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Abstract. This paper reports on the development and validation of a
formal model for an automotive adaptive exterior lights system (ELS)
with multiple variants in Electrum, a lightweight formal specification
language that extends Alloy with mutable relations and temporal logic.
We explore different strategies to address variability, one in pure Elec-
trum and another through an annotative language extension. We then
show how Electrum and its Analyzer can be used to validate systems of
this nature, namely by checking that the reference scenarios are admis-
sible, and to automatically verify whether the established requirements
hold. A prototype was developed to translate the provided validation
sequences into Electrum and back to further automate the validation
process. The resulting ELS model was validated against the provided
validation sequences and verified for most of requirements for all variants.

1 Introduction

Electrum [10] is a state-based modelling language that extends the structural
definitions and first-order relational logic of Alloy [8] with mutable relations and
(past and future) linear temporal logic (LTL) operators. Its companion Ana-
lyzer [2], itself an extension of the Alloy Analyzer, provides support for validation
– through scenario animation – and verification – through two automatic model
checking backends, one bounded and another complete. Both animation instances
and verification counter-examples are presented back to the user in a unified
graphical interface. The combination of first-order and temporal logic makes
Electrum well-suited to address systems rich in both structural and dynamic
properties, such as automotive software product lines with architectural and
behavioural variability. To further ease the feature-oriented design of software
families, language extensions to Alloy have also been proposed [1,9].

This paper reports the modelling and subsequent validation and verification
of an adaptive exterior lights system (ELS) with multiple variants in Electrum1,
carried out as an answer to the ABZ’20 call for case study submissions, following
the successful submission to ABZ’18 [4]. The employed approach – which we
hope can be applied to similar signal-based systems – is presented in Section 2.
As described in Section 3, we have been able to model most ELS requirements by
1 All resources relevant for the ELS case study are available at https://github.com/
haslab/Electrum2/wiki/ELS.
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finding an abstraction sweet-spot – in particular for real-time issues. The Electrum
language is presented throughout this section as needed. Section 4 describes two
explored approaches to modelling multiple variants, one in pure Electrum and
another using language extension for feature-oriented design [9]. The ELS model
was validated against all the provided validation sequences [7], and verified for
most of the ELS requirements, as described in Section 5. To ease validation, a
prototype was developed to translate tabular validation sequences into Electrum
and back for inspection by domain experts. Lastly, Section 6 discusses issues
identified in the requirements and limitations of the followed approach.

2 Modelling strategy

The main goal of this work was to validate the ELS requirements by checking
their feasibility and consistency for all valid variants. We started by modelling a
single variant of the ELS as a (rough) state machine against which the validation
sequences were tested and the requirements subsequently verified. An Electrum
model contains both the system specification and the analysis commands, thus
our model, described in detail in Section 3, is structured as follows:

Environment the available input and output signals, their acceptable values,
and possible restrictions to their evolution [6, §4.1–4.3].

ELS state machine a predicate calculating the state of output signals (mostly)
from the current state of the input ones, allowing alternative behaviours;
inferred from the requirements [6, §4.4].

Animation scenarios simple state sequences, and associated run commands,
that exercise the ELS for preliminary validation and regression testing.

Reference scenarios the encoding of the provided validation sequences [7], and
associated run commands, with imposed inputs and expected outputs, for
validating the modelled ELS state machine; a prototype was developed to
translate them from the provided tabular format [7].

Visual elements elements ignored by the analyses but aiding the visualization
of scenarios (accompanied by a theme, stored in a separate file).

Requirement assertions the formalization of the requirements [6, §4.4] in
temporal logic, and associated check commands to automatically verify them;
these assess the overall consistency of the ELS requirements.

The ELS has both structural – that introduce additional signals – and
behavioural – that change certain signal outcomes – variability points [6, §3],
which Electrum is well-suited to address. Once a single variant was modelled
and validated, two strategies were explored to address the remaining variants,
as described in Section 4: one based on an Electrum idiom where features and
variability points are modelled in plain Electrum, and another adapting a language
extension developed by us for Alloy [9] where variability points are annotated
with features. This introduces another component in the ELS model for imposing
the set of valid variants – the feature model.



As expected, the development of these components was not sequential but
rather iterative as new ELS functions were added to the model. This process was
applied to all 9 main ELS functions divided in 48 requirements as of version 1.17 [6],
for all 12 valid variants (although only 4 effectively have distinct behaviour)
and to all 9 validation sequences of version 1.7 [7]. This work focused on the
ELS, but we believe a similar approach could be followed for the speed control
system (SCS) [6], although the SCS is richer in continuous aspects, which would
require additional abstractions. It should also be noted that the authors had
no particular domain knowledge, and that the process was solely based on the
provided reference material [6,7] and discussions with the case study chair.

