
Detection of Anomalous Behavior of IoT/CPS
Devices Using Their Power Signals

by

Abdurhman Albasir

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2020

© Abdurhman Albasir 2020



Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Srinivas Sampalli
Professor, Faculty of Computer Science, Dalhousie University

Supervisor(s): Kshirsagar Naik
Professor, ECE Dept., University of Waterloo

Internal Member: Fakhri Karray
Professor, ECE Dept., University of Waterloo

Internal Member: Pin-Han Ho
Professor, ECE Dept., University of Waterloo

Internal-External Member: Ali Elkamel
Professor, Dept. of Chemistry, University of Waterloo

ii



Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii



Abstract

Embedded computing devices, in the Internet of Things (IoT) or Cyber-Physical Sys-
tems (CPS), are becoming pervasive in many domains around the world. Their wide
deployment in simple applications (e.g., smart buildings, fleet management, and smart
agriculture) or in more critical operations (e.g., industrial control, smart power grids, and
self-driving cars) creates significant market potential ($ 4-11 trillion in annual revenue is
expected by 2025). A main requirement for the success of such systems and applications
is the capacity to ensure the performance of these devices. This task includes equipping
them to be resilient against security threats and failures. Globally, several critical infras-
tructure applications have been the target of cyber attacks. These recent incidents, as well
as the rich applicable literature, confirm that more research is needed to overcome such
challenges. Consequently, the need for robust approaches that detect anomalous behaving
devices in security and safety-critical applications has become paramount. Solving such
a problem minimizes different kinds of losses (e.g., confidential data theft, financial loss,
service access restriction, or even casualties).

In light of the aforementioned motivation and discussion, this thesis focuses on the
problem of detecting the anomalous behavior of IoT/CPS devices by considering their
side-channel information. Solving such a problem is extremely important in maintaining
the security and dependability of critical systems and applications. Although several side-
channel based approaches are found in the literature, there are still important research
gaps that need to be addressed. First, the intrusive nature of the monitoring in some
of the proposed techniques results in resources overhead and requires instrumentation of
the internal components of a device, which makes them impractical. It also raises a data
integrity flag. Second, the lack of realistic experimental power consumption datasets that
reflect the normal and anomalous behaviors of IoT and CPS devices has prevented fair
and coherent comparisons with the state of the art in this domain. Finally, most of the
research to date has concentrated on the accuracy of detection and not the novelty of
detecting new anomalies. Such a direction relies on: (i) the availability of labeled datasets;
(ii) the complexity of the extracted features; and (iii) the available compute resources.
These assumptions and requirements are usually unrealistic and unrepresentative.

This research aims to bridge these gaps as follows. First, this study extends the state of
the art that adopts the idea of leveraging the power consumption of devices as a signal and
the concept of decoupling the monitoring system and the devices to be monitored to detect
and classify the “operational health” of the devices. Second, this thesis provides and builds
power consumption-based datasets that can be utilized by AI as well as security research
communities to validate newly developed detection techniques. The collected datasets
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cover a wide range of anomalous device behavior due to the main aspects of device security
(i.e., confidentiality, integrity, and availability) and partial system failures. The extensive
experiments include: a wide spectrum of various emulated malware scenarios; five real
malware applications taken from the well-known Drebin dataset; distributed denial of
service attack (DDOS) where an IoT device is treated as: (1) a victim of a DDOS attack,
and (2) the source of a DDOS attack; cryptomining malware where the resources of an
IoT device are being hijacked to be used to advantage of the attacker’s wish and desire;
and faulty CPU cores. This level of extensive validation has not yet been reported in any
study in the literature.

Third, this research presents a novel supervised technique to detect anomalous device
behavior based on transforming the problem into an image classification problem. The main
aim of this methodology is to improve the detection performance. In order to achieve the
goals of this study, the methodology combines two powerful computer vision tools, namely
Histograms of Oriented Gradients (HOG) and a Convolutional Neural Network (CNN).
Such a detection technique is not only useful in this present case but can contribute to most
time-series classification (TSC) problems. Finally, this thesis proposes a novel unsupervised
detection technique that requires only the normal behavior of a device in the training
phase. Therefore, this methodology aims at detecting new/unseen anomalous behavior.
The methodology leverages the power consumption of a device and Restricted Boltzmann
Machine (RBM) AutoEncoders (AE) to build a model that makes them more robust to the
presence of security threats. The methodology makes use of stacked RBM AE and Principal
Component Analysis (PCA) to extract feature vector based on AE’s reconstruction errors.
A One-Class Support Vector Machine (OC-SVM) classifier is then trained to perform the
detection task. Across 18 different datasets, both of our proposed detection techniques
demonstrated high detection performance with at least ∼ 88% accuracy and 85% F-Score
on average. The empirical results indicate the effectiveness of the proposed techniques and
demonstrated improved detection performance gain of 9% - 17% over results reported in
other methods.
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Chapter 1

Introduction

The Internet of Things (IoT) has already begun to have a direct and decisive impact on
hundreds of millions of people worldwide (e.g., through the the Google Nest® Thermostat,
Amazon Echo®, and iRobot Roomba®). People are witnessing the abrupt adoption of IoT
services and applications in different domains (as shown in Fig. 1.1). While it is exciting
for both industry and academia, it is expected that this development is just the beginning
of a transformational journey. In the near future, every device a person owns, together
with any object with which he/she interacts, will be connected to the Internet. Whether
it is through a smartphone, wearable tech, or everyday household objects, the IoT will
connect people in ways they cannot yet even imagine. In homes, smart thermostats, alarm
systems, smoke detectors, and intelligent refrigerators will help reduce energy consumption,
secure and protect assets, and increase user comfort. In industry, autonomous controllers
operate and monitor complex critical production pipelines to improve productivity and
reduce service operation costs. In agriculture, large-scale networks of small sensors collect
information about the environment to help increase yields and better allocate resources.
In smart health care, remote health monitoring makes a significant difference in people’s
lives (for example, those with chronic illnesses); while decreasing the cost of health care
for these patients, it improves their quality of life.
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Figure 1.1: Adoption percentages of IoT technology per domain - Source: adopted from
IoT Analytics [194]

According to Heer et. al. [104], the generic definition of the IoT is: “The Internet of
Things denotes the interconnection of highly heterogeneous networked entities and networks,
following a number of communication patterns, including human-to-thing, thing-to-thing,
and thing-to-things”. This definition includes any system that is based on computing
devices that are uniquely identified and have the ability to autonomously process and
transfer data over a network. By definition, IoT technology covers a wide range of services
and applications (e.g., self-driving cars, smart health care, Industrial IoT, or any cyber-
physical system (CPS)). In this context, regardless how critical the offered IoT applications
are, the core of these systems is embedded devices -“things” - that are connected to the
Internet and are designed to monitor and control certain tasks about the surrounding
environment/system. In other words, these devices may be working within a complex
system or as stand alone applications [203].

Despite the overall positive feeling about IoT and CPS development, as well as the
considerable benefits for the end user, there are two perspectives to be considered. From one
perspective, IoT/CPS applications and devices create extensive market potential. Some
sources report that $ 4-11 trillion in annual revenues is expected in 2025 [154]. From the
other perspective, unfortunately, IoT/CPS applications and devices create the next target
for security attacks. In fact, IoT devices are forecast to be involved in more than 25% of the
identified attacks in enterprises in 2020 [116]. Due to the fact that device manufacturers are
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racing to be the first in the market, little time and effort is usually assigned for testing and
securing the developed devices and solutions. Also, given the fact that the functionality
of these devices depends on a direct data exchange (via the Internet or otherwise), these
devices have become inherently not secure. This also arises from the fact that these devices
are constrained in memory and processing (a typical IoT device has a CPU of ∼ 64 MHz
to 1 GHz and a RAM of ∼ 4 MB to 512 MB [179]). Therefore, having complex security
algorithms (e.g. anti-virus) is computationally expensive, hence is not viable.

The success of IoT and CPS based systems and applications is faced with the challenge
of properly and efficiently managing the devices [56, 129, 41, 218]. This is generally a
multidisciplinary problem. Management of the device challenge includes ensuring device
connectivity, fault identification, performance, reliability, quality of service, and security
[80, 95, 190]. Under the umbrella of device management, many important research prob-
lems need to be tackled. However, the challenge to be addressed in this thesis concerns
the accurate and efficient non-intrusive detection of a device’s anomalous behavior. In this
context, accurate and efficient detection means that the methodology produces low false
alarms and causes no overhead to the operation of the devices.
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Figure 1.2: Evolution of IoT and non-IoT devices from 2015 to 2025: Source: adopted
from GSMA [28]
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According to a Gartner report, 5.5 million new devices have been added every day since
2016. The total number of devices is forecast to surpass 20 billion by 2025 [82], as the
trend in Fig. 1.2 illustrates. The scale at which these devices are deployed, and the level
of criticality of certain applications, shows that overcoming the aforementioned challenges
has become imperative.

Several cyber-security incidents that involve IoT/CPS devices (as an attacker or a vic-
tim) have been reported in the last few years. In the industry sector, 66% of manufacturers
have experienced a security incident related to IoT devices in the span of the last two years
[2]. The infamous Stuxnet worm attack against Iranian nuclear uranium enrichment fa-
cilities is one example [88]. The Ukraine smart power grid, which was the target of a
cyber-attack that resulted in a three hour power outage nationwide, is a second example
[132]. More recently, the infamous DDOS attack on the Dyn DNS (domain name system),
which involved ∼ 100,000 malicious IoT devices [105] is a third example. Other sectors
have suffered from several ransomware attacks [74]. Self-driving vehicles [16], smart home
devices [21], and medical devices [137], to name a few, have all been the subject of different
kinds of attacks and vulnerabilities. These are just some examples of the type of critical
infrastructure that can be targeted globally. These recent incidents and studies confirm
that more research needs to be conducted and also show that existing solutions are far from
satisfactory in the attempt to stop the exponential growth in the number and complexity
of attacks [162]. Thus, there is paramount need for more lines of defense.

1.1 Problem Overview

Motivated by the aforementioned arguments, this thesis focuses on the problem of detecting
the anomalous behavior of IoT/CPS devices by considering their side channel information.
Solving such a problem is extremely important in maintaining the security and depend-
ability of critical systems and applications.
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Statement:
This research has been inspired by the fact that cyber-security attacks are increas-
ingly occurring worldwide, targeting the IoT/CPS devices used in critical systems.
Effective and robust approaches for detecting anomalous behavior of devices can min-
imize a significant amount of financial and life losses. Therefore, the objective of this
present work is to propose new approaches that leverage the power consumption of
devices and deep learning techniques to make these devices more resilient against
different kinds of attacks and failures.

A typical approach to detecting a device’s anomalous behavior is through formulating
the problem as an anomaly detection problem. An anomaly, as per the IEEE standard, is
defined as any condition that deviates from expectations [246]. Anomaly detection refers to
the process of using models to identify behavior that is different from the normal behavior
of a system [55].
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Figure 1.3: Breakdown of an IoT device’s possible status
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In the context of this thesis, under normal operational conditions, a device is expected
to perform repetitive, periodic tasks (e.g., sensing the surrounding environment, actuating
physical actions, performing local computations, and offloading data to the cloud). Con-
sequently, its normal - expected - behavior will have a pattern that reflects those tasks.
Therefore, when something unexpected goes off on board the device, its behavior will ac-
cordingly deviate from the expectation. Based on this concept, and as shown in Fig. 1.3,
the cause of a device’s anomalous behavior can be due to an anomaly of one of the following
forms: (i) security threats (e.g., malware, DDOS, or ransomware); (ii) a change in the exe-
cution environment (e.g., interference in the communication channel or firmware updates);
or (iii) a faulty device (e.g., hardware/software aging or failing components) [56, 115].

Given the complexity and heterogeneity of the problem, many research efforts have been
made to address the problem of detecting the anomalous behavior of devices at different
levels: device level [29, 241, 51]; network level [223, 183]; and system level [224]. Previous
studies and results have demonstrated some success [131, 226, 241, 123, 156, 134, 98, 190];
however, many significant research gaps are still there and has to be addressed. These
gaps are discussed in a broad sense in the following section. It is also worthy to note that
several recent incidents confirm that more has to be achieved [105, 74, 21].

1.1.1 Challenges

To achieve the goals of this thesis, an anomaly detection-based solution is developed. As
depicted in Fig. 1.4, the general process of detecting anomalous behavior in devices starts
with the data acquisition stage (also called monitoring), followed by the data analysis
stage, and the final decision-making (also called detection) stage. The key challenges faced
in designing this detection framework are discussed in the following subsections.
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Figure 1.4: Steps for anomaly detection techniques

Monitoring

Monitoring is the process of collecting data - observations - from a system, an IoT or a
CPS device. The collected data points (signals) describe certain measures or phenomena
about the monitored system (e.g., API calls, CPU utilization, power consumption, or
electromagnetic emissions). Monitoring can be generally classified into two categories based
on the invasive nature of the process, namely intrusive or non-intrusive. Intrusive methods
refer to methods that run on-device using applications/software that are installed in the
device to monitor its behavior for the purpose of detecting any abnormality. The main
problem with intrusive methods is the resources overhead. The operation of the intrusive
monitoring tool interferes with the normal operation of the device, causing unaffordable
computational cost (e.g., computing power, memory, storage space, and bandwidth). In the
reviewed literature, most of the proposed approaches are based on coupling the monitoring
tool with the device being monitored (on-device monitoring) [241, 231, 151, 54, 197, 50,
84, 22]. Such invasive approaches become questionable when it comes to usability and
practicality.

Since in practice, monitoring comes at a cost, in the present case, the side channel
information of a device, represented by its power consumption signals, is monitored. Such
a non-intrusive (off-device) monitoring is lightweight, thus more suitable for resource con-
straint devices. The necessity for exploiting the side channel information is rooted also
to the idea of preserving data integrity. In the case of security threats, namely malware
invasion, if the malware is sophisticated, it can detect the existence of intrusive monitor-
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ing methods [124, 98]. Consequently, the malware can block the attacker or manipulate
the collected data to avoid being detected. Therefore, intrusive monitoring raises a data
integrity flag. In other words, if a device is compromised, then so could the monitoring
means as well as the collected information [111, 172].

Although some studies found in the literature are based on off-device monitoring, it
may be noted that those require a degree of invasiveness. To elaborate, a physical access
to the internal components of the device (e.g., CPU input power) is required in some of
the power based anomalous behaviour detection techniques [151, 48]. In another example,
electromagnetic emissions (EM) based approaches require physical proximity to the device’s
CPU, along with proper alignment and setup [131, 130, 196]. The reported experimental
setup in these studies shows that EM receiver has to be placed close to the CPU in order
to collect the EM signals. Now, if the targeted device is packaged in a package that
suppresses the EM radiation or even weakens the radiated signal, then the applicability
of these approaches becomes problematic. Moreover, the EM receiver itself might be the
subject of an external attack (e.g., using signal jammers), which could jeopardize the whole
idea of EM based detection.

Analysis and Detection

Thus far, non-intrusively collecting the power consumption of devices seems to satisfy the
requirements for a suitable and practical detection approach. It is important to mention
that the collected signals are the overall power consumption of the device. Such a signal
combines the instantaneous power consumed by all hardware components of the device and
the software that runs it. Moreover, the power consumed by devices is a 1-D stochastic
time-series signal, which is generally complex to be described with analytical equations
with parameters to solve. Consequently, the nature of the collected data poses other kinds
of challenges. These challenges arise when deciding on how and where to analyze the
collected power signals. “How” refers to the analysis type (e.g., static, dynamic, or hybrid)
and technique (e.g., supervised, unsupervised, or semi-supervised), and “where” refers to
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the location of analysis (i.e., on-device or off-device analysis).

The first challenge in the analysis phase is that, in the field of this thesis’s topic, there
is a lack of realistic experimental power consumption datasets that reflect the normal and
anomalous behaviors of IoT and CPS devices. Such power consumption-based datasets
are vital to reproduce, evaluate, and compare scientific results. These datasets can be
utilized by AI and security research communities to validate and compare newly developed
detection techniques and build effective and robust models.

The second challenge is analysis type. When the anomalous behavior of a device is
the result of malicious actions, malicious adversaries often adapt or mutate themselves to
make their anomalous trace in the collected data appear normal, thereby making the task
of defining normal behavior more difficult. A more challenging case is when the malicious
code is an encrypted malware. For instance, when static analysis is adopted in the detection
approach, it has been found that hackers/malware can easily modify individual features to
appear as a benign feature, hence avoid detection [18]. Therefore, addressing the choice of
analysis type in the detection approach is a critical task.

The third challenge in the analysis phase is that the hand-crafted features are exorbi-
tantly expensive. Analysis and detection involve the process of digesting the collected data
to identify anomalously behaving devices from normally operating ones. In the present
case, the challenge is how to extract knowledge and informative insights out of the raw
power consumption signals. This is a challenging and yet interesting task. As mentioned
above, the power consumed by devices is a stochastic time-series signal. In other words,
these signals are highly dynamic and exhibit nonlinear behavior [217]. They have a 1-D
structure and are non-stationary, which means that signals’ characteristics (namely mean,
variance, and frequency) change over time. Moreover, these signals contain much noise and
do not clearly show the information (i.e., events, their frequencies, and duration) that can
be used as discriminative features. Therefore, dealing with them in their original struc-
ture is problematic and it leads to the fact that achieving reasonably accurate detection
and classification performance can not be easily achieved [32] when employing traditional
detection methods. The general trend is to develop domain-specific features for each task,
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which is expensive, time-consuming, and requires expertise in the signals and applica-
tions. Therefore, in this thesis, we explore other spaces to come up with alternatives that
overcome the explained challenges.

Finally, the detection’s aim challenge: accuracy of detection vs novelty of detecting new
anomalies. In the detection process, the main issue to consider is the type of detection
approach that is employed. The answer to such a question depends on the availability of
labeled datasets. This also impacts the aim to be achieved, whether it is a high detection
performance (accuracy, precision, recall, and F-score) or the novelty of detecting anomalies
that cause a device to misbehave. Consequently, if a labeled dataset is obtained, supervised
detection approaches can be implemented. Such approaches aim at improving the detection
performance. However, if an unlabeled dataset (or at least one label is known, i.e. a normal
behavior label) is available, then unsupervised or sim-supervised detection approaches can
be used. These approaches aim at detecting new anomalous behaviors (e.g., zero-day attack
or misuse detection).

1.1.2 Objectives

Power consumption of devices, as a side-channel information source, has been exploited
by attackers to reveal secret keys [155]. That is due to the strong and direct correlation
between the tasks a computer/device performs and its power consumption behavior. For
the same reason, we have chosen to exploit the power consumed by IoT/CPS devices to
make them better protected and secured. Therefore, the primary objective of this thesis
is to propose a detection framework. The proposed detection framework can be used
to enhance the security and dependability of computing devices used in building IoT and
CPS applications. The aforementioned challenges are addressed through examining ways to
detect interesting insights about the operational health of a device by seamlessly monitoring
and analyzing its power consumption signals. The proposed detection approaches are to
adopt the idea of non-intrusive monitoring of a device’s power consumption signals and
leveraging supervised and semi-supervised techniques to perform the detection task.
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The secondary objective is to build several datasets that can be used to validate the
proposed detection techniques. The aim is to cover a wide range of anomalous device
behaviors obtained from smartphones and generic embedded devices (IoT). The anomalous
device behavior is expected to include a large class security threats, which covers the three
main aspects of device security (i.e., confidentiality, integrity, and availability), as well as
partial system failures.

Since the nature of the collected data (i.e., the power consumption od devices) is discrete
and sequential (i.e., time-series signals), such data can be found across different applications
and domains. In fact, time-series signals can be captured by monitoring physical systems
(e.g., earth seismic dynamics [161], vibration of a mechanical system [35], or a robot
arm in an automobile plant [13]), human bodies (e.g., motion, electrocardiogram (ECG),
or electroencephalographic(EEG)), and acoustic sources (e.g., sound and audio). This
argument gives the proposed detection techniques a broader scope of applicability that is
beyond the main objective of this thesis.

1.1.3 Contributions

• C1: This thesis extensively reviews the associated literature and identifies the tools
as well as the proposed techniques that mainly consider side-channel information and
also conduct dynamic analysis in order to detect the anomalous behavior of IoT/CPS
devices. Such a review has never before been conducted, particularly in such way.
This survey provides information such as the nature of information used for analysis,
the type of anomalies causing such behavior, the tools used for analysis, and the
reported detection performance.

• C2: This research models the causes of a device’s anomalous behavior as an anomaly
of one of the following forms: (i) security threats (e.g., DDOS attack, malware,
ransomware, or resources hijacking); (ii) change in the execution environment (e.g.,
communication interference); or (iii) a faulty device (e.g., faulty component or hard-
ware aging). It also investigates the effectiveness and usefulness of using the power
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consumption signals of devices to infer some effective insights into the “operational
health” of these devices, specifically, detecting security threats and faulty devices.

• C3: This research provides and builds power consumption-based datasets that can
be utilized by AI and security research communities to validate newly developed de-
tection techniques. The collected datasets cover a wide range of anomalous device
behavior, namely three main aspects of device security (i.e., confidentiality, integrity,
and availability) and partial system failures. The extensive experiments include: a
wide spectrum of various emulated malware scenarios; five real malware applica-
tions taken from the well-known Drebin dataset; distributed denial of service attack
(DDOS) where an IoT device is treated as: (1) a victim of DDOS attack, and (2)
a source of DDOS attack; cryptomining malware where the resources of an IoT de-
vice are hijacked to be used to the advantage of the attack; and faulty CPU cores.
The wide range of the collected datasets allows extensive validation to the proposed
detection approaches to be performed. These datasets, together with the details of
the experiment, will be made publicly available in the future. This level of extensive
validation has not been previously reported in any study in the literature.

• C4: This research presents a novel supervised technique to classify and detect anoma-
lous device behavior based on transforming the problem into an image classification
problem. The main aim in this methodology is to improve the detection performance.
For this reason, the employed technique is a supervised model (i.e., requires labeled
data). The methodology combines two powerful computer vision tools, namely His-
tograms of Oriented Gradients (HOG) and a Convolutional Neural Network (CNN) to
achieve the goals of this study. In this methodology, the 1-D instantaneous power con-
sumption signals of devices are transformed to time-frequency representation (TFR),
using Constant Q Transformation (CQT), to form 2-D images. The CQT images
capture valuable information about the tasks performed on board a device, e.g.,
events’ location in time and frequency domains, frequency of events, and the shape
and duration of events. Applying HOG to the CQT images allows the extraction
of more robust features that preserve the edges of time-frequency structures (i.e.,
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description of local information) and also the directionality of the edge information
(i.e., how these structures/events evolve with time). Finally, a CNN model is trained
on images containing HOG features to classify these signals and detect anomalously
behaving devices. Such a detection technique is not only useful for our particular
case but can contribute to most time-series classification (TSC) problems.

• C5: This research proposes a novel unsupervised detection technique that requires
only the normal behavior of a device in the training phase. Therefore, this method-
ology aims at detecting new/unseen anomalous behaviors. The methodology lever-
ages the power consumption of a device and Restricted Boltzmann Machine (RBM)
AutoEncoders (AE) to build a model that makes them more robust to the presence
of security threats. The methodology makes use of stacked RBM AE and Principal
Component Analysis (PCA) to extract feature vector based on AE’s reconstruction
errors. A One-Class Support Vector Machine (OC-SVM) classifier is then trained to
perform the detection task. Such a technique is important since obtaining sufficient
labeled data for training/validation of models used by anomaly detection techniques
is acknowledged as a major issue in this field of study.

1.2 Thesis Structure

This thesis is structured as follows: Chapter 2 provides the necessary background infor-
mation to understand the context and findings of this work. It also provides a discussion
of the state of the art in the field of this study. Chapter 3 discusses a high-level overview
of the system model used throughout the thesis. The discussion covers the architecture
model and the anomaly model that covers the causes that could lead a device to behave
anomalously, i.e., security threats and faults. Chapter 4 presents the experimental setup
and the experiments that were conducted to collect the datasets used to validate the pro-
posed detection techniques. This chapter provides a summary of the collected datasets
that covers the three main aspects of a device’s security (namely, confidentiality, integrity,
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and availability), and partial system failures. It also presents an in-detail technique for
generating a wide spectrum of different families of emulated malware. Chapter 5 presents
the supervised detection technique, where the methodology details and obtained results
are discussed. Chapter 6 presents the unsupervised detection technique along with the
validation results. Chapter 7 outlines the lessons learnt in this work in the conclusion
section while the future work section presents the wider applicability of the proposed ap-
proaches presented here, and identifies some limitations. A summary of potential ways to
extend the work are also included.
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Chapter 2

Background and Literature Review

Before we begin formulating the problem and discussing the proposed solutions, it is impor-
tant to give a broad overview of the topics that are necessary to understand the proposed
framework and justify the need for such a solution. Therefore, the goal of this chapter is
two-fold: first, we provide an overview of the Internet of Things and introduce the concept
of anomalous behavior detection; second, we discuss the research related to the thesis’s
main objective. The literature review includes the topic specifically related to the sources
of anomalous behavior we consider in this thesis; namely detecting security threats and
failing components in IoT/CPS devices.

2.1 Internet of Things

Internet of Things (IoT) has gained much of attention in academia and industry in the last
decade. IoT in a nutshell refers to almost any device or “thing” that may exchange data
(either by transmitting information collected by its sensors or/and receiving information
by its actuators) to enable centralized analysis and derivation of insights in a designated
cloud infrastructure. Depending on the application, “things” in this scope refers to any
computing device that is connected to the Internet; e.g., appliances, infrastructures, build-
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ings, cars, robots, animals, and even people. To elaborate, in smart health care domain,
medical sensors are attached to patients to measure and monitor various medical parame-
ters to determine the patients’ health condition. In such a case, people are transformed, in
some sense, to “things” where they start transmitting information about their health to a
central processing entity (hospital). Another example is the transformation of traditional
power grids into smart grids by incorporating computing devices designed specifically to
ensure that the power is delivered efficiently, reliably, and affordably. The common objec-
tive across all of the offered IoT services and applications is to improve the sustainability
and safety of industries and societies. Moreover, the IoT is meant to enable efficient in-
teraction between the physical world and its cyber counterpart (also known as the digital
transformation or cyber-physical systems (CPS)).
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Figure 2.1: IoT Reference Architecture
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2.1.1 Reference Architecture

The IoT is envisioned to be capable of interconnecting huge number of heterogeneous de-
vices via the Internet; therefore, it is very important to have a flexible layered architecture.
In literature, we can find that there are several architectures, each is described slightly
differently depending on the ecosystem and domain of study. We have chosen the most
commonly reported models that describe the IoT architectures, as shown in Fig. 2.1.
The model on the left hand side shows a 3-layer abstract architecture. This model con-
sists of application, network and perception layers. However, the model in the right hand
side of Fig. 2.1 depicts more details and breaks down the IoT reference model into four
main layers/levels: (i) IoT devices (things), (ii) IoT network (infrastructure transporting
the data), (iii) IoT services platform (software connecting the things with applications
and providing overall management), and (v) IoT applications (specialized business-based
applications such as customer relation management (CRM), accounting and billing, and
business intelligence (BI) applications).

IoT Device layer

The first level represents the physical sensors or actuators used to build IoT applications.
In general, these devices have three main requirements in IoT; sensing, actuating, and
addressing. Sensing is essential to collect key information to monitor and diagnose the
things; addressing is necessary to uniquely identify things over the Internet; and actuating
is important to control things and take actions when needed.

IoT devices may be very simple with a core function to collect and transmit data; how-
ever, they can also be complex - smart - by providing additional functionality. This requires
some sort of computing capabilities to be present on the IoT device itself. In this case, an
IoT device requires at least four elements: sensor(s)/actuator(s), microcontroller(s), power
source, and connectivity to send data to IoT gateway or other systems. Figure 2.2 shows
the components of a typical IoT device.
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We highlighted the main components of an IoT device since it serves the motivation
and the solution strategy of our study. The operation of IoT devices is driven by the
component (hardware) shown in Fig. 2.2 and/or software. These hardware components can
be leveraged as sources or metrics to detect anomalous behavior. Most of the parameters
described (power, cpu, network, or sensor data) can be measured using an external device
(off-device) or internal logging (on-device).

IoT Network Layer

The second level represents the interconnection between gateways and the IoT devices, as
shown in Figure. 2.1. There is no specific preferred networking protocol for IoT so far, as a
result, IoT is envisioned to support hybrid network architecture. Most of the information
reported in this section is extracted from [191] [184].

The main functionality of this layer is to transfer the collected data from the device’s
layer (i.e., monitoring task) to the application layer. In case of a controlling task, the
network layer delivers the data to actuators (i.e., telemetry commands) in the perception
layer.
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In practice, the gateways are envisioned to support more than one wireless technology.
Figure. 2.3 describes a typical communications network protocol stack. Common features
of such a stack are the idea of encapsulation and modularity. These two features allows
different layers to work independently, and as a result, they reduce the system’s complexity
and allow for scalability.

IoT Service Platform Layer

The players in this level are responsible for many of the IoT management tasks. Services
Platform are there to automate the ability to deploy, configure, troubleshoot, secure, man-
age, and monitor IoT solution entities. These entities range from sensors to applications in
terms of firmware installation, patching, debugging, and monitoring, to name a few. In its
simplest form, the layer ensures/controls that a specific services is delivered to the entity
that requested it based on addresses and names.
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IoT Application Layer

This layer provides the diverse kinds of services requested by the customer. The type
of service requested by the customer depends on the specific use case that is adopted by
the customer. For example, if smart home is the use case under consideration, then the
customer may request for specific parameters such as heating, ventilation, and air condi-
tioning (HVAC) measurements or temperature and humidity values. This layer provides
the various types of smart services, which are offered by various IoT verticals. Some of the
prominent IoT verticals are as follows:

• Intelligent Transportation

• Smart City, Industry, Agriculture, and Health Care

• Smart Utilities (Water, Gas, Electricity)

• Smart Buildings or Homes

2.1.2 Opportunity and Challenges

The realization of the IoT applications requires tackling several problem, in all of the layers
we described above, by different research fields. However, in this section we focus mainly
on the challenges that overlap with the objectives of this thesis.

Looking at the scale that these devices are deployed at and the level of criticality
of certain IoT and CPS applications, these devices and applications create huge market
potential. Some sources report that $ 4-11 trillion in annual revenues is expected in 2025
[154]. The astronomical figures are creating a competition between the manufacturers,
where each of them wants to be the first in the market. This race is leaving a little time
and efforts for testing and securing the developed devices and solutions; consequently, such
devices and applications are highly susceptible to different security threats and performance
failures. Based on this argument, IoT/CPS applications are expected to create the next
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target for security attacks. According to a recent report by Gartner, it is expected that
IoT devices will be involved in more than 25% of the identified attacks in enterprises in
2020 [116].

