
Identification of Microservices from Monolithic Applications
through Topic Modelling

Miguel Brito
pg38419@alunos.uminho.pt

University of Minho
Portugal

Jácome Cunha
jacome@di.uminho.pt
University of Minho &
HASLab/INESC Tec

Portugal

João Saraiva
saraiva@di.uminho.pt
University of Minho &
HASLab/INESC Tec

Portugal

ABSTRACT
Microservices emerged as one of the most popular architectural pat-
terns in the recent years given the increased need to scale, grow and
flexibilize software projects accompanied by the growth in cloud
computing and DevOps. Many software applications are being sub-
mitted to a process of migration from its monolithic architecture to
a more modular, scalable and flexible architecture of microservices.
This process is slow and, depending on the project’s complexity, it
may take months or even years to complete.

This paper proposes a new approach on microservice identifi-
cation by resorting to topic modelling in order to identify services
according to domain terms. This approach in combination with
clustering techniques produces a set of services based on the orig-
inal software. The proposed methodology is implemented as an
open-source tool for exploration of monolithic architectures and
identification of microservices. A quantitative analysis using the
state of the art metrics on independence of functionality and mod-
ularity of services was conducted on 200 open-source projects col-
lected from GitHub. Cohesion at message and domain level metrics’
showed medians of roughly 0.6. Interfaces per service exhibited a
median of 1.5 with a compact interquartile range. Structural and
conceptual modularity revealed medians of 0.2 and 0.4 respectively.

Our first results are positive demonstrating beneficial identifica-
tion of services due to overall metrics’ results.

ACM Reference Format:
Miguel Brito, Jácome Cunha, and João Saraiva. 2021. Identification of Mi-
croservices from Monolithic Applications through Topic Modelling. In Pro-
ceedings of SAC 2021. ACM, New York, NY, USA, 11 pages. https://doi.org/
DOI

1 INTRODUCTION
The decomposition of systems into modules began to be system-
atised and debated by Parnas [31] long before the massification
of software systems. Parnas intended to demonstrate that the effi-
ciency of the modularisation of a system depends on the criteria

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SAC 2021,
,
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/DOI

used, contrary to the pure fragmentation of systems into small
modules.

The relevance of the functional decomposition of systems ini-
tially mentioned by Parnas was reinforced by the demand to dis-
tribute complex systems through network infrastructures such as
web services and remote objects resulting from efforts to deal with
systems of greater dimension and complexity [19].

From that demand microservice-based architectures emerged,
consisting of small services that focus on one particular functional-
ity [29]. The main idea of such microservice architectures (MA) is
that they have the potential to increase the flexibility and agility of
software development [29].

Microservices have/are been quickly adopted to developed new
software. There are, however, many legacy software systems that
were developed beforeMAwas introduced, but that can benefit from
the agility MA software development offers. This is particularly
relevant when we consider the usual maintenance and evolution
processes required in a modern software lifecycle. In order to bene-
fit from MA such legacy software systems - that we call monolithic
software systems - need to be refactored into a semantically equiva-
lent microservice-based one. Performing such refactoring manually
is both complex/time consuming and prone to errors, and its quality
is often strongly linked to the experience and knowledge of the spe-
cialist leading said refactoring [19, 30]. The refactoring is typically
done following a Strangler pattern, that is, incrementally migrating
and replacing modules of the system into a new architecture until
the migrated systems overcome the old system. As a consequence,
we need an automated process to transform a monolithic system
into a MA one.

The identification of microservices in legacy monolithic systems
is still an open problem with just a few proposed approaches [8, 15,
17–19, 26]. Most of these proposals, however, use their own quality
metrics to assess the quality of the achieved transformation. More-
over, they are not supported by a tool that can be automatically
applied to a legacy system, and as consequence the approaches
are validated in a small (less than ten) number of monolithic sys-
tems. The exception is Jin et al. [17], which uses a dynamic analysis
approach: it runs the legacy software system, to infer the microser-
vices so to migrate it into a MA one. Although it provides good
results, it has the disadvantage of requiring inputs or test cases to
properly execute the system. Unfortunately, this is not the case in
most legacy systems [32].

In this paper we propose a static analysis technique to identify
microservices in a legacy software system based on topic models.
Topic models [20] allow to mine a set of topics across a collection of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/362636079?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/DOI
https://doi.org/DOI
https://doi.org/DOI

SAC 2021,
,

Brito, Cunha, Saraiva

documents. Thus, by applying topic modelling to a monolithic soft-
ware system we identify the systems’ topics, which correspond to
domain terms, and represent the microservices implemented by that
legacy systems. Such topic models are inferred from the collection
of lexical information in the source code, namely method decla-
rations, method invocations, variables, method and class names,
etc. For instance, considering a software for managing stocks, one
would expect to find terms related to products, suppliers, etc. The
collection of components with related names are likely part of the
same microservice. We explore in detail this idea in this paper. The
mined topics can then be combined into the structural information
of the source code into a graph. Such graph is then clustered in
order to identify microservices.

To assess the quality of the identified microservices we use the
MA metrics proposed in the work of Jin et al. [17] that evaluate
the independence of functionality and modularity of microservices.
Furthermore, the proposedmethodology is implemented as an open-
source tool1 for exploration of monolithic applications. This tool
was validated by performing a quantitative analysis study on 200
open-source monolithic software systems collected from GitHub.
The results obtained concerning MA metrics’ are positive. Regard-
ing independence of functionality, CHM and CHD presented a
median of roughly 0.6; IFN presented a median of 1.5. Modularity
metrics of SMQ and CMQ demonstrated median values of 0.2 and
0.4 respectively. Overall the results are positive, showing relevant
proposals of microservices and a promising first step to refactor
monolithic applications.

The remainder of the paper is structured as follows: Section 2
presents the methodology we devised for microservice identifica-
tion; Section 3 discusses a case study and a walkthrough of the
methodology applied to an example project; Section 4 describes
the steps taken to quantitatively analyse our methodology and con-
cludes with our results; Section 5 describes the current state of the
art and Section 6 concludes our paper.

2 PROPOSED METHODOLOGY
In this section, we describe the proposed methodology to iden-
tify microservices. Figure 1 illustrates an overview of the steps
composing the identification process.

First, we extract lexical and structural information from the
source code of the monolithic system being migrated to MA.

Next, we use the extracted information to fit a topic modelling
technique allowing to identify topics and their distributions for
each component of the software project.

Finally, the topic distribution and the structural information are
combined and fed into a clustering algorithm identifying microser-
vice proposals.

The next three subsections describe these steps in detail.
Note the process we describe is generic and not specific for a par-

ticular language or paradigm. However, since our tool is instantiated
for the Java language, and in particular for the Spring Framework
[2], the examples presented are written in this framework.

1https://anonymous.4open.science/r/61cd83e3-47b7-405d-b5ec-8ac90c81d6c7

2.1 Information Extraction
The building blocks of our microservice identification methodology
are the lexical and structural dependency information occurring in
the source code of the monolithic software system under analysis.
Next, we describe how such information is computed.

Lexical Extraction. Lexical extraction is defined as the extraction
of all the lexical/textual terms from source code that are relevant to
identify what a given component represents in the context of the
domain of the project.

