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Abstract 39 

Environmental variability changes the distribution, migratory patterns, and susceptibility to 40 

various fishing gears for highly migratory marine fish. These changes become especially 41 

problematic when they affect the indices of abundance (such as those based on catch-per-unit-42 

effort: CPUE) used to assess the status of fish stocks. The use of simulated CPUE data sets with 43 

known values of underlying population trends has been recommended by ICCAT (International 44 

Commission for the Conservation of Atlantic Tunas) to test the robustness of CPUE 45 

standardization methods. A longline CPUE data simulator was developed to meet this objective 46 

and simulate fisheries data from a population with distinct habitat preferences. The simulation was 47 

used to test several statistical hypotheses regarding best practices for index standardization aimed 48 

at accurate estimation of population trends. Effort data from the US pelagic longline fleet was 49 

paired with a volume-weighted habitat suitability model for blue marlin (Makaira nigricans) to 50 

derive a simulated time series of blue marlin catch and effort from 1986-2015 with four different 51 

underlying population trends. The simulated CPUE data were provided to stock assessment 52 

scientists to determine if the underlying population abundance trend could accurately be detected 53 

with different methods of CPUE standardization that did or did not incorporate environmental 54 

data. While the analysts’ approach to the data and the modeling structure differed, the underlying 55 

population trends were captured, some more successfully than others. In general, the inclusion of 56 

environmental and habitat variables aided the standardization process. However, differences in 57 

approaches highlight the importance of how explanatory variables are categorized and the criteria 58 

for including those variables. A set of lessons learned from this study was developed as 59 

recommendations for best practices for CPUE standardization. 60 
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1. Introduction  66 

Indices of abundance derived from fishery-dependent time series of catch per unit effort 67 

(CPUE) are often an integral part of the stock assessment process. Thus, there is a need to 68 

understand the processes that might lead to biases in the indices. Nominal CPUE values are often 69 

not proportional to the abundance of the stock being assessed (Campbell, 2015, 2016; Maunder et 70 

al., 2006; Maunder and Punt, 2004). Variations in CPUE can be the result of changes in the 71 

abundance of the fish stock, shifts in movement patterns, environmental and climatic changes as 72 

well as changes in fishing strategy over time (Bigelow et al., 1999). Use of CPUE to track 73 

abundance is based on the assumption that catch (C) is related to the effort (E), the abundance (N) 74 

and the catchability (q): 75 

� = ��� 76 

The use of the CPUE (C/E) as an index of abundance (N) thus depends on the assumption that 77 

catchability is constant or that changes in catchability can be modeled and removed from the index. 78 

Changes in catchability can be related to any changes to the fishing gear, species targeting and 79 

fishing methods. Additionally, the spatial extent of the fish population or the fishery may shift over 80 

time, influencing the fraction of the stock that is available to each fleet. Habitat suitability, such as 81 

dissolved oxygen concentration and water temperatures in the pelagic environment, can affect fish 82 

availability or catchability (e.g., by altering fish behavior). Incorporation of environmental 83 

covariates into index standardization might address some of these issues, but this is not routinely 84 

done. Best practices for incorporating environmental variables in CPUE standardization have not 85 

been defined, which adds uncertainty in choosing standardization methods aimed at minimizing 86 

CPUE bias.  87 

A species distribution model (SDM) and longline simulator (LLSIM) were developed to test 88 

methods of CPUE standardization, amongst other goals. This paper uses simulated longline catch 89 

data sets with known values of underlying population trends to test the robustness of CPUE 90 

standardization methods. A species distribution model for Atlantic blue marlin (Makaira 91 

nigricans) was developed using pop-up satellite archival tag (PSAT) data paired with detailed data 92 

describing the physical environment within the model region (Figure 1) to predict fish abundances 93 

using habitat suitability modeling (Goodyear et al., 2017; Goodyear, 2016). This approach is 94 

commonly used for predicting habitat quality from habitat suitability indices based on ecological 95 

niche theory (Hirzel and Lay, 2008). Applications to billfish species include the identification of 96 

potential new fishing grounds (Chang et. al., 2012, 2013), and forecasts of the effects of climate 97 

change (Robinson et al., 2015). This approach is paired with fishing fleet dynamics, using 98 

historical effort distribution and gear configurations of the US pelagic longline fishery.  Fleet 99 

catchability was defined to be gear-specific, while spatial effort allocation mimicked observed 100 

longline fishing locations. The simulated fleet was used to sample the blue marlin populating the 101 

SDM throughout the year, producing simulated catch per unit effort data based on the interactions 102 

between fishing effort and habitat suitability (i.e., fish availability) as well as gear configuration 103 

(gear efficiency) (Forrestal, et al., in press). The historical effort and gear configurations of the US 104 

longline fleet as adapted for use in the longline simulator are extensively discussed in Forrestal et 105 

al. (In press).  Four distinct population trends were simulated for blue marlin (steady, increasing, 106 

decreasing, and fluctuating) to produce simulated catch datasets. These datasets were provided to 107 

eight stock assessment scientists with expertise in standardizing CPUE indices who used methods 108 

of their choice to standardize the indices. The goals of this work are to determine how well different 109 



 

 

standardization methods currently in use capture population trends and if the inclusion of 110 

environmental and habitat data aids in the standardization process. 111 

2. Material and methods           112 

2.1 Species distribution model 113 

The simulated population model is defined in two steps. The first input is the population 114 

abundance in each year and month of the time series (here equal to September 1986 to December 115 

2015). The second input is the relative population density per one-degree latitude and longitude 116 

and water depth gradient defined by the SDM (Goodyear et al., 2017; Goodyear, 2016) based on 117 

the species habitat preferences for each model time-step. The densities were normalized so that the 118 

sum of the products of the relative density x volume over each latitude, longitude, and depth = 1.0.  119 

