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A B S T R A C T   

The application of adaptive comfort models is among the determinant factors to reduce greenhouse gas emissions 
in the building sector. This research studies the region of Andalusia (south of Spain). A cluster analysis is applied 
to 786 Andalusian municipalities, and 4 groups are established according to the potential of adaptive strategies. 
A town is chosen from each group, and an hourly specific study is conducted for the last 20 years, as well as a 
daily study of the old time series by using an artificial neural network based on the existing climate data. The 
possibility of application of the EN 16798–1:2019 standard during the days of the year is analysed, as well as the 
possibilities of using natural ventilation and the possibility of using adaptive setpoint temperatures in compar
ison with both 3 fixed heating temperatures and 3 fixed cooling temperatures by considering the energy saving. 
The results to apply the standard ranged 69.0 and 100% of the days of each year. The possibilities of natural 
ventilation considered were greater than 10% of the hours of the year in all the assumptions. The energy saving 
of cooling degrees reveals a greater potential in the area studied than that of heating degrees; this tendency is 
supported by the study of old temporary series which are part of the climate variation predicted throughout the 
21st century.   

1. Introduction 

Climate change and environmental degradation can soon become a 
turning point in global history, mainly caused by continuous greenhouse 
gas (GHG) emissions speeding up global warming and the acidification 
of oceans. These aspects have been included in various reports of the 
Intergovernmental Panel on Climate Change (IPCC), which analyses 
different future scenarios characterised by increases in temperature and 
sea level [1,2]. It is, therefore, essential to take action against the main 
GHG emitters. In this regard, various countries committed to reducing 
GHG emissions in the 2015 Paris Climate Conference, although these 
objectives are today far from being fulfilled [3]. Nonetheless, these 
objectives established the need that no human activity should produce 
GHG emissions. Among the major activities, those generating maximum 
emissions include the use of buildings, which are responsible for 36% of 
the GHG emissions in the atmosphere [4,5]. Thus, one of the objectives 
set by the European Union is to reduce the emissions generated by 
buildings by 90% by 2050 [6]. 

To achieve these objectives, taking action on one of the main 
building consumptions, i.e. the use of heating, ventilation and air con
ditioning (HVAC) systems, is required [7]. For this purpose, a tendency 
in professional actions and research studies has been to analyse envelope 
designs that indicate the reduction in heat transfer to the exterior, 
improvement in HVAC systems, and personal use. These improvements, 
however, can produce rebound effects, leading to high energy con
sumption by users [8]. Thus, another factor playing an important role in 
HVAC system energy consumption is user behaviour [9]. A fundamental 
aspect in establishing an appropriate user behaviour with respect to the 
use of HVAC systems is controlling the setpoint temperature. In this 
regard, considerable research has analysed the energy-saving achieved 
with the modification of the setpoint temperature by following static-use 
patterns. For example, Wan et al. [10] analysed the reduction in energy 
consumption in future climate-change scenarios in several case studies 
conducted in Hong Kong by modifying the setpoint temperature. These 
authors achieved substantial decreases in energy consumption under 
different scenarios by using cooling setpoint temperatures above 
25.5 ◦C. Other related studies include those conducted by Spyropoulos 
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and Balaras [11] and Hoyt et al. [12], who analysed the possibility of 
reducing the total energy consumption of office buildings by modifying 
the heating and cooling setpoint temperatures, thus obtaining between 
45% and 73% energy savings. Despite these results, the 
above-mentioned studies were based on static criteria, thus in turn, 
based on Fanger’s thermal models [13]. These models present a static 
behaviour of thermal comfort limits with a narrow range between the 
lower and upper limits. Meanwhile, an increasing number of studies are 
considering the possibility of using adaptive thermal comfort models 
[14,15]. In these models, users can modify their thermal comfort by 
adapting their behaviour, and compared to Fanger’s static thermal 
comfort approaches, the building energy consumption can be reduced 
by limiting the use of HVAC systems [16]. The development of these 
comfort models began in the 1970s by Humphreys [17,18] and Nicol 
and Humphreys [19], who found that the thermal comfort models ob
tained from the laboratory did not fit the buildings operating with nat
ural ventilation. Likewise, the adaptabilities of users to the interior 
conditions were detected. Subsequently, de Dear and Brager [20] con
ducted 21,000 field observations and formalised the concept of adaptive 
thermal comfort. After the later studies by Dear and Brager [21,22], 
ASHRAE-55:2004 was the first thermal comfort standard to include an 
adaptive thermal comfort model with the data obtained through the 
ASHRAE RP-884 project [15]. In Europe, the data obtained through the 
Smart Control and Thermal Comfort project [23] were used to develop 
an adaptive thermal comfort model that was integrated into the stan
dard EN 15251:2007 [24]. Subsequently, the European standard was 

modified with the standard EN 16798–1:2019 [25]. This modification 
also proposed changes in the possibilities of applying the adaptive 
thermal comfort model, such as the temperature difference between the 
lower limit and the optimum temperature [26]. 

A fundamental aspect of adaptive thermal comfort models is that 
users can adapt to climatic variations through different strategies (also 
known as adaptive strategies). In this sense, one of the strategies is 
related to using HVAC systems. The adaptive strategies can be distin
guished into two topologies: natural ventilation and adaptive setpoint 
temperatures. Natural ventilation involves the possible acclimatisation 
of the indoor space when the external temperature is within appropriate 
thermal comfort limits for users, thus reducing the use of HVAC systems 
[27–29]. On the other hand, adaptive setpoint temperatures are 
configured according to the external temperatures and the adaptive 
thermal comfort model used, thus reflecting users’ adaptability to 
climate variations with up to 50% energy-saving with respect to static 
setpoint temperatures [30–33]. 

The effectiveness of applying these measures mainly depends on the 
climate in which the building is located. A previous study [34] assessed 
the possibilities of applying adaptive strategies globally. The results 
showed great possibilities of applying adaptive thermal comfort models 
globally, particularly in zones such as the Mediterranean. This study, 
however, was based on the analyses of average climate files, and thus, 
did not study the recent evolution. Likewise, this study considered that 
the use of detailed local analyses would deeply indicate the possibility of 
applying these strategies. For this reason, the potential applications of 

Nomenclature 

Symbols 
AdaptiveCD Annual sum of hourly cooling degrees between adaptive 

setpoints and the external temperature [◦C] 
AdaptiveHD Annual sum of hourly heating degrees between adaptive 

setpoints and the external temperature [◦C] 
a(i) Average distance between an individual (i) and the 

remaining points of the same group 
BSS/TSS Ratio between sum of squares and total sum of square 
b(i) Minimum average distance between the individual and the 

others 
di Value assigned to each day of the year 
hi Value assigned to each hour of the year 
MAE Mean absolute error 
mi Model’s prediction 
NDY Number of days of the year 
NHY Number of hours of the year 
NI Number of nodes of the input layer 
NO Number of nodes of the output layer 
n Number of instances in the dataset 
PDAAM Percentage of days of the year in which the adaptive 

thermal comfort model could be applied [%] 
PHNV Percentage of hours to apply adaptive natural ventilation 

strategies [%] 
R Reference value selected for static setpoint temperatures 
R2 Determination coefficient 
RMSE Root mean square error 
SCDHR Annual saving in cooling degrees of cooling adaptive 

setpoints with respect to static setpoints of R-value [◦C] 
SHDHR Annual saving in heating degrees of heating adaptive 

setpoints with respect to static setpoints of R-value [◦C] 
StaticCDR Annual sum of hourly cooling degrees between static 

setpoints and the external temperature [◦C] 
StaticHDR Annual sum of hourly heating degrees between static 

setpoints and the external temperature [◦C] 

s(i) silhouette index 
TAC,i Hourly value of adaptive setpoint temperature for cooling 

[◦C] 
TAH,i Hourly value of adaptive setpoint temperature [◦C] 
Text,d
Text,i 

Hourly value of external temperature [◦C] 

TSC,R,i hourly value of static setpoint temperature for cooling [◦C] 
TSH,R,i Hourly value of static setpoint temperature for heating 

[◦C] 
ti Actual value 
trm Running mean outdoor temperature 
WSS Total within-cluster sum of squares 
w(1)

k0 Weight of the bias neuron of the input layer 

w(1)
kj Weights of the hidden layer 

w(2)
l0 Weight of the bias neuron of the hidden layer 

w(2)
lk Weights of the output layer 

XCA Logic values 
XCS Logic values 
XHA Logic values 
XHS Logic values 
x0 Input value of the bias neuron of the input layer 
xj Values of the input layer 
ŶMLP Estimation performed by the multilayer perceptron 
y0 Input value of the bias neuron of the hidden layer 
yk output value of a neuron of the hidden layer 

