
nanomaterials

Article

Physicochemical and Rheological Properties of a
Transparent Asphalt Binder Modified with Nano-TiO2

Iran Rocha Segundo 1,* , Salmon Landi, Jr. 2 , Alexandros Margaritis 3 ,
Georgios Pipintakos 3 , Elisabete Freitas 1 , Cedric Vuye 3 , Johan Blom 3 , Tom Tytgat 4 ,
Siegfried Denys 4 and Joaquim Carneiro 5

1 Department of Civil Engineering, University of Minho, 4800-058 Guimarães, Portugal;
efreitas@civil.uminho.pt

2 Federal Institute Goiano, Rio Verde 75901-970, Brazil; salmon.landi@ifgoiano.edu.br
3 Energy and Materials in Infrastructure and Buildings (EMIB) Research Group, University of Antwerp,

2020 Antwerp, Belgium; alexandros.margaritis@uantwerpen.be (A.M.);
georgios.pipintakos@uantwerpen.be (G.P.); cedric.vuye@uantwerpen.be (C.V.);
johan.blom@uantwerpen.be (J.B.)

4 Research Group Sustainable Energy, Air and Water Technology, University of Antwerp,
2020 Antwerp, Belgium; tom.tytgat@uantwerpen.be (T.T.); siegfried.denys@uantwerpen.be (S.D.)

5 Centre of Physics, University of Minho, 4800-058 Guimarães, Portugal; carneiro@fisica.uminho.pt
* Correspondence: iran_gomes@hotmail.com

Received: 16 September 2020; Accepted: 23 October 2020; Published: 28 October 2020
����������
�������

Abstract: Transparent binder is used to substitute conventional black asphalt binder and to provide
light-colored pavements, whereas nano-TiO2 has the potential to promote photocatalytic and
self-cleaning properties. Together, these materials provide multifunction effects and benefits when
the pavement is submitted to high solar irradiation. This paper analyzes the physicochemical and
rheological properties of a transparent binder modified with 0.5%, 3.0%, 6.0%, and 10.0% nano-TiO2

and compares it to the transparent base binder and conventional and polymer modified binders
(PMB) without nano-TiO2. Their penetration, softening point, dynamic viscosity, master curve, black
diagram, Linear Amplitude Sweep (LAS), Multiple Stress Creep Recovery (MSCR), and Fourier
Transform Infrared Spectroscopy (FTIR) were obtained. The transparent binders (base and modified)
seem to be workable considering their viscosity, and exhibited values between the conventional
binder and PMB with respect to rutting resistance, penetration, and softening point. They showed
similar behavior to the PMB, demonstrating signs of polymer modification. The addition of TiO2

seemed to reduce fatigue life, except for the 0.5% content. Nevertheless, its addition in high contents
increased the rutting resistance. The TiO2 modification seems to have little effect on the chemical
functional indices. The best percentage of TiO2 was 0.5%, with respect to fatigue, and 10.0% with
respect to permanent deformation.

Keywords: asphalt binder; transparent binder; nanomaterials; TiO2; viscoelastic properties; FTIR;
photocatalytic asphalt; light-colored asphalt; self-cleaning

1. Introduction

For specific applications, it is important to control the light absorption and thermal energy storage
in asphalt pavements, which can be carried out by the application of light-colored pavements [1].
Light and heat are essential influencing factors for asphalt pavements. Firstly, it is well known that
they are essential keys for the asphalt binder aging, causing damage to asphalt roads [2,3]. The absence
of light profoundly affects the visibility conditions, decreasing safety [1]. In contrast, a large amount of
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heating can increase the Urban Heat Island (UHI) effect in urban areas [4]. The conventional black
color of asphalt pavements absorbs light and stores a large amount of thermal energy.

According to the World Health Organization (WHO), more than 90% of the global population
lives in places where the concentrations of pollutants exceed their limits, presenting, as consequences,
intensification of the greenhouse effect, acid rain, and public health problems, for example.
The indispensable urgency for the reduction of air pollutants is clear from different scales and
needs. As such, the introduction of semiconductor nanoparticles into asphalt mixtures can make part
of the solutions available to mitigate air-quality problems [5–11].

It is estimated that 40% of urban areas are covered by pavements due to the rapid human
development, affecting the local ecosystems and the subjacent surface conditions. Nowadays, another
urban problem is the UHI phenomenon, which is the increase of temperatures in cities in comparison
to the colder conditions of suburban zones and rural areas, due to the massive development of
urbanization [4,12]. Traditional (asphalt) pavements and roofs absorb and store most of the solar energy
during the day, which is released in the form of heat during the night. The dark surfaces of, for example,
asphalt pavements are characterized by a sunlight reflection up to only 20%. Therefore, light-colored
road pavements can be considered a viable technology to tackle this phenomenon. Additionally,
these surfaces reduce the heat convection from pavement to air with a consequent decrease of ambient
air temperature. Its high reflectivity reduces the overheating during the summer period, resulting in
less distress and increased pavement durability [1,3].