The SDM provided the average distribution of the entire population by month and year during 120 

hours of daylight and nighttime to account for diel vertical redistribution. The method accounts 121 

for temporal changes in the location and volume of the habitat associated with seasonal and longer-122 

term changes in the environment. For example, it directly estimates the vertical density 123 

distributions in areas affected by the oxygen minimum zones (Stramma et al., 2012). The SDM 124 

uses published blue  marlin oxygen tolerance information (Brill, 1994), coupled with temperature 125 

utilization and day-night ΔT patterns from PSAT-tagged blue marlin to predict the species 126 

distribution from the detailed environmental data (Goodyear et al., 2017; Goodyear, 2016).  127 

Four population trends were used in this study, a constant population of 500,000 individuals, 128 

a decreasing population with a 70% reduction over 29 years, an increasing population by 70% over 129 

29 years and a population that fluctuated around 500,000 individuals over the time period (Fig. 2-130 

4). The declining pattern is roughly equivalent to the values estimated in the most recent 131 

assessment (Anon, 2012) and the increasing population is its mirror image. 132 

2.2 Environmental Data 133 

Modeling the spatial distribution of a species requires quantitative data about the physical 134 

environmental variables that determine its habitat. Temperature and to a lesser extent dissolved 135 

oxygen concentration influence blue marlin habitat use (Block et al., 1992). Environmental data 136 

were obtained though the Community Earth System Model (CESM1), which is a global ocean-137 

sea-ice model coupled to a biogeochemistry model BEC (Biogeochemical Elemental Cycle) 138 

(Danabasoglu et al., 2012; Long et al., 2013). The model covers the global ocean with a latitudinal 139 

and longitudinal resolution of 1.0° and 60 vertical layers with the bottom level at 5,500 m. Annual 140 

data outputs from CESM were available through 2012. Mean values from the final year were used 141 

to parameterize the species distribution model for 2013-2015.  142 

2.3 Longline simulation model  143 

The core element of the longline simulator is the catch on a single hook of a longline set. 144 

The catch is a probabilistic event and is simulated for each hook of each set. The X-Y spatial 145 

structure of the simulator is from 350S to 550N latitude and 950W to 200E longitude, exclusive of 146 

major land masses. This area is broken down into 7,067 cells; each cell is 1 degree of latitude by 147 

1 degree of longitude. Each longitude-latitude cell is also divided into 46 depth strata of unequal 148 

size, corresponding to the environmental depth data. Conceptual details are presented in Goodyear 149 

et al. (2017) and Forrestal et al. (in press), but fundamentally involve the integration of population 150 

size, an essential gear coefficient (k) and a habitat coefficient (w) for each set. The habitat 151 

coefficient integrates the hook-depth probabilities at depth for each hook on a simulated set with 152 

the species relative density at the latitude and longitude of the set in each of the 46 depth layers 153 



 

 

apportioned by the proportion of the set that fishes at that depth in hours, separated between 154 

daylight and darkness. 155 

2.4 Data Analysis  156 

The longline simulator outputs a catch by set file with column headings typically observed in 157 

pelagic longline fishery logbook data. For this exercise, the variables included with the number of 158 

blue marlin caught were: total number of hooks, hook type, bait type, number of light sticks, hooks 159 

between floats (HBF), month, year and latitude and longitude (Table 1). Hook type had four levels: 160 

circle hooks, J hook, a combination of circle and J hooks and unknown hook type. Bait type used 161 

was artificial, live, dead or unknown. The light sticks were binned values corresponding to 162 

unknown light sticks reported, zero light sticks deployed, 1-500 and 501-1500 light sticks. Hooks 163 

between floats numbered between 2 through 6. These variables are referred to as the gear variables 164 

and include those that are traditionally used for CPUE standardizations. The sea surface 165 

temperature (SST) and the dissolved oxygen (DO) at the surface for the location, month and year 166 

from 1986-2012 were also supplied from the outputs of the CESM and are referred to as the 167 

environmental variables. While the SST and DO were available from the model by depth, only the 168 

surface data were included to mimic the type of data available for CPUE standardization.  All 169 

simulated fishing sets were included in the final data set, including those that did not catch blue 170 

marlin. 171 

Four simulated catch datasets corresponding to the alternative population trends were 172 

distributed to eight analysts across several ICCAT contracting or cooperating countries (i.e., 173 

CPCs). These analysts have extensive knowledge and experience developing standardized indices 174 

of abundance from fisheries-dependant CPUE data. The work was carried out in a blind-study 175 

approach, the analysts were not aware of the true population trends or the species being simulated 176 

in the dataset. The analysts developed their own approach to the data without consultation with the 177 

authors or the other analysts (Table 2). Some analysts provided more than one standardized index 178 

for each population due to their personal preference. The details of each analyst’s approach are 179 

summarized below. Analysts 1-3 did not have access to population 4 as this dataset was developed 180 

later in the study.  181 

2.4.1 Analyst 1 182 

Analyst 1 used a delta lognormal approach in R to standardize CPUE Factors were included if 183 

they explained at least 5% of the variance. Any two-way interactions that explained at least 5% of 184 

the variance were included as random effects, using the glmer function in the lme4 library for R 185 

(Bates et al., 2015). 186 

The CPUE of blue marlin was calculated as catch per thousand hooks. The potential 187 

explanatory variables were year (1986-2015), hooks between floats (either as a number, centered 188 

by subtracting the mean or as a factor), area (the 9 ICCAT areas for billfish; ICCAT, 2016, Online 189 

Supplementary Fig.1), season (months 1-3, 4-6, 7-9, 10-12), bait type (5 levels), hook type (4 190 

levels) and light sticks (4 levels). Sea surface temperature and DO were not available for all years, 191 

so they were only used in alternate runs ending in 2012. Both variables were coded as factors (SST 192 

<15,15-20,20-25,25-30, DO <4.5,4.5-5, >5) (Table 3).  193 

The gear variables were not evenly distributed in time and there were many combinations of 194 

variables that did not exist. Therefore, some factors were combined or eliminated before running 195 

the models. Data from the South Atlantic (ICCAT billfish areas 96 and 97; Online Supplementary 196 

Fig. 1) was excluded since there were very few observations, with none in recent years. Hook types 197 

2 and 5 and bait type 1 and 3 were excluded due to low numbers of observations. The final dataset 198 



 