The most challenging features of the ELS were those dealing with real-time
aspects and the integer nature of the signals. For both we developed proper
abstractions – respectively arbitrary duration events and value discretization,
described in the next section – that still allowed us to address most requirements.
Only requirements requiring arithmetic operations were not addressed at all.

3 The ELS Model

This section describes the main features of the ELS model developed for the
simplest variant, that is, when the vehicle is not armoured and aimed at the EU
market (the driver position does not affect the ELS).

System environment The ELS follows a typical architecture that communicates
with the external world through input – from the user interface and sensors – and
output signals – to actuators. Our model mimics this architecture so that the
translation can be streamlined. In Electrum, likewise Alloy, structure is introduced
through the declaration of signatures – sets of uninterpreted atoms – and fields
declared within them – relations of arbitrary arity between signatures. A hierarchy
on signatures can be imposed through simple inclusion or through extension, in
which case children must be disjoint; signatures can also be declared as abstract,
meaning all atoms must belong to its children. Signatures and fields can be
restricted by simple multiplicity constraints. Lastly, both may be static (by
default) or declared as variable, in which case their state may change over time.

The ELS environment specification declares signals, the values that can be
assigned to such signals, and how these assignments are represented in time.
Signals form a static hierarchy starting from an (abstract) Signal signature.
Although the ELS signals are “flat”, related signals are often better handled
together. Thus, for instance, all light signals are aggregated in an abstract
signature Light, and left and right low beam signals in the abstract signature
LowBeam. At the bottom of the hierarchy are the concrete signals themselves as
singleton signatures (multiplicity one), such as LowBeamRight and LowBeamLeft,
whose names match those specified in the reference documents. The hierarchy
relevant for the low beams function is encoded in Electrum as

abstract sig Light extends Signal { var state : one LightState }
abstract sig Beam, ... extends Light {}



Fig. 1: Meta-model of the system environment model for low beam headlights.

abstract sig LowBeam, TailLamp extends Beam {}
one sig LowBeamLeft, LowBeamRight extends LowBeam {}
one sig TailLampLeft, TailLampRight extends TailLamp {}

where field state will be explained shortly. To simplify the modelling process,
we distinguish Boolean signals (BooleanSignal, a sub-signature of Signal) from
the others. Those relevant for the low beams function are declared as:
abstract sig BooleanSignal extends Signal {}
one sig AmbientLighting, DaytimeLights extends BooleanSignal {}

Although signals are integer, most requirements simply test whether they
are within certain ranges. Thus, to keep the model manageable and avoid state
explosion, we discretize the values of each signal into those ranges relevant for
the requirements. For instance, it is only relevant to detect whether the ambient
brightness levels are below 200, over 300 or between the two, while low beam
headlights are only set to 20%, 50% or 100% intensity [6, 4.4]. Thus only these
distinct classes of values are encoded in our model. Values form a hierarchy
matching that of the signals, topped by State, whose direct children group the
states of related signals, such as LightState for Light signals. The next layer
provides the discretized values, such as Off, Low, Half or Full for beam intensity.
Lastly, since our model abstracts real-time aspects, occasionally we require
additional temporal context regarding the state of the signals. For instance, when
low beams are activated due to ambient darkness, they must remain active for 3s
even if ambient brightness is detected (ELS-18); thus, within Full beam intensity
we distinguish between this temporary state (Temp) and permanent activation
(On). Part of this hierarchy relevant for the low beam function is encoded as:
abstract sig LightState extends State {}
abstract sig Full, Off extends LightState {}
one sig Half, Low extends LightState {}
one sig On, Temp, ... extends Full {}
one sig OffP, ... extends Off {}

Lastly, we model the evolution of the state of the signals. For Boolean signals
a variable sub-signature SignalOn will contain at each state all active signals:



var sig SignalOn in BooleanSignal {}

For the other signals, a variable field called state will contain at each state exactly
one respective value, such as the one declared above for Light and respective
LightState. Often the requirements impose certain restrictions on the evolution
of the environment. In Electrum these restrictions are imposed through facts,
representing model axioms, which can contain arbitrary temporal constraints.
In the ELS, e.g., a fact forces the pitman arm to go back to neutral when the
steering wheel returns to the vertical position [6, §4.1].