We perform this extraction in a structured version of the source
code: its underlying Abstract Syntax Tree (AST). The main rea-
son to extract textual terms from the AST instead of its textual
representation (and applying filters, stop words and other kinds
of preprocessing) is to have better control of the information be-
ing extracted. This greatly reduces the amount of analysis needed
to identify the most relevant terms. The entire AST is built and
types are matched against their declaration. Each type that does
not belong to the project is ignored and not considered as rele-
vant information. With a pure Natural Language Processing (NLP)
approach applied to the source code, filtering keywords from the
language would be simple. However with the addition of external
abstraction (in the case of languages supporting it) and external
libraries that introduce terms that could be completely unrelated
to the domain of the problem, a pure NLP approach would produce
worst results.

To handle the presented problem, only terms (such as variable
types) referenced to the project are taken into account. Without
losing generality, let us consider the following line of code written
in Java (Spring Framework):
return new ResponseEntity<>(

user, responseHeaders, HttpStatus.OK);

A project parsing approach gives us the possibility to only ex-
tract a certain parameter, for instance user, much more related to
the domain than the whole expression that is mostly composed
by Spring Framework terms and abstractions. For instance, given
that ResponseEntity is so popular in projects based on the Spring
Framework, an NLP approach could calculate that the addition
of it to a list of stop words would solve the problem, however,
that would only work for the common terms or require significant
manual work when dozens of libraries are used in a project. Any ad-
dition of libraries that represent a strong connection to the domain,
contrary to abstraction and helpers libraries, can still be included
by a whitelist of types. Overall, our approach works by trying to
filter out abstractions related to external libraries and frameworks
and focus on the terms more related to the domain of the project.
This is done by extracting textual terms from components’ names,
variable declarations, unctions declarations and their parameters,
and method/functions invocations.

Structural Dependency Extraction. Most of the dependencies are
straightforward to obtain working on the AST. However, other
tasks such as the identification of types of expressions or finding
the usage of a symbol are not so simple as they involve significant
work over the AST. For those, and considering the particular case
of the Java language, we used JavaParser Symbol Solver [1], which
allows to identify the types of a given expression. Each dependency

Identification of Microservices from Monolithic Applications through Topic Modelling

SAC 2021,
,

Figure 1: Overview of the architecture of the proposed method and developed tool

between classes is identified by finding method invocations and
resolving the class to which the method belongs, and consequently
its type.

The use of structural dependencies enables a better represen-
tation of the software architecture at hand, as it fits nicely into a
graph representation and presents interaction between modules.

2.2 Topic modelling
Topic modelling techniques allow to identify latent semantic struc-
tures from a set of documents, similarly to how a developer would
analyse a software project and identify domain terms to grasp how
it can be decomposed on a semantic level.

The quality of topics proposed by these techniques is highly
dependent on the quality of the inputs fed into them. Accordingly,
textual terms 𝑡 are pre-processed going through tokenization, stop
word removal and stemming in order to remove terms without
much significance as domain terms and reduce variations of the
same root words. Extremes of very common and rare terms present
in the corpus are filtered and then collected as a bag of words.

Having computed the lexical and structural information, we can
now use a topic modelling classifier to group such information in
clusters, which will then form the microservices identified in the
legacy system.

In an exhaustive and comprehensive state of the art review on
topic modelling done by Kherwa and Bansal [20], four major groups
of topic modelling classifiers are identified: Probabilistic Latent
Semantic Analysis (PLSA), Latent Dirichlet Allocation (LDA), Latent
Semantic Analysis (LSA) and Non-negative Matrix Factorisation
(NMF). This work also presents a detailed quantitative analysis
comparing LDA versus LSA concluding with the superiority of
LDA: it yields higher coherence values across topics and less overlap
between topics. In an exploratory work done by Stevens et al. [36]
comparing NMF, LDA and LSA and analysing its weaknesses and
strengths, they conclude in favour of LDA due to its flexibility
and coherence advantages over others. Sun et al. [37] propose a
technique for clustering classes in packages in order to increase
program comprehension and reducing large packages resorting
to LDA, PLSA and Latent Semantic Indexing (LSI) as a base of
clustering methods. From the case studies conducted, LDA resulted
in better clustering results and the topics identified were more
useful for comprehension by developers.

Overall, LDA is widely used and the most popular on the topic
modelling field, being the core of evolution and extension to other

models, such as Dynamic topic model, Author topic model, Multi-
lingual Topic Model [20, 38]. Thus, we also adopt the LDA classifier
in our microservice identification approach, describing it next.

2.2.1 Latent Dirichlet Allocation. LDA categorises documents by
topics via a generative probabilistic model [4]. It treats each doc-
ument as a random mixture of latent topics, and each topic as a
distribution of words of the corpus. The words with higher proba-
bilities that represent a topic usually give a good overview of what
the topic is describing and talking about, hence allowing to discover
a set of concepts representing the entire corpus [16]. LDA is an
unsupervised model requiring only the corpus of the documents
without any extra metadata. LDA does not consider the order of the
words in the documents or their semantic importance being only
fed with a bag of words (BOW) – simplified representation of a
corpus containing count occurrence for each word. These features
allow LDA to be scalable to thousands or millions of documents
[37].

The components being used as the basis of work in the LDA
model are formally described as follows:

(1) A word represents the basic unit extracted from the source
code of a software project representing the textual terms
denoted as 𝑡 = {𝑤1,𝑤2, ...,𝑤𝑛}.

(2) A document, identified as a component (eg. class in Java,
module in C) in the context of a software project is a collec-
tion of words and described as 𝑑 = {𝑤1,𝑤2, ...,𝑤𝑛}.

(3) A corpus is a collection of documents identified as 𝑐 =

{𝑑1, 𝑑2, ..., 𝑑𝑛}.

Choosing the number of K topics to be identified by the LDA
model is a challenge by itself. Ideally, the number of topics should
be selected after an analysis of the domain terms of the project at
hand complemented with an analysis of inter-topic distance [35],
in order to assess how well defined are the topics, its independence
from each other and the amount of overlap. The distribution of
terms per topic should also be taken into consideration to avoid
topics from being composed of a large chunk of concepts across
the domain, resulting in lower levels of topic coherence.

Figure 2 and Figure 3 illustrate inter-topic distance and term
distribution per topic for a model of 8 and 11 topics respectively. By
comparing both figures it can be concluded that the model shown
in Figure 3 represents an excessive number of defined topics given
the amount of overlap introduced by the increase in number of
topics.

SAC 2021,
,

Brito, Cunha, Saraiva

Figure 2: Intertopic distance with number of topics set to 8

Figure 3: Intertopic distance with number of topics set to 11

An automated approach to identify an adequate amount of top-
ics, yet computationally more expensive, can be simply done by
creating models for a wide range of topics, measuring the coher-
ence for each one and deciding upon the best topic. The main goal
of measuring coherence of topics is to verify if a "set of facts sup-
port each other" [34] and refer to a specific domain of knowledge.
Among the multiple metrics proposed and the extensive analysis of
the state of the art on coherence measurements done by Röder et al.
[34], the 𝑐𝑣 metric (which results from the combination of previous

metrics) is the one having the highest correlation to human ratings
on topic coherence.

With multiple values of 𝑐𝑣 measured for a range of number of
topics, the best topic is selected by identifying the knee point.