 

included 96.5% of the total observations for all populations. The trend in CPUE was calculated as 199 

the probability of presence (calculated as the inverse logit of the year effect in the binomial model) 200 

times the mean CPUE when present (calculated by converting the year effect in the model from 201 

normal to lognormal). The Lo et al. (1992) method was used to calculate the standard errors.  202 

2.4.2 Analyst 2 203 

Analyst 2 used a negative binomial GLMM to standardize the catch in number, with effort 204 

taken to be an offset. The models were run consecutively in R using the MASS, nlme and lme4 205 

packages (Pinheiro et al., 2017; Venables and Ripley, 2002). Latitude and longitude were grouped 206 

into four areas (SE, NE, SW, NW) and months were grouped into quarters. This analyst used four 207 

models including a full model that contained year, area, quarter, hook type, bait type and light 208 

sticks. This model was repeated with the inclusion of sea surface temperature. This analyst did not 209 

use dissolved oxygen as it was highly negatively correlated to sea surface temperature. SST was 210 

treated at a continuous variable. The final two models contained year, area and quarter with and 211 

without SST. An offset term of the natural log of total hooks was used in the both the simple and 212 

full model. 213 

Interaction effects were not used for any of the models. Deviance explained was used as the 214 

main model selection criteria along with ANOVA and F tests (at the 0.05 level).  The year effects 215 

were estimated from the marginal mean in R given all other factors and variables.  216 

2.4.3 Analyst 3  217 

 Generalized linear models were run in R using the packages lsmeans and glmmADMB 218 

(Fournier et al., 2012). First, the annual CPUE observations were plotted as histograms to examine 219 

distribution shape and determine candidate models for estimating index variance. Goodness-of-fit 220 

tests (chi-squared for discrete distributions, and Kilmogorov-Smirnov for continuous distributions) 221 

were ran to evaluate the best-fit model to the observed data. The samples were assigned to spatial 222 

zones defined by the Southeast Fishery Science Center (Online Supplementary Fig. 2). From there, 223 

a delta gamma model was selected that included year, month, area, and all gear variables as factors.  224 

Model performance was assessed by model convergence and residual error distribution. The model 225 

structure was the same for the model that contained environmental data. Sea surface temperature 226 

was treated as a continuous variable, and dissolved oxygen was not used as it was found to be 227 

correlated to sea surface temperature (Table 3). The binomial model and the gamma model used 228 

all the factors with single term fixed effects. No interaction terms were used, and no observations 229 

were discarded.  Temporal trends in samples sizes indicated an imbalance or temporal shift in the 230 

distribution for several factors, particularly gear, hook type, bait, hooks between floats, and area 231 

fished.  This diagnostic was used as a principle tool to select factors for inclusion in the 232 

standardization model.  The final model covariates were selected primarily by examining boxplots 233 

of the mean and variance of CPUE observations across model factors to examine which covariates 234 

appeared to influence CPUE and varied in sample distribution over time and secondarily, Akaike’s 235 

Information Criterion (AIC) of nested models.  236 

 237 

2.4.4 Analyst 4 238 

This analyst was the only one to utilize a Generalized Additive Model (GAM). SAS was used 239 

as the statistical oftware (Schlotzhauer and Littell, 1997). The GAM models were used in the delta 240 

lognormal framework to develop indices. The models applied to each population were the same 241 

and incorporated environmental variables. Smoothing splines were applied to SST, hooks, latitude, 242 

longitude, surface DO, light sticks and hooks between floats (HBF). Months, years, bait type and 243 



 

 

hook type were treated as categorical variables. The success component was modeled using a 244 

binomial distribution and the abundance component was modeled using a Poisson distribution.  245 

2.4.5 Analyst 5 246 

Analyst five used a delta lognormal approach implemented using Generalized Linear Mixed 247 

Models (GLMM). Analyses were conducted using the glimmix and mixed procedures from the 248 

SAS statistical computer software (Schlotzhauer and Littell,, 1997). This analyst employed an 249 

extensive graphical exploration of the datasets, including a spatio-temporal analysis to define 250 

geographical areas and seasonality of the fishery (Online Supplementary Fig. 3). The relationship 251 

between potential factors and the nominal ln(CPUE) of the positive sets were examined using 252 

proportional boxplots. Bivariate plots were used to examine the relationships between the 253 

ln(CPUE) and the environmental variables paired with smoothing fits. The selection of the final 254 

model was based on AIC, BIC, and a χ2 test of the difference between the [–2 log likelihood] 255 

statistic of a successive model formulations (Littell et al., 1996). Interaction effects were used, and 256 

they were assumed to be random. The model structure was constant across all four populations 257 

(Table 3) and one standardized trend was obtained for each population that contained both the gear 258 

and environmental variables (Figure -4). Relative indices for the delta model formulation were 259 

calculated as the product of the year effect least square means (LSmeans) from the binomial and 260 

the lognormal model components. The LSmeans estimates use a weighted factor of the 261 

proportional observed margins in the input data to account for the non-balance characteristics of 262 

the data. LSMeans of lognormal positive trips were bias corrected using Lo et al., (1992) 263 

algorithms. 264 

2.4.6 Analyst 6 265 

 Analyst 6 used a Tweedie Generalized Linear Model; analyses were conducted using R and 266 

the tweedie (Dunn and Smyth, 2005, 2008), lsmeans (Lenth, 2016) and mfp (Ambler and Benner, 267 

2015) packages.  The Tweedie GLM approach does not split the response variables into success 268 

and abundance of CPUE and then apply two separate models as is the case with the delta approach 269 

used by other analysts (270 



 

 

Table 4). The only response variable was CPUE measured as number of blue marlin caught per 271 

1000 hooks, which is a continuous variable with an added mass of zeros for the cases of sets with 272 

zero catches. The categorical variables included in the final model were: year, month, light, hook 273 

type, bait type and hooks between floats. The spatial variables latitude and longitude were grouped 274 

into categorical areas using regression trees, according to the method developed by Ichinokawa 275 

and Brodziak (2010). The environmental variables sea surface temperature and dissolved oxygen 276 

were used as continuous variables transformed with fractional polynomials, using the method 277 

developed by Royston and Altman (1994). 278 

Initially, univariate models were applied for each candidate variable. Significance for inclusion 279 

were likelihood ratio tests comparing univariate models to the null model. All significant variables 280 