We have encoded the over 30 signals of the ELS in this manner, including
those of the user interface [6, §4.1], the sensors [6, §4.2] and the actuators [6, §4.3].
An excerpt of the resulting environment signature hierarchy for the low beam
headlights function is depicted in Fig. 1 as generated by the Analyzer. Dashed
elements are variable and singleton signatures are in thicker lines (some state
names are abbreviated). Throughout the rest of the paper we will rely on this
function to demonstrate the features of the developed model.

State machine Next we derived a state machine from the ELS requirements.
Electrum formulas are written in relational linear temporal logic with transitive
closure. Relational expressions combine signatures and fields (and constants,
namely the universe of atoms univ, the unary empty relation none and the identity
relation iden) with typical set theory operators such as union (+), intersection
(&), difference (-), Cartesian product (→), binary relation overriding (++), and
relational join (.). In Electrum everything is seen as a relational expression, so
s.state can be used to retrieve the current state of a concrete signal s or all the
states of a set of signals s. Primed expressions can be used to refer to their value
in the succeeding state, e.g., s.state’ for the next value of s.state. Atomic
formulas either test relational expressions for inclusion in or equality = or are
simple multiplicity tests. So, s in SignalOn tests whether a Boolean signal s is
currently active, and s.state in v whether signal s currently has value v (if s
singleton). Complex formulas are composed by Boolean operators (e.g. not, and,
or, iff, implies or implies-then-else), first-order operators (e.g. all or some),
and future (unary after, always or eventually, or binary until or releases) and
past (unary before, historically or once, or binary since or triggered) linear
temporal logic operators. Predicates and functions can be defined for auxiliary
formulas and expressions and let-expressions for local definitions.

A predicate is defined for each function encoding the expected behaviour,
which are subsequently called in a fact that enforces the full state machine. For
the low beam headlights function, this predicate mostly restricts the succeeding
state of the low beam headlights given the current state of the other signals.
For instance, if the light rotary switch (LightRotarySwitch.state) is set to LSOn

while the key (KeyState.state) is in the ignition on position, the succeeding
state of the low beams is set to On (ELS-14):

KeyState.state in KeyInIgnitionOnPosition and
LightRotarySwitch.state in LSOn implies LowBeam.state’ in On



Expression LowBeam.state aggregates the state of both the left and right low
beams; since every light must have a state assigned, LowBeam.state in On sets
both to full intensity. As a more complex example, consider ELS-17 that specifies
daytime running lights, which activate the low beams when the engine is started
until the key is removed from ignition, unless ambient light control is also active:

DaytimeLights in SignalOn and
KeyState.state not in KeyInIgnitionOnPosition or
(LowBeam.state in On and KeyState.state in KeyInserted and
AmbientLighting not in SignalOn) implies LowBeam.state’ in On

In our model, real-time is abstracted away and no particular duration is
imposed to states, meaning that within a certain interval of time an arbitrary
number of events may occur. This affects the modelling of events with a bounded
duration, since we must identify when the trace is within that bound and allow
multiple steps within. For this purpose, such events are explicitly identified in
our state but not forced to last any particular number of states. For instance,
the mandatory 3s for automatic low beams (ELS-18) is identified by the state
Temp; when brightness is detected, the low beams may be turned Off or the Temp

state propagated. This could be encoded in the following relational formula:

let low = LowBeam.state |
LightRotarySwitch.state in LRSAuto and
KeyState.state in KeyInIgnitionOnPosition implies
one low’ and
BrightnessSensor.state in Dark implies

low’ in low.(univ→Temp+Temp→On++On→On) else
BrightnessSensor.state in Bright implies

low’ in low.(univ→Off+Temp→Temp) else
BrightnessSensor.state in Grey and low not in Temp implies

low’ in low.(iden+Temp→On)

Here low abbreviates the state of both left and right low beams and we rely
on relational operators to specify alternative updates. For instance, expression
univ→Off+Temp→Temp relates every state with Off and additionally Temp with
itself; thus, low.(univ→Off+Temp→Temp) returns Temp and Off when the current
state is Temp and solely Off otherwise. This allows the exploration of transitions
with different durations: either low beams activation remains within the 3s, or
the 3s are exceeded and they are deactivated. Formula one low’ guarantees
that left and right beams are updated consistently (i.e., with the same value).
Liveness properties then guarantee that the system eventually evolves. In Electrum
arbitrary temporal constraints can be imposed, this one taking the shape:

low in Temp implies eventually low not in Temp

This strategy was employed to model all the ELS main functions – direction
blinking, hazard warning light, low beams, cornering lights, manual and adaptive
high beams, emergency brake and reverse lights, and fault handling.