Greek letters 
σ Activation function 

Abbreviations 
GHG Greenhouse gas 
HVAC Heating, ventilation and air conditioning 
IPCC Intergovernmental Panel on Climate Change 
MLP Multilayer perceptron  

D. Bienvenido-Huertas et al.                                                                                                                                                                                                                  



Building and Environment 185 (2020) 107313

3

adaptive strategies between the 20th and 21st centuries were analysed 
in the region of Andalusia (south of Spain). This region was chosen due 
to the following three reasons: (i) the potential application found in the 
global study conducted in this region was high, although regions with a 
lower application were also found; (ii) the studies on the potential 
application of adaptive setpoint temperatures and natural ventilation in 
actual case studies were conducted in some cities of the region (e.g. 
Seville [30–33]); and (iii) the existing energy poverty risk in the region 
[35]. In this regard, the Spanish Institute of Statistics determined that 
Andalusia presents the highest percentage of population with risk 
poverty and/or exclusion (35.4%), with the national average being 
22.3% for 2016 [36]. Likewise, Herrero et al. [37] showed that 5.1 
million people in Spain (11% households) cannot maintain their 
dwelling under appropriate thermal conditions, thus increasing the 
number of households with energy poverty by 22% in barely two years 
and identifying Andalusia as one of the main affected regions. 

Thus, the Andalusian building stock requires strategies to reduce the 
building energy consumption. For this reason, the present study analyses 
the possibilities of applying the recent adaptive energy-saving strategies. 
First, a cluster analysis is conducted to classify the 786 Andalusian 
municipalities. Based on the classification result, a representative city is 
selected by each cluster and the possibilities of applying adaptive stra
tegies are analysed according to the existing temperature records from 
the mid-20th century to 2019. In the analysis, multilayer perceptrons 
(MLPs) are used to estimate the variables of hourly energy-saving based 
on the available daily data. 

2. Methodology 

2.1. Adaptive thermal comfort model: EN 16798–1:2019 

The adaptive thermal comfort model developed for Europe is 
included in EN 16798–1:2019 [25], which is the adaptive thermal 
comfort standard applicable to all of Europe and constitutes the modi
fication of the previous standard (EN 15251:2007 [24]). The standard 
establishes three categories of thermal comfort––categories I, II, and 
III––each of which establishes different recommendations for use: 
category I is recommended for users with less thermal adaptation (e.g. 
the elderly, sick, or children), while categories II and III are recom
mended for new and existing buildings, respectively. In addition, each 
category establishes lower and upper temperature limits for the indoor 
operative temperature, which are calculated using linear regression with 
respect to the running mean outdoor temperature (trm) (Eq. (1)–(7)). In 
this case, EN 16798–1:2019 is applicable when trm is within 10 ◦C and 
30 ◦C. 

trm =(1 − α)⋅
∑n

d=1

(
α(i− 1) ⋅ Text,d

)
(1)  

Upper limit (Category I)= 0.33⋅trm + 20.8 (10≤ trm ≤ 30) (2)  

Lower limit (Category I)= 0.33⋅trm + 15.8 (10≤ trm ≤ 30) (3)  

Upperlimit(CategoryII)= 0.33⋅trm + 21.8 (10≤ trm ≤ 30) (4)  

Lowerlimit(CategoryII)= 0.33⋅trm + 14.8 (10≤ trm ≤ 30) (5)  

Upperlimit(CategoryIII)= 0.33⋅trm + 22.8 (10≤ trm ≤ 30) (6)  

Lower limit(CategoryIII)= 0.33⋅trm + 13.8 (10≤ trm ≤ 30) (7) 

The use of these adaptive thermal comfort models allows adaptive 
energy-saving measures to be adopted. These measures are mainly based 
on two aspects: (i) the use of natural ventilation during the hours in 
which the external temperature is within the application limits of EN 
16798–1:2019 and (ii) the use of HVAC systems through adaptive set
point temperatures when the indoor space cannot be naturally venti
lated. If the trm value is beyond the application limits of the standards (e. 
g. lower than 10 ◦C or greater than 30 ◦C in EN 16798–1:2019), a fixed 
value should be used for the adaptive setpoint temperatures, corre
sponding to the horizontal extension of the limit values of the adaptive 
model [38]. 

2.2. Analysis process of adaptive strategies 

The process of analysing the climate data involves assessing the 
possibilities of applying the adaptive thermal comfort models and 
hourly saving of heating and cooling degrees by following the same 
criterion of data analysis as that mentioned in a previous study [34]. For 
this purpose, in the next subsections, the procedure followed in the 
previous study is described separately in relation to the possibility of 
applying adaptive thermal comfort models in Andalusia and the 
energy-saving potential that can be achieved through the adaptive 
strategies. 

2.2.1. Application of adaptive thermal comfort models 
The possibility of applying the models was achieved in accordance 

with the application criteria of EN 16798–1:2019, where trm was 
assumed to be within the application limits of EN 16798–1:2019 (i.e. 
between 10 ◦C and 30 ◦C). Note that in this case, it is not necessary to 
distinguish between the EN 16798–1:2019 categories, because they all 
follow the same criteria. The application analysis was performed on a 
daily scale, because the trm value is associated with the average daily 

Table 1 
Climate files used in the study, indicating the type of temperature variable available and the period of data.  

Cluster City Latitude Longitude Altitude Hourly temperature values Daily temperature values (average, minimum, and maximum) 

Start year End year Start year End year 

1 Cadiz 36.49972 − 6.25778 2 2000 2019 1956 1999 
2 Jaen 37.77750 − 3.80889 580 2000 2019 1989 1999 
3 Grazalema 36.76799 − 5.36589 913 2001 2019 – – 
4 Seville 37.41667 − 5.87917 34 2000 2019 1951 1999  

Table 2 
Main technical specifications of the temperature probe of each weather station.  

Cluster City Manufacturer Model Measuring range Accuracy 

1 Cadiz Thies 1.1005.54.700 − 30 – 70 ◦C ±0.2 ◦C 
2 Jaen Thies 1.1005.54.700 − 30 – 70 ◦C ±0.2 ◦C 
3 Grazalema Thies 1.1005.51.015 − 30 – 50 ◦C ±0.2 ◦C 
4 Seville VAISALA HMP45D − 40 – 60 ◦C ±0.2 ◦C  
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temperatures. Therefore, the number of days for which trm was within 
the limits of application and EN 16798–1:2019 was determined and 
evaluated with respect to the year total. The trm value was determined 
using the data obtained from previous 15 days, with an α-value of 0.8. 

PDAAM = 100⋅

∑NDY

i=1
di

NDY

di = 1 if 30 ≥ trm ≥ 10

di = 0 if trm < 10

di = 0 if trm > 30

(8)  

where PDAAM is the percentage of days of the year in which the 

adaptive thermal comfort model could be applied [%], di is a value 
assigned to each day of the year, and NDY is the number of days of the 
year (365 days for non-leap years and 366 days for leap years). If trm is 
within the application limits, then a value of 1 is assigned. If not, a value 
of 0 is then assigned. 

2.2.2. Adaptive energy-saving strategies 
Adaptive strategies were hourly analysed in different manners for 

natural ventilation and adaptive setpoint temperatures. 

2.2.2.1. Natural ventilation. The natural ventilation potential was 
evaluated on an hourly scale, using an approach similar to that shown in 
Eq. (8). In this case, the number of annual hours for which the outside 
temperature remained between the upper and lower limits of adaptive 

Fig. 1. Results of the cluster analysis.  
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thermal comfort was evaluated (Eq. (9)). Through this criterion, users 
were assured that the outside temperature was adequate to ensure 
thermal comfort and that counterproductive effects generated by natu
ral ventilation were avoided [39]. Moreover, for natural ventilation, it is 
necessary to distinguish the EN 16798–1:2019 categories because each 
of them has a different equation for the upper and lower limits. There
fore, natural ventilation analysis was performed independently for each 
category. 