(5% level) were then used for a multivariate model. In the multivariate model, the final significance 281 

of each variable was analyzed using deviance tables, AIC and pseudo R2. The final models were 282 

slightly different for each population as the area categorizations and polynomial transformations 283 

were specific to each population dataset (284 



 

 

Table 4). No interaction effects were used due to computational restraints. The year effects were 285 

extracted in the same manner as analyst 3.  286 

2.4.7 Analyst 7 287 

This analyst used a delta lognormal GLMM approach to standardize the CPUE data. The 288 

statistical software employed was R with the glmer function of the lme4 package (Bates et al., 289 

2015).  None of the models included environmental variables due to computational constraints 290 

and the lack of environmental data in the most recent years. Latitude and longitude were grouped 291 

into three areas, a northern region (including the Gulf of Mexico), southern and Caribbean 292 

region. Successes were modeled using a binomial distribution, and abundances using a Gaussian 293 

distribution. Variables were included in the final model if they explained 5% or more of the 294 

deviance. The models used to standardize populations 2, 3 and 4 were the same while the model 295 

applied to population 1 contained interactions between year and some of the other explanatory 296 

variables (Table 3). If interactions with year were significant, they were treated as random 297 

effects. But in most cases, interactions could not be tested due to lack of computing power. The 298 

year effect was extracted by taking the year coefficients in both models and then transforming 299 

and corrected them according to Lo et al. 1992 300 

 301 

2.4.8 Analyst 8 302 

Analyst 8 used a delta lognormal GLM approach. The analyses were conducted using SAS 303 

proc glimmix for the binomial component and SAS proc mixed for the lognormal component.  This 304 

analyst developed eight models, a different model for each population and models with and without 305 

the environmental variables (Table 3). Latitude and longitude were grouped into the US pelagic 306 

longline logbook areas (Cramer, 1983). The Goodman (1960) exact method for calculating the 307 

variance of two independent random variables was used to obtain the variance. Two methods 308 

commonly employed to select models were used; the method of Ortiz and Arocha (2004), which 309 

uses the percent reduction in explained deviance to select factors that explain greater than a certain 310 

percentage and the method of Brown (1992), which uses the percent deviance reduction per degree 311 

of freedom. A 5% cut-off was used for all models, which is commonly used for each method. 312 

Environmental variables were originally entered as categorical and were changed to continuous 313 

(SST*SST and surface DO) due to model fitting issues. The yearly index was extracted using the 314 

SAS lsmeans statement.  315 

2.4.9 Analysis of standardized trends 316 

Standardized trends from the eight analysts and the true population trends were normalized 317 

to the mean to examine differences among the time series. The normalized, modeled CPUE trends 318 

were regressed to the normalized, underlying population trends. Root mean square errors (RMSEs) 319 

were estimated using residuals between the population trend and the standardized CPUE to 320 

quantify the accuracy of each standardization. Further examination of model fits were estimated 321 

using the median absolute relative error (Ono et al., 2015, Online Supplementary Table 1). The 322 

average RMSE for all analysts within populations for models with and without environmental 323 

variables were compared with a t-test or Mann-Whitney U.  The mean standardized trends with 324 

and without environmental covariates were plotted using ggplot2 and Hmisc packages (Wickham, 325 

2009; Harrell, 2017).  326 



 

 

3. Results 327 

3.1 Population 1 328 

Population 1 led to the lowest average RMSE of the four populations examined for the model 329 

types that included only gear variables and those with environmental variables added (Table 5). 330 

The models that contained environmental variables had lower RMSE for all the analysts that 331 

examined both model types. However, there was no difference between the models that used the 332 

environmental models and those that did not (two-sample t (12) =1.49, p=0.16, Table 5). Two 333 

general patterns emerged from examining the standardized CPUEs in comparison to the population 334 

trends: (1) standardized CPUEs that fluctuated around the true population and (2) an 335 

overestimation of population size in the start of the time series and an underestimation beginning 336 

in 2002. The five models that underestimated the true values after 2002 did not include hook type 337 

in their final model. The exception to this trend was analyst 5 who did include hook type in the 338 

final model structure. This analyst was also the only one to use a GAM approach.  339 

The trends obtained by analysts 1, 2, 4, 7 and 8 exhibited a drop in population size in 2002 that 340 

did not occur in the true population trend (Figure ). Analyst 1 noted that hook type was not used 341 

in the final model as it did not explain more than 5% of the deviance observed. Analyst 2 used the 342 

environmental data in a model with only year, quarter and area (SE, NE, SW, NW) as factors and 343 

a full model with all possible variables (models environment 1 and 2 respectively, Figure ). The 344 

simpler model with environmental data had the drop observed in 2002. However, adding the 345 

environmental data smoothed the trend out even though hook type was not included. Both versions 346 

of the complete model (Gear 2 and Environment 2) had a very close agreement to the true 347 

population trend time series.  348 

Both time series obtained by analyst 3 fluctuated around the true population trend as did analyst 349 

6’s time series. However, the error was lower for analyst 6. This pattern was also observed in three 350 

of analyst 2’s models although those standardized trends did not fluctuate around the true 351 

population. The RMSE for those three models were the lowest across all models and populations.  352 

Analyst 5’s standardized time series also fluctuated around the true population. However, 353 

starting in 2012, the standardized trend greatly overestimated the true population size. This analyst 354 

utilized SAS and incorporated the environmental variables into the final model. The environmental 355 

data points did not extend past 2012. Analysts that used these variables truncated the standardized 356 

