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Abstract: There is a great need to evaluate and/or test programming performance. For this purpose, two schemes
have been used. Constructed response (CR) tests let the examinee write programs on a blank sheet (or with a computer
keyboard). This scheme can evaluate the programming performance. However, it is difficult to apply in a large vol-
ume because skilled human graders are required (automatic evaluation is attempted but not widely used yet). Multiple
choice (MC) tests let the examinee choose the correct answer from a list (often corresponding to the “hidden” portion
of a complete program). This scheme can be used in a large volume with computer-based testing or mark-sense cards.
However, many teachers and researchers are suspicious in that a good score does not necessarily mean the ability to
write programs from scratch. We propose a third method, split-paper (SP) testing. Our scheme splits a correct program
into each of its lines, shuffles the lines, adds “wrong answer” lines, and prepends them with choice symbols. The
examinee answers by using a list of choice symbols corresponding to the correct program, which can be easily graded
automatically by using computers. In particular, we propose the use of edit distance (Levenshtein distance) in the
scoring scheme, which seems to have affinity with the SP scheme. The research question is whether SP tests scored
by using an edit-distance-based scoring scheme measure programming performance as do CR tests. Therefore, we
conducted an experiment by using college programming classes with 60 students to compare SP tests against CR tests.
As a result, SP and CR test scores are correlated for multiple settings, and the results were statistically significant.
Therefore, we might conclude that SP tests with automatic scoring using edit distance are useful tools for evaluating
the programming performance.

Keywords: evaluating programming performance, constructed response tests, multiple choice tests, computer-based
tests, split-paper tests

1. Introduction

Recently, the importance of programming education has been
increasing rapidly worldwide; many pupils and students are start-
ing to join programming classes day by day. The consequence is
that there is a great need for evaluating the programming perfor-
mance of these pupils and students, both for formative evaluation
and grading.

Additionally, such evaluation will be a useful option for in-
clusion in college entrance examinations because computational
thinking skills and programming skills will be useful (and even
necessary) in many academic disciplines.

The problem is that there is no agreed upon method for evaluat-
ing programming performance that is both effective and practical.
“Programming performance” here means the “ability to construct
correct programs as solutions to solve clearly defined problems.”
Although practical programming tasks include upstream (require-
ments specification, design) and downstream (testing, mainte-
nance) tasks, the ability to construct correct programs seems to
be the starting point, and is an initial goal for introductory pro-
gramming courses.
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An obvious choice for evaluating the programming perfor-
mance is to let the examinee write programs (on paper or by using
a computer keyboard) from scratch. This method can be catego-
rized as “constructed response” (CR) questions.

This method is effective in that, if examinees can write re-
quested programs from scratch, it is a clear indication of the
ability to write programs (at least at the level requested by the
problem). However, this places a heavy burden on graders, who
need to read and grade submitted programs. Automatic evalua-
tion for such programs has been attempted, but is not in wide use
at present (see the next section).

Alternative methods are various types of “multiple-choice”
(MC) questions. Some show program code in a problem and
present multiple choice questions about the code. Others are “fill-
in-the-hole” type questions, in which several portions of program
code are hidden (the holes), and the examinee chooses “correct”
pieces for that hole from multiple choices.

A strong point of this method is its practicality; combined with
a computer-based test (CBT) or with mark-sense cards, rating can
be done automatically by using simple programs. Thus, a large
volume of tests can be handled. However, many teachers and re-
searchers are doubtful of its effectiveness, in that having the abil-
ity to answer fill-in-the-hole questions does not mean that one has
the ability to write real programs.

In this paper, we propose yet another method for evaluat-
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ing programming performance. Our method is a middle course
among CR questions (programming from scratch) and MC ques-
tions (fill-in-the-hole), and it is both practical (judging is easily
done by computer) and effective (high scores generally corre-
spond to the ability to program from scratch).

Our method is called the “Split-Paper (SP) test,” in which cor-
rect program code lines are separated line-by-line, removed of
indentations and duplicates, mixed with similar but unneeded
lines, and reordered to make a set of choice lines. The examinee
chooses from those lines and orders them to construct an answer
program. In our method, scoring is done automatically by using
the edit distance [1] (Levenshtein distance) from correct answer
programs. Our research question is whether the SP test, using an
edit distance-based scoring scheme, measures the programming
performance as in a CR test.