Building upon these challenges and statistics, we found, in almost every study that aims
at discussing the challenges within the IoT domain, a section that is devoted to the security
and privacy matters [244, 129, 16, 23, 104, 127]. As of now, several cyber-security incidents
that involve IoT/CPS devices (as an attacker or a victim) have been reported in the last
couple of years. These security breaches range from Distributed Denial of Service (DDoS)
attacks - e.g., the infamous DDOS attack on Dyn’s DNS (domain name system) which
involved ∼ 100K malicious IoT devices, according to reference [105]; several ransomware
attacks [74]; attacks/vulnerabilities on/of self-driving vehicles [16]; attacks on smart home
devices [21] and medical devices [137].

The takeaway is that IoT and CPS have introduced new security risks for both con-
sumers and businesses. Mitigation of these risks is challenging due to limited resources
on-board the used devices to build IoT and CPS applications. Moreover, The need for
continuous Internet connection for the devices makes them become inherently not secure.
These recent incidents and studies confirm that more research needs to be done. They
also show, unfortunately, that existing solutions are far from being satisfactory to stop the
exponential growth in number and complexity of attacks [162]. Thus, the need for more
lines-of-defense to make IoT and CPS systems more resilient and proof to such attacks
is paramount. The next section introduces the concepts related to anomalous behavior
detection in IoT devices, followed by previously reported research.

2.2 Anomalous Behavior Detection

The detection of anomalous behavior of a device involves three main phases, as shown in
Fig. 2.4, the wide vertical arrow to the left. It starts with a monitoring phase, followed by
an analysis phase and a decision phase.
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Figure 2.4: Schematic classification of malware detection techniques in wireless devices

2.2.1 Phase 1: Monitoring

Monitoring is the process of collecting the data points (also called observations) that de-
scribe certain measures or phenomenons about the monitored system. In the domain of
this thesis, there are two main approaches to collecting the raw data: (i) Off-Device mon-
itoring [130][123], which refers to the process of collecting the data using external tools
(software/hardware), and (ii) On-Device monitoring, which refers to using applications/-
software that are installed in the device to collect the data [89] [29] [231][241]. The type of
the collected data for the analysis can be: time series signals (e.g., power consumption or
electromagnetic radiation of a device as in [110][131]), events (e.g., CPU, memory utiliza-
tion, and network traffic as in [164][212]), system calls, and files/entities [26], as classified
in Figure 2.4. Each of these data points can be used as a raw data or processed data. Raw
Data means that the collected data points are used as is for analysis. On the other hand,
processed data means some features are extracted from the collected data points for anal-
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ysis. This process is very crucial for detecting anomalies, where bad/noisy observations
could jeopardize the overall detection performance. The type of data can also play a role
in determine the detection technique to be used for analysis in the next step.

2.2.2 Phase 2: Analysis

Analysis is the step where the detection technique/algorithm is applied. In general, the
first thing to determine in this step is the type of problem (i.e., anomaly). An anomaly can
take the form of: (i) contextual anomaly, (ii) collective anomaly, and (iii) point anomaly,
according to [55].

Contextual Anomaly, as the name suggests, depends mainly on the context understudy.
An example might be: detecting irregular heart rhythms from ECG record [181]. In ECG
record, the magnitude variation by itself does not tell exactly if there is anomaly or not,
while the irregularity in the cardiac cycle gives the clue to the detection of anomalies. A
simpler example is: having a high temperature is normal if it is observed in the Summer,
however, it is considered to be up normal (anomaly) it it was observed in Winter, as shown
in Figure. 2.5a.

Collective Anomaly, refers to the case where having multiple related (relationship can
be in the form of sequential) anomalous data points with respect to the entire data set.
In this anomalous category, having just one anomalous data point may not be considered
as anomaly by itself, rather multiple occurrence of anomalous data points together is
considered as a collective anomaly, as depicted in Figure. 2.5b. While point anomalies
can occur in any data set, collective anomalies can occur only in data sets in which data
instances are related [55].

Point Anomaly, also called out-lier, refers to an individual reading or observation that
does not fall within the expected range. For example, in Figure. 2.6a, points marked in
red lie outside of the boundary of the normal regions, and hence are point anomalies since
they are different from normal data points (marked in blue).
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(a) Contextual anomaly

(b) Collective anomaly, taken from [55]

Figure 2.5: Types of Anomalies: 1/2
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(a) Visualization of the collected data in 2D and 1D along with the fitted normal distribution
(blue cross represents normal behavior and red represents anomalous behavior

Figure 2.6: Types of Anomalies: 2/2

As we depict in Fig. 2.4, in the domain of this study the analysis phase can be broken
down into three sub-steps:

(i) Analysis location: In the analysis phase, the first thing to decide on, based on certain
requirements (e.g., resources, privacy, etc.), is where the analysis is performed: On-
Device or Off-Device. In Off-Device analysis, also called cloud based analysis, the
collected data is processed and analyzed in the cloud and only the decision is sent
back to the device or to the device operator as a notification [130][123]. Given the
fact that some devices are resource-constrained, this option is preferred [55]. On
the other hand, On-Device analysis refers to analyzing the collected information on
the device itself. Although this option requires more computational resources, it is
considered to be the desired option when the data privacy is required [201].
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(ii) Analysis type: When the anomalous behavior is due to malware, the literature can
be further classified based on the analysis type: static analysis [26], dynamic anal-
ysis, or hybrid [72]. Static analysis refers to analyzing a software’s source code and
manifest file without the need to execute it to check if it is malicious or not. Such an
approach has the ability to detect zero-day (unknown) malwares; however, it has the
limitation of the need to access the source code. Another drawback is, if malware
developers learn about the hypotheses in static analysis, they can adapt their code to
look benign. Since our proposed approach falls under the dynamic analysis category,
the static based methods are out of the scope of this thesis. On the other hand, in
dynamic analysis, a device is examined during execution time of certain tasks. The
idea is to profile a device by observing its behavior (e.g., generated traffic, CPU uti-
lization, or emitted electromagnetic radiation) while it is in operation; consequently,
you learn some insights about it. This kind of analysis depends mostly on the data
collected through side channels. Moreover, approaches based on dynamic analysis
aim to detect and identify infected devices to minimize further damage.

(iii) Detection technique: In the final step of the analysis phase, the type of the em-
ployed detection technique is chosen, i.e., supervised, semi-supervised, or unsuper-
vised anomaly detection [55]. The decision depends on the collected data. Supervised
anomaly detection requires labeled data. Therefore, if the collected data is not la-
beled, then the following step is to label the collected data. This step falls under the
data pre-processing phase in the traditional machine learning pipeline model.

If the technique is semi-supervised anomaly detection, a training set with observa-
tions sampled from only one of the two classes is used. For example, in the case of
anomalous behavior detection problem, this kind of techniques is applied typically
when there are no observations from the anomalous class. Based on the definition
of anomaly, these techniques usually train a model to recognize normal behavior. A
new observation will be classified as an anomaly if it falls in a low-probability region
[55].

Finally, if the technique is unsupervised anomaly detection, then the used train-
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ing data is unlabeled. This kind of anomaly detection techniques work well when
the normal observations are noticed with very high frequency/density in contrast to
anomalies which are rare to happen/notice [55].

2.2.3 Phase 3: Decision

After the analysis is performed and a model is trained, a decision about the model output
type is needed to be taken. That is, when a test observation is fed to the model, what
is the proper output that determines whether that observation is an anomaly or not.
Typically there are two types of outputs: Score and Label. Score refers to the case where
the model assigns an anomaly score to each of the test data points. This score represents
a degree of believe that a particular observation came from an abnormal device. Such
a technique produces a ranked list of anomalies, and therefore, the analyst, based on
the chosen detection metric, needs to define a threshold to decide whether a point is
anomalous or not. Label refers to the case where the model assigns a label - normal or
anomalous - to every test data point. It is important to note that scoring based anomaly
detection techniques gives the analyst the ability to use their domain-specific experience
and knowledge to select a threshold that allows for most of the relevant anomalies to be
detected [55].

2.2.4 Putting it together

To put the pieces together, and to better understand the basic concept of anomaly detection,
we provide the following formulation of the problem in mathematical terms. Suppose we
have a phenomenon that we want to monitor. The collected data points that describe the
phenomenon is arranged as in the following set: X = {x1, x2, x3, ..., xi, ..., xm}. This means
that the set contains m observation points, and xi represents the ith data point of the data
set. Further suppose that each data point is characterized by two features xi = [f1, f2].
Under normal conditions, these data points represent a normal behavior of the monitored
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phenomenon, and the data set X should follow a probability distribution P(x), a Gaussian
or multivariate Gaussian for instance. If we visualize this in 2 dimensions space, we notice
the shape/distribution shown in Figure 2.6a. If we project those (data transformation) on
the f1 axis, then we get the distribution shown the lower part of Figure. 2.6a.

For simplicity, if we apply machine analysis on the projected points, we can fit a normal
distribution with mean µ and standard deviation σ to model the distribution of the data
set.

µ = 1
m

m∑
i=1

xi

σ2 = 1
m

m∑
i=1

(xi − µ)2
(2.1)

The density for a new observation x can then be computed by:

P (x) = 1
(2π) 1

2 × σ
× exp− (x− µ)2

2σ2 (2.2)

In this example, an observation is classified as anomalous if it lies in a low probability
region, as shown in Figure. 2.6a. The decision of whether this point is anomaly or not is
based on the threshold ε chosen by by using a validating set with both types of labels and
picking one that gives the best performance.

Anomaly Detection Techniques and Metrics

In this section, we focus on the most widely used supervised anomaly detection algorithms.
The objective is to explain all the techniques that are used throughout this thesis. Most of
these techniques appear in the last sections of Chapter 4. We explain in some details how
each of the mentioned algorithms work. Then we discuss the used metrics to evaluate the
performance of machine learning algorithms.
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Supervised Anomaly Detection

In supervised anomaly detection problems, there must be a feature matrix X with m

columns (number of observations) and nx rows (number of features). For each xi, there
is an assigned label yi. In general, the terminology in any supervised machine learning
problem is as: D = (xi, yi), i = 1, ....,m. This translates to: D is the data set which
has m examples (usually is used for training and testing), and the ground truth yi in the
case of anomaly detection can be: {0, 1}. yi refers to the label of the ith observation (xi).
Moreover, the 0 label corresponds to the negative class (not anomalous), and the 1 label
corresponds to the positive class (anomalous). In the context of anomaly detection, the
label 1 is rare. The skewed classes problem (also called class imbalance) can be delt with
in many different ways, depending on the classification algorithm that is used. In the
next subsections, we will present the classification algorithms and methods that were used.
Note that supervised learning algorithms have been rarely used for anomaly detection in
the literature, because observations of the rare class are not available most of the time.

I. Logistic Regression Logistic regression is a classification technique that works, in
its simplest form, as following: given an observation x, and a vector θ, it returns a
probability that this observation is in class 1 [101]:

hθ(x) = 1
1 + e−θT.x

(2.3)

The weight vector θ is determined by solving an optimization problem. The objective
is to minimize a cost function over all of the training data set. Common used cost
function is negative log-likelihood, shown in Equ. 2.4.

J(θ) = 1
m

m∑
i=1

1
2(hθ(x(i))− y(i))2 (2.4)

II. k-Nearest Neighbors (kNN)
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It is one of the simplest non parametric classification method. The basic assumption
this method is built on is that, it assumes that the data points are in a feature
space. This assumption allows the notion of distance to be applied. The parameter
k refers to the number of how many neighbors (where neighbors is defined based on
the distance metric) influence the classification decision. Note that k is usually odd
to prevent tie situations

For example, given a new data point x, the algorithm finds the k closest points, and
use their labels to assign the new point to a class. A more formal formulation is given
by Equ. 2.5. The kNN classifier, based on the distance d between the k neighbors
and the point x, outputs/predicts a probability as to which class the new data point
x belongs to. The used distance d can be any distance metric, such as the Euclidean
(given in Equ. 2.6), Manhattan, Chebyshev, and Hamming distance.

P (y = j|x,D) = 1
k

∑
i∈Nk(x,D)

I(y(i) = j) (2.5)

d(x, x′) =
√

(f1 − f ′1)2 + (f2 − f ′2)2 + ...+ (fnx − f ′nx)2 (2.6)

where Nk(x,D) is the set of the k closest neighbors in the training set D and I(x) is
the indicator function which output 1 when the input x is true and 0 otherwise.

The parameters (k, the cutoff threshold ε, and in some cases the chose of the distance
metric) in this algorithm are tuned using cross-validation or validation. A common
practice is to perform normalization to all the features of the data set since the
distance is highly influenced by the scale of the variables [101].

III. Support Vector Machines (SVM)

It is a very popular regression and classification method, and is considered to be
among the best “off-the-shelf” supervised learning algorithms. The objective of this
algorithm is to separate data points (into two classes for example) using a hyperpalne
and to maximize marginal distance (optimal distance) between the classes. Optimal
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margin means that SVM search for the hyperpalne that not only separates the two
classes but it also finds the one guarantees it lies exactly at the same distance from
the two class, as shown in Figure. 2.7.

f 2

f1
a hyperplane

THE optimal 
hyperplane

Support 
VectorSupport 

Vector

Figure 2.7: SVM: the optimal hyperpalne is marked in black, and the dashed green
hyperpalne is any hyperpalne that can separate the two classes

Using what is known as the “kernel trick, in the case of non-linearly separable classes,
the samples/data points are mapped to a new feature space (usually a very high
dimensional space) using a kernel function where the classes can be separated using
a hyperpalne. An important feature of SVM is that the determination of the model
parameters corresponds to a convex optimization problem, thus any local solution is
also a global optimum.

To introduce the classification problem SVM tires to solve, we use the following
mathematical formulation [40]:

• Given a training data set D = (xi, yi), i = 1, ....,m

• Let labels set be y ∈ {−1, 1}
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• Let the hyperpalne function that represents the decision boundary be: y =
h(x)(θ,b) = sign(θTx+ b)

To determine the optimal hyperpalne, the parameters θ&b have to be found. This
can be achieved by solving the following:

min
θ,b

1
2 ||θ||

2, s.t.

yi(θTxi + b) ≥ 1,∀i
(2.7)

This is a quadratic programming problem in which the objective function to be
minimized is subject to inequality constraints. To solve it, Lagrange multipliers are
introduced for each of the constraints, as shown in Equ. 2.8.

L(θ, α) = 1
2 ||θ||

2 −
∑
i

αi[yi(θTxi + b)− 1]

αi ≥ 0,∀i
(2.8)

Based on Slater’s condition for convex optimization, the optimization problem can
be rewritten as follows [40]:

(dual) max
α≥0

min
θ,b

1
2 ||θ||

2 −
∑
i

αi[yi(θTxi + b)− 1] (2.9)

By solving for optimal θ and b as function of α, and substituting their values back
in Equ. 2.9, with some simplification we get:

(dual) max
α≥0, αiyi=0

∑
i

αi −
∑
i

∑
j

1
2αiαjyiyj(x

T
i .xj) (2.10)

In the case where the classes are non-separable, the constraint in this optimization
problem is relaxed. This is maintained by adding a slack variable ζi that indicates
the amount of the misclassified points. The amount of violation has to be controlled
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and kept minimum by penalizing it with a cost parameter C, as formulated in the
following equation:

min
θ,b,ζ

1
2 ||θ||

2 + C
m∑
i=1

ζi, s.t.

yi(θTxi + b) ≥ 1− ζi,∀i

ζi ≥ 0, ∀i

(2.11)

By introducing Lagrange multipliers, switching the max and the min and solving for
θ, we get the dual optimization problem:

(dual) maximize
α

∑
i

αi −
∑
i

∑
j

1
2αiαjyiyj(x

T
i .xj), s.t.

∑
i

αiyi = 0

C ≥ αi ≥ 0

(2.12)

What changed for the case of non-separable data is that an upper bound (C) is added
on αi. An intuitive explanation is that, without the slack variable ζ, αi could go to
infinity when the points are misclassified (violation of the constraints). Moreover,
the cost parameter C limits the variable αi so the misclassifications are tolerated.

The structure of the data is not always simple and can be separated with linear
hyperpalne, for instance. This means that structure of the data requires different
boundaries to ensure a proper classification. In SVM, this is achieved using the
kernel trick. The idea behind kernel trick is that every data instances is mapped
into a feature space of infinite dimension using a kernel K(xi, xj) = φ(xi)Tφ(xj). In
this new space, an optimal hyperpalne can be found. The interesting part is that we
do not need an explicit formula for the φ function. For more elaboration about the
mathematical formulation and optimization of the non-separable case, the reader is
referred to [40] and [206].
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The tuning of SVM is performed by the proper chose of the cost parameter C and the
type of kernel function along with its parameters through cross-validation testing.

IV. Classification Decision Trees

Decision Trees are an important type of algorithm for predictive modeling machine
learning. How classification trees workis as follows: it starts by partitioning the
data space X into subsets. The partitioning process starts with a binary split and
continues until no further splits can be made. Various branches of variable length are
formed. After a number of runs, a tree (classifier attributes) with certain features is
built to fit the training set.

More formally, decision tree is a classifier in the form of a tree structure. Suppose a
new person is randomly selected by a research. How can we tell whether this person
is fit or not? To answer this question, we can pose a series of questions about the
characteristics of people in general. We can start with how old the person is? If
he/she older than 33 year old, then we can ask a follow-up question: Does the person
go to gym daily? Those people who are older than 33 years and go to the gym daily
are definitely fit. On the other hand, if a person is yunger than 33 years and eats a
lot of pizzas are likely to be unfit!.

The main components in a decision tree are:

� Root Node: It has no incoming edges and zero or more outgoing edges. Usually
it specifies a test question on a single attribute that has the most distinguishing
information.

� Internal nodes: These nodes has exactly one incoming edge and two or more
outgoing edges.

� Leaf or terminal nodes: Each of these nodes has exactly one incoming edge
and no outgoing edges. They indicate the value (class or label) of the target
attribute

� Path: a disjunction of test to make the final decision
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A new data point x can be classified straightforward once a decision tree has been
built. Based on its features vector and starting from the root node, an appropri-
ate label is assigned according to the outcome of the test questions in each of the
nodes[40][101]. Decision trees are successful and powerful machine learning tech-
niques; however, they very prone to overfitting.

Before exploring the techniques that solves the problem of overfitting, the next ques-
tion is how to choose a good attribute/feature that splits the data the best. In other
words, a good attribute is the one that has good amount of information to classify
the distribution of examples in each node. For that a measure to quantify the amount
of information contained in each attribute is needed. The common used one is the
Entropy.

Entropy in the information theory field refers to the amount of information that is
contained in a random variable. Maximum entropy is when all the classes are equally
likely, and zero entropy (no information) is when all the classes are deterministic (all
examples of the same class, for example). Entropy is the only function that satisfies
all of the following three properties:

� When node is pure, measure should be zero.

� When impurity is maximal (i.e. all classes equally likely), measure should be
maximal.

To over come issue of overfitting, the concept of Pruning was introduced.

Pruning refers to the process of shortening the branches of the tree. It reduces the
size of the tree by turning some branch nodes into leaf nodes, and removing the
leaf nodes under the original branch. Lower branches may be strongly affected by
outliers. Pruning enables finding the next largest tree and minimize the overfitting
problem. A simpler tree often avoids overfitting. The most common staregaies are: (i)
Early Stopping, which refers to the idea of stopping the growth process prematurely.
(ii) Post-Pruning Post-Pruning, which refers to growing a full tree that captures
all possible attribute interactions, later remove those leafs/branches that are due to
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chance. For more details on Classification Trees and Regression (CART) and the
commonaly used algorithms (ID3 and C4. 5), the reader is refered to[46][178][114].

V. Random Forests

Random Forests comes under the umbrella of ensemble learning methods. In a nut-
shell, Random Forests grows a collection of decision trees, and each tree (classifier)
is built based on a selected subset of the attributes. To classify a new point, the
input vector is pushed down each of the trees (classifiers) in the forest. Based on
the attributes questions in each tree, each tree gives a classification decision (vote).
Then using the majority ”vote”, the forest chooses the label that have the most votes
(over all the trees in the forest).

Random Forests’ main idea is to minimize the high variance problem that traditional
classification trees suffer from. This is achieved through averaging the variance of
many estimates.

The formal way of how Random Forest works is as following: The key idea behind
random forest algorithm is the introduction of two randomizing aspects to the process
of building a traditional decision tree based model/classifier. This idea results into
reduction of the correlation between constructed trees.

� Random samples from the data set. In general, a bootstrap sample consists
of number data points that are randomly selected from the data set with re-
placement. In random forests, a number of bootstrap samples each containing
a subset of the training data are used to generate a sequence of decision tree
classifiers.

� Random attributes selection. The second randomizing aspect the random forest
algorithm applies is selecting a random subset of attributes/features for each
decision tree it constructs.

The Random Forest algorithm is summarized in the following steps:
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1 Prepare a sample Z = (XZ , YZ) from configuration set D = (X, Y ).

2 Draw a sequence of bootstrap data sets Z(B) from the sample Z = (XZ , YZ).

3 Learn/fit trees hB(x) on Z(B), in particular select p features randomly out of nx
features as candidates before splitting for each tree.

4 Output prediction results: (i) for Regression, average all individual predictions
of the sequence of regression trees h(x) = 1

B

∑
allZ(B) hB(x). (ii) for classification,

apply majority vote.

Describing all of these methods in detail is beyond the scope of this work. The interested
reader is referred to, e.g. [40],[55],[101].

Evaluation Metrics

In any anomaly detection technique, there must be a proper metric to evaluate the per-
formance of a detection method. Table 2.2.4 summaries the commonly used measures of
detection performance.

The first measure to highlight in this section is Detection Rate (DR), also called Ac-
curacy. It represents the ratio of the correctly classified samples (True Positive - TP and
True Negative - TN) over all of samples. Another very important measures are Sensitivity
and Specificity. In the case of imbalanced classes, which usually the case in anomaly detec-
tion, Accuracy is not a useful or a meaningful measure any more. However, Sensitivity and
Specificity are. Sensitivity, also called Recall, translates to the proportion of correctly iden-
tified positives (anomalous samples), and specificity represents the proportion of correctly
identified negatives. Precision and recall are not adequate for showing the performance of
detection and are even contradictory to each other, because they do not include all the re-
sults and samples in their formula. Consequently, the commonly used measure in anomaly
detectoin is F-score (i.e., F-measure). It is calculated based on precision and recall in order
to compensate for this disadvantage.
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Receiver Operating Characteristic (ROC) is a statistical plot that depicts a binary
detection performance while its discrimination threshold setting is changeable. The ROC
space is supposed by FPR and TPR as x- and y-axes, respectively. It helps us determine
trade-offs between TP and FP, in other words, the benefits and costs. Since TPR and
FPR are equivalent to sensitivity and (1-specificity) respectively, each prediction result
represents one point in the ROC space. The point in the upper left corner or coordinate
(0, 1) of the ROC curve stands for the best detection result, representing 100% sensitivity
and 100% specificity. This point is also called the perfect detection. An Area Under the
Curve (AUC) is usually between 0.5–1.0; the bigger it is, the better the detection. Different
measurements could be contradictory with each other. It is hard to meet high precision
and recall at the same time. We need to make a trade-off to balance them. Thus, the
F-measure, i.e., F-score, is often used to indicate detection performance.
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Measures Description

True Positive (TP) Anomaly behavior is correctly identified as anomaly,
i.e., True Positive = correctly identified.

False Positive (FP) Benign behavior is incorrectly identified as anomaly,
i.e., False Positive = incorrectly identified.

True Negative (TN) Benign behavior is correctly identified as benign, i.e.,
True Negative = correctly rejected.

False Negative (FN) Anomaly behavior is incorrectly identified as benign,
i.e., False Negative = incorrectly rejected.

Recall: True Positive Rate (TPR) TPR = TP
TP+FN , i.e., sensitivity or recall means the

benefits we gain.
True Negative Rate (TNR) TNR = TN

TN+FP = 1 − FPR, i.e., specificity means
the costs we spend.

False Positive Rate (FPR) FPR = FP
FP+TN , false alarm rate.

Precision: Positive Prediction Value P = TP
TP+FP = 1 − FPR, i.e., specificity means the

costs we spend.
F-score (F-measure) F − score = F −measure = (1 + α2) P×TPR

α2(P+TPR) , α
is a predefined parameter.

Accuracy = Detection Rate Acc = TP+TN
(TP+FP+TN+FN .

Receiver Operating Characteristic (ROC) Defined by FPR and TPR as x- and y–axes, respec-
tively, it helps us determine trade-offs between True
Positive and False Positive, in other words, the ben-
efits and costs.

Area Under the Curve (AUC) AUC =
∫ +∞
−∞ TPR(x)FPR(x)dx
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2.3 Literature Review of Existing Research

2.3.1 Security threats

In this subsection, we discuss the work about detecting device’s anomalous behavior due
to security threats. In this context, security threats detection refers to the process of
monitoring events/behavior on a host or a network to detect (and in some cases act upon)
a malicious program/software that aims to cause some sort of harms [93]. It can be noticed
that there is a big body of literature that focuses on malware detection; however, we limit
our review in this thesis to studies that mainly consider the side-channel information and
adopt dynamic analysis to detect malware. More specifically, we review only the studies
that investigated various techniques to detect malware in embedded and wireless devices,
namely, smart grid systems, software-defined radio (SDR), smartphones, general-purpose
computers, IoT, CPS, and medical devices. We organize the research in this area based on
what information has been analyzed, as follows:

CPU utilization, API calls, and Network traffic based approaches

Shabtai et al. [197] proposed a host-based malware detection technique where they collect
on the device several features and events while executing an app on a smartphone. Their
framework, Andromaly, processes the collected observations using a supervised machine
learning technique to identify whether an app is normal or malicious. Their feature vector
includes different aspects of the device, such as CPU utilization, number of running pro-
cesses, and API calls. The reported performance shows that their approach is capable of
classifying an app as to whether it is a game or a tool with an accuracy of 99.7%. However,
they do not show or mention whether the classified apps are actually malicious or not. In
a similar study, Burguera et al. [50] developed a device level malware detection technique.
They designed a tool - named Crowdroid - that collects the calls of the system while run-
ning apps on an Android smartphone. The tool sends the monitored behavior, represented
by Linux system calls, to a central server (off-device analysis) to detect malware. The
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central server, in turn, analyzes (dynamic analysis) the data and creates a system call vec-
tor. In the final stage, the server uses the collected dataset to train a k-means clustering
algorithm. Specifically, they have employed 2-means clustering algorithm to distinguish
between normal apps and their malicious replicas. On the other hand, some authors have
used on-device measurement to measure and collect datasets. In a recent work, Cui et
al. [66] designed a cloud solution to identify malware by analyzing the network packets
sent by the device. Their proposed system, namely, service-oriented mobile malware detec-
tion (SMMDS), analyzes and compares the packet information with previous information
extracted from malicious and benign applications using clustering.

Electromagnetic Information (EM) based approaches

The usage of EM radiation for intrusion detection was investigated in several studies. For
example, Sehatbakhsh et al. [196] have leveraged the idea of analyzing EM signals to
detect anomalies in embedded devices. Their framework externally monitors a device in
order to collect its emitted EM signals while it is performing its regular tasks. In the
learning phase, the collected signals are converted into a sequence of sample spectra (the
power spectral density using STFT) which are then used to extract features. These features
are basically the number of spikes in the spectrum that satisfies a certain threshold. In
the detection phase, the features are extracted from a measured signal and then checked
to see if it came from the same statistical distribution of the training dataset. If not,
then, with a certain degree of confidence the device is flagged to be compromised based
on the resultant anomalous behavior. Following the same concept, Khan et al. [130] have
explored the idea of using deep learning techniques to model the behavior of a device using
its EM emissions. In [130], the authors trained a multi-layer neural network on EM signals
obtained from an uncompromised device to learn its normal behavior. Once the device
encounters any deviation in its activity, the model flags it as an anomaly. Validations show
that the framework has 100% accuracy in most of the test cases that they applied.

In 2019, Riley et al. [186] developed an approach that considers an IoT’s processors
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EM radiations to detect when changes in a device’s firmware are encountered. Their
methodology is based on analyzing the correlation between the generated EM signals. The
idea is that when bits from a program counter and the instruction register are altered, such
an event can be detected. Finally, in a recent study Khan et al. [131] presented IDEA, an
intrusion detection framework that is able to detect malware in embedded CPS devices.
In the training phase, they build a dictionary of EM signatures obtained from a device
executing legitimate activities. In the detection phase, an EM trace is compared, using
1-Nearest Neighbour algorithm, to the dictionary of words to tell whether the device has
been compromised. They tested the methodology on different devices and against different
malware; the reported performance shows 100% detection accuracy in most of the cases
with less than 1% false positive rate.

Power Information based approaches

Most of the malware detection studies that we came across are about detecting malware
in smartphones. For example, Kim et al. [134] were among the first to highlight that
the power consumed by devices can be used to detect anomalies which were otherwise
difficult to detect by only analyzing the static characteristics of an application. Their
prototype, built on Windows phone, works by leveraging power signatures of the phone.
These signatures are based on the power consumed by the device while running a program.
In their work they consider the amount of the power consumed when executing a program
- and not the behavior of how power changes as the code is executed. They show that the
methodology is able to detect numerous malware with at least 80% detection accuracy.

In 2014, Zefferer et al. [241] proposed a different methodology in which they extracted
the power consumption of an emulated malware running on a smartphone using a tool called
PowerTutor [243] (i.e., using on-device monitoring). The concepts of Mel Frecuency Cep-
stral Coefficients (MFCC) was utilized to extract features from each power trace, and then
they fit a GMM (Gaussian Mixture Model) to classify the power traces. This methodology
performs well to recognize emulated malware with an accuracy of 92%, but one drawback
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is that the power consumption was taken with a low sampling rate. Consequently, such a
technique may fail to detect malware that are rarely active. This disadvantage has been
tackled in this study using an external tool with a much higher measurements sampling
rate (5000 samples/sec), and changing the way the features are extracted and the way the
classification is performed.

Following a very similar approach, Yang et al. [231] monitored the power consumption
of Samsung GALAXY S5 and LG G2 smartphones using an on-device tool (PowerTutor
[243]). They collected the CPU power consumption signals and used them to extract
a feature vector; the extracted features are MFCC coefficients. Then they perform a
waveform feature matching using a GMM model. They claim that the learned model can
detect malware with 79% accuracy; moreover, the model can classify the category - whether
the app is a game, browser, or music - of an app with accuracy of more than 65%.