PHNV = 100⋅

∑NHY

i=1
hi

NHY

hi = 1 ifUpperlimit ≥ Text,i ≥ Lower limit

hi = 0 if Text,i < Lower limit

hi = 0 if Text,i > Upper limit

(9)  

where PHNVis the percentage of hours to apply adaptive natural 
ventilation strategies [%], hi is a value assigned to each hour of the year, 
Text,i is the hourly value of external temperature [◦C], and NHYis the 
number of hours of the year (8760 h for non-leap years and 8784 h for 
leap years). If the hourly outside temperature is within the limits of 
acceptability, it is assigned a value of 1, and a value of 0 is assigned 
when it does not meet this condition. 

2.2.2.2. Adaptive setpoint temperatures. Adaptive setpoint temperatures 
acquire the upper and lower limit values of adaptive thermal comfort 
models [39]. Thus, for heating at the setpoint temperature, the lower 
limit is used (Eq. (10)), while for cooling at this temperature, the upper 
limit is used (Eq. (11)). This assumes that the adaptive setpoint tem
peratures vary each day according to the variations in the upper and 
lower limits. Similar to natural ventilation, the adaptive setpoint tem
peratures must distinguish the category of EN 16798–1:2019 used. 
Therefore, the following three approaches can be used for adaptive 

Fig. 2. (a) Climatic zones established by the Spanish Technical Building Code and (b) heatmap with the percentages of climatic zones by cluster.  
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setpoint temperatures depending on the category used. 

TAH,i =Lowerlimit (10)  

TAC,i =Upperlimit (11)  

where TAH,i is the hourly value of adaptive setpoint temperature [◦C], 
and TAC,i is the hourly value of adaptive setpoint temperature for cooling 
[◦C]. 

The energy-saving potential with adaptive set temperatures was 
evaluated for the savings achieved in the heating and cooling degrees 
with respect to the static setpoint temperatures. First, the summation of 
the hourly degrees of heating (Eq. (12)) and cooling (Eq. (13)) was 
determined for a more accurate knowledge of the energy demand of 
buildings with adaptive strategies. Hourly degrees are based on the rates 
of cooling and heating degree days to determine the demands of HVAC 
systems [40]. Both heating and cooling degree days are determined by 
the difference between the average daily outside temperature and 
average space temperature. However, this approach does not provide an 
exact knowledge of the daily thermal oscillations that can vary the en
ergy demand of buildings. In this circumstance, the analysis at an hourly 
scale provides a more detailed knowledge of the possible energy demand 
of the buildings [41]. 

AdaptiveHD =
∑NHY

i=1

(
Text,i − TAH,i

)
⋅XHA

XHA = 1if Text,i < TAH,i

XHA = 0if Text,i ≥ TAH,i

(12)  

AdaptiveCD =
∑NHY

i=1

(
TAC,i − Text,i

)
⋅XCA

XCA = 1if Text,i > TAC,i

XCA = 0if Text,i ≤ TAC,i

(13)  

where AdaptiveHD is the annual sum of hourly heating degrees between 
adaptive setpoints and the external temperature [◦C], AdaptiveCD is the 
annual sum of hourly cooling degrees between adaptive setpoints and 
the external temperature [◦C], and XHA and XCAare logic values whose 
value will be 1 when the condition given in the equations is met, and 
0 when not. 

The hourly degrees of heating and cooling with an adaptive behav
iour were compared with those obtained with static operational patterns 
by the users. For this purpose, the hourly degrees of heating (Eq. (14)) 
and cooling (Eq. (15)) were determined using a static setpoint temper
ature as the base temperature. Three temperatures were selected for 
heating (20 ◦C, 21 ◦C, and 22 ◦C) and three for cooling (25 ◦C, 26 ◦C, and 
27 ◦C) following the same criteria as those used previously [34]. These 
static temperature values were selected according to the values collected 
in different standards and regulations [24,42]. 

Fig. 3. Box plots with the data distributions of people and of average income per person and per household in each cluster.  

Table 3 
Quartile of the data distributions of population and average incomes in clusters.  

Cluster Population [inh.] Average incomes per person [€/year] Average incomes per household [€/year] 

Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 

1 2878 8896 23,482 7063.00 7608.50 8604.00 18,343.00 20,175.00 22,645.00 
2 927 2472 4900 7310.50 7865.00 8355.50 17,322.50 18,703.50 20,429.50 
3 470 1043 2026 7526.00 8187.50 8873.00 17,327.00 18,551.50 20,100.00 
4 3449 7011 12,773 7354.00 7795.00 8171.00 19,586.00 20,975.00 22,498.00  
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StaticHDR =
∑NHY

i=1

(
Text,i − TSH,R,i

)
⋅XHS

XHS = 1if Text,i < TSH,R,i

XHS = 0if Text,i ≥ TSH,R,i

(14)  

StaticCDR =
∑NHY

i=1

(
TSC,R,i − Text,i

)
⋅XCS

XCS = 1if Text,i > TSC,R,i

XCS = 0if Text,i ≤ TSC,R,i

(15)  

where StaticHDR is the annual sum of hourly heating degrees between 
static setpoints and the external temperature [◦C], StaticCDR is the 
annual sum of hourly cooling degrees between static setpoints and the 
external temperature [◦C],TSH,R,i is the hourly value of static setpoint 
temperature for heating [◦C],TSC,R,i is the hourly value of static setpoint 
temperature for cooling [◦C], R is the reference value selected for static 
setpoint temperatures (in the case of heating temperatures R has values 
of 20, 21 and 22 ◦C, and in the case of cooling temperatures R has values 
of 25, 26 and 27 ◦C), and XHS and XCS are logic values whose value will 
be 1 when the condition given in the equations is met, and 0 when not. 

Once the hourly degrees of heating and cooling were determined 
with both the adaptive and static strategies, the savings in degrees ob
tained with the adaptive approach for both heating and cooling were 
determined: 

SHDHR = StaticHDR − AdaptiveHD (16)  

SCDHR = StaticCDR − AdaptiveCD (17)  

where SHDHR is the annual saving in heating degrees of heating adap
tive setpoints with respect to static setpoints of R [◦C], and SCDHR is the 
annual saving in cooling degrees of cooling adaptive setpoints with 
respect to static setpoints of R [◦C]. 

2.3. Cluster analysis 

One of the stages of the study analysis was to conduct a cluster 
analysis to identify the similarities among the Andalusian cities. For this 
purpose, the k-means algorithm was used, which is an iterative algo
rithm based on the centroid concept of a group of individuals [43]. This 
method classifies a sample X of n individuals into k groups, for which a 
partition W of such sample with W = (w1,…,wa,…,wb,…,wk) is 
considered. Therefore, (∪k

a=1wa = X,wa ∩ wb = Ø, a∕= b), and thus, the 
total sum of the sums of squares of the Euclidean distances is minimum 
within each group: 

argmin
W

∑k

a=1

∑

xi∈wa

∑p

r=1
(xir − μar)

2 (18) 

This method is sensitive to initial centroids; thus, various results can 
be obtained by varying the initial values of k. In this regard, the greater 
the value of k used in the algorithm, the lower is the variation within the 
groups. If the variables have different units, the data should be nor
malised before conducting the cluster analysis (i.e. variables are rescaled 
between 1 and 0 using max-min normalisation). 

In this study, to select the number of groups optimally, three analyses 
were conducted, based on the Elbow method, silhouette index (s(i)), and 
ratio between sum of squares and total sum of square (BSS/TSS). 

The Elbow method involves selecting the optimal number of k by 

Fig. 4. Possibilities of application of the adaptive thermal comfort models from EN 16798–1:2019 in the period between 2000 and 2019.  
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minimising the total within-cluster sum of squares (WSS) [44]. This 
method involves applying the k-means algorithm for different values of k 
as well as calculating WSS (Eq. (19)). The representation of the WSS 
curve allows the elbow of such curve, which indicates the optimal 
number of groups, to be determined. 

WSS=
∑K

k=1

∑

i∈Sk

∑p

j=1

(

xij − xkj

)2

(19) 

However, the elbow of the curve cannot always be clearly observed 
[44], especially in cases where there is a gradual and continuous data 
transition. In these cases, the method does not provide a unique possible 
solution but a range of possible solutions, which should be examined to 
determine the best value. For this reason, we combined the Elbow 
method with two indicators: s(i) and BSS/TSS. 