In the following sections, we describe the main idea of our
method, its actual use in an examination, and the result of ex-
perimental tests we conducted. However, we first investigate the
existing research on MC questions versus CR questions and au-
tomatic grading of programming tasks.

2. Related Work

2.1 MC Versus CR Questions
As explained above, MC questions and CR questions are well-

known and have been around for a while. There has been a
lot of research on their comparison. A report and a paper by
Frederiksen [2], [3] discussed the important points of MC versus
CR tests.

First, if MC tests were prepared in such a way that the exam-
inee fully solves the stated problems in an ordinary way (as in
the CR test) and then chooses from among multiple options, the
MC and CR test formats would make no difference. However,
if CR tests were to require examinees to come up with several
hypotheses and construct answers on the basis of them, and MC
tests were to present lists of hypotheses and let examinees choose
from them, MC and CR test scores would be mostly unrelated.

Second, the ability to solve ill-structured problems, as de-
scribed in Ref. [4], is an important outcome of higher education.
However, problems stated in MC tests tend to be clearly stated
(well-structured problems) and thus will not measure such abil-
ity. Free-format CR tests do not have such a limitation.

These two findings seem to suggest that MC and CR tests
might measure the same thing in some cases when thoughtfully
prepared, which is not always easy.

Another paper by Simkin and Kuechler [5] contains an exten-
sive survey of related work and is well written, and it is mainly
targeted at the domain of programming performance evaluation.
We briefly introduce their discussion on MC versus CR tests,
along with supplementary comments.

First, some of the existing researches [6], [7], [8] claim that MC
and CR questions could largely measure the same thing. How-
ever, in Ref. [5], it is pointed out that those pieces of research first
define skills to be measured with MC questions, and then show
that CR questions are not needed to measure those skills. There-
fore, in such research, skills that cannot be measured with MC
questions are not investigated.

Table 1 Summary of Bloom’s Taxonomy.

Level Description Evidence
1. Knowledge Rote memory Answer T/F or MC ques-

tions
2. Com-
prehension,
translation,
interpretation,
extrapolation

Assimilation into
learner’s frame of
reference, give meaning,
change representation

Understand similar pro-
grams, put in own words,
classify material, predict
consequences

3. Application Abstraction toward new
situation

Use learned techniques
and knowledge to new
situation

4. Analysis Decomposition and un-
derstanding relationships

Recognize unstated as-
sumption

5. Synthesis Combine learned ele-
ments

Knowledge creation, fill
gaps in existing knowl-
edge

6. Evaluation Makes judgement about
value of learned informa-
tion

Judge directions of
knowledge acquisition

We have frequently observed that those who can score well on
MC questions cannot write anything when asked to write program
on a blank sheet. This “start from scratch” skill might be one that
cannot be measured with MC questions.

Second, in some of the existing researches [9], [10], [11], the
researchers do not categorize carefully what their MC questions
measure; they regard a set of MC questions as a uniform body
— such an assumption is unlikely to hold, of course. On the
contrary, the authors of Ref. [5] use Bloom’s Taxonomy [12] (see
Table 1) to categorize various skills required for programming.
They claim that levels 1 through 3 apply to introductory program-
ming classes, and show that they can construct MC questions for
all of the three levels.

Our observation on existing MC tests on programming is that
they are often targeted at the lower levels. Even questions aimed
at a higher level can often be answered by memorizing frequent
patterns in representative programs.

Third, in Ref. [5], it is stated that creating MC problems tar-
geted at level 3 is possible but “surprisingly difficult.” The state-
ment matches well with our observation noted above.

Given that MC questions that evaluate the programming per-
formance at all three levels are possible but in fact very hard,
other test schemes that can evaluate all levels and that are also
easy to use will be valuable; that is where our proposed method
comes in.

2.2 Automatic Grading of Programming Tasks
In the previous section, we stated the problem that CR tests

for programming tasks are desirable but pose much of a burden
on grading. However, the problem vanishes in thin air if auto-
matic grading with computer programs is possible. In fact, there
have been many such attempts [13], [14] yet they are currently not
widely used (as noted previously). We will examine the causes
here.