Robin et al. [122] proposed a methodology for malware detection that applies Inde-
pendent Component Analysis (ICA) on a smartphone’s power signals. The idea is based
on the hypothesis that the power consumed by a device, when it is running a benign app,
is the sum of some noise plus the needed power to execute the actual app. However,
when a device is running a benign app while also running malware in the background, the
power consumed by the phone is the sum of both apps: power consumed by a benign app
running in the foreground and the power consumed by an emulated malware running in
the background. Therefore, by using ICA, the methodology can separate the two signals
and hence can detect malware. The obtained detection accuracy on an emulated malware
based dataset was 91%.

Dixon et al. [77] used battery information of a smartphone and the user’s location to
detect abnormalities. Hoffman et al. [77] conducted experiments to investigate whether the
power information of a smartphone can be used as a good source of information for malware
detection. The conclusion in their study indicates that the extra power consumption
caused by a malware is insufficient to profile a device or an application. They concluded
that battery life monitoring is mostly not satisfactory for malware detection on modern
smartphones. While their claims might be correct given the fact that their claim is based
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on on-device PowerTutor application [243], our measurement approach is much different
and our measurement sampling frequency is much higher (5000 samples/sec) which, in
turn, felicitates higher chances of detecting events that PowerTutor fails to detect.

Caviglione et al. [54] studied attacks related to covert channel using the power con-
sumption of the processes running. A covert channel happens when two or more malicious
applications exchange information exploiting different permissions assigned to them. To
illustrate, let one app have the permission to read the phone numbers, and the other
application have the permission to use the network. Both applications can cooperate to
transmit a user’s phone numbers, and traditional static or dynamic approaches can fail to
detect these attacks. To prove the validity of the methodology, the authors collected power
measurements of the idle state of the smartphone and different scenarios of an emulated
covert channel attacks using PowerTutor with high-level and middle-level information. To
discriminate malicious and non-malicious behavior, they used neural network and decision
tree approaches obtaining accuracies of above 80% in general.

Azmoodeh et al. [29] presented a machine learning based approach to detect ransom
attacks using power consumption of Android services. Similar to most of the smartphone
malware detection papers, this study uses PowerTutor to collect the power traces. They
use k-Nearest Neighbors, Neural Networks, SVM, and RF as detection techniques. Liu et
al. [151] in 2016 developed a power side-channel strategy to detect anomalous behavior in
control flow execution applied to IoT microcontrollers. They measured the variations in
the power consumption in the VCC pin of the microcontroller through a resistor connected
to the power supply. In this work, it was tested insertion, deletion and replacement on
AES PROGRAM to prove firmware modification attack.

Nash et al. [171] developed a methodology to estimate the power amount of a desktop
computer by using machine learning algorithm. By taking into consideration a number
of features, such as CPU activity, storage access, and network traffic, they employed a
multiple linear regression model to model a desktop’s consumed power. They validated
their technique to detect malware in desktops. The results proved the concept can be
effective, however, it was necessary to combine the obtained features with the OS data
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counters. While the technique showed potential, it is strongly intrusive based on the
information needed to perform the detection. Moreover, it is the complexity to compute
proper numerical values for the needed thresholds for detection decisions.

Similar to Nash’s work, Jacoby and Davis [120] showed how to analyze the power
consumption and CPU utilization to detect network attacks by using a battery-based In-
trusion Detection System (IDS). Bridges et al. [48] analyzed CPU power consumption of a
general-purpose computer to detect malicious software. They monitor an uninfected device
performing a fixed task for a certain period of time in order to learn its normal behav-
ior. Then the collected signals are processed to extract three features, namely, statistical
moments, L2-Norm Error, and Permutation entropy. Finally, a classifier is trained on the
extracted features. The reported results show high detection performance (∼ 100% true
positive rate - TPR) when using an anomaly detection ensemble.

2.3.2 Fault Detection

In the context of a device’s fault detection, we find that the literature is rich with techniques
and frameworks that present the topic under the umbrella of system’s resilience or fault
analysis [36]. Diving into the definition of a system’s resilience [211], one can find that a
main milestone to achieve resilient systems is through controlling (detecting, identifying,
and correcting) faults of and threats to devices, while the system is still correctly operating
[148]. Therefore, the main step to improve the availability of the overall system is through
finding out when a device starts to misbehave or behave anomalously (due to a faulty
component, for example). We group and discuss the conducted research on a device’s fault
detection and identification as follows:

Contextual Information based approaches

Chio et al. [60] proposed DICE, a framework to detect faulty devices in smart home
systems based on a device’s context (e.g., a sensor’s collected data). In the learning phase,
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called pre-computation phase, the method extracts the context (correlation and transition
probability) from sensors that make a smart home system. Assuming that the devices
are faults free and that the collected data integrity is preserved, DICE learns the normal
behavior of the sensors that make a smart home system. The reported results show a high
detection performance (95% precision and 92.5% recall). Such solutions demand sensor
domain knowledge along with the contextual information and historical data from similar
near-by sensors.

Lin et al. [147] developed SensorTalk, a methodology to detect potential sensor failures
in the field of smart farming. By performing multiple mutual tests between measurements
collected by sensors, a failing device can be identified. The study uses analytic and simula-
tion models to appropriately select the time of when a potential failure is about to occur.
Their results show a low false detection probability < 0.7%.

Alippi et al. [14] introduced a framework to detect changes at the sensor level in the
domain of CPSs. The methodology builds a predicative model of the expected sensor’s
generated signal over time. Then, it keeps inspecting the actual signals (datastreams)
coming from different sensors and the model’s forcasted signals to detect any possible
changes. The way it checks for changes is based on change-point detection technique
called Intersection-of-Confidence-Intervals proposed in [15].

Antunes and Neves [22] have presented a methodology to detect software flaws in net-
work servers based on their behavioral profiles. The methodology starts with a data (e.g.,
system call, memory usage, and OS APIs) collection step in the learning phase. The
collected data is used to build a profile of the normal behavior of the server using finite-
state-machines. In the operation phase, while monitoring the server, any flaw that causes
the behavior to change is detected.

2.3.3 Discussion

Table 2.1 summaries the work done in the area of anomalous behavior detection in em-
bedded and wireless devices. The takeaway from Table 2.1 and this section is two fold:
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(i) Regardless of the type of the system, namely, IoT, autonomous cars, CPS, and UAV,
the core element that serves as the first point of target of a compromised/faulty system
is embedded/wireless devices. While most of the reported work touches upon malware
detection in smartphones, there is a considerable body of work that focuses on malware
and fault detection in IoT and CPS devices. A main attribute that differentiates these
studies is how the device is monitored and what aspects of its behavior is being observed,
as Table 2.1 illustrates. (ii) From the reviewed papers, the most common shortcomings are
as follows:

• The monitoring tool is coupled with the device being monitored (on-device moni-
toring), which raises several flags, such as data integrity, resources limitation, and
computational overhead [54, 29, 241, 231].

• Although some studies are based on off-device monitoring, it may be noted that those
require a degree of invasiveness. To elaborate, a physical access to the device’s CPU
input power is required in some of the power based anomalous behaviour detection
techniques [151, 48]. In another example, EM based approaches require physical
proximity to the device’s CPU, along with proper alignment and setup [131, 130,
196]. Such invasive approaches become questionable when it comes to usability and
practicality. According to their experimental setup, EM receiver has to be placed
close to the CPU in order to collect the EM signals. Now, if the targeted device is
packaged in a package that suppresses the EM radiation or even weakens the radiated
signal, then the applicability of these approaches becomes problematic. Moreover,
the EM receiver itself might be the subject of an external attack (e.g., using signal
jammers), which could jeopardize the whole idea of EM based detection.

• An important factor that is not given enough attention in some of the power based
approaches is the data sampling rate. Regardless of how effective and creative the
proposed analysis approach is, ignoring the role of sampling can lead to a bad per-
formance in the detection process. This applies to the studies that make use of
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Table 2.1: Summary of Device’s Anomalous Behavior Detection Literature

Source of
Anomaly

Analyzed
Info. Ref. Type of

Anomaly
Application Domain/

(Targeted Device)
Discussed

Consequences

Side-
Channel Info.?
(Monitoring)

Approach - in 3 words &
(Performance)

A
no

m
al

ou
s

Be
ha

vi
ou

r
D

et
ec

tio
n

Se
cu

rit
y

T
hr

ea
t

EM

[131]
[130]

Ransomware,
Control-flow
hijack

CPS / (embedded devices:
OLinuXio boards)

financial
& phys-
ical
damage

Yes (off-device)
EM emissions + Neural Networks [131]
EM emissions + K-NN [130]
(∼100% detection accuracy in both studies)

[186] Change in
framework IoT / (Atmega328P) not

discussed Yes (off-
device)

EM signals + Hamming distance + SVM
(99.0% detection accuracy)

[100] Control-flow
integrity

ICS / (Allen Bradley
CompactLogix PLC)

could
lead to
catas-
trophic
failures

Yes (off-
device)

EM waves + LSTM
(98.9% classification accuracy)

[195] Attacks on
attestation integrity

CPS, SCADA & ICS /
(Arduino UNO)

full
control
hard-
ware/
software

Yes (off-device)
EM + STFT + Thresholding [195]
EM + FFT + FSM [196]
(100% detection accuracy in both studies)

Power

[241] Emulated Malware Smartphones /
(Galaxy S2)

financial
losses Yes (on-device) CPU power signals + MFCC + GMM

(92% malware detection accuracy)

[231] Malware Smartphones /
(Galaxy S5 & LG G2)

not
discussed Yes (on-device) CPU power signals + MFCC + GMM

(79% malware detection accuracy)

[122] Emulated Malware Smartphones /
(Galaxy S5)

privacy
breach Yes (off-device) device’s power signals + ICA + (SVM, NB, & RF)

(∼88% detection accuracy)

[151] Control-flow
integrity

IoT / (microcontroller:
STC89CS2)

key ex-
traction Yes (off-device) device’s power signals + FFT + PCA + HMM

(∼98% detection accuracy)

[54] Convert channel
attack

Smartphones /
(Galaxy S3 & LG X4)

sensitive-
data
leakage

Yes (on-device) amount of consumed power + (NN & RF)
∼(from 65% to 96%) detection accuracy)

[29] Ransomware IoT /
(Android device)

financial
losses Yes (on-device) power signals + DTW + KNN

(∼92% detection accuracy)

CPU, API,
and Network

[197] Emulated Malware Android mobile devices
/ (HTC G1)

billing &
data theft No (on-device) (CPU, of packets, API, battery level) + DT-J48

(99% malware detection accuracy)

[50] Convert channel
attack

Smartphones /
(Galaxy S3 & LG X4)

not
discussed No (on-device) OS calls + k-means

(∼100% detection accuracy)

[84] Malware Smartphones /
(Android device)

financial
& data
theft

No (on-device) (CPU, of packets, memory, & of connx.) + GMM
(∼100% detection accuracy)

PowerTutor as a monitoring means (data collection), since the provided sampling
rate is < 5 samples per second.
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Table 2.2: Summary of Device’s Anomalous Behavior Detection Literature: continuation
of Table 2.1

Source of
Anomaly

Analyzed
Info. Ref. Type of

Anomaly
Application Domain/

(Targeted Device)
Discussed

Consequences

Side-
Channel Info.?
(Monitoring)

Approach - in 3 words &
(Performance)

Pe
rfo

rm
an

ce
Is

su
e

Context

[60] Faulty sensor Smart Home System /
(Raspberri Pi)

User pri-
vacy ex-
posure

No (off-device) Sensor data and context + CC + Thresholding
(95% precision rate)

[147] Sensor failure IoT / (Weather station
& moisture sensors)

inaccurate
readings Yes (off-device) Sensors data + Mutual Test

(”low false positive rate”)

[22] Software flaws Data centers /
(network server)

not
discussed no (on-device) (CPU & memory usage, OS calls) + FSM

(”few false positives”)

[14] faults
ageing effects

CPS /
(ST STM32 Nucleo)

not
discussed Yes (off-device) Sensors data + ICI (AR predictive model)

(”reduced false positive rate”)

[173] software, hardware,
& communication failures

WSN /
(TelosB)

environment
haz-
ardous

Yes (on-device)
Sensors readings + set of ML classifiers
(∼55% to 100% detection accuracy,
depending on fault type)

Note: ICS = Industrial Control Systems, UAV = Unmanned Aerial Vehicle, CAN = Controller Area Network, PDA = Personal Digital Assistant,
EM = Electromagnetic, GPC = General-Purpose Computer.

2.4 Summary

In summary, this chapter builds the context for this study and can be divided into three
sections: Section 2.1 the IoT architecture has been explained, along with most commonly
used protocols. This serves to frame the context of this thesis and serve as a preamble
for detecting anomalous behavior in IoT Devices. Section 2.2 provides an overview of
supervised anomaly detection techniques and the common measures to evaluate them.
And finally, Section 2.3 presents the related work and discuss how each method works.

49



Chapter 3

Models and Assumptions

In this Chapter we discuss the models and assumptions used throughout the proposed de-
tection framework. The discussion covers a generic system model, anomaly model (threats
and faults), problem definition, and the solution strategy.

3.1 System Model

Since this work aims at detecting anomalously behaving devices in the general sense, it is
important to show a generic model that includes an abstract representation of CPS/IoT
application - we call it Cyber-Physical space. Therefore, we use the following models to
explain the high-level view of the components that can be found in our solution strategy
as well as any cyber-physical system. The cyber-physical space term covers how devices,
the main focus of this thesis, are integrated to/in build/ing complex systems? We show
also how the monitoring approach, that is used to collect the behaviors of devices, is
instrumented to devices in such a way that satisfy the main challenges addressed in this
thesis. Finally, the system model shows how the detection engine, which performs the data
analytic, is positioned in real case scenario. The purpose of the components in this section
is to set up the intuition and build the necessary context for next chapters.
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Figure 3.1: System model

3.1.1 Architecture Model

Figure 3.1 shows a high-level view of the architecture model of the proposed solution
strategy. We start off by defining some terminology.

1. Cyber-Physical Space. This term refers to any cyber system or cyber application that
is built on top of or based on a technology to allow autonomous/semi-autonomous
operation of the physical system. In this context, a physical system may refer to
a wide range of applications (e.g., Fig. 3.2 shows a robotic arm as an example of
an IIoT application). Cyber-physical space primarily revolves around the pervasive
instrumentation of physical objects (robotic arms in our example in Fig. 3.2) with
devices (mostly embedded) that are equipped with sensors, actuators, and the con-
nection of those devices to the Internet. We refer to these devices in Fig. 3.1 and
Fig. 3.2 as “reference devices”. It is important here to stress the fact that the core
layer of establishing a cyber space are the what we call reference devices.

2. Reference Device. It is basically a hardware device (e.g., embedded device [113] or
PLCs) instrumented to a physical object (robotic arm in our example shown in Fig.
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Figure 3.2: An example of an IIoT cyber-physical space

3.2) and is designed for one or very few specific task(s). As shown in Fig. 3.3,
such a device contains a special-purpose computing element that runs software. It is
also equipped with network module that can support one or more (wired/wireless)
communication technologies (e.g. ZigBee, Cellular, WiFi). Such a device works as a
main block in a larger system for monitoring and controlling purposes. To perform its
tasks, a reference device interacts with external environment physically or logically
through sensors and actuators. Finally, the reference device requires a power source
(battery or power system) to operate and function. It is important to mention here
that the examples that can be covered by the given reference device’s model can
be found in a large range of applications; however, in the context of this thesis, we
target IIoT, CPS, and MCPS (Medical-CPS) applications/systems. In other words,
the focus is on devices that have limited direct human interactions.

3. Device’s Software. It is a software component (operating system (OS)) needed to
operate the different components within the device. In the normal operation mode,
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the software is responsible on performing the following: (i) it controls the operation of
sensors or actuators; and (ii) it processes the collected data or the received commands.
For example, in the case of sensing, it reports the collected data to the server via
the network interface. And in the case of actuating, on the other hand, it processes
the received commands from the server to actuate the physical object to perform the
desired actions/tasks.

4. Power Monitoring Unit. This is a device that can be connected to the power source
of the monitored device. The assumption is that the power monitor unit causes
no overhead to the actual operation of the device itself (i.e., off-device monitoring
approach). Moreover, it has a reasonably high sampling rate to capture the short
lasting activities (i.e., activities that last for small durations). Its mode of operation
is completely decoupled from the monitored/target device in order to ensure that
the integrity of measurements is preserved. Lastly, the power monitoring unit is
integrated to a reporting system, called observer, that sends the collected power
signals to the cloud for analysis (i.e., to the Detection Engine).

5. Observer. In our experimental system model, this is a lap-top computer used to store
the collected power measurements in a database in CSV format and then upload these
data to the cloud for analysis.

6. Detection Engine. It is the main block of the proposed framework. The engine resides
in the cloud to perform the data analytics and model the device’s behavior. The
employed data analytics approaches are discussed in detail in Chapter 5 and Chapter
6. Once the engine receives a new power signal, the function of this component is to
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give informative insights to the device’s operator or owner as to whether the device is
behaving normally or anomalously. Therefore, the assumption we make at this point
is that there is some sort of a trusted path from detection engine to the device’s
operators to alert them of any potential anomaly.

7. Misbehaving Device. It is a device that exhibits anomalous behavior. The possible
anomalies that may lead to a device misbehaving are explained in subsection 3.1.2.

The main focus of this thesis is on devices that perform basic functions as outlined
above. Although the reference device’s model seems basic and simple, such a device and
the performed tasks exist in a wide range of applications. Whether it is self-driving cars,
smart parking systems, Industrial IoT, or any cyber-physical system, to name a few, the
explained reference model still applies. That is simply because, in all of these systems, we
find that tasks like sensing, actuating, and controlling are there.

States of a Device

Normal operation
i.e. "Healthy behaving device"

Abnormal operation
i.e. "Anomalously behaving Device"

Faulty 
Device

Broken 
component
ex., Failing 

CPU

Normal
aging
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ex. "Malware

Availability
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Figure 3.4: Break-down of an IoT device’s possible status
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3.1.2 Anomaly Models: Threats and Faults

In this subsection we describe the possible causes that may lead a device to behave anoma-
lously. As Fig. 3.4 shows, there are three main causes: security threats, change of the
execution environment, and the device’s faults. Since our framework is based on anomaly
detection, it is important to specify the threat and fault models [233]. We define the
sources of the three classes of anomalies as follows:

Security threats

We define the possible threats as a security issue or a harmful event that aims at harming
the device. A common characteristic of all security threats (malwares, worms, Trojans,
viruses, to name few) is the must for performing actions over the network [85]. In the
given example shown in Fig. 3.2, an attack on robotic arms in a production line could lead
to delays in manufacturing, potentially causing hundreds of millions of dollars in losses.

The possible security threats can harm a system in one of the following ways:

1. Compromise the confidentiality and the integrity of the device/user/system through
(a) transferring of data to unintended remote servers (e.g., malware and spyware);
(b) hajacking of the device’s resources to perform tasks for the attacker’s desire (e.g.,
bots: mining cryptocurrency and ransomware).

2. Restrict the availability of the device such that the provided services become partial-
ly/fully inaccessible (e.g., DDOS and jamming).

In comparison to previous methods, the only assumption we make in our work is that
an attacker has the ability to install a threat on the targeted device regardless of the
employed protection measures or the used communication protocol/technology. Moreover,
the installed malicious code is able to gain full control over the device’s resources (software
and hardware). Since in our proposed anomalous behavior detection framework, we mainly
target Internet-connected devices, such an assumption holds in real systems/scenarios.
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Change of the execution environment

The anomalous behaviour due to this anomaly refers to the case where the surrounding
of a device impacts its behavior. In such a case, the device is not under attack, nor it is
faulty, yet it is behaving abnormally. The causes of such an anomalous behaviour includes
firmware updates (external change pushed to the device) [182, 170] or communication
interference (external issues that worsen the network availability).

Faulty device

This covers any changes of the device’s behavior due to a failure which requires some sort of
maintenance. Unlike security threats, the term fault covers the causes that lead a device’s
behavior to deviate from its norm without involvement of any external doer/intruder. This
can be due to: (1) a broken component (ex., a failing CPU [160]); or (2) an aged device
(ex., hardware aging [78]). The faults considered in this model are assumed to not cause a
device to shut down (i.e, stop working entirely). Failures that lead a device to stop (e.g.,
fail-stop model) are out of the scope of this thesis. The reason is that if a device stops
working, it can be detected right away once it becomes unresponsive.

.

3.2 Detection Model

This section presents a brief description of the problem and the solution strategy with the
main faced challenges.

3.2.1 Problem Description

Traditionally, in industrial plants and manufacturing environments, for example, the con-
trol and telemetry components were typically applied within isolated networks. The in-
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frastructure in this physical systems were built using specialized operating systems. What
made resilient to attacks and failures is the fact that the deployed operating systems and
software are relatively masked and unknown to attackers. However, given the exponential
growth of the IoT and CPS devices and offered applications, traditional industrial plants
and manufacturing environments have been modernized and became more intelligent. The
new industrial control systems’ architectures are continuously connected to the Internet
(via wireless or wired links) for real-time insights and automation. Consequently, the
new paradigm has brought new avenues of risks that can compromise control systems and
production lines as a whole.

In the last couple of years, 66% of manufacturers have experienced a security incident
related to IoT devices, according to [2]. The infamous Stuxnet worm attack against Iranian
nuclear uranium enrichment facilities is one example [88]. The Ukraine smart power grid
was the target of a cyber-attack which resulted in a three hours power outage [132]. These
are just few examples on the type of critical infrastructure that can be targeted globally.
These will not be the only attacks, given the fact that the functionality of the targeted
devices depend on a direct data exchange. This requirement (i.e., the continuous need for
Internet connection) makes these devices become inherently not secure. This also goes back
to the fact that IoT/CPS devices are constrained in memory and processing capability; as
a result, having complex security algorithms is computationally expensive, and hence, is
not viable.

Given the aforementioned scope and motivation, this thesis concerns the problem of
detecting anomalous behavior of IoT/CPS devices by considering side channel information.
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Statement:
This research has been inspired by the fact that cyber-security attacks are increas-
ingly occurring globally targeting IoT/CPS devices used in critical systems. Effective
and robust approaches for detecting anomalous behavior of devices can minimize a
tremendous amount of economical and life losses. Therefore, our objective is to
propose new approaches that leverages the power consumption of devices and deep
learning techniques to make these devices more resilient and proof to different kinds
of attacks and failures.

3.2.2 Solution strategy

Power consumption of devices, as a side-channel information source, has been exploited by
attackers to reveal secret keys. That is due to the strong and direct correlation between
the tasks a computer/device performs and its power consumption behavior. For the same
reason, we have chosen to exploit the power consumed by IoT/CPS devices to make them
better protected and secured. Therefore, we formulate the problem of detecting a device’s
anomalous behavior as anomaly detection problem.

As highlighted in the problem description and the system model sections, IoT/CPS
devices are constrained in memory and processing capability. Therefore, the first challenge
that we tackle in our solution strategy is the way to collect the device’s behavior (i.e.,
its power consumption signals). In order for the solution to not cause overhead to the
operation of the device’s resources, we monitor the device’s power non-intrusively (i.e,
off-device).

The second challenge that we tackle by adopting the idea of monitoring the power
consumption of devices non-intrusively is the following: In the case of security threats,
namely malware invasion, if the malware is a sophisticated one, then they can detect the
existence of the intrusive monitoring methods [124, 98]. Consequently, they can block the
monitoring process or manipulate the collected data to avoid being detected. Therefore,
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such a monitoring approach raises a data integrity flag. In other words, if a device is
compromised, then so could be the monitoring means and the collected information them-
selves [111, 172]. Therefore, by decoupling the monitoring system and the devices to be
monitored, we aim to tackle such a challenge.

The main objective of this thesis is to come up with a detection framework that can
detect the anomalous behavior of devices in an accurate and efficient way. In this context,
accurate and efficient detection means that the methodology produces low false alarms and
causes no over-head to the operation of the devices. Throughout this thesis, our solution
strategy for detection framework relies on the following:

• The fact that IoT, Industrial IoT, and CPS devices are likely to be designed to
execute repetitive, and in some cases periodic, tasks;

• The fact that every single action on-board (whether hardware or software driven
actions) will be reflected as a change in the monitored “side channel information” -
the power consumption of a device;

• The powerfulness of deep learning techniques to learn complex models from raw data.

It is important to mention that the collected signals are the overall power consumption
of the device. Such a signal combines the instantaneous power consumed by all hardware
components of the device and the software that runs it. As a result, the data contains much
noise which make the detection of anomalous behavior quite difficult and challenging.

So next, the challenge is hand crafted features are exorbitant. The collected data points
can be used as a raw data or processed data. Raw Data means that the collected data points
are used as is for analysis. On the other hand, processed data means hand crafted features
are extracted from the collected data points for analysis. In our case, the raw power
consumption signals contain much noise and do not clearly show what frequencies (events)
are present. Therefore, dealing with them in their original structure is problematic and
achieving reasonably accurate detection and classification performance can not be easily
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done [32], when employing traditional detection and classification methods. Thus, the
trade-off in such a case is that hand crafted features yields a better detection performance,
and at the same time, the amount and the level of complexity involved in such a process
should be kept minimal. The need to keep the number of features and their complexity
minimal can help reduce the resources (e.g., personnel domain knowledge, time, memory,
processing powers, and energy) needed to perform the task.

The following challenge is accuracy of detection vs novelty of detecting new anomalies.
In the detection process, the main question to consider is the type of the employed detection
approach. The answer of such a question depends on the availability of labeled datasets. It
also impacts the aim to be achieved, whether it is a high detection performance (accuracy,
precision, recall, and F-score) or the novelty of detecting anomalies that causes a device
to misbehave. Therefore, in the field of this thesis’s topic, there is a lack of realistic power
consumption datasets that reflect the normal and anomalous behaviors of IoT and CPS
devices. If a labeled dataset is obtained, then supervised detection approaches can be
implemented. Such approaches aim at improving the detection performance. However, if
unlabeled dataset (or at least one label is known - normal behavior label) is available, then
unsupervised or sim-supervised detection approaches can be used. These approaches aim
at detecting new anomalous behaviors (e.g., zero-day attack, or misuse detection).

An overview of the detection process is shown in Fig. 3.5. The proposed detection
approaches employed in our detection engine are based transforming the raw power signals
to another representations and then fit a model on the new representation as shown in
Fig. 3.5. We overcome the lack of datasets availability by designing different sets of
experiments that covers a wide range of device’s anomalous behaviours. This allows to
investigate the feasibility of using the power consumption of devices for detecting different
kinds of anomalies. It also allows us to evaluate the detection approaches employed in
our detection engine. The details of the experimental setup as well as the nature of the
collected data are explained in Chapter 4.

The data modeling task, also called training phase or model building, employed in our
detection engine leverages supervised and semi-supervised techniques. Our HOG+CNN
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Figure 3.5: Overview of the detection model

approach, discussed in Chapter 5, is a supervised detection technique. It combines: (i)
CQT and HOG features, sophisticated features that captures the time and frequency of
the events occurring on-board a device, and (ii) a powerful supervised learning technique,
namely CNN, to perform the detection. This approach aims improving the detection
performance. On the other hand, our RBM+OCSVM approach, discussed in Chapter 6,
is a semi-supervised and requires only the normal behavior of a device in the training
phase. It is based on: (i) utilizing stacked RBM AutoEncoders to unsupervisedly extract
features that are based on the reconstruction errors, and (ii) training an OC-SVM on the
extracted features to detect possible security threats. The aim of this approach is to detect
new anomalous behaviors that are novel and never been observed (e.g., zero-day attack,
or misuse detection).

.
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3.3 Summary

This chapter has presented our system model, assumptions, and the problem definition.
Then, it explains the solution strategy and how the identified challenges are addressed in
our solution strategy. The provided system model includes the architecture model and
anomaly model. The architecture model present all the components that builds a cyber-
space. It also shows how the proposed monitoring approach can be integrated to any
system. A formal definition of the components is given as well as the assumptions made.
The anomaly model, in turn, models the sources that can lead for a device to behave
anomalously. The anomaly model breaks down the causes into two main causes: security
threats and fault device.
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Chapter 4

Experimental Setup and Dataset
collection

The material of this chapter has been published in parts in our works published in [10,
8, 122]. The main objective in this chapter is to design classes of experiments to be
used to build wide spectrum datasets that represent devices’ anomalous behaviors. These
datasets are to be used to answer the following questions: (i) Can the power consumption
of devices be used to detect different kinds of anomalous behaviors?, (ii) how well do the
proposed detection techniques perform in detecting security threats and system failures
in the domain of IoT and CPS systems?, and (iii) how do the measurements sampling
rate and the window size impact the detection performance? Answering these questions
validates the effectiveness and robustness of the proposed techniques and the contributions
of this thesis as a whole.

The collected data is used to build 18 datasets. These datasets cover three main as-
pects of a device’s security (namely, confidentiality, integrity, and availability), and partial
system failures. The security threats datasets are gathered using: (1) 5 real malware appli-
cations obtained from the well-known Drebin dataset [26], (2) from 7 families of emulated
malware, (3) Distributed Denial of Service (DDoS), where we used the device as a victim
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of DDOS and as an attacker (a source of an DDOS attack), (4) Crypto-miner, which is
basically a malware that takes over a device’s resources and use them for cryptocurrency
mining without the user’s explicit permission [213]. The partial system failures datasets
(3 datasets) are gathered using a faulty CPU cores. Since the work in the domain of this
study lacks the availability of such datasets, we aim to make the collected datasets and
the developed software publicly accessible for the research community.

4.1 Experimental Setup

We conducted the experiments in our lab using the test bench shown in Fig. 4.1, refer
back to Chapter. 3 for real implementation analogy. It consists of the following:

• Monsoon Power Monitor: This is a reliable tool used to measure the power consumed
by a device in varying test configurations [207]. Essentially, the Monsoon Power
Meter supplies power to the device and is connected to an external laptop that runs
a software called Power Monitor Tool that comes with the Monsoon meter. The
software has a GUI to acquire the power consumption data and control the functions
of the power monitor. Further, the tool stores the measurements in a database in
a specific format (csv files) in the cloud (Google Drive in our case). The Power
Monitor provides a settable constant voltage and measures the current consumed by
the device at 5000 samples per second.

• Device Under Test (DUT): This is the device to be used to conduct the experiment
and run one of the sources of anomalous behavior. We change the device under test
(DUT ) in our test bench depending on the application as we explain in the following
sections. The DUT is connected to the cloud/Internet through a router/gateway.