2.3 Clustering
The fitting of the LDA model against K topics produces a distri-
bution of topics across documents. That distribution can be used
on its own to cluster components into groups of proposed services.
However, that would take into account the domain aspect of the
software, only, ignoring the structural relationship and dependen-
cies between classes. Thus, we combine the previously extracted
structural dependencies with the distribution of topics into an edge-
weighted graph 𝐺 . In the graph 𝐺 = (𝐸,𝑉), the vertices 𝑣𝑖 ∈ 𝑉

correspond to a component 𝑐𝑖 ∈ 𝐶 from the monolithic project.
Each edge 𝑒𝑖 ∈ 𝐸 is weighted by a weight function determining how
strong is the relationship according to topic distribution. The higher
the value the stronger the relationship between topics identified
are. Each component 𝑐 is then identified by a vector ®𝑣 to represent
the distribution of probability across topics 𝑡 , ®𝑣 = ⟨𝑡1, 𝑡2, ..., 𝑡𝑛⟩. The
cosine similarity is then used to find how similar two vectors ®𝑣1, ®𝑣2
are, as follows:

cos(\) =
®𝑣1 · ®𝑣2

∥ ®𝑣1∥∥ ®𝑣2∥
= 𝑤 (𝑒𝑖) ∈ 𝐺 (1)

An illustration of a formal definition of graph 𝐺 is presented in
Figure 4.

Figure 4: Weighted graph representation

We conducted an analysis of the state of the art of clustering/-
community detection algorithms to decide how to cluster the graph
into propositions of services. Rahiminejad et al. [33] performed
a topological and functional comparison of community detection
algorithms in biological networks. Six algorithms are analyzed:
Combo, Conclude, Fast Greedy, Leading Eigen, Louvain and Spin-
glass. The main criteria of evaluation for those algorithms were:
appropriate community size (neither too small nor too large), per-
formance in terms of speed and two other features regarding gene
and biological functions. From the conducted evaluation on two

Identification of Microservices from Monolithic Applications through Topic Modelling

SAC 2021,
,

distinct data sets they conclude favouring Louvain given that the
communities found were very similar to the top methods and Lou-
vain was the fastest community detection method.

The Louvain algorithm presented by Blondel et al. [5] is an
heuristic algorithm based on modularity maximization. Its main
goal is to maximize network modularity. Modularity is a measure
of strength of division of a network into clusters/communities.
Higher modularity represents dense connections within nodes in a
community but sparse connections between different communities
[28]. It is an unsupervised algorithm not requiring the number of
communities to be identified nor their sizes.

At its core the algorithm is divided into two main steps repeated
iteratively [5, 27]:

• Step 1 - Each node in the network is assigned to its own com-
munity. The number of communities is equal to the number
of nodes 𝑁 ; For each neighbour 𝑗 of node 𝑖 , it is tested if
the modularity increases by moving it from community 𝑖

to community 𝑗 . If there is an increase, the node is moved,
otherwise it stays in the original community. This step is
repeated for all the nodes in a sequential order and repeated
until no improvements in modularity can be achieved.

• Step 2 - The network is rebuilt by merging the nodes in the
same community.

Steps 1 and 2 are executed iteratively until the merging of com-
munities does not change and a maximum modularity is reached.
The majority of the computational work is done on the first itera-
tions. Step 2 exponentially reduces the amount of work as it gets
closer to the final iterations.

A common problem identified as a limitation of the Louvain al-
gorithm and other algorithms that use modularity as its core is that
it may fail to identify modules smaller than a given scale [12]. That
problem was observed initially on projects more complex and big-
ger in number of components (classes in our case – Java). In order
to avoid that, the resolution parameter is manipulated allowing to
discover clusters at different scales [23]. A higher resolution results
in more iterations of the merging step of the algorithm, resulting
in less but bigger clusters. Similarly a lower resolution results in
less merging, meaning more clusters of smaller size. For each res-
olution the project is clustered and executed against metrics of
independence of functionality and modularity presented in Section
4. From that metric execution the best resolution can be selected.
Although a resolution is chosen and consequently its proposed
services, we provide the user all the proposed services for other
resolutions. With different granularities of proposed microservices
the user can do a more informed and qualitative identification of
what represents the best solution for the current project.

3 CASE STUDY
In this section we present a walkthrough of the proposed method-
ology on a Java Spring application named JPetStore2. JPetStore is a
shopping application regarding pet selling. Our goal is to present
the most relevant steps, namely the application of the topic mod-
elling as a way to analyse the identified topics and words that
compose the given topics. Since it is a relatively small project, steps
concerning identification of K topics and Louvain resolution are
2Repository found at https://github.com/mybatis/jpetstore-6

not included. Skipping the initial information extraction and pre-
processing of the textual terms the LDAmodel is inferred according
to the pre-processed textual terms against a number of topics of K=4.
In Table 1 the 10 top words in its stemmed version are presented
for each topic:

• Topic 0 - The first five top words represent strong domain
concepts referring to users/accounts.

• Topic 1 - Strong domain relation to cart management.
• Topic 2 - Strong domain relation to catalog: products, cate-
gory, item

• Topic 3 - Strong domain relation to order execution: line,
status, total, price, cart, stock.

Topic Top 10 words representing a topic

0 account username password signon profile clear resolut status version serial

1 item cart line quantiti big total price stock increment inventori

2 product catalog categori item resolut serial clear profil total name

3 order sequenc line statu usernam total price version cart stock

Table 1: Top 10 stemmed words belonging to each topic

The topic distribution for each class of the project is presented
in Table 2. The vast majority of the classes has a strong associ-
ation to one of the topics (highlighted in bold face). The class
web.actions.AbstractActionBean stands out as having a very
similar distribution across topics because it represents an abstrac-
tion extended by the main entities exposing the application func-
tionality as beans. Although there is still no way to deal with ab-
straction classes being split from the classes that directly require
them (on the implemented tool), this kind of information may be
useful in the future as a way to alert and guide the final user.

Finally, with the calculation of cosine similarity between the
structural dependencies between classes resorting to topic distribu-
tion the clusters of classes as potential microservices are identified,
as illustrated in Figure 5. Four clusters are identified as propositions
of microservices (each cluster is coloured differently in the figure).
In this example the clusters are very similar and are according to
the topics identified and its distribution. For larger and more com-
plex applications the clustering will have a more significant impact,
given higher number of topics and its distribution and an increased
number of dependencies between components.

In the context of the example, the identified clusters propose
four different services related to: accounts/users, cart management,
catalogue management and order execution.

4 EVALUATION
In order to quantitatively assess the quality of the microservices
proposed by our approach, we collected 200 projects from GitHub
and computed the MA metrics proposed by the work of Jin et al.
[17] regarding independence of functionality and modularity. In
this section we describe in detail this evaluation, starting by the
the metrics.

4.1 Independence of functionality
Independence of functionality refers to external independence,
meaning how independent and well-defined the services are. The

SAC 2021,
,

Brito, Cunha, Saraiva

Figure 5: Clustering using topic distribution similarity as weight

following metrics are calculated resorting to the interfaces 𝐼 of a
service. An interface is any class that exposes functionality as an
endpoint. For each interface, methods are considered as operations
𝑂 .

The value ifn (interface number) quantifies the number of inter-
faces for a given service. It is based on the Single Responsibility
principle. A smaller ifn represents a higher likelihood of any given
service assuming a single responsibility [17]. IFN represents the
average of all ifn.