A common practice for separating asphalt binder fractions is to fractionate it based on polarity
using different solvents. By this method, the following fractions are obtained: asphaltenes, resins,
aromatics, and saturates with decreasing polarity order [13]. To obtain light-colored asphalt pavements,
transparent binders can be used. Thus, they are produced through three different processes: (i) bitumen
modification based on the extraction of asphaltenes that are responsible for the black color of bitumen;
(ii) synthetic binder production by transparent polymer materials; and (iii) blending specific resins
with bio-oils or organic vegetal origin materials [1,3]. Even though they are not bituminous materials,
their rheological properties are similar to asphalt bitumens [1]. They can even contribute to electricity
cost savings (and reduced pollutant emissions) due to the increased visibility in dark areas, for example,
in tunnels, and, consequently, a reduced need for lighting [1].

Hitherto, little research has been focused on the physicochemical and rheological properties
of light-colored binders. Additionally, the use of TiO2 can bring two benefits in this sense besides
environmental effects: (i) the functionalization by providing photocatalytic capability can contribute to
the environmental remediation; and (ii) development of lighter asphalt mixture, e.g., from dark brown
to light yellow, depending on the used granulates, which can mitigate the UHI.

The literature presents a small number of studies addressing the use of the transparent binder.
For example, Bocci et al. (2012) produced a light-colored asphalt mixture with conventional aggregates,
lime filler, light-colored binder, and TiO2 powder (1% by aggregate weight). The coefficient of reflection
related to night visibility and the luminance of this technology were much higher than those from the
conventional asphalt mixture [1]. Bocci E. and Bocci M. (2014) continued their research on this subject,
showing that light-colored dense-graded mixtures have similar mechanical properties when compared
to the conventional asphalt mixture. They concluded that the light-colored asphalt pavement presented
very high photometric properties even after five months from the traffic opening [14]. Sengoz et al.
(2017) investigated the rheological properties of transparent binder in comparison to a traditional
black bitumen. They concluded that the transparent and the traditional black bitumen had a similar
performance [3].
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On the basis of a review of the previous literature, there is a gap considering the rheological
behavior of transparent binders modified with nano-TiO2. The use of these two materials together
would combine their benefits into one single product: an asphalt pavement capable to photodegrade
pollutants and avoid the UHI. The main objective of this research is to analyze the physicochemical and
rheological properties of a transparent binder modified with nano-TiO2 (0.5%, 3.0%, 6.0%, and 10.0%)
for the understanding of its limitations and definition of suitable destinations. For this, its physical
(conventional), rheological, and chemical properties were assessed and compared to those of a
conventional asphalt binder and a commercial PMB.

2. Materials

2.1. Binders

In this research, the transparent binder Kromatis 50/70 from Total (Rives-en-Seine, France) was
used. According to the supplier, this light-colored synthetic binder presents properties similar to other
bitumens. It is produced with hydrocarbon resins and low content of asphaltenes, which are removed
and replaced with new elastomeric polymers [15].

A conventional 50/70 bitumen and a polymer-modified binder (PMB) (SBS-modified bitumen)
were also used in this study. These reference binders were named as N50/70 and PMBTS, respectively.

2.2. TiO2 Nanoparticles

The semiconductor selected to provide multifunctional properties was the nano-TiO2 by
Quimidroga (Aeroxide TiO2 P25) (Barcelona, Spain). Its main properties are 80% anatase and
20% rutile crystalline phases, purity > 99.5%, and particle size about 23 to 28 nm.

2.3. Sample Preparation

The nanoparticles were incorporated into the binder (at 150 ◦C for 30 min in a low shear mixer with
a rotational speed of 1500 RPM) with four different contents: 0.5, 3.0, 6.0 and 10.0% (in the mass of the
binder) with a similar modification procedure adopted in the literature review [10,16–18]. The particles
were placed when the low shear mixer was working, homogenizing the binder already heated to
150 ◦C. All safety precautions were taken, considering personal protective equipment, engineering
control (ventilated enclosures), and hygiene, among other things.

The samples were named by the modification content: 0.5%, 3.0%, 6.0% and 10.0%. With the
introduction of nano-TiO2, the color of the binder changes from dark brown (0%) to light yellow (10.0%),
see Figure 1. One blend was prepared for each content. Regarding the performed tests, the number of
replicates respected the requirements mentioned in the relevant European standard.
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3. Methods

Different tests were carried out, such as penetration, softening point, Dynamic Shear
Rheometer (DSR) tests (complex modulus, Linear Amplitude Sweep—LAS, Multiple Stress Creep
Recovery—MSCR), Dynamic viscosity and Fourier Transform Infrared (FTIR) spectroscopy, in order to
determine conventional, rheological and chemical properties. Figure 1 presents the schematic summary
of the preparation and characterization methodology adopted in this paper.

3.1. Penetration and Softening Point

Penetration and softening point were tested according to EN 1426/2015 and EN 1427/2015,
respectively. They indicate the basic properties of asphalt binders.