BSS/TSS indicates the cluster compactness, and is a percentage 
relation that can have values between 0% and 100%. The greater the 
value of the ratio, the greater is the compactness of individuals within a 
group. The ratio is formulated as follows: 

BSS
TSS

=

∑K
k=1
∑p

j=1

(

xkj − xG

)2

∑K
k=1
∑p

j=1

(

xkj − xG

)2

+
∑K

k=1
∑

i∈Sk

∑p
j=1

(

xij − xkj

)2 (20)  

where xG is the grand mean of the means of all the groups. 
Finally, s(i) is among the most frequently used indices in cluster 

analysis [45], and indicates the similarity of an individual with the other 
individuals of the same group. The quality of a group is, therefore, 

measured. For this purpose, the following equation is used: 

s(i)=
b(i) − a(i)

max{a(i), b(i)}
(21)  

where a(i) is the average distance between an individual (i) and the 
remaining points of the same group and b(i) is the minimum average 
distance between the individual and the others. The s(i) can have values 
ranging between − 1 and 1. The meaning of these values determines the 
suitability of the cluster analysis. (i) A value between 0 and 1 indicates 
that the individual is placed in the correct cluster, thus obtaining 
optimal values close to 1. (ii) The value is 0 means that the individual 
lies between two groups, indicating that either the individual shows very 
different characteristics with respect to the others, thus not being able to 
be grouped with the others, or that the cluster analysis has excessively 
classified individual groups. (iii) A value between − 1 and 0 indicates 
that the individual is placed in an incorrect cluster. 

2.4. Artificial neural network 

Another aspect to be considered within the methodological frame
work of this research is the need for estimating the variables of potential 
energy-saving described in Section 2.2. Given the difficulty in obtaining 
hourly data, the possibility of estimating these variables using artificial 
neural networks was considered. Neural networks are bio-inspired sta
tistical models that simulate the neurological brain structure to solve 
regression and classification problems [46]. Among the various typol
ogies of artificial neural networks, MLPs provide the best features owing 
to their capability of universal approximation [47–49]. MLPs are 

Fig. 5. Percentage of hours of the year with possibility to apply natural ventilation strategies between 2000 and 2019.  
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characterised as presenting an architecture of three or more layers, each 
with a series of nodes and neurons. (i) An input layer whose nodes 
correspond to the different input variables considered in the model, (ii) 
one or several intermediate layers with interconnected nodes, and (iii) 
an output layer that corresponds to the output variable (or dependent 
variable) and whose value is obtained by summing the values of the 
input neurons weighted by synaptic weights and applying an activation 
function: 

Ŷ MLP = σ
(
∑M

k=1
w(2)

lk σ
(
∑d

j=0
w(1)

kj xj

)

+w(2)
l0 y0

)

(22)  

where ŶMLP is the estimation performed by the MLP, xj indicates the 
values of the input layer, w(1)

k0 and x0 are the weight and input value of 

the bias neuron of the input layer, respectively, w(1)
kj indicates the 

Fig. 6. Hourly heating and cooling degrees required to acclimatise the buildings of the analysis zone between the year 2000 and 2019.  
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weights of the hidden layer, w(2)
l0 and y0 are the weight and input value of 

the bias neuron of the hidden layer, w(2)
lk indicates the weights of the 

output layer,yk is the output value of a neuron of the hidden layer, and σ 
is the activation function. In this study, models with a hidden layer were 
considered, and a sigmoidal activation function was considered in both 
the hidden and output layers (Eq. (23)), similarly to the case of other 
studies in which these models were applied [50], as they usually 
perform better than those in more complex structures [51]. The number 
of nodes of the hidden layer is determined by Eq. (24). 

σ =
1

1 + e− x (23)  

Number of nodes=
NI + NO

2
(24)  

where NI is the number of nodes of the input layer (i.e. the input vari
ables of the dataset) and NO is that of the output layer (i.e. the output 
variables of the dataset). 

As indicated above, the output value is obtained from the weighted 

Fig. 7. Saving of hourly heating degrees by using adaptive setpoint temperatures between 2000 and 2019.  
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propagation of the input signs. One of the most important aspects of 
MLPs is, therefore, the adjustment of synaptic weights for reducing the 
error between the estimated and actual values. For this purpose, the 
models were trained through backpropagation [52–54] by using the 
Broyden–Fletcher–Goldfarb–Shanno [55] algorithm (which belongs to 
quasi-Newton methods). Three statistical parameters were used to assess 
the model performance: (i) determination coefficient (R2) (Eq. (25)), 
root mean square error (RMSE) (Eq. (26)), and mean absolute error 
(MAE) (Eq. (27)). The use of these parameters allowed the model per
formance to be appropriately defined. 

R2 = 100

⎛

⎝1 −
∑n

i=1(ti − mi)
2

∑n
i=1

(

ti − ti

)2

⎞

⎠ (25)  

RMSE =

(∑n
i=1(ti − mi)

2

n

)1/2

(26)  

MAE=

∑n
i=1|ti − mi|

n
(27)  

where ti is the actual value, mi is the model’s prediction, and n is the 

Fig. 8. Saving of hourly cooling degrees by using adaptive setpoint temperatures between 2000 and 2019.  
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number of instances in the dataset. 

2.5. Climate data 

A cluster analysis of the existing climates in the region of Andalusia 
was performed. Given the difficulties in achieving the recent tempera
ture records, this analysis simplified the procedure. For this purpose, 
climate data from the 786 Andalusian municipalities were obtained with 
METEONORM, which is a climate file database comprising 8325 
weather stations spread throughout the planet and has been widely used 
in various studies [56–59]. Based on the data of seasons, hourly external 
temperature values were obtained by using a stochastic model [60]. The 
temperature period generated was 2000–2009, and the radiation period 
was 1991–2010. After generating the hourly time series of the 786 
Andalusian municipalities, the data were treated for generating the 
dataset used in the cluster analysis. From this analysis (which is detailed 
in the Results section), four climate clusters were detected in the 
Andalusia region, each of which selected a representative city from 
which recent temperature data were available. The chosen cities were as 
follows: Cadiz for cluster 1, Jaen for cluster 2, Grazalema for cluster 3, 
and Seville for cluster 4. The temperature data were obtained from the 
automatic weather stations of the State Meteorological Agency in Spain. 
Note that the types of temperature data and available dates varied in 
each municipality. Likewise, the time series were validated by the State 
Meteorological Agency in Spain. Table 1 indicates the types of temper
ature variables available and their time period. For most cities, hourly 
temperature data between 2000 and 2019 were available (except Gra
zalema, whose data were available from 2001), whereas data from the 
20th century were available at a daily scale (in terms of average, 
maximum, and minimum values) and with a range of dates that varied 
according to the city analysed. As for Grazalema, data from the 20th 
century were not available, indicating a lack of monitoring data in the 
cities at a huge altitude in the Andalusian territory. Table 2 indicates the 
technical specifications of the probes of each weather station. 

3. Results and discussion 

3.1. Climate classification 

First, a cluster analysis of the existing climates in Andalusia was 
conducted. Owing to the difficulties in obtaining the recent temperature 
records, this analysis simplified the procedure. Following the analysis 

procedure described in Section 2.2., a dataset was generated, in which 
each instance was one of the municipalities and the variables were those 
of potential energy-saving with adaptive strategies (i.e. percentage of 
application, percentage of ventilation (by category), and saving of 
heating and cooling degrees (by category and a different static setpoint 
temperature)). Thus, it was a multi-dimensional cluster analysis. The 
following step involved determining the optimal number of k for the 
classification. For this purpose, the elbow method and the analysis of 
both s(i) and BSS/TSS were used. For a simplified discussion of the re
sults, Fig. 1 summarises the results obtained in the cluster analysis. The 
results showed that k = 4 yielded the best cluster. This aspect can be 
observed for the average values of the silhouette index, as the highest 
value was obtained at 4, whereas the remaining clusters obtained lower 
values. In addition, BSS/TSS obtained a value of 82.7%, constituting an 
increase of 12.9% with respect to k = 3, thus showing the use of k = 4. 

The Andalusian cities can, therefore, be divided into four clusters 
according to the potential of the adaptive strategies, reflecting the 
geographic characteristics:  

• Cluster 1 corresponds to municipalities whose cities are located on 
the coast. In this regard, the municipalities included in Fig. 1 are 
close to the coast but belong to another cluster as the city is far from 
the coast.  

• Cluster 2 corresponds to municipalities located in mountain systems, 
such as Sierra Morena and the Subbaetic System.  

• Cluster 3 corresponds to cities whose vast majority are located in the 
highest-altitude areas of the Baetic Mountain Ranges (e.g. Sierra 
Nevada), while the remaining are located at a great altitude above 
the sea level.  

