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Abstract

Due to the rapid commencement of autonomous vehicles and the promising potential
benefits, it has made it critical for said vehicles to be able to interpret their environment
and compensate for the absence of driver predictions from visual cues. This study presents
a novel intermediate component to improve the performance of autonomous vehicle con-
trollers, by providing them with real-time microscopic predictions of traffic participants’
behaviour, given the environmental conditions. This strategy is especially aimed towards
direct combination with model-predictive controllers (MPCs) and other controllers that
can utilize dynamic state predictions. This task is undertaken in three stages for three
different scenarios.

Scenario I considers V2X communications and predicts the velocity of an arbitrary
vehicle in longitudinal direction. Using a recurrent neural network (RNN) and considering
a complementary variable the strategy can predict the speed profile of said vehicle for
arbitrary horizons. Results of this scenario exhibit > 0.95 correlation if trained with
enough data.

Scenario II moves on to a more sophisticated approach for prediction of vehicles on
US-101, using real data provided by the U.S. Federal Highway Administration (FHWA)
under NGSIM. Utilizing a marriage of dynamic Bayesian network (DBN) and RNN, the
method can make predictions on speed profiles of all present vehicles within a range, for
arbitrary horizons, as well as prediction on whether the vehicle on the main lanes would
yield to the merging vehicles on the ramp. Due to digital nature of the DBN stream, a
Kalman filter (KF) was introduced as post processing smoothing method. Results of this
scenario exhibit > 0.95 correlation and < 1.6 mph mean absolute error.

Scenario III tackles a much more complex driving environment, intersection driving.
Because in intersection driving, the priority relationships of highway driving are no longer
existent, the training must be broadened to encompass vehicle pairs which is exponentially
more difficult than training for single vehicles. The data for this phase was generated by
SUMO. Results of this scenario exhibit < 1.1 mph mean absolute error.

Scenario IV focuses on the problem of roundabout driving. In roundabout driving, the
general driving situation is more similar to highway merging, however due to the rapid move
toward replacing intersections with roundabouts, especially in developing cities, definitely
an important scenario to look at. In this scenario SUMO was used for data generation, a
new DBN topology was developed and the results yielded exhibit > 0.89 correlation.

To evaluate the performance and the accuracy of the proposed method, it was com-
pared with a collection of sequence prediction techniques, including LSTM and GRU. It
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was concluded that the DBN-RNN has the best accuracy and performance among these
methods.

Validation of the strategy was planned to be done on the scaled autonomous vehicle test
platform developed in Smart Hybrid and Electric Vehicles Systems (SHEVS) lab, where
driver-in-the-loop hardware was incorporated and the equipment were prepared but due
to COVID-19 closures was not realized.
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Chapter 1

Introduction

Human progress and quality of life has seen a massive boost since the dawn of machines,
and every day, the rate of this progress is increasing. Machines make tasks easier, safer,
more affordable, more precise, and more accessible. There is no doubt that machines have
become an integral part of human life, and human experience and we rely heavily on these
instruments. One such machine, and arguably the one with the greatest impact on human
life, has been the automobile. International Organization of Motor Vehicle Manufacturers
estimates that there is about 1.32 billion vehicles in use today and this number is rising
every year. Automation, as an augmentation for every machine, has made them even more
efficient, faster, and safer. However, automation in driving has been lagging behind due to
the immense complexity of the task. It was soon clear that conventional control techniques
are not sufficient for a car to be able to navigate the chaotic traffic environment, and soft-
computing techniques were not feasible due to inept computing hardware. However, as the
computer hardware becomes faster and more powerful, the handicap is being lifted from the
implementation of these techniques for this task. Given these achievements in computer
domain, and the rise of automation, more and more devices, products and apparatus are
introduced to the market, bearing a “smart” or “automated” label. The extra features
that make these products deserving of the label, are mostly thanks to a combination of
understanding the environment, and being able to act in accordance.

To understand the environment, autonomous machines are equipped with a battery
of sensors and instruments to measure and collect data from their surroundings. These
sensors are various in type and are often an arrangement of RGB cameras (conventional
cameras), RADARs, LiDARs and sonar range-finders. However, as is often the case, raw
measurements from the environment are not sufficient for the robot to navigate, or in gen-
eral, operate at all. the data must be transformed in a way that is comprehensible and
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consumable for a machine. Human drivers have the ability to make decisions in novel situ-
ations even if that decision is not the optimal one, normal driving also happens habitually
for them. Now considering the case of autonomous vehicles, the reader must acknowledge
two facts: Self-driving cars will not be replacing conventional vehicles instantly, therefore, a
transition period is imminent and inevitable. As a result, these entities are to adopt driving
standards intended for human drivers, legacy of infrastructure layout meant for, and the
chaos introduced by humans’ inconsistency and erratic behaviour. Another fundamental
fact arises from the exact same discord in human behaviour and the fault in aforemen-
tioned sensing of the environment. Disclosed documents by U.S. National Highway Traffic
Safety Administration (NHTSA) [1, 2] for surveys concluded in 2015 indicate that most of
the traffic accidents were caused solely due to human error. Out of the 2,189,000 reported
accidents, 94% ± 2.2% were due to human error, and grievously 35,092 were fatal. The
same document recounts that a statistically significant portion of aforementioned traffic
accidents were due to recognition error (41% ± 2.2%) followed by decision errors at 33% ±
3.7% and execution errors at 11% ± 2.7%. Resultantly, the two principal takeaways would
be that:

1. Human drivers struggle at, and fail mostly on recognition (and arguably decision as
a consequence) therefore correct recognition is the most difficult element in driving.

2. Whilst in the transition period, the autonomous vehicle must develop judgement that
is superior to that of the humans and account for not only itself, but also all other
traffic participants in hopes to decrease the accident figures.

To clarify, what is regarded to as an autonomous vehicle in this document, is in fact the
fully autonomous vehicle, or one that is at level 5 of autonomy in the Society of Auto-mobile
Engineers (SAE) standards (i.e. a vehicle that requires zero human interference in its
operation). However, the challenges, especially in the perception domain are prevalent and
universal, until every traffic participant is automatized, which is not attainable within the
near future. However despite these challenges, researchers do not refrain from investigating
this subject, for autonomous driving promises affordable long-range transportation to the
public by replacing the human workforce and minimizing energy consumption; Provides
a means for personal conveyance for individuals with disabilities, minimizes harmful by-
products such as exhaust emissions in case of internal combustion engine-driven vehicles
[3] and decrease power plant waste in case of their electric counterparts. Most importantly,
autonomous vehicles are expected to minimize traffic accidents and thereupon the property,
and tragically in some cases life and limb, associated with such occurrences.

It goes without saying that trying to enumerate all the possible driving scenarios for
a machine is quite infeasible. To be able to achieve above-mentioned goals, a blend of
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aforementioned soft computing methods need to be used to let the machine develop its
own judgement and compensate for the lack of cues only available to human drivers, such
as body language, hand signals, high-beam lights and occasional hazard lights for grat-
itude. However, despite the preceding matters discussed, there seems to be a theme of
neglect for the perception for this application in the literature. Commonly, studies in this
subject heed to controls as an independent component, or propose solutions that deal with
perception and controls in conjunction. The problem with the former is clear and is the
main impetus of this study, the issue with the latter is that generally, the approach se-
lected for undertaking such difficult tasks, is also one that is black-box in nature and does
not provide any useful detail other than direct control outputs which are not always very
reliable. En masse, three general approaches exist and these methods can be classified into
three general categories:

1. Classical designs

2. Artificial intelligence and machine learning methods

3. Hybrid approaches

Classical designs usually yield the fastest responses and are the least computationally
demanding, and can handle simpler tasks with well-defined models very well. However,
there are clear limitations to the classical approaches, namely, their inability to scale well
with the complexity of the problem. Gong et al. [4] investigated the application of dynamic
programming for velocity prediction given knowledge of the environment with GPS and
GIS data to minimize fuel consumption. He [5] studied linear regression to predict U.S.
Environmental Protection Agency (EPA) drive cycles to minimize Plug-in Hybrid Electric
Vehicle (PHEV)s power consumption. Bender et al. [6] attempted to optimize hybrid
hydraulic vehicle’s energy management using a rule-based strategy to predict drive cycles.
Chen et al. [7], designed an Adaptive Cruise Controller (ACC) system that considers
movement prediction for other traffic participants by profiling five possible scenarios in
which the movement progresses over time.

On the other end of the spectrum are the artificial intelligence, and machine learn-
ing methods. These methods are much more versatile and can handle much more com-
plex problems than that of classical designs, they are however considerably slower and
more computationally demanding. Zhang et al. [8] studied “chaining neural networks” to
produce speed predictions, processing VISSIM data, built on Wiedemann’s car-following
model and assuming Vehicle to Anything (V2X) communications. Yao et al. [9], presents
a Support Vector Machine (SVM) approach to generate short-term speed prediction for
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an “urban corridor,” accompanied by a review of multiple prediction methods (SVM, Ar-
tificial Neural Network (ANN), k-Nearest Neighbors algorithm (k-NN), Autoregressive in-
tegrated moving average (ARIMA)). Yeon et al. [10], took an Long Short-Term Memory
network (LSTM) approach and compared the results with predictions assuming constant
velocity/acceleration. Moreover, Thorsell [11] studied Recurrent Neural Network (RNN),
LSTM, and Gated Recurrent Unit (GRU) to predict speed profiles. Wang et al. [12] took
an error-feedback Recurrent Convolutional Neural Network (eRCNN) to predict traffic
speed in a macroscopic scale. A similar endeavor was conducted by Ma et al. [13], uti-
lizing LSTM to predict the traffic in a Beijing road section using microwave sensor data.
In another study, Moser et al. [14], studied short-term vehicle velocity prediction using
Bayesian networks by assuming Vehicle to Infrastructure (V2I) and/or Vehicle to Vehicle
(V2V) communications. In a similar fashion, but in a more macroscopic time domain,
Roos et al. [15] utilized Dynamic Bayesian Network (DBN)s to predict passenger flow in
the rail network of Paris. Furthermore, similar to the intent of part of this study but
with simplifying assumptions, considering only single lane highway merging and only yield
prediction, Dong et al. [16] investigated Probabilstic Graphical Model (PGM) methods.
Moreover, Wang et al. [17] utilized a Bayesian approach to semantically classify a driver’s
behaviour based on their physical and psychological thresholds. Last but not least, Gindele
et al. [18] used a DBN to predict driver behaviour at intersections.

Hybrid approaches aim to fuse multiple methods, such that the weaknesses of one
method, be it classical or artificial intelligence are accounted for by the strengths of another.
Sun et al. [19] compared multiple perception components: exponentially varying, stochastic
Markov chain and neural network base, focusing on energy management in Hybrid Electric
Vehicle (HEV)s and in company of Model Predictive Method (MPC)s. Sakhdari et al., [20]
used least-square parameter estimators for velocity prediction in an ACC developed by a
tube-based MPC. MPCs have a lot of potential to combine with prediction components as
they have an innate ability to utilize state predictions, and have been studied extensively in
the case of autonomous driving or other Advanced Driver-Assistance Systems (ADAS) such
as ACC in [20] or [21]. However, in most MPC studies, state predictions are assumed to
be given or done näıvely with primitive methods, which creates a big gap in the research.
Murphey et al. [22] used dynamic programming and neural networks to classify EPA
drive cycles based on the driving environment. Sarkar et al. [23], used DBN for trajectory
prediction of traffic agents at urban intersections, in association with random forests. Wang
et al. [24] coupled GPS data with social media content and fused it with a Hidden Markov
Model (HMM) for a better traffic estimation on a macroscopic extent.

The objective of this study is to find a method that can make valid and accurate
predictions for traffic participants motion in different driving scenarios. Of course, for
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these predictions to be valid they must meet a certain set of criteria:

• Predictions must be real-time executable

• Predictions must compensate for the lack of human communication

• The method must have the capability to be generalized to encompass different driving
scenarios

This study can be classified as a hybrid approach and combines DBN with a Continuous
Variable Prediction Module (CVPM), mostly RNN to predict the course, and the behaviour
of the ego-vehicle and other traffic participants. It expands on [25], [26] and [27] and
focuses on developing a perception strategy for traffic participant behaviour prediction in
driving. As mentioned in previous studies, sophisticated prediction strategies can improve
the performance of MPCs quite significantly. Most MPC controllers in the literature make
simplifying assumptions for the development of the states that are not completely reflective
of real-life scenarios. For instance, [20] uses least-square parameter estimators for velocity
prediction, [7] considers predefined speed profiles which impair the generalization of the
proposed controller, and [28] makes the assumption that the states of all other traffic
participants are fully known for the NMPC-based multi-lane adaptive cruise controller.
Universally, it is arguable that all of these endeavours would either produce better results
or be at all practical, with a decent prediction strategy. Although statistically, most of
the traffic accidents are due to recognition and perception errors, it seems that this crucial
aspect of automated driving is being neglected in the literature. In this study, a novel data-
driven prediction strategy is developed and evaluated for real-time behaviour prediction in
a variety of driving scenarios which can also be a complement to MPCs. This strategy fulfils
all of the objective criteria and provides means to incorporate context into predictions. In
this document, background is discussed in chapter 2, followed by methodology and results
discussion, as well as alternative solutions in 3, Smart Hybrid and Electric Vehicles Systems
Lab (SHEVS) scaled autonomous vehicle test platform in chapter 4, and finally conclusion
and future work in chapter 5.
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Chapter 2