CPUE at 2012 to account for the shorter time series. This was either discovered through an initial 357 

exploration of the data or, if R was used as the statistical software, the software automatically 358 

excluded records with data, in this case, environmental data. However, analyst 5 used SAS which 359 

runs with years that contain missing data but uses the average value of the missing variable; this 360 

resulted in predictions for these years diverging from the true values. There are estimated values 361 

from the model including environmental effects in the 2013 and 2014, but they are highly 362 

uncertain. This occurred with all models across the four populations for analyst 5. For comparison 363 

purposes to other analysts, the model residuals used in the RMSE analysis were from 1986-2012.  364 

3.2 Population 2 365 

The population 2 dataset contained a declining population trend and all the analysts were able 366 

to capture the decline. In general, the standardized CPUE overestimated the true population size 367 

in the earliest years of the dataset. However, in the most recent years, the analysts either accurately 368 

estimated or underestimated the true population size. As was observed in population 1, the models 369 

with the environmental variables had a non-significant lower average RMSE than those models 370 

that did not incorporate the environmental covariates (Mann-Whitney U=18.0, n1=6, n2=8, p=0.49, 371 

Table 5).  However, whether environmental variables reduced RSME varied by analyst. Models 372 



 

 

including the environmental variables had a higher RMSE for analysts 1 and 3, but not for analysts 373 

2 and 8 (Table 5).  374 

Analyst 1 treated hooks between floats as a factor for population 2 as the relationship between 375 

HBF and CPUE was not as clear for in population 1. Analyst 8’s binomial gear model only 376 

contained year and area.  377 

The time series obtained from analysts 1, 2, 4, 5 and 8 did not match the true population trend 378 

in the earliest years (1986-1993), which corresponded to the highest CPUE values (Figure ). In 379 

later years, the modeled trends converged on the true population trend for analysts 3, 6 and 7. 380 

Analysts 1, 2, 4, and 8 underestimated the true population size in the most recent years. The time 381 

series from analyst 5 followed the true population trend before the extreme values began in 2013.   382 

3.3 Population 3 383 

Population 3, which had an increasing population size, had the largest discrepancy between 384 

modeled values and the true population values as measured by the RMSE (Table 5). As with 385 

populations 1 and 2, the environmental models had a lower error than the gear models, but again 386 

the difference was not significant (two-sample t (12) =0.87, p=0.40, Table 5). 387 

The model produced by analysts 1, 2, 4 and 7 overestimated the population size in the earliest 388 

years and underestimated in the later years (Figure ). The environment models for analysts 3, 6 389 

and 8 all had very similar patterns, closely following the true population trends from 1986 to 2002 390 

and then exhibiting a spike of overestimation in 2008 and again in 2012. The gear models for 391 

analysts 1, 2, 7 and 8 underestimated the true population size starting in 2004; the inclusion of 392 

environmental variables corrected the underestimation in analyst 8’s model, but not for analysts 1 393 

and 2. An examination of the mean standardized trends shows an overall overestimation of the 394 

earliest years population for both the gear and environmental models and an underestimation of 395 

both models beginning in 2004. However, the environmental models track closer to the true 396 

population trend (Figure ). 397 

3.4 Population 4 398 

There are results from five analysts for population 4 as opposed to eight for the other 399 

populations. This is the result of this dataset being distributed to the analysts later in the study. 400 

This dataset represents a fluctuating population with two occurrences of population decline and 401 

resurgence. For this population, the gear models had a lower mean RMSE than the environment 402 

models, although this was not significant (two-sample t (4) =-0.135, p=0.89, Table 5). 403 

Analyst 6 and 7 were able to track the true population’s fluctuations quite well (Figure ) while 404 

analysts 4 and 8 overestimated population size in the first year and then underestimated population 405 

size starting in 2005. Analyst 5 was able to capture the initial population trend quite well before a 406 

similar underestimation of the population starting in 2005. The two mean model trends were quite 407 

similar from 1986 until 1995, with the environmental model tracking closer to the true population 408 

trend from 1995 to 2005. After 2005, both models underestimated the true population with very 409 

similar observed patterns (Figure ). 410 

4. Discussion 411 

The aim of this study was to examine some of the methods employed by ICCAT CPC scientists 412 

who are routinely tasked with creating indices of abundance for the fisheries they participate in 413 

and to determine if these methods were able to reliably capture the underlying population trend in 414 

the provided datasets. The results of this work highlight the wide range of standardization 415 

approaches taken as a result of each ICCAT member country conducting their own analysis. The 416 



 

 

strengths of the ICCAT approach is that it is an inclusive process that subjects the analysis to 417 

review from other national scientists and allows those that are most knowledgeable about the 418 

fisheries to conduct the analyses. However, the weakness of this approach is the use of various 419 

methodologies can lead to conflicting CPUE trends that may or may not be reflective of the true 420 

biomass. Other tuna regional fishery management organization (tRFMO; e.g., WCPFC - Western 421 

and Central Pacific Fisheries Commission) differ from the approach of having each CPC scientist 422 

produce standardized CPUE trends and instead utilize the tRFMO Secretariat or the services of 423 

other advice bodies, such as SPC (Pacific Community). This leads to consistent standardization 424 

techniques applied over different datasets and over time. However, weaknesses of this approach 425 

are that it tends to exclude member countries’ scientists, and the analysts conducting the analysis 426 

may not have the same level of understanding of the fisheries as member country scientists. An 427 

effective compromise between these differing approaches may involve having the national 428 

scientists conduct their own analyses, but with generally consistent and agreed upon methods of 429 

standardization.  430 

While the analysts’ approach to the data and the modeling structure differed, most models were 431 

able to capture the underlying population trends well. However, differences in performance 432 

highlight the importance of how spatial dimensions are defined, how categorical variables are 433 

grouped, how continuous variables are modeled and, importantly, the criteria for model selection. 434 

The analysts used different area combinations for the spatial structure of their models, some 435 

grouping latitude and longitude according to the ICCAT areas for billfish, and others using the raw 436 