IFN =
1
𝑁

𝑁∑
𝑖=1

ifn𝑖 (2)

ifn𝑖 = |𝐼𝑖 | (3)
The value chm (cohesion at message level) quantifies cohesive-

ness at message level of interfaces of a given service. A higher chm
represents an higher cohesiveness of the service. CHM represents
the average of all chm. Messages are composed by the terms of
method parameters (par) and method returns (ret).

CHM =
1
𝑁

𝑁∑
𝑖=1

chm𝑖 (4)

chm𝑖 =

∑

(𝑘,𝑚)
𝑓msg (opr𝑘 ,opr𝑚)

1
2 |𝑂𝑖 |×(|𝑂𝑖 |−1)

, if |𝑂𝑖 | ≠ 1
1, if |𝑂𝑖 | = 1

(5)

Jaccard index is used as function of similarity both for similarity
of return terms and parameter terms.

𝑓msg (opr𝑘 , 𝑜𝑝𝑟𝑚) =

(
|ret𝑘∩ret𝑚 |
|ret𝑘∪ret𝑚 |

)
+
(|par𝑘∩par𝑚 |
|par𝑘∪par𝑚 |

)
2

(6)

The value chd (cohesion at domain level) quantifies the cohe-
siveness at domain level of the interfaces of a given service. It is

quantified very similarly to chm varying only on the function of
similarity. Instead of using only message terms, all domain terms
are considered.

CHD =
1
𝑁

𝑁∑
𝑖=1

chd𝑖 (7)

chd𝑖 =

∑
(𝑘,𝑚)

𝑓dom (opr𝑘 ,opr𝑚)

1
2 |𝑂𝑖 |×(|𝑂𝑖 |−1)

, 𝑖 𝑓 |𝑂𝑖 | ≠ 1
1, 𝑖 𝑓 |𝑂𝑖 | = 1

(8)

𝑓dom (opr𝑘 , opr𝑚) =
|𝑓term (opr𝑘) ∩ 𝑓term (opr𝑚) |
|𝑓term (opr𝑘) ∪ 𝑓term (opr𝑚) | (9)

The value IRN (interaction number) quantifies the number of
method calls across two different services. The smaller the IRN the
better [18].

IRN =
∑

(opr𝑗 ,opr𝑘)
𝑤 𝑗,𝑘 (10)

4.2 Modularity
Modularity evaluates how cohesive are the services in its internal
interactions and how loosely coupled are the interactions across
services.

SMQ (Structural Modularity Quality) quantifies modularity from
a structural viewpoint. Higher SMQ represents better modularized
services.

SMQ =
1
𝑁

𝑁∑
𝑖=1

scoh𝑖 −
1

𝑁 (𝑁 − 1)/2

𝑁∑
𝑖≠𝑗

scop𝑖, 𝑗 (11)

SMQ quantification is divided into the quantification of intra-
connectivity and inter-connectivity. The value scoh quantifies cohe-
siveness of a given service while scop quantifies coupling between
services. High scoh and low scop represent a cohesive and loosely

Identification of Microservices from Monolithic Applications through Topic Modelling

SAC 2021,
,

Class Topic distribution

(org.mybatis.jpetstore.*) 0 1 2 3

web.actions.AccountActionBean 0.79 0.03 0.14 0.04

domain.Account 0.82 0.04 0.09 0.05

service.AccountService 0.72 0.09 0.09 0.95

mapper.AccountMapper 0.81 0.06 0.06 0.07

web.actions.AbstractActionBean 0.26 0.25 0.25 0.23

mapper.LineItemMapper 0.1 0.61 0.1 0.18

domain.Item 0.05 0.73 0.18 0.05

domain.LineItem 0.04 0.82 0.04 0.11

domain.CartItem 0.06 0.83 0.06 0.06

web.actions.CartActionBean 0.12 0.71 0.13 0.04

mapper.ItemMapper 0.09 0.66 0.16 0.09

web.actions.CatalogActionBean 0.03 0.08 0.86 0.03

domain.Category 0.13 0.13 0.62 0.12

mapper.ProductMapper 0.11 0.11 0.68 0.11

mapper.CategoryMapper 0.14 0.14 0.57 0.14

domain.Product 0.1 0.1 0.7 0.1

service.CatalogService 0.05 0.17 0.74 0.05

mapper.SequenceMapper 0.15 0.15 0.15 0.55

mapper.OrderMapper 0.11 0.1 0.1 0.69

domain.Sequence 0.19 0.18 0.19 0.44

domain.Order 0.08 0.16 0.02 0.73

service.OrderService 0.06 0.24 0.06 0.64

web.actions.OrderActionBean 0.2 0.08 0.05 0.66

Table 2: Topic distribution for each class on the JPetStore
project (The distribution is expected to sum to 1, however
due to rounding there are cases where that does not happen)

coupled architecture. `𝑖 represents the total edges for a service. An
edge is counted when there is a structural call dependency between
𝑁 entities. 𝜎𝑖, 𝑗 is similar to ` but acts on a service to service level,
meaning that an edge occurs when there is a dependency between
service 𝑖 and service 𝑗 .

scoh𝑖 =
𝑢𝑖

𝑁 2
𝑖

, scop𝑖, 𝑗 =
𝜎𝑖, 𝑗

2(𝑁𝑖 × 𝑁 𝑗)
(12)

CMQ (Conceptual Modularity Quality) quantifies modularity
from a conceptual viewpoint. Higher CMQ represents better modu-
larity.

CMQ =
1
𝑁

𝑁∑
𝑖=1

ccoh𝑖 −
1

𝑁 (𝑁 − 1)/2

𝑁∑
𝑖≠𝑗

ccop𝑖, 𝑗 (13)

ccoh𝑖 =
𝑢𝑖

𝑁 2
𝑖

, ccop𝑖, 𝑗 =
𝜎𝑖, 𝑗

2(𝑁𝑖 × 𝑁 𝑗)
(14)

CMQ is very similar to SMQ but textual terms are used instead
of call dependencies. Therefore, an edge is considered if the inter-
section between terms is not empty.

4.3 Project collection
With the goal of evaluating the quality of the services proposed by
our methodology, we collected 200 Java Spring applications from
GitHub using its search API (v3) and executed against the state
of the art metrics proposed by Jin et al. [17] on independence of
functionality and modularity.

We used the GitHub search API for code as a mean to identify
repositories using the terms "RequestMapping" and "Controller",
as those are very common and unique to applications built using
the Spring Framework. Since any request to a GitHub endpoint is
bound to 1000 results per each search, we used the parameter of file
size to be able to find more repositories with Java Spring projects.
Thus, we created a set of queries by increasing the size interval
(min_size and max_size) by 200 bytes and bound to a starting point
of 500 bytes and final point of 200000 (around 200 KB). The query
(template) used was as follows:

https://api.github.com/search/code?q=RequestMapping+
Controller+language:java+size:{min_size}..{max_size}

Executing this set of queries we identified 104024 results, how-
ever, many of them represent results on the same repository some-
thing that the API does not allow to exclude. These results were
then filtered by uniqueness, removing duplicate references to the
same repository and forks of the same repository. Filters were also
applied to some very common repositories, such as Spring-Boot
forks of the framework, demo and test projects by using the fol-
lowing stop words {’release’, ’framework’, ’learn’, ’source’, ’spring’,
’study’, ’demo’, ’test’, ’practice’, ’practise’}. That reduced the original
104024 results to 29368.