Background

As discussed in the introduction, approaches to complex problems such as autonomous driv-
ing vary, often fundamentally so, and call for breaking down to smaller, simpler chunks that
can link together in collaboration and hopefully overcome the challenges and bring forth a
breakthrough that can offer fully autonomous vehicles commercially and readily available
to everyone. One such reasonable break down is separating perception from controls and
having an independent component responsible for making sense of the environment, com-
ing in from sensor measurements and/or raw data from communications. Also discussed
in previous chapter is the fact that due to the uncertainties associated with predicting
traffic participants’ behaviour and the chaotic environment in which they exist, conven-
tional hard-computing methods would most likely fall short. Per contra, machine learning
and soft-computing approaches are excellent alternatives that overcome aforementioned
deficiencies. Of such methods Bayesian inference and other probabilistic techniques, fuzzy
logic, neural networks, genetic algorithm and many others can be listed. While each of
these techniques have their unique set of strengths and weaknesses, for driving, one that
is able to offer the most amount of knowledge is preferred. As an example, while Convo-
lusional Neural Network (CNN)s can be very powerful tools to find relationships between
data, the way they work, does not provide much information about the nature of this
relationship or in other words, how the output relates to the input. Contrarily, Bayesian
networks, as a product of inferential statistics, can make valid predictions based on a
sample of observations, and additionally provide useful information on how the prediction
came to be. Another benefit of using Bayesian networks is the probabilistic representation
of the predictions. Although the desired output is always the state which has the highest
probability, having a the likelihood of an event happening on the side can augment the
reliability and the credibility of the inference.
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2.1 Inferential Statistics

Bayesian networks are receiving increasingly more attention in artificial intelligence re-
search. To understand Bayesian inference and Bayesian networks as their descendent, one
must first understand inferential statistics. Inferential statistics is a process in which allows
analysing a subset of a large population and make valid predictions by generalization of
the sample to the entire population. As an example, a problem of surveying a town of
20,000 populace on whether they use a certain product would be an incredibly difficult
and expensive task. However, a way to tackle such problems, one which many enterprises
make use of regularly is to survey a smaller sub-population, one of 1,000 to 2,000 people
picked at random, and generalize the result to the entire population. It is obvious that the
sample size has a reverse relationship with the accuracy of this approach, however a large
enough sample size should guarantee an adequate accuracy. Suppose a survey is done over
ten days of one hundred people each day to fulfill the task above, the results of which can
be found in the table below.

Day (i) Number of users (Xi) Number of non-users (!Xi)

01 38 62
02 45 55
03 41 59
04 34 66
05 40 60
06 49 51
07 36 64
08 33 67
09 38 62
10 35 65

Table 2.1: Proportions of 10 samples of 100 from a population of 20,000

This data grants the ability to calculate the mean and standard deviation, with which
any inference can be benchmarked. The mean denoted as µ can be calculated by summing
every sample and dividing the sum by the number of samples denoted as n (2.1)

X̄ =

∑
Xi

n
(2.1)

Furthermore the standard deviation denoted as σ can be computed using (2.2)
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σ =

√∑
(Xi − X̄)2

n
=

√
(X1 − X̄)2 + (X2 − X̄)2 + . . .+ (Xn − X̄)2

n
(2.2)

Standard error of the mean, denoted as σX̄ can be computed using (2.3). This equation
reaffirms the claim made earlier that the larger the sample size is, the more confidence can
be put into the inference and vice versa. The larger the sample size N and the smaller the
standard deviation, the smaller the standard error of mean becomes.

σX̄ =
σ√
N

(2.3)

Additionally, the confidence in any hypothesized mean (µ) can be tested using the “z-test”
(2.4) and the cumulative standardized normal distribution table in appendix A.

z =
X̄ − µ
σX̄

(2.4)

To put above points in perspective, we can apply them to table 2.1. For the sake of
argument, suppose after the first day, a rough estimate of 40% users in population was
made. After the ten day survey, the mean, standard deviation and other factors can be
computed as such:

X̄ = 38.9

σ = 4.784

σX̄ = 1.513

z = −0.727

We will find that 23% of the area of the normal curve will fall below this z value, and
since the distribution is two sided, for the offset range it can be computed that another
23% of the area of the normal curve will fall below the z value calculated for µ of 37.8. In
summary, with the expectation of 40% users, and a series of ten samples having a mean
of 38.9% the hypothesis can be expected to hold 54% of the time, which does not seem
very promising in terms of accuracy. However, salvation comes with updating the initial
conjecture with every new observation. This phenomenon was introduced by Rev. Thomas
Bayes and was published in [29], two years after his death. What is now known and popular
as Bayes theorem is a way to find the probability of an event based on prior knowledge,
and will be unfolded in the next section.

8



2.2 Bayes’ Theorem and Bayesian Inference

As previously mentioned, classical inferential models do not allow updating hypothesis
and introduction of prior knowledge. On the contrary, by using Bayes’ rule, the prior
knowledge can be included in the computations which can have significant impact on the
results. Bayes’ theorem can be mathematically formulated as following:

P (A|B) =
P (B|A)P (A)

P (B)
(2.5)

Where P (B|A) is the probability of B given A is true often referred to as “likelihood”,
P (A) is the marginal probability of A and is often referred to as “prior”, and P (B) is the
marginal probability of B often referred to as “evidence”. The other side of the equation
gives P (A|B) and is probability of A given B, often referred to as the “posterior”. One
example that emphasizes this impact, and its deviation from human intuition is the drug
test problem. Suppose a test for using a particular drug is 99% sensitive, and 99% specific.
In other words, The test will produce positive result for drug users 99% of the time and
negative for non-drug users 99% of the time. Now if the users are very rare, for example
0.5% of the population. What is the probability that a randomly selected individual with a
positive test result is actually a drug user? By using (2.5), the problem can be formulated
as:

P (User|+) =
P (+|user)P (user)

P (+)

=
P (+|user)P (user)

P (+|user)P (user) + P (+|non− user)P (non− user)

=
0.99× 0.005

0.99× 0.005 + 0.01× 0.995

≈ 33.2%

Which indicates that with a single positive result from a random sample, the chances of
the individual being a user is in fact lower than that of not. This is due to the fact that the
number of drug users are very small compared to non-users. However, the theorem really
shines when the drug test is conducted a second time with a positive result. The hypothesis
of the individual being a user has now changed from 0.05% to 33.2%. Formulating the
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problem again and updating the hypothesis will give:

P (User|+) =
P (+|user)P (user)

P (+)

=
P (+|user)P (user)

P (+|user)P (user) + P (+|non− user)P (non− user)

=
0.99× 0.332

0.99× 0.332 + 0.01× 0.668

≈ 98%

And subsequently a third positive result will give 99.98% probability that the individual
is a user.

Having introduced Bayes’ rule, Bayesian inference can be discussed as an extension.
Having multiple dependent variables, where the correlation is generally understood, the
probability of an event occurring is computable. The computation involves conditional
probabilities similar to the left hand side of Bayes’ rule, joint probabilities, or a combination
of the two depending on the desired outcome. Generally, joint probability can be broken
down into conditional and marginal probabilities using (2.6).

P (A = a,B = b) = P (a, b) = P (a|b)P (b) = P (b|a)P (a) (2.6)

However, often times any real application will consist of more than two variables and the
dependencies can be complex. Bayesian networks can resolve and simplify the computa-
tions for such scenarios.

2.3 Bayesian Networks

Bayesian networks encompass the discussed properties of inferential statistics and Bayes’
rule and fuse them with knowledge of the dependencies between the appointed variables.
Bayesian networks are represented as acyclic directed graphs in which each node represents
a probabilistic variable and each edge serves as the dependency between said variables; as
a convention, the child node is directly dependent of the parent node. Bayesian networks
have characteristics that can be capitalized on to make the inference more efficient, as
exact inference is #P-Hard, and the complexity is O(2n) for only boolean variables. The
advantage of using Bayesian networks to embody the variables can be demonstrated in the
example below: Suppose a set of five boolean variables. To find the joint distribution of
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A B C D E P(a,b,c,d,e)

a b c d e p1

a b c d !e1 p2

a b c !d e p3

a b c !d !e p4

a b !c d e p5

a b !c d !e p6

a b !c !d e p7
...

...
...

...
...

...
!a !b !c !d !e p25

Table 2.2: Complete set of settings in joint probability for 5 boolean variables

all variables, a complete permutation of every possible setting must be enumerated, as is
demonstrated in table 2.2.

It is clear that to find every joint probability, 2n-1 settings must be computed. On the
flip side, suppose a Bayesian network in the configuration depicted in Figure 2.1. in this
case, the joint probability can be computed as in (2.7)

Figure 2.1: Sample Bayesian network topology

P (a, b, c, d, e) = P (a)P (b)P (c|b)P (d|b, a)P (e|c, d) (2.7)

Which is simplified by accounting for the nature of the dependencies based on the network
topology. In this specific topology, only 12 computations are required to find the complete
set of joint probabilities. From there to find the marginal probability of any variable taking

1“!” denotes “not”
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a specific setting can be computed. For instance the conditional probability of P (a|e) can
be computed in (2.8).

P (a|e) =
∑
b

∑
c

∑
d

P (a, b, c, d, e)

P (e)
(2.8)

A set of rules that can be capitalized on that will make computation in Bayesian networks
more efficient can be found below:

• Each variable is conditionally independent of its non-descendants given its parents.
(Figure 2.2)

E is independent of
A and B given C and D.

D is independent of
B and C given A.

Figure 2.2: Conditional independence in Bayesian networks

• Each variable is conditionally independent of all other variables given its Markov
blanket. (Figure 2.3)

D is independent of any other node,
given A,C and E.

Figure 2.3: Markov blanket independence in Bayesian networks
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Bayesian networks can be extended to include nodes that are of a variable in another
time-slice. Often, this concept is capitalized on to equip the Bayesian network with ability
to predict the state of an existing variable in the next time slice. Such node is in turn
termed a “temporal node” and the network is named a “Dynamic Bayesian Network” to be
distinguished from a regular Bayesian network; everything else remains the same. Figure
2.4 illustrates a sample topology for the DBN where C’ is the variable C in the next time
slice.

Figure 2.4: Sample dynamic Bayesian network topology

Bayesian networks can be classified as expert systems in the sense that the topology
is often defined by an expert. Although there are methods that automatically extract
a topology from the data, the expert defined topology approach remains prevalent in
research. Bayesian networks can also be classified under supervised learning solutions in the
machine learning communities (i.e. data driven approach). Being a data driven approach,
Bayesian networks need to be able to “learn” from datasets. In order to achieve that, an
algorithm was developed in the ’60s called Baum-Welch algorithm which took advantage
of forward-backward algorithm to find unknown parameters of a HMM. Later expanded
and developed by Judea Pearl, a more sophisticated algorithm was introduced which was a
generalized form of the Baum-Welch algorithm called EM-Algorithm, all being a subsidiary
of belief-propagation algorithms, using the Bayes rule. The entire perspective of the EM-
Algorithm is to define a set of predetermined size for Gaussian bell curves fitted over a
mixture distribution of n-dimension. In other words, for a multi-modal random dataset,
the EM-Algorithm will find the parameters of a set number of normal distributions. To
understand the inner workings of EM-Algorithm, the following paragraphs is paraphrased
from “Learning Dynamic Bayesian Networks” by Zoubin Ghahramani [30].

As mentioned above, the structure of a Bayesian network — set of edges in the topology
— and the model parameters are given as a priori knowledge. This initial knowledge
is considered in the form of a prior probability distribution over model structure and
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parameters. The data then updates the prior knowledge to yield posterior probability
over models and parameters. Let P (M) be a prior distribution over model structures and
P (θ|M) a prior distribution over parameter for each model structure. Finally, a dataset
D is used to form posterior using Bayes rule. (2.5)

P (M|D) =

∫
P (D|θ,M)P (θ|M)dθP (M)

P (D)
(2.9)

The integral terms serves to integrate uncertainty over parameters out. For a given model
structure, the posterior distribution over parameters can be found using:

P (θ|M,D) =
P (D|θ,M)P (θ|M)

P (D|M)
(2.10)

If the dataset is a sequence of observations D = {Y1, . . . , YT} and YT+1 is desired, then the
Bayesian prediction

P (YT+1|D) =

∫∫
P (YT+1|θ,M,D)P (θ|M,D)P (M|D)dθdM (2.11)

integrates out the uncertainty in the model structure and the parameters. If we assume
a single model structure M and estimate the parameters θ̂ that maximize the likelihood
P (D|θ,M) we obtain a limiting case of Bayesian learning. For a large data set and uninfor-
mative prior over the parameters, the posterior P (θ|M,D) will peak around the maxima
of the likelihood, therefore the predictions of a single Maximum Likelihood (ML) model
will be similar to those obtained by Bayesian integration over the parameters.

Assuming a data set of independent and identically distributed observations D =
{Y1, . . . , YT}, then the likelihood of the data set it:

P (D|θ,M) =
T∏
i=1

P (Yi|θ,M)

Since we’re considering a single modelM, we can drop the implicit conditioning from the
notation. The ML parameters are obtained by maximizing the likelihood, or equivalently
the log likelihood (L):

L(θ) =
T∑
i=1

logP (Yi|θ)
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If the observation vector includes all the variables in the Network, then for each term we
can find the log-likelihood as:

logP (Yi|θ) = log
∏
j

P (Y j
i |Y

pa(j)
i , θj) (2.12)

=
∑
j

logP (Y j
i |Y

pa(j)
i , θj) (2.13)

where j is the index over the nodes of the Bayesian network, pa(j) are is the set of parents
of j, and θj are the parameters that define the conditional probability of Y j given its
parents. The likelihood therefore decouples into local terms.