• Router/Gateway: This device is used to establish a wireless connection between the
DUT and a server.
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Figure 4.1: Experimental setup test bench

4.2 IoT Based Experiments

The IoT use-case built in our experiment is a Smart Parking system. The system includes
an IoT device that monitors whether a parking spot is available. The IoT device is made
of a control unit, which in our case is a Raspberry-Pi, attached to an ultrasonic sensor.
The IoT device is connected to a server through a wireless network (a WiFi gateway).
The operation of the IoT device is based on the Raspberry-Pi polling the ultrasonic sensor
reading, processing the data, and sending the data to the server. The server can send
instructions to the Raspberry-Pi (e.g., to start or stop gathering data), and can use or
store the data provided to it by the control unit. Moreover, the server can accommodate
a web or mobile application so that the end users can interact with the system and get
online status of the parking slot. Our focus in this system is the IoT device itself and the
activities that it performs. These activities can be summarised as follows:

• The control unit sends a 10 s pulse on the ultrasonic sensor’s triggering pin.

• The control unit monitors the ultrasonic sensor’s response through the ECHO pin.

• The ultrasonic sensor emits several short ultrasonic pulses, and pulls its ECHO pin
high at the same time. The control unit records the time when this has happened.
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• As soon as the sensor detects echoes from the pulses it emitted, it pulls its ECHO
pin low. The control unit records the time when this has happened too.

• The control unit computes the difference between the two times to determine the
round-trip time for the ultrasonic pulses to reach the object and return to the sensor,
and divides this by 2 to get the one-way time for the ultrasonic pulses to reach the
object.

IoT DeviceUltrasonic Sensor

Control Unit 

Figure 4.2: DUT: IoT parking sensor

• The control unit multiplies this time by the speed of sound (343 m/s) to determine
the distance of the object from the ultrasonic sensor, and hence find out whether a
parking spot is available or not.

To this end, the normal operation of our IoT device, which can be a component of a
very large system, should not deviate much from the tasks explained above. Therefore, its
normal behavior is expected to be reflected closely in the power consumed by the device.
As we show in Fig. 4.1, we supply the IoT device with power using the Monsoon Power
Monitor. Next, we explain the experiments that show what might lead to an anomalous
behavior of such a device. The code used in the following testing scenarios is listed in
Appendix A.1.
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4.2.1 Distributed Denial of Service (DDOS) attack

In a nutshell, DDOS involves a node (e.g., IoT device) or a large number of them sending
large traffic volumes to overwhelm the Internet infrastructure or servers in a harmful way
(i.e., to restrict the availability of services). In our experiment, we consider two cases: (i)
an IoT device as a source of the attack; and (ii) an IoT device as a victim of the attack. In
the first scenario, the assumption is that an attacker takes control of the device and injects
code to instruct the device to generate data/traffic to flood the network. In the second
scenario, we consider the IoT device as a server providing data to a real time application.
When the IoT device is attacked, it becomes unreachable and hence the system loses it.
We use Low Orbit Ion Cannon (LOIC) as a tool for simulating the DDOS attack [180].

4.2.2 Cryptocurrency Mining Malware

This is basically malicious code, known as cryptojacking, that tries to hijack the device’s
resources so that it can perform cryptocurrency mining, such as Bitcoin, for the benefits
of the hacker who installed it. In this kind of security breach, we assume that the attacker
has made it past all of the security measures in place and was able to install the mal-
ware (Miner). IoT devices are easy target for this type of malware due to the increasing
number of devices connected to the Internet and the increasing computational power of
IoT devices. While an individual IoT device does not have enough computational power
to obtain measurable profit from cryptocurrency mining by itself, cryptojacking malware
can easily spread across the Internet and infect a large numbers of IoT devices. In fact,
many cryptojacking programs have targeted IoT devices, specifically targeting Raspberry-
Pi based IoT devices [158]. The program simulates cryptocurrency mining by computing
the SHA-256 hashes of random byte sequences in order to find sequences whose hashes
start with multiple zero bytes. Except for the difficulty of the problem, this is exactly the
same protocol that Bitcoin uses for its proof-of-work, and is exactly how Bitcoin mining
programs work. The miner is only active for part of the time, which is a strategy used by
malware to avoid detection.
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4.2.3 Faulty CPU

In this experiment, we simulate that an IoT device has a problems with its CPU. The
Raspberry-Pi CPU has four cores, but, we deliberately deactivate some of the cores to
simulate a faulty CPU. We run different experiments with different loads to stress the
CPU.

4.2.4 Datasets

For each of these experiments, we collect power traces of the device to build our datasets.
We use these datasets to train our anomalous behavior detection engine and evaluate its
performance. Table 4.1 summaries our IoT based datasets. Dataset D, for example, refers
to the case where an IoT device has a failing CPU (a faulty component). The number of
observations in this dataset is 200 power traces, 50 of them are collected when the device
is working normally (with 4 active cores) and the other 150 when the device has a faulty
CPU: one core deactivated, two cores deactivated, and three cores deactivated.

Table 4.1: Description of the IoT device datasets

Dataset
Name

Description # of observa-
tions per class
(Dataset size)

DDOS
(A)

An attacking IoT device, total of 2 classes: A class of a nor-
mally operating device and a class of an attacking device.

50 (100)

DDOS
(B)

A victim IoT device, total of 2 classes: A class of a normally
operating device and a class of compromised device.

50 (100)

Crypto
Miner
(C)

Mininig Cryptocurrency using a hijacked IoT device’s re-
sources, total of 2 classes: A class of a normally operating
device and a class of compromised device

50 (100)

Faulty
CPU
(D)

IoT device with a faulty CPU, total of 4 classes: A class of
device with 4 working cores (normal class), and 3 classes of
partially activated cores (3 cores, 2 cores, and 1 core), simu-
lating the abnormal class.

50 (200)
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4.3 Smartphone Based Experiments

The second device chosen to validate our methodology is a Smartphone. Although the re-
sources on-board a smartphone are more powerful than most of IoT and CPS devices, some
applications can be represented by such a powerful device. The examples range from in-
telligent surveillance cameras used in intelligent transport systems [188] to medical devices
used in medical cyber physical systems [167]. The common characteristics between smart-
phones and these devices are the powerful compute capabilities and the high generated
data/traffic.

4.3.1 Emulated malware

In this set of experiments, we have developed an emulated malware that we use to simulate
different anomalous behaviors. The emulated malware in our case is a piece of code that
runs in the background of the device and executes certain activities. The assumptions we
make while designing these experiments are:

1. Real malwares perform network activity to either (a) only download (DL) information
to the compromised device (100% DL), (b) only upload (UL) user’s information to
a remote server (100 % UL), or (c) upload and download information from/to the
compromised device (ex. 50 % UL and 50 % DL as shown in Fig. 4.3).

2. Real malware perform some local computations such as read/write to memory/stor-
age.

3. Real malware are not continuously active when they are installed, rather they work
in bursts of activities.

By having these aspects included in the development of the emulated malware, we
can cover a wide range of real malware that are out there. In spite of the malware type
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(botnets, rootkits, and worms, refer to [141] for detailed description of these malwares),
the activities that it performs will fall largely in the range considered above.

Figure 4.3 demonstrates the possible malware activity scenarios. We classify these
scenarios into two main groups of malware, namely, non-adaptive and adaptive malware.
Non-adaptive refers to a malware that is active periodically (in a cyclic fashion) as illus-
trated in Fig. 4.3. We introduce a tunable parameter that we call ”activity Duty Cycle”
(DC) which represents the degree of activeness of the malware, and it is calculated as:
DC = TON

TON+TOFF × 100%, where TON refers to the time the malware is performing some
tasks and TOFF refers to the time when the malware is inactive. DC is the percentage of
the time a malware is active performing some tasks. Several datasets are generated; each
one of them represents a family of malware that depends on their network activity (ex.,
50DL50UL malware family). In contrast, adaptive malware try to eliminate any cyclic be-
havior from its activities by a random activation time and periods of activation, as shown
in Fig. 4.3.

Figure 4.3: Emulated malware activity cycles/activation

70



4.3.2 Real Malware

In this set of experiments, we use 5 real applications (namely, Buscaminas, Tetris, Tilt,
Wordsearch, and Yams) that are known as malware from the well-known malware dataset,
Drebin, discussed in [26]. We downloaded their real-non-malicious versions from the Google
Play store and conducted the experiments. In total, we run the benign version of the app
and collect 15 signals. We repeat the same thing with the malicious version of the app and
collect 15 signals as well. A summary of the collected dataset is descried in Table 4.2.

4.3.3 Datasets

In all of the emulated malware experiments explained above, the collected datasets com-
prise of two main class, namely Normal class and Malicious class. In the Normal class, we
collect the power consumed by the smartphone while running YouTube, and no other ap-
plications are running in the background. In the Malicious class, the power measurements
are obtained from the smartphone running YouTube and an emulated malware running in
the background.

The choice of using the Youtube as the app for generating the normal behavior class is
justified using the following scenario. A common question in the security field is: can the
detection be evaded if attackers find out about the proposed detection approach? Generally,
this is a difficult task since there is an inherent connection between the tasks a device
performs and the power it consumes. In the side-channel attacks, the whole idea of revealing
secret keys depends on the aforementioned fact. However, one way that an attacker might
seek to evade detection is through the attempt to hide some of their malware’s activities
behind a legitimate power consumption bursts/spikes [226]. In our datasets scenarios,
specifically in this emulated malware based datasets, we simulate such a strategy by having
a high power activity application (YouTube) running as the normal/legitimate behavior,
while the emulated malware runs in the background.

In the non-adaptive malware case (E −DC in Table. 4.2), we use 5 different network
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activity loads, namely [100% DL (download) and 0% UL (Upload)], [75% DL and 25%
UL], [50% DL and 50% UL], [25% DL and 75% UL], and [0% DL and 100% UL], to
represent 5 different malware families, as we show Fig. 4.3. Based on the tunable parameter
-activity Duty Cycle (DC)- of emulated malware, in each malware family can we can
generate different versions/instances of malware, each having a different behavior. In our
experiments, we use six different DCs, namely 1%, 2%, 3%, 4%, 8%, and 12%. Each DC
value represents a malware instance. To illustrate, 1% DC refers to a malware instance
that is active for 0.6 seconds in every 60 seconds. And based on the malware family, e.g.,
[50% DL and 50% UL], 50% of the 0.6 seconds are to upload and in the other 50% to
download. Referring to the examples in Fig. 4.3, malware with 20% DC means that the
malware is active for 12 seconds in every minute, and in those 12 seconds the malware use
half of the active time to upload and the other half to download. Thus the total number
of malicious class (different malware instances) is 6× 5 = 30.

Table 4.2: Description of the smartphone datasets

Name Description # of observa-
tions per class/
(Dataset size)

E-
DC
(E)

Emulated malware with varying duty cycles and varying net-
work activity loads, total of 31 classes. One no-malware class
and 30 different E −DC malware classes.

15 (465 = 15 ×
31)

E-1S
(F)

Emulated malware with one spike of activity, randomly acti-
vated, total of 2 classes: One no-malware class and one E−1S
malware class

15 (30 = 15× 2)

E-
RA
(G)

Emulated malware with random activation and random active
periods/loads, total of 2 classes. One no-malware class and
one E −RS malware class

15 (30 = 15× 2)

Real
(H)

Five malicious apps from [26] and their legitimate versions,
total of 10 classes. One for malware-free version and one for
malicious version

15 (150 = 15 ×
10)

We repeat each class’s experiment 15 times, so we have 15 observations for each class,
each observation (power measurement) lasting for 300 seconds (5 minutes). Given the
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sampling frequency of our power monitor Fs = 5000 samples/second and the duration of the
observation (T=300 second) each observation contains 1,500,000 samples that characterize
a smartphone in either of the above mentioned classes. At the end, the total size of the
non-adaptive malware dataset (Dataset E) is 465 (15 + 30× 15) signals that make our 31
classes, as summarized in Table 4.2.

In the adaptive malware case, the idea is to introduce uncertainty to the behaviour of
the emulated malware. We accomplish that using two setups: (i) Emulated malware with
one spike (E-1S: Dataset F) activation refers to a malware that wakes up at a random
instant to perform its activity and then go to sleep for the rest of the experiment. The
only-once activated malware’s activation graph is shown in Fig. 4.3. The 0.6s activity
spike is generated at a random time in the 5 min interval. As explained in the previous
case, we repeat this experiment 15 times while the device has the malware (E-1S) actived
in the background. (ii) Randomly activated emulated malware (E-RA: Dataset G) is a
malware that goes active at a random instant of time and performs some activity for a
random period of time, then goes inactive for a random period of time. It keeps alternating
between on and off based on a random timing, as demonstrated in the last graph on Fig.
4.3. Similarly, 15 power observations are collected for this kind of malware (E-RA). Table
4.2 summaries our smartphone based datasets.

Finally, in our real malware set of experiments, we run each of our 10 app (5 malicious
and 5 legitimate) for 5 minutes each and collect the power consumed by the smartphone.
Similar to all of our smartphone based experiments, 15 power observations are collected
for each app resulting in a total of 150 power traces in this dataset (Dataset H).

In all of the smartphone based experiments, we automate the process of interacting with
these apps using an Android tool called Droibot1. This minimizes the error probability
and allows us to have consistent measurements.

1https://github.com/honeynet/droidbot

73



4.4 Preliminary Research: Investigating a Device’s
Power Signals Information for Detection Purposes

Before discussing the detection techniques proposed in Chapter 5 and Chapter 6, we con-
duct a preliminary analysis on the emulated malware datasets.

The following section present exploratory data analysis that helps us understand the
nature of the distribution of classes across the different datasets. This analysis works as
a base for our machine learning based analysis. We conducted several machine learning
based analysis to justify the need to go to deep learning based detection approaches, as we
propose in Chapter 5 and Chapter 6.

4.5 Exploratory data analysis

We start off by quoting John Tukey when he said “Exploratory data analysis can never
be the whole story, but nothing else can serve as the foundation stone” [222]. In this
section, we analysis the obtained dataset statistically to better understand the nature of
the data. Statistical analysis tools are used here to visualize how the classes of our datasets
are distributed in 2-D space. We model each dataset using mean and standard deviation.
These two characteristics are useful since in our emulated datasets case we have different
scenarios and parameters. The resultant different behaviors of these scenarios are difficult
to explore in 1-D format. In some cases, these behaviours are very similar. Therefore, it
is a good idea to exploring the statistical properties of these datasets. Then, we show the
histogram of a pair of anomalous and normal behavior of the same emulated malware.

In this analysis, we investigate whether a classic set of features, that are commonly
extracted of time-series signals, convey good information about the device’s health. The
extracted features are:
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mean: x̄ = 1
N

N∑
i=1

xi

Standard deviation (STD): s =
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i=1(xi − x̄)4

(∑N
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Median: md =
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2
for N odd

1
2(xN

2
+ xN

2 +1 for N even

Skewness: sk =
√
N

∑N
i=1(xi − x̄)3

(∑N
i=1(xi − x̄)2)3/2

For each power signal of each malware instance we computed these features. Through-
out the rest of this section, we will interchangeably call each measurement (power trace)
an example or data point, x. The whole dataset is denoted with capital X. We form a
Features vector that contiain the five features explain above. Therefore, each data point x
is represented by five features {mean, sd, k,md, sk}.

Figure 4.4 shows the 100UL00DL malware family and how each class is distribution
according to the extracted features. Each figure in Fig. 4.4 represents the six malware
instances in this malware family. For example, Fig. 4.4a, which is denoted by Kurtosis vs
Median, shows the distribution of the six malware instances using these two features. The
100UL00DL malware family, as explained in section 4.3.1, means that when the malware
is in active state, it only uploads some data to a remote server. The scatter plot of
Fig. 4.4d shows how the two features, namely, the mean and standard deviation, are
used to characterize the power consumption signals of a device’s behaviour while being
compromised with one of the malware instances. In each of these figures, we show also the
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the normal behavior of the device (highlighted in green) to get a sense of how different is
the normal behaviour from the malicious one.

The histogram of the raw data of the two classes (normal and malware) is shown in
Fig. 4.5. In this case, the histogram illustrates the relative frequency of occurrence of
power amplitudes of our raw signals. What each of the figures in Fig. 4.5 demonstrates is
the histogram of the main two behaviours of our anomalous behaviour detection problem,
namely, malicious and normal. As can be noticed in Fig. 4.5, the behavior of the device
when the malware’s activities are rare and done in short bursts of time appears very similar
to the behavior of a device that is not compromised (normal behavior). The case of 1 %
malware through the 4 % malware, the histogram fails to show distinct behavior (Fig. 4.5a,
Fig. 4.5b, Fig. 4.5c, and Fig. 4.5d). However, in the cases where the malware is quite
active (i.e., the 8 % malware and the 12 % malware), the histogram plots show that the
power behavior of a normally operating device is quite different from a compromised one
(Fig. 4.5e and Fig. 4.5f).

The takeaway from Fig. 4.4 and Fig. 4.5 is that the power consumption behavior of
a device does convey some information about the operational state of devices. However,
we also notice that the information are noisy and do not allow for an easy separation
of the classes. This observation is clear in the cases where the malware instances are
lightly active (Malware with duty cycle of 1% to 4%). Throughout this statistical analysis,
whether it is the features based visualization or the histogram, the case made in the last
sentence still holds. This is justifiable given the fact that device’s power signals contain
much noise and do not clearly show the information (i.e., events, their frequencies, and
duration). Therefore, dealing with them in their original structure is problematic. This
leads to achieving reasonably accurate detection performance can not be easily done [32],
when employing traditional detection methods. To conclude this analysis, these signals
have a 1-D structure and are generally complex to be described with analytical equations
with parameters to solve [217]. The observations from Fig. 4.4 confirm this statement,
and further, show the need for alternatives to capture better information and features to
accomplish the objectives of this study.
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1475 1500 1525 1550

skewness

3.0

3.5

4.0

4.5

m
ea

n

Legend
Normal

Malware 1%

Malware 2%

Malware 3%

Malware 4%

Malware 8%

Malware 12%

(e) Emulated Malware: Mean vs Skewness
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Figure 4.4: Scatter plot of the 100UL00DL emulated malware family for several set of
features
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(b) Histogram of 2 % emulated malware
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(c) Histogram of 3 % emulated malware
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(d) Histogram of 4 % emulated malware
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(e) Histogram of 8 % emulated malware
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(f) Histogram of 12 % emulated malware

Figure 4.5: Histogram plot of power consumption of a devices in the two states: com-
promised and benign
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4.6 Machine learning Analysis

In this section, we build on upon the discussion of the previous section. The distribution of
the classes seem separable in some cases, hence, machine learning models can be explored
to answer our first question: Can the power consumption of devices be used to detect
different kinds of anomalous behaviors?

We start off by building a simple data pipeline model that we use for our machine
learning analysis. In this model, we have two main steps, namely, (i) data pre-processing,
where we use the five features explained in the previous section and then apply PCA; and
(ii) data modeling, where we train an SVM model on the processed dataset.

Step 1: Data Pre-Processing

In this step, we use our dataset X. Each data point x, in X is represented by five features
{mean, sd, k,md, sk}. We, then, apply PCA to reduce the dimensions and prepare the
dataset for data modeling step.

Data Labeling, since we know a prior of time the label (l) of each power trace, we label
each processed power trace x with the proper label, as we show in Fig. 4.6. Although
we only use two principle components of each data point, the classes’ distribution shows
somehow distinguishable pattern, especially when the malicious code is highly active (i.e.
has high Duty Cycle (DC) (Fig. 4.6).

Step 2: Data modeling

In this step, we train an SVM classifier as follows. It is important to explain how we
formulate the problem. We are interested in detecting the anomalous behavior of a device
due to the presence of emulated malware. Therefore it is safe to formulate the problem
as a binary classification problem, l ∈ {1, 0}, where the first class’s label is No Malware
and the other one’s label is With Malware. In chosen emulated malware family, we have
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Figure 4.6: Distributions of classes using the the first two principle components

six different versions of the malware, each has different activity duty cycle. Since the
first class represents a “healthy” operation (No Malware), we have it in all of the six
classification scenarios. To elaborate, in the first scenario, we train on 10 data points that
were randomly selected from No Malware and 10 data points from Malware with DC = 1%
selected randomly. We fit a model for this scenario and evaluate it on the test dataset. In
the second scenarios, we again train on 10 data points from No Malware and 10 data points
from Malware with DC = 2%, and so on for the other duty cycles. At the end we have six
models to be tested. This approach enables us to investigate the sensitivity of detecting
malwares that are not active long period of time. Also, it gives us an initial sense on the
feasibility of using power consumption of devices to detect their anomalous behaviour.

Given the knowledge we inferred from visualizing the classes in Figure. 4.6, we know
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that detection of malware with DC less than 3% will be the most challenging scenarios.
That is what we can confirm from F-score results shown in Figure. 4.7. It shows that,
the more active the malware is, the higher the rate of detection is. After the DC becomes
higher than 3%, we notice that the detection rate reaches 100%. This is expected from the
fact that the two classes (No Malware and Malware with DC > 3%) are totally linearly
separable, as can be noticed from Fig. 4.6.

Figure 4.7: F-Measures results

A more realistic assumption is that real malware is lightly active. Therefore, unlike the
emulated malware cases that cause high activity behavior, results of the malware with low
activity behavior, in Fig. 4.7, give us the clue that such a model is not practical. Therefore,
we went ahead and built data pipeline model that uses a class of machine learning model
to investigate weather we can achieve a better performance on the low activity malware
instances. As shown in Fig. 4.8, five classifiers are implemented, namely, 5-NN, 3-NN,
SVM, Fandom Forest, and linear regression. To achieve a good model that generalizes well
on the test dataset, we perform cross validation and search grid to fine tune the parameters
and avoid the over-fitting problem.

The obtained results are presented in Table. 4.3. Unfortunately, none of the classifiers
performed better than the previous case.
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➔

Figure 4.8: Implemented machine learning model architecture

Table 4.3: A summary of detection performance using a class of machine learning classi-
fiers

ML algorithm Training Accuracy Testing Accuracy F-Score
SVM 90% 69.9% 69.9%
3-NN 90% 69.9% 76.9%
5-NN 90% 59.9% 66.9%
RF 100% 69.9% 76.9%
L-R 90% 69.9% 72.7%

As a conclusion, the performance of the machine learning analysis, when using hand-
crafted features, was not as good and suffered from high false negatives, regardless of
the used machine learning models. We think that the reason behind the poor detection
performance is that by using hand-crafted features, we tend to lose much discriminative
information. Therefore, in the next chapters, we explore new avenues that leverage deep
learning techniques to achieve better results and build more robust detection models.
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4.7 Sampling Frequency impact Analysis

In this section, we utilize artificial neural network (ANN) to build a model. We utilize the
same dataset described in the previous section; however, we treat the raw power consump-
tion traces as signals that carry information about the operational state of the smartphone.
The aim in this analysis is to answer the question: how do the measurements sampling
rate and the window size impact the detection performance?

From the results show in Fig. 4.7, we chose the malware instance that gives use the
highest detection performance. The reason is that, we guarantee that the ANN model will
perform well on that classification scenario. Doing so allows us to investigate the impact
of the measurements rate on the detection performance.

The implemented ANN model is illustrated in Fig. 4.9, where we start with samples
preparation. Then we train ANN with 3 layers to classify the power signals.

ANN Training
Power 
Traces 
Dataset

x(t) Data 
Preparation

Trained Model, 
optimal (W,b)

Input layer, n_x 
nodes

Hidden layer 1, 
128 Relu nodes

Hidden layer 2, 
128 Relu nodes

Output layer, 2
Sigmoid nodes

Testing 
Traces 

Prediction 

Figure 4.9: ANN model for malware detection

Data Preparation: A key aspect of this experiment is data preparation. In our
dataset, each power trace x(t), is a vector of size T ∗fs samples, as we explained in Section
4.1. We introduce the concept of the “labeling window”, where the size of this window
represents the number of selected samples nx. For example, if nx = 5000, this means
the window has 5000 samples which is equivalent to 1 second of the experiment time. In
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this case, the task involves labeling each 1 sec of each power trace with same label of
the original signal. For example a power trace x(t) with the label No Malware (y = 0),
generates x(t)/nx = 1, 500, 000/5000 = 300 training example x̄ labeled with the same
original label (y = 0). In total, in this example we get from 30 power traces in our dataset
30 ∗ 300 = 9000 training examples.

Model: Our ANN architecture model contains three layers. The input layer of size nx
followed by two hidden layers, each has nh neurons. The output of the these two layers is
fed to a classier layer, which is simply a fully connected (affine) softmax output layer of a
size ny (the number of classes), as illustrated in Figure. 4.9. The softmax layer produces
a distribution over the 2 classes in our problem.

Figure 4.10 summaries our results and shows the accuracy for different sampling fre-
quency rates. The accuracy is higher than 90% for all of the cases where the sampling rate
is higher than 1000 samples per second. The takeaway from these results is that, the higher
the sampling rate, the more is the discriminative information captured by the model. We
also have tested our model on traces that was not included in the dataset, traces that the
model has never been exposed to. The Accuracy gotten on those traces is 90% and the FN
rate is 5%. The second observation from Fig. 4.10 is that the impact of the window size
on the detection performance. We can see that the larger the window size, the higher is
the accuracy. This makes sense in our case, given that the larger the widow size, the more
is the captured information.

4.8 Summary

This chapter provided a detailed description of the experiments conducted to generate
different anomalous behaviours of devices. The collected data is used to build a wide
range of security threats that are found in the practice and academia. These datasets
covered the three main aspects of a device’s security (namely, confidentiality, integrity,
and availability), and partial system failures. Such datasets should bridge the gap of
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Figure 4.10: Detection accuracy vs sampling rate

having publicly accessible benchmark for the research community.
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Chapter 5

Transforming the 1-D anomalous
behaviour detection problem into an
Image Classification Problem: A
Supervised Approach

This chapter explains our supervised based detection methodology. The methodology
comprises of two stages. In the first Stage- Feature Extraction -, we utilize signal processing
techniques to transform 1-D power consumption signals into 2-D images. Then, in the
second stage - Model Generation -, we train a convolutional neural network on the obtain
images and generate a model to be used for the detection.

In light of the discussion presented in Chapter 2 and Chapter 3 and to address the
issues aforementioned, in this chapter we extend the state of the art that adopts the idea
of leveraging the power consumption of devices as a signal and the concept of decoupling the
monitoring system and the devices to be monitored to detect and classify the “operational
health” of the devices.
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5.1 Problem Description

This work treats the power consumption of devices as signal that carrying information.
The challenge is how to extract knowledge and informative insights out of these time-series
signals. This is a challenging and yet interesting task, because time-series signals are gen-
erally complex to be described with analytical equations with parameters to solve. This is
because power consumed by devices is a stochastic time-series signal. In other words, these
signals are highly dynamic and exhibit nonlinear behavior [217]. Moreover, time-series sig-
nals have a 1-D structure and are non-stationary, which means that signals’ characteristics
(namely mean, variance, and frequency) change over time. Therefore, dealing with them
in their original structure is problematic and it leads to the fact that achieving reasonably
accurate detection and classification performance can not be easily done [32]. We have
validated that in Chapter 4 that when employing traditional detection and classification
methods. The general trend is to develop domain-specific features for each task, which
is expensive, time-consuming, and requires expertise in the signals and applications. The
alternative is to transform the 1-D time-series signals to another representation (e.g., 2-D
image) that captures the temporal information of the time-series. Our approach in this
chapter falls under the latter approach.

5.2 Solution Strategy

Unlike any of the similar reported studies [241, 123, 130, 77, 77, 231, 29], we transform
the 1-D instantaneous power consumption signals of such devices to another representation
(namely, 2-D images) that captures the temporal and frequency of the tasks performed on-
board a device. In this chapter, the proposed solution relies on the following: (i) the fact
that IoT, Industrial IoT, and CPS devices are likely to be designed to execute repetitive
tasks, and the fact that every single action on-board (whether hardware or software driven
actions) will be reflected as a change in the monitored “side channel information” - the
power consumption of a device; and (ii) the hypothesis that time-frequency representation
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of a signal is capable of preserving much of the information embedded in 1-D signals
[90]. Then by applying Histograms of Oriented Gradients (HOG) on the CQT images,
we extract more robust features that preserve the edges of time-frequency structures (i.e.,
description of local information and how these structures/events evolve with time) and
also the directionality of the edge information (i.e., how these structures/events evolve
with time)

The detection methodology comprises of two phases, namely, Features Extraction and
Model Generation. In the first phase, we use Constant Q spectral Transformation (CQT)
[49] to transform the power signals into 2-D TFR (Time Frequency Representation) im-
ages. CQT was chosen over short-time Fourier transform (STFT) or other TFR techniques
(e.g. Mel Frecuency Cepstral Coefficients (MFCC)) because it adopts a logarithmic fre-
quency scale, which allows for a better and clearer time and frequency resolutions. The
CQT images capture valuable information - events’ location in time and frequency do-
mains, frequency of events, and shapes and duration of events - about the operational
states of the device from its power consumption signals. Then, we apply HOG [71] on
the CQT images to build a higher-level features and extract consistent information about
time-frequency evolution of the shapes and structures (i.e., description of local information
and how these structures/events evolve with time) of the CQT images. The natural expec-
tation is that the HOG images capture discriminative information that is not captured by
hand crafted features obtained from raw 1-D signals (e.g, mean and standard deviation).
From this point, we transform the device’s anomalous behavior detection problem into
an image classification problem. Consequently, we train a convolutional neural network
(CNN) model on these images for the purpose of classification. We argue that by treating
the generated HOG features as 2-D images that contain information about the device’s
health, detecting when the device behaves anomalously due to a malware invasion or even
a normal device performance degradation is something inevitable.

The above facilitates the following advantages: (i) the proposed solution is a lightweight
one which makes it suitable for resource-constrained devices; (ii) the usage of a device’s
power signals has the potential to detect any anomalous behavior, even the ones caused by
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malwares, for example, that can obfuscate and modify its code. Such malwares usually look
as benign and go undetected when using approaches that are based on static analysis [226].
In our case; however, any change or modification will inevitably leave a trace (fingerprint)
in the power consumption of the device and hence can be detected; (iii) In contrast to all
on-device approaches [134, 77, 77, 231, 29], our solution ensures that the integrity of the
collected data from a compromised device is preserved.

The proposed solution includes two main phases. The first phase is calibration (train-
ing) phase, where we perform two steps: (1) Data collection step, in which a reference
device is monitored for certain amount of time to collect and build a power signal database
(dataset). This step has been address in Chpater 4; (2) Data analytic step, where the data
is being analyzed in our anomalous behavior detection engine. In this step, we transform
the raw data to extract features and train a classifier on them. The second phase is detec-
tion (testing) phase. Once a model is learned, given a test 1-D power signal from a device,
the anomalous behavior detection and classification engine gives an answer as to whether
the device is behaving anomalously.

Validation Scenarios. In order to evaluate the effectiveness of the proposed solu-
tion, we make use of 18 dataset discussed in Chapter 4. These datasets cover a range of
anomalous behaviors of devices (smartphones and generic embedded devices (IoT)).

