can sometimes have unpredictable effects for those
unaccustomed with its semantics. As already reported, the infinite traces imposed
by global constraints forbid deadlocks at the last state, forcing the trace to
loopback into a previous state. Since this not necessarily true in every trace, it
may lead to unexpected unsatisfiable commands and longer traces. A related
issue regards the use of past-time operators which, due to the finite nature of the
trace and the alternative past state when reasoning at the loopback state, can
also lead to unpredictable behaviour.

6 Conclusions

The complexity of the HL3 concept has tested Electrum and its Analyzer to
their limits, allowing us to fully explore their potential and identify possible
improvements and future lines of research. Some improvements (minor changes to
the visualizer, a new temporal operator for formulas over traces, more control on
the scope of trace lengths) were also implemented throughout the development
of the HL3 model. The proposed model could still be further developed to allow
reasoning about some HL3 aspects that were abstracted in the current version,
including delays on TTD reports and forcing independent front and rear reports,
although we expect them to have a considerable toll on performance.

The definition of the operational scenarios was the most cumbersome task,
so we are currently exploring potential extensions to the language to ease that
process, including variants of temporal logic with support for intervals that
would allow the definition of properties over ranges of steps. It should be noted
however that Electrum’s (and Alloy for that matter) greatest strength is on the
exploration of scenarios, and not the specification of fixed instances. Although we
advocate that the current graphical feedback can be understood by stakeholders
without background on formal specification, we also believe that there is room
for improvement. We are currently working on techniques specifically tailored for
the visualization and animation of traces.

We hope that this preliminary work can help clarify some ambiguities in
the HL3 concept and motivate the ERTMS/ETCS community to explore the
potential of formal specification and analysis methodologies.

Acknowledgements The authors would like to thank David Chemouil for the
support provided during the model checking of the model. This work is financed
by the ERDF – European Regional Development Fund through the Operational
Programme for Competitiveness and Internationalisation - COMPETE 2020 and
by National Funds through the Portuguese funding agency, FCT - Fundação para
a Ciência e a Tecnologia within project POCI-01-0145-FEDER-016826.

References

1. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model checking.
Advances in Computers 58, 117–148 (2003)

2. EEIG ERTMS Users Group: Hybrid ERTMS/ETCS Level 3 – Principles (2017)
3. INESC TEC, ONERA: Electrum Analyzer, v1.0. Available under the MIT License

at https://github.com/haslab/Electrum/releases/tag/v1.0 (2018)
4. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press,

revised edn. (2012)
5. Macedo, N., Brunel, J., Chemouil, D., Cunha, A., Kuperberg, D.: Lightweight

specification and analysis of dynamic systems with rich configurations. In: SIGSOFT
FSE. pp. 373–383. ACM (2016)

6. Macedo, N., Cunha, A., Pessoa, E.: Exploiting partial knowledge for efficient model
analysis. In: ATVA. LNCS, vol. 10482, pp. 344–362. Springer (2017)

7. Moreira, J.M., Cunha, A., Macedo, N.: An ORCID based synchronization framework
for a national CRIS ecosystem. F1000Research 4(181) (2015)

https://github.com/haslab/Electrum/releases/tag/v1.0

	Validating the Hybrid ERTMS/ETCS Level 3 Concept with Electrum