In case there are hidden variables, the log likelihood cannot be decomposed as in 2.13.
Rather, we find:

L(θ) = logP (T |θ) = log
∑
X

P (Y,X|θ) (2.14)

where X is the set of hidden variables.
∑

X or
∫
X

serves to obtain the marginal probability
of the data. 2.14 drops the index i and evaluates the log likelihood (L) for a single
observation. Assuming a distribution Q over the hidden variables X we can obtain a lower
bound on L:

log
∑
X

P (Y,X|θ) = log
∑
X

Q(X)
P (Y,X|θ)
Q(X)

≥
∑
X

Q(X) log
P (Y,X|θ)
Q(X)

=
∑
X

Q(X) log P (Y,X|θ)

−
∑
X

Q(X) log Q(X)

= F(Q, θ)

(2.15)

where the middle inequality is known as Jensen’s inequality and can be proven using the
concavity of the log function. If the energy of a global configuration (X, Y ) is defined to
be logP (X, Y |θ) then the lower bound F(Q, θ) ≤ L(θ) is the negative of a quality known
as free energy or the expected energy under Q minus the entropy of Q. EM algorithm
alternates between maximizing F with respect to Q and θ respectively, holding the other
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fixed.

E Step: Qk+1 ← argmax
Q

F(Q, θk) (2.16)

M Step: θk+1 ← argmax
θ

F(Qk+1, θ) (2.17)

To simplify everything from the beginning, suppose a simple 1-dimensional mixture
model with two modes: as illustrated in Figure 2.5, the process can be started by assum-

Figure 2.5: Simple 1-dimensional case of EM-Algorithm

ing two randomly generated Gaussian normal distributions. In the E-step, the likelihood
of each point belonging to each distribution is computed and each point is assigned to
one of the two distributions. In the M-step, the parameters of the Normal distributions
are updated to match that of the points. By iterating between E-step and the M-step,
distributions A and B will fit the data.

And finally, to use the Bayesian network, or it’s temporal counterpart, DBN, the con-
ditional probability of every setting for a variable given its parents are obtained after the
training is complete using the EM-Algorithm. Additionally, joint probabilities can be found
using 2.6, and finally, marginal probabilities can be found by swapping the denominator
with the left hand side of the 2.8.

Using the DBN has a few key benefits enumerated below:

16



• Probabilistic representation gives better understanding of the situation.

• It provides versatility and the freedom to tailor the topology to a specific application.

• It is intuitive and close to human inference.

• It provides excellent noise rejection as a result of probabilistic representation.

however, there is a particular downside to using DBN, that is its tendency to digitize
variables into a handful of classes. This is not a problem when dealing with multi-modal
mixture distribution or continuous variables where a semantic classification is sufficient
(e.g. {near, far} for distance). However, when dealing with variables such as velocity where
the exact quantity is desired, DBNs fall short. Throughout this document, the former is
referred to as “high-level variables” and the latter as “low-level variables”. Figure 2.6
illustrates a schema of ideal low level and high level variables.

Figure 2.6: Ideal high level variable (right) and low level variable (left)

To overcome the shortcomings of the DBN in regards to low level variables, the task
of prediction can be transferred to another data driven machine learning method such as
neural networks for said variables. There are of course a multitude of methods that can
undertake such task, but recurrent neural network are the go-to approach for time-series.

2.4 Recurrent Neural Networks

To understand the mechanism of recurrent neural networks, one must first comprehend the
workings of an artificial neural network, a perceptron. Artificial neural networks attempt
to clone the physical structure and functionality of their biological counterparts. ANNs
consist of the fundamental parts of a biological network, namely, synaptic and somatic
operations. Synaptic operation assigns a weighted significance to the inputs according
to the knowledge already stored in the synapses, and somatic operation provides a non-
linear activation to the neuron. Again, similar to their biological counterparts, ANNs
receive inputs from outside or through other neurons in the network and then generate a
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product term which will be discussed in the following paragraphs. Neural networks can be
characterized in terms of:

• Network size: essentially number of neurons and their layout in the network.

• Neuron activation functions: the non-linear function in each neuron.

• Network pattern: the layout in which the neurons are connected.

• Learning algorithm: how the knowledge is stored in the network.

Given the activation function ϕ(.), each neurons sums the weighted inputs to it and passes
it through as the input argument to ϕ(.). In other words:

y(t) = ϕ(
r∑
i=0

wixi − w0) (2.18)

where i is a counter for input connections, r is the number of connections from the previous
layer to the neuron and t is the neuron identifier. Figure 2.7 illustrates the workings of a
neuron and (2.18).

Figure 2.7: Schematics of a neuron

These neurons can then connect together and form a network, where the inputs to each
neuron is either the input to the network or the output from previous layers, as illustrated
in Figure 2.8. As for the activation function (ϕ(.)) there are three main types of functions,
Gaussian, linear and sigmoid. In this study, the network structure was chosen to be a
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recurrent neural network, for activation functions logistic sigmoid function was selected,
and the training procedure was chosen to be error back-propagation, therefore the focus
on the coming paragraphs will be on the mentioned.

Figure 2.8: Schematics of a neural network

2.4.1 Recurrent neural network structure

To incorporate time series, required to make predictions for a dynamic variable, given
knowledge of a short history window, the neural network can be equipped with feedback
loops. This new structure chains an arbitrary but specific number of inputs to represent a
vector and extracts the pattern from them. Figure 2.9 illustrates the schematics of a RNN
with two dynamic variables. The network is trained the same way as discussed in Appendix
B, however for every generated output, the history window moves one step forward in time.
This operation can be repeated indefinitely to predict any arbitrary horizon, however it is
of no surprise that every time this operation is repeated, the accuracy drops and after a
certain point the accuracy will fall below a desirable threshold. The history window (d),
the sampling rate, and the network size are the free parameters that can be adjusted to
enhance the precision of the approach.
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Figure 2.9: Schematics of a recurrent neural network for two dynamic variables

2.4.2 Long short-term memory networks

With vanilla RNNs, a common issue is the vanishing or exploding gradient problem. The
problem put simply looks at the sequence of weight multiplications and concerns with the
recursion of larger than 1 numbers growing unbound and smaller than 1 numbers resulting
in 0. This is a problem as the weight updates are proportional to the sum of weights
multiplied by the errors of layers closer to the output. As the errors of these layers shrink
during training, the weight updates for layers closer to the input may come to a halt and
stop the network from training altogether. For networks using ReLu activation function
and other activation functions where their outputs can be larger than 1, the opposite may
be the case, where the weight updates become divergent. This problem was the motivation
behind LSTM and GRU.

With vanishing/exploding gradient problem at hand, evolved RNNs were introduced.
One of these networks is the long short-term memory network. These networks, on top of
learning to predict a sequence, will learn which parts of a sequence are more important and
is able to weigh the stream based on its importance, keep what is useful and forget what is
not. This is done by introducing three gates into the structure which us a sigmoid activation
function for their state to control the flow of the data. The data itself is normalized by
tanh activation functions.
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Figure 2.10: Schematics of an LSTM cell

In Figure 2.10, the structure of an LSTM is illustrated. It is clear immediately that
here there are two flow paths as opposed to the one in RNN. In LSTMs one path is used
for data flow and the other for cell state internal information. The cell state information
configures neighbouring cells as of what to consider important and what to let in or out.
The most common configuration of LSTMs have 3 gates: forget, input, and output.

1. Forget gate: the leftmost sigmoid function in the schematics is called the forget gate
and its function is to decide whether information at time t is worth storing or it
should be gotten rid of. The inputs of this gate are the measurements Xt and the
hidden states from the previous time step t-1, ht−1. These two values will determine
an output for the sigmoid function between 0 and 1. Since the output is a element-
wise multiplication at the output, an output of 0 will result in 0 cell state at this
checkpoint. This will completely ignore the memory going forward.

2. Input gate: the next gate in the chain is called the input gate and is the sigmoid func-
tion on the right of forget gate. This gate will decide what data from the combination
of [Xt, ht−1] is added to the cell state.

3. Output gate: finally, the rightmost sigmoid function will control the output flow of
the information to give the new hidden state.
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Mathematically LSTM can be represented by the following equations:

Forget gate: ft = σ(Wf .[ht, Xt] + bf )

Input gate: it = σ(Wi.[ht−1, Xt] + bi)

New candidate values: C̃t = τ(WC .[ht−1, Xt] + bC)

New cell state value: Ct = ft ∗ Ct−1 + it ∗ C̃t
Output gate: ot = σ(Wo[ht−1, Xt] + bo)

New hidden state: ht = ot ∗ τ(Ct)

2.4.3 Gated Recurrent Unit

Similarly, gated recurrent networks are evolved recurrent neural networks with gates that
work much like that of the LSTM, however, two main differences between the LSTM and
the GRU is that unlike LSTM, the cell state does not have a separate flow in GRU, also
the gates in GRU are one less than that of LSTM but with much of the same functionality.
In GRU the gates are named update, and reset. Figure 2.11 illustrates the schematics of
a GRU cell.

Figure 2.11: Schematics of an GRU cell

1. Reset gate: similar to “forget gate” in LSTM, the reset gate controls what information
should be saved to memory and what information should be gotten rid of.

2. Update gate: update gate controls the flow of information after the tanh function
and in the unit itself simultaneously. The functionality is similar to that of “input”
and “output” gates in the LSTM but with different techniques.
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Training in both GRU and LSTM are done using stochastic gradient descent techniques
such as SGD, RMSProp, or ADAM.

2.5 Kalman Filtering and Kalman Smoothing

In this study, a Kalman filter with a dummy model was used to smooth out the jagged
behaviour of the RNN output. The design of the Kalman filter will be discussed in depth
in the coming chapters but the mathematical equations can be found below.

For the linear discrete state-space model:

xk = Axk−1 +Buk−1 + ε (ε ∼ N [0, R])

yk = Cxk +Duk + δ (δ ∼ N [0, Q])

(2.19)

Prediction Step: x̂k|k−1 = Ax̂k−1|k−1 +Buk−1

Pk|k−1 = APk|kA
T +R

(2.20)

Correction Step: Kk = Pk|k−1C
T (CPk|k−1C

T +Q)

x̂k|k = x̂k|k−1 +Kk(yk − Cx̂k|k−1)

Pk|k = (I −KkC)Pk|k−1

(2.21)
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Chapter 3

Methodology and Results

In this chapter, the progress of work, the methodology, and the results for each phase of
the project is discussed. The studied scenarios in this thesis are motion prediction in lack
of context considering V2X communications using EPA drive cycles, context incorporation
for highway merging using real data, a complex driving scenario, intersection driving using
simulated data, and roundabout driving. Although this method can be extended to process
any variable, the variable focused here is speed prediction. Incorporating context into
predictions is the gateway to gaining the ability to predict a path for each traffic participant.
Given a path, start position and speed predictions, each participant can theoretically be
tracked and its microscopic motion predicted.

3.1 Scenario I: City Drive Cycles 1

In the first scenario the problem of velocity prediction for an arbitrary traffic participant
given knowledge of the environment was studied. Given the interest for having accurate
predictions for surrounding traffic participants behaviour, particularly vehicle speeds in
this case of autonomous driving, several studies have been conducted in this area. To re-
mind the reader of the studies similar to this scenario, some of the references are restated.
Zhang et al. [8] studied chaining neural networks (CNN) to process VISSIM data, built
on Wiedemanns car following model, by assuming availability of V2X communications.

1This is an accepted manuscript published by Avestia in the Proceedings of the 6th International
Conference on Control, Dynamic Systems, and Robotics (CDSR’19) on June 6th 2019, available online:
http://doi.org/10.11159/cdsr19.132, M.Zamani Abnili, N.L. Azad, “Short Term Predictions of Preceding
Vehicle Speeds for Connected and Automated Vehicles”
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A broader study was conducted by Sun et al. [19] to compare three different velocity
prediction strategies: exponentially varying, stochastic Markov chain and neural network
based. Focusing on the energy management of HEVs, and also the application of the men-
tioned predictors for MPCs. Gong et al. [4] took another approach and used dynamic
programming method to predict the velocity by utilizing knowledge of the environment a
priori using GPS and GIS data to minimize fuel consumption. He [5] took a linear regres-
sion approach to predict the EPA drive cycles to minimize plug-in HEVs (PHEVs) power
consumption. Murphey et al. [22] utilized neural networks and dynamic programming to
classify the driving environment using various standard drive cycles from EPA. Bender et
al. [6] took a rule based strategy to predict drive cycles for hybrid hydraulic vehicles and
also aimed to optimize the vehicles energy management with the results. Finally, Thorsell
[11] took a neural network approach to predict speed profiles, specifically RNNs, LSTMs
and GRUs. In this scenario a RNN is utilized to make predictions for various horizons on
the speed of a preceding vehicle.

3.1.1 Data

The focus of this scenario is mostly to find a strategy to predict the movement of sur-
rounding vehicles and does not concern hardware choices. The assumptions made for the
data stream from sensors, is that the ego-vehicle is a CAV adequately equipped, to be
able to measure the velocity of its peers, and is also given an estimate of its distance from
traffic signals that may force a full stop upon it. It is understood that at least one com-
panion variable with correlation to the variable of interest can increase the performance of
this method significantly, hence the choice of ‘distance-to-stop-sign’ alongside the velocity
variable. Considering the previous chapters, it is obvious that the DBN is missing in this
scenario. By replacing the distance-to-stop-sign with the outputs of a DBN, the prediction
method would be more sophisticated and can consider many more case scenarios. This
marriage is discussed in the next scenarios.

The datasets used for training of the method are acquired from the EPA. Illustrated
in Figure 3.1, the datasets are titled: EPA Urban Dynamometer Driving Schedule (often
referred to as UDDS, LA-4 or the city test), New York City Cycle Driving Schedule, and
finally, LA92 Unified Dynamometer Driving Schedule. These datasets are especially well-
suited for this application, as they maintain the stop and go situation throughout, while
introducing variation in the overall behaviour and tone of driving. These variations come in
both length of action (e.g. time spent stationary), and intensity of action (e.g. magnitude
of velocity). Some pre-processing had to be done on the datasets to prepare them to
be used in the neural network training process. The preprocessing was up-sampling the
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dataset to 10Hz (10 times more than the original) using polynomial interpolation.