• For security threats, we implemented a large class of experiments that covers the
three main aspects of device’s security, namely, confidentiality, integrity, and avail-
ability. We developed an emulated malware that can be tuned to represent different
malware behaviors. By considering a tunable emulated malware, the idea is to cover a
wide range of malware behaviours so that our methodology can perform well against
real malwares as well. Moreover, we have tested this argument using 5 real malwares
(taken from the well-known Drebin dataset [26]) and found out that our approach
generalizes well on them too. We have even evaluated our system on a malware
that performs Cryptomining which is basically a malware that takes over a device’s
resources and use them for cryptocurrency mining without the user’s explicit permis-
sion [213]. We have also implemented security attacks that are widely encountered in
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IoT and CPS devices, namely, Distributed Denial of Service (DDoS), where we used
the device as a victim of DDOS and as an attacker (a source of an DDOS attack).

• For faulty device, we have designed an experiment to simulate an anomalous behavior
of a device due to a faulty CPU.

Across the 18 evaluation scenarios, we have achieved a high detection performance of
∼ 88% accuracy and 85% F-Score, where in some cases, the accuracy of our work outper-
formed previously reported detection approaches with ∼9% to 20% detection performance
gain.

Contributions. In this chapter, we make the following contributions: we propose a
novel unsupervised feature extraction technique which uses TFR images (namely CQT)
and HOGs to build 2-D images out of 1-D power consumption signals. To the best of our
knowledge, this is the first work that adopts such a concept to train a CNN classifier to
detect and classify anomalous behavior of devices. We validate the accuracy, F1-measure,
and other performance metrics of the proposed methodology using a large class of power
datasets. This level of validation is quite extensive and have never been reported in any
other study found in the literature.

5.3 Methodology

This section presents the details of the proposed methodology. Before explaining the model
block by block, we explain the motivation behind this methodology.

This methodology is inspired by the computer vision domain [71]. The idea in the
methodology is to transform the problem of device’s anomalous behavior detection into an
image classification problem. This is achieved by utilizing time-frequency representation
(TFR) of signals to produce informative visual textures. The assumption is that TFRs (2-
D images) construct textures that capture features about the events/tasks carried out from
a 1-D power signals. Furthermore, Histogram of Oriented Gradient (HOG) is computed for
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Figure 5.1: Overview of the methodology: Signals Transformation and Model Training

the TFR images to form higher-level features. The HOG information is treated as images
that contain information better than the features of CQT images. Finally, a CNN model
is trained to classify these signals.

The basic concept of our anomalous behavior detection engine is illustrated in the
methodology shown in Figure 5.1 and Figure 5.2. Figure 5.1 depicts the two main stages
that make up the framework, namely Feature Extraction stage and Model Generation stage.
We start with a brief explanation of these stages and the intuition behind them, and then
in section 5.4 and section 5.5 we describe the methodology in more detail.

Stage 1: Feature Extraction
Feature extraction is the process of transforming the raw input data into another space that
possesses better discriminative information. Since we are dealing with time-series signals
that represent the behavior of wireless devices, having this step is necessary because such
signals are generally complex to be described with analytical equations with parameters to
solve due to their high stochastic nature and nonlinear behavior [217][43]. The resultant
features from this stage are transformed versions of the input signals (e.g., TFR images).

Stage 2: Model Generation
In this stage, we train a model on the prepared dataset (Xhog in Fig. 5.1) to detect when
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a device is behaving anomalously. To achieve this objective, our methodology makes use
of deep learning techniques to generate an optimal model that can be used to accurately
detect a device’s anomalous behavior. We use stratified sampling to split the dataset into
training, cross validation, and testing datasets. We train the model on the training dataset
portion and then evaluate the model on the cross validation portion. We perform hyper-
parameters tuning, and once we reach a certain performance accuracy on the validation
dataset portion, we stop. The output of this stage is the learned optimal model of data to
be used for the actual detection of anomalous behavior. More details of these stages are
discussed in Subsection 5.4 and Subsection 5.5.
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Figure 5.2: Detection of Anomalous Behavior: model testing

Detection of Anomalous behavior

The detection of anomalous behavior in real-life scenarios makes use of the model
learned in the steps explained above. Once the model is learned, the operation of the
methodology is depicted in Figure 5.2. Given an unknown power trace Ss from a wireless
device, the methodology starts by extracting a feature vector (Sshog). Then, by feeding
(Sshog) to the learnt model, the methodology gives an answer as to whether the device is
behaving anomalously.
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5.4 Feature Extraction: From 1-D signals to 2-D im-
ages

1-D signals are generally complex to be described with analytical equations and parameters
to solve, since they are highly dynamic (nonlinear behavior) [217]. For instance, mean and
variance are widely used to characterize signals [43]. However, given the non-stationary
nature of power consumption signals, reliance on these kinds of features to classify them
is not very promising, as demonstrated in [122]. An example of how power consumption
signals of wireless devices look like is shown in Fig. 5.3-(a). It can be noticed that time-
based measurements contain much noise and do not clearly show what frequencies (events)
are present. Therefore, dealing with them in their original structure is problematic and
achieving reasonably accurate detection and classification performance can not be easily
done [32], when employing traditional detection and classification methods. Alternatively,
our objective of using time-frequency representation (TFR) in the proposed feature ex-
traction technique is to extract as much information as possible from a signal using both
domains (time and frequency) at once.

Before we explain how the transformation of the time-series signals to 2-D images is
done, we describe the necessary notations as follows: X is a matrix representing the raw
dataset, which in our case is a set of power consumption traces measured from a device.
The formal definition of X is as follows: X = {x[n]1, x[n]2, ..., x[n]i, ..., x[n]m}, 1 ≤ n ≤ W .
Hence X is a matrix of size m × N , where m represents the number of observations in
our dataset and N represents the length of each power trace, x[n]i. Moreover, x[n]i is a
vector (time-series: a discrete signal) of size 1 × N , and the elements in x[n]i represent
the values of the power consumed by a device for T seconds and sampled at a rate of Fs
samples/sec. Therefore, N = T ×Fs. Finally, in our dataset, m = ρ+α, where ρ refers to
the number of measurements from a normally behaving device and α refers to the number
of measurements from an anomalously behaving device.
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5.4.1 Signals Partitioning

We split each signal in our dataset, X, into k equal length sub-signals. The number of
these sub-signals (k) is determined based on the window size W and N . After completing
this step, the dimensions of our dataset X ′ will be ((M ×W )), where M = mk. X ′ =
{x′[n]1, x′[n]2, .., x′[n]i, .., x′[n]M}, 1 ≤ n ≤ W . This means X ′ has (M) sub-signals, each
of length W samples. If W = N , i.e., no signal partitioning was performed, then k = 1
and M = m.

5.4.2 Constant Q Transformation (CQT)

In this step, we start by applying CQT transformation to each sub-signal. CQT is basically
a time-frequency analysis technique which was introduced in [49]. It is based on the
idea of spacing the frequency components (bins) geometrically (i.e., exponentially or at a
logarithmic scale), unlike any of the other TFR techniques (ex., Fast Fourier Transform
(FFT)). The frequency components are spaced according to: fc = 2 c

Af0, where c is the
frequency resolution and represents the number of frequency bins (components) in the
CQT, c ∈ {1, 2, 3, ...cmax}. We treat c as a hyper-parameter that can be tuned to achieve
better detection performance. A is a constant used to determine how to set the spaces
between the different frequency bins, and f0 is the minimum frequency of the CQT. In
CQT, the window size (i.e., the length of each bin) of the cth frequency bin denoted by
℘n[c] is variable and computed as: ℘n[c] = Fs

fc
× Q. ℘n[c] is inversely proportional to

the frequency fc so that the ratio (“quality (Q) factor”) is kept constant, where Fs is the
sampling rate of the signal. A Hamming window [99] function Γw[c, n] is applied with the
same lenght as ℘n[c], as prescribed by [49]. The bandwidth of each frequency component:
δc = fc

Q
, and Q = fc

δc
= 1

(2
1
B −1)

, which is a constant value. These are the main equations
that differentiate CQT from other TFR approaches. The reader may refer to [49] for more
details on computing CQT.

Now, given a power trace x′[n]i, the CQT transformation coefficients (xcqt[n, c]), as
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explained in [49], are obtained as follows:

xcqt[n, c] = 1
℘n[c] .

℘n[c]−1∑
n=0

Γw[c, n].x′[n].e
−j2πQn
℘n[c]

The reason behind using CQT transformation instead of other TFR methods in our
methodology is that CQT provides a time-frequency analysis on a logarithmic scale (i.e.,
it provides higher frequency resolution for lower frequencies and higher time resolution for
higher frequencies). Performing that provides the ability to capture much of the informa-
tion from high/low frequency components. This is not possible when using other TFRs
such as STFT - (Short Time Fourier Transform). Moreover, CQT preserves a better time-
frequency structure, which is something desirable for better results in our methodology
[49]. While reviewing the TFR options, we found some studies, from the signal and im-
age processing domain, that showed that CQT consistently outperformed other traditional
TFRs such as Mel-frequency cepstral coefficients (MFCCs) [117] and STFT [200].

In our methodology, shown in Figure 5.1, the input to the CQT box is X ′, which
contains several 1-D sub-signals. The output of the CQT box is a 2-D tensor Xcqt, which
contains M cqt images, xicqt, i ∈ 1, 2, 3, . . .M , each of size (n × c). Finally, we resize of
each of the M CQT images to a fixed size image (s×s) pixels. We consider this as another
hyper-parameter and investigate its impact on the detection performance. Our dataset
after this step is Xcqt and has the dimensions of (M ∗ (s × s)). This means that we have
M cqt images, each of size (s× s) pixels.

5.4.3 Histogram of Oriented Gradients (HOG)

In this step we apply the Histogram of Oriented Gradients (HOG) to each of the CQT
images obtained from the previous step, as depicted in Fig. 5.3. The concept of HOG
was first introduced in reference [71] to detect humans and objects in images. Its power
lies in the fact that HOG representation of an image makes a classifier’s generalization
robust, when, for example, detecting an object in an image, even if that object is viewed
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under different conditions. The idea of using HOG to build images of time-series signals
emerged due to HOG’s ability to capture local shape information; consequently, HOG
representation is spatial invariance [71]

Algorithm 1: HOG computation
Input : Dataset - CQT images Xcqt:

xicqt, i
th cqt image, i ∈ {1, ...,m}

/* xicqt a CQT image of (s× s) pixels */
Output: Dataset - HOG images: Xhog

1 Parameter Initialization {C,O,B};
/* C: CellSize, (p× p) pixels | O: # of orientations | B:

BlockSize, (q × q) cells */
2 for each input xicqt in Xcqt do

/* Given xicqt, use the following steps to obtain xihog */
3 - Perform global image normalization of xicqt
4 - Divide normalized image into non-overlapping cells
5 - Compute ∇(x, y) in x and y directions for each image pixel
6 - Compute gradients histograms based O
7 - Normalize the histograms across the blocks B
8 Xhog ←− append(xihog)
9 Return Xhog

10 end

The idea of HOG in a nutshell is to locally analyze the direction of a TFR’s energy
variation. The way we compute HOG is based on reference [71] implementation. Algorithm
1 describes the implementation of the HOG images transformation of our dataset. A
visualization example is illustrated in Fig. 5.3 to show the process for one signal.

As shown in Fig. 5.3, given a 2-D array (CQT image: xicqt), we; (i) perform global image
normalization; (ii) divide the image into non-overlapping cells, each of size s = p×p, pixels
per cell. (iii) compute the first order block gradients (∇(x, y)) in x and y directions; this
captures the contour and texture information of that cell, while providing more resistance
to noise and spatial variations; (iv) compute gradients histograms based on a number of
orientations (a parameter called O, in our methodology). This is basically putting the
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Figure 5.3: Overview of how HOG images are computed out of CQT images
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gradient direction of each pixel in a bin. The number of bins (number of orientations: O)
needed to calculate the histogram is considered as hyper-parameter that requires tuning.
Finally, we normalize across the surrounding blocks. The block size B is also another
parameter, B = (q × q) cells. This aims to produce an encoding that is sensitive to local
image content while remaining resistant to small changes across images. The main goal
of this step is to capture the shape of some time-frequency structures that are change
resilient (in time or frequency) and are very relevant for characterizing time-series signals,
in comparison to CQT time-frequency structures, for example.

In our methodology shown in Fig. 5.1, the inputs to the HOG box are CQT images
(Xcqt) and the outputs are transformed versions of those images (e.g. shown in Fig. 5.3).
Our dataset after this step is Xhog and has the dimensions of (M ∗ (s × s)). This means
that we have M HOG images, each of size (s× s) pixels.

Figure 5.4: CNN model architecture: 3 layers: CNN model box in Fig. 5.1

5.5 Model Generation - Building Deep Learning Model

In this section we explain the deep learning model that we build as our classifier. Since
Convolutional Neural Networks (CNN) are currently the state-of-the-art in image process-
ing, and given that our prepared dataset comprises of images, we chose CNN to perform
the classification and provide the decision. CNNs were originally presented in reference
[144] and since then they have been widely used in image classification due to their unique
characteristics. These characteristics include the fully connected layers, and the adoption
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of max-pooling layers to down-sample an image to reduce their dimensionality. Conse-
quently, a significant reduction in the computational cost can be achieved [144]. The idea
is to train a CNN model that learns patterns from the HOG image dataset. The choice of
CNN is due to the fact that it is good at learning spatially local correlations from input
images. Therefore, we can leverage this to learn spatial and temporal information in HOG
images in our case.

Generally, CNNs have three main layers: input layer, one or more hidden layer(s), and
output layer. CNNs take matrices (tensors) of images as an input to process them, as
shown in our model in Fig. 5.4. In our case, the input is the generated HOG arrays. These
arrays can be thought of as images whose pixels contain HOG information. These images
are arranged as a tensor (Xhog) of size (M ∗ (s× s)).

Next, the hidden layers perform three main processes: convolution, non-linearity, and
max-pooling.

1. Convolution: The input to this layer is convolved with the layer’s kernel matrix.

χi = xihog ~Wk + b, ∀ i ∈M

where the ~ sign represents the convolution operation, xihog is an input array (HOG
image), Wk the used kernel filter, and b is a bias. These filters are represented as a
sliding window of a certain size, call it Wk, which is a hyper-parameter to be tuned
in the training phase. Each of these kernel functions has weights and bias that are
learned during the training of the CNN.

2. Non-Linearity: The output of the convolution is fed to a non-liner function, called
activation function. The non-linear function in our model is a ReLU (Rectified Linear
Unit) φ(χi) = max(0, χi).

3. Max-Pooling: a window is slid over the output of the non-linear process and the max
value in that window is taken at each step. This process is used to reduce the spatial
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size of the feature maps obtained from that layer. It can be thought of as a down-
sampling step. The aim of these convolution layers is to extract local information
from the input image and learn weights with non-linear activation. As illustrated in
Fig. 5.4, our CNN has three convolutional layers.

The output layer makes up our classifier and is made up of two fully connected layers.
The first is followed by ReLU, and the second is followed by a Softmax layer made of D
nodes (D is the number of classes). This layer produces a distribution over the D classes in
our classification problem. To perform the training, a loss function is needed to learn the
model’s weights and parameters. We use the common loss function used in classification
problems, which is the cross-entropy (X-E), and it is define as follows:

JX−E(Θ;Xhog, y)) = 1
M

M∑
i=1

(y(i) − log{net[Θ;x(i)
hog]})

where net[Θ;x(i)
hog] represents the prediction of the network of that input instance, Θ

represents all the network weights, and Xhog, y,M represent our dataset, the corresponding
labels (classes), and the total number of observations in our dataset, respectively. The goal
is to have a low distance for a correct class but a high distance (cost) for an incorrect one.
In other words, the objective is to minimize the error between the predicted results by
the model and the ground truth known ahead of time. The used optimizer in our case is
ADAM, which is a stochastic optimization technique [136]. The ADAM optimizer works
on mini-batch sizes of observations and updates the parameters (Θ) accordingly after each
epoch.

5.6 Classification of Power Signals

To put the pieces of the methodology together, shown in Fig. 5.1, we use the following
notations and description. Given a training dataset X that contains m signals, each signal
x is a discrete signal represented by a 1-D vector of length N (an example is shown in Fig.
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5.3-(a), we split each x into k sub-signals (x′), each of length W . We transform each x′ into
a CQT image (xcqt), as explained in Section. 5.4 and shown in Fig. 5.3-(b). These CQT
images are then transformed to HOG images. xihog is an (s× s) array representing a HOG
imag (an illustrative example is shown in Fig. 5.3 - (c). The dataset is finally rearranged
as a tensor Xhog, and is ready to be used to train our CNN classifier.

Following that, we label each sub-signal/image with the corresponding label (yi ∈ Y =
{1, . . . , D}). At this point, the entire dataset can be defined as {xihog, yi}i=1,2,...,M . For the
training and testing, we split the dataset into 2/3 for training, 1/6 for validation, and 1/6
for testing. This will allow us to monitor the training performance so that we make sure
that we are not falling into the problem of over-fitting or under-fitting the dataset.

The anomalous behavior detection procedure is illustrated in Fig. 5.2. The procedure
is designed to give an answer for an unlabeled new measurement. Once a CNN model is
learned, the operation of the methodology is as follows: given a suspicious power signal
Ss, the methodology starts with transforming it to a HOG image Sshog. Then by feeding
the HOG image Sshog to the learnt CNN model, the methodology gives an answer (a
label/decision) as to which class this signal belongs to ({1, . . . , D}), i.e., healthy device or
compromised device (D = 2), for example.

5.7 Results

Machine Learning (ML) Experiments: The problem of detecting anomalous behavior
in devices is a binary classification problem (Y = {0, 1} ⇒ D = 2). That is, the device is
behaving normally or not. Consequently, given the datasets that we have, we perform sev-
eral binary classifications to validate our method. In all of the collected datasets explained
above, the Normal class (normally behaving device) is tested against one of the malicious
classes.

Implementation: All of the experiments were performed on a powerful gaming machine
(namely Acer Predator laptop) that is equipped with an Intel Core i7 processor, 32 GB of
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RAM, and NVIDA GPU - GeForce GTX 960. The deep learning tasks were carried out
in Python using Keras [63] and SciKit-learn [176] Python libraries with Google Tensorflow
framework as a backend.

5.7.1 Classification results analysis

We break our results down into 4 main parts: (i) Training/Testing performance, where we
demonstrate the loss/error rates of the CNN architectures over different training epochs and
also show the impact of hyper parameters tuning; (ii) Effectiveness of HOG Features, where
we analyze HOG image parameters and investigate how effective they are as compared to
CQT images; (iii) Detection Coverage, here we report the methodology’s detection rates
(e.x., accuracy, F-measure, and recall) on the different datasets that we have collected; and
finally (iv) Comparison, where we compare the performance of our model with some of the
similar studies in the field.

Training Performance: A common problem when training a deep learning model with
a relatively small dataset is over-fitting the dataset. For that, a couple of solutions are
explored: (i) We use cross validation to monitor the training performance and evaluate
our model [228]. In order to achieve that and to tune our hyper-parameters, we randomly
split our dataset into 2/3 for training, 1/6 for validation, and 1/6 for testing. (ii) We
apply dropout - a regularization technique - to randomly shut some of the units in each of
our CNN layers [62]. In this ML experiment, we use dataset E - (refer to dataset E-DC
in Table. 4.2). Figure 5.5 shows the training/validation loss and accuracy curves during
the training phase. We can clearly notice that our CNN model is overfitting the dataset.
Referring to Fig. 5.5, this can be understood from the loss behavior of the CNN model
where the model learns its parameters according to the training dataset portion (a very
low loss (red curve) and a high accuracy (green curve)). However, the learnt model fails to
generalize on the validation dataset portion (a high loss (blue curve) and a low accuracy
(yellow curve)). To mitigate this issue, we apply dropout after each layer with the following
probabilities [0.3, 0.2, 0.1].
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Figure 5.5: CNN over-fitting performance: without dropout

Figure 5.6 shows that the model stuck in a local minima till epoch 20 then started to
converge. It also demonstrates that the signs of overfitting disappeared and our validation
loss closely tracks the training loss. This confirms that our model is not over-fitting the
dataset.
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Figure 5.6: CNN generalization performance: with dropout

Figure 5.7 illustrates the impact of the window size (W ) on the accuracy of the model
as the malware intensity varies (DC = i%). Accuracy is chosen in this case since we have
balanced classes, as explained in Table 4.1 and 4.2. The window size (W ) as mentioned
in earlier sections, refers to the length of the discrete time signals x[n]. To verify that,
we divide each power signal trace in our dataset E into non-overlapping sub-signals, as
explained in subsection 5.4.1. The resultant number of sub-signals depends on the window
size (W ). As can be noticed in Fig. 5.7, the larger the window size (W ) is, the higher the
accuracy we get. This is because the larger the window size (W ), the higher is the amount
of information a signal contains.
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Figure 5.7: Window size impact

5.7.2 Results and analysis on the effectiveness of HOG features

In this part of the results, we start off by analyzing the impact of the HOG’s parameters.
Figures 5.8, 5.9, 5.10, 5.11 present the results obtained by varying some of the parameters,
namely the number of bins used in obtaining the histogram of gradients (# of orientations
O), the cell size: C = (p × p) pixels, and block size: B = (q × q), and keeping the image
size (s × s) fixed. We fixed the image size at (512, 512), and varied the other parameters
to investigate their significance on the detection performance.

As the results in Fig. 5.8, 5.9, 5.10, 5.11 demonstrate, the parameters clearly impact
the overall accuracy of the learnt CNN model. The most influencing parameter appears to
be the orientation, as the results show. The higher the number of bins is, the better is the
accuracy. Also the cell size has a strong impact on the robustness of the results, where we
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Figure 5.8: HOG’s parameters analysis: Image size = (512,512), Orientation = 3, and
for variable sizes of Blocks and Cells
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Figure 5.9: HOG’s parameters analysis: Image size = (512,512), Orientation = 5, and
for variable sizes of Blocks and Cells

notice that when we use a moderate value, we achieve good results despite the values of the
other parameters. Given the fact that HOG features capture local shape information of the
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Figure 5.10: HOG’s parameters analysis: Image size = (512,512), Orientation = 7, and
for variable sizes of Blocks and Cells
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Figure 5.11: HOG’s parameters analysis: Image size = (512,512), Orientation = 9, and
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TFR structures that are spatial invariance, those two observations can be justified. The
block size B = (q× q) has an influence when the number of orientations is relatively small;
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however, its impact almost vanishes when the number of orientations increase drastically.
The take-away from this analysis is that, for each dataset we have, the hyper-parameter
tuning is required to achieve the desired detection performance.

Table 5.1: Effectiveness of HOG features

Model Detection Accuracy %
Our Model: {HOG + CNN} 97 (± 2%)
Baseline #1: {mean and STD} +
SVM 65 (± 6%)

Baseline #2: {CQT+CNN} 85 (± 4%)

The effectiveness of the chosen HOG features in our methodology was verified by build-
ing two alternative baseline models. A brief description of the baseline model #1 (2 features
and an SVM classifier) is as follows: we extract two features (namely the mean and stan-
dard deviation) out of each power trace. Then we train a Support Vector Machine (SVM)
on the extracted features. Baseline model #2 (CQT and CNN) is as follows: we use the
extracted CQT images (Xcqt) to train a CNN model. That is basically removing the HOG
box in the methodology shown in Fig. 5.1 and feeding the CQT images directly to the
model generation box. By doing so, we can investigate the impact of HOG transformation
and show its effectiveness. Table. 5.1 shows that HOG based features outperform the im-
plemented baseline models with at least 20% performance gain. It also confirms that HOG
representations are more effective in terms of capturing better discriminative information
than CQT features.

5.7.3 Detection coverage results

In this part of the results, we evaluate the proposed methodology in detecting different
causes of anomalous behaviors in IoT and wireless (smartphone) devices. Table. 5.5
reports the the methodology’s performance on our validation datasets. The table has been
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structured to reflect the different causes of anomalous behaviors explained in Section. 3.4.
Table. 5.5 demonstrates the accuracy and other performance metrics, namely, F-score,
Recall, Precision, and AUC. It starts by showing the results obtained on the real malware
dataset: Real (H), refer to Table. 4.2 in Section. 4.3. On four of the five apps the mean
accuracy was higher than 86%, while the maximum accuracy on the 5 apps reached 100%.
If we look into the recall, for instance, which refers to the percentage of time the model
classifies a device’s behaviour as anomalous and it is actually anomalous, the obtained
recall performance is significantly high in the 5 cases.
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Table 5.2: Summary of the results of detecting anomalous behaviours of devices caused by real malware

Source of
Anomaly

Type of
Anomaly Scenario Accuracy (%)

(max, mean, std) F-Score Recall Precisoin AUC

Security
Threat

Real
Malware

Apps
(H)

Buscaminas (1.00, 0.86, 0.12) 0.83 0.87 0.89 0.86
Tetris (1.00, 0.86, 0.19) 0.86 1.00 0.8 0.88
Tilt (1.00, 0.93, 0.13) 0.95 1.00 0.92 0.93

Wordsearch (1.00, 0.87, 0.13) 0.84 0.83 0.94 0.87
Yams (1.00, 0.75, 0.27) 0.66 0.62 0.75 0.81
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Table 5.3: Summary of the results of detecting anomalous behaviours of IoT devices due to Cryptominer
and DDOS attacks

Source of
Anomaly

Type of
Anomaly Scenario Accuracy (%)

(max, mean, std) F-Score Recall Precisoin AUC

Security
Threat

IoT
attacks

DDOS (A) (1.00, 0.95, 0.12) 0.96 1.00 0.95 0.93
DDOS (B) (1.00, 1, 0) 1.00 1.00 1.00 1.00

CryptoMiner (C) (1.00, 0.93, 0.09) 0.73 0.70 0.80 0.85
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Table 5.4: Summary of the results of detecting anomalous behaviours of devices caused by emulated
malware

Source of
Anomaly

Type of
Anomaly Scenario Accuracy (%)

(max, mean, std) F-Score Recall Precisoin AUC

Security
Threat

Emulated
Malware

(E, F, G)

100 UL 00 DL (1.00, 0.91, 0.16) 0.90 0.93 0.90 0.92
75 UL 25 DL (1.00, 0.95, 0.04) 0.95 0.94 0.96 0.95
50 UL 50 DL (1.0, 0.99, 0.01) 0.99 1.00 0.99 0.99
25 UL 75 DL (1.00, 0.96, 0.045) 0.97 0.96 0.97 0.97
00 UL 100 UL (1.00, 0.91, 0.09) 0.92 0.88 0.96 0.92

One Spike (0.83, 0.67, 0.18) 0.59 0.63 0.53 0.50
Random Activation (1.00,0.85,0.13) 0.84 0.83 0.87 0.85
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Table 5.5: Summary of the results of detecting anomalous behaviours of devices due to Faulty CPU

Source of
Anomaly

Type of
Anomaly Scenario Accuracy (%)

(max, mean, std) F-Score Recall Precisoin AUC

Faulty
Device

Faulty
CPU
(D)

3 cores are down (1.00, 0.88, 0.29) 0.85 0.86 0.85 0.93
2 cores are down (1.00, 0.92, 0.17) 0.95 1.00 0.93 0.92
1 core is down (1.00, 0.60, 0.23) 0.46 0.57 0.4 0.60
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Then, in the second part of Table. 5.5, we show the results obtained on IoT datasets,
as outlined in Table. 4.1. We notice that the methodology is able to detect when an IoT
device is under DDOS attack (datasets A and B) with a minimum accuracy of 95%. The
interesting part here is that whether the IoT device is the source of an attack or a victim,
our proposed approach is effective in detecting that. Moreover, as show in Table. 5.5, in
CryptoMiner dataset (C), the mean detection accuracy is 93%.

In the third part in of Table. 5.5, we report different scenarios of our emulated malware.
This part of the results confirms that the methodology generalizes well on a wide range
of malware. Whether a malware has a cyclic behavior or random one, and whether its
activities are mainly uploading data from the device (e.g., data theft), downloading data
to the device, or a combination of both, the mean accuracy for most of the scenarios is
higher than 90%. The only case that was difficult to detect was the single activation
scenario, as shown in the table.

The last part of Table. 5.5 presents the performance of the methodology in detecting
the anomalous behavior of devices due to a faulty CPU, described as dataset D in Table.
4.1. The more the number of defecting CPU cores, the easier it is to detect such an
anomaly. This is expected, since the tasks carried out by the CPU will take longer once
less cores are available. Therefore, the normal behavior of a device, where all the 4 cores
are available in our experiment, will change if the number of cores decreases. The results
of detection coverage across the wide range of validation datasets (reported in Table 5.5)
shows very good performance, and hence, confirm the usefulness and applicability of the
proposed approach.

5.7.4 Comparison results

In the final section of our results, we have implemented some of the previously reported
power signal based anomaly detection techniques [122, 123][241] to compare their perfor-
mance with ours on the same datasets. To adjust the available dataset to the methodology
proposed in [241], a down-sampling of each of the signals was done in the beginning. After
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Table 5.6: Comparison between our proposed technique and previously reported tech-
niques

Model Detection
Accuracy % F1 Score %

Our Model: {HOG + CNN} 96 (± 2%) 97 (± 2%)
[123]: {ICA+RF} 88.0 (± 2%) 87 (± 0%)

[122]: {ICA+ CC-CS*} 89 (± 5%) 80.1 (± 5%)
[241]: {FCC + GMM} 68.3 (± 5%) 72.2 (± 5%)

Note: ICA = independent component analysis, CC-CS* = Cross-Correlation comparison of Similarity, RF =
random forest, MFCC=Mel-frequency cepstral coefficients,
GMM = gaussian mixture model.

that, the Mel Frequency Cepstral Coefficients (MFCC) features were extracted, followed by
the Gaussian Mixture Models to discriminate between non-malicious and malicious signals.
Table 5.6 shows a comparison of the average classification accuracy of the four techniques.
The accuracy of the proposed methodology reaches ∼ 96.5%, while for the two references
[123] and [122] it reaches ∼ 88-89%. On the other hand, the accuracy of reference [241] is
∼ 69%. As it is prominent, the proposed methodology surpasses all of the methodologies
in terms of average detection accuracy with performance gain ranging from ∼ 9% to 17%.