1x1° latitude and longitude values. Analyst 6 utilized a regression tree approach, which led to 437 

different area groupings for each population.  Analyst 2 used the spatial domain of the observations 438 

to define four areas of equal quadrants based on the magnitude of effort.  The variables included 439 

in the final model also differed between analysts. Hook type was excluded from the models 440 

developed by several of the analysts.  Nominal catch rates for population 1 were higher, prior to 441 

the switch from J-hooks to circle hooks in 2004 and then were systematically lower than the true 442 

population CPUE. Models that failed to include hook type often failed to re-create the true 443 

population trend. Analyst 8 conducted model selection independently for each population, noting 444 

that models did not converge when hook type was included.  445 

The addition of environmental variables improved the accuracy of estimates of the population 446 

size across all populations with a few exceptions, such as when SAS filled in missing data with 447 

mean environmental values for analyst 5. The inclusion of these variables in the cases of analyst 1 448 

for population 2 and all the populations for analyst 3 resulted in a higher RMSE values and these 449 

models did not follow the true population values as well as the models that did not contain the 450 

environmental variables. Environmental variables are thought to be good predictors of density of 451 

a species in the vicinity of the set and/or hook. Environmental variables that determine suitability 452 

of adjacent habitat should improve estimation of CPUE by accounting for differential availability 453 

of a species in the vicinity of the set and/or hook. However, given the linear nature of GLM models, 454 

suitable transformation of the data (continuous explanatory variables) may be necessary, such as 455 

polynomials (e.g., SST*SST^2) to mimic species’ habitat preference curves. Also, the values of 456 

environmental variables at the surface may not be highly correlated with the values at depth that 457 

influence species’ distributions. Future studies should take advantage of the CESM data outputs at 458 

the actual depths where blue marlin and the hooks are located.  459 

While the use of environmental variables increased accuracy, their inclusion also increased the 460 

annual CVs compared to the models without the environmental variables (e.g. see CVs for analyst 461 

one, Online Supplementary Table 2), likely due to the added requirement of estimating a relatively 462 



 

 

imprecise relationship between catch rates and SST or DO. In theory, a strong relationship between 463 

a species density and environmentally-mediated habitat suitability may exist and is a fundamental 464 

part of the species distribution model (Goodyear et al., 2017). However, within the statistical 465 

models estimated in this exercise, this relationship is estimated from noisy CPUE data which may 466 

lead to relatively imprecise parameter estimates in the models and higher CVs as compared to not 467 

including SST or DO. Additionally, if there is insufficient contrast in the data to estimate the 468 

coefficients related to the environmental predictor variables, the estimates may be very imprecise, 469 

and possibly biased. This could be the case with fishery-dependent data where fishers may only 470 

fish in good temperature windows so the necessary contrast to estimate a CPUE-SST relationship 471 

is missing. Further improvements in the concept of habitat modeling such as occupancy modeling 472 

or use of ancillary information from tagging or tracking in the form of Bayesian priors may provide 473 

improvements in both the accuracy and precision of CPUE-based abundance indices when 474 

including environmental data. 475 

The inclusion of the environmental variables caused a problem for the SAS-based analyses. 476 

Incomplete SST and DO values for the last two years caused the models of analyst 5 to diverge 477 

substantially from the true values. Most analysts did not, or their software packages could not, 478 

estimate the year effects for the years with the missing environmental variables. The SAS models 479 

converged, but estimates for the last two years were incorrect. This situation highlights the problem 480 

that missing data creates for CPUE standardization. Environmental data such as SST, DO, etc. are 481 

likely to be missing, due to either not being recorded, or, if assigned based on satellite 482 

oceanography, missing due to cloud cover. Hence missing data are commonplace and the model 483 

results can depend upon how the missing data are treated. It is therefore critical to examine a priori 484 

whether missing data exists and to decide how it is going to be treated rather than allowing software 485 

to use default settings. 486 

The poor performance of some models implies that standard model selection criteria such as 487 

those based on either a 1 or 5% reduction in deviance per degree of freedom can often fail to select 488 

key factors, in this case, hooks between floats or hook type, that affected catchability. Hook type 489 

had a substantial impact on CPUE in the true populations. Hook type in the fishery changed as a 490 

result of regulations from J-hooks to circle hooks in 2004. This shift in hook type resulted in a 491 

substantial decrease in the nominal CPUE relative to the true populations and was manifest in all 492 

of the four populations. Unfortunately, the knife-edge change in hook type meant that the years 493 

pre- and post-2004 and hook type did not overlap, causing hook type not to be selected using 494 

deviance explained. This result illustrates model selection methods based only on reduction in 495 

deviance may be prone to error regarding factor exclusion and that analysts should err on the side 496 

of keeping factors in the models. This is particularly the case if a priori exploratory analyses or 497 

knowledge of the fishery indicate that the variable could affect CPUE, which is surely the case 498 

with hook type or hooks between floats. Ortiz and Arocha (2004) found that variables that 499 

explained more than 5% of total deviance were generally significant according to likelihood ratio 500 

tests, which supports the use of 5% deviance explained in model selection. However, this selection 501 

method supports models with fewer variables than the AIC and BIC, which frequently include 502 

variables that are not significant in the best models. It should be noted that model selection criteria 503 

such as AIC and BIC supported including hook type. These methods of model selection have a 504 

better theoretical basis than ad hoc methods such as deviance explained, so more frequent use of 505 

them is warranted (Gelman et al., 2014). Our results indicate that these more complex models were 506 

better at predicting the overall trend, supporting the use of information criteria rather than deviance 507 

explained in CPUE standardization. While including many variables in a model may result in 508 



 

 

decreased model performance such as failed convergence, requiring selection of a subset of 509 

variables, most fishery-dependent CPUE standardization data sets have very high sample sizes 510 

relative to the number of model factors so over-parameterization is rarely a concern.   511 