4 Handling Variability

The ELS assumes the existence of variability points, namely the market region,
whether it is an armoured vehicle and the driver position (although this last does
not affect the behaviour of the ELS) [6, §3]. The model described in the previous
section represented a single ELS variant, and multiple independent models could
be developed in such a way for each of the valid variants. However, such a strategy
has poor maintainability and will not scale as the number of features increase.
Electrum is sufficiently flexible to support systems with structural and behavioural
variability points and effectively model families of software products. However,
such idioms may be cumbersome, error-prone, and reduce comprehension, so
to explore alternative approaches we implemented in Electrum an annotative
language extension to natively support feature-oriented design. This extension was
previously developed for Alloy but its adaptation to Electrum was straightforward.
This section describes the design of the ELS family of products in both approaches,
which allow simultaneously specifying and analysing all the 12 ELS variants. For
both approaches, we assume the variant presented in the previous section to be
the base variant, which is extended into a multi-variant model.

A pure Electrum idiom The first step in both approaches is to encode the feature
model – the possible features and the constraints over them denoting the valid
variants. When relying on a variability idiom, this is done by making features first-
class elements of the model. A possibility is to create a signature (here, Feature)
with an atom for each available feature (through singleton sub-signatures, such
as EU or ArmoredVehicle for the ELS). A sub-signature then contains a particular
selection of these features, representing the variant under analysis (here, Variant).
Lastly, a fact restricts which variants are considered valid, in the case of ELS
forcing a single market to be selected through a multiplicity test:

fact FeatureModel { one (EU+USA+Canada) & Variant }

To model architectural variability, conditional signatures and fields can be
assigned a loose multiplicity that is restricted depending on the variant under
analysis. In the ELS the darkness mode switch only exists on armoured vehicles,
so its multiplicity is set to lone (at most one such signal exists), and then a fact
forces its existence exactly when the respective feature is selected:

fact darknessModeSwitchOn {
some DarknessModeSwitchOn iff ArmoredVehicle in Variant }

Behavioural variability can be modelled by testing which features are selected in
Variant and adapting the relevant transitions of the state machine predicates. In
the case of low beams, for instance, ambient lights should be ignored with active
darkness mode in armoured vehicles (ELS-21), so the pre-condition for activating
them when the engine is started (ELS-19) is adapted to:

not (ArmoredVehicle in Variant and DarknessModeSwitchOn in SignalOn)
and AmbientLighting in SignalOn and BrightnessSensor.state in Dark
and before KeyState.state in KeyInIgnitionOnPosition and



KeyState.state not in KeyInIgnitionOnPosition implies
LowBeam.state’ in Temp

Notice that since features are regular signatures, it may become difficult to identify
which parts of the predicate are variability points. It may also led to unpredictable
issues if the architectural variability is not handled with care: the distracted
developer could simply write DarknessModeSwitchOn in SignalOn to test whether
darkness mode is active without testing the feature presence, which is always
true in variants without feature ArmoredVehicle since DarknessModeSwitchOn is
empty, thus permanently disabling ambient lighting.

For an example regarding the USA and Canada market variants, during
direction blinking, for instance, the intensity of daytime running lights (ELS-17)
must be reduced to half in the respective side (ELS-6), so the transition shown
in the previous section would be adapted to:

DaytimeLights in SignalOn and ... implies
LowBeamLeft.state’ in

(some (USA+Canada) & Variant and BlinkLeft.state’ not in OffP)
implies Half else On and

LowBeamRight.state’ in
(some (USA+Canada) & Variant and BlinkRight.state’ not in OffP)
implies Half else On

where the state of the blinking lights BlinkLeft and BlinkRight is tested in case
the USA or Canada markets are selected.

A colourful Electrum extension Approaches to explicitly introduce variability
in a system usually fall in two categories: compositional approaches where fea-
tures are implemented as distinct code units which are then composed when
creating a variant, and annotative approaches where the code is annotated to
dictate which fragments will appear in each variant. Both compositional [1] and
annotative [9] approaches have been proposed to enable feature-oriented design
in Alloy, the latter by us relying on colourful annotations that have been shown
to improve understandability [5]. Annotative approaches are better suited for
small granularity variability points, which in our experience is often the case in
Alloy/Electrum, such as the examples above where one needs to change part of a
formula or expression rather than replace the predicate altogether.