5.8 Case study II: A Strongly Non-Intrusive Detec-
tion Methodology

To show that our HOG+CNN detection methodology has a wider scope of applicability, in
this section we apply it to a different kind of data. However, the objective is the same as the
objective throughout the chapters of this thesis. Instead of using the power consumption,
we monitor the amount of traffic generated by a device as a signal to use it to detect
when a device is misbehaving. We call such a monitoring approach, strongly non-intrusive
detection.
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The definition of the non-intrusive method only takes the computing overhead and mal-
ware’s ability to spot the methods into account [124][214]. Anomalous behavior detection
using power consumption data [156][9] is one example that utilizes non-intrusive observa-
tion method, and this data are collected by connecting the phone to a measurement tool.
Thus, there is no computing overhead and the malware can not detect the presence of
it. However, the observation method does interfere with and restricts the interactions be-
tween the user and the device as the measurement tool needs to be connected to the device.
Besides, it requires changes to be made to the device to accommodate the measurement
tool.

Therefore, we define a strongly non-intrusive method based on the following three
criteria: i) The method does not run any extra code on the device so it does not incur
any computing overhead. ii) The device is not explicitly connected with the monitoring
tool. iii) The monitoring device is not explicitly communicating with the device under
observation for monitoring purpose. A method is strongly non-intrusive if it satisfies all
the three criteria.

Usage of network traffic signal as compared to power or thermal or any other signals can
be justified as the data can be collected non-intrusively. The methodology only requires
to have a look at the number of bytes/packets transmitted to and from the device over
time. It does not depend on identifying IP address and type of data transmitted. Thus,
it identifies anomaly without compromising user privacy. Also, it is inexpensive and easier
to collect network traffic data as it does not requires any additional hardware such as
power monitoring tool or thermal camera which are required to capture power signals and
temperature signals respectively. Moreover, Due to these claims, the proposed monitoring
methodology satisfies the definition of strongly non-intrusive.

In this case study, we apply the methodology discussed in this chapter on the traffic
data and compare it with the power based detection. We further compare our HOG+CNN
approach with a similar study that is based on the changepoint analysis [156]. The com-
parison is done using the strongly non-intrusive approach (i.e., using network traffic data)
and non-intrusive appraoch (i.e., using power signals).
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5.8.1 Results

The used dataset is emulated malware based datasets. It is noteworthy that both tech-
niques changepoint detection and HOG+CNN produce 100% of accuracy when the malware
is only downloading or uploading (i.e., 100UL00DL and 00UL100DL, respectively) in all of
the duty cycles. This is expected due to the fact that when the malware’s activity involves
only uploading or downloading tasks then it will have a clear and definite pattern reflected
by the number of packets transmitted/received by a device. Comparing to the scenario
where uploading and downloading are tested with different percentages for all the duty
cycles, they will have more variability in their pattern and Thus, making more challenging
to detect.

In addition, one can notice that the HOG+CNN methodology can detect malware with
100% of accuracy when uploading and downloading are tested with different percentages
(i.e. 25UL75Dl, 50UL50DL, and 75UL25Dl) for all the duty cycles. On the other hand,
changepoint detection can detect malware with less accuracy when the emulated malware
is downloading or uploading with different percentages, as it is observed in Fig. 5.12 (b).
However, the lowest accuracy in that case is 90%.

If we compare both the techniques when a malware is activated only once (the 1Spike
dataset), it is observed that Changepoint detection can recognize it with greater accuracy
as it can be seen in Fig. 5.12(c). Finally, the results obtained using the network traffic
have been compared with the results cited in [156], which used power consumption data
to detect malicious behavior. To have a fair comparison with the other papers [156][9], we
consider the emulated malware scenario where it is only downloading a file with different
duty cycles, as we can see in Fig. 5.12(d) & 5.12(e). The anomaly detection techniques
perform better in terms of accuracy, reaching 100% when they are using network traffic
data as opposed to the power consumption data. Hence, we can conclude that the network
traffic data is a better feature to discriminate malicious behavior.
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5.9 Summary

In this chapter, we proposed a methodology that leverages the power consumption of de-
vices, signal processing and machine learning to detect when they behave anomalously.
The idea is to transform the problem of detecting anomalously behaving device into an im-
age classification problem. The work investigated the utilization of HOG on TFR images
to classify power signals of a device. Power consumption signals of devices were trans-
formed to CQT images and further to HOG images. Then, a CNN model was learnt to
classify signals. The results show the proposed anomalous behavior detection framework is
very promising in detecting in detecting when a devise starts to behave anomalously. We
validated our approach using: (i) real malwares taken from the Derbin dataset;(ii) a wide
spectrum of emulated malware; (iii) well-known encountered security attacks on/from IoT
devices(DDOS and Crypto Mining malware); and a faulty IoT device. The performance of
the proposed methodology across all of the datasets shows considerably low number of false
negatives, which is an important measure in evaluating such a methodology. Moreover,
the framework outperformed previously published works by significant margins.As a next
step, we plan to expand the validation to cover how quick we can detect certain attacks.
For example,if there is a DDOS attack, how long the attack can be before we can detect
it. We aim to expand the validation to include the detection of anomalous behavior of
a device due to the change of the execution environment. Finally,we will exploring the
transfer learning domain, that is, training HOG images on pre-trained CNNs and compare
the performance.
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Chapter 6

Solving the Limitation of Labeled
Dataset Problem: An Unsupervised
Approach

This chapter present our unsupervised based detection methodology. Similar to our super-
vised technique, this methodology also comprises of stages. In Feature Extraction Stage,
we utilize utilizing stacked RBM AutoEncoders (AE) to process the collected information
and unsupervisedly extract features. Then, in classification Stage, we train an OC-SVM
on the extracted features to detect possible security threats.

6.1 Problem Description

In the field of this study, a major problem that is frequently faced in the practice is the lack
of the availability of labeled datasets. In contrast to the proposed technique in Chapter
5, where the assumption was both classes (normal and anomalous) are available, a more
common case is the availability of only one class, namely the normal behavior class. The
challenge in this case is how to extract discriminative robust features in an unsupervised
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fashion. Moreover, how to learn a classifier that generalizes well even though if it was
trained on one class only (i.e., the normal behavior class).

6.2 Solution Strategy

Unlike our work in Chapter 5 and other studies that use the power consumption of devices
to detect malware [123, 122, 241, 231, 134], the proposed approach in this chapter requires
only the normal behavior of a device in the training phase. Therefore, this methodology
aims at detecting new/unseen anomalous behaviors (e.g., DDOS, zero-day attacks). The
way we achieve our aim in this chapter is as follows. Our detection methodology is based
on (i) applying a sliding window to the signals to increase the number of observations
of our dataset; (ii) utilizing stacked RBM AutoEncoders (AE) to process the collected
information and unsupervisedly extract/learn features based on the reconstruction errors
of AE; (iii) applying PCA to the reconstruction errors of AE, thereby isolating noise and
outliers from the training of the reconstruction; and (iv) training an OC-SVM on the
extracted/selected features to detect possible security threats. The solution strategy in
this chapter adopts the same idea discussed in section 3.2.2 and uses the following two
hypotheses: (i) Every piece of software, whether malware or legitimate, would have a
fingerprint in the power consumption of the wireless device that makes it inevitable for
malware to go undetected. (ii) The power consumption signals obtained from the wireless
device that is “malware free” should have similar patterns (normal/expected behaviors).
Such behaviors can be characterized by training AutoEncoders (AE). On the other hand,
if the device starts to behave anomalously due to certain causes (security threats in our
case), its power consumption signals should reflect that as a form of deviation from the
norm. Consequently, the resultant AE output - reconstruction error - should be minimal if
the wireless device is still behaving normally and maximal once the device starts to behave
anomalously (maliciously).
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6.3 Methodology

In this section we start by providing an overview on the tools used throughout our method-
ology. Then, we describe the proposed detection methodology and the idea behind it in
details.

6.4 Preliminaries

Our methodology makes use of three well-known algorithms. In the following subsections
we give the necessary background on: (i) the used technique to extract features - Restricted
Boltzmann Machine (RBM); (ii) the employed dimensionality reduction technique - Prin-
ciple Component Analysis (PCA), and finally (iii) the used classifier - One-Class Support
Vector Machines (OC-SVM). Then, in section 6.5, we give the details of how these tools
and algorithms are used to make up our detection framework.

6.4.1 Restricted Boltzmann Machine (RBM)

RBMs were firstly introduced by [109]. They are intended for nonlinear dimensionality
reduction and feature extraction. Later, and due to their capability to efficiently model
the training data distribution, they have been found to be a suitable option for anomaly
detection applications [215, 157, 128].

RBM is a stochastic graphical model which learns a probability distribution over input
dataset, while restricting its visible units and hidden units from forming a fully connected
bipartite graph. As shown in Fig. 6.1, RBM AutoEncoder is comprised of two layers; visible
layer and hidden interconnected using symmetrically weighted connections (weights). Units
(h) in the hidden layer capture higher-order correlations of the visible units (v) in visible
layer connecting it.

The training procedure minimizes the overall energy so that the data distribution can
be well captured. The used energy function is defined by:
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Figure 6.1: An RBM layer

E(v,h) = −
∑
i∈v

bvi −
∑
j∈h

chj −
∑
i,j

vihjwij (6.1)

where v is the input signal vector that forms the visible units and h is a vector that
forms the hidden units (features); θ = {w, b, c} are model parameters. Starting with
random weights, the state of hidden units h is set based on the joint probability defined
using:

p(v,h; θ) = 1
Z(θ)exp(−E(v,h; θ)) (6.2)

where Z(θ) is a normalizing factor called partition function. The marginal distribution
over the visible layer v is:

p(v; θ) = 1
Z(θ)

∑
h

exp(−E(v,h; θ)) (6.3)

We can build a more robust model that can sufficiently extract high level abstract
features by stacking layers of RBMs to form stacked RBM AutoEncoders [106]. The
stacked AE can be trained via a greedy layer-wise procedure. Each layer is trained as an
RBM using contrastive divergence (CD) strategy (Gibbs sampling for example [92, 108]);
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after each RBM layer of the stacked AE has been trained, weights are clamped and a new
layer is added. For more details on the structure of RBM and stacked RBM AEs and the
way they are trained, the reader is directed to [106, 108, 73].

6.4.2 Principal Component Analysis (PCA)

PCA is a dimensionality reduction technique that reduces the number of features in the
dataset, and at the same time, it tries to retain as much information as possible by preserv-
ing the maximum variance in the original dataset [204]. Therefore, by linearly transforming
the original data points to another space, the inherent structure of the data makes it easier
to recognize/classify. PCA is performed by using singular value decomposition (SVD).
Given X which is a matrix of signals of size M × n. Each row is signal/observation x that
forms a vector of a size 1×n. The first step of PCA is to mean center the matrix of signals,
which is accomplished by subtracting the mean of signals from each signal xi as shown in
Eq. 6.4.2

x̂i = xi − µi, µi = 1
M

∑M
i xi

The resultant mean centred matrix X̂ (it is of the same size as X) is then decomposed
using SVD,

X̂ = UΣVT

Here, U is a n ×M unitary matrix, V is a n × n unitary matrix, and Σ is a diagonal
matrix comprising the singular values of X̂ in decreasing order [75]. A reduced dimensional
representation of X̂ can be obtained by discarding columns of U and V,

X̂ ≈ U0:jΣ0:j,0:jVT
0:j

Here, j denotes the number of columns (principle components) retained.
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To this end, we have explained the theory of computing PCA using SVD; however, in
practice computing SVD is computationally complex. Thus, several efficient algorithms
are widely used to compute PCA efficiently. In the implementation of our methodology,
we use the well-known scikit-learn Python library [176] to compute the PCA. For more
details on the scikit-learn PCA’s implementation, the reader is directed to [165].

6.4.3 Classification - One Class SVM

One-Class Support Vector Machines (OC-SVM) is an anomaly detection technique. It
was originally developed by scholkopf [193] to identify novelty unsupervisedly. In his for-
mulation [193], given a training set X = {xi}mi=1, the algorithm learns a function (soft
boundary) that returns +1 in a region capturing “majority” of the training observations if
xi falls within “normal region”, and −1 elsewhere. In the case where the data is not linearly
separable, the so called kernel trick is applied, where each point is implicitly projected to
a higher dimensional feature space (through linear/nonlinear kernel) to separate the data
set from the origin. Then one needs to solve the following quadratic optimization problem:

Minimize
1
2 ||W ||

2 + 1
υm

m∑
i=1

ξi − ρ (6.4)

subject to

〈W,Φ(xi)〉 ≥ ρ− ξi, ξi ≥ 0 (6.5)

The parameter υ ∈ (0, 1] sets an upper bound on the fraction of outliers and a lower
bound on the number of training examples used as support vectors.

The idea behind OC-SVM is to implicitly project the input data space to a higher
dimensional feature space through linear/nonlinear kernel function. These projected vec-
tors in feature space are called feature vectors. Then, OC-SVM tries to find a curve or a
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curved surface in the feature space separating the feature vectors into two parts of normal
or abnormal events.

Since only data from one-class is available (power consumption signals obtained from
normal behaving wireless devices), the objective of using OC-SVM is to learn a function
that returns +1 for the normal behavior region (not anomalous) and −1 elsewhere -
malicious behavior region (not anomalous). In order to obtain more versatile decision
boundaries with OC-SVM, we use two kernel functions (namely Sigmoid and RBF kernel)
to investigate their effectiveness on the detection performance. We train the OC-SVM
using the a feature matrix E ′ with M rows (number of observations) and W ′ columns
(number of features).

6.5 Model Pipeline

The intuition behind our methodology is that power consumption signals obtained from
a wireless device that is “malware free” should have similar patterns (normal/expected
behaviors). Such behaviors can be characterized by training Stacked RBM AutoEncoders.
On the other hand, if the device starts to behave anomalously due to certain causes (mal-
ware presence in our case), its power consumption signals should reflect that as form of
deviation from the norm. Consequently, the resultant AE’s output - reconstruction error -
should be minimal if the wireless device is still behaving normally and maximal once the
device starts to behave anomalously (maliciously). The framework illustrated in Figure
6.2 is designed based on the above stated intuition.

The basic concept of our methodology can be explained using two main procedures.
Procedure 1, shown in Fig. 6.2 compromises of two main stages, namely Feature Extraction
stage and Model Generation stage. Procedure 1 is used to train and test the model on
the wireless devices collected dataset. Procedure 2, shown in Fig. 6.5, which makes use
of the learned models from Procedure 1, describes the process of labeling a new unlabeled
measurement obtained from a wireless device as whether it came from a compromised
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device or not. Below, we briefly explain these two procedures, and then in subsection 6.5.1
we describe the methodology in more details.

The structure of our Feature Extraction stage starts with data augmentation to increase
the number of observations used in the training phase. Following the data augmentation,
we use a pretrained RBM AE to extract the features. The structure of the pretrained
RBM AE is kept simple with two RBMs only. Such a simple/shallow structure is chosen
to reduce the complexity of the methodology. Going for a deeper structure increases the
computational complexity. Therefore, in order to make the methodology suitable and
efficient for online and real-time detection, we chose to keep the model size minimal as
long as it provided us with a good detection performance across the validation scenarios.
Finally, we apply PCA to reduce the dimensions of the extracted features space so that
the classifier avoids the over-fitting problem, and the resultant detection performance is
optimized.

Although combining RBM AE and PCA structure seems redundant, as both RBM
and PCA are commonly used for dimensionality reduction, the way we use the pretrained
RBM AE does not overlap with the functionality of PCA. We use the pretrained RBM AE
to extract features in a novel way, as we show in the following sections. In our particular
case, PCA complements the feature extraction process in a flexible and lightweight manner.
The flexibility is in terms of exploring the number of features ( of principal components)
that can be used in the classification phase. However, if we used stacked RBMs to do
the whole process (i.e., (i) extracting the features and then lowering the dimensionality
in one shot, and (ii) exploring how many features are needed to achieve a satisfactory
detection performance) that will require a deep stacked RBMs’ structure, which will be
computationally costly. Moreover, in practice, having a deep stacked RBM is not suitable
for real-time applications, like detecting security threats in a quick manner.
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Figure 6.2: Overview of the methodology: Signals Transformation and Model Training

6.5.1 Procedure 1: Features Extraction and Model Generation

The input data to Procedure 1 is X, which represents the raw dataset used for training
and testing. The formal definition of X is as follows: X = {x(t)

1 , x
(t)
2 , ..., x

(t)
i , ..., x

(t)
m },

which is a matrix of size m × n. x
(t)
i represents one reference signal (time-series) and is

taken by keeping the same time duration and conditions in terms of configuration of a
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wireless device. Each of the rows which forms the matrix X is represented by x
(t)
i , which

is described as follows: x(t)
i = [x1, x2, ..., xi, ..., xn]. Hence, x(t)

i is a vector of size 1× n. In
other words, the elements in x

(t)
i represent the values of the power consumed by a device

sampled at frequency Fs for a time t = T . Next, we show how this data is transformed
(features extraction) and used to train the models (model generation) in the two stages of
our framework.

……

Figure 6.3: Data Augmentation with Sliding Window

Stage 1: Feature Extraction (FE)

The first step in this stage is data pre-processing where we start with Min-Max Normal-
ization. Since power consumption signals from different devices have different scales, we
normalize (using the formula described in Eq. 6.6) all signals to be in the range [0,1]. This
is also necessary for a faster convergence when training the AE.

x(t)′ = x(t) −min(x(t))
max(x(t))−min(x(t)) ; where x(t) ∈ X (6.6)

Signals Partitioning with Sliding Window: Then, for each normalized power signal we
apply a sliding window to partition the signals into sub-signals as shown in Fig. 6.3. This
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is step (2) in our data pipeline model shown in Fig. 6.2. Based on a window size W and an
offset o, we partition each signal accordingly (we call this process “ Data Augmentation”.
The output of this process is a transformed version of our input dataset X′. X′ is also a
matrix of size m∗K×W , where K = n−W

o
. The reason behind this step is that in the case

where the dataset is limited (small dataset), implementing a way to augment the data is
very important to deploy a robust model and avoid the over-fitting problem. Next, we use
the subsignals in X′ to train the RBM AE and compute the reconstruction error.

Pre-trained Stacked RBM AutoEncoders: This is the main block in our FE stage (Step
(3) in Fig. 6.2). As shown by Hinton et al. in [109], an RBM AutoEncoder can be built
using a pretrained RBMs. Such an approach, RBM based AutoEncoders, showed a good
performance in different domains such as speech recognition [168], obstacle detection [65],
text categorization [83], and fault diagnosis [198]. The structure of our stacked RBMs AE
includes 2 pretrained RBMs, each of a size (number of hidden units, h) 3000 and 500,
respectively. We use power consumption signals obtained from a “malware free” device
to perform greedy layer-wise unsupervised training to the two RBM layers. After data
pre-processing, we use X ′ as an input to train the stacked RBM AE. Specifically, we train
each of our RBMs (RBM1 and RBM2 Fig. 6.4- (a)) individually, as suggested in [109, 107].
Then, we create a stacked RBMs AE, as shown in Fig. 6.4– (b), by stacking the two RBMs
and unrolling them to create the RBM based AE.

As shown in Fig. 6.4, the input of the AE is the pretrained RBM1’s visible layer, and the
learned feature’s activation of the RBM1 (h1) are set to the visible layer of the next layer,
RBM2. This is what makes the encoder part. The decoder is formed by adding an equal
number of the opposite layers using transposes of the base encoder’s weights. Finally, the
entire system can be treated as a feedforward traditional AE, at this point. We fine-tune
the RBM AE using the backpropagation algorithm described in Algorithm 2. The objective
is to minimize the mean squared error (i.e., obtain an optimal reconstruction of the normal
behavior of the device) and iteratively updates the parameters of the stacked AE. After
initializing the network parameters with the pertained RBMs’ weights, we compute the
mean squared error and then update the parameters accordingly until they qualitatively
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converge using the stochastic gradient descent method.

Algorithm 2: Stacked AE training algorithm.
Input : Dataset X′:

x′i, i
th training example, i ∈ {1, ..., k}

Output: Optimal parameters Θ∗ = {Θ∗E,Θ∗D}
1 Initialization of Network Parameters ΘE,ΘD;
2 while epoch < Nepochs do
3 Compute mean square error (MSE)
4 LMSE(Θ;x′i) = 1

k

∑k
i=1 ||x′i −D(E(x | ΘE) | ΘD)‖2

5 Update Parameters ΘE,ΘD using SGD
6 end

In detection procedure (Procedure 2), the input is the pre-processed/manipulated ob-
servations X′, and the output is the resultant reconstruction residual error E.

Dimensionality Reduction (DR): Given that we are using a large window size and offset
to augment the data, as pre-processing step, we can generate huge number of sub-signals.
In order for us to avoid the over-fitting problem when training the OC-SVM classifier, and
also to extract main components (which contain most of the discriminative information)
from the AE’s output, we apply dimensionality reduction techniques, namely Principal
Component Analysis (explained earlier), to the AE’s reconstruction residual error vectors

131



before training the classifier. The input is the resultant reconstruction error E, and the
output is E′, which is a reduced version of E of a size m×K ′, where K ′ is the number of
selected principle components, and K ′≪ W , as show in Fig. 6.2 - step (4).

Putting FE steps together: To give an illustrative example of the Feature Extraction
stage, assume that: (1) we obtained 15 signals from a device, i.e., m=15; (2) each signal
represents the power consumed by a device for 300 seconds, and that the power is sampled
at 5,000 samples/second. This gives us a power trace that has 1,500,000 samples, i.e.,
n = 1, 500, 000. So our dataset X is a matrix of size (15×1,500,000). After applying the
explained normalization, we use the formula given in the sliding window step. To compute
K, assume further that we use Win = 15,000 and an offset O = 2000. This gives us
K = 742 subsignals for each original signal. In other words, each signal xi becomes
742 subsignals (x′i). Thus, after the data augmentation step, the 15 power signals of our
became 11,280 subsignals. To keep the notations consistent, the size of our dataset X ′

becomes (11,280× 15,000). The next step is to use the trained RBM AE to extract the
features. To generate the features, we pass these subsignals (x′i), each is a vector of size
(1× 15,000), through the trained RBM AE. The trained RBM AE’s output should be a
reconstructed version of the input (x′i). We then compute the loss/error for each subsignal
using the mean squared error (mse). Thus, the generated features vector for each signal xi
is 742 features. Each feature represents the computed reconstruction error of the subsignals
of the original signal. Refereeing back to the notations used in Fig. 6.2, the size of our
dataset matrix (E) at this point is (15× 742). The final step is to use the PCA to lower
the dimensions of the dataset to the desired number of principal components (K′). We use
the obtained dataset (E′) to train the classifier, as we explain in the following section.

Classification: OC-SVM

The task of detection in our methodology is performed using a semi-supervised learning
technique. As shown in Fig. 6.2, we employ One-Class Support Vector Machines (explained
earlier) as an anomaly detection technique. Since only data from one-class is available
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(power consumption signals obtained from normal behaving wireless devices), the objective
of using OC-SVM is to learn a function that returns +1 for the normal behavior region
(not anomalous) and −1 elsewhere - malicious behavior region (anomalous). In order
to obtain more versatile decision boundaries, we use two kernel functions (namely Sigmoid
and RBF kernel) to investigate their effectiveness on the detection performance. We train
the OC-SVM using the feature matrix E ′ with M rows (number of observations) and W ′

columns (number of features).

6.5.2 Procedure 2: Detection Procedure

The detection step shown in Fig. 6.5 also includes 2 stages, reconstruction error concate-
nation and classification. The reconstruction error concatenation stage is concatenating
the reconstruction errors of every window split from each signal. Then, using PCA to do
feature extraction and finally perform the classification using the SVM algorithm.

6.6 Results

The problem of detecting malicious behavior in wireless devices is a semi-supervised clas-
sification problem. Consequently, given the datasets that we have, we perform binary
classification to validate our method. The healthy behavior – Normal class - is tested
against its anomalous behavior version – Malware class. Based on the this formulation,
we have conducted several experiments to train and test our methodology. The analysis
covered three main components, namely, (1) visualization of the extracted features, (2)
justification for the use of OC-SVM, and (3) detection performance of the methodology
and a comparison. The training and testing experiments were performed on a powerful
analysis platform (Colab) [53]. The deep learning tasks were carried out in Python using
Google Tensorflow framework and Keras [63] Python libraries. The PCA and OC-SVM
were performed using the well-know scikit-learn Python library [176].
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Figure 6.5: Detection of Anomalous Behavior

6.6.1 Features’ visualization and results

The dataset used to generate the following visualizations is E-DC. We choose the malware
family 50UL50DL, which represents malware that utilize % of its active period to upload
information to the cloud and the remaining 50% to download from a remote server. In this
family of malware we have 6 different malware instances each with specific “activity Duty
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Cycle” (DC), as we explained in Chapter 4.8. The duty cycles (DC) of the malware in this
family areDC = i%, i ∈ {1, 2, 3, 4, 8, 12}. Since we use PCA as a dimensionality reduction
technique, the first step we took to investigate how effective the RBM-AE’s features are
is to visualize the percentage of variance of Normal class of this dataset (50UL50DL).
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Figure 6.6 shows the percentage of the variance that the first 12 principal components
contain. It also show the cumulative PCs variance, which shows that most of the variance
(almost %) is contained in these 12 components. Then in Fig. 6.7 we show how the
data points from normal class and the six malware instances (from 50UL50DL malware
family) are distributed using PCA’s first two components. As can be noticed in Fig.
6.7, although dimensionality reduction loses some information and visualization results
of low-dimensional space cannot fully reveal what are in the high-dimensional space, it
is still insightful that the extracted features carry good information that can be used to
construct an effective detection model. In the next part of the results, we show the impact
of the number of the chosen principle components on the methodology overall detection
performance.

6.6.2 Classifier performance analysis

After visualizing the output of our methodology’s feature extraction stage, next we eval-
uate the performance of the chosen classifier - OCSVM. To training OC-SVM, there are
some model specific hyper-parameters that needs to be tuned in order to achieve the best
detection performance. We use cross-validation and grid search to optimise the perfor-
mance of the classifier. We start by randomly splitting the dataset, the Normal class data,
into training and testing datasets. Then, we use the training portion to perform 5-fold
cross-validation. In this step we basically split the training dataset into 5 portions and use
4 of them to training the OC-SVM and evaluate the learned model on the 5th fold. We
repeat this step 5 times and finally using the grid-search we pick the parameters that gives
us the best detection performance.

Before we report the results, we explain the metrics used to evaluate the performance
of our methodology. Since our problem is anomaly detection problem, which means, in
practice, we have much data from the Normal class and few observations from the anoma-
lous class, Malware in this case. We report the accuracy (Acc), recall (R), and precision
(P) in some of the results; however, we have chosen to use the F1-score (F1) as the main
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metric to evaluate the detection performance of our methodology, since it combines both
recall and precision. These measures are computed as shown in Table 6.1. We find that
reporting the precision and recall individually is very important as well since they put more
weight to a false positive and false negative, respectively.

Table 6.1: Performance evaluation metrics

Acc = TP+TN
(TP+FP+TN+FN) P = TP

TP+FP R = TP
TP+FN F1 = 2× P×R

(P+R) %

Figure 6.8 illustrates the decision boundary found by the kernelized OC-SVM. The used
kernel function is Radial Basis Function (RBF), which is a kind of Gaussian kernels. The
decision boundary shows that the model is able to separate most of the positive (Normal
class observations) from the negative points correctly. It also shows that the learned model
is able to correctly the unseen observations from the Normal class as well (green circles
with black edges in the figure).
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Figure 6.8: OC-SVM decision boundary and malware classes distribution
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Figure 6.9 highlights the impact of the OC-SVM kernel functions on the accuracy of the
model for different evaluation metrics. It can be noted that Radial Basis Function (RBF)
gives the best detection performance over the Linear and Sigmoid kernels. It is, hence,
used in all of the following results. Furthermore, the impact of PCA on the classification
performance was verified. The way we investigate that is to vary the number of princi-
ple components (pc) used to train our OC-SVM and observe the detection performance
accordingly, as shown in Fig. 6.10. The results show that first 2 pc(s) produce the best
detection performance. This confirms with the observation made from Fig. 6.8 that the
first 2 pc(s) contain much of the variance (Figure -a) and the fact that visualizing the
first 2 pc(s) showed a good separation of the malware instances of the 50UL50DL malware
family. Moreover, in Fig. 6.10, it can be noted that the more the number of pc(s) is the
lower the detection performance we get. This is attributed to the problem of over fitting,
where having more features (high dismissions) in the case of limited-sized datasets can get
the trained model to fall in the over fitting problem quickly.
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Figure 6.9: OC-SVM performance analysis for different kernels
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Figure 6.10: # of principle components impact on the detection performance

6.6.3 Comparison results

To demonstrate the effectiveness of our AE based features extraction technique, we compare
the average accuracy and F1-score of our methodology against a baseline model, as well
as against previously reported techniques [241, 123, 8]. A brief description of the used
baseline model is as follows: We extract two features (namely, the mean and standard
deviation) out of each power trace. Then we train the traditional Support Vector Machine
(SVM [206]) on the extracted features. Since the objective in [241, 123, 8] is similar to the
objective of our the work in this chapter (malware detection in wireless devices), and the
nature of the raw data is the same as the data considered in this study (i.e., the power
consumed by devices treated as signals), this technique was chosen to be the best fit to
have a fair comparison with. In the literature, there are a couple of studies that share the
same objective; however, we felt that the comparison would not be fair since the type of
the raw data (EM emissions [130, 131, 172]) is completely different.
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Table 6.2: Comparison results

Model Detection
Accuracy % F1 Score %

Our Model: {RBM AE +
OC-SVM} 98 (± 2%) 96.55 (± 2%)

Baseline: {mean&STD} + SVM 65 (± 6%) 67 (± 5%)
[123]: {ICA+RF} 88.0 (± 2%) 87 (± 0%)

[8]: {ANN} 90.1 (± 5%) -
[241]: {FCC + GMM} 68.3 (± 5%) 72.2 (± 5%)

Table 6.2 shows that AE based features outperform two of the techniques, the baseline
and [241], with at least 30% performance gain. To compare with the [241], we have
implemented their approach and run it on our dataset. The obtained accuracy of our
approach reached 97%, while the accuracy of [123, 8] was 88% and 90%, respectively. We
argue that such a good detection performance is due to: (1) the ability of the stacked RBM
AE to learn good features that capture the complexity of the normal behavior of the device
under study; and (2) the high sampling rate that is used in our monitoring methodology.
Such a rate makes it possible to capture information about the short-lived events executed
onboard a device. Since [241] depends on data sampled at a rate of 5 samples per second,
the approach fails to perform well as the results in Table 6.2 show.

Although [123, 8] were based supervised learning and used the same dataset as ours
(dataset E-DC in Table 4.2), which is sampled at the same sampling rate as the one used in
this study, the performance of our methodology shows at least 7% detection improvement
over [123] and [8]. The main reason goes back to the point (1), i.e., the good features ex-
tracted by the stacked RBMs. It is important to note that the performance of our method-
ology is not very far from the performance reported in [123]; however, our methodology has
two main advantages over [123]: (1) it requires fewer computation resources, which makes
it more suitable for real-time detection and resource constrained applications, and (2) it is
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a semi-supervised based technique which makes it more practical. A final remark on the
impact of sampling rate, our conclusion based on the comparison with [241] showed that
the higher the sampling rate is, the better the is detection performance. This is aligned
with the findings reported in [8], where they show that the detection performance can
worsen as the sampling rate is lowered.