Based on the criteria taken by Borges et al. [6] and Ma et al. [25]
on works regarding criteria collection of GitHub repositories we
selected the top repositories based on GitHub stars. Thus, for every
repository, we parsed the number of stars, open issues, subscribers
and forks.

In order to guarantee that the projects are monolithic applica-
tions, only projects containing one “src” folder are considered. Any
project with less than 30 classes is also discarded as a project with
that dimension may represent just a “toy” Java project. From the
final projects the top 200 by highest number of stars are selected as
evaluation data set.

The histogram of the projects collected by the number of classes
is presented in Figure 6. In perspective, the biggest project consid-
ered is roughly around 2500 classes.

4.4 Setup
We implemented the presented methodology in a proof of concept
and tested the collected projects against state of the art metrics. Our
main goal is, from a quantitative point of view, to understand if the
microservices being proposed are relevant regarding independence
of functionality and modularity.

Regarding the number of topics, we selected a range of arbitrary
values according to quantity of classes. The ranges are wide enough
in order to allow the identification of a knee point on coherence
values, but not too large as that would slow down the process in a
meaningful way.

Clustering resolution was also arbitrarily set. From our analysis a
range from 0.3 to 1 should be able to deal with most applications in

https://api.github.com/search/code?q=RequestMapping+Controller+language:java+size:{min_size}..{max_size}
https://api.github.com/search/code?q=RequestMapping+Controller+language:java+size:{min_size}..{max_size}

SAC 2021,
,

Brito, Cunha, Saraiva

Figure 6: Histogram of collected projects by class count

the hundreds of components: a resolution of 1 can identify clusters
of larger sizes in small applications (in the tens) and resolution
of 0.3 can identify smaller clusters in large applications (in the
hundreds). The set range guarantees us that we are able to identify
smaller or larger microservices if they quantitatively represent the
best cohesion and loosely coupling.

The selection factor of the best proposition of microservices is
done by maximising the combination of CHM, CHD, SMQ, CMQ, IRN
and IFN. Regarding operation identification as a mean to measure
CHM and CHD we collected all the methods present in controllers’
classes. We also applied a threshold to calculate CHD since only
tight terms related to the domain should be considered, requiring
extensive cleaning and manual labour, something not feasible given
the significant set of applications. In fact this is a similar process
to the one present in the work proposing the metrics. The use of
stop words for pre-processing was also very generic without any
specificity per project. Ideally an analysis and addition of common
terms irrelevant to the domain should be added despite the effort
we put in information extraction stage to reduce the inclusion of
external abstraction.

4.5 Results
The boxplot of the results obtained across all 200 applications can
be found in Figure 7.

CHM and CHD which represent independence of functional-
ity at operation level (methods exposed by services as interfaces)
both show medians roughly around 0.6 which represent positive
proposals regarding independence and well-defined services.

SMQ and CMQ which represent modularity of services and are
bound between -1 and 1 presented medians roughly around 0.2
and 0.4 respectively. Some negative outliers regarding SMQ were
observed, however CMQ remained positive across all projects.

IFN quantifies the interfaces exposed by a given interface, hence,
a smaller IFN represents a higher likelihood of a service having
a single responsibility. The median and both Q1 and Q3 on the
boxplot presented in Figure 8 are quite compact and close to values
representing a single responsibility service (ie. IFN of 1).

Figure 7: Metrics’ boxplot across 200 projects

Figure 8: IFN’s boxplot across the 200 projects

The identified projects and its results (i.e. metrics and proposed
services) can be found at our open-source repository3.

4.6 Discussion
Regarding metrics of independence of functionality, both CHM
and CHD presented good median values, however there is a big
interval between upper and lower whisker. The upper whisker
results are more frequent on smaller applications and applications
better designed with strong domain concepts. The lower whisker
could be described as projects of larger complexity, with weaker
domain concepts or an overall lack of pre-processing and cleaning
of domain terms.

The higher values of CMQ compared to SMQ could be justified
by the usage of an approach mainly based on the extraction of
lexical terms. The underlying structure of the graph for clustering
is based on the structural dependencies, however, edge weights
when based on semantics will privilege classes semantically closer.
Both SMQ and CMQ are bound between -1 and 1, despite some
negative outliers on SMQ the results obtained are positive and are
relevant regarding the modularity of proposed services. Higher
values of CMQ over SMQ are expected given the semantic-focused
approach of our methodology. Another reason for lower SMQ is
higher levels of abstraction which are discussed later.

3https://anonymous.4open.science/r/61cd83e3-47b7-405d-b5ec-8ac90c81d6c7

Identification of Microservices from Monolithic Applications through Topic Modelling

SAC 2021,
,

Regarding IFN, our proposed tool seems to have some tendency
to choose smaller services (due to metrics combination) resulting
in better IFNs and worse SMQ (i.e. with smaller microservices it is
expected that more external connections exist).

Considering that we didn’t apply customised pre-processing for
each project, when there are levels of abstraction composed of mul-
tiple components, there is a possibility that those same abstractions
are identified as a topic and eventually result in a service. Better
pre-processing would definitely help, however there always will
be cases where identified topics do not represent the reality of the
domain. Allowing the user to discard topics that purely represent
abstractions or are composed by very scattered terms could bring
benefits to the process of service identification.

Our approach uses classes as the unit of decomposition of a
project. Even though we can identify multiple classes from a java
file, such granularity might be too high to identify cross-cutting
concepts and segregate them into their unique services. Using finer
units of decomposition such as methods might help the identi-
fication of such cross-cutting concepts and improve the overall
identification of domain terms and consequently better cohesion
and loosely coupling.

The current value of our proposed tool for developers is mainly
to explore an architecture and guide the user to identify microser-
vices according to metrics of independence of functionality and
modularity. Although we identify a resolution at which the indepen-
dence of functionality and modularity are at its highest, choosing
the adequate number of services is dependent on the subjective
understanding of what represents good microservices to the ex-
pert. Considering that each cluster of classes results in a direct
proposition of a microservice the trade-off between cohesion and
coupling is an important feature that said expert should evaluate.
In short, choosing lower resolution, hence smaller microservices,
results inherently in higher cohesion with higher coupling, while
higher resolutions results in the opposite. The appropriate balance
between cohesion and coupling at a class level is not that straight-
forward to identify, hence the ultimate decision should be made by
the expert.

We also conducted an analysis with the goal to understand on
how the methodology performs for projects of different sizes re-
garding number of classes (results found at 4). We didn’t find any
evidence that the methodology performs significantly better for
any of the groups. We hypothesise that the main cause of success
or failure to the methodology is abstraction, considering that it
hinders topic identification and in some cases the identification
of abstraction as a topic might result in isolating such abstraction
into an independent proposal of a service. Although abstraction
usually increases with bigger projects, our data set is composed of
applications wildly varying in their domain, hence, a smaller but
more complex application could have more abstraction than a large
application more focused on the domain. Further analysis will have
to be conducted to confirm our hypothesis.

Overall, all the metrics demonstrate promising results towards
microservice identification regarding independence of functionality
and modularity.