Some automatic graders are based on online judgement sys-
tems built for programming contests such as ACM ICPC; in
Ref. [15], the use of such systems in automatic grading for pro-
gramming classes is discussed. These graders apply many pieces
of test data toward submitted programs, and a binary result is re-
turned — “correct” or “not correct.” This kind of behavior is ap-
parently not satisfactory for assessment in programming classes,
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because we would like to score “totally wrong” and “near miss”
differently. In fact, in Ref. [15], the use of additional manual
grading for programming styles is discussed. Alternatively, as
described in Ref. [16], automatic graders may rescue some near-
miss problems. However, the repertoire of such rescues is limited,
and an additional effort is required in describing extra patterns or
data for it.

As a radically different approach, in Ref. [17], a rubric for grad-
ing computer programs is first defined, and a machine-learning-
based grader is built for grading programs against the rubric. The
grader examines several features in input programs and uses a
learned weight on those features for grading.

The weak point is that the judgement of the grader (pass/not
pass) differed from human judgement in approximately 20% of
the cases. As this kind of grader is not based on the correctness
of the program but on the (non-)existence of features in the code,
this difference is unavoidable — such a system will be nice for
providing advice, but not for grading in a class.

Another point is the kind of programming tasks. Many of the
automatic graders are used for home assignment. In this case,
students invest many hours on an assignment, so the size and
complexity of programs are relatively large. Of course the use
of an automatic grader here is alright because students can obtain
instant feedback, allowing for a lot of trial-and-error.

However, as was pointed out in Ref. [18], for formative and
summative evaluation, small-scale lab-testing within an hour or
so will be more appropriate. We should use concise and accurate
problem specifications with clear input/output specification. In
this case, a solution other than writing programs in a free-format
might be viable; this is the point where our idea comes in.

2.3 Parsons Problems/Mangled Code
There are several pieces of research on program-line reorder-

ing tests. Parsons et al. [19] proposed such a test, named “Parsons
Programming Puzzle.” Their intent was to use such quizzes as a
tool in programming education and not as an evaluation scheme.

Denny et al. [20] interviewed students in college CS1 (intro-
duction to programming) classes on how they feel about Parsons-
like problems. From the result, they concluded that the tests,
which have completely shuffled lines, are too difficult, and they
chose to use a variant in which each “correct” line is paired with a
corresponding “incorrect” line and each pair is placed adjacently.

Then, they used both their Parsons variant and CR test for end-
term exam with 13 students. To hand-score all problems, they
designed detailed marking rubrics for all questions. From the
statistics test for the Parsons variant and CR scores, ρ = 0.53
was obtained. Although the correlation factor is moderately high,
they used hand scoring with detailed mark rubrics, so the cost of
scoring was high.

Additionally, their scheme is rather different from our SP tests
in that each “correct” line is paired with a corresponding “wrong”
line placed adjacently. We suspect that providing explicit correct-
wrong pairs might make the test rather close to the MC test.

Ericson et al. [21] compared this Parsons variant with correct-
wrong pair (same as Ref. [20]) against code writing in classroom
settings, and reported that the Parsons variant took significantly

less time. The result also suggests that the correct-wrong pair
variant requires skills different from CR tests.

Cheng et al. [22] use the term “mangled code” to denote their
version of a Parsons-like problem. They compared mangled code
tests with CR tests for a CS1 end-term exam with 473 students.
Their mangled code is created by simply splitting the correct pro-
gram line-by-line and shuffling it (duplicate lines are left intact,
and no incorrect lines are added).

They used two programming problems. Every student solved
one as a mangled code test and the other as a traditional CR test;
the assignment was done at random. Scoring is done manually
(by teaching assistants).

They report that the scoring times for the two types of prob-
lems were not different for one problem (20 min. for mangled,
22 min. for CR) and different for the other (9 min. for mangled,
16 min. for CR); these times were the average time for scoring 50
answers.

As a result, Spearman’s rank correlation of ρ = 0.65 between
the mangled test score and CR test score was obtained. Although
the correlation factor was rather high, we suppose that their man-
gled code test is again close to MC tests because no incorrect lines
are included in the choices and duplicates are not removed. Also,
note that scoring by hand requires a high cost for mangled code
test (they report 50% labor compared with CR tests at best).

3. Split-Paper Method

3.1 The Basic Idea
In 2012, the authors, together with other colleagues, formed the

“Joho Nyushi (Informatics Entrance-Examination in Japanese)
Study Group” (JNSG), whose purpose was to investigate an ef-
fective, useful, and practical scheme for college entrance exami-
nations on the subject of informatics in Japan.

One of our goals was to develop a useful and practical method
for evaluating programming performance. As a solution, we de-
veloped a scheme called the “split-paper” method (or TANZAKU
method in Japanese).