3.2. Dynamic Viscosity

A dynamic viscosity test was carried out following the EN 13302/2010 standard, but only for the
transparent binders (with and without nano-TiO2). The objective was to evaluate the workability of the
binders according to Superpave specifications. The highest allowed viscosity to respect the workability
is 3 × 103 cP (or 3 Pa·s) at 135 ◦C [19,20].
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3.3. Viscoelastic Behavior

The viscoelastic behavior of the binders was assessed using the Dynamic Shear Rheometer (DSR).
The DSR used in this study is an Anton Paar MCR 500 (Graz, Austria). For temperature ranges from
0 ◦C to +40 ◦C and from +40 ◦C to +80 ◦C, the 8 mm and 25 mm plate geometries were used, accordingly,
as described in EN 14770:2012. For each temperature step (increments of 10 ◦C), frequency sweep tests
were performed (0.1–10 Hz) on two replicates per binder sample, within the linear viscoelastic region
(LVER) of the binders. The data were further analyzed using the RHEA™ software (v2.0, Abatech,
Blooming Glen, PA, USA) [21]. The shifting of the data was performed using the Gordon and Shaw
procedure [22]. The phase angle and complex modulus master curves are presented in their original
format, without fitting any mathematical or mechanical models.

Black diagrams (complex modulus versus phase angle) aim to identify discrepancies of the
rheological data, breakdown of time-temperature equivalence, and thermo-rheological simplicity [23].
A smooth curve indicates time–temperature equivalence, a typical response of unmodified binders.
On the other hand, discontinuities indicate the presence of high wax content bitumen, highly polymer
modified bitumen, or a highly asphaltene structured binder [23]. Additionally, it is possible to notice
whether there are different dominances when the binder is a composite [23]. This phenomenon
happens, for example, when the complex modulus trend changes with the increase of the phase angle,
a phenomenon known as curling.

3.4. Fatigue Resistance (LAS Test)

To evaluate the fatigue resistance of bituminous binders, the Linear Amplitude Sweep (LAS) test
was performed. This test is an accelerated method that uses the DSR (8 mm parallel plate geometry at
15 ◦C), which consists of two steps: (i) firstly, a frequency sweep test, and (ii) secondly, an amplitude
sweep test, as described in AASHTO TP 101-14. The frequency sweep test (0.2–30 Hz) is used to
define the undamaged properties and fatigue law parameters, at a strain level of 0.1%. A linear
amplitude sweep test is performed at 10 Hz, and the strain amplitude is linearly increased over
3000 cycles, from 1% to 30%. The Viscoelastic Continuum Damage (VECD) theory is used to determine
the parameters A and B of the fatigue law (Equation (1)) [24], in order to determine the fatigue life (Nf ).
The failure point is determined as the point when the product of the complex modulus (G*) and phase
angle (δ) sine is reduced by 35% from its initial value.

N f = A γB (1)

Both the fatigue curves and the Nf for strain levels (γ) equal to 2.5% and 5%, related to a strong
and weak pavement [25], respectively, will be presented.

3.5. Rutting Resistance Indicator (MSCR Test)

The Multiple Stress Creep Recovery (MSCR) was performed using the DSR together with the
25 mm plate and 1 mm gap, as described in EN 16659:2015. The test was performed at 50 ◦C, at two
different stress levels (0.1 and 3.2 kPa) over ten load cycles. Each cycle consists of 1 s loading followed
by 9 s of a recovery period, from which two parameters are obtained: (i) the non-recoverable creep
compliance Jnr (Pa−1), which is the ratio between the residual strain and the stress applied; and (ii) the
recovery R (%), showing proportionally how much strain the sample recovers at the end of the cycle.
R (%) can be used to identify the presence of polymer modifications in the asphalt binders.

3.6. FTIR

Chemical characterization of binders has received attention in the literature as it can present
functional groups related to the crude oil origin, the polymer modification, and the degree of
oxidation [26–31]. Since this paper aims to analyze the chemical characteristics of the transparent
binder modified with nano-TiO2, three approaches were carried out: (i) identification of FTIR peaks;
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(ii) establishment of a possible relationship between the TiO2 modification level and related chemical
groups; and (iii) comparison of standard indices with reference binders used in this study.

The Thermo Scientific Nicolet iS10 Fourier Transform Infrared (FTIR) spectrometer (Waltham,
MA, USA) is equipped with an Attenuated Total Reflectance (ATR) fixture and a Smart Orbit Sampling
Accessory. The average spectra were obtained after the acquisition of the spectra, 32 repetitive scans in
the range 400 cm−1 to 4000 cm−1 with a resolution of 4 cm−1 were performed to deliver an average
spectrum. A hot droplet of each binder was placed on the crystal, and its respective spectrum
was measured.

The chemical structure of the binders was analyzed using indices, I, from the obtained FTIR
spectrum [32]. Each I (Equation (2)) is calculated by the ratio of the peak area of the identified band by
the total area (Equation (3)) of the spectrum.