Residual patterns emerging from the model fits to population 2 (the decreasing population) 512 

were a possible indication of high collinearity between the year effect and at least one other 513 

estimated parameter. Direct knowledge of the fishery and proper a priori examination of the raw 514 

data was critical in realizing the true population trend was correlated with hooks between floats in 515 

post hoc analysis. As the true population declined, the average depth of hooks increased. Strong 516 

collinearity between the year effect and other parameters can lead to confounding in parameter 517 

estimates and thus an inability of the model to distinguish between the correlated trends and thus 518 

produce an accurate estimate of the true population trend. However, this association could not have 519 

been detected without knowledge of the true population trend. Thus, collinearity between factors 520 

and the year effect needs to be inferred rather than detected by a means dependent on knowledge 521 

of the true population trend.  522 

Three analysts modeled the population with several year×factor interaction terms, which cause 523 

problems for interpretation of strict year effects (Maunder and Punt, 2004). Certain non-year 524 

interactions, such as month×area or area×season could be manifestations of the migratory behavior 525 

of blue marlin. The month factor signifies something different in a northern region than in a 526 

southern region, which is straightforward to explain. In contrast, interactions with year are harder 527 

to explain, and represent a potential confounding of the abundance signal with another model 528 

factor, such as gear changes or environment.  529 

A common approach when year×factor interactions are significant is to model them as random 530 

effects as was done by several analysts. Unfortunately, modeling year×factor interactions as 531 

random effects can lead to several problems. First, random year×factor interactions can affect the 532 

parameter estimates for other variables. Second, it is important to plot year×factor parameter 533 

estimates and their standard errors to determine if they are actually random and not showing trends 534 

with respect to either year or the other variable in the interaction. Given the potential for serial 535 

depletion (Walters, 2003) or range shifts in populations due to climatic factors and the high 536 

probability of models finding spurious year×factor interactions, plots of the interaction terms 537 

provide critical information about patterns in these interactions. Truly random interactions would 538 

look random or would fail to reject a test of randomness. Significant interactions could exist as a 539 

single outlier year, which might not merit modeling or substantially trended interactions with year 540 

which require additional considerations as to why the population signal differs with different 541 

values of another factor. While several analysts used interaction terms, the interactions did not 542 

consistently improve the accuracy of the estimated trends. Future studies employing a factorial 543 

design to specifically compare different model types will further explore the use of interaction 544 

terms.  545 

Several of the results point to problems in current CPUE standardization approaches. The 546 

different performance of standardization methods, and the different performance with different 547 

methods for defining geographical areas raise some concerns about the ability of models to 548 

estimate population trends. Using an adaptive area partitioning method, Analyst 6 estimated 549 

different spatial partitionings for each population, even though each population had the same 550 

model factors operating and the same spatial structure. This indicates a possible dependence 551 

between the population trend and the estimation of the model parameters other than the year effect 552 

which is intended to capture the trend.  It may be possible to diagnose adverse correlation between 553 

year and other factors by examining variance inflation factors (VIFs) or by examining the 554 



 

 

covariance between ‘year’ and other model coefficients. High VIF or high covariance with year 555 

indicate that the model cannot separate the abundance trend from a trend in other model factors.  556 

5. Conclusions 557 

This study with simulated longline datasets sought to determine if standardization methods 558 

used by the ICCAT CPCs scientists can routinely capture underlying population trends from 559 

fishery-dependant CPUE data and to derive a set of ‘best practices’. Overall, despite the diversity 560 

of distributional assumptions, model selection methods, software and treatments of variables, most 561 

models were able to capture the underlying population trends. The inclusive stock assessment 562 

practice utilized by ICCAT allows the scientists most familiar with the specific, regional fleet to 563 

develop standardized CPUE time series that are then used as proxies for relative abundance trends 564 

in the stock assessment models. The downside to this practice is the wide variation in methodology, 565 

which may contribute to conflicting trends for the same species, and may be an artefact of 566 

standardization methodology rather than a true difference in signal between datasets. Thus, it is 567 

important that standardization methods be reviewed carefully before indices are used in 568 

assessment, and that multiple methods be applied to the same datasets to identify whether 569 

estimated trends differ with standardization methodology. 570 

This exercise highlights that there are several problems with some of the status quo 571 

approaches that warrant further exploration: unknown correlations between model factors and the 572 

year effect that can confound estimation of the population signal, the usefulness of standard model 573 

selection criterion to choose the correct models, and the dangers posed by missing data depending 574 

upon how a modeling platform deals with it.   575 

As a result of this work, we have developed a set of lessons learned: 576 

1) Priority of variable inclusion or exclusion should be based on a first principles knowledge 577 

of the fishery and the historical management measures that have taken place. If known 578 

changes in the fishery have occurred (e.g., changes in legal retained size, geographic 579 

distribution of fish and/fishery, changes in gear type) then these variables should be given 580 

the highest consideration for inclusion, whether or not model diagnostics support their 581 

inclusion. Alternatively, in cases where such variables cannot be accommodated in the 582 

statistical models due to technical issues, the CPUE series may have to be split and modeled 583 

as several independent time series to reflect those unaccounted changes in catchability. 584 

2) A priori evaluation of model balance across factor combinations over time and plots of 585 

CPUE time series by model factors are absolutely critical to determining which model 586 

factors are important or missing. This procedure would have captured the knife-edge switch 587 

in hook types in 2004 and the missing environmental data. 588 

3) Evaluation of multiple-collinearity of model variables with the year factor is essential. 589 

Strong collinearity with the year effect results in a GLM not being able to distinguish 590 

between inter-annual changes in abundance and those in the correlated variable.  591 

4) Embrace divergence of the nominal CPUE from the standardized model estimate. Often, 592 

the observation is made that the standardized trend diverges from the nominal as a 593 

shortcoming against the model selected. The lack of divergence between nominal and 594 

standardized trends is often used as a post hoc diagnostic of model performance. In the 595 

examples within this study, the only way to have obtained the correct estimate of the true 596 

population was to depart substantially from the nominal trend. 597 
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Figure captions  701 

 702 

Figure 1. Locations of simulated fishing sets for all years (1986-2015). 703 

Figure 2. Standardized trends for population 1 for all analysts. Environment lines signify that one 704 

or two environemntal terms were incldued in the final model. Gear models contain only variables 705 

are associated with gear type and that factors or variables that are tradtionally contained in CPUE 706 

standardization models. Population is the true population trend. 707 

Figure 3. As for Figure 2, except for population 2. 708 

Figure 4. As for Figure 2, except for population 3. 709 

Figure 5. As for Figure 2, except for population 4. Note results are only shown for five of the 710 

analysts. 711 

Figure 6. Mean standardized trends for all analysts. Shading surrounding lines is the standardized 712 

error around the mean.   713 
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Tables 715 