Figure 3.1: Datasets for Scenario I

3.1.2 Results

The network predictions have been illustrated in Fig. 3 to 5 for 1, 2, 5, and 10 second
horizons. The network trained with the UDDS data seems to capture the changes in the
speeds relatively well (Figure 3.2a), especially for smaller horizons. From 700 deciseconds
to 2500 deciseconds, the network prediction is overestimating the speed of the vehicle for
the most part. That is due to the fact that after integrating the velocity to find the stop
sign locations, the area underneath was very large, therefore for the network the next stop
sign is too far for the vehicle to decrease its speed. This can be alleviated by replacing the
accompanying variable with a different value, or capping its value to a threshold. Although
capping the distance-to-stop-sign may increase the accuracy of velocity predictions, finding
the optimal maximum value would be a challenge, also this could result in loss of useful
information that would have otherwise been provided to the network. The general trend
is that as the prediction horizon increases, the accuracy decreases, which is expected.
The metric used to assess the accuracy of the network was the correlation between the
actual data and the prediction, as well as the mean absolute error. The error bounds are
illustrated in Figure 3.2 through Figure 3.4
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In the New York City Cycle Driving Schedule (Figure 3.3), more loss in the accuracy
is observed as the prediction horizon increases, which is due to having less correlation
between the main variable, velocity, and the accompanying variable, distance-to-stop-sign.
In other words, the accompanying variable does not capture the variations in the velocity
due to integration. However, for shorter prediction horizons, the accuracy is still relatively
high.

The Results for LA92 (Figure 3.4) are very similar to that of UDDS but with higher
accuracy due to larger data. The over-estimation of velocity in the predictor in sections
with large area under the curve is again apparent due to the same reason.

Considering the error figures and comparing them to the prediction results, it is ap-
parent that errors peak at instants in which there is a sudden change in the velocity, but
then soon after the change is captured by the network, errors diminish. This behaviour is
evident in the results for New York City drive cycle, due to lower number of sample points.
In general, neural networks tend to rely heavily on the quality of the data that they are
trained with. In this application, the best kind of dataset is one that is large, and consists
of a fair amount of variation in both intensity, and duration of action. This is supported
by superior results yielded by LA92 and UDDS datasets. The significance of this is es-
pecially pronounced when compared to the approach taken in [8]. For a one-dimensional
car-following application, variations in magnitude of speed is either completely removed
from the process or is minimally introduced in a variable fixed-maximum velocity manner
(i.e. when the vehicle speed reaches its local maxima, it will continue with the same speed
until it is forced to stop), which although relatively simplifies the problem, in turn crip-
ples the method in terms of generalization. Considering the absolute values for velocity
and general motion, grants the benefit to take advantage of this method in considerably
more cases and scenarios, such as merging in highways, intersections, and roundabouts.
Another substantial point to consider is loss of accuracy as prediction horizon increases.
In like manner, this can be mitigated by increasing the size of the training dataset. As
the training data grows, larger horizons gain more validity. The accuracy loss due to in-
creased prediction horizon is also evident in the results of [19] as the predicted velocity is
consistently divergent. Although this may be due to different plotting styles, a pairwise
comparison between the results of the method discussed in this scenario with results of
the neural network based method in [19] show a fundamental difference. In [19], the re-
sults exhibit a kind of passiveness as the predictions keep advancing in the same course.
Whereas in this scenario, apparent in the peak of error in UDDS results at 2600 decisecond
of 10 second prediction horizon, it seems as if the network is actively correcting its results.
Additionally, although training times may be trivial for the aforementioned datasets as the
training is done offline, they are a good indication of scalability of the solution and can be
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(a) Network results

(b) Errors

Figure 3.4: LA92 Unified Dynamometer Driving Schedule
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found in Table 3.1.

Dataset UDDS NYCC LA92

Time[s] 33972.6 25022.4 42761.3

CPU Intel R© Core TM i7 5820K @ 3.4GHz

Table 3.1: Training times

Moreover, the turnaround time for 10 second prediction horizon was on average ≈0.0246
seconds (40.65 Hz), with very low deviation, which with 10Hz sampling rate makes it real-
time applicable with a large headroom. The results of this scenario was presented at
Conference of Controls, Dynamic Systems, and Robotics, Ottawa [25].

3.2 Scenario II: Highway Merging 2

Supervised learning methods, especially neural network type approaches are able to identify
patterns in the dataset and learn to replicate them for fresh inputs. Driving rules guarantee
the existence of such patterns with limited discrepancy. However, neural network type
approaches act in a black-box manner and do not provide much control over the inference
nor do they supply any useful information on how the output is generated. Ideally, neural
networks are used for MISO (multi-input, single output) functions to generate an output
based on the inputs, where the I/O relation is generally understood. Dynamic Bayesian
networks on the other hand, although being of supervised learning breed, are incredibly
versatile in terms of control between I/O relation. As mentioned previously, for hybrid
approaches, the goal is to mix and match different methods such that the weaknesses of
one are compensated for by the strengths of another. This scenario capitalizes on the fact
that DBNs and neural networks complement each other in a way that creates a viable and
potent hybrid approach for the task. Recurrent neural networks with history inputs were
explicitly used for their ‘memory’ and time-series operation ability. Forthcoming sections
demonstrate the qualities of this marriage in more detail.

2This is an accepted manuscript published by University of Prince Edward Island. Robertson Library
in the Proceedings of the Canadian Society for Mechanical Engineering International Congress (2020) on
June 24th 2020, available online: http://doi.org/10.32393/csme.2020.110, M.Zamani Abnili, N.L. Azad,
“A New Data-Driven Approach For On-line Traffic Participant Behaviour Prediction at Intersections for
Automated Driving”
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3.2.1 Methodology

Highway merging is one of many situations in driving that requires a lot of attention, as
errors can be disastrous. Human drivers that are travelling on the highway may react
differently in the proximity of an on-ramp with a queue of vehicles intending to merge with
the traffic. These discrepancies in behaviour, combined with the fast-paced environment,
makes it very difficult for controllers to take safe actions spontaneously. Hence the focus
of this scenario is to predict the behaviour of vehicles driving on the highway, for a sup-
posed automated controller on the merging vehicle, to replicate safe scenarios conducted
by human drivers. For this purpose, real traffic data was required with the guarantee that
none of the actions lead to a collision, therefore the data collected for the Next Generation
Simulation (NGSIM) project was used [31].

3.2.1.1 NGSIM Data Preparation

NGSIM data [31] contains traffic data for 640m of US101 highway (south-bound) at Ventura
Blvd. ramp and is commonly used by researchers working on highway merging problem.
The dataset is very large (25×11, 850, 527) containing information for 3400 vehicles. At the
same time the dataset is very messy with missing data. To clean up the dataset, a sliding
window search was carried over the entire dataset extracting the data for 100 vehicles at
a time and sorting the samples in chronological order. Duplicate IDs were then identified
and parsed based on location. Because for every vehicle selected as “ego-vehicle”, the
information of all other traffic participants must be known synced in global time, every
vehicle’s information was cut to fit the hypothetical ego-vehicle’s presence window and a
cell matrix of 34003399 tables. This cell matrix contains all the possible vehicle pairs.
To ensure equal size, every offset time was filled with NaNs. After this stage, useful
information could be extracted from the dataset which is discussed below. The structure
of prediction network was designed to encompass the useful information within the data
available. For the DBN, 5 main variables were extracted, two of which are temporal nodes
in the network. The set of variables considered are defined below.

Approaching Flag (AppP ) The Approaching Flag variable looks at how the distance
between the ego-vehicle and other traffic participants is changing over time. If the distance
is decreasing, AppP is 1, and 0 otherwise.

AppP =

{
1 ∆Drel

∆t
< 0

0 otherwise
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Acceleration Flag (AccP ) In contrast to AppP , Acceleration Flag considers the absolute
motion of other traffic participants and outputs 1 for positive acceleration and 0 otherwise.

AccP =

{
1 ∆vabs

∆t
> 0

0 otherwise

Lane Identity (LaneID) NGSIM data contains traffic data for five lanes plus an auxil-
iary lane. The section starts close to the on-ramp from Ventura Blvd. and ends close to
the off-ramp. One assumption made in the data preparation process was that the 3 lanes
farthest from the on-ramp have a negligible impact on the merging vehicle, whereas the
first two lanes are the most important. The effect of the first adjacent lane to the auxiliary
lane is clear and is extensively studied. The effect of the second lane is also significant, as
some vehicles tend to perform a lane change as they notice a vehicle on the on-ramp, to
give way. Moreover, it is also beneficial to have smaller sets for the values of each variable
as inference in DBN scales exponentially. Therefore, the set of values for LaneID is defined
as:

LaneID ∈ {1, 2, Aux,Ron, Roff}

Zone Identity (ZoneID) ZoneID is a complement to LaneID variable. Where LaneID
looks at the lateral position of each vehicle, ZoneID observes their longitudinal position.
Although the section arrangement is arbitrary, in this study, the area is divided into four
main sections. The area labelled 2 is the area on the first main lane starting from where the
ego-vehicle intends to merge to the traffic from the auxiliary lane, to where it successfully
merges with the traffic. Area labelled 1 is the area on the first adjacent lane before 2 for
an arbitrary limited range, and similarly, 3 is the area after 2. Area labelled 4 is the area
outside 1, 2 and 3. Figure 3.5 illustrates a schematic of this variable.

Figure 3.5: ZoneID variable schematic
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Yield Flag (Y ieldP ) Unlike other variables that were immediately measurable from the
environment, Y ieldP is a desired output from the DBN and is extracted from the dataset
for supervised learning. To extract this variable from the dataset, all the scenarios in which
yield is not applicable were set aside, then for the scenarios in which yield is germane, data
is labelled. Therefore, the set of values for this variable can be defined as:

Y ieldP ∈ {0, 1, N/A}

3.2.1.2 Dynamic Bayesian Network Topology

The network topology relies deeply on the training data available, as well as the sensor
composition on the ego-vehicle (in case V2X communication is available, the set can be ex-
panded to incorporate that data as well). The objective is to transform raw measurements
into useful information by exploiting the correlation between variables. Given the designed
variables discussed above, and the main intention being traffic forecast, the designed net-
work can extract network inputs from easy-to-measure data. AppP , AccP , LaneID and Zone,
are source nodes in the directed graph (i.e. nodes with in-degree of 0). LaneID and Zone
are defined as temporal nodes to predict lane and zone changes. Ultimately, yield is defined
as a sink (i.e. node with out-degree of 0) in the DBN topology as the final product. The
set of edges define the dependencies between variables. As an example, lane change often
comes coupled with changes in acceleration (or lack thereof) and depends on the prior lane
the vehicle is travelling on. Figure 3.6 illustrates the designed topology of the DBN for
this application.

Figure 3.6: DBN topology
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3.2.1.3 DBN-RNN Combination

As mentioned previously, the performance of an RNN in traffic prediction relies heavily
on the complementary information that is provided to it from the environment. The
point of this extra information is to grant the network with some cues of a variable’s
state in the future. Also mentioned previously is the fact that DBNs are not as effective
as other methods when it comes to dealing with continuous variables, the likes of which
are frequent in traffic predictions. In this research, velocity was the variable with such
qualities. A recurrent neural network can substitute EM algorithm inference in any of the
DBN vertices to alleviate the shortcoming associated with continuous variables. Figure
3.7 illustrates a schematic of the connection between DBN and RNN with the RNN node
expanded.

Figure 3.7: DBN-RNN combination schematic

Of course, the interface between the DBN and RNN should adopt a few changes. For
variables with only two states (i.e. binary variables) DBN output to RNN input can be
the conditional probability of one of the states knowing that the sum of a variable taking
all of its states given the same conditions is 1 [32].∑

A

P (a|X) = 1 (3.1)
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For variables with more than two states, the inputs can be a combination of the mean, and
the likelihood of the variable distribution class with the highest conditional probability.
The resulting array replaces yn1, ..., ynm in Figure 3.7. Figure 3.7 Illustrates the complete
schematic of the DBN-RNN interface.

3.2.2 Results

The results yielded by the prediction network are the product of DBN trained with the
entire network using EM-Algorithm and the RNN with 12807 sample points due to com-
putational restrictions. In order to encompass as much variety in such limited size as
possible, a search was carried out on the dataset to make sure the lowest, and the highest
mean velocity and acceleration, and also the lowest, and the highest absolute velocity and
acceleration are included. In addition to that, sets with and without full stops were picked
to include rush hour and stopped traffic scenarios. The rest of the scenarios were chosen
randomly using a roulette wheel selection weighted by data size. Choosing the specific sce-
narios also had a lower limit on size restriction. In total, 30 speed profiles were extracted
from the dataset for training. After the training was over, scenarios were randomly picked
from the entire dataset for testing. Typically, a 2-3 second prediction horizon would suffice
for satisfactory control with MPCs, and that is where accuracy matters the most. However,
for the sake of argument, all the results include the predicted speed profile for 1, 2, 5, and
10-second horizons. A common theme carried over in all the prediction results is that as
the prediction horizon increases, accuracy is lost because errors become larger. However, it
is evident that correlation (3.2) between prediction results and true speed profile, although
reduced, remains relatively high (0.95 <).

rxy :=

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
(3.2)

Figure 3.8 illustrates the results yielded for rush hour traffic. As already mentioned, it
is evident that the higher the prediction horizon goes, the mean absolute error grows.
However, the trend is captured very well and one point that stacks up in favour of the
results is that despite the training data being solely for highway driving, prediction results
embody the stopped traffic. Expanding the training set should further improve the results
as more samples are introduced to the network, which can be achieved with long term
sequential off-line training, updating the weight matrix.