IFunctional Group =
Ai
ΣA

(2)

ΣA = A1700 + A1600 + A1460 + A1376 + A1030 + A864 + A818 + A743 + A724

+A(2953,2923,2862)
(3)

where Ai is the peak area of the specific functional group.
The areas defined by the introduced baselines and the part of the spectrum were calculated using

a specific software Origin. Each peak is attributed to a functional group remaining unaffected during
service life, but also to groups responsible for aging or polymer presence [26,28]. When it comes to the
groups responsible for TiO2, echoing [33–35] in the region below 1000 cm−1, several peaks are ascribed
to TiO2 presence. Previous researchers have demonstrated that the peak around 657 cm−1 is attributed
to Ti-O-Ti stretching vibration, whereas the peak around 590 cm−1 is due to the vibration of Ti-O-O.
A broader band of wavenumbers was calculated around these peaks in order to capture their increase
by elevating the TiO2 modification level. It should be noted that a horizontal baseline coinciding with
the X-axis was used for the calculation of this area. RI (Equation (4)) was calculated in order to check
the relative increase of TiO2 modification. ITI−O+Ti−O−O is the index of each binder, and ITI-O+Ti-O-O0%

is the index of the transparent base binder (0%).

RI =
ITI−O+Ti−O−O − ITI−O+Ti−O−O0%

ITI−O+Ti−O−O0%
% (4)

More specifically, for asphalt binders, the sulfoxide, carbonyl, aromatic, aliphatic, branched
aliphatic, long chains, polybutadiene, and polystyrene indices were calculated. Sulfoxide and carbonyl
indices are both related to aging.

They were calculated considering the following method: (i) aromatic index: A1600/ΣA; (ii) aliphatic
index: (A1460 + A1376)/ΣA; (iii) branched index: A1360/(A1460 + A1376); (iv) long chain index:
A724/(A1460 + A1376); (v) carbonyl index: A1700/ΣA; (vi) sulphoxide index: A1030/ΣA; (vii) polybutadiene
index: A966/ΣA; and (viii) polystyrene index: A699/ΣA.

Aromatic, aliphatic, branched aliphatic, and long chains are the structural groups of asphalt
binders. Polybutadiene and polystyrene are associated with SBS modified binders. For details
concerning the determination of standard indices related to oxidative aging of the binder, the reader is
referred to the protocol described in [32]. Briefly, a common practice in this processing method is to
introduce tangential baselines defined by limits around certain peaks [36].

4. Results and Discussion

4.1. Penetration and Softening Point

Figures 2 and 3 show the resulting penetration and softening point of the studied binders.
When compared to the transparent base binder, the inclusion of 0.5%, 3.0% and 6.0% TiO2
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nano-modification decreased the penetration from 49 to 47, 45, and 47 × 10−1 mm, respectively.
For 10.0% TiO2, it increased to 53 × 10−1 mm, which is similar to the N50/70 results. When compared to
the PMBTS, all the penetration results were higher. Therefore, the penetration values of the Kromatis
binder were between the conventional and the PMB binders.
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For the softening point, the results of the transparent binders were around 59 ◦C. The increase of
the TiO2 content gradually increased the softening point by about 4 ◦C. The transparent binders had a
softening point again between those of the conventional and the PMB binders.

Comparing these results to those obtained by Sengoz et al. (2017) for the same binder from the
same supplier, they showed that the penetration and softening points were 55 × 10−1 mm and 56 ◦C [3].
Thus, in this research, the transparent base binder had a lower penetration but a higher softening
point [3].
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It can be concluded that the transparent binders had results between those of the conventional and
the PMB binders, but closer to those of the conventional one. The incorporation of nano-TiO2 gradually
increased the softening point. For the penetration, the results were lower until 6.0%, but higher for
10.0%.

4.2. Dynamic Viscosity

The dynamic viscosity, determined only for the transparent binders, is shown in Figure 4.
The introduction of nano-TiO2 increased dynamic viscosity. At 135 ◦C, the viscosity increased from
1 × 103 cP (for the base binder) to 2.3 × 103 cP (for the 10.0%). Additionally, all the binders had a
viscosity lower than 3 × 103 cP, considered as the recommended maximum viscosity criterion under
Superpave to guarantee proper binder pumping in the asphalt plant during production [37]. If this
value is higher than 3 × 103 cP, excessive energy is needed for the mixing and compaction of asphalt
mixtures [19]. It can be concluded that all the modified transparent binders using the contents of
nano-TiO2 studied (from 0 to 10.0%) are feasible with respect to their workability. It is also interesting
that the 10.0% TiO2 appears to have the highest energy requirements as its viscosity is close to the
Superpave threshold. Thus, from an economic point of view, it would be favorable to target lower
TiO2 levels.

Nanomaterials 2020, 10, x FOR PEER REVIEW 8 of 19 

 

Comparing these results to those obtained by Sengoz et al. (2017) for the same binder from the 
same supplier, they showed that the penetration and softening points were 55 × 10−1 mm and 56 °C 
[3]. Thus, in this research, the transparent base binder had a lower penetration but a higher softening 
point [3]. 

It can be concluded that the transparent binders had results between those of the conventional 
and the PMB binders, but closer to those of the conventional one. The incorporation of nano-TiO2 
gradually increased the softening point. For the penetration, the results were lower until 6.0%, but 
higher for 10.0%. 