In our lightweight annotative approach model elements can be marked with
features, identified by a digit, to control their presence/absence without obfus-
cating the code. Positive and negative annotations are introduced, respectively,
by delimiters i and i for 1 ≤ i ≤ 9, and colour highlighted by the Analyzer.
These can be nested, representing the conjunction of presence conditions, and be
applied to most declarations or branches of certain operators (namely conjunction,
disjunction, intersection and union). Semantically, when the presence conditions
are not met the element is interpreted as the neutral element of the respective
operator. For instance, in 1 p 1 and 2 q 2 , p is only tested in variants with feature
1, and q in those without feature 2, being replaced by true otherwise.

The multi-variant ELS model under this extension uses five feature annota-
tions, one for each variability point. To model the feature model one can rely on



annotated facts to forbid certain variants. For the ELS this could be achieved by
the following fact, which mimics the colour highlighting of the Analyzer:

fact FeatureModel {
// 1 USA, 2 Canada, 3 EU, 4 Armored, 5 DriverPosition
1 2 some none 2 1 and 2 3 some none 3 2

1 3 some none 3 1 and 1 2 3 some none 3 2 1 }

where, for instance, 1 2 some none 2 1 forbids the coexistence of USA and Canada
market codes, and 1 2 3 some none 3 2 1 forces the selection of at least one
market code2. At the level of abstraction of Electrum, feature models are usually
small and simple to encode with facts like the one above, but we are studying
whether dedicated support for encoding feature models is necessary.

Architectural variability is trivially modelled, as one may mark the signature
(or field) declaration with the relevant annotations, as in the case of the darkness
mode switch signal,that only exists for armoured vehicles:

4 one sig DarknessModeSwitchOn extends BooleanSignal 4

One type rule imposed by colourful Electrum is that element calls must respect
the annotations in which they were declared, thus guaranteeing that they are
never called in variants where the element is absent. Thus, the interaction between
ELS-19 and ELS-21 would now be encoded as:

4 not DarknessModeSwitchOn in SignalOn 4 and
AmbientLighting in SignalOn and BrightnessSensor.state in Dark and

... implies LowBeam.state’ in Temp

In variants without 4 this test will be disregarded (i.e., interpreted as true).
The same mechanism can be applied to relational expressions. For instance, the
interaction of ELS-17 and ELS-6 for USA and Canada markets is encoded as:

DaytimeLights in SignalOn and ... implies
LowBeamLeft.state’ in

3 On 3 + 3 BlinkLeft.state’ not in OffP implies Half else On 3 and
LowBeamRight.state’ in

3 On 3 + 3 BlinkRight.state’ not in OffP implies Half else On 3

where the beams are always set to On in the EU market, but in other markets
(through the negative 3 ) the state of blinking lights is tested. A union branch is
interpreted as the empty relation when the presence conditions do not hold.

5 Validation & Verification

The Analyzer is able to execute animation and verification commands. Both
instances and counter-examples are graphically depicted in a visualizer that can
be customized for improved interpretation. This section describes how these
functionalities were used to validate and verify the ELS model.
2 Electrum, like Alloy, does not natively support Boolean constants, so some none is
commonly used to denote a trivially unsatisfiable formula.



5.1 Animation and Validation

Validation scenarios Animation commands are defined through run instructions,
which can be provided arbitrary constraints that must hold for the generated
instances. This allows the quick definition of scenarios for early validation, which
are also useful as regression tests as the model evolves. For the ELS we have
defined over 60 such scenarios exercising simple behaviours of the system. We
follow an idiom where one predicate defines the evolution of the environment
(state of input signals) and another the expected behaviour of the system (state
of output signals). For instance, to test basic low beam headlights sub-functions
such as having the light rotary switch set to on with key inserted, a predicate is
defined to encode the behaviour of the relevant input signals:
pred LowBeam2Env {

always AmbientLighting not in SignalOn
always KeyState.state in KeyInserted
let lrs = LightRotarySwitch.state |
lrs in LSOff;always lrs in LSOn }

where always p forces p to hold in all states of the trace and p;q abbreviates
p and after q, an operator introduced precisely to ease scenario specification [4].
A predicate then encodes the expected outcome of the ELS for these inputs:
pred LowBeam2Exp {

LowBeam.state in OffP;always LowBeam.state in Half }

This predicate states that the beams should be activated with intensity reduced
to half. Lastly, a command to generate this scenario by enforcing the environment
and the expected behaviour (in the succeeding state, since output signals are
calculated from the previous state) is defined:
run LowBeam2 { LowBeam2Env and after LowBeam2Exp } for 5 Time

Commands must have scopes assigned to signatures, but in our ELS model all
signatures are exactly bound, since all signals and possible states are known
a priori. For bounded model checking – more efficient and thus better suited
for validation – the maximum number of states that form a trace must also be
provided (the scope of Time). Since this is a simple scenario that bound is set
to 5. Once instances are generated, the user is able to iterate over alternative
scenarios for which the constraints hold. Scenario exploration operations (see the
toolbar of Fig. 2) include changing the configuration (here, the selected variant),
the initial state, or the current transition [3].