The idea is simple; in the era of punched cards, we punch each
line of a program on a paper card, and a deck of paper cards rep-
resents a single program. Should we mistakenly drop the deck
on the floor, gathering the cards “correctly” would surely require
programming ability!

In the actual test scheme, we do not use paper cards of course.
We split the “correct answer” program into each line, add some
“wrong answer” lines, reorder (or shuffle) them, and prepend
them with choice symbols. On the paper test, we request ex-
aminees to list symbols (corresponding to the answer program)
in the answer field. In the case of CBT, a dragging interface can
be incorporated, with which examinees can directly construct an
answer program on the screen.

The name “split-paper” came from the image of writing each
line on a strip of paper and reordering the strips as necessary.

3.2 An Example: Problem for JNSG 2013 Tests
In Fig. 1, we present the problem we used for the JNSG’s first

nation-wide college entrance examination simulated tests held on
May 18, 2013 [23]. The intention of the test is to examine the
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Fig. 1 Problem for JNSG 2013 tests.

Fig. 2 Total score distribution of JNSG 2013 test.

ability to program simple loops, conditions, and sequential exe-
cution with variable assignments.

JNSG tests were also held in February 2014, 2015, and 2016,
all with split-paper method programming problems. We have
chosen the first one here because it is in the most basic form
(later tests include additional subproblems for those who have
not learned programming).

JNSG 2013 Tests were held in 5 cities with a total of 41 ex-
aminees. Additionally, several high school teachers cooperated
with us and held the same test at their high schools with a total
of 39 examinees. Among the 80 examinees, the number of high
school students was 47. The others were high school teachers,
college students, or researchers who have various interests. The
distribution of the total score is shown in Fig. 2. As can be seen,
high school students and the other examinees belonged to differ-
ent groups.

Within the full score of 100 points, the split-paper program-
ming test of Fig. 1 occupied 15 points (problem 1: 7 points, prob-
lem 2: 8 points). Correct answers and a scoring guide are shown
in Fig. 3.

Figure 4 shows a scatter plot of the split-paper (SP) program-

Fig. 3 Answers and scoring guide.

Fig. 4 Scatter plot of SP score against total score in JNSG 2013 test.

ming score against the total score for the JNSG 2013 test. Clearly,
most of the high school students had not learned programming
and thus could not program, and many of the “other” peoples
could program.

The result suggests that split-paper tests for programming can
be used to judge whether an examinee can actually program or
not. More accurately, a good score on split-paper tests and on
a “write-on-a-blank-sheet” programming performance evaluation
might be highly correlated, which was our initial research ques-
tion. Although early JNSG tests used hand scoring, we later come
up with the idea of edit distance-based scoring, and accumulated
some experiences; now we always use SP tests combined with
edit distance-based scoring.

4. Evaluation Within College Programming
Classes

In the JNSG Tests we could discriminate those who can pro-
gram from those who cannot. However, our goal was to use
our method for a more detailed evaluation (as in a programming
class). For this purpose, we should compare our method against
CR (write-on-a-blank-sheet) programming tests.

Therefore, we experimented with our test scheme in col-
lege programming classes. The experiments were conducted for
the University of Electro-Communications (UEC) programming
class “Programming” on December 19, 2016 and January 16,
2017.

The subjects belonged to a second-grade programming class,
held over 15 weeks (90 min. for each week) with both lecture and
practice. C language was used, and topics on various algorithms
and data structures were included.

Our experiments (in the 10th and 11th week) were conducted
as formative evaluation tests within the classes. Students were
requested to solve two problems in a series, each in 10 minutes.
Those problems were called problems C and D for the 10th week
and problems E and F for the 11th week (see Appendix).
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Fig. 5 Histogram of test scores.

The number of students registered to the subject was 98.
Among them, 60 students had attended both weeks 10 and 11,
so we used the scores of those 60 students in the following anal-
ysis.

All of the problems were prepared in both split-paper (SP) and
CR (write on a blank sheet) formats. We assigned symbols C1,
D1, E1, and F1 for the SP format and C2, D2, E2, and F2 for
the CR format. Students were randomly assigned to one of four
groups (the groups differed between the 10th and 11th week) and
solved problems in C1-D2, C2-D1, D1-C2, D2-C1 ordering for
the 10th week and E1-F2, E2-F1, F1-E2, F2-E1 ordering for the
11th week.