4.2. Dynamic Viscosity 

The dynamic viscosity, determined only for the transparent binders, is shown in Figure 4. The 
introduction of nano-TiO2 increased dynamic viscosity. At 135 °C, the viscosity increased from 1 × 
103 cP (for the base binder) to 2.3 × 103 cP (for the 10.0%). Additionally, all the binders had a viscosity 
lower than 3 × 103 cP, considered as the recommended maximum viscosity criterion under Superpave 
to guarantee proper binder pumping in the asphalt plant during production [37]. If this value is 
higher than 3 × 103 cP, excessive energy is needed for the mixing and compaction of asphalt mixtures 
[19]. It can be concluded that all the modified transparent binders using the contents of nano-TiO2 
studied (from 0 to 10.0%) are feasible with respect to their workability. It is also interesting that the 
10.0% TiO2 appears to have the highest energy requirements as its viscosity is close to the Superpave 
threshold. Thus, from an economic point of view, it would be favorable to target lower TiO2 levels. 

 
Figure 4. Dynamic viscosity results of the binders of this study. 

In addition, the comparison of the results to those from the literature reveals that a higher 
viscosity was reached (1 × 103 cP). For example, Sengoz et al. (2017) presented 788 cP in dynamic 
viscosity for the same transparent binder [3]. 

4.3. Viscoelastic Behavior 

The complex modulus and phase angle master curves are presented in Figure 5a,b. The addition 
of TiO2 slightly alters the viscoelastic behavior of the transparent binder, leading to a simultaneous 
small increase of modulus and a decrease of the phase angle. The N50/70 shows a simple viscoelastic 

Figure 4. Dynamic viscosity results of the binders of this study.

In addition, the comparison of the results to those from the literature reveals that a higher viscosity
was reached (1 × 103 cP). For example, Sengoz et al. (2017) presented 788 cP in dynamic viscosity for
the same transparent binder [3].

4.3. Viscoelastic Behavior

The complex modulus and phase angle master curves are presented in Figure 5a,b. The addition of
TiO2 slightly alters the viscoelastic behavior of the transparent binder, leading to a simultaneous small
increase of modulus and a decrease of the phase angle. The N50/70 shows a simple viscoelastic behavior
with the phase angle gradually approaching the viscous asymptote of 90◦ at elevated temperatures,
a typical response of an unmodified binder. Concerning the complex modulus, the N50/70 shows similar
values to the PMBTS at frequencies above 10 Hz. At low frequencies (related to high temperature),
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N50/70 shows the lowest complex modulus compared to other binders, which was an expected
observation, since the modulus of those binders is greatly influenced by the polymer modification.
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Figure 5. (a) Complex modulus and (b) phase angle master curves of the binders of this study.

Comparing the transparent binder with the PMBTS, it can be seen that the complex modulus is
similar at lower frequencies, while the PMBTS demonstrates a lower modulus at frequencies above
0.01 Hz. Looking at the phase angle, both reveal the presence of elastomeric modification, which is
visible by the drop of the phase angle at a low reduced frequency. For the PMBTS, the dominance
of the polymeric phase starts below 1 Hz and shows at a steady plateau stage of 60◦. On the other
hand, the dominance of the polymeric phase for the transparent binders starts after 0.01 Hz (which can
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be translated that the polymer network is “active” at higher temperatures compared to the PMBTS),
showing a significant drop of the phase angle and then gradually approaching the viscous asymptote
of 90◦.

The last part shows that the polymer network is no longer dominant. Those distinct differences
can be attributed to the difference between the base binders as well as the compatibility between base
and polymer [38]. Another possibility is the thermal history of the binders, which can significantly
influence the rheological behavior of elastomeric binders, as demonstrated by Soenen et al. [39].

The black diagram (Figure 6) shows the combined effect of complex modulus and phase angle
for the different binders. The N50/70 binder presents a conventional black diagram curve. Therefore,
it is smooth, and the complex modulus decreases while the phase angle increases. The presence
of a polymer can be seen by the shift of the curve towards a lower phase angle (higher elastic
behavior) [23]. More specifically, for the PMBTS, the plateau near 60◦ (at a temperature of 58 ◦C) can
indicate that the polymer forms a continuous elastic network when dissolved in bitumen, making it a
polymer-dominant phase.
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The shape of the curve of the transparent binders is different from the reference ones, showing
three distinctive regions: (i) from 108 to 5 × 105 Pa, the complex modulus decreases with the increase of
the phase angle; (ii) from 5 × 105 to 5 × 104 Pa, the complex modulus decreases when the phase angle
increases; and (iii) from 5 × 104 Pa, with the same pattern to that of the first region, including the shape.
This viscoelastic response indicates an alternation of dominance between the materials that compose
the transparent binders, as also observed in the phase angle master curve. Additionally, transparent
binders seem to be more elastic than N50/70, with a partial shift towards the left. The addition of
TiO2 seems to have a small, rather insignificant, effect on the viscoelasticity of the transparent binder.
Based on the observations of the master curves and black diagram, the addition of TiO2 up to 10.0%
seems not to introduce any noticeable effect on the structure of the transparent binders.