The general observations hold for normal driving scenario results illustrated in Figure
3.9, however, one main differences are setting this result apart from the rush hour traffic
predictions; the data size is much smaller than the other two scenarios. Results suggest
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Figure 3.8: Prediction results for rush-hour traffic

37



that there is a delay, or temporal difference, between the predictions and the actual speed
profile which can be due to the changes in the companion variable inputs generated by
the DBN, especially for LaneID and Zone variables, causing a different reaction from the
RNN. However, up to 5-second horizon, the results are reliable.

Figure 3.10 represents a scenario in which the traffic comes to a complete stop for
around 2 minutes, from second 400 to 520. Similar to rush hour traffic results, the stop
period is very well captured, and the transient response seems promising. However, similar
to normal driving scenario results, 10-second predictions display a temporal difference in
the acceleration period after the full stop, which can be caused by the low acceleration rate
at that instance. The accuracy is quickly recovered as the vehicle picks up pace.

Another main theme apparent in the results is that the errors in larger horizons are
amplified versions of the errors in smaller horizons, which in turn makes the results further
improvable by implementing filtering/smoothing methods. In one experiment with näıve
Kalman filtering, speed prediction results of a primitive DBN topology was improved by a
very large factor as the speed predictions exhibited large amplitude fluctuations, however
the bestowed results do not involve any post-processing as they feature decent accuracy.
However, for the sake of argument, filtered results are also presented in the forthcoming
paragraphs. Compared to the one-dimensional car-following application considered in [8],
the results of this study not only consider variations in velocity, but also can provide useful
information such as lane change and yield probability which can be extremely useful for
highway merging. The aforementioned loss of accuracy in larger horizons is also evident in
the results of [19], however, unlike the results of [19] where the speed predictions näıvely
diverge from the actual speed profile with the same rate, results of this study tend to
exhibit a self-correcting behaviour as new cues are observed. Compared to the approach of
[16], this study accounts for multi-lane merging and is able to predict a relatively accurate
speed profile for an arbitrary positive integer horizon, although the yield/not-yield vari-
able is shared between the two studies, the perspective on how to predict this variable is
different. This study considers immediately measurable variables from the environment as
opposed to time of arrival estimations; this allows for more accurate predictions, as well as
the possibility of later development of the network topology as a result of the introduced
versatility. As a general observation, most of the studies conducted on traffic prediction,
look at the collective flow of the vehicles for long periods with low sampling rates and
in large areas, aiming to predict congestions, similar to [33] or [34]. Similarly, [15] takes
a long-term prediction strategy, which is justifiable for the applications. However, short-
term predictions for individual vehicles become mission-critical and require attention to
micro-details for any appropriate outcome from automated controllers. The reward of an
accurate short-term vehicle behaviour prediction however, can directly improve the perfor-
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Figure 3.9: Prediction results for normal highway driving
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Figure 3.10: Prediction results for stopped traffic
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mance of an autonomous or semi-autonomous vehicle. As mentioned above, [20] utilizes
least-square parameter estimators for velocity prediction in an ACC developed by MPC.
The performance of such controller would be certainly improved and would have allowed
for more traffic scenarios given a more sophisticated prediction strategy, such as the one
presented in this study. Similarly, in the controller defined in [7], predefined profiles can
be replaced with a real-time predictor such as the one introduced in this study for fur-
ther improved performance. Another example of a controller that can make use of traffic
participant’s state prediction is introduced in [28], where the Multi-lane adaptive cruise
controller (MLACC) designed with a non-linear model-predictive controller (NMPC) as-
sumes all the future states are fully known which is an unrealistic assumption. Similarly,
in [35], the authors utilized a hybrid control method for vehicle platooning in a simulation
where all the future actions are known and claim that utilizing future predictions of pre-
ceding vehicle’s trajectory significantly enhances safety, driver comfort, traffic flow, vehicle
emissions performance, and fuel economy.

As mentioned above, the trained DBN can also provide useful information to the driver
as a stand-alone component, or connect with other types of controllers to ensure the safety
of the manoeuvre. Table 3.2 is the direct result of EM-Algorithm and illustrates the
distribution of yield probability given the conditions.

A close examination of Table 3.2 provides clues to better analyse the dataset and the
methodology. First and foremost, this table contains 28 rows, while the complete set of
conditions is supposed to contain 80 members (3.3).

|{Conditions}| = |{C}| × |{P}| × |{Z}| × |{L}|
= 2× 2× 4× 5

= 80

(3.3)

However, because Lane′ID and Zone′ are not independent and have an overlap with each
other. It would be physically impossible to have a condition where Lane′ID = 2 and
Zone′ = 1 and so on. Set of permutations for Lane′ID and Zone′ID has therefore 7 members
in total, combined with 2 states each for AccP and AppP , there can be a total of 28
conditions for yield, all captured by the EM-Algorithm. Another seeming anomaly in the
results comes from the coexistence of ‘N/A’ with ‘yield’ and ‘!yield’. It can be speculated
that the reason arises from the fact that when defining the set values on the dataset,
current LaneID and Zone were considered, however DBN, uses the next-step prediction
of said variables, and therefore, a new uncertainty is introduced to the yield prediction.
However, this newly introduced uncertainty is desirable, as it allows for prediction in yield,
rather than explaining it. Considering that, by analysing the yielded results, it can be
concluded that almost all the time, the traffic participant inside the highway yields to the
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AccP = C,AppP = P,Zone′ = Z,Lane′ = L
Row Condition !Yield Yield N/A

01 C = 0, P = 0, Z = 1, L = 1 0.0707 0.1304 0.7989
02 C = 0, P = 0, Z = 2, L = 1 0.0202 0.0758 0.9040
03 C = 0, P = 0, Z = 3, L = 1 0.0103 0.7105 0.2792
04 C = 0, P = 0, Z = 4, L = 2 ≈ 0 0.7502 0.2498
05 C = 0, P = 0, Z = 4, L = Ron 0 0.6381 0.3619
06 C = 0, P = 0, Z = 4, L = Aux 0 0.4609 0.5391
07 C = 0, P = 0, Z = 4, L = Roff 0 0.8467 0.1533
08 C = 0, P = 1, Z = 1, L = 1 0.2490 0.2490 0.5019
09 C = 0, P = 1, Z = 2, L = 1 0.1040 0.3564 0.5395
10 C = 0, P = 1, Z = 3, L = 1 0.0099 0.7273 0.2628
11 C = 0, P = 1, Z = 4, L = 2 ≈ 0 0.7483 0.2517
12 C = 0, P = 1, Z = 4, L = Ron 0 0.7722 0.2278
13 C = 0, P = 1, Z = 4, L = Aux 0 0.5440 0.4560
14 C = 0, P = 1, Z = 4, L = Roff 0 0.8820 0.1180
15 C = 1, P = 0, Z = 1, L = 1 0.1250 0 0.8750
16 C = 1, P = 0, Z = 2, L = 1 0.0208 0.0812 0.8981
17 C = 1, P = 0, Z = 3, L = 1 0.0123 0.6766 0.3111
18 C = 1, P = 0, Z = 4, L = 2 ≈ 0 0.7125 0.2875
19 C = 1, P = 0, Z = 4, L = Ron 0 0.6453 0.3547
20 C = 1, P = 0, Z = 4, L = Aux 0 0.5270 0.4730
21 C = 1, P = 0, Z = 4, L = Roff 0 0.8221 0.1779
22 C = 1, P = 1, Z = 1, L = 1 0 0.3684 0.6316
23 C = 1, P = 1, Z = 2, L = 1 0.1200 0.4176 0.4624
24 C = 1, P = 1, Z = 3, L = 1 0.0089 0.7679 0.2232
25 C = 1, P = 1, Z = 4, L = 2 ≈ 0 0.7811 0.2189
26 C = 1, P = 1, Z = 4, L = Ron 0 0.8149 0.1851
27 C = 1, P = 1, Z = 4, L = Aux 0 0.4414 0.5586
28 C = 1, P = 1, Z = 4, L = Roff 0 0.9105 0.0895

Table 3.2: Yield probability table

merging traffic regardless of its lane-change behaviour (i.e. whether the yield is done by
changing lane or slowing down). It is also possible to remove ‘N/A’ results after the fact
by normalizing ‘yield’ and ‘!yield’ linearly, or, to increase safety, weighting ‘!yield’ by a
certain factor. The higher the weight of ‘!yield’ the more conservative the behaviour of the
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autonomous merging vehicle.

As mentioned in the previously, the Kalman filter can be used to alleviate the jagged
behaviour of prediction results by introducing a dynamic model to the system. To demon-
strate, based on the simple kinematic model (3.4), state-space model (3.5) was created.

v(k + ∆k) = v(k) + a(k)∆k (3.4)[
v(k + ∆k)
a(k + ∆k)

]
=

[
1 ∆k
0 0

] [
v(k)
a(k)

]
+

[
0 0
0 1

] [
uv(k)
ua(k)

]
(3.5a)

Y (k) =

[
1 0
0 0

] [
v(k)
a(k)

]
(3.5b)

Then iteratively, input acceleration (ua(k)) was calculated by differentiating neural
network predicted velocity at the horizon and the predicted velocity preceding that by one
step (3.6).

ua(k) =
v(horizon+ k + ∆k)− v(horizon+ k)

∆k
(3.6)

The sensitivity of each state is then determined by R and Q matrices to compensate for
the lack of an accurate system model. The larger the coefficient of Q matrix becomes, the
less the Kalman filter has certainty over measurements, therefore the less the prediction
step differs from the states at the current step. In other words, the filter has more inertia
and resists the changes in states. By examining the prediction results without the Kalman
filter, it is immediately apparent that shorter horizons have smaller jagged behaviour and
are generally more accurate. Naturally, shorter horizons require a smaller Q coefficient and
longer horizons can benefit from a larger Q coefficient. The results illustrated in Figure
3.11 are the outcome of R and Q shown below (3.7).

R = 1× I2 Q =


0.02 for 1s prediction

0.10 for 2s prediction

0.60 for 5s prediction

4.00 for 10s prediction

× I2 (3.7)

Considering Figure 3.11, using the same test data as Figure 3.8, it is evident that the
Kalman filter is able to reduce the error and improve the overall performance of the pre-
dictions quite significantly, especially for longer horizons. In a more detailed comparison,
while the correlation for 1s horizon is slightly hurt (most likely due to high Q coefficient),
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Figure 3.11: Prediction results for stopped traffic with Kalman filter active
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the errors are significantly lowered by the Kalman filter (60% lower mean absolute error
for 10s horizon). Error bounds tell the same story as they are reduced by the Kalman filter
across the board. This is especially beneficial as the error bounds were mostly affected by
spontaneous spikes in errors rather than a consistent noise-type error. Kalman filter can
remove the impulse errors exquisitely by giving inertia to the velocity predictions. Another
area affected by the Kalman filter is along the horizontal axis for time/phase shifting. The
DBN outputs include a limited number of states. The balance between the number of
inputs from the environment and the number of inputs from the DBN going into the DBN
will ultimately determine how the prediction results look like. However, for a large and
sophisticated DBN, it is inevitable that DBN has more weight on the outputs, and as
discussed above, it would not be the optimum solution to increase the number of environ-
mental inputs. The effect of this DBN dominance comes in two forms. For one, as the
string of DBN inputs switch states, there will be a sudden and abrupt change in the output
of the RNN, which is the main cause of the ’jagged output’. For two, these abrupt changes
usually translate into an advanced (i.e. ahead in time) response from the RNN causing
a noticeable phase shift between the prediction results and the actual data. The effect of
inertia introduced by the Kalman filter seems to reduce and diminish this behaviour, and
although the Q and R coefficients are the result of trial and error in this study and only
for demonstration purposes, a simple optimization algorithm can find the ideal coefficient
for any use case and scenario. In summary, the benefits of ‘inertia’ in velocity predictions
(and prediction for other continuous variables with the RNN) debuted by the introduction
of Kalman filter is three-fold: First, it embodies the system’s dynamic properties into the
prediction results which is undeniably a welcome addition. It also filters the jagged output
of RNN, due to dominant inputs from the DBN. In addition to that, it also compensates
for the phase shift associated with dominant inputs from the DBN.

3.3 Scenario III: Intersection Driving 3

Driving in an intersection, especially in such a chaotic environment alongside other human
drivers, pedestrians, cyclists and other traffic participants is a rigorous and critical task.
One of the biggest differences between human drivers and hypothetical fully autonomous
vehicles would be the cues humans can interpret from other traffic participants, coming
to them in the form of hand signals, body language, high beam lights and occasional

3This is an accepted manuscript awaiting publishing in the Proceedings of Canadian Society for Me-
chanical Engineering International Congress 2020 (CSME 2020), M.Zamani Abnili, N.L. Azad, “A New
Data-Driven Approach For On-line Traffic Participant Behaviour Prediction at Intersections for Automated
Driving”
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activation of hazard lights for gratitude. It is simply not feasible to teach all of that to
a machine, but the same machine, blinded to all these cues, is expected to yield better
performance than human drivers. This expectation can only be realistic, relying on two
basic principles.

1. The machine has more accurate measurements of the environment

2. The machine can execute control commands with more precision

However, given these two assumptions, the perception for a vehicle is still a complex
challenge and a humongous task. In this study a simulation was assembled in Simulation
of Urban Mobility (SUMO) [36], to collect the data needed for the data-driven techniques
mentioned previously.