In the multi-variant ELS models one is able to restrict which subset of variants
should be analysed. As an example, let us consider the animation of the effect of
darkness mode when ambient lighting is activated. In the Electrum variability
idiom the part of this environment predicate could be specified as:
ArmoredVehicle in Variant
let key = KeyState.state |

key in KeyInIgnitionOnPosition;always key in KeyInserted
always AmbientLighting in SignalOn
always DarknessModeSwitchOn in SignalOn



Fig. 2: A step of sequence 1 in the Analyzer under the developed theme.

which includes the selection of the feature ArmoredVehicle and the behaviour of
the DarknessModeSwitchOn. The same scenario in the colourful extension would
instead be specified as:

let key = KeyState.state |
key in KeyInIgnitionOnPosition;always key in KeyInserted

always AmbientLighting in SignalOn
4 always DarknessModeSwitchOn in SignalOn 4

where the behaviour of the darkness mode switch is annotated with the corre-
sponding feature. The execution of this scenario must then also be restricted to
only variants where feature 4 is selected. In colourful Electrum this is defined
through the command scope as:

run LowBeam19 {
LowBeam19Env and after LowBeam19Exp } with 4 for 5 Time

Theme customizations In our experience, the proper graphical representation
of instances is key to promote the interpretation of the model among interested
parties. Inheriting from Alloy, the Analyzer depicts instances as graphs, applying a
graph representation algorithm and distributing nodes among layers, obliviously
of the underlying semantics of the nodes and edges. Themes may be defined
to ease interpretation. From our experience the most useful customizations are
simply changing the colour, shape or label of elements, hiding elements, showing
relations as edges or attributes, and inverting edges (the easiest way to change
the shape of the graph). Visualization can also be projected over a signature,
focusing the visualization on the elements related to the selected atom. These
customizations are hierarchical, meaning that subsets of elements may inherit
the parameters of their parents or change them. Although simple, these features
can become extremely powerful given another key functionality of the visualizer –
after analysis, and during the creation of the graph, auxiliary functions defined
in the model are introduced into the instance. These can be of arbitrary arity,
and thus can represent subsets of atoms or new relations between them.



In our ELS model we have used such features to produce a visualization such
as that of Fig. 2. Since the signals are mostly flat, we introduce elements to
somehow layout signals according to their role in the system. Singleton signatures
– which do not affect the solving process since they are exactly bound and not
referred elsewhere – simulate the vehicle architecture, such as the Car itself or
the driver’s Menu:

one sig Car, LeftSide, RightSide, Menu, UCP {}

Auxiliary relations (defined as functions with zero arguments) then connect such
elements to signals, such as assigning the sensors to the car (which are set to be
shown as attributes of Car rather than edges) or the lights to the respective side
of the car, and can be defined as follows:

fun _lightsensor : Car → BrightnessSensorState {
Car → BrightnessSensor.state }

fun _actuators : univ → univ {
LeftSide → (BlinkLeft+LowBeamLeft+TailLampLeft+...) +
RightSide → (BlinkRight+LowBeamRight+TailLampRight+...) }

Auxiliary sets grouping together signals under certain states were also defined
to ease the theme customization. For instance, all active signals are grouped so
that they can easily be painted with a distinguishing colour (yellow in Fig. 2):

fun _on : set univ { state.Full+state.(LSOn+LSAuto)+SignalOn+... }

The theme file is available alongside the model specification.

5.2 Reference validation sequences

To effectively validate the developed model we checked its behaviour against that
of the reference validation sequences [7]. These are complex – each step specifying
the value of all the over 30 input and output signals, with some containing over
20 steps – rendering their manual codification infeasible. Thus, we implemented
a prototype to automatically translate tabular data that represents signal values
over time into Electrum and back. This validator is able to i) given a sequence
of input and output signals, report whether it is a valid execution in our model;
and ii) given a sequence of only input signals, generate possible executions of
the output signals to be subsequently validated by domain experts.