For the CR test, rating was done manually by the lecturer (one
of the authors), with a full score being 10 points each. For
the SP test, rating was done with a program, the score being
max(0, 10−2d), where d was the edit distance between the correct
program and the answer. A more detailed discussion on rating is
given in the next chapter.

In Fig. 5, we show histograms for each of the problems, along
with the average score for CR, SP and both. As the result, the av-
erage score was the highest for problem F, followed by problems
D, E, and C in decreasing order.

In Fig. 6, we show a scatter plot of CR scores against SP
scores *1. From this plot, the SP and CR scores seem to be
correlated. We applied a non-parametric statistical test with
Spearman’s rank-order correlation. The result was ρ = 0.407,
p < 0.0012. Therefore, we can say that the SP test and CR test
scores in our experiment were weakly correlated and that the re-
sult was statistically significant.

The value of ρ = 0.407 was not large. As shown in Fig. 5,
the average score for corresponding problems used in cross-
comparison (C vs. D and E vs. F) differed, so this might be the
cause.

Our interest is whether it is appropriate to use the SP score
for evaluating the programming performance (in place of the CR
score). It would be appropriate if an examinee who scored higher

*1 Note that each student took two CR tests and two SP tests. Therefore,
the maximum values of the CR and SP scores were both 20 points for
each student.

Fig. 6 Scatter plot of SP vs. CR score.

Table 2 Category count for each pair with average score difference.

category norm. rev. dif. SP dif. CR same
count 870 396 314 151 39

percentage 49.2% 22.4% 17.7% 8.5% 2.2%
ave. dif. SP 7.3 5.5 6.2 – –
ave. dif. CR 9.8 3.9 – 8.3 –

for CR also scored higher for SP (normal ordering) and not if he
scored higher for CR and scored lower for SP (reverse ordering).
With 60 students, there were 1770 (= 60×59

2 ) pairs. Each pair of
students, whose SP and CR scores sp1, cr1 and sp2, cr2 respec-
tively, could be categorized as in either of the following.
• normal order — sp1 > sp2 and cr1 > cr2, or sp1 < sp2 and

cr1 < cr2.
• reverse order — sp1 > sp2 and cr1 < cr2, or sp1 < sp2 and

cr1 > cr2.
• differ for SP — sp1 � sp2 and cr1 = cr2.
• differ for CR — cr1 � cr2 and sp1 = sp2.
• same for both — sp1 = sp2 and cr1 = cr2.
We have counted the number corresponding to each of the

above categories. Additionally, we would like to examine score
differences among each pair, so we calculated the SP score dif-
ference and the CR score difference for each pair, and took the
average within each of the above categories. Table 2 summarizes
the results.

As the result, (1) the number of “reverse ordering” case was
approximately 22% of all the pairs, (2) the number of “normal
ordering” cases was more than twice that of “reverse ordering”
case, and (3) the average score difference is larger in “normal or-
dering” cases compared with the “reverse ordering” cases.

Finally, the class had an end-of-term exam on February 20th,
and one of the exam problems was a CR programming problem
(write a program on a blank sheet). All the 60 students took the
exam.

The exam contained several other problems, and took 90 min.
as a whole. Scoring was done manually by one of the authors; the
maximum score was 32 (full score is 40) and the minimum score
was 0, whose histogram is shown in Fig. 7.
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Fig. 7 Histogram of CR (Exam.) score.

Fig. 8 Scatter plot of SP-CR (Exam.) score.

Table 3 Category count for each pair with average score difference (Exam).

category norm. rev. dif. SP dif. CR same
count 990 434 156 169 21

percentage 55.9% 24.5% 8.8% 9.5% 1.2%
ave. dif. SP 7.6 5.6 5.4 – –
ave. dif. CR 6.5 2.0 – 5.0 –

From the histogram, we can say that the exam problem was not
easy for the students because the number of students monotoni-
cally decreased as the score increased. However, as 2

3 of students
earned more than or equal to 5 points, it is not the case that the
score was totally meaningless.

We have taken the SP score from our experiments and plotted
it against the exam CR score, result being Fig. 8. Now the SP and
exam CR score seems to be more correlated.

We again applied Spearman’s rank-order correlation. The re-
sult was ρ = 0.478, p < 0.00011. Therefore, we might say that
the SP and exam CR scores were weakly correlated, and the result
was statistically significant.