3.3.1 Simulation in SUMO

In SUMO, a controlled intersection (i.e. intersection controlled with traffic lights) envi-
ronment was set up with two lanes on each side of each arm to incorporate lane changes
as well as every possible traffic scenario, while maintaining manageable data size and flow
densities. A total of 3600 vehicles were deployed in the environment taking random trips
while conserving traffic rules. The traffic light signal schedule was chosen to be symmet-
ric and simple without advanced left (as advanced left signal does not have any learning
benefits). Figure 3.12 illustrates the SUMO environment. The data collected from the
simulation was then fused with the map of the environment to create meaningful variables
for the DBN.

Figure 3.12: Intersection simulation environment
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3.3.2 Dynamic Bayesian Network

The topology of the DBN must to follow a few basic rules:

• The source nodes (nodes with in-degree of 0) must be reserved for variables that
can be directly measured from the environment. In other words, source nodes act as
inputs.

• The complexity of the problem, for each node, scales exponentially with the number
of parents and the number of states each parent can take. Therefore one node must
not have too many parents.

• The child-parent dependency must be conserved. Each node should have either a
direct or an indirect correlation with its neighbours.

Considering the rules mentioned above, DBN variables were established as declared in table
3.3. To create these variables, the only data collected from the simulation were position and
traffic light signals, to be fed directly to the DBN, as well as velocity which is a continuous
variable and was aimed to be handled by the RNN. Figure 3.13 illustrates the topology
of the proposed DBN. In this topology, the status of the traffic light, the presence of
vehicles in the vicinity, current lane, current section and whether the vehicle is approaching
the intersection or departing from it are considered as inputs. Practically, these inputs
can reliably be extracted from the environment, especially if V2X communications are
considered.

To make predictions for continuous variables, the DBN outputs can be fed into the
RNN, to complement the variable’s history and add some context. However, was it not
for the motion dynamics variables, the DBN would be sufficient to predict the states of
any traffic participant, but because velocity is relative and depends on the states of the
ego-vehicle as well as the traffic participant, by some means, both of these value sets
must be exposed to the RNN. To achieve that, an interface must have been designed for
this connection. There are three general ways that this interface can be implemented. The
trade-off between these configurations revolves around the difficulty to prepare the data for,
training time and result reliability. Figure 3.14 demonstrates simplified schematics of the
architecture. In this scenario the first configuration was selected where the data for the ego
vehicle and traffic participants are processed with the same simple DBN topology in Figure
3.13, due to shorter training times, easier pre-processing for the data and uncomplicated
implementation.

4“Prime” denotes a variable in next time slice

47



ID Variable Set of states

01 StoppedAtLine {True, False}
02 LeftTurnRequiresStop {True, False}
03 PathIntersects {True, False}
04 CarFront {True, False}
05 CarSide {True, False}
06 CarBehind {True, False}
07 ApproachingIntersection {True, False}
08 AccelerationF lag {True, False}
09 Lane {1, 2, Intersection}
10 LanePrime4 {1, 2, Intersection}
11 TrafficLightSignal {Green, Amber, Red}
12 TrafficSignalPrime {Green, Amber, Red}
13 CurrentSection {West, North, South,

East, Intersection}
14 SectionPrime {West, North, South,

East, Intersection}

Table 3.3: DBN variables

Figure 3.13: DBN topology

In addition to the macro connection scheme, DBN variables need to be singled out
and selected to meet the RNN, as brute-forcing everything into the RNN will cause jagged
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behaviour in the output. This jagged behaviour is because of the digital nature of the DBN
outputs, especially when the distribution of states is not uniform across all the settings.
The variables selected in this study are:

• PathIntersection

• ApproachingIntersection

• AccelerationF lag

• TrafficLightSignalPrime

• SectionPrime

• LanePrime

Figure 3.14: DBN-RNN interface

3.3.3 Recurrent Neural Network

In this scenario, the RNN is tasked with finding the velocity of a random traffic participant.
While the DBN can quickly learn from very large datasets (in this study the DBN was
trained with 480,000 sample points in a matter of seconds), the RNN takes much longer
to train with the back-propagation algorithm, therefore only a small part of the data was
chosen for training. This selection was based on data size and events (such as maximum
and minimum velocities and maximum and minimum accelerations) as well as random

49



entries. The network structure is conical with 4 layers in total, with the number of nodes
computed in each layer using (3.8), where N is a constant for its subscript and n is a
counter. The history window (d) is chosen to be 6 seconds and sampled at 1Hz. The
activation functions are sigmoid.

Nnodes in layer = (Nins +Nouts)

∗ (Nhidden layers − ncurrent layer + 1)
(3.8)

3.3.4 Results

Velocity predictions for random vehicle pairs were established for 1, 2, 5, and 10-second
horizons. A sample result is illustrated in Figure 3.15 without and in Figure 3.16 with
Kalman filtering engaged. This specific drive-cycle is for a vehicle pair that coexisted in
the simulation for a long period. This extended coincidence, alongside the multitude of full
stops, signifies high traffic flow and multiple stops behind the traffic light. It is apparent
that the prediction horizon has an inverse relationship with the prediction accuracy, and
as the horizon extends, the errors become larger too. Figure 3.15 also exhibits error spikes
in larger horizons which are legacy of the digital DBN inputs, these spikes are recognized
to be mitigated by the Kalman filter in Figure 3.16. Results in Figure 3.16 appear to be
following the trend of speed variations very well, however at some points, especially in the
sudden peaks in the actual speed profile, such as the peak at 300 seconds, the scaling seems
to be not quite exact, which can be attributed to the nature of neural networks. Compared
to the results previously declared in [27], for highway merging where the velocities in the
drive cycles are more gradually changing and have fewer stops, these results do not exhibit
the same level of accuracy, however, this does not point to a futile fate for this approach in
this application either. It is critical to keep in mind that intersection driving is by far and
undoubtedly more complex than highway merging, and besides that, there are multiple
amends for this issue. For instance, replacing the RNN with a more sophisticated method
such as LSTM could be a proper adjustment to this approach. Furthermore, MPC, which
are the prime target end-users for these predictions, tend to rely on 2-3 second prediction
horizons which are adequately accurate.

3.4 Alternative Solutions (Extension of Scenario III)

There are enhanced methods that are direct upgrades to the ‘vanilla’ RNN that with extra
gates and functions are designed to alleviate the vanishing, or exploding gradient problem.
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Figure 3.15: Prediction results for random vehicle pair
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Figure 3.16: Prediction results for random vehicle pair with Kalman Filtering
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The vanishing, or exploding gradient problem is computational by nature and is a direct
consequence of back propagation algorithm used to train the RNN with. Recalling (B.25,
and B.9), some readers may notice that δj,c, which is a term in (B.9), or the update to
the weight matrix, is a function of error. As the training progresses, this error can become
very small which in turn will make δj,c approach zero, or as training data becomes larger
and with more variation, this term may become very large and approach infinity. This
was especially a big issue in the past because of lower performance of computer hardware,
rendering RNN and Back Propagation Algorithm (BP-Algorithm) completely useless in
some applications. Now with computer hardware being much more sophisticated and
capable the training RNN with BP-Algorithm is much more viable but the fundamental
problem persists. Following the chain rule of training, the error signal in the front layers
is exponentially smaller than the back layers, making training very slow in those layers.

The solution to this problem comes in many flavours. Starting with some of the first
ones, introduced by Schmidhuber in [37] of an idea dubbed ‘multi-level hierarchy of net-
works’, the initial weight matrices for each layer is trained in an unsupervised fashion before
training the RNN with BP-Algorithm, having the BP-Algorithm only do the fine-tuning.
Having a good rough estimate of the weights before utilizing BP-Algorithm will allow for
larger training rates while also preventing exploding gradient problem, and vanishing gra-
dient problem at the same time. Another solution is utilizing residual networks (ResNets)
which connects non-neighbouring layers, making the overall error larger.

At this time however, one cannot have “recurrent neural networks” and “vanishing gra-
dient problem” in the same sentence and not talk about LSTM and GRUs. LSTMs and
GRUs have special functions, or “gates”, which are called: input, output, and forget gates
for the case of LSTM, and update, and reset gates for GRU. These networks can be trained
with a wide selection of optimizers ranging from stochastic gradient descent (SGD), to
“Adaptive Gradient Methods with Dynamic Bound of Learning Rate (AdaBound)”. This
document will not dive in depths of the details and specifics of all the methods and tech-
niques mentioned, however, a comparison between these methods and the results discussed
in the previous sections would be a valid benchmark for the accuracy and performance of
the approach proposed in this study.

Initially, as explained in the previous section, the alternative solutions were to replace
the CVPM to benchmark the performance of the RNN. In total four different architectures
were experimented with which were all laid out in the structure illustrated in the Figure
3.17. The GRU/LSTM were found to exhibit the highest accuracy when sandwiched
between sets of fully connected layers, which were chosen to be 4.

Following the same structure, these networks had been experimented with using the
same data and DBN topology used in Scenario III (results illustrated Figure 3.18 - 3.21).
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Figure 3.17: Alternative CVPM structure

Method Correlation at 5s RMSE at 5s

RNN 0.96921 0.05405
Hybrid GRU 0.93862 0.16569

Hybrid LSTM 0.85214 0.30139
Hybrid Bi-LSTM 0.85109 0.24268

Hybrid LSTM+GRU 0.74452 0.15472

Table 3.4: Results comparison

• Hybrid GRU network

• Hybrid LSTM network

• Hybrid Bi-Directional LSTM (Bi-LSTM) network

• Hybrid GRU-LSTM (alternating layers) network

Using the same test dataset as reference, the vanilla RNN results can be found in Figure
3.22. All the above networks were trained with the same data, settings, and properties.

Clearly the RNN has the superior results which can also be seen in Figure 3.23-3.24.
Table 3.4 gives a numerical perspective of how these results compare.

All the above results were from the same global structure of DBN+CVPM. The superior
results of RNN can seem counter-intuitive at first but it should be noted that the DBN
stream was not sequentialized for the LSTM or GRU which is also the main reason why
they had to be sandwiched between to sets of fully connected layers in the first place.
However, there is more than one conclusion that can be drawn from the results; and that
is the effect the DBN has on the performance of the CVPM. To observe this effect, the
DBN stream can be removed from the LSTM inputs and have the trained network compete
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Figure 3.18: Hybrid GRU Network Results
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Figure 3.19: Hybrid LSTM Network Results
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Figure 3.20: Hybrid Bi-LSTM Network Results
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Figure 3.21: Hybrid LSTM+GRU Network Results
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Figure 3.22: Reference RNN Results
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Figure 3.23: Stacked CVPM Comparison
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Figure 3.24: Stacked CVPM Errors Comparison
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Figure 3.25: Solo LSTM CVPM

with the DBN+LSTM implementation which might have been less than ideal. Comparing
Figure 3.19 with Figure 3.25, it is apparent that while effects of the non-sequentialized and
digital-natured DBN inputs are removed from 3.25, the far more superior results of the
Figure 3.22 indicate that:

1. DBN does in fact complement the RNN in terms of providing useful information

2. With tweaking the I/O stream, the alternative solutions could give very accurate
results.

A possible solution is the revised approach illustrated in Figure 3.26 where a sequence of
DBN stream is fed into a LSTM or GRU to classify a short-term speed change profile, which
would then be used by another CVPM which can utilize that for its speed predictions. A
by-product of this approach is that it provides more insight into what the CVPM is doing
as the resemblance of the predicted velocity and the predicted velocity profile edge can be
examined. However at the same time, some information is lost that could have been useful
for velocity predictions in the CVPM. This can be compensated by reintroducing some
variables into the direct DBN stream. Though overall, the computation time is expected
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Figure 3.26: Revised approach

to be increased quite significantly which needs to be addressed. The satisfactory results of
the DBN-RNN however, did not justify the extra steps needed for a possible improvement
and the proposed method remains the same.

3.5 Scenario IV: Roundabout driving 5

In this scenario, the strategy is applied to the case of roundabout driving which has been
experiencing an emergence especially in growing urban areas as roundabouts offer a passive
solution to traffic control which in turn makes them ‘smarter’ in controlling traffic. The
lack of active components, for instance a traffic light signal, at roundabouts means that
they are adaptive to the flow and temporal changes in traffic, but in turn poses a threat
to inexperienced drivers who are not acquainted with roundabout driving, often causing
a chain reaction in traffic accidents. This scenario is much more similar to Scenario II,
than to Scenario III, in the sense that there is a priority relationship between the assumed
ego-vehicle and other traffic participants. In the highway merging problem, the vehicle
trying to merge into the highway is performing the more complex manoeuvre and can be
focused on rather than having to consider vehicle pairs at all times as it was the case in
intersection driving. In the roundabout driving, the vehicle trying to enter the roundabout
is the point of focus as well, as once the vehicle has entered the roundabout, it has higher
priority and can perform any manoeuvre without the need for complex decision making.

5This is an accepted manuscript published by Avestia in the Proceedings of the 7th International Con-
ference on Control, Dynamic Systems, and Robotics (CDSR’20) on November 9th 2020, available online:
http://doi.org/10.11159/cdsr20.155, M.Zamani Abnili, N.L. Azad, “Roundabout Situational Awareness
for Automated Vehicles with Hybrid Machine Learning Approach”
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3.5.1 Simulation in SUMO

SUMO does not support roundabouts natively, so the environment was created using a
number of road sections connected via zippers in a circular shape. The increased number or
zippers also acts as a lane-change preventing solution for inside the roundabout. Inside the
considered roundabout, the priority for travellers has been increased so that the simulation
is as close to reality as possible. Each arm extends for 500 meters as two lanes with a
different traffic flow density to introduce variations into the traffic. A total of 16 flows
were introduced at the end of every arm, one introducing one vehicle at every time step
on the west side, one introducing one vehicle at every 2 time steps on the south side, one
introducing one vehicle at every 3 time steps on the north side and one introducing one
vehicle at every 4 time steps on the east side. In other words, the opposing sides have
an equal total flow but placing the observer at each side would produce variation in the
data. The flows have combined random trip destinations so that from every arm the flows
generated will travel every four arms, but the sequence in which each vehicle is spawned
into the simulation is random. A snapshot of the simulation environment is illustrated in
Figure 3.27.