4.4. Fatigue Resistance (LAS Test)

The fatigue curves of each binder are presented in Figure 7 and the corresponding parameters are
further elaborated in Table 1.



Nanomaterials 2020, 10, 2152 11 of 19

Nanomaterials 2020, 10, x FOR PEER REVIEW 11 of 19 

 

4.4. Fatigue Resistance (LAS Test) 

The fatigue curves of each binder are presented in Figure 7 and the corresponding parameters 
are further elaborated in Table 1. 

 
Figure 7. LAS Test: Nf versus applied strain. 

Table 1. LAS test results. 

Binder 
Parameter 

A B Nf 2.5% Nf 5% 
0% 21348 −2.9 1486 198 

0.5% 23946 −3.0 1568 199 
3.0% 22578 −3.0 1453 182 
6.0% 20724 −3.1 1241 148 

10.0% 22942 −3.3 1160 121 
N50/70 16303 −2.8 1308 194 
PMBTS 338013 −3.7 11631 909 

The PMBTS shows the highest fatigue resistance among the binder samples, while the 
transparent base binder and the N50/70 showed similar results. The addition of TiO2 seems to harm 
the fatigue life of the transparent binder, except for the 0.5% dosage, where it shows a slightly 
improved fatigue life. In more detail, the addition of TiO2 leads to a proportional decrease of the slope 
(parameter B), while no clear trend is evident on the effect of TiO2 on the intercept (parameter A). 

For all the binders, from the lowest to the highest fatigue performance considering the applied 
strain of 2.5% (representative strain level of a “weak” pavement structure), the progressive sequence 
is 10.0% < 6.0% < N50/70 < 3.0% < 0% < 0.5% < PMBTS. For the applied strain of 5% (representative 
strain level of a “strong” pavement structure), the progressive sequence is 10.0% < 6.0% < 3.0% < 
N50/70 < 0% < 0.5% < PMBTS. High contents of nano-TiO2 slightly reduced the binder fatigue 
resistance. Additionally, higher differences are found for an applied strain level of 5%, related to the 
strong pavement structures. 
  

Figure 7. LAS Test: Nf versus applied strain.

Table 1. LAS test results.

Binder
Parameter

A B Nf 2.5% Nf 5%

0% 21,348 −2.9 1486 198
0.5% 23,946 −3.0 1568 199
3.0% 22,578 −3.0 1453 182
6.0% 20,724 −3.1 1241 148

10.0% 22,942 −3.3 1160 121
N50/70 16,303 −2.8 1308 194
PMBTS 338,013 −3.7 11,631 909

The PMBTS shows the highest fatigue resistance among the binder samples, while the transparent
base binder and the N50/70 showed similar results. The addition of TiO2 seems to harm the fatigue
life of the transparent binder, except for the 0.5% dosage, where it shows a slightly improved fatigue
life. In more detail, the addition of TiO2 leads to a proportional decrease of the slope (parameter B),
while no clear trend is evident on the effect of TiO2 on the intercept (parameter A).

For all the binders, from the lowest to the highest fatigue performance considering the applied
strain of 2.5% (representative strain level of a “weak” pavement structure), the progressive sequence is
10.0% < 6.0% < N50/70 < 3.0% < 0% < 0.5% < PMBTS. For the applied strain of 5% (representative strain
level of a “strong” pavement structure), the progressive sequence is 10.0% < 6.0% < 3.0% < N50/70
< 0% < 0.5% < PMBTS. High contents of nano-TiO2 slightly reduced the binder fatigue resistance.
Additionally, higher differences are found for an applied strain level of 5%, related to the strong
pavement structures.

4.5. Rutting Resistance Indicator (MSCR Test)

The MSCR test was introduced as a test to evaluate the resistance to permanent deformation
(rutting) as well as a tool to evaluate the quality of polymer modified binders [40,41]. Generally,
a combination of high recovery (R) and low non-recoverable compliance (Jnr) indicates a good quality
PMB that can be used in high traffic pavements, as described in AASHTO M332. Such limits that
distinguish between the acceptance levels for different traffic levels have not been established by the
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EN 16659. Therefore, a comparative evaluation of the rutting resistance of the binders in this study
is presented.

The MSCR test results are presented in Table 2. Considering the %R, the transparent binders
exhibit a recovery between the reference binders (higher than N50/70 but lower than PMBTS), but with
values closer to PMBTS. At a stress level of 100 Pa, while the conventional binder N50/70 demonstrates
recovery of only 9.0%, the transparent binders show at least 63.6% and the PMBTS 82.1%.

Table 2. MSCR test results.

Binder
Parameter

Jnr, 100 (kPa−1) Jnr, 3200 (kPa−1) R100 (%) R3200 (%)

0% 0.2 0.2 64.8 63.2
0.5% 0.2 0.2 63.6 62.3
3.0% 0.2 0.2 65.5 63.8
6.0% 0.1 0.1 69.9 64.4

10.0% 0.1 0.1 73.1 65.8
N50/70 0.6 0.6 9.0 6.0
PMBTS 0.0 0.0 82.1 85.7

Kromatis 50/70
from [3] 1.8 2.3 27.6 16.6

The incorporation of nano-TiO2 increased the R100 for the contents 6.0% and 10.0% when compared
to 0%. The contents 0.5% and 3.0% had similar R100 to 0%. For R3200, the transparent binders had
similar results, from 63.2% to 65.8%, for 0% and 10.0% TiO2 addition respectively.