4https://anonymous.4open.science/r/61cd83e3-47b7-405d-b5ec-8ac90c81d6c7

4.7 Threats to validity
In this section we discuss the threats to the proposed method or-
ganised according to [39].

Conclusion validity. A possible threat is related to the reliability
of measures, in this case of the metrics. We have implemented the
metrics based on their original publication and when in doubt we
have contacted the authors to discuss and clarify them. We have
also performed extended tests to guarantee the correctness of the
results.

Internal validity. Another threat to validity refers to how the
parameters of the study are selected. Ideally we should do an ex-
tensive analysis of how the number of topics and resolution affect
the results directly, however, that would require a vast amount of
work given the high number of applications and possible permu-
tations. To mitigate such threat, we defined arbitrary ranges for
each parameter. Regarding the resolution parameter, the selected
arbitrary range demonstrated a level of granularity capable of iden-
tifying small microservices in large applications as well as larger
microservices in smaller applications, in other words, it should have
the capability to identify different levels of granularity in different
sized applications. Ultimately, resolution is tested against metrics
and we can understand how it performs. Unfortunately the same
cannot be done with number of topics. To identify the appropriate
number of topics we resort to a metric of coherence which evalu-
ates if the terms of each topic make sense together. This is applied
on an arbitrary range of number of topics. However, the ultimate
contribution of the number of topics to the method can only be
evaluated after clustering and no further individual conclusions
can be achieved.

Construct validity. A construct validity threat relates to the qual-
ity of microservices being proposed. Even though we used the
state of the art metrics regarding microservices, it is theoretically
possible, however unlikely, to achieve good metrics that do not nec-
essarily represent good propositions of microservices. The amount
of projects taken into consideration should decrease such possibil-
ity, however, a qualitative analysis of the metrics used would have
to be conducted in order to make further conclusions. Bringing
experts to conduct an analysis of the decomposition we propose
would also help understand the quality of such propositions, and
help identifying possible improvements to the overall process.

External validity. An external threat relates to the architectures
of projects we used. Our goal was to take monolithic applications
and thus it was necessary to filter out projects composed of other
architectures such as SOA and MA. Repositories built upon such ar-
chitectures are often composed of multiple projects, hence multiple
src folders. To mitigate such occurrences only projects containing
one src folder were considered given the definition of monolithic
applications as being composed of a single program. However, there
is no absolute guarantee that all the projects considered follow the
definition of a monolith. A second threat relates to the fact that we
use only open-source projects. Nevertheless, it is now common to
find companies and other entities making their code available. For

SAC 2021,
,

Brito, Cunha, Saraiva

instance, our list of projects includes a project by the Australian Gov-
ernment (AtlasOfLivingAustralia/biocache-service). How-
ever, it is possible the results may vary for proprietary software.

5 RELATEDWORK
With the increased popularity of MA, an increase in demand of
formalising the process of migration also emerged. The migration
itself is a complex process, very dependant on the domain of the
software project which might require multiple iterations until com-
pletion [10]. In the work done by Balalaie et al. [3] and Fritzsch
et al. [13] with the goal of systematising the process by identifying
patterns, strategies and challenges, both reported the decomposi-
tion of software systems as being one of the main struggles. In
Fritzsch et al. [13] research, none of the participants was aware of
automated systems that could assist the migration to MA.

The work done to date is especially focused on the identification
of microservices. No methodology/tool has been proposed that can
identify and refactor a whole system into a working version of aMA.
The identification and proposal of microservices research so far can
be divided into three main approaches: solutions based on static
analysis, solutions based on dynamic analysis and model-oriented
solutions.

Static analysis solutions. Static analysis techniques are widely
used on software testing and code analysis and also promising in
this area given the amount of information that can be extracted
from source code. Mazlami et al. [26] propose three different strate-
gies of coupling that can be used as a base to clustering resulting
in microservice proposals. The strategies proposed resort in the
source code of the project and meta-data collected from a version-
ing system. The first strategy proposed, logical coupling, relies on
the premise that changes made to a monolith are only done to a
small set of classes on a given module, thus, by analysing the his-
tory changes and taking into account that the classes that change
together should also be together in a microservice. Their second ap-
proach is built upon semantic similarity, meaning that classes that
talk about the same concepts should be grouped together. Lastly,
coupling by contribution, based on Conway [9] law expressing that
the structure of the software represents the structure of the orga-
nization, thus, specific modules that receive changes by a specific
group of people/teams should be maintained together. Kamimura
et al. [19] propose a solution heavily focused on clustering. The
clustering technique used by them is proposed by Kobayashi et al.
[21] and has the main goal to undermine the importance of modules
that are omnipresent in the project, enabling a better identification
of components [22]. The information used to feed the clustering
is extracted starting by the endpoints of specific framework anno-
tations (such as @Controller in Java Spring Framework). Other
annotations such as @Entity and @Table are also used to identify
data persistence and domain knowledge.

Dynamic analysis solutions. Dynamic analysis techniques have
emerged as an alternative to static analysis using program execution
analysis (for example, logs) in order to obtain extra information
about the software in question.

According to Candela et al. [7], techniques that process code
analysis based on their syntactic relationships, usingmetrics such as

coupling and cohesion or naming conventions may not be sufficient
for optimal identification, given that the code-level relationship
may not be the same in terms of functionality [18]. In order to
deal with this limitation, Jin et al. [18] propose the use of traces
collected during the execution of certain test cases created by the
user, which according to [11] allow for a better exposure of the
true functionality of software. They later extend their work by
proposing Functionality-oriented Service Candidate Identification
(FoSCI) [17] resorting to a search-based functional atom grouping
algorithm based on Non-dominated Sorting Genetic Algorithm-II
(NSGA-II) using as optimisation objectives both intra and inter
structural connectivity and inter and intra conceptual connectivity.
Their work also results in the extension and proposition of new
metrics for quantitative evaluation of proposed microservices.

Model-oriented solutions. The importance of models in the devel-
opment of software systems and model-driven-development (MDD)
allows for the use of model-based approaches since they also repre-
sent a view over the interactions between system’s components.

Gysel et al. [15] follow a model-oriented approach resorting to
high-level models such as domain models and use cases diagrams
to extract representations of the system into a graph. The graph is
then clustered resorting to Epidemic Label Propagation [24] and
Girvan-Newman algorithms [14]. Chen et al. [8] take a similar
path, however, resorting to data-flow diagrams. The main challenge
with model oriented approaches is how heavily oriented they are
towards user input, usually requiring extensive work to provide
the tools with up to date diagrams and appropriate formats.

Summary. Overall, most of the techniques proposed use seman-
tics in one way or another as part of their methodology. After all,
the software is ultimately being read and created by developers and
the way modules are grouped together to fit nicely with the do-
main of the project is one of the main ways to have better software
comprehension.

All the techniques presented use semantic techniques as a mean
to identify domain terms and coherent groups of information. How-
ever, they resort to basic techniques such as Jaccard distance or
Tf-IDF (term frequency–inverse document frequency). On the other
hand, we proposed an enhanced usage of semantics as a mean to
identify coherent microservices by applying topic modelling tech-
niques which produce more accurate results.

6 CONCLUSION
We present a methodology to identify microservices from mono-
lithic software architectures. The methodology proposed is agnostic
of the programming language and paradigm. We have implemented
the methodology in a proof of concept and tested against the state
of the art quantitative metrics on independence of functionality
and modularity of microservices. The evaluation was conducted
against the collection of 200 open-source Java Spring applications
from GitHub.