In Table 3, we show category count using the SP score in our
experiment and the exam CR score. We multiplied the exam CR
score by 0.5 because the full score (40) was twice that of the ex-
periment. Compared with the previous experiment, the count of
“differ SP” category significantly decreased.

However, the result was generally similar to the experiment

Fig. 9 Edit distance algorithm used for scoring.

in that (1) the number of “reverse ordering” cases was approxi-
mately 25% of all the pairs, (2) the number of “normal ordering”
cases was more than twice that of the “reverse ordering” cases,
and (3) the average score difference was larger in the “normal
ordering” cases compared with the “reverse ordering” cases.

5. Scoring Scheme for SP Tests

5.1 Consideration on SP Tests Scoring
The largest benefit of SP testing is the applicability of auto-

matic scoring, so how to do this is an important topic. It is not
difficult to exhaust all “correct programs” (programs that work as
expected) from choice lists in advance, when expected programs
are not that long (perhaps up to 20 lines or so).

There is always some arbitrariness of line orderings in pro-
gram code (ex: declarations int i;, int j; and int k; can be
written in any order), leading to an exponential explosion. For
such cases, we might pose additional restrictions in the problems
(“variable declarations must be placed in alphabetical order of
their names”) or use combined choice line (as in int i, j, k;).

The problem is that “correct or not” is too coarse as a rating
scheme. We all know that a totally wrong program and a mostly
correct program with minor mistakes are of quite different value.
Human graders can naturally account for such differences, so we
would like to do the same for automatic rating for our SP tests.

5.2 Edit Distance Algorithm
We have been using edit distance (Levenshtein distance) to as-

sign a partial score on JNSG tests since year 2014. The edit dis-
tance of two sequences, A and B, is the minimum number of edit-
ing operations (insertion of a line, deletion of a line, swapping
of an adjacent pair of lines, or modification of a line) that will
transform A into B.

Figure 9 shows the actual algorithm, which computes the edit
distance among two strings s and t using DP (dynamic program-
ming). We used Pascal-like notation for readability (actual code
is written in Ruby and Awk).

An array element a[i][ j] holds the edit distance among two sub-
strings s1 · · · si and t1 · · · t j, or dist(s1 · · · si, t1 · · · t j). The first two
lines of the function state that substring s1 · · · si and t1 · · · t j can be
converted to null string by deleting i and j characters respectively
(i or j edit operation(s)).

All of the other array elements are filled in the inner loop body.
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Fig. 10 CR scoring scheme for experiment.

Fig. 11 CR scoring scheme for end-term exam.

The first line of the body states that dist(s1 · · · si, t1 · · · t j) can be
the same as dist(s1 · · · si−1, t1 · · · t j−1) if si is equal to t j (because
no modification is necessary), or larger by one otherwise (si have
to be changed to t j). This is the tentative value m. However, when
the lengths of both substrings are larger than 1 and si = t j−1 and
si−1 = t j and additionally dist(s1 · · · si−2, t1 · · · t j−2) + 1 < m, then
m can be set to this smaller value because single swapping of two
characters at the tail will convert s1 · · · si to t1 · · · t j. Finally, the
removal of the last character of s1 · · · si or t1 · · · t j is considered,
and the final (smallest) m value is recorded in a[i][ j]. When the
loops are finished, a[m][n] holds the edit distance value among s

and t.
For SP test scoring, if an examinee’s answer string is s, and

there are multiple “correct” answers t1 · · · tn for the problem,
we compute the minimum edit distance d = min(dist(s,t1), · · ·,
dist(s,tn)). Note that if d is 0, s is identical to one of the correct
answers.

5.3 Scoring Scheme Used in the Experiment
Of course, the importance of each line in a program varies, so

the same edit distance from (one of) the correct program(s) does
not necessarily mean the same “wrongness.” However, in our ex-
perience with the JNSG test, it works fairly well.

Therefore, in our experiment we compared the edit distance-
based scoring of SP tests against manually scored CR tests. As
described above, the SP score is calculated as max(0, 10 − 2d),
where d is the minimum edit distance among answer sequences
and sequences corresponding to one of the correct programs *2.