• Cluster 4 corresponds to the depression of the Guadalquivir River. 

Consequently, an aspect was found in the overall study [34], as 
climate classification of the potential application of adaptive strategies 
could be conducted according to the existing geographic characteristics 
of each region. Cluster 2 corresponds to a heterogeneous zone that could 
not be related to any geographic element. 

Furthermore, the clusters do not coincide with the climatic zones 
established in the Spanish Building Technical Code [42], which classifies 
the climate according to the winter and summer climate severity. For 
winter, the code assigns letters ranging from A (slightly cold weather) to 
E (very cold weather), while for summer, it assigns numbers ranging 
from 1 (not very hot weather) to 4 (very hot weather). As shown in 

Table 4 
Input and output variables configured in each MLP used in the study.  

Input variables Output variable 

TJanuary ,TJanuary− min ,

TJanuary− max,

TFebruary ,TFebruary− min ,

TFebruary− max,

TMarch ,TMarch− min ,

TMarch− max,

TApril,TApril− min,TApril− max,

TMay,TMay− min ,TMay− max,

TJune,TJune− min,TJune− max,

TJuly,TJuly− min ,TJuly− max,

TAugust ,TAugust− min,

TAugust− max,

TSeptember,TSeptember− min ,

TSeptember− max,

TOctober,TOctober− min ,

TOctober− max,

TNovember ,TNovember− min,

TNovember− max,

TDecember ,TDecember− min ,

TDecember− max  

MLP- 
01 

Hourly heating degrees (20 ◦C) MLP- 
02 

Hourly heating degrees (21 ◦C) MLP- 
03 

Hourly heating degrees (22 ◦C) 

MLP- 
04 

Hourly cooling degrees (25 ◦C) MLP- 
05 

Hourly cooling degrees (26 ◦C) MLP- 
06 

Hourly cooling degrees (27 ◦C) 

MLP- 
07 

Percentage of hours of natural 
ventilation (category I) 

MLP- 
08 

Percentage of hours of natural 
ventilation (category II) 

MLP- 
09 

Percentage of hours of natural 
ventilation (category III) 

MLP- 
10 

Hourly heating degrees (category I - 
20 ◦C) 

MLP- 
11 

Hourly heating degrees (category I - 
21 ◦C) 

MLP- 
12 

Hourly heating degrees (category I - 
22 ◦C) 

MLP- 
13 

Hourly cooling degrees (category I - 
25 ◦C) 

MLP- 
14 

Hourly cooling degrees (category I - 
26 ◦C) 

MLP- 
15 

Hourly cooling degrees (category I - 
27 ◦C) 

MLP- 
16 

Hourly heating degrees (category II 
- 20 ◦C) 

MLP- 
17 

Hourly heating degrees (category II - 
21 ◦C) 

MLP- 
18 

Hourly heating degrees (category II - 
22 ◦C) 

MLP- 
19 

Hourly cooling degrees (category II - 
25 ◦C) 

MLP- 
20 

Hourly cooling degrees (category II - 
26 ◦C) 

MLP- 
21 

Hourly cooling degrees (category II - 
27 ◦C) 

MLP- 
22 

Hourly heating degrees (category III 
- 20 ◦C) 

MLP- 
23 

Hourly heating degrees (category III 
- 21 ◦C) 

MLP- 
24 

Hourly heating degrees (category III 
- 22 ◦C) 

MLP- 
25 

Hourly cooling degrees (category III 
- 25 ◦C) 

MLP- 
26 

Hourly cooling degrees (category III 
- 26 ◦C) 

MLP- 
27 

Hourly cooling degrees (category III - 
27 ◦C)  
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Fig. 2, the clusters presented different climatic zones. However, certain 
trends were detected in the majority percentages of these zones. For 
example, cluster 3 grouped the most severe climatic zones in winter (D2, 
D3, and E1), while cluster 1 grouped those with less severity (A3 and 
A4). Therefore, although the climatic zones of the Spanish Building 
Technical Code do not fit the clusters of the adaptive model, certain 
zones tend to fit a given cluster. In any case, the climatic zones of the 
Spanish Building Technical Code would not serve to be able to perform 
climatic classifications of the application of adaptive models. 

Note that the cluster analysis was conducted with variables obtained 
from the application of adaptive strategies according to the climate of 
each city. Each cluster, therefore, included cities with various charac
teristics of populations and incomes of family units. These parameters 
are crucial to be controlled as the main potential of these strategies lies 
in the acclimatisation of indoor spaces of buildings with low energy 

consumption. It is, therefore, vital to be able to apply adaptive strategies 
in cities with low income per person or family unit, with the aim of 
reducing the cases of energy poverty. For these reasons, the data dis
tributions of people and incomes were assessed in each cluster (Fig. 3 
and Table 3). The data were obtained from the Spanish Institute of 
Statistics [61,62]. The analysis results showed that cluster 1 compiled 
the maximum population, followed by cluster 4. The other two clusters, 
in most cases, corresponded to cities with a low population density. As 
for the incomes, the following two aspects were observed: (i) regarding 
per person income, cluster 1 was characterised by clustering the lower 
incomes by person, whereas the other clusters obtained different values, 
and (ii) the incomes per household showed that clusters 2 and 3 ob
tained lower income values than the other two clusters. This aspect 
shows the complexity of the assessment of users’ economic incomes, as 
the size of a family unit can influence the economic incomes of dwelling 
users. Nonetheless, this analysis reflects how, for the two income ty
pologies, all clusters presented a potential of using adaptive strategies 
due to the low incomes of users and households. 

3.2. Application of adaptive strategies in the XXI century 

The first step towards analysing the application of adaptive strategies 
with actual data from the four clusters is the use of hourly data available. 
The analysis first assessed the potential application of adaptive thermal 
comfort models. As indicated in Subsection 2.2., the application 
requirement was that the external temperature should be between the 
lower (10 ◦C) and upper limits (30 ◦C). Fig. 4 summarises the application 
potential data. As could be verified, the application possibilities varied 
according to the cluster. Cluster 1 presented almost 100% application of 
the days between years 2000 and 2019, while the other clusters pre
sented lower percentages. In this regard, cluster 4 obtained a greater 
percentage of application (between 81.4% and 99.2%), cluster 2 ob
tained slightly lower percentages (between 68.5% and 85.5%), and 
cluster 3 presented the lowest percentage (between 49.9% and 69%). 
These variations in the percentages of application resulted from tem
peratures below 10 ◦C (cold days) and above 30 ◦C (hot days). In gen
eral, these variations varied according to the cluster: while the 
percentage of no application in cluster 3 resulted from the average 
temperature being below 10 ◦C, there were both cold and hot days in 
clusters 2 and 4, with more cold days in Jaen than in Seville. 

After analysing the possibilities of applying the adaptive thermal 
comfort models, those of natural ventilation were assessed (Fig. 5). As 
indicated in Section 2.2., the analysis was performed considering the 
percentage of yearly hours for which the outside temperature was within 
the limits of the comfort categories of the EN 16798–1:2019 model. This 
ensured that natural ventilation provided acceptable thermal comfort 
and reduced the use of HVAC systems. The possibilities of using the 
ventilation strategies never exceeded 60%. In general, the trends of 
applying natural ventilation strategies were similar over the years and 
had differences among clusters. Cluster 1 obtained the greatest per
centages of application (with average values of 17%, 26%, and 37% for 
categories I, II, and III, respectively), whereas cluster 3 obtained the 
lowest percentage. As for clusters 2 and 4, the application percentages 
were similar. Likewise, the effect of increase in users’ thermal expec
tations and the possibilities of natural ventilation varied according to the 
cluster. In cluster 1, the increase in the category implied an average 
increase of between 8% and 11.6% in the possibilities of natural venti
lation, whereas in the other clusters, there were average increases of 
between 3% and 6.7%. 

These results showed the possibility of applying natural ventilation 
strategies at more than 10% of the hours of the year, varying according 
to users’ thermal expectations. Thus, there is a potential application of 
these strategies to acclimatise indoor spaces. Nonetheless, the use of 
HVAC systems is required to guarantee appropriate internal temperature 
conditions. Given this circumstance, the application of adaptive setpoint 
temperatures would ensure an appropriate use of HVAC systems. For 

Table 5 
Results obtained in the statistical parameters during the testing phase.  