We implemented the prototype so that the process could be reproducible for
other signal-based systems. Thus, besides the sensor data, two additional pieces
of information must be provided to the validator for each specific application: i)
how the signal values should be discretized; and ii) the presence conditions for
signals. For our prototype, this information is passed in the header of the tabular
data, as depicted in Table 1 for validation sequence 1 of the ELS (note that this
is only an excerpt of the codification of the more than 30 signals over 17 steps).
Single-value ranges are assumed to have the same lower- and upper-bound. It
also assumes, as described in Section 3, that all signals are leaves of the hierarchy
on Signal with the exact same name as that of the sequence header, and that



Table 1: Snippet of tabular data provided to our validator for sequence 1.
... Time ambient

Lighting
darknessMode

SwitchOn
lightRotary

Switch
brightnessSensor marketCode

armored
Vehicle

... lowBeam
Left

...

... 0=False;
1=True

0=False;
1=True

0=Off;
1=Auto;
2=On

0-199=Dark;
200-250=Grey;

251-100000=Bright

1=USA;
2=Canada;

3=EU

1=True;
0=False ...

0=Off;
10=Low;
50=Half;
100=Full

...

... armored
Vehicle=True ... ...

... ... ... ... ... ... ... ... ... ... ...

... 0:03 0 0 1 500 3 0 ... 0 ...

... 0:04 0 0 1 200 3 0 ... 0 ...

... 0:05 0 0 1 199 3 0 ... 100 ...

... ... ... ... ... ... ... ... ... ... ...

1 let s1 = not AmbientLighting in SignalOn |
2 always s1
3 let s1 = not DarknessModeSwitchOn in SignalOn |
4 always s1
5 let s1 = LightRotarySwitch.state in LSAuto, s0 = LightRotarySwitch.state in LSOn,
6 s2 = LightRotarySwitch.state in LSOff |
7 s2;s2;s2;s1;s1;s1;s1;s1;s1;s1;s0;s0;s1;s0;s0;s0;always s1
8 let s0 = BrightnessSensor.state in Dark, s1 = BrightnessSensor.state in Grey,
9 s2 = BrightnessSensor.state in Bright |

10 s2;s2;s2;s2;s1;s0;s2;s0;always s2
11 EU in Variant
12 ArmoredVehicle not in Variant
13 ...
14 after {
15 let s2 = LowBeamLeft.state in LightLow, s3 = LowBeamLeft.state in LightOff,
16 s1 = LowBeamLeft.state in LightHalf, s0 = LowBeamLeft.state in LightFull |
17 s3;s3;s3;s3;s3;s0;s0;s0;s3;s3;s0;s3;s3;s1;s3;s2;always s3
18 ... }

Fig. 3: Electrum encoding of the sequence from Table 1.

elements representing the discretized values are at the second layer of the State

hierarchy, again with the same name as the discretization in the header.

The translation can then be streamlined as follows. The presence/absence of a
Boolean signal s can simply be stated as s in SignalOn and s not in SignalOn,
respectively, while the state of the others is encoded as s.state in v for a
discretized value v. Sequences of signal states are encoded using the operator ;,
and let-expressions are used to simplify this codification. The particular variant
of the sequence must also be encoded. The validator currently implements only
the pure variability idiom, forcing the exact value of signature Variant.

The resulting predicates resemble the one in Fig. 3 for the sequence from
Table 1 (including steps that have been omitted for simplicity). The expected
variant (ll.11–12) and both the sequence of input (ll. 1–10) and output (ll. 15–17)
signals are encoded, relying on let-expressions for improved readability (recall
that unlike the validation sequences, our output signals are only updated in
the succeeding state, hence the after). At the last state an always operator is
applied, since outputs are expected to stabilize when inputs do. Although the



reference sequences provide timestamps for the events (the first column), these
are ignored since real-time is abstracted in our model.

Figure 2 depicts the outcome of running this predicate (with Time scope
determined from the length of the sequence), particularly the transition where
the brightness is below the threshold and the low beam headlights are activated.
We were able to model all 9 validation sequences of version 1.8 and show that they
hold for our ELS model, except for concrete values for the high beam illumination
distance and strength in sequence 9 (ELS-33) due to arithmetic operations.

5.3 Requirement verification

The last step of the process was to effectively verify whether the requirements
hold for the modelled ELS. In Electrum assertions (assert) can be specified in
full relational temporal logic, which the Analyzer is instructed to verify (within
given scopes) with check commands.