Figures 10 and 11 show the CR scoring scheme for the exper-
iment problems (problems C, D, E, and F) and end-term exam

*2 Note that there might be several “correct” programs for many problems,
so taking the minimum is required.

problems (writing three successive C functions, 40 pts. in total).
From the experiences of the authors (all of the authors had

taught programming more than 30 years and have experiences
on scoring CR programming problems accordingly), the scoring
scheme of Figs. 10 and 11 seems ordinary. However, it looks
rather complex compared with the simple edit-distance-based
scoring scheme used in our SP tests.

6. Discussions

6.1 Usefulness of SP Testing
In the Introduction section, we noted that there is a large vol-

ume of evaluation of the programming performance. The situa-
tion is especially true in Japan.

Japan’s Ministry of Education, Culture, Sports, Science and
Technology (MEXT) has published new curriculum guidelines
for primary and upper secondary schools in March 2017, which
include programming education in elementary schools for the
first time in Japan’s history.

Although the elementary school curriculum is aimed at pro-
gramming experience (perhaps with graphics-based languages),
the effect is that more text-based programming will be taught in
junior-high and high schools, leading to a large volume of perfor-
mance evaluation tasks. It also might be possible that program-
ming problems will be included in the college entrance examina-
tion test in the near future.

All of these require an effective testing scheme for program-
ming performance. MEXT is planning to incorporate CBT for
Japan’s common college entrance examination test, so evaluating
programming performance with CBT will be required. Although
MC tests have been widely used with CBT, they are not suit-
able for the evaluation, as discussed previously. While CR tests
(write on a blank sheet) will be an appropriate method (or “stan-
dard” method at least), automatic scoring is an unsolved problem.
Therefore, we think that SP tests might be a viable alternative that
satisfies our social needs.

6.2 Evaluating Programming Performance
Although we have repeatedly used the term “programming per-

formance,” this broad term is quite difficult to define.
However, we are considering educational settings, so we ex-

clude such things as the performance of professional program-
mers in large and complex projects. Moreover, school program-
ming projects which may last weeks are also excluded; the out-
come of such projects will accompany written reports or human
presentations, so human graders will be needed anyway.

Our target is in-class or end-of-the-term tests, which are
mandatory in schools and pose a heavy burden on graders. There-
fore, the base line is traditional CR (write-on-a-sheet) program-
ming tests and the ability to write programs (at most 30–50 lines,
at most an hour or so) on an answering sheet.

Therefore, our research question is whether SP test scored by
using the edit-distance-based scoring scheme measures the pro-
gramming performance as do CR tests. We used traditional CR
tests as the baseline because they are in wide use; the appropriate-
ness of CR tests themselves will be another interesting research
topic.
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Fig. 12 Drag-and-drop interface.

6.3 Appropriateness of SP Testing
For tests of any domain, accuracy (closeness of the test score

against the ability of the examinee) largely depends on how to
construct problems. Even in the traditional CR (write-on-a-sheet)
programming tests, a test will measure nothing if the problems are
too easy or too difficult.

With respect to the difficulty of the SP test, we think we might
be able to use a policy of “the same problem as on the CR test.”
For example, Fig. 5 shows the score distribution of CR and SP
tests for the same problem. In three problems out of four, both
scores of 0 and 9–10 (full score) have a frequency of at least 2 for
both of the CR and SP formats, which suggests the appropriate-
ness of their difficulty.

An exception is problem F, for which there were no students
with a score of 0 for SP. However for problem F on the CR test,
the frequency of full scores was the highest, suggesting that this
problem was too easy for a traditional CR test, which led to the
SP test being too easy.

As CR programming tests are widely used with an appropriate
level of problem difficulty, we suppose that we can apply those
difficulty-controlling skills for tuning SP tests also. Of course,
this is only a guess, and we need to do more research, but there is
a possibility that such a policy would work well.

Then, how about the appropriateness of using SP tests in place
of CR tests? Stated differently, do SP tests scored by using edit-
distance-based scoring scheme measure the programming perfor-
mance as do CR tests (this is the research question for the paper)?

In this respect, we do not have a concrete answer yet. However,
we have shown that (1) SP and CR test scores for our experiment
(including end-term exams) were weakly correlated and that the
result was statistically significant, and (2) reverse ordering (a case
where ordering of SP and CR scores was reversed) was within
25% of all student-student pairs.

Therefore, we think it might be possible to use the SP test score
in place of the CR test score, for which we should investigate fur-
ther of course.

6.4 Tool Support
As noted previously, CBT for the split-paper test will be ben-

eficial in that the drag-and-drop interface can be used to directly
construct programs on the screen.