 716 

Table 1. Available variables to the analysts, if they were categorical or continous and the levels or 717 

range included. Latitude and longitude in one ° cells, HBF=hooks between floats, SST (°C) = sea 718 

surface temperature, DO (mg/L) = surface dissolved oxygen.  719 

Variable Type Range 

Year Categorical  1986-2015 

Month Categorical  1-12 

Lat. Continuous  -30°S-53°N 

Long. Continuous  -95°W-15°E 

HBF Categorical  2-6 

Hook Categorical  1-4 

Bait Categorical  1-4 

Lights Categorical  0-3 

SST Continuous  2-31 

DO Continuous  4-8 

 720 

Table 2. Model format for each analyst. The method used to select the variables within the final 721 

model structure are listed under “Criteria” (AIC=Akaike information criterion; BIC=Bayesian 722 

information criterion; LRT=Likelihood ratio test). The column “Environment” denotes if 723 

environmental variables were included in the final model, if “Both”, then the analyst conducted 724 

two standardizations, one with the environmental variable and one without.  725 

 726 

Analyst Model Program Criteria Environment 

One  Delta Lognormal GLMM R 5% deviance explained Both 

Two Negative Binomial GLM R 5% deviance explained Both 

Three  Delta Gamma GLM R First principles, AIC Both 

Four Delta Lognormal GAM SAS None Yes 

Five Delta Lognormal GLMM SAS AIC, BIC, χ2 
Yes 

Six Tweedie GLM R LRT, AIC, pseudo R2 
Yes 

Seven Delta Lognormal GLM R 5% deviance explained No 

Eight Delta Lognormal GLM SAS 5% deviance explained/df  Yes 

 727 



 

 

Table 3. Final model selection for analysts using the delta modeling approach. If analysts used the same final model for each population, 

only one model is listed for that analyst. Fixed effects are shown in plain text and random effects in bold. HBF is hooks between floats, 

DO is dissolved oxygen, and SST is sea surface temperature. See text for details on how each analyst defined each variable.  

Analy

st 

Populati

ons 
Presence Abundance 

One  All year+HBF+area+season+year×area+area×season year+HBF+area 

One  All year+HBF+area+season+SST year+HBF+area 

Three  All year+HBF+area+month+hook+bait+light year+HBF+area+month+hook+bait+light 

Three  All year+HBF+area+month+hook+bait+light+SST year+HBF+area+month+hook+bait+light+SST 

Four All 
SST+hooks+lat+lon+DO+light+HBF+month+year+

bait+hook 

SST+hooks+lat+lon+DO+light+HBF+month+year+bait+ 

hook 

Five All 

year+area+season+HBF+hook+light+bait+STT+D

O+year×area+ 

year×season+year×HBF+year×bait+year×light+s

eason×hook 

year+area+season+HBF+hook+light+bait+SST+DO+year×area+year×season+y

ear×HBF+year×bait 

Seven 1 year+area+HBF+year×month+year×area year+month+area+year×month 

Seven 2-4 year+area+hook+HBF year+month+area 

Eight 1 year+month+bait+HBF+area year+light+hook+HBF+area 

Eight 1 year+month+bait+HBF+area+DO+SST2 year+light+hook+HBF+area 

Eight 2 year+area   year+light+hook+HBF+area  

Eight 2 year+month+bait+HBF+area+DO  year+month+area 

Eight 3 year+month+area year+light+hook+HBF+area 

Eight 3 year+month+light+hook+bait+area+DO+SST2  year+month+light+hook+bait+HBF+area+DO+SST2 

Eight 4 year+month+HBF+area+bait year+light+hook+HBF+area 

Eight 4 year+mont+light+hook+bait+HBF+area+DO+SST2 year+month+light+hook+bait+HBF+area+DO+SST2 

 



 

 

Table 4. Final model selection for analysts using negative binomial (Two) and Tweedie approaches (Six). All variables were fixed 

effects. See text for how each analyst defined each variable.  

Analyst Population Final Model 

Two (1) All year+quarter+area+offset(ln(hooks)) 

Two (1) All year+season+area+SST+offset(ln(hooks)) 

Two (2) All year+season+area+gear+light+HBF+hook+bait+offset(ln(hooks)) 

Two (2) All year+season+area+gear+light+HBF+hook+bait+SST+offset(ln(hooks)) 

Six 1 year+month+light+hook+bait+HBF+area+SST3+SST3*log(SST)+log(DO)+DO0.5 

Six 2 year+month+light+hook+bait+HBF+area+SST3+SST3*log(SST)+DO3+DO3*log(DO) 

Six 3 year+month+light+hook+bait+HBF+area+SST3+SST3*log(SST)+DO3+DO3*log(DO) 

Six 4 year+month+light+hook+bait+HBF+area+SST3+SST3*log(SST)+DO-2+DO-2*log(DO) 



 

 

Table 5. Root mean square errors for model fits to the true population trends.  

 Population 1 Population 2 Population 3 Population 4 

 Gear Enviro. Gear Enviro. Gear Enviro. Gear Enviro. 

Analyst 1 0.288 0.252 0.193 0.271 0.327 0.274     

Analyst 2 (1) 0.157 0.016 0.339 0.304 0.422 0.417     

Analyst 2 (2) 0.016 0.016 0.349 0.304 0.420 0.417     

Analyst 3 0.083 0.101 0.101 0.129 0.105 0.146     

Analyst 4   0.238   0.169  0.272   0.229 

Analyst 5    0.284   0.204  0.499   0.323 

Analyst 6   0.086   0.104  0.122   0.102 

Analyst 7 0.235   0.110   0.333   0.195   

Analyst 8 0.277 0.255 0.345 0.132 0.281 0.121 0.266 0.461 

Mean 0.176 0.156 0.240 0.202 0.315 0.284 0.231 0.279 

SE 0.045 0.040 0.049 0.029 0.048 0.052 0.036 0.076 

 

 

 

 