Figure 3.27: Roundabout simulation environment
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3.5.2 Dynamic Bayesian Network Topology and Variables

The data extracted from SUMO has information about positions, speeds, and lanes of the
3000 vehicles in the simulation. The position information can be fused with the map of
the environment to obtain relative positions of vehicles conserving the traffic rules. Due
to the extreme size of the dataset, spectral clustering was performed on the set of vehicle
pairs that were co-present in the simulation. In a 3000 × 3000 sparce grid of cells, the
cells with data were rearranged to the closest configuration to a diagonal matrix. A visual
representation of this rearrangement can be viewed in Figure 3.28 where each white pixel
represents a cell with information and black background is formed by empty cells.

(a) Before clustering (b) After clustering

Figure 3.28: Visual representation of spectral clustering on the dataset

This rearrangement of data allows for much shorter processing times when extracting
data for the DBN. The DBN topology is not guaranteed to be optimal and relies on
the experts subjective judgement. In this case, the variables were chosen with two main
objectives in mind:

1. Having the least pre-processing requirements

2. Being the most convenient to measure from the environment in a real driving scenario

After the spectral clustering, the following variables were extracted from the dataset by
fusing the position, speed, and lane data with the roundabout layout. The variables, their
states, and their layout can be found under Table 3.5.
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# Variable Name Variable States

1 Lane {1,2}
2 Start Position {E,N,W,S}
3 Entered RA 6 {True,False}
4 Lane in RA {1,2}
5 Destination {E,N,W,S}
6 Inside RA {True,False}
7 Stop to Enter {True,False}
8 Lane Prime 7 {1,2}
9 AccFlag 8 {Negative, non-Negative}
10 AccFlag Prime {Negative, non-Negative}

Table 3.5: Variables and the topology of the DBN used in Scenario IV

3.5.3 CVPM Implementation and DBN interfacing

This scenario continues the trend of previous sections and experiments with multiple
CVPMs in combination with DBN, namely the vanilla RNN, LSTM, and GRU. The
input-output for the three different implementations are the same and consist of a 12-
second velocity history, complemented by the DBN stream. The DBN stream consists of
the likelihood of one setting for binary variables, and the mean and the likelihood of the
setting with maximum likelihood for non-binary variables. In this specific application, due
to low number of DBN nodes, it was possible to feed all the variables into the CVPM to
complement the velocity history. To keep it fair between the three methods, the number
of layers and nodes were kept consistent throughout the trials, as well as training prop-
erties. One thing to keep in mind, however, is that in the case of complementary inputs,
the DBN stream in this case, the closer the sequence predictor structure to a perceptron,
the smoother the output and the higher the accuracy. This is validated by the results
illustrated in the following figures. Also to keep the results fair, Kalman smoothing was
not implemented in these results.

Stacked plot with the RNN, GRU, and the LSTM results are generated and presented
in Figure 3.29 with the errors illustrated in Figure 3.30. The results for the RNN are far

6RA stands for“Roundabout”
7“Prime” refers to the variable in the next time-slice
8Acceleration Flag

63



superior than that of the GRU and LSTM in this specific application and that is beside
quicker training times and turnaround times. Also, in this specific application, between
the GRU and the LSTM, the LSTM has the upper hand in terms of accuracy.

As the vanilla RNN proved to be the most accurate among the methods, we focused
on the RNN as the method of choice. Figure 3.29 illustrates the prediction results for a
vehicle that spent a relatively short period in the simulation. The low average speed and
frequent stops are markers that there was significant amount of traffic present during this
trip, however the traffic has not caused the traffic to stop completely. That is as opposed
to the trip taken in Figure 3.31 where the trip takes three times longer for the same
distance travelled. Either result demonstrates very high prediction accuracy for both low
speed traffic driving and following the transients. The complementary DBN stream has the
effect on velocity prediction where there is clear distinction between low speed travel and
complete stop, even for extended periods. The way DBN can achieve this is introducing
a switch with many configurations each having a different weight that the RNN learns
through back propagation algorithm. The error bounds for normal driving scenario for the
RNN are [-0.71,0.94], [-0.97,1.47], [-1.46,2.75], and [-2.11,4.10], and in the case of heavy
traffic driving are also measured at [-0.75,1.23], [-1.58,2.25], [-4.62,4.63], and [-6.64,6.74]
m/s for 1, 2, 5, and 10 second predictions respectively. One notable item in these results is
that low speed predictions are a lot more accurate than the final high-speed transients as
the vehicle is jetting off the simulation environment. The reason for this phenomenon can
be explained by analysing the dataset. In this dataset, vehicles that spent longer inside the
simulation (due to heavier traffic), introduce more samples in the training. Out of these
extra samples most, if not all of them, are zeros or very small values. That is because the
travelled length is equal for all vehicles and that would be the area underneath the speed
curve. The only scenario where these extra samples are not zero are for the cases where
there is one or more lane-changes going into, or out of the roundabout. There are ways
to mitigate this issue by introducing low traffic periods and merging multiple datasets for
different flow densities. However, as some readers may have noticed, the main objective
of a roundabout prediction strategy is to make predictions for a merging vehicle into the
roundabout, and that is where the challenge lies, as vehicles inside the roundabout have
higher priority and can exit at any time without hesitation. In other words, once a vehicle
has merged into the roundabout the problem is solved for the most part, and to predict a
vehicles motion after the roundabout, much simpler solutions can be implemented like the
one introduced in [25].

Finally, the accuracy and validity of the results presented were measured by cross-
correlations between actual data and the predicted speed profiles. These metrics for the
RNN in the scenario presented in Figure 3.29 are shown in Table 3.6. As expected, the
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Figure 3.29: Stacked CVPM Comparison

Figure 3.30: Stacked CVPM Errors Comparison
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Figure 3.31: Roundabout results for heavy traffic

higher the prediction horizon, the lower the accuracy, but the results maintain a correlation
greater than 0.895 and an RMSE less than 0.036.

Prediction horizon Correlation RMSE
1 second 0.97641 0.029334
2 seconds 0.97792 0.028453
5 seconds 0.97661 0.029249
10 seconds 0.96462 0.035995

Table 3.6: Accuracy metrics for RNN in scenario presented in Figure 3.29
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Chapter 4

Development of a Scale-Car Platform
for Test and Validation Purposes

A test platform with scaled cars was developed in the SHEVS for perception and control
strategies validation purposes. The platform consists of a road network with a layout that
was designed to encompass all of possible traffic scenarios, two fully instrumented vehicles,
a driver in the loop set-up, and a global positioning system. The objective of developing
this platform was to have a way to test and validate control and perception algorithms
developed in SHEVS lab.

Figure 4.1: Scaled autonomous vehicle test platform developed in SHEVS lab
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4.1 The City Layout

The main objective in the design of the city layout was to have as many driving locations
as was possible to fit inside the available lab space. The design and implementation was
done by a final year design project team (DJABA) working with SHEVS lab and the final
layout includes (Figure 4.2):

• Roundabouts

• Two/four-lane roads

• Stop and yield signs

• Uncontrolled (can be virtually con-
trolled) three/four-way intersections

• Auxiliary lanes to merge the traffic

Figure 4.2: Scaled city layout

The city layout was printed on vinyl paper and was applied on panels so that the layout
can be altered may there be the need to do so. This design was one of many designs that
DJABA came up with and it was selected as it made the best use of the space.

4.2 Vehicles

The vehicles, also designed and implemented by the same FYDP team (DJABA), are
heavily modified versions of RC hobby cars. The chassis and the vehicle propulsion are
stock 1:18 ECX R© Ruckus R© 4WD Monster Truck. Since “monster trucks” are naturally
larger with wider wheel base, effectively the end product has become 1:15 scaled standard
car. On top of the chassis, sits a plexi-glass tray, housing the Nvidia Jetson

TM
TX2 as the

high-level controller and the Arduino Mega 2560 as the actuator controller. The vehicles are
equipped with LiDAR, Camera system, IMU, and wheel encoders. Figure 4.3a illustrates
an exploded view of the vehicles and where each component goes (Note that this figure is
missing the vehicle propulsion system, and steering servo). The shell was custom printed
for these vehicles, as well as the encoder fork, and the inside teeth that would engage the
encoder on the inside of the wheels. To support the added weight of the new components,
the suspension was upgraded with new stiffer springs and to make everything fit inside the
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small footprint, custom PCB boards were designed as Arduino shells and for the motor
drivers. The actual hardware for the car can be seen in Figure 4.3b

(a) Exploded view of the vehicle components (b) Actual hardware for one of the cars

4.3 Driver In The Loop

As mentioned before, with the development of any autonomous driving system, the main
challenge is designing a system that can perform in presence of the uncertainties associated
with humans. To include that in the test platform, driving simulation hardware was
added that can take control of each one of the vehicles and then a user can drive the car
using the camera feed transmitted from the vehicle to the screen in front of the driver.
Figure 4.4 illustrates the hardware for the human-in-the-loop system. With the prediction
algorithm, the thought process was that with a human-in-the-loop system the data collected
for training can be a lot more realistic and with learning the nuances of human driving, it
can produce much more accurate predictions which would be used as a validation method
for the prediction strategy proposed in this study. The proof that this strategy works with
real data can also be seen in the results of Scenario II which was using real data obtained
from US-101 but it should also be noted that such data is not available for every driving
scenario and location, and existing data almost never has the desired variables.

The driver-in-the-loop hardware has an acceleration pedal and a brake pedal. As some
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Figure 4.4: Driver-in-the-loop system

readers may notice, especially those experienced with scaled hobby cars, is that these cars
do not have braking system. At the same time, due to their relatively low weight and high
friction, and surface adhesion, once the accelerator pedal is disengaged, the vehicle comes
to an stop quite quickly. Regardless of that, to make sure there is as much similarity to
real vehicles as possible, the brake pedal was programmed to switch the polarity of the
motors and set the duty cycle to (4.1) where bpp is the brake pedal position percentage.

D = bv.bpp%
vmax

c (4.1)

Also for research convenience, regardless of the active control scheme, the camera feed
from both cars is always shown to the user and gives the ability to the user to hijack any
of the cars at will.

4.4 Control Network

The control network was built on ROS with python codes running on the Linux nodes.
For the sake of simplicity and fluidity, the main control algorithms were chosen to run on
a desktop node, and the Jetson

TM
to simply relay the information to the Arduino actuator

controller and transmitting camera feed to the main node. However it is important to note
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that the Jetson
TM

itself is powerful enough to handle running most control algorithms. A set
of 8 Vicon cameras would provide accurate location of each vehicle to the controller which
may or may not be used by the algorithm but having ground truth is always a welcome
addition. To make sure the collocated vehicle (i.e. the vehicle that is not controlled by a
human driver) follows the trajectory produced by the control algorithms, a least squares
system identification was performed on the vehicles to obtain a state-space model. The
system parameter identification was performed with a few simplifying assumptions. The
assumptions were regarding the system as linear and neglecting friction, also neglecting
slips and slides. The justification was that past the static friction which introduces non-
linearity to the system, for kinetic friction, the elements of the model will compensate for
it. For the bicycle model below where ω is the yaw rate, vlon and vlat are the longitudinal
and the lateral velocities, ϕ is the steering angle and ua is the propulsion input. ω(k + 1)

vlon(k + 1)
vlat(k + 1)

 =

a11 a12 a13

a21 a22 a23

a31 a32 a33

×
 ω(k)
vlon(k)
vlat(k)

+

b11 b12

b21 b22

b31 b32

× [ϕ(k)
ua(k)

]

Obtaining the A3×3 and B3×2 matrices will provide the model relating the discrete
states in the current time slice to the next. Feeding the plant a long out of sync sequence
of step inputs for ϕ and ua will provide enough data to extract the A and B matrices from.
For a dataset of length N, it can be written:
ω(2) vlon(2) vlat(2)
ω(3) vlon(3) vlat(3)

...
...

...
ω(N) vlon(N) vlat(N)

 =


ω(1) vlon(1) vlat(1) ϕ(1) ua(1)
ω(2) vlon(2) vlat(2) ϕ(2) ua(2)

...
...

...
...

...
ω(N − 1) vlon(N − 1) vlat(N − 1) ϕ(N − 1) ua(N − 1)



×


a11 a21 a31

a12 a22 a32

a13 a23 a33

b11 b21 b31

b12 b22 b32


For the ease of notation, the matrices can be renamed to form the following equation:

Ω = Φ×Θ

In the equation above, Ω and Φ are known from the dataset and Θ contains all the model
parameters, which can be singled out and estimated using the following equation:

Θ̂ = (ΦTΦ)−1ΦTΩ
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The model was then used to obtain a linear-quadratic regulator (LQR) controller which
would drive the actuators. The objectives for the controller were implicit with optional
path following transformations in the feedback loop. Although a lot of non-linearity exists
in the systems from friction, the LQR controller proved to work well. With that as a plat-
form, a control algorithm for the vehicle in collocated control was developed by importing
the map of the environment to SUMO, identifying where the vehicle is, then either receiv-
ing a user input for the destination or generating a random one. The algorithm would
then find a path between the current location and the destination that would travel the
least amount of nodes and feed the array of desired nodes to SUMO. SUMO would then
generate the trajectory that the vehicle would have to travel to abide all the traffic laws.
Figure 4.5 illustrates the city layout in SUMO and a directed graph representing the same
environment. Figure 4.6 illustrates the control algorithm in action for a random initial
position and a random destination.