Figure 6.11 shows a comparison we performed to ensure that the chosen classifier is a
good pick. In Figure 6.11, we compare OC-SVM with two other unsupervised methods
namely, Robust covariance (RC) [177] and Isolation Forest (IF) [149]. In this comparison
we show how the three methods compare in terms of the F1-score performance as well as
the time to recall the model. It can be noticed that Robust covariance and Isolation Forest
performance is always 0.8 irrespective of the malware activeness degree (DC %). The
reason is that the normal behavior is used in training all of the classifiers, so the decision’s
boundary of the modeled data (normal behavior) does not change as the malware DC %
changes.
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The distribution of the malware points falls outside of the normal region across the
version of malware scenarios in Fig. 6.11. It is also worth mentioning that the OC-SVM
sudden drop in the case of malware with DC = 12 %; some points for an unrecognized
reason, seemed similar to the normal behavior and fall in the normal region, i.e., classified
wrongly as not malicious. Clearly, OC-SVM is the fastest in terms of predicting new ob-
servations and also out performs the RC and IF classifiers with significant gain throughout
the 6 malware instances (DC = i%, i ∈ {1, 2, 3, 4, 8, 12}). Whether the malware is with
DC = 1% - the least active case, or the malware with DC = 12% - the most active case;
the model shows good detection performance regardless how active the malware is, where
the obtained F1-score reaches 96.6%, thanks to the good features learned by the RBM AE.

6.6.4 Detection coverage results

In this section of the results, we show the performance of the proposed methodology in
detecting different security threats that targets wireless/IoT devices. In the applications
of anomaly detection, including detection of security threats, we are more interested in
finding out when a security threat is present but does not get detected, the so-known as
false negative (FN). Therefore, when analyzing the performance of our methodology we do
not only report the accuracy, rather we show the F1-scoare, recall, and precision as well, as
they are more indicative in our case. Table 6.3 shows a summary of our the performance
of our methodology on the seven datasets that we have. The most challenging detection
task was encountered on the E-1S dataset. The obtained F1-score is not as high as on the
other datasets; however, having a high recall for in this particular case indicates a low FN.
This means in most of the cases, our methodology was able to correctly label and detect
the presence of malware, even though in the case of E-1S the malware is only active once
in a random fashion. The performance on E-RA dataset is also considerably lower than
the other datasets, which is something we expected given the fact that its activation times
and periods are randomized. Both of E-1S and E-RA are adaptive malware, which means
that they tend to hide their operation and activity so that they go undetected.
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Table 6.3: Summary of the results across all of the datasets - (* averaged results)

Metric
Threat E-DC* E-1S E-RA Real* DDOS-A DDOS-V Cry-M

F1-score 0.91 0.7 0.80 0.87 0.985 0.98 0.90
Accuracy 0.89 0.6 0.83 0.81 0.98 0.98 0.86
Recall 0.933 0.93 1.00 0.93 0.97 0.97 0.97
Precision 0.90 0.56 0.67 0.83 1.00 1.00 0.85

In the real malware dataset, Real, the reported results in Table 6.3 are averaged over
the five malicious apps that the dataset contains. Overall, the results are in the range of
85%. Figure 6.12 demonstrates the detection performance in terms of the selected four
measures (F1-score, accuracy, recall, and precision). These results justify that the used
emulated datasets cover a wide range of malicious behaviors/attacks, hence their value in
evaluating new detection techniques. In all of the IoT device datasets, namely distributed
of service attacks (DDOS-V and DDOS-A) and the crypto mining (Cry-M) datasets, the
detection accuracy as well as the F1-score reach 90% in most of the cases. So whether
a devices is under attack or it is hacked to serve as the source of the attack, the device’s
owner can be notified and alarmed of such a cyber-threat.

144



Buscaminas Tetris Tilt Wordsearch Yams

Names of malicious apps

0.0

0.2

0.4

0.6

0.8

1.0
P

er
fo

rm
a

n
ce

ra
ti

o

F1-score

Accuracy

Recall

Precision

Figure 6.12: Real malware per application results

One might argue that DDoS and cryptocurrency mining malware are high power mali-
cious attacks by nature, thus are easy cases to detect using the proposed approach. This ar-
gument makes the need to implement emulated malware, where we can control the amount
of time a malware can be active, even more compelling. As we explain in the Validation
Datasets section, a wide range of malicious behaviors/activities (e.g., a malware that is
active for one short time only: dataset E-1S; a malware with 1% DC activity: dataset
E-DC, or a malware with random activation periods: dataset E-RA) are generated to rep-
resent malware that does not consume/use a lot of power. The detection performance, as
shown in Table 4, of the proposed approach on these scenarios confirms that our approach
is not only effective on security threats that are caused by attacks/malware that consume
much of power; rather, it is also effective on the attacks/malware that is rarely active and
consumes a small amount of power.

To further elaborate on the effectiveness and the practicality of the proposed approach,
a common question in the security field is: can the detection be evaded if attackers find
out about the proposed detection approach? Generally, this is a difficult task since there is
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an inherent connection between the tasks a device performs and the power it consumes. In
the side-channel attacks, the whole idea of revealing secret keys depends on the aforemen-
tioned fact. However, one way that an attacker might seek to evade detection is through
the attempt to hide some of their malware’s activities behind a legitimate power con-
sumption bursts/spikes. In our validation datasets scenarios, specifically in the emulated
malware families, we simulate such a strategy by having a high power activity application
(YouTube) running as the normal/legitimate behavior, while the emulated malware runs in
the background. In most of the scenarios (E-DC, E-RA, and E1S) shown in Fig. 6.13 and
Table 6.3, our methodology was performing well (91, 80, and 70% F1-score, respectively).
The 1Sipke (E-1S) emulated malware case shows a relatively low precision, where we have
high false positives (i.e. normal behavior identified as malicious).
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Figure 6.13: Results of non-adaptive emulated malware families

Finally, Figure 6.13 depicts the performance of our methodology on our non-adaptive
families of malwares (E-DC dataset). This figure can be interpreted as follows: each
malware family, ex., 00UL100DL family, has six malwares, namely malware with i% DC

(duty cycle), where i ∈ 1, 2, 3, 4, 8, 12. The 1% DC Malware is malware that is only active
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1% of the cycle period. So if the cycle period is 60 seconds, then this malware is only active
for 1 second and goes to sleep for the remaining 59 seconds. The obtained F1-score for
this malware family is very high throughout all the malware families and ranges between
83% to 100%. Whether the malware is only active for short period of time, the case of
1% DC malware, or the most active malware 12% DC, where the malware stays active for
case 7.2 seconds, the methodology was capable of detecting all of them. A similar trend is
noticed for the other malware families, as the results in Fig. 6.13 illustrate. The results of
detection coverage across the wide range of validation datasets were very good, and hence,
confirm the usefulness and applicability of the proposed approach.

6.7 Summary

In this chapter, we introduced a new malware detection technique that is based on a non-
intrusive device’s power consumption monitoring. The measured power readings of a device
are treated as signals carrying discriminative information that can be learned. The idea is
to learn robust features out of the power signals using stacked RBM AutoEncoders and OC-
SVM. We validated our approach using real malwares taken from the Derbin dataset as well
as from wide spectrum of emulated malware. The obtained results from real malware as well
as emulated malware confirm the effectiveness of the proposed technique. The performance
of the proposed methodology was compared to previously reported approaches. Finally, the
methodology was also applied on well-known attacks (namely, DDOS attack and Crypto
Mining malware) on IoT application dataset where the obtained results show a robust
detection performance.

147



Chapter 7

Conclusions and Future Work

This chapter provides a brief summary of the thesis, together with recommendations for
future directions. Section 7.1 concludes the thesis while Section 7.2 highlights the main
points for further research that will extend this work.

7.1 Conclusion

This work is motivated by the fact that since IoT and CPS devices found in safety-critical
applications run on limited computing resources, they have been the target of different
kinds of cyber-security attacks on a global level. As a result, effective and robust approaches
for detecting anomalous device behavior can minimize a significant amount of financial
and life losses. Previous studies and results have demonstrated some success; however,
several recent incidents confirm that the need for a second line of defence is preeminent.
Therefore, the objective of this thesis is to propose new approaches that leverage the power
consumption of devices and deep learning techniques to make these devices more resilient
against different kinds of attacks and failures.

Several challenges are addressed in order to fill the research gaps and achieve the ob-
jective of this thesis. The main contributions of this thesis are summarised as follows:
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• This thesis extensively reviews the associated literature and identifies the tools as
well as the proposed techniques that mainly consider side-channel information and
also conduct dynamic analysis in order to detect the anomalous behavior of IoT/CPS
devices. Such a review has never before been conducted. This survey provides in-
formation such as the nature of information used for analysis, the type of anomalies
causing such behavior, the tools used for analysis, and the reported detection perfor-
mance.

• Since the work in this thesis is mainly concerned with the reasons why a device may
behave anomalously, it is important to model such behavior. Therefore, this work
models the main factors that affect a device’s normal behavior as an anomaly of one
of the following forms: (i) security threats (e.g., DDOS attack, malware, ransomware,
resources hijacking); (ii) change in the execution environment (e.g., communication
interference); or (iii) a faulty device (e.g., faulty component or hardware aging). This
thesis also investigates the effectiveness and usefulness of using the power consump-
tion signals of devices to infer some effective insights about the “operational health”
of these devices, specifically in detecting security threats and faulty devices.

• A main block to achieving the goals of this thesis is overcome by building power
consumption-based datasets that can be utilized by AI and security research com-
munities to validate newly developed detection techniques. The collected datasets
cover a wide range of anomalous device behavior, namely three main aspects of device
security (i.e., confidentiality, integrity, and availability) and partial system failures.
The extensive experiments include: a wide spectrum of various emulated malware
scenarios; five real malware applications taken from the well-known Drebin dataset;
distributed denial of service attack (DDOS), where an IoT device is treated as: (1) a
victim of a DDOS attack and (2) a source of a DDOS attack; cryptomining malware,
where the resources of an IoT device are being hijacked to be used to advantage of the
attacker wish; and faulty CPU cores. The wide range of the collected datasets allow
extensive validation of the proposed detection approaches to be performed. These
datasets, and details of the experiments, will be made public and available to the
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research community in the near future. It is noteworthy that this level of extensive
validation has not yet been reported in any study in the literature.

• This thesis presents a novel supervised technique to detect anomalous device behavior
based on transforming the problem into an image classification problem. The main
aim of this methodology is to improve the detection performance. For this reason,
the employed technique is a supervised model (i.e., requiring labeled data). In order
to achieve the goals of this study, the proposed methodology combines two powerful
computer vision tools, namely Histograms of Oriented Gradients (HOG) and a Con-
volutional Neural Network (CNN). In this methodology, the 1-D instantaneous power
consumption signals of devices are transformed into a time-frequency representation
(TFR), using Constant Q Transformation (CQT), to form 2-D images. The argu-
ment is that CQT images capture valuable information about the tasks performed
on board a device, e.g., events’ location in time and frequency domains, frequency of
events, and the shape and duration of events. Applying HOG to the CQT images en-
ables the extraction of more robust features that preserve the edges of time-frequency
structures (i.e., a description of local information) as well as the directionality of the
edge information (i.e., how these structures/events evolve with time). Finally, a CNN
model was trained on images containing HOG features to classify these signals and
detect anomalously behaving devices. Such a detection technique is not only useful
for this particular case, but can contribute to most time-series classification (TSC)
problems.

• The final component of this thesis is the proposal of a novel semi-supervised detection
technique that requires only the normal behavior of a device in the training phase.
This methodology, which aims at detecting new/unseen anomalous behaviors, lever-
ages the power consumption of a device and Restricted Boltzmann Machine (RBM)
AutoEncoders (AE) to build a model that makes them more robust to the presence
of security threats. The methodology makes use of stacked RBM AE and Principal
Component Analysis (PCA) to a extract feature vector based on AE reconstruction
errors. A One-Class Support Vector Machine (OC-SVM) classifier was then trained
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to perform the detection task. Such a technique is important since obtaining suffi-
cient labeled data for training/validation of the models used by anomaly detection
techniques is an acknowledged major issue in this field of study.

7.2 Future Work

This work can be extended in several directions. Some of these directions, which complete
and compliment the contributions made in this thesis, emerged at later stages of the
study. Other directions can be considered as orthogonal or parallel to this study and
target different domains.

• Achieving a wider validation coverage: The validation of this work can benefit from
the design of further experiments to cover all the causes of anomalous device behavior
as discussed in this thesis. In particular, this would include the design of experiments
related to the anomalous behavior that is the result of hardware aging and change
of execution environment. Moreover, covering more scenarios of anomalously be-
having devices due to a faulty components can explored in the future. Maintaining
these datasets can strengthen the validation of the proposed approaches and prove
robustness to the work.

• Studying the time needed to detect an event/anomaly (speed): In the context of this
thesis, it is important to investigate the time required to detect a security threat.
For instance, if a DDOS attack is initiated, it is important to know how long it will
take before it can be flagged.

• Increasing the size of the datasets using generative adversarial network (GAN) [94]
It will be interesting to Investigate the use of generative adversarial network (GAN)
to overcome the challenge of insufficient/limited “power behaviors” of devices for the
training phase. This can be very useful to improve the detection performance and
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help detect known and unseen behaviors (e.g., attacks or failures) on different IoT
devices.

• Localizing the timestamp of an anomaly (event) in a time-series signal: In certain
applications, given power (time-series) signals, can the methodology identify the
location of the anomalous behavior in these signals? This is an interesting task and
worth exploring in the future.

• Exploring transfer learning [70]: Transfer learning is defined as “the improvement of
learning in a new task through the transfer of knowledge from a related task that has
already been learned” [220]. In the supervised detection technique in this present
work, a convolutional neural network (CNN) is trained to perform the detection
task. Given the fact that obtaining labeled data is always a challenge, it would
be interesting to explore the impact of using pre-trained CNNs on the detection
performance.

• Monitoring that is strongly non-intrusive: A previous study [11] defines a strongly
non-intrusive method based on the following three criteria: i) the method does not
run any extra code on the device, therefore does not incur any computing overhead;
ii) the device is not explicitly connected with the monitoring tool; iii) the monitoring
device is not explicitly communicating with the device under observation for moni-
toring purposes. A method is strongly non-intrusive if it satisfies all three criteria.
While the monitoring method in this thesis falls under the category of non-intrusive
methods, it is not strongly non-intrusive. Therefore, another direction that can be
explored is the use of thermal images to detect a device’s anomalous behavior. Fol-
lowing the same idea of using side-channel information analysis, the heat dissipated
during the operation of a device can be used as source information to detect se-
curity threats. Such a monitoring approach satisfies the aforementioned definition,
hence will be interesting to incorporate with the detection techniques proposed in
this thesis.

• Addressing wider applicability in different domains: Since the nature of our collected
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data is discrete and sequential (i.e., time-series signals), such data can be found
across different applications and domains. In fact, time-series signals can be cap-
tured by monitoring physical systems (e.g., earth seismic dynamics [161], vibration
of a mechanical system [35], or a robot arm in an automobile plant [13]), human bod-
ies (e.g., motion, electrocardiogram (ECG), or electroencephalographic(EEG)), and
acoustic sources (e.g., sound and audio). This argument gives the proposed detection
techniques a broader scope of applicability that is worth investigating.
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Appendix

Appendix A

A.1 IoT Based Experiments Code

u l t r a s o n i c . c :
/∗

∗ u l t r a s o n i c . c
∗ HC−SR04 u l t r a s o n i c sensor l o g g i n g program fo r the Raspberry Pi
∗
∗ Usage : ./ u l t r a s o n i c
∗
∗ P o l l s the u l t r a s o n i c sensor at a f i x e d f requency ( i n d i c a t e d by
∗ SAMPLE INTERVAL MS) . The measurements are wr i t t en to standard output .
∗ ∗/

#include <wir ingPi . h>
#include <s t d i o . h>

// GPIO pin ass ignments
#define GPIO TRIG1 4
#define GPIO ECHO1 5

#define SPEED OF SOUND MKS 343 // metres per second
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#define SAMPLE INTERVAL MS 500 // m i l l i s e c o n d s

int main ( void ) {
wiringPiSetupGpio ( ) ;
pinMode (GPIO TRIG1 , OUTPUT) ;
pinMode (GPIO ECHO1, INPUT) ;

unsigned last measurement ms = m i l l i s ( ) ;

while (1 ) {
while ( m i l l i s ( ) − last measurement ms < SAMPLE INTERVAL MS) {

delayMicroseconds ( 2 0 0 ) ;
}
last measurement ms = m i l l i s ( ) ;

// Send a pu l s e to the u l t r a s o n i c sensor
d i g i t a l W r i t e (GPIO TRIG1 , HIGH) ;
de layMicroseconds ( 1 0 ) ;
d i g i t a l W r i t e (GPIO TRIG1 , LOW) ;

// Wait f o r the s t a r t o f the echo pu l s e
while ( d i g i t a lRead (GPIO ECHO1) != HIGH) { /∗ wai t ∗/ }
unsigned int t 1 us = micros ( ) ;

// Wait f o r the end o f the echo pu l s e
while ( d i g i t a lRead (GPIO ECHO1) == HIGH) { /∗ wai t ∗/ }
unsigned int t 2 us = micros ( ) ;

// Compute the l e n g t h o f the echo pu l s e in seconds
unsigned int d e l t a t u s = t2 us − t 1 us ;
double d e l t a t s = ( ( double ) d e l t a t u s ) / 1000000 .0 ;

// Compute the round−t r i p d i s t ance and d i v i d e by 2 to ge t the
// d i s t ance to the o b j e c t
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double d i s t r t m e t r e s = d e l t a t s ∗ SPEED OF SOUND MKS;
double d i s t m e t r e s = d i s t r t m e t r e s / 2 . 0 ;
p r i n t f ( ”%f \n” , d i s t m e t r e s ) ;

}
return 0 ;

}
s t r e s s t e s t . c :
/∗

∗ s t r e s s t e s t . c
∗ CPU s t r e s s t e s t e r f o r Linux systems
∗
∗ Usage : ./ s t r e s s t e s t [−− i n f i n i t e | −I ] [−n <NUM CYCLES>]
∗ [(−−duty−c y c l e | −d ) <DUTY CYCLE>] [−−cryp to | −c ]
∗
∗ Runs busy loops on a l l cores .
∗
∗ Options :
∗
∗ −− i n f i n i t e , −I : run i n f i n i t e busy l oops .
∗
∗ −n <NUM CYCLES>: run NUM CYCLES loops d i v i d e d even l y across a l l
∗ cores . ( i . e . i f N cores are be ing s t r e s s −t e s t ed , each core
∗ w i l l run NUM CYCLES / N loops .
∗
∗ −−duty−c y c l e <DUTY CYCLE>, −d <DUTY CYCLE>: runs busy loops wi th
∗ a duty c y c l e o f DUTY CYCLE ( i . e . a c t i v e l y run f o r DUTY CYCLE
∗ o f the time ) , s p l i t e ven l y between a l l cores .
∗
∗ −−crypto , −c : r e p l a c e the busy loop opera t ion wi th c ryp tog raph i c
∗ computat ions ( to s imu la t e a r e a l workload more c l o s e l y ) .
∗
∗ −−math , −m: rep l a c e the busy loop opera t ion wi th mathematical
∗ computat ions ( c a l c u l a t i n g the s ine o f random va lue s ) to
∗ s imu la t e a r e a l workload more c l o s e l y .
∗
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∗ Compile wi th :
∗ gcc − l p t h r e a d − l g c r y p t −s t d=gnu11 s t r e s s t e s t . c −o s t r e s s t e s t
∗ ∗/

#include <s t d l i b . h>
#include <s t d i o . h>
#include <s t d i n t . h>
#include <math . h>
#include <errno . h>
#include <sys / s y s i n f o . h>
#include <pthread . h>
#include <gcrypt . h>
#include <i n t t y p e s . h>

// 12 b i l l i o n c y c l e s take about 1 minute to perform on a 4−core
// Raspberry Pi Model 3B.
#define DEFAULT NUM CYCLES 12000000000

// 120 m i l l i o n c y c l e s take about 50 seconds to perform on a 4−core
// Raspberry Pi Model 3B with a duty c y c l e o f 0 . 8 .
#define DUTY CYCLE DEFAULT NUM CYCLES 120000000

// 180 m i l l i o n c y c l e s take about 50 seconds to perform on a 4−core
// Raspberry Pi Model 3B.
#define CRYPTO DEFAULT NUM CYCLES 180000000

// 600 m i l l i o n c y c l e s take about 50 seconds to perform on a 4−core
// Raspberry Pi Model 3B.
#define MATH DEFAULT NUM CYCLES 600000000

// The t o t a l l e n g t h o f one c y c l e o f the v a r i a b l e −duty−c y c l e loop
// ( one a c t i v e and one i n a c t i v e phase ) .
#define PERIOD LENGTH NS 100000000

// The l e n g t h o f messages to be encrypted and decryp ted .
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#define MESSAGE LENGTH 16

// The maximum a l l o w a b l e error in f l o a t i n g −po in t computat ions .
#define ERR THRESHOLD 1e−10

// Stores a l l the parameters t h a t need to be g iven to the busy−l oop
// func t i on −− the number o f c y c l e s and the duty c y c l e −− as a s i n g l e
// s t r u c t f o r pas s ing to p t h r e a d c r e a t e ( ) .
typedef struct {

u i n t 6 4 t num cycles ;
double duty cyc l e ;

} thread params t ;

// Helper f u n c t i o n s

// Returns the number o f nanoseconds s ince the Unix Epoch .
// Wi l l o ve r f l ow on Ju ly 21 , 2554.
u i n t 6 4 t nanos ( ) {

struct t imespec spec ;
t imespec ge t (&spec , TIME UTC) ;
return 1000000000 u l l ∗ ( u i n t 6 4 t ) spec . t v s e c

+ ( u i n t 6 4 t ) spec . t v n s e c ;
}

// Busyloop f u n c t i o n s

// Runs an e n d l e s s busy−l oop .
// This f unc t i on ’ s type s i gna tu r e i s mandated by the pthread l i b r a r y .
// Nei ther the parameter nor the re turn va lue are ever used .
void∗ i n f i n i t e b u s y l o o p ( a t t r i b u t e ( ( unused ) ) void ∗ i gnored ) {

volat i le int x = 0 ;
while (1 ) ++x ;
return NULL;

}
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// Runs a busy−l oop f o r a g iven number o f c y c l e s .
// This f unc t i on ’ s type s i gna tu r e i s mandated by the pthread l i b r a r y .
// The re turn va lue i s never used .
void∗ busyloop ( void ∗ params ptr ) {

thread params t ∗params = ( thread params t ∗) params ptr ;
u i n t 6 4 t num cycles = params−>num cycles ;

volat i le u i n t 6 4 t x = 0 ;
while ( x < num cycles ) ++x ;
return NULL;

}

// Runs a p a r t i a l busy loop wi th a g iven duty c y c l e f o r a g iven number
// o f c y c l e s .
// This f unc t i on ’ s type s i gna tu r e i s mandated by the pthread l i b r a r y .
// The re turn va lue i s never used .
void∗ duty cyc l e busy loop ( void ∗ thread params ptr ) {

thread params t params
= ∗ ( ( thread params t ∗) thread params ptr ) ;

u i n t 6 4 t num cycles = params . num cycles ;
double duty cyc l e = params . duty cyc l e ;

u i n t 6 4 t a c t i v e t i m e n s = ( u i n t 6 4 t )
( duty cyc l e ∗ PERIOD LENGTH NS) ;

u i n t 6 4 t i n a c t i v e t i m e n s = PERIOD LENGTH NS − a c t i v e t i m e n s ;

volat i le u i n t 6 4 t x = 0 ;
while ( x < num cycles ) {

// Act ive phase : run a busy−l oop u n t i l a c t i v e t i m e n s
// nanoseconds have e l ap sed .
u i n t 6 4 t c y c l e s t a r t = nanos ( ) ;
while ( nanos ( ) − c y c l e s t a r t < a c t i v e t i m e n s ) {

for ( int i = 0 ; i < 1000000; ++i ) {
++x ;
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}
}

// I n a c t i v e phase : s l e e p f o r i n a c t i v e t i m e n s nanoseconds .
struct t imespec s l e e p s p e c ;
s l e e p s p e c . t v s e c = 0 ;
s l e e p s p e c . t v n s e c = ( long ) i n a c t i v e t i m e n s ;
nanos leep(& s l e e p s p e c , NULL) ;

}
return NULL;

}

// Performs a busy−l oop t h a t performs cryp tog raph i c opera t i ons f o r a
// g iven number o f c y c l e s .
// This f unc t i on ’ s type s i gna tu r e i s mandated by the pthread l i b r a r y .
// The re turn va lue i s never used .
void∗ crypto busy loop ( void ∗ params ptr ) {

thread params t ∗params = ( thread params t ∗) params ptr ;
u i n t 6 4 t num cycles = params−>num cycles ;

char ∗ p l a i n t e x t = c a l l o c (MESSAGE LENGTH, s izeof ( char ) ) ;
char ∗ output = c a l l o c (MESSAGE LENGTH, s izeof ( char ) ) ;

g c r y c i p h e r h d t c iphe r ;
g c r y e r r o r t e r r = gc ry c iphe r open (&cipher , GCRY CIPHER AES,

GCRY CIPHER MODE ECB, 0 /∗ no s p e c i a l op t i ons ∗/ ) ;
i f ( e r r ) {

f p r i n t f ( s tde r r , ” Error in l i b g c r y p t \n” ) ;
e x i t ( 1 ) ;

}

char ∗key = ” 3141592653897932 ” ;
g c r y c i p h e r s e t k e y ( c ipher , key ,

g c r y c i p h e r g e t a l g o k e y l e n (GCRY CIPHER AES128 ) ) ;
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for ( u i n t 6 4 t i = 0 ; i < num cycles ; ++i ) {
s t r cpy ( p l a in t ex t , ” 123456789ABCDEF” ) ;

g c r y c i p h e r e n c r y p t ( c ipher , output , MESSAGE LENGTH, p la in t ex t ,
MESSAGE LENGTH) ;

g c r y c i p h e r d e c r y p t ( c ipher , output , MESSAGE LENGTH, NULL, 0 ) ;

i f (memcmp( p la in t ex t , output , MESSAGE LENGTH) != 0) {
f p r i n t f ( s tde r r , ” Decryption f a i l e d !\n” ) ;
e x i t ( 1 ) ;

}
}

f r e e ( p l a i n t e x t ) ;
f r e e ( output ) ;
g c r y c i p h e r c l o s e ( c iphe r ) ;
return NULL;

}

// Performs a busy−l oop t h a t c a l c u l a t e s the s ine o f a r b i t r a r y va l u e s .
// This f unc t i on ’ s type s i gna tu r e i s mandated by the pthread l i b r a r y .
// The re turn va lue i s never used .
void∗ math busyloop ( void ∗ params ptr ) {

thread params t ∗params = ( thread params t ∗) params ptr ;
u i n t 6 4 t num cycles = params−>num cycles ;

for ( u i n t 6 4 t i = 0 ; i < num cycles ; ++i ) {
// The va lue whose s ine we are computing
double va l = ( ( double ) i ) / ( double ) num cycles ∗ 2 ∗ M PI

− M PI ;
// The s ine o f v a l
volat i le double r e s = va l ;
// The curren t term in the Maclaurin s e r i e s
double term = val ;
// The power o f x in the curren t term
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int power = 1 ;
do {

power += 2 ;
// Every o ther term i s o f oppo s i t e s i gn
term ∗= −1;
// The power on ’ x ’ i n c r ea s e s by 2 each term
term ∗= val ∗ va l ;
// The denominator goes from ( power −2)! to power !
term /= ( ( power − 1) ∗ power ) ;
r e s += term ;

} while ( f abs ( term ) > ERR THRESHOLD) ;
}
return NULL;

}

int main ( int argc , char ∗∗ argv ) {
// Parse command− l i n e arguments
int i n f i n i t e = 0 ;
u i n t 6 4 t num cycles = 0 ;
int crypto = 0 ;
int u s e p a r t i a l d u t y c y c l e = 0 ;
double duty cyc l e = 0 ;
int math = 0 ;

// S ta r t l oop ing at 1 ( argv [ 0 ] i s the program name)
for ( int i = 1 ; i < argc ; ++i ) {

char ∗ arg = argv [ i ] ;
i f ( strcmp ( arg , ”−− i n f i n i t e ” ) == 0 | | strcmp ( arg , ”−I ” ) == 0) {

i n f i n i t e = 1 ;
}
// In the next two opt ions , the check aga in s t argc makes sure
// t h a t t h e r e i s a t l e a s t one argument a f t e r the f l a g ( s ince
// the s e two op t i ons r e q u i r e an argument ) .
else i f ( strcmp ( arg , ”−n” ) == 0 && i + 1 < argc ) {

++i ;
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arg = argv [ i ] ;
num cycles = s t r t o u l l ( arg , NULL, /∗ base ∗/ 1 0 ) ;
// Check f o r i n v a l i d input
i f ( num cycles == 0 | | errno == ERANGE) {

f p r i n t f ( s tde r r , ” I n v a l i d parameter to −n : %s \n” , arg ) ;
f p r i n t f ( s tde r r , ” ( Expected a p o s i t i v e i n t e g e r )\n” ) ;
e x i t ( 2 ) ;

}
}
else i f ( ( strcmp ( arg , ”−−duty−c y c l e ” ) == 0

| | strcmp ( arg , ”−d” ) == 0)
&& i + 1 < argc ) {
++i ;
arg = argv [ i ] ;
u s e p a r t i a l d u t y c y c l e = 1 ;
duty cyc l e = s t r t o d ( arg , NULL) ;
// Check f o r i n v a l i d input
i f ( duty cyc l e <= 0 | | duty cyc l e > 1 .0 | | errno == ERANGE) {

f p r i n t f ( s tde r r , ” I n v a l i d parameter to −−duty−c y c l e : ”
”%s \n” , arg ) ;

f p r i n t f ( s tde r r , ” ( Expected a r e a l number between ”
”0 and 1)\n” ) ;

e x i t ( 2 ) ;
}

}
else i f ( strcmp ( arg , ”−c ” ) == 0

| | strcmp ( arg , ”−−crypto ” ) == 0) {
crypto = 1 ;

}
else i f ( strcmp ( arg , ”−m” ) == 0

| | strcmp ( arg , ”−−math” ) == 0) {
math = 1 ;

}
else {

// Ei ther t h i s argument wasn ’ t one o f the s p e c i f i e d opt ions ,

191



// or an opt ion needed a parameter but wasn ’ t g i ven one .
f p r i n t f ( s tde r r , ” I n v a l i d opt ion : %s \n” , arg ) ;
e x i t ( 2 ) ;

}
}

// I f the user has not s u p p l i e d the number o f cyc l e s , p i c k a d e f a u l t
// va lue based on the mode used .
i f ( num cycles == 0) {

i f ( u s e p a r t i a l d u t y c y c l e ) {
num cycles = DUTY CYCLE DEFAULT NUM CYCLES;

}
else i f ( crypto ) {

num cycles = CRYPTO DEFAULT NUM CYCLES;
}
else i f (math) {

num cycles = MATH DEFAULT NUM CYCLES;
}
else {

num cycles = DEFAULT NUM CYCLES;
}

}

// Determine the number o f th reads to s t a r t .
// ge t nproc s ( ) r e turns the number o f p roce s so r s in the system ,
// which i s used as the number o f th reads .
unsigned num threads = ( unsigned ) ge t nproc s ( ) ;
u i n t 6 4 t c y c l e s p e r t h r e a d = num cycles / num threads ;

// A l l o c a t e the thread po in t e r array
pthread t ∗ threads = ( pthread t ∗) mal loc (

num threads ∗ s izeof ( pthread t ) ) ;
i f ( threads == NULL) {

f p r i n t f ( s tde r r , ”Out o f memory ! ” ) ;
e x i t ( 1 ) ;
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}

// Determine which func t i on and parameters to use
void ∗(∗ l o op func ) ( void ∗ ) ;
thread params t params ;

i f ( i n f i n i t e ) {
l o op func = i n f i n i t e b u s y l o o p ;
// Don ’ t s e t any o f params ’ f i e l d s ; the func t i on i gnore s them .