Our proposed methodology performed well regarding indepen-
dence of functionality with medians roughly close to 0.6 for both
CHM and CHD and low values of IFN representing relevant propo-
sitions of microservices. The results concerning modularity are also

Identification of Microservices from Monolithic Applications through Topic Modelling

SAC 2021,
,

positive, with better performance regarding the CMQ over SMQ
given the nature of our semantic based approach.

As future work, we plan to produce executable microservices
according to the identifications made. We also intend to investigate
and extend LDA to better handle abstractions and its impact on topic
identification. Moreover, an empirical evaluation where developers
evaluate the results of the methodology is also an important step
as it can bring to the methodology improvements unforeseen.

ACKNOWLEDGMENTS
This work is financed by National Funds through the Portuguese
funding agency, FCT - Fundação para a Ciência e a Tecnologia
within project UIDB/50014/2020.

REFERENCES
[1] [n.d.]. About the Symbol Solver · javaparser/javaparser Wiki. https://github.com/

javaparser/javaparser/wiki/About-the-Symbol-Solver. (Accessed on 07/14/2020).
[2] [n.d.]. Spring | Home. https://spring.io/. (Accessed on 07/30/2020).
[3] Armin Balalaie, Abbas Heydarnoori, Pooyan Jamshidi, Damian Tamburri, and

Theodore Lynn. 2018. Microservices migration patterns. Software: Practice and
Experience 48 (07 2018). https://doi.org/10.1002/spe.2608

[4] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent Dirichlet
Allocation. J. Mach. Learn. Res. 3, null (March 2003), 993–1022.

[5] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-
vre. 2008. Fast unfolding of communities in large networks. Journal of Sta-
tistical Mechanics: Theory and Experiment 2008, 10 (oct 2008), P10008. https:
//doi.org/10.1088/1742-5468/2008/10/p10008

[6] H. Borges, A. Hora, and M. T. Valente. 2016. Understanding the Factors That Im-
pact the Popularity of GitHub Repositories. In 2016 IEEE International Conference
on Software Maintenance and Evolution (ICSME). 334–344.

[7] Ivan Candela, Gabriele Bavota, Barbara Russo, and Rocco Oliveto. 2016. Using
Cohesion and Coupling for Software Remodularization: Is It Enough? ACM
Transactions on Software Engineering and Methodology 25 (06 2016), 1–28. https:
//doi.org/10.1145/2928268

[8] Rui Chen, Shanshan Li, and Zheng (Eddie) Li. 2017. From Monolith to Microser-
vices: A Dataflow-Driven Approach. 466–475. https://doi.org/10.1109/APSEC.
2017.53

[9] Melvin Conway. [n.d.]. Conway’s Law. http://www.melconway.com/Home/
Conways_Law.html (Accessed on 12/27/2019).

[10] Zhamak Dehghani. 2018. How to break a Monolith into Microservices. https:
//martinfowler.com/articles/break-monolith-into-microservices.html. (Accessed
on 12/26/2019).

[11] Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. 2013.
Feature location in source code: A taxonomy and survey. Journal of Software
Maintenance and Evolution: Research and Practice 25 (01 2013). https://doi.org/10.
1002/smr.567

[12] Santo Fortunato and Marc Barthélemy. 2007. Resolution limit in
community detection. Proceedings of the National Academy of Sci-
ences 104, 1 (2007), 36–41. https://doi.org/10.1073/pnas.0605965104
arXiv:https://www.pnas.org/content/104/1/36.full.pdf

[13] Jonas Fritzsch, Justus Bogner, Stefan Wagner, and Alfred Zimmermann. 2019.
MicroservicesMigration in Industry: Intentions, Strategies, and Challenges. https:
//doi.org/10.1109/ICSME.2019.00081

[14] Michelle Girvan and Mark Newman. 2001. Community structure in social and
biological networks. Proceedings of the National Academy of Sciences of the United
States of America 99 (11 2001), 7821–7826.

[15] Michael Gysel, Lukas Kölbener, Wolfgang Giersche, and Olaf Zimmermann.
2016. Service Cutter: A Systematic Approach to Service Decomposition. 185–200.
https://doi.org/10.1007/978-3-319-44482-6_12

[16] Hamed Jelodar, Yongli Wang, Chi Yuan, Xia Feng, Xiahui Jiang, Yanchao Li, and
Liang Zhao. 2019. Latent Dirichlet Allocation (LDA) and Topic Modeling: Models,
Applications, a Survey. Multimedia Tools Appl. 78, 11 (June 2019), 15169–15211.
https://doi.org/10.1007/s11042-018-6894-4

[17] W. Jin, T. Liu, Y. Cai, R. Kazman, R. Mo, and Q. Zheng. 2019. Service Candidate
Identification from Monolithic Systems based on Execution Traces. IEEE Trans-
actions on Software Engineering (2019), 1–1. https://doi.org/10.1109/TSE.2019.
2910531

[18] W. Jin, T. Liu, Q. Zheng, D. Cui, and Y. Cai. 2018. Functionality-Oriented Microser-
vice Extraction Based on Execution Trace Clustering. In 2018 IEEE International
Conference on Web Services (ICWS). 211–218. https://doi.org/10.1109/ICWS.2018.
00034

[19] M. Kamimura, K. Yano, T. Hatano, and A. Matsuo. 2018. Extracting Candidates
of Microservices from Monolithic Application Code. In 2018 25th Asia-Pacific
Software Engineering Conference (APSEC). 571–580. https://doi.org/10.1109/
APSEC.2018.00072

[20] Pooja Kherwa and Poonam Bansal. 2018. Topic Modeling: A Comprehensive
Review. ICST Transactions on Scalable Information Systems 7 (07 2018), 159623.
https://doi.org/10.4108/eai.13-7-2018.159623

[21] K. Kobayashi, M. Kamimura, K. Kato, K. Yano, and A. Matsuo. 2012. Feature-
gathering dependency-based software clustering using Dedication and Modular-
ity. In 2012 28th IEEE International Conference on Software Maintenance (ICSM).
462–471. https://doi.org/10.1109/ICSM.2012.6405308

[22] Kenichi Kobayashi, Manabu Kamimura, Keisuke Yano, Koki Kato, and Aki-
hiko Matsuo. 2013. SArF Map: Visualizing Software Architecture from Fea-
ture and Layer Viewpoints. https://doi.org/10.1109/ICPC.2013.6613832
arXiv:1306.0958 [cs.SE]

[23] Renaud Lambiotte, Jean-Charles Delvenne, andMauricio Barahona. 2014. Random
Walks, Markov Processes and the Multiscale Modular Organization of Complex
Networks. IEEE Transactions on Network Science and Engineering 1, 2 (Jul 2014),
76–90. https://doi.org/10.1109/tnse.2015.2391998

[24] Ian X. Y. Leung, Pan Hui, Pietro Liò, and Jon Crowcroft. 2009. Towards real-time
community detection in large networks. Physical review. E, Statistical, nonlinear,
and soft matter physics 79 6 Pt 2 (2009), 066107.

[25] W. Ma, L. Chen, Y. Zhou, and B. Xu. 2016. What Are the Dominant Projects in the
GitHub Python Ecosystem?. In 2016 Third International Conference on Trustworthy
Systems and their Applications (TSA). 87–95.