(a) Map of the environment in SUMO (b) Graphical representation

Figure 4.5: City layout

The benefit of using SUMO as a middle-ware, on top of introducing traffic laws into
the control system, is that it makes augmenting the environment with virtual participants,
and virtual constraints possible. The intersection can be controlled or uncontrolled, a path
can be blocked, virtual traffic flow can be incorporated, etc., the possibilities are endless.
It also provides a lot of potential for later expansion.

This setup was then utilized by another FYDP team (RoundRL) to test their reinforce-
ment learning algorithm for roundabout driving. It was planned to have the test platform
to validated the results of this study too by collecting data from the actual set-up and
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(a) Map of the environment in SUMO (b) Graphical representation

Figure 4.6: Control algorithm in action

several human drivers and then employing the prediction strategy to predict the motion
of any human driver driving the scaled cars. This however did not happen unfortunately
because of the closures and lock downs related to COVID-19. With all the work that has
been put into realization of this test platform, future generations of SHEVS lab researchers
are strongly encouraged to utilize it to test their control or perception algorithms.
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Chapter 5

Conclusion and Future Work

At the time of writing this thesis, autonomous driving is a very popular and trendy subject
among research communities and tech industries alike. To recap from the introduction:
“Autonomous driving promises affordable long-range transportation for the public by re-
placing the human workforce and minimizing energy consumption; Provides individuals
with disability a means for personal conveyance, minimizes harmful by-products such as
exhaust emissions in case of internal combustion engine-driven vehicles and decrease power
plant waste in case of their electric counterparts. Most importantly, autonomous vehicles
are expected to minimize traffic accidents and thereupon the property, and tragically in
some cases life and limb, associated with such occurrences.” Then there is no wonder
as for the reason of this avid interest. That said, the challenges are also numerous and
formidable. The main challenge arises from the fact that autonomous vehicles are not
instantly replacing the human-driven ones and that translates to a transition phase where
machines are supposed to operate among humans. Any robot operating among humans
is required to meet very strict safety requirement and should be able to handle all sorts
of uncertainties, let alone one that even when operated by humans, is responsible for so
many tragic losses worldwide every year.

If we continue with the anthropomorphic theme of personifying machines, a machine’s
reactive brain, much like that of humans and animals, has two main sections: one respon-
sible for understanding the environment, and the other for making decisions in accordance.
Technically, for a machine these sections are called “perception” for the former and “con-
trols” for the latter. The performance of such machine is as good as the weakest link it its
brain chain. Whilst controls has seen a lot of research, and lots of progress, “perception”
lagged behind, especially due to the computer processing technology not being up to par
with artificial intelligence techniques.
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For any driving scenario if there existed a solution that could robustly predict all
the actions of traffic participants, and knew the traffic laws governing that scenario, the
controller’s job would then only be navigating collision-free trajectory, while minimizing
fuel consumption and dynamic jerkiness. Although developing such controller is not an
easy feat, such controllers already exist, thanks to years of research and development
endeavours. The same cannot be said about perception strategies unfortunately.

In this study, a strategy for prediction of traffic participants’ behaviour is proposed that
can learn the rules that govern this behaviour by probabilistic inference. Due to complexity
of the problem, and uncertainties associated with human behaviour, machine learning
techniques were opted for, namely DBN and RNN. DBN is a powerful tool that can perform
under uncertainty, partial observation, noisy inputs, and complex relationships between
conjoint and dependent variables. At the same time, DBN cannot handle continuous
variables and can be trained specific to one driving environment only. As for continuous
variable prediction shortcoming, several CVPM techniques were experimented with, out of
which vanilla RNN yielded superior results. For environment specificity, the solution is to
enumerate profiles in which the DBN is trained. In this study this training was done for
two different scenarios, highway merging, and a much more complex intersection driving,
as well as roundabout driving. Adding a few more environment such as city (general), and
highway (general), and then switching between the modes by intelligently identifying the
driving scenario would make a complete package.

A pro and a con of DBN approach is it being an expert system. While there are
methods to identify dependencies between variables empirically and quantitatively (e.g.
by correlation analysis), expert knowledge is still required for constructing the topology.
To justify this, one may think traffic rules are human contract anyway. As humans we learn
it from experts, why should not the machine. While there is quite a substantial merit to
this claim, it also makes this approach quite more difficult to implement and obtain good
results from it as this “expert” needs to also think like a machine to be able to teach a
machine. The advantage of DBN being an expert system however, is a natural one, and is
the same reason why behaviourism in psychology is not perfect. As it is easier to train a
dog to drool at the sound of a bell than it is to teach the same dog to dance, the expert
knowledge is foundation for the algorithm to learn a specific dataset and can be thought
of as its innate talent.

To be able to encapsulate the environment for the algorithm, an expert would construct
the topology of the DBN with a few objectives in mind (3.3.2):

• The source nodes (nodes with in-degree of 0) must be reserved for variables that
can be directly measured from the environment. In other words, source nodes act as
inputs.
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• The complexity of the problem, for each node, scales exponentially with the number
of parents and the number of states each parent can take. Therefore one node must
not have too many parents.

• The child-parent dependency must be conserved. Each node should have either a
direct or an indirect correlation with its neighbours.

From there onwards, any continuous variable is switched to be handled by and RNN,
that can observe a short history of that variable and make predictions for an arbitrary
horizon. The overall schematic of this marriage can be summarized into Figure 5.1.

Figure 5.1: Components’ combination schematics

While the proposed method does not solve the perception problem completely, the com-
petent results yielded for highway merging (Scenario II) and intersection driving (Scenario
III) promises a capable method that can complement controllers for improved performance.
The areas for improvement are plentiful but can be classified into two main categories, ac-
curacy and generalization.

In the case of accuracy, the first areas that come to mind are data and implementation.
Intuitively as more data is introduced into training, the more accurate the results become
or at the very least, the more information is provided on how accurate the strategy really
is. If the increase in accuracy plateaus, the next step would be to modify the techniques,
or the topologies used. As with all machine learning techniques, especially with so many
variables and parameters affecting the performance and accuracy, an optimized setting
cannot be guaranteed, but with small and gradual tweaks here and there, the bar will be
raised.

Generalization is also significant, and can concern within an environment profile or
among them. the metrics of generalization within an environment would mostly be a
result of human inconsistency and erratic behaviour, as well as there being numerous forms
that humans can exist in that environment. Wheelchairs, scooters, bicycles, pedestrians,
trucks, farm vehicles, skateboards, children, and many other forms of presence can affect
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the generalization ability of any prediction algorithm as each have a different behaviour
and it is expected of the autonomous vehicle to be able to navigate any environment as
safely as possible. Among environments simply concerns with how many driving scenarios
the strategy encompasses.

To summarize:

1. Accuracy enhancements

• Additional data incorporation

• Systemic tweaks:

– Training and network parameters

– Network topologies

– CVPM replacement

2. Generalization improvements

• Inter-environmental generalization

• Intra-environmental generalization

I would like to conclude this thesis with two points that one of my favourite science
authors, Steven Pinker made in a debate about human progress. He recounts ten areas
where human life is now better than before and those areas are: life itself, health, prosperity,
peace, safety, freedom, knowledge, human rights, gender equality, and intelligence. As
surprising as it may sound, autonomous driving can and will affect more than half of these
areas for the better. He also reminds the audience that “journalists report plane crashes
and not the planes that take off.” The numbers speak for themselves. Considering the
innumerable efforts to achieve fully autonomous driving and so many human lives at risk,
any contribution to the art can be just another baby step toward a breakthrough. Given
the matured state of controllers, it is apparent that effort in perception is a more productive
way to mitigate the hindrance, halting the progress of autonomous driving. Ultimately,
both domains are hoped to have a reinforcing effect on each other, pushing the art forward
and bringing autonomous driving and its benefits closer, baby step by baby step.
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Appendix A

Cumulative Standardized Normal
Distribution Table

NORMAL CUMULATIVE DISTRIBUTION FUNCTION

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7703 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
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1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998
3.6 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.7 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.8 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Appendix B

Back Propagation Algorithm

Back propagation learning is a method of learning in which the errors are propagated from
the outermost layer inwards and the weights of the network are adjusted based on the
difference between the desired outputs and the network outputs. To put the method into
perspective, suppose the desired value for neuron j is known. wij is the input weight going
from neuron i to neuron j (needless to say, i is in one layer before j). xj is the input to
neuron j, yj is the corresponding output and dj is the desired output. based on (2.18), xj
can be computed as:

xj =
∑
i

yiwij (B.1)

and assuming the logistic sigmoid activation function, the output is computed as:

yj =
1

1 + e−xj
(B.2)

For the specific training case (c) the desired output is known, therefore the global error
can be defined as the squared difference of the output and the desired value:

E =
1

2

∑
c

∑
j

(yj,c − dj,c)2 (B.3)

To start the BP-Algorithm, the network is utilized to compute the outputs for a training
case going forward, initialized by a random set of weights. The input vector presented to
the network from the training case is associated with a desired output. After the network
has computed the outputs for every input presented, the global error (E) can be computed.
The error computed then can be utilized to update the weights in such a way that the errors
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are minimized. Mathematically, the minima of error with respect to the weights can be
found by finding where the derivative of error with respect to weights becomes zero. The
weights can then be updated proportional to the negative of this derivation, mathematically
represented as:

∆wij,c ∝ −
∂Ec
∂wij,c

(B.4)

the only task that remains is to find the right hand side in (B.4). Using chain rule we can
write:

∂Ec
∂wij,c

=
∂Ec
∂xj,c

.
∂xj,c
∂wij,c

(B.5)

where xj,c denotes the input to neuron j and can be computed as:

xj,c =
∑
k

wkjyk,c =
∑
k 6=i

wkjyk,c + wijyi,c (B.6)

substituting (B.6) into (B.5) one partial derivative can be calculated as:

∂xj,c
∂wij

=
∂

∂wij
(
∑
k 6=i

wkjyk,c + wijyi,c) = yi,c (B.7)

for the other partial derivative we can define “error signal (δ):

δj,c = − ∂Ec
∂xj,c

(B.8)

by adding “learning rate (η) to the mix to adjust the rate of which the weights are updated
to travel along the gradient, the weight updates can be represented as:

∆wij,c = η . δj,c . yi,c (B.9)

To evaluate the error signal (δ), chain rule can be applied a second time.

∂Ec
∂xj,c

=
∂Ec
∂yj,c

∂yj,c
∂xj,c

(B.10)

given the activation function ϕ the relationship between yj,c and xj,c can be expressed as
yj,c = ϕ(xj,c), and therefore:

∂yj,c
∂xj,c

= ϕ′(xj,c)

for the first derivative in (B.10) two cases need to be considered.
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1. j is an output neuron (i.e. the training case explicitly defines the desired value for
every input to the neuron): In this case, the output error is known as a function of
the network output (yj,c). Therefore:

∂Ec
∂yj,c

= yj,c − dj,c (B.11)

and the error signal follows:

δj,c = (yj,c − dj,c) . ϕ′(xj,c) (B.12)

2. j is a hidden neuron. In this case, the error is not explicitly known. However, after
applying the first case to the output layer (l), we know:

Ec =
1

2

∑
l

e2
l,c (B.13)

where el,c represents:
el,c = dl,c − yl,c (B.14)

going back to the derivative, we can write:

Ec
yj,c

=
∑
l

el,c.
∂el,c
∂yj,c

(B.15)

by applying the chain rule once more, the above equation can be written as:

∂Ec
∂yj,c

=
∑
l

el,c.
∂el,c
∂xl,c

.
∂xl,c
∂yj,c

(B.16)

It is known that:

el,c = dl,c − yl,c
= dl,c − ϕ(xl,c)

(B.17)

hence,
∂el,c
∂xl,c

= −ϕ′(xl,c) (B.18)

From (B.1) we know that we can write xl,c as:

xl,c =
∑
j

wjl,c.yj,c (B.19)
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differentiating the equation with respect to yj,c:

∂xl,c
∂yj,c

= wjl,c (B.20)

∂Ec
yj,c

= −
∑
l

el,c.ϕ(xl,c).wjl,c

= −
∑
l

δj,c.wjl,c

(B.21)

Finally, by rearranging the terms we can find δj,c as:

δj,c = ϕ′(xj,c).
∑
l

δl,c.wjl,c (B.22)

Having found δj,c for both cases, the equation (B.9) can be used to update the weights
in such a way to decrease error over iterations. As mentioned before, the activation func-
tion used in this study is sigmoid function. Therefore for this case, the solution can be
particularized to the specific function as follows:

yj,c = ϕ(xj,c) =
1

1 + e−xj,c+θ
(B.23)

To calculate ϕ′(xj,c), we can write:

ϕ′(xj,c) =
∂

∂xj,c

(
1

1 + e−xj,c+θ

)
=

(
−1

(1 + e−xj,c+θ)2

)
.
∂

∂xj,c
(1 + e−xj,c+θ)

=

(
−1

(1 + e−xj,c+θ)2

)
e−xj,c+θ.

∂

∂xj,c
(xj,c + θ)

=

(
1

1 + e−xj,c+θ

)
.

(
e−xj,c+θ

1 + e−xj,c+θ

)
=

(
1

1 + e−xj,c+θ

)
.

(
1 + e−xj,c+θ

1 + e−xj,c+θ
− 1

1 + e−xj,c+θ

)
=

(
1

1 + e−xj,c+θ

)
.

(
1− 1

1 + e−xj,c+θ

)
By substituting yj,c into above equation we will get:

ϕ′(xj,c) = yj,c.(1− yj,c) (B.24)
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going back to equations (B.12) and (B.22), δj,c can be computed as follows:{
δj,c = (dj,c − yj,c).yj,c.(1− yj,c) for output neurons

δj,c = yj,c.(1− yj,c).
∑

l δl,cwj,l for hidden neurons
(B.25)

The training can be iteratively carried out until the global error falls below a certain
threshold.
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