As an example, consider requirement ELS-14, stating that whenever the
engine is on and the light switch set to on, low beams will be active. This can be
specified in the following temporal assertion:

assert ELS14 {
always (KeyState.state in KeyInIgnitionOnPosition and

LightRotarySwitch.state in LSOn implies LowBeam.state’ in Full) }

For a more complex example, consider ELS-17, stating that with daytime
running light but without ambient light, the low beams are activated until the
engine is turned off. This can be encoded as:

assert ELS17 {
let keyPos = KeyState.state in KeyInIgnitionOnPosition,

amb = AmbientLighting in SignalOn,
day = DaytimeLights in SignalOn |

always (day and not amb) implies always (
(LowBeam.state’ in Full+Half until not keyPos) or always keyPos) }

stating that in traces where daytime running light is active but not ambient
lighting, the engine is turned off and the low beams are deactivated (temporal
operator until) or the engine remains on forever.

We were able to check most ELS requirements except for the limitations
discussed in the following section. The described checks (that verify the property
for all variants at once) take around 6s and 10s, respectively, using the bounded
engine of Electrum under the Glucose SAT solver and for 15 Time in a commodity
2,3 GHz Intel Core i5 with 16GB RAM. More complex requirements – like those
including periodic events such as ELS-2 and ELS-4 – take around 1min.

6 Results Discussion

The reference document Throughout the development of the ELS model we
encountered 14 issues with the reference documents, mostly during modelling and



preliminary validation, and when running the reference sequences. We reported
them to the case study chair who promptly replied. Of the first 4 reported issues,
3 resulted in fixes to the reference document (version 1.11); unfortunately, at the
time of submission no new version has been released after the other interactions
(unofficially, at least 3 resulted in validation sequence fixes). Roughly, the issues
encountered were either with the

environment model inconsistencies or missing features related to the signals
detected in the early modelling process (e.g., the lack of a signal for the
middle brake light, making it impossible to flash (ELS-40); or inconsistent
representations of the pitman arm signals when it was split into two distinct
signals for vertical and horizontal movement);

behavioural model ambiguities detected in the requirements while modelling
and animating the state machine (e.g., conflicting requirements where the
precedence is not explicitly stated, such as whether ELS-18 or ELS-19 has
priority on low beam behaviour; ambiguous nomenclature, such as what
activating high beams means for the 3 relevant signals; or under-specified
behaviour, such as the beam intensity of tail lamps);

validation sequences inadmissible sequences, meaning that the expected out-
put signals could not be achieved from the input signals in our model (e.g.,
tail lamps not being activated or not blinking in sequence 7).

It must also be noted that, since the modelling and validation process was
iterative, some requirement ambiguities were clarified by observing the reference
sequences. For instance, it is not clear from ELS-22 that when tail lamps are
activated, they are so with the same intensity as that of the low beams, but the
sequences showed that to be the case (e.g., in ELS-15).

In our experience, there were two main sources of confusion in the requirements.
One has to do with the blinking lights and the nature of the dark cycles: it was
not clear under which situations, if any, such cycles should be interrupted, and
under which situations do they impact the tail lamps. The second has to do with
high beam headlights, which are controlled by 3 distinct signals: it is often not
clear what it means to activate the high beams and how the 3 signals should be
updated and again how they relate to the intensity of the tail lamps.

The followed approach As already stated, we only failed to address requirements
requiring arithmetic operations (ELS-33 for calculating the illumination distance
and luminous strength of high beams, and ELS-47 for calculating the maximum
light intensity under over-voltage) since concrete integer values are not represented.
The abstracted time also renders reasoning about real-time requirements infeasible,
such as ELS-10 enforcing the duration of blinking cycles to 1s, or the part of
ELS-18 forcing the activation of the automatic low beams for 3s. Some features
were simplified to avoid additional internal states, namely the gentle fade-out
of cornering lights (ELS-24) or the flashing of emergency brake lights (ELS-
40). ELS-37, dealing with the interaction with the SCS, has been disregarded.
Requirements related to periodic events – such as the bright and dark cycles of
blinking lights – proved to be the most cumbersome to specify.



The multiple variants of the ELS requirements motivated the implementation
of the feature annotations for Electrum and its Analyzer. Since the ELS is not
particularly rich in variability, we did not find multi-variant modelling in a pure
Electrum idiom to be unmanageable, but it did affect the comprehension of the
model. In general, the colourful Electrum model is easier to understand. The
exception is the axiomatization of the feature model, and we are already studying
sensible ways to improve it, that we also expect to be useful in more advanced
feature-oriented analysis procedures. The complexity of the case study also helped
us identify additional operators whose annotation would be useful in colourful
Electrum – namely, if-then-else expressions common in the definition of state
machines, when certain branches are only relevant in certain variants.
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