[26] G. Mazlami, J. Cito, and P. Leitner. 2017. Extraction of Microservices from
Monolithic Software Architectures. In 2017 IEEE International Conference on Web
Services (ICWS). 524–531. https://doi.org/10.1109/ICWS.2017.61

[27] Abhishek Mishra. [n.d.]. Demystifying Louvain’s Algorithm and Its im-
plementation in GPU | by Abhishek Mishra | WalmartLabs | Medium.
https://medium.com/walmartlabs/demystifying-louvains-algorithm-and-its-
implementation-in-gpu-9a07cdd3b010. (Accessed on 07/16/2020).

[28] M. E. J. Newman. 2006. Modularity and community structure in networks. Proceed-
ings of the National Academy of Sciences of the United States of America 103, 23 (06
Jun 2006), 8577–8582. https://doi.org/10.1073/pnas.0601602103 16723398[pmid].

[29] S. Newman. 2015. BuildingMicroservices: Designing Fine-Grained Systems. O’Reilly
Media. https://books.google.pt/books?id=jjl4BgAAQBAJ

[30] Claus Pahl and Pooyan Jamshidi. 2016. Microservices: A Systematic Mapping
Study. 137–146. https://doi.org/10.5220/0005785501370146

[31] D. L. Parnas. 1972. On the Criteria to Be Used in Decomposing Systems into
Modules. Commun. ACM 15, 12 (Dec. 1972), 1053–1058. https://doi.org/10.1145/
361598.361623

[32] Jean Petrić, Tracy Hall, and David Bowes. 2018. How Effectively Is Defective
Code Actually Tested? An Analysis of JUnit Tests in Seven Open Source Systems.
In Proceedings of the 14th International Conference on Predictive Models and Data
Analytics in Software Engineering (Oulu, Finland) (PROMISE’18). Association for
Computing Machinery, New York, NY, USA, 42–51. https://doi.org/10.1145/
3273934.3273939

[33] Sara Rahiminejad, Mano R.Maurya, and Shankar Subramaniam. 2019. Topological
and functional comparison of community detection algorithms in biological
networks. BMC Bioinformatics 20, 1 (27 Apr 2019), 212. https://doi.org/10.1186/
s12859-019-2746-0

[34] Michael Röder, Andreas Both, and Alexander Hinneburg. 2015. Exploring
the Space of Topic Coherence Measures. In Proceedings of the Eighth ACM
International Conference on Web Search and Data Mining (Shanghai, China)
(WSDM ’15). Association for Computing Machinery, New York, NY, USA, 399–408.
https://doi.org/10.1145/2684822.2685324

[35] Carson Sievert and Kenneth Shirley. 2014. LDAvis: A method for visualizing
and interpreting topics. In Proceedings of the Workshop on Interactive Language
Learning, Visualization, and Interfaces. Association for Computational Linguistics,
Baltimore, Maryland, USA, 63–70. https://doi.org/10.3115/v1/W14-3110

[36] Keith Stevens, Philip Kegelmeyer, David Andrzejewski, and David Buttler. 2012.
Exploring Topic Coherence over Many Models and Many Topics. In Proceedings
of the 2012 Joint Conference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning. Association for Computational
Linguistics, Jeju Island, Korea, 952–961. https://www.aclweb.org/anthology/D12-
1087

[37] Xiaobing Sun, Xiangyue Liu, Li Bin, Bixin Li, David Lo, and Lingzhi Liao. 2017.
Clustering Classes in Packages for Program Comprehension. Scientific Program-
ming 2017 (01 2017), 1–15. https://doi.org/10.1155/2017/3787053

[38] X. Sun, X. Liu, B. Li, Y. Duan, H. Yang, and J. Hu. 2016. Exploring topic models
in software engineering data analysis: A survey. In 2016 17th IEEE/ACIS Interna-
tional Conference on Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing (SNPD). 357–362.

[39] ClaesWohlin, Per Runeson, Martin Hst, Magnus C. Ohlsson, Bjrn Regnell, and An-
ders Wessln. 2012. Experimentation in Software Engineering. Springer Publishing
Company, Incorporated.

https://github.com/javaparser/javaparser/wiki/About-the-Symbol-Solver
https://github.com/javaparser/javaparser/wiki/About-the-Symbol-Solver
https://spring.io/
https://doi.org/10.1002/spe.2608
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://doi.org/10.1145/2928268
https://doi.org/10.1145/2928268
https://doi.org/10.1109/APSEC.2017.53
https://doi.org/10.1109/APSEC.2017.53
http://www.melconway.com/Home/Conways_Law.html
http://www.melconway.com/Home/Conways_Law.html
https://martinfowler.com/articles/break-monolith-into-microservices.html
https://martinfowler.com/articles/break-monolith-into-microservices.html
https://doi.org/10.1002/smr.567
https://doi.org/10.1002/smr.567
https://doi.org/10.1073/pnas.0605965104
https://arxiv.org/abs/https://www.pnas.org/content/104/1/36.full.pdf
https://doi.org/10.1109/ICSME.2019.00081
https://doi.org/10.1109/ICSME.2019.00081
https://doi.org/10.1007/978-3-319-44482-6_12
https://doi.org/10.1007/s11042-018-6894-4
https://doi.org/10.1109/TSE.2019.2910531
https://doi.org/10.1109/TSE.2019.2910531
https://doi.org/10.1109/ICWS.2018.00034
https://doi.org/10.1109/ICWS.2018.00034
https://doi.org/10.1109/APSEC.2018.00072
https://doi.org/10.1109/APSEC.2018.00072
https://doi.org/10.4108/eai.13-7-2018.159623
https://doi.org/10.1109/ICSM.2012.6405308
https://doi.org/10.1109/ICPC.2013.6613832
https://arxiv.org/abs/1306.0958
https://doi.org/10.1109/tnse.2015.2391998
https://doi.org/10.1109/ICWS.2017.61
https://medium.com/walmartlabs/demystifying-louvains-algorithm-and-its-implementation-in-gpu-9a07cdd3b010
https://medium.com/walmartlabs/demystifying-louvains-algorithm-and-its-implementation-in-gpu-9a07cdd3b010
https://doi.org/10.1073/pnas.0601602103
https://books.google.pt/books?id=jjl4BgAAQBAJ
https://doi.org/10.5220/0005785501370146
https://doi.org/10.1145/361598.361623
https://doi.org/10.1145/361598.361623
https://doi.org/10.1145/3273934.3273939
https://doi.org/10.1145/3273934.3273939
https://doi.org/10.1186/s12859-019-2746-0
https://doi.org/10.1186/s12859-019-2746-0
https://doi.org/10.1145/2684822.2685324
https://doi.org/10.3115/v1/W14-3110
https://www.aclweb.org/anthology/D12-1087
https://www.aclweb.org/anthology/D12-1087
https://doi.org/10.1155/2017/3787053

	Abstract
	1 Introduction
	2 Proposed Methodology
	2.1 Information Extraction
	2.2 Topic modelling
	2.3 Clustering

	3 Case study
	4 Evaluation
	4.1 Independence of functionality
	4.2 Modularity
	4.3 Project collection
	4.4 Setup
	4.5 Results
	4.6 Discussion
	4.7 Threats to validity

	5 Related work
	6 Conclusion
	Acknowledgments
	References