Regarding the Jnr values, again, the transparent binders show an intermediate behavior between
the reference binders N50/70 and PMBTS. The incorporation of nano-TiO2 decreased the Jnr (100 and
3200 Pa−1) for the contents 3.0%, 6.0% and 10.0% when compared to 0%. As can be expected, the content
0.5% had a similar Jnr to 0% (transparent base binder).

Sengoz et al. (2017) analyzed the same Kromatis 50/70 from the same supplier. They indicated
values of R% between the N50/70 and PMBTS as well, 27.6% and 16.6% for 100 Pa and 3200 Pa,
respectively [3]. Nevertheless, their results are closer to the N50/70 than the PMBTS. Considering Jnr,
the results from Sengoz et al. (2017) are much higher than those obtained in this research for all the
binders (base, modified, and reference ones).

It can be concluded that the transparent binders present better rutting resistance than the
conventional N50/70 with higher recovery and lower non-recoverable creep compliance. This fact
was expected, since the transparent binder contains elastomeric polymers, as demonstrated earlier
in Section 4.3. However, the transparent binders presented lower rutting resistance than the PMBTS.
The incorporation of nano-TiO2 can increase the rutting resistance for high contents (mainly 6.0%
and 10.0%).

4.6. FTIR

4.6.1. Peak Identification

The FTIR spectra (absorbance versus wavelength) of the (TiO2-modified) transparent binders,
the reference binders, and the pure TiO2 are shown in Figure 8. Peaks at 2953 cm−1 and 2862 cm−1

are associated with stretching vibrations of sp3 C-H in aliphatic chains, as asymmetric and symmetric
stretches, respectively. Peaks at 1460 cm−1 are characteristic of bending vibrations of methylene groups
(-(CH2)n). The peak at 1375 cm−1 is attributed to the bending of methyl groups (-CH3), which is related
to aliphatic branched bands. The long-chain band can be seen at 724 cm−1, associated with the rocking
motion of -CH2 groups in an aliphatic chain. The peak at 1700 cm−1 is related to the stretching of
carbonyl band C=O typical of carboxylic acids [42], being one of the most important peaks for the
asphalt binder aging [43–45].
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Stretching absorptions of C=C bond in aromatic rings occur at the peaks at 1600 cm−1. The peaks
that appear between 910 cm−1 and 699 cm−1 can be analyzed carefully to show ortho-, meta- and
para-disubstituted rings presented in aromatic compounds and are associated with out-of-plane
C-H bending vibrations in this structure. Due to the complex composition of the asphalt binders,
all these compounds may be presented in the analyzed samples. For example, the pair 743 cm−1 and
699 cm−1 can match with monosubstituted rings; a single peak at 743 cm−1 may be associated with
1,2-disubstituted rings; peaks at 864 cm−1, 783 cm−1, and 699 cm−1 may be attributed to 1,3-disubstituted
rings; and finally, the pair 864 cm−1 and 814 cm−1 can match to 1,4-disubstituted rings [43–45].

The peaks at 966 cm−1 and 699 cm−1 may still correspond to the bending out-of-plane of C-H
of trans-alkenes (from polybutadiene) and C-H out-of-plane bending in monoalkylated aromatics
(from polystyrene) associated with SBS. The peak at 910 cm−1 can also show terminal-alkenes [43].
The peak at 1375 cm−1 may be associated with the asymmetric stretch of sulfonyl chlorides S=O bond.
While the peaks at 1310 cm−1 and 1152 cm−1 are typical of respectively asymmetric and symmetric
stretches of sulfones S=O bonds [13]. At 1030 cm−1, there is the other peak directly related to asphalt
binder aging, the stretch of sulfoxide S=O bond [43–45]. The peak 1242 cm−1 can be linked to the
asymmetric stretching vibration of sulfate esters [13].

For the transparent binders, the peak 434 cm−1 represents a stretching vibration of metal oxides
(M-O) bond (M can be Si, Mn, V, Ni, and others) [46–49]. This peak (434 cm−1) is also attributed
to stretch absorptions of Ti-O bond [50], and the increase in this peak area in the TiO2-modified
transparent binders may indicate the proper incorporation of the semiconductor in the asphalt binder.