We developed such a tool (Fig. 12). This SP CBT tool is a
Ruby script that accepts a problem description (problem state-
ment and list of choices) and generates an HTML file equipped
with JavaScript code. When the resulting HTML file is displayed
in a standard Web browser, the dragging interface is activated and
the user can use drag-and-drop to construct one’s own answer
program.

There are buttons labeled “Copy Symbols” and “Copy Code”
on the screen. The former button copies a string of choice sym-
bols to a clipboard, and the user can paste the symbols in the an-
swer field. The latter button copies program code (without choice
symbols) to a clipboard, and the user can paste the code with a
text editor to issue a test run (if the problem uses a real program-
ming language).

We have been using this SP CBT tool in UEC’s 1st-grade
(800 students) computer literacy and introductory programming
classes since April 2017. Both classes use Moodle CMS, and the
SP CBT tool-generated HTML is embedded within an ordinary
Moodle test page. SP tests are used both for in-class exercises
and for the end-of-the-term examination. Although some of the
students are a little confused when they first see the interface, they
soon get accustomed to it.

There we have noticed that paper-based testing (as in our ex-
periment described above) and tests using the drag-and-drop in-
terface have different characteristics, because examinees can view
resulting (complete) programs on the screen in the latter. Of
course, examinees can write down their programs in the margins
of a test sheet (or blank sheet that is supplied), but it takes time to
modify written programs on paper, so trial-and-error is more dif-
ficult. We would like to investigate this difference in experiments.

7. Summary and Future Directions

We have been using split-paper (SP) testing that use edit-
distance-based scoring for several years for JNSG tests and felt
that SP testing is both an effective and practical method for eval-
uating the programming performance. However, we had not had
concrete data to support our intuition.
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In this paper, we reported our experiments comparing SP and
CR testing in college programming classes. The CR testing
scheme used was “write-on-a-blank-sheet,” which is the standard,
most widely-used method for evaluating the programming perfor-
mance in classroom settings.

We have used a balanced experimental design in which each of
the problems was solved in the SP format for half of the students
and the CR format for the other. The class also had a CR style
end-of-term exam, and the score was also available.

As a result, the students’ SP and CR scores were weakly corre-
lated in a (1) within-experiment SP versus CR score analysis and
also in a (2) within-experiment SP score versus end-of-term CR
score analysis; both of the results were statistically significant.
Therefore, we conclude that the split-paper style of testing is pos-
sibly effective — it can be an appropriate method for evaluating
the programming performance.

Also note that the elimination of costly manual scoring would
be a huge benefit for many classroom settings; SP tests can be
useful both in formative evaluation during class and end-term
summative evaluation.

Research on SP testing over programming tasks has only just
begun. While we only analyzed total test scores among two for-
mats, programming skills apparently consist of many orthogonal
dimensions. Examples are problem understanding, algorithm de-
sign, data structure comprehension and design, procedure-level
program structuring, and the application of small-level coding id-
ioms. We should compare SP and CR tests in an evaluation for
each of those dimensions.

Automatic rating is another important topic. We are currently
using edit distance (Levenshtein distance) [1] from the correct
program, which seems robust and appropriate. However, the na-
ture and appropriateness of this scheme should further be investi-
gated.

The use of CBT with SP testing is undoubtedly important. We
already mentioned the merit of “viewing a complete program on
the screen” in SP CBT testing. We would like to investigate the
volume and extent of this merit.

Our SP CBT tool is in its early stages and needs further tuning
and enhancement. Many freshmen students at UEC are using our
tool with no problem. However, usability testing and UI tuning
could enhance its usefulness further.

Another possibility is using the “SP exercise tool” — just an-
other name for the SP CBT tool. The tool could be used to sup-
port learners’ in-class and/or home exercises. The tool can pro-
vide useful cue for constructing exercise programs (because code
snippets are included as choice lines), and it can also be enhanced
to provide additional advice when the learner makes mistakes.

In summary, SP testing is a general framework for examining
the programming performance (or programming activity itself),
and has good affinity with tool support. We would like to investi-
gate its possibilities further.
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Appendix

A.1 Problems for College Class Experiments

Figures A·1, A·2, A·3, and A·4 show the problems C, D, E and
F correspondingly.
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Fig. A·1 Problem C.

Fig. A·2 Problem D.
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Fig. A·3 Problem E.

Fig. A·4 Problem F.
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