Model Output variable Testing 

R2  MAE  RMSE  

MLP- 
01 

Hourly heating degrees (20 ◦C) 99.77 290.93 913.16 

MLP- 
02 

Hourly heating degrees (21 ◦C) 99.70 397.48 1120.66 

MLP- 
03 

Hourly heating degrees (22 ◦C) 99.72 338.44 1034.20 

MLP- 
04 

Hourly cooling degrees (25 ◦C) 99.59 144.40 232.59 

MLP- 
05 

Hourly cooling degrees (26 ◦C) 99.63 158.81 254.31 

MLP- 
06 

Hourly cooling degrees (27 ◦C) 99.68 116.08 177.85 

MLP- 
07 

Percentage of hours of natural 
ventilation (category I) 

95.20 0.46 0.78 

MLP- 
08 

Percentage of hours of natural 
ventilation (category II) 

92.35 0.73 1.42 

MLP- 
09 

Percentage of hours of natural 
ventilation (category III) 

93.51 0.69 1.73 

MLP- 
10 

Hourly heating degrees (category I - 
20 ◦C) 

86.86 156.59 938.93 

MLP- 
11 

Hourly heating degrees (category I - 
21 ◦C) 

94.26 130.31 959.20 

MLP- 
12 

Hourly heating degrees (category I - 
22 ◦C) 

89.99 137.11 1047.54 

MLP- 
13 

Hourly cooling degrees (category I - 
25 ◦C) 

99.64 77.31 118.90 

MLP- 
14 

Hourly cooling degrees (category I - 
26 ◦C) 

99.76 86.53 129.38 

MLP- 
15 

Hourly cooling degrees (category I - 
27 ◦C) 

99.68 50.14 81.15 

MLP- 
16 

Hourly heating degrees (category II - 
20 ◦C) 

91.20 125.77 906.49 

MLP- 
17 

Hourly heating degrees (category II - 
21 ◦C) 

96.73 155.29 827.82 

MLP- 
18 

Hourly heating degrees (category II - 
22 ◦C) 

93.92 125.52 945.51 

MLP- 
19 

Hourly cooling degrees (category II - 
25 ◦C) 

99.66 87.86 135.87 

MLP- 
20 

Hourly cooling degrees (category II - 
26 ◦C) 

99.76 100.96 148.48 

MLP- 
21 

Hourly cooling degrees (category II - 
27 ◦C) 

99.73 62.87 95.35 

MLP- 
22 

Hourly heating degrees (category III - 
20 ◦C) 

94.41 132.25 877.20 

MLP- 
23 

Hourly heating degrees (category III - 
21 ◦C) 

97.45 219.75 842.25 

MLP- 
24 

Hourly heating degrees (category III - 
22 ◦C) 

96.42 165.53 856.21 

MLP- 
25 

Hourly cooling degrees (category III - 
25 ◦C) 

99.69 97.68 149.05 

MLP- 
26 

Hourly cooling degrees (category III - 
26 ◦C) 

99.71 117.84 177.25 

MLP- 
27 

Hourly cooling degrees (category III - 
27 ◦C) 

99.70 75.25 117.47  
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this reason, the heating and cooling temperature degrees required for 
acclimatising the indoor spaces were first analysed, using the static 
setpoint temperatures defined in Subsection 2.2. Fig. 6 represents the 
time series of heating and cooling degrees required. As seen, each region 

presented certain needs of heating and cooling degrees in accordance 
with those reflected in Fig. 4. Thus, the zones with a trm value below 
10 ◦C were characterised as presenting heating degrees, whereas if the 
temperature of 30 ◦C was not overcome, the values of the cooling 

Fig. 9. Point clouds between the actual and estimated values per each MLP designed in the research.  
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Fig. 10. Time series increased by the possibilities of application of the adaptive thermal comfort model of EN 16798–1:2019 in the period between the oldest year 
available for clusters and 2019. The results before the year 2000 were obtained through the existing daily mean temperature data. 
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Fig. 11. Time series increased by the possibilities of natural ventilation of the adaptive thermal comfort model of EN 16798–1:2019 in the period between the oldest 
year available for clusters and 2019. The results before the year 2000 were obtained through the MLPs. 
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degrees were low. Accordingly, clusters 1 and 3 were characterised as 
presenting lower values of cooling degrees, whereas clusters 2 and 4 
obtained higher values. In addition, all clusters obtained high values of 
heating degrees, although cluster 3 obtained greater values, while 
cluster 1 obtained lower values. In addition, the possible variability 
presented by the energy demand of a building according to the climate 
conditions of each year was shown, as some years, such as 2017, were 
characterised as presenting greater demands for cooling degrees. 

These heating and cooling demands, required to acclimatise the in
door spaces according to the static setpoint temperature, clearly 

influenced the degree-saving obtained by the adaptive setpoint tem
peratures (Figs. 7 and 8). Moreover, as in the case of ventilation, users’ 
thermal expectations could influence the savings achieved. In this re
gard, the clusters with lower values of heating degrees and the most 
demanding categories of thermal expectation (i.e. categories I and II) 
obtained negative values. In these cases, only category III obtained 
savings of heating degrees. Only the savings obtained with respect to the 
use of a static setpoint temperature with a high thermal expectation of 
the user (i.e. 22 ◦C) were positive. This aspect resulted from the 
behaviour of the adaptive setpoint temperatures obtained through the 

Fig. 12. Example of time series increased by the saving of heating and cooling degrees obtained with category III of the adaptive thermal comfort model of EN 
16798–1:2019 in the period between the oldest year available for clusters and 2019. The results before the year 2000 were obtained through the MLPs. 
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linear correlations of trm. A high trm value implies that, in the hours of 
heating demand, the adaptive setpoint temperature obtained for cate
gories I and II is greater than the static setpoint temperature. Thus, a 
successful saving can only be obtained in these regions if the adaptive 
setpoint temperatures from category III are used; for the other two 
categories, it would be interesting to consider a static approach as the 
effectiveness of these setpoint temperatures can be reduced if the user 
does not have patterns of high thermal expectation. This same tendency 
was observed in the other two clusters, although the greatest heating 
demand generated the greatest effectiveness of using the adaptive set
point temperatures of categories I and II. In this regard, only the saving 
of category I with respect to a static setpoint temperature of 20 ◦C was 
negative. Therefore, the use of these adaptive setpoint temperatures for 
heating generated substantial energy-saving in cold regions. In this re
gard, cluster 3 obtained savings of heating degrees between 
22,989.62 ◦C and 29,670.55 ◦C with category III. 

Regarding the savings from cooling degrees, the values mainly 
depended on the demand of cooling degree, as indicated in Fig. 6. In this 
regard, the saving values of cooling degrees were greater in the zones 
with greater demand (clusters 2 and 4). However, even in clusters with 
lower saving and compared to a highly efficient static setpoint temper
ature (27 ◦C), the obtained results were always greater than 0, thus 
reflecting the possibility of applying adaptive thermal comfort models to 
achieve considerable saving of the building cooling demand. In addition, 
there is a huge potential of applying adaptive strategies, as the adequacy 
of nZEB in the countries from the south of Spain is challenging [63]. 

3.3. Application of adaptive strategies from the 20th century to nowadays 

As indicated in Subsection 3.2., the potential of energy-saving with 
adaptive strategies presented acceptable results in the four clusters 
analysed. This analysis was conducted with the hourly temperature data 
between 2000 and 2019. However, Table 1 indicates that there were 
daily time series of the 20th century in clusters 1, 2, and 4. Therefore, the 
determination of variables related to adaptive thermal comfort strate
gies would allow the tendencies of evolution of the strategies to be found 
with the recorded data. Only the results related to the percentage of days 
to apply adaptive thermal comfort models could be determined with 
daily temperature data, and thus, the results were estimated at an hourly 
scale (i.e. natural ventilation and saving of heating and cooling degrees) 
by using MLPs. For this purpose, individual MLPs were designed for each 
output variable, and the maximum, minimum, and average tempera
tures of each month were used as the input variables (Table 4). A total of 
27 MLPs were designed. The dataset used in the analysis was designed 
with the data obtained for the cluster analysis, as well as the hourly data 
of the cities of Cadiz, Jaen, Grazalema, and Seville. MLPs were trained 
with 75% of a random data sample, while the remaining 25% was used 
for the testing. 