4.6.2. Relationship between the TiO2 Modification Level and the Chemical Responsible

Figure 9 shows the graph RI versus % TiO2. It can also be seen that the addition of nano-TiO2

increases the relative increase RI (from TiO2 related vibration area). A linear correlation of the nano-TiO2

percentage and the RI can be found. To some extent, this shift of the spectra with the addition of
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nano-TiO2 is to be expected, as the vibrations become more evident when the binder is more diluted.
The high correlation coefficient (R2 = 0.99) of the increase of this index with the modification level
(Figure 9) confirms the assumption that nano-TiO2 can be used as a marker in bituminous blends [51,52].
This analysis can be used in order to assess the presence of TiO2 and quantify its incorporation as a
binder modifier.
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4.6.3. Relationship between the TiO2 Modification Level and the Chemical Responsible

The results of FTIR are presented in Figure 10 in terms of oxygen- and polymer-related indices.
The chemical indices sulfoxide, carbonyl, polybutadiene, polystyrene, aromatic, aliphatic, branched
aliphatic, and long chains are presented in terms of their normalized intensity. This study confirms that
the initial sulfoxide and carbonyl levels of nano-TiO2-modified are similar to the reference unmodified
binder N50/70 and the SBS-modified PMBTS. This observation gives rise to the assumption that
the presence of nano-TiO2 does not introduce new functionalities in sulfoxide- or carbonyl-related
groups such as esters, carboxylic acids, and ketones. Furthermore, the modification of the binder with
nano-TiO2, according to other studies [53,54], can reduce the long-term oxidation performance due
to its capability to reflect and absorb UltraViolet (UV) light during photocatalysis. It is also initially
chemically neutral for the polar carbonyl groups.

A detailed observation of the two aging-related indices implies that, although of similar magnitude,
slightly higher indices can be found compared to the two reference binders N50/70 and PMBTS. This fact
can be explained to be the result of the different initial sulfur content for the sulfoxide index. In other
words, the origin of the crude oils of the binders is different, and this has a clear implication for the
S=O-containing groups. When examining the slightly higher carbonyl index of the nano-TiO2-modified
binders, one can highlight two important points. Firstly, the binder used for modification with
nano-TiO2 was different from the unmodified reference binder, and transparent binders show a
carbonyl index of the same magnitude. The level of modification seems to have a negligible effect on
the initial carbonyl index. That is, the increased carbonyl level can be attributed to the binder used as
the base for modification and not the nano-TiO2 addition itself. Following the explanation provided for
the higher carbonyl increase of nano-TiO2-modified binders, the same line of thought can be followed
for the slightly lower aromatic, branched aliphatic, and long chains indices and the higher aliphatic
index compared to the reference binders.
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In parallel, as the introduction of elastomeric polymers produces the binder selected as the base
for TiO2 modification, the polymer-related indices were evaluated. A comparison of the polybutadiene
and polystyrene indices reveals that the binder used for modification (transparent base binder) is highly
modified compared to the SBS modified reference binder PMBTS. For the binder N50/70, these indices
are not applicable.

In contrast to the rheological parameters, the transparent binders did not show intermediate
behavior between the reference binders N50/70 and PMBTS. They showed higher indices for sulfoxides,
carbonyl, polybutadiene, polystyrene, and aliphatic but lower for aromatic, branched aliphatic and
long chains. Their long chains were null. Moreover, the TiO2 modification seems to have little effect on
the indices, except for the polystyrene and aliphatic indices. The polystyrene index decreases, and the
aliphatic index increases with the increase of nano-TiO2.

5. Conclusions

A transparent binder modified with nano-TiO2 was characterized with respect to its
physicochemical and rheological properties in this paper. This is useful for specific applications,
such as tunnels, calming traffic areas, among others, as the nano-TiO2 provides to the pavement a
photocatalytic function and better visibility. Modified transparent binders, with 0.5%, 3.0%, 6.0%,
and 10.0% of nano-TiO2, were compared to the transparent base binder and two commercial asphalt
binders (conventional and PMB).

Based on the results, the transparent binders (base and modified) performed similarly to the
conventional binder and PMB, being workable in terms of their viscosity. The transparent binders clearly
revealed the presence of an elastomeric modification, indicating polymer modification, and suggested
an alternation of elastic/viscous behavior between the materials that compose the transparent binders.

The incorporation of nano-TiO2 gradually increased the softening point and decreased the
penetration by up to 6.0% of modification, causing no substantial changes in the Complex Modulus
of the transparent binder. There is no evidence that the addition of TiO2 up to 10.0% significantly
affects the structure or visco-elastic behavior of the chemical indices, except for the polystyrene and
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aliphatic indices, of either of the transparent binders. Additionally, the addition of TiO2 would reduce
the fatigue life of asphalt pavements using the transparent binder. On the contrary, it would increase
the rutting resistance for high contents.

Transparent binders with TiO2 give promising results, based on their conventional, rheological, and
chemical performance. On the one hand, the best percentage for the addition of TiO2, based on the results,
without compromising the performance of the transparent binder, was 0.5% with respect to fatigue
resistance. On the other hand, 10.0% nano-TiO2 was the best with respect to permanent deformation.

Although the objectives of this research were achieved, it is essential to carry out this analysis
on more samples, as limited numbers were used. The next steps of this research are to evaluate the
light-colored and photocatalytic pavements considering the properties of color and photocatalysis and
analyze the aging performance of the transparent binders with nano-TiO2. Another topic that must be
assessed is the analysis of the total life cycle cost (including environmental impact/benefits).
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