Table 5 indicates the performance of the MLPs in the training and 
testing phases, and Fig. 9 shows the dispersion diagrams among the 
actual and simulated values. The performance achieved by the MLPs was 
satisfactory. In this regard, in the testing phase, the values of the 
determination coefficient were above 90% in most MLPs. Only MLP-10 
(hourly heating degrees (category I - 20 ◦C)) and MLP-12 (hourly 
heating degrees (category I - 22 ◦C)) obtained lower values for the 

Table 6 
Linear correlations between the different variables related to the adaptive strategies analysed in this study (results obtained with the sample of hourly temperature data 
between 2000 and 2019).  

Variable Group 1 Group 2 Group 3 Group 4 

Percentage of days of application y = 61.3+ 0.02⋅x  y = 413.44 − 0.17⋅x  y = 152.29 − 0.04⋅x  y = 100.39 − 0.01⋅x  
Percentage of days in which the upper limit is overcome y = 0.37 − 0.01⋅x  y = − 155.26+ 0.08⋅x  y = 2381.10 − 1.23⋅x  y = − 139.79+ 0.071⋅x  
Percentage of days in which the lower limit is overcome y = 38.33 − 0.02⋅x  y = − 158.18+ 0.09⋅x  y = − 57.24+ 0.05⋅x  y = 139.4 − 0.07⋅x  
Percentage of hours of natural ventilation (category I) y = − 17.17+ 0.02⋅x  y = − 81.71+ 0.05⋅x  y = − 69.93+ 0.04⋅x  y = 0.56+ 0.01⋅x  
Percentage of hours of natural ventilation (category II) y = − 87.73+ 0.06⋅x  y = − 25.72+ 0.02⋅x  y = − 103.97+ 0.06⋅x  y = − 15.54+ 0.02⋅x  
Percentage of hours of natural ventilation (category III) y = − 207.99+ 0.12⋅x  y = − 65.95+ 0.05⋅x  y = − 128.47+ 0.07⋅x  y = − 76.49+ 0.05⋅x  
Hourly heating degrees (20 ◦C) y = 220701.95 − 97.93⋅x  y = 164697.01 − 60.09⋅x  y = 200148.8 − 67.9⋅x  y = 344827.7 − 155.7⋅x  
Hourly heating degrees (21 ◦C) y = 247516.22 − 108.64⋅ 

x  
y = 207576.75 − 78.60⋅x  y = 228690.76 − 78.62⋅x  y = 370128.5 − 165.7⋅x  

Hourly heating degrees (22 ◦C) y = 272899.58 − 118.32⋅ 
x  

y = 246660.45 − 95.08⋅x  y = 253151 − 87.2⋅x  y = 392065.58 − 173.88⋅x  

Hourly cooling degrees (25 ◦C) y = 2609.02 − 0.27⋅x  y = − 134786.12+ 71.06⋅x  y = − 48949.04+ 25.62⋅x  y = − 63680.63+ 37.12⋅x  
Hourly cooling degrees (26 ◦C) y = 5687.14 − 2.2⋅x  y = − 114487.87+ 60.12⋅x  y = − 37013.15+ 19.32⋅x  y = − 53354.18+ 31.02⋅x  
Hourly cooling degrees (27 ◦C) y = 7482.49 − 3.33⋅x  y = − 103393.3+ 53.9⋅x  y = − 26011.84+ 13.57⋅x  y = − 51127.66+ 29.07⋅x  
Hourly heating degrees (category I - 20 ◦C) y = 15019.06 − 11.33⋅x  y = − 49776.04+ 23.23⋅x  y = 43742.44 − 22.5⋅x  y = 11580.19 − 8.97⋅x  
Hourly heating degrees (category I - 21 ◦C) y = 38680.56 − 20.48⋅x  y = − 2580.11+ 2.57⋅x  y = 72284.44 − 33.24⋅x  y = 39845.59 − 20.46⋅x  
Hourly heating degrees (category I - 22 ◦C) y = 61321.94 − 28.8⋅x  y = 48227.24 − 19.74⋅x  y = 96744.73 − 41.82⋅x  y = 66505.99 − 30.95⋅x  
Hourly cooling degrees (category I - 25 ◦C) y = 9889.58 − 3.98⋅x  y = − 102676.58+ 54.02⋅x  y = − 35264.9+ 18.49⋅x  y = − 46414.45+ 26.58⋅x  
Hourly cooling degrees (category I - 26 ◦C) y = 3615.77 − 1.28⋅x  y = − 78411.23+ 41.11⋅x  y = − 23329.01+ 12.2⋅x  y = − 39231.63+ 22.04⋅x  
Hourly cooling degrees (category I - 27 ◦C) y = 2081.28 − 0.77⋅x  y = − 56186.57+ 29.35⋅x  y = − 12327.69+ 6.45⋅x  y = − 31280.64+ 17.27⋅x  
Hourly heating degrees (category II - 20 ◦C) y = 26632.32 − 13.77⋅x  y = − 14198.98+ 8.69⋅x  y = 64843.76 − 29.37⋅x  y = 32040.6 − 16.15⋅x  
Hourly heating degrees (category II - 21 ◦C) y = 51853.78 − 23.69⋅x  y = 38674.43 − 14.79⋅x  y = 93385.76 − 40.11⋅x  y = 59019.32 − 27⋅x  
Hourly heating degrees (category II - 22 ◦C) y = 73783.43 − 31.66⋅x  y = 86218.74 − 35.47⋅x  y = 117846.05 − 48.69⋅x  y = 84302.33 − 36.82⋅x  
Hourly cooling degrees (category II - 25 ◦C) y = 9760.82 − 3.86⋅x  y = − 115351.27+ 60.67⋅x  y = − 40388.4+ 21.18⋅x  y = − 49553.9+ 28.64⋅x  
Hourly cooling degrees (category II - 26 ◦C) y = 4602.37 − 1.7⋅x  y = − 90641.95+ 47.54⋅x  y = − 28452.51+ 14.88⋅x  y = − 41764.24+ 23.8⋅x  
Hourly cooling degrees (category II - 27 ◦C) y = 2849.39 − 1.09⋅x  y = − 67203.78+ 35.17⋅x  y = − 17451.194+ 9.133⋅x  y = − 33579.96+ 18.92⋅x  
Hourly heating degrees (category III - 20 ◦C) y = 45727.77 − 20.33⋅x  y = 28771.91 − 9.72⋅x  y = 85591.87 − 36.21⋅x  y = 54406.68 − 24.51⋅x  
Hourly heating degrees (category III - 21 ◦C) y = 70306.13 − 29.93⋅x  y = 78245.15 − 31.51⋅x  y = 114133.87 − 46.95⋅x  y = 80755.97 − 35.05⋅x  
Hourly heating degrees (category III - 22 ◦C) y = 91570.62 − 37.57⋅x  y = 122644.65 − 50.62⋅x  y = 138594.16 − 55.52⋅x  y = 104739.87 − 44.23⋅x  
Hourly cooling degrees (category III - 25 ◦C) y = 7483.77 − 2.7⋅x  y = − 127623.62+ 67.02⋅x  y = − 42479.12+ 22.3⋅x  y = − 50550.96+ 29.54⋅x  
Hourly cooling degrees (category III - 26 ◦C) y = 4489.23 − 1.61⋅x  y = − 98896.03+ 51.90⋅x  y = − 30543.22+ 16.01⋅x  y = − 45235.01+ 25.94⋅x  
Hourly cooling degrees (category III - 27 ◦C) y = 3032.15 − 1.15⋅x  y = − 72987.72+ 38.30⋅x  y = − 19541.91+ 10.26⋅x  y = − 37045.97+ 21.06⋅x   
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determination coefficient. Regarding the error parameters, the values 
obtained were satisfactory, because according to the variables analysed, 
the values obtained showed an appropriate adjustment degree. The 
performances achieved by the MLPs, therefore, indicated the possibility 
of using these models for estimating the energy-saving variables with 
adaptive strategies of daily time series. Thus, the potential application of 
adaptive thermal comfort models was first determined based on daily 
data (Fig. 10), and then, the MLPs were used to estimate the possibilities 
of natural ventilation (Fig. 11) and the saving of heating and cooling 
degrees (Fig. 12). 

By analysing the adaptive variables of energy-saving, the analysis of 
the possible application of adaptive thermal comfort models was started 
again. An analysis of the overall series verified that the application 
percentages obtained by the records throughout the 20th century pre
sented similar values to those obtained throughout the 21st century. 
However, there were different tendencies of evolution at these values. 
Using the results obtained by the overall series in each cluster (in cluster 
3, there were only hourly results between 2001 and 2019), linear cor
relations were determined in the time series, which reflected the ten
dencies of evolution (Table 6). This analysis showed that the potential 
application of adaptive thermal comfort models presented a slightly 
downward tendency, with cluster 2 being the only exception, as it 
exhibited a greater downward tendency. In cluster 1, there was an 
almost uniform tendency as the percentage of application was mainly 
100%. Regarding the reasons for the decrease in the application of 
adaptive models, three tendencies were observed in each cluster: (i) the 
decrease in cluster 2 was due to the percentage of days in which the 
lower and upper limits were overcome; (ii) in cluster 3, it was due to an 
increase in the percentage of days with cold temperatures (with trm 
lower than 10 ◦C); and (iii) in cluster 4, it was due to an increase in the 
number of hot days (with trm greater than 30 ◦C). Nonetheless, these 
tendencies, although there was a downward tendency in most clusters, 
did not constitute a negative factor with respect to the potential appli
cation of the adaptive strategies, as in general, the values obtained by 
the adaptive models were greater than 50% of the days of the year, and 
these downward tendencies could be a sign of the climate variation 
predicted throughout the 21st century. 

There was, therefore, a downward tendency in the days to apply the 
adaptive thermal comfort models. However, the effectiveness of 
applying adaptive energy-saving strategies presented different ten
dencies. First, the possibilities of natural ventilation showed a clear 
ascending tendency in the four clusters and three categories of EN 
16798–1:2019. As for the saving of heating and cooling degrees, 
different tendencies were observed according to the type of energy de
mand to be met: the saving of heating degrees showed a downward 
tendency in all clusters due to the decreasing tendency presented by 
heating requirements, whereas the saving of cooling degrees showed an 
ascending tendency, which results from the ascending tendency of the 
cooling requirements of buildings. These results agreed with the 
increasing tendency of external temperatures, which have resulted from 
the evolutions of climate change since the end of the 20th century. 

4. Conclusions 

This study analysed the potential application of adaptive energy- 
saving strategies in the 786 Andalusian municipalities (in the south of 
Spain) through the international EN 16798–1:2019 standard. From a 
multi-dimensional cluster analysis, considering the use of natural 
ventilation and adaptive setpoint temperatures, four groups were 
determined based on the climatic parameters. Clusters 1 and 4 exhibited 
the greatest population, with cluster 1 obtaining lower income per 
person and clusters 2 and 3 obtaining lower income per household. 
Furthermore, the cluster analysis showed the relation between the 
geographical characteristics of a region and the application of adaptive 
models. In this study, the groups corresponded to municipalities with 
similar geographic characteristics, such as municipalities located in 

coastal areas, those located in the depression of the Guadalquivir River, 
or those located in the Baetic System. Therefore, these results agree with 
those of the studies conducted on a global scale, where the relation 
between adaptive models and geographic characteristics was detected. 
This forms a basis for the development of climatic zones for the appli
cation of adaptive models. In this sense, the groups obtained in the 
cluster analysis showed variation with respect to the climatic zones 
established in the Spanish Building Technical Code. However, these 
differences are normal as both the classification criteria and objectives 
differed for the two climatic zones. Nevertheless, the differences serve as 
a basis for discussing the needs to establish new climatic zones in the 
country or developing new regulatory criteria. 

Regarding the analysis of historical data, a representative city was 
selected for each cluster: Cadiz for cluster 1, Jaen for cluster 2, Graza
lema for cluster 3, and Seville for cluster 4. This study showed that the 
applicability of an adaptive thermal comfort model had substantial po
tential in all four clusters within the temporary framework of 
2000–2019, ranging between 100% for cluster 1 and 69% for cluster 3. 

As for the potential of natural ventilation, two main conclusions were 
drawn by considering the three categories studied. First, the applica
bility of this strategy was never below 10% (cluster 3), even at the most 
restrictive level of expectation (Category I), being at ~15% in clusters 2 
and 4 and ~20% in cluster 1. Second, considering the least restrictive 
level of expectation usually applied to an existing building (Category 
III), the percentage substantially increased in cluster 1, being close to 
40% of the hours of the year, increasing by ~30% in clusters 2 and 4, 
and by more than 20% in cluster 3. As a result, the substantial potential 
of natural ventilation as a strategy for energy reduction is proved, even 
in the coldest zones (cluster 3) studied. 

In addition, this study showed that the energy-saving strategy 
through the application of adaptive setpoints to regulate the consump
tion of HVAC systems led to a substantial saving of the heating and 
cooling degrees required with respect to six configurations of static 
setpoints: three for heating (20 ◦C, 21 ◦C, and 22 ◦C) and three for 
cooling (25 ◦C, 26 ◦C, and 27 ◦C). The results showed that users’ thermal 
expectations, as in the case of natural ventilation, substantially influ
enced the saving of heating and cooling degrees. Considering the former, 
only Category III implied saving in all cases, with clusters 2 and 3 being 
the most stressed. However, comparing Category I with static setpoints, 
saving was achieved in clusters 1 and 4 only with the most restrictive 
setpoint (22 ◦C), whereas that in clusters 2 and 3 was achieved at set
point of 21 ◦C. This tendency is contrary to that observed for the saving 
of cooling degrees, where all cases maintained positive values, thus 
stressing the potential of using adaptive setpoints in the cooling regime 
to achieve substantial reduction in energy consumption. 

By considering the analysis of old time series with the design of 27 
MLPs, the following conclusions can be drawn based on the evolution 
presented by these series considering the increasing tendency of external 
temperatures due to climate change. There was, therefore, a slight 
downward trend in the application of adaptive thermal comfort models 
in the days. However, with a decrease in saving of heating degrees, the 
natural ventilation strategy substantially increased in all clusters, fol
lowed by the saving of cooling degrees. These results can be useful in 
understanding, with real data, the expected evolution trend of the en
ergy performance of existing buildings and facilitate their transition to 
buildings with almost zero energy consumption. The expected higher 
energy demand for cooling in buildings may limit the use of energy- 
saving measures, such as improving the envelope of buildings (a mea
sure more focused on reducing the energy demand for heating). In this 
circumstance, an adaptive behaviour by users would reduce the energy 
demand for cooling in buildings and guarantee better resilience to the 
expected evolution of the climate. 

These results, therefore, showed the potential application of adaptive 
strategies for reducing the energy consumption. The use of natural 
ventilation strategies and cooling adaptive setpoint temperatures can 
substantially save building energy consumption, and in turn, reduce 
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GHGs. Further studies should consider several climate change scenarios 
in Andalusia. The results of this study show the need to implement 
adaptive behaviours in the conditioning of interior spaces. For this 
purpose, the use of automation processes in HVAC systems and smart
phone applications can facilitate a better implementation of adaptive 
strategies. Likewise, it is necessary to develop awareness policies so that 
users know the advantages of adaptive strategies, similar to that con
ducted in Japan with the ‘Super cool biz’ campaign [64]. Regarding the 
limitations of this study, the recently detected trend for the application 
of adaptive models has not analysed the scenarios foreseen by the 
Intergovernmental Panel on Climate Change. These scenarios should be 
analysed in the future to observe the expected trend throughout the 21st 
century. Second, the analysis did not consider the period of permanence 
of users in buildings. In this sense, an adaptive behaviour by users based 
on moving to areas with more favourable thermal conditions (e.g. going 
to coastal areas during the summer) can change the expected trends in 
energy demand. However, long-term episodes of users in their homes, 
such as the COVID-19 pandemic, may limit the application of these 
travel strategies to other regions. Finally, the relation that can be pre
sented between the application of adaptive strategies and the decrease in 
cases of energy poverty constitutes a future aspect to be studied. The 
study results have shown how the different clusters are characterised as 
having municipalities with low–middle income. Thus, the use of these 
strategies is an opportunity for these families to condition their interior 
spaces. However, the following two knowledge gaps need to be 
addressed in the future. First, a precise evaluation of the relation be
tween the population and income of the census units of each munici
pality, with the potential of applying adaptive strategies, needs to be 
conducted. Therefore, future research should be oriented towards small- 
or medium-scale studies in a similar manner to those conducted by 
Sánchez et al. [65] in Madrid. Second, the possibility that users are 
already using adaptive approaches in the region indicates that family 
assessment procedures, such as those based on the energy rating of 
buildings, overestimate the energy consumption of buildings and 
generate ‘false positives’ in case of energy poverty. The analysis of these 
cases should be addressed in the future through surveys that provide 
detailed information on the predominant type of behaviour exhibited by 
users in each municipality. 
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