}
else i f ( u s e p a r t i a l d u t y c y c l e ) {

l o op func = duty cyc l e busy loop ;
params . num cycles = c y c l e s p e r t h r e a d ;
params . duty cyc l e = duty cyc l e / num threads ;

}
else i f ( crypto ) {

l o op func = crypto busy loop ;
params . num cycles = c y c l e s p e r t h r e a d ;
// Don ’ t s e t params . d u t y c y c l e ; the func t i on i gnore s i t .

// I n i t i a l i z e gc ryp t
i f ( ! g c r y c h e c k v e r s i o n (GCRYPT VERSION) ) {

f p r i n t f ( s tde r r , ” Fa i l ed to i n i t i a l i z e l i b g c r y p t \n” ) ;
e x i t ( 1 ) ;

}
g c r y c o n t r o l (GCRYCTL DISABLE SECMEM, 0 ) ;
g c r y c o n t r o l (GCRYCTL INITIALIZATION FINISHED , 0 ) ;

}
else i f (math) {

l o op func = math busyloop ;
params . num cycles = c y c l e s p e r t h r e a d ;
// Don ’ t s e t params . d u t y c y c l e ; the func t i on i gnore s i t .

}
else {

l o op func = busyloop ;
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params . num cycles = c y c l e s p e r t h r e a d ;
// Don ’ t s e t params . d u t y c y c l e ; the func t i on i gnore s i t .

}

// Create th reads
for ( unsigned i = 0 ; i < num threads ; ++i ) {

int r e s u l t c o d e = pthread c r ea t e (&threads [ i ] , NULL,
loop func , &params ) ;

i f ( r e s u l t c o d e != 0) {
f p r i n t f ( s tde r r , ” Fa i l ed to c r e a t e thread !\n” ) ;
f r e e ( threads ) ;
e x i t ( 1 ) ;

}
}

// Wait f o r a l l t h reads to f i n i s h
for ( unsigned i = 0 ; i < num threads ; ++i ) {

p t h r e a d j o i n ( threads [ i ] , NULL) ;
}

f r e e ( threads ) ;
return 0 ;

}

miner . c
#include <s t d l i b . h>
#include <time . h>
#include <s t d i n t . h>
#include <s t d i o . h>
#include <gcrypt . h>
#include <i n t t y p e s . h>

#define DEFAULT DUTY CYCLE 0.01

// The t o t a l l e n g t h o f a cyc l e , c o n s i s t i n g o f one a c t i v e and one
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// i n a c t i v e per iod .
#define PERIOD NS 10000000000 u l l // 10 s

// The minimum number o f zero b y t e s at the beg inn ing o f the d i g e s t f o r
// the input to count as v a l i d ” Proof o f Work” .
#define MIN ZERO BYTES 3

#define BUFFER SIZE 128

// Returns the number o f nanoseconds s ince the Unix Epoch .
// Wi l l o ve r f l ow on Ju ly 21 , 2554.
u i n t 6 4 t nanos ( ) {

struct t imespec spec ;
t imespec ge t (&spec , TIME UTC) ;
return 1000000000 u l l ∗ ( u i n t 6 4 t ) spec . t v s e c

+ ( u i n t 6 4 t ) spec . t v n s e c ;
}

// Check i f the SHA256 hash o f a g iven b u f f e r s t a r t s wi th MIN ZERO BYTES
// b y t e s o f z e roe s . This i s i d e n t i c a l to Bi t co in ’ s proof−of−work
// p r o t o c o l excep t f o r the number o f zero b y t e s .
void mine ( char ∗ b u f f e r ) {

char d i g e s t [ 3 2 ] ;
gc ry md hash buf f e r (GCRY MD SHA256, d ige s t , bu f f e r , BUFFER SIZE ) ;
int v a l i d = 1 ;
for ( int i = 0 ; i < MIN ZERO BYTES; ++i ) {

i f ( d i g e s t [ i ] != 0) {
v a l i d = 0 ;

}
}
i f ( v a l i d ) {

/∗
p r i n t f (”Found :\n ” ) ;
f o r ( i n t i = 0 ; i < BUFFER SIZE; ++i ) {

p r i n t f (”%.2 hhx ” , b u f f e r [ i ] ) ;
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}
p r i n t f (”\n ” ) ;
f o r ( i n t i = 0 ; i < 32; ++i ) {

p r i n t f (”%.2 hhx ” , d i g e s t [ i ] ) ;
}
p r i n t f (”\n ” ) ;
∗/

}
}

// Increment the g iven bu f f e r , hand l ing by t e ove r f l ow .
void next ( char ∗ b u f f e r ) {

// S ta r t by increment ing the l a s t by t e
int cu r r po s = BUFFER SIZE − 1 ;
while ( cu r r po s >= 0) {

++b u f f e r [ cu r r po s ] ;
// Check i f we need to carry a b i t
i f ( b u f f e r [ cu r r po s ] == 0) {

−−cu r r po s ;
}
else break ;

}
}

int main ( int argc , char ∗∗ argv ) {
double duty cyc l e ;
i f ( argc >= 2) {

// argv [ 0 ] i s the e x e c u t a b l e name ; argv [ 1 ] i s the f i r s t argument
duty cyc l e = s t r t o d ( argv [ 1 ] , NULL) ;
// Check i f the parameter was i n v a l i d
i f ( duty cyc l e == 0 . 0 ) {

duty cyc l e = DEFAULT DUTY CYCLE;
}

}
else {
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duty cyc l e = DEFAULT DUTY CYCLE;
}

// I n i t i a l i z e gc ryp t
i f ( ! g c r y c h e c k v e r s i o n (GCRYPT VERSION) ) {

f p r i n t f ( s tde r r , ” Fa i l ed to i n i t i a l i z e l i b g c r y p t \n” ) ;
e x i t ( 1 ) ;

}
g c r y c o n t r o l (GCRYCTL DISABLE SECMEM, 0 ) ;
g c r y c o n t r o l (GCRYCTL INITIALIZATION FINISHED , 0 ) ;

u i n t 6 4 t a c t i v e t i m e n s = ( u i n t 6 4 t ) ( duty cyc l e ∗ PERIOD NS ) ;
u i n t 6 4 t i n a c t i v e t i m e n s = PERIOD NS − a c t i v e t i m e n s ;

// S ta r t t e s t i n g va l u e s at a random po in t
char ∗ b u f f e r = c a l l o c (BUFFER SIZE , s izeof ( char ) ) ;
srand ( ( unsigned ) time (NULL) ) ;
for ( int i = 0 ; i < BUFFER SIZE ; ++i ) {

b u f f e r [ i ] = ( char ) rand ( ) % 256 ;
}

while (1 ) {
u i n t 6 4 t s t a r t t i m e = nanos ( ) ;
while ( nanos ( ) − s t a r t t i m e < a c t i v e t i m e n s ) {

mine ( b u f f e r ) ;
next ( b u f f e r ) ;

}

struct t imespec s l e e p s p e c ;
s l e e p s p e c . t v s e c = ( t ime t ) ( i n a c t i v e t i m e n s / 1000000000 l l ) ;
s l e e p s p e c . t v n s e c = ( i n t 3 2 t ) ( i n a c t i v e t i m e n s % 1000000000 l l ) ;
nanos leep(& s l e e p s p e c , NULL) ;

}

f r e e ( b u f f e r ) ;
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}

v ideo toc sv . py :
””” Converts a v ideo taken by the Seekshot Pro in to a CSV of thermal data .
Each row r e p r e s e n t s one frame in the video , and each column r e p r e s e n t s a p i x e l
( in row−major order ) .
The input and output f i l enames are g iven as command−l i n e arguments .
”””

import sys
import os . path as path
import numpy as np
import cv2

# The minimum and maximum temperatures for a l l the images ’ co l ou r s c a l e s .
# Al l temperature va lue s throughout this program are in degree s C e l s i u s .
MIN TEMP = 20
MAX TEMP = 70

de f l inear map ( in min , in max , out min , out max , datum ) :
””” Resca l e s a value from [ in min , in max ] to [ out min , out max ] .
”””
return out min + (datum − in min ) ∗ ( out max − out min ) / ( in max − in min )

de f image to temperatures ( array ) :
””” Converts a thermal image frame in to an array o f temperature va lue s .
The input array should be a 1D Numpy array corre spond ing to a g r e y s c a l e
image in row−major order .
The output array i s o f the same format , with each entry corre spond ing to a
temperature va lue .
”””
# Extract the minimum and maximum b r i g h t n e s s va lue s from the co lour s c a l e
# legend ( l o ca t ed at X˜=610 , Y=409 to Y=70)
#img array = np . array ( img )
#minimum = img array [ 409 , 610 ] # Y be fo r e X
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#maximum = img array [ 7 0 , 610 ]
minimum = 16
maximum = 235 # These are the same for a l l images

# As i t turns out , the co l our s c a l e used by the camera i s ( almost ) l i n e a r ,
# and any apparent n o n l i n e a r i t y could simply be a r e s u l t o f l o s s y JPEG
# compress ion .
# Therefore , the use o f a l i n e a r mapping i s j u s t i f i e d .

# Cal l l inear map on the whole array at once , using NumPy broadcas t ing .
# This i s th ree o rde r s o f magnitude f a s t e r than using l i s t comprehension .
temperature array = l inear map (minimum , maximum, MIN TEMP, MAX TEMP, \

array )
return temperature array

de f main ( ) :
”””Main func t i on .
”””
# Val idate command−l i n e arguments
# Check the number o f arguments provided
i f l en ( sys . argv ) < 3 :

p r i n t ( ” Spec i f y the input and output f i l enames as arguments . ” )
e x i t (2 )

# Check that the input f i l e e x i s t s
i n f i l e = sys . argv [ 1 ]
i f not path . i s f i l e ( i n f i l e ) :

p r i n t ( ” Error : f i l e %s not found ” % i n f i l e )
e x i t (2 )

# Check that the output f i l e doesn ’ t e x i s t ( to avoid a c c i d e n t a l l y
# ove rwr i t i ng a f i l e )
o u t f i l e = sys . argv [ 2 ]
i f path . i s f i l e ( o u t f i l e ) :

p r i n t (” Error : f i l e %s a l ready e x i s t s ” % o u t f i l e )
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e x i t (2 )

# An array to s t o r e a l l the c rea ted numpy arrays
ou t a r ray s = [ ]

# S p l i t the v ideo in to frames
v ideo capture = cv2 . VideoCapture ( i n f i l e )
succes s , image cv = v ideo capture . read ( )

whi l e s u c c e s s :
# Make the image g r e y s c a l e
image = cv2 . cvtColor ( image cv , cv2 .COLOR BGR2GRAY)

# Reshape the array to 1D ( in row−major order )
# r a v e l ( ) i s used in s t ead o f f l a t t e n ( ) because r a v e l ( ) avo ids making a
# copy o f the data i f p o s s i b l e .
image = image . r a v e l ( )

# Convert the image to an array o f temperature data
temperatures = image to temperatures ( image )

# Append the image to the array
out a r ray s . append ( temperatures )

# Get the next frame
succes s , image cv = v ideo capture . read ( )

# Combine the ar rays in to one
out ar ray = np . vstack ( tup l e ( ou t a r ray s ) )

# Write the output array
np . save txt ( o u t f i l e , out array , d e l i m i t e r =” ,” , fmt=”%.5g ”)

i f name == ” main ” :
main ( )
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c o n f i g . py :
# p y l i n t : d i s a b l e=import−e r r o r
# p y l i n t : d i s a b l e=unused−import
# p y l i n t : d i s a b l e=undef ined−v a r i a b l e
import time

import supybot . u t i l s as u t i l s
from supybot . commands import ∗
import supybot . p lug in s as p lug in s
import supybot . i r c u t i l s as i r c u t i l s
import supybot . c a l l b a c k s as c a l l b a c k s
t ry :

from supybot . i18n import P l u g i n I n t e r n a t i o n a l i z a t i o n
= P l u g i n I n t e r n a t i o n a l i z a t i o n ( ’ Lo icContro l ’ )

except ImportError :
# Placeho lder that a l l ows to run the p lug in on a bot
# without the i18n module

= lambda x : x

# The d e f a u l t opt ions to use f o r LOIC .
LOIC DEFAULT OPTS = {

’ t a r g e t i p ’ : ’ 1 2 7 . 0 . 0 . 1 ’ ,
’ t a r g e t u r l ’ : ’ l o c a l h o s t ’ ,
’ method ’ : ’ tcp ’ ,
’ port ’ : ’ 80 ’ ,
’ message ’ : ’ t e s t ’ ,
’ wait ’ : ’ fa l se ’ ,
’ random ’ : ’ true ’

}

# p y l i n t : d i s a b l e=unused−argument
c l a s s Lo icContro l ( c a l l b a c k s . Plugin ) :

””” Contro l s LOIC automat i ca l l y ”””
threaded = True
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de f i n i t ( s e l f , i r c ) :
s e l f . p a r e n t = super ( LoicControl , s e l f )
s e l f . p a r e n t . i n i t ( i r c )

# LOIC opt ions
s e l f . l o i c o p t s = {

’ t a r g e t i p ’ : ’ 1 2 7 . 0 . 0 . 1 ’ ,
’ t a r g e t u r l ’ : ’ l o c a l h o s t ’ ,
’ method ’ : ’ tcp ’ ,
’ port ’ : ’ 80 ’ ,
’ message ’ : ’ t e s t ’ ,
’ wait ’ : ’ fa l se ’ ,
’ random ’ : ’ true ’

}
# Are we us ing an IP or URL as our t a r g e t ?
s e l f . l o i c u s e i p = True

# Have LOIC ’ s s e t t i n g s changed s i n c e we l a s t s t a r t e d i t ?
s e l f . l o i c n e e d s u p d a t e = False

de f ip ( s e l f , i r c , msg , args , ip ) :
”””<ip>

Sets LOIC ’ s t a r g e t IP .
”””

s e l f . l o i c o p t s [ ’ t a r g e t i p ’ ] = s t r ( ip )
s e l f . l o i c n e e d s u p d a t e = True
s e l f . l o i c u s e i p = True
i r c . r ep ly ( ” Set t a r g e t IP to ” + s t r ( ip ) )

ip = wrap ( ip , [ ’ ip ’ ] )

de f u r l ( s e l f , i r c , msg , args , u r l ) :
”””<ur l>

Sets LOIC ’ s t a r g e t URL.
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”””

s e l f . l o i c o p t s [ ’ t a r g e t u r l ’ ] = s t r ( u r l )
s e l f . l o i c n e e d s u p d a t e = True
s e l f . l o i c u s e i p = False
i r c . r ep ly ( ” Set t a r g e t URL to ” + s t r ( u r l ) )

u r l = wrap ( ur l , [ ’ u r l ’ ] )

de f method ( s e l f , i r c , msg , args , method ) :
”””<method>

Sets LOIC ’ s method . Val id methods : tcp , udp , http , icmp .
”””

s e l f . l o i c o p t s [ ’ method ’ ] = method
s e l f . l o i c n e e d s u p d a t e = True
i r c . r ep ly ( ” Set method to ” + method )

method = wrap ( method , [ ( ’ l i t e r a l ’ , ( ’ tcp ’ , ’ udp ’ , ’ http ’ , ’ icmp ’ ) ) ] )

de f port ( s e l f , i r c , msg , args , port ) :
”””<port>

Sets LOIC ’ s port .
”””

s e l f . l o i c o p t s [ ’ port ’ ] = s t r ( port )
s e l f . l o i c n e e d s u p d a t e = True
i r c . r ep ly ( ” Set port to ” + s t r ( port ) )

port = wrap ( port , [ ’ i n t ’ ] )

de f message ( s e l f , i r c , msg , args , message ) :
”””<message>

Sets LOIC ’ s message . Must not conta in spaces .
”””
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s e l f . l o i c o p t s [ ’ message ’ ] = message
s e l f . l o i c n e e d s u p d a t e = True
i r c . r ep ly ( ” Set message to ” + message )

message = wrap ( message , [ ’ somethingWithoutSpaces ’ ] )

de f d e f a u l t s ( s e l f , i r c , msg , args ) :
”””<no args>

Resets LOIC ’ s s e t t i n g s to t h e i r d e f a u l t s .
”””
s e l f . l o i c o p t s = LOIC DEFAULT OPTS
s e l f . l o i c n e e d s u p d a t e = True
i r c . r ep ly ( ” Reset LOIC opt ions to t h e i r d e f a u l t s . ” )

d e f a u l t s = wrap ( de f au l t s , [ ] )

# p y l i n t : d i s a b l e=too−many−arguments
de f l o i c ( s e l f , i r c , msg , args , num times , ac t ive t ime , wai t t ime ) :

”””<num times> <ac t ive t ime> <wait t ime>

Runs LOIC p e r i o d i c a l l y <num times> t imes in t o t a l .
Each time , LOIC i s a c t i va t ed f o r <ac t ive t ime> seconds ,
and deac t iva ted f o r <wait t ime> seconds .
”””

i f s e l f . l o i c n e e d s u p d a t e :
# Build the c o n f i g message to send to LOIC
message = [ ’ ! l a z o r ’ ]
i f s e l f . l o i c u s e i p :

message . append ( ’ t a r g e t i p=’ + s e l f . l o i c o p t s [ ’ t a r g e t i p ’ ] )
else :

message . append ( ’ t a r g e t h o s t=’ + s e l f . l o i c o p t s [ ’ t a r g e t u r l ’ ] )
message . append ( ’ message=’ + s e l f . l o i c o p t s [ ’ message ’ ] )
message . append ( ’ port=’ + s e l f . l o i c o p t s [ ’ port ’ ] )
message . append ( ’ method=’ + s e l f . l o i c o p t s [ ’ method ’ ] )
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message . append ( ’ wait=’ + s e l f . l o i c o p t s [ ’ wait ’ ] )
message . append ( ’ random=’ + s e l f . l o i c o p t s [ ’ random ’ ] )
i r c . r ep ly ( ’ ’ . j o i n ( message ) , p r e f i xN i ck=False )
s e l f . l o i c n e e d s u p d a t e = False

for in range ( num times ) :
i r c . r ep ly ( ” ! l a z o r s t a r t ” , p r e f i xN i ck=False )

# Wait for a c t i v e t i m e rea l −time seconds
l a z o r s t a r t t i m e = time . time ( )
while time . time ( ) − l a z o r s t a r t t i m e < a c t i v e t i m e :

time . s l e e p ( 0 . 0 1 )

i r c . r ep ly ( ” ! l a z o r stop ” , p r e f i xN i ck=False )
# Wait for wait t ime rea l −time seconds
l a z o r s t o p t i m e = time . time ( )
while time . time ( ) − l a z o r s t o p t i m e < wait t ime :

time . s l e e p ( 0 . 0 1 )

l o i c = wrap ( l o i c , [ ’ i n t ’ , ’ i n t ’ , ’ i n t ’ ] )

Class = LoicContro l

# vim : s e t s h i f t w i d t h=4 s o f t t a b s t o p=4 expandtab textwidth =79:

powertest . py :
”””Monsoon LVPM Raspberry Pi Power Consumption Test Automator

Automatica l ly performs power consumption t e s t s on a Raspberry Pi , c o n t r o l l i n g
i t through SSH and measuring the r e s u l t s v ia a Monsoon Low Voltage Power
Monitor (LVPM) .
”””

import os
import sys
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import socke t
import l ogg ing

import usb . core
import Monsoon .LVPM as lvpm
import Monsoon . sampleEngine as se
import Monsoon . Operat ions as op
import paramiko

# The number o f t r i a l s to perform .
NUM TRIALS = 3

# The Raspberry Pi ’ s hostname and port
PI HOSTNAME = ” 1 2 9 . 9 7 . 1 1 . 2 4 6 ”
SSH PORT = 22

# Login c r e d e n t i a l s for the Raspberry Pi
PI USERNAME = ” pi ”
PI PASSWORD = ” c o r r e c t horse bat te ry s t a p l e ”

# The commands invoked to run programs on the Raspberry Pi .
ULTRASONIC COMMAND = ” timeout 300 . / u l t r a s o n i c >/dev/ n u l l ”
GENERIC = 1
CRYPTO = 2
MATH = 3
STRESSTEST COMMANDS = {

GENERIC: ” . / s t r e s s t e s t ” ,
CRYPTO: ” . / s t r e s s t e s t −−crypto ” ,
MATH: ” . / s t r e s s t e s t −−math”

}
STRESSTEST NAMES = {

GENERIC: ” g e n e r i c ” ,
CRYPTO: ” crypto ” ,
MATH: ”math”

}
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STRESSTEST MODES = [GENERIC, CRYPTO, MATH]
MINERCOMMAND = ” timeout 300 . / miner 0 .12 ”

de f s e t u p l o g g e r ( ) :
””” Sets up the l o g g e r . ”””
l ogg ing . bas i cCon f i g (

format=’ [%( asct ime )−8s ] %(name)−20 s [%( levelname)−7s ] %(message)−s ’ ,
datefmt=”%H:%M:%S” ,
l e v e l=logg ing . INFO)

de f a s s e r t n o t e x i s t s ( fo lder name ) :
”””Checks to make sure a f o l d e r doesn ’ t ex i s t , e x i t i n g the program i f i t
does .
”””
l o g g e r = logg ing . getLogger ( ’ a s s e r t n o t e x i s t s ’ )
i f os . path . i s d i r ( fo lder name ) :

l o g g e r . e r r o r ( ” Folder %s i s a l r eady pre sent ” , fo lder name )
l o g g e r . e r r o r ( ” Aborting to prevent ove rwr i t i ng data ” )
e x i t (2 )

de f setup lvpm ( ) :
””” Sets up the Monsoon Low Voltage Power Monitor .
Returns the SampleEngine ob j e c t .
”””
l o g g e r = logg ing . getLogger ( setup lvpm )
monitor = lvpm . Monsoon ( )
try :

monitor . setup usb ( )
except usb . core . USBError :

l o g g e r . e r r o r ( ” Error connect ing to LVPM through USB: ” )
l o g g e r . e r r o r ( ” ( Did you s e t up a udev r u l e g i v ing your user a c c e s s ” \

+ ” to the LVPM?) ” )
e x i t (1 )

# We aren ’ t us ing the main channel , but the LVPM docs say to enable i t
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# anyway .
monitor . setVout ( 4 . 0 )

# Create the sample eng ine
sample eng ine = se . SampleEngine ( monitor )

# Switch to the USB channel
sample eng ine . d i sab leChanne l ( se . channe l s . MainVoltage )
sample eng ine . d i sab leChanne l ( se . channe l s . MainCurrent )
sample eng ine . enableChannel ( se . channe l s . USBVoltage )
sample eng ine . enableChannel ( se . channe l s . USBCurrent )
monitor . setUSBPassthroughMode ( op . USB Passthrough .On)

# Conf igure t r i g g e r s to record data f o r 300 seconds
sample eng ine . s e t S t a r t T r i g g e r ( se . t r i g g e r s .GREATER THAN, 0)
sample eng ine . s e tStopTr igge r ( se . t r i g g e r s .GREATER THAN, 300)
sample eng ine . setTr iggerChanne l ( se . channe l s . timeStamp )

return sample eng ine

de f r u n t e s t ( f i l ename , sample engine , s s h c l i e n t , commands ) :
”””Runs a t e s t with the s p e c i f i e d commands through the s p e c i f i e d SSH c l i e n t .
Saves the r e s u l t s to the s p e c i f i e d f i l ename .
”””
l o g g e r = logg ing . getLogger ( ’ r u n t e s t ’ )
sample eng ine . ConsoleOutput ( Fa l se )
sample eng ine . enableCSVOutput ( f i l ename )

f o r command in commands :
l o g g e r . i n f o (” Executing command : %s ” , command)
s s h c l i e n t . exec command (command)

# This func t i on b locks u n t i l sampling i s f i n i s h e d
sample eng ine . s tartSampl ing ( se . t r i g g e r s .SAMPLECOUNT INFINITE)
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de f irc command ( i r c s o c k e t , command ) :
””” Sends an IRC command to the g iven socke t and l o g s the command . ” ” ”
l o g g e r = logg ing . getLogger ( ’ i r c ’ )
l o g g e r . i n f o (” Sending IRC command : %s ” , command)
command bytes = (command + ”\ r \n ” ) . encode (” utf −8”)
i r c s o c k e t . send ( command bytes )

de f l o i c ( ) :
””” S t a r t s LOIC through IRC , us ing Supybot to schedu le s t a r t / stop commands .
”””
i r c s o c k e t = socket . socke t ( socke t . AF INET , socke t .SOCK STREAM)
i r c s o c k e t . connect ( ( ’ l o c a l h o s t ’ , 6667))
irc command ( i r c s o c k e t , ”NICK powertest ”)
irc command ( i r c s o c k e t , ”USER powertest 0 ∗ : Power Test ing S c r i p t ”)
irc command ( i r c s o c k e t , ”JOIN #l o i c ”)
irc command ( i r c s o c k e t , ”PRIVMSG #l o i c : @ip %s ” % PI HOSTNAME)
irc command ( i r c s o c k e t , ”PRIVMSG #l o i c : @lo ic 15 10 10”)
i r c s o c k e t . c l o s e ( )

de f main ( ) :
”””Main func t i on . ” ” ”

# Setup the l o g g e r
s e t u p l o g g e r ( )
l o g g e r = logg ing . getLogger ( ’ main ’ )

# Check the number o f command l i n e args
i f l en ( sys . argv ) < 2 :

p r i n t (” Spec i f y the output f o l d e r as the f i r s t argument ”)
e x i t (2 )

# Determine the output f o l d e r name
output fo lder name = sys . argv [ 1 ]
i f not os . path . i s d i r ( output fo lder name ) :

l o g g e r . i n f o (” Folder %s does not e x i s t ; c r e a t i n g ” , output fo lder name )
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os . mkdir ( output fo lder name )

# Determine which t r i a l s to run
r u n s t r e s s t e s t s = ”−− s t r e s s t e s t ” in sys . argv or ”−− a l l ” in sys . argv
r u n m i n e r t e s t s = ”−−miner ” in sys . argv or ”−− a l l ” in sys . argv
r u n d o s t e s t s = ”−−dos ” in sys . argv or ”−− a l l ” in sys . argv

# I n i t i a l i z e the Monsoon LVPM
sample eng ine = setup lvpm ( )

# Wait f o r the Raspberry Pi to s t a r t
p r i n t (” Press ENTER when the Raspberry Pi has f i n i s h e d boot ing ”)

= input ( )

# Connect to the Raspberry Pi through SSH
c l i e n t = paramiko . SSHClient ( )

# Load the p r i v a t e key from the f i l e . s sh / i d r s a
c l i e n t . l oad sy s t em hos t key s ( )
c l i e n t . s e t m i s s i n g h o s t k e y p o l i c y ( paramiko . WarningPolicy ( ) )

l o g g e r . i n f o (” Connecting to Raspberry Pi . . . ” )
c l i e n t . connect (PI HOSTNAME, SSH PORT, PI USERNAME, PI PASSWORD)
l o g g e r . i n f o (” Connected ! ” )

i f r u n s t r e s s t e s t s :
s t r e s s t e s t f o l d e r = output fo lder name + ”/ s t r e s s t e s t s ”
a s s e r t n o t e x i s t s ( s t r e s s t e s t f o l d e r )
os . mkdir ( s t r e s s t e s t f o l d e r )

f o r t r i a l in range (1 , NUM TRIALS + 1 ) :
f o r s t r e s s t e s t m o d e in STRESSTEST MODES:

f i l ename = ’ ’ . j o i n ( [
s t r e s s t e s t f o l d e r , ”/” , STRESSTEST NAMES[ s t r e s s t e s t m o d e ] ,
s t r ( t r i a l ) , ” . csv ” ] )

r u n t e s t (
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f i l ename , sample engine , c l i e n t ,
[STRESSTEST COMMANDS[ s t r e s s t e s t m o d e ] ] )

i f r u n m i n e r t e s t s :
m i n e r t e s t f o l d e r = output fo lder name + ”/ mine r t e s t s ”
a s s e r t n o t e x i s t s ( m i n e r t e s t f o l d e r )
os . mkdir ( m i n e r t e s t f o l d e r )

f o r t r i a l in range (1 , NUM TRIALS + 1 ) :
# Run t e s t s with and without the miner running
f i l ename = ’ ’ . j o i n (

[ m i n e r t e s t f o l d e r , ”/ normal ” , s t r ( t r i a l ) , ” . csv ” ] )
r u n t e s t ( f i l ename , sample engine , c l i e n t , [ULTRASONIC COMMAND] )
f i l ename = ’ ’ . j o i n (

[ m i n e r t e s t f o l d e r , ”/ miner ” , s t r ( t r i a l ) , ” . csv ” ] )
r u n t e s t (

f i l ename , sample engine , c l i e n t ,
[ULTRASONIC COMMAND, MINERCOMMAND] )

i f r u n d o s t e s t s :
d o s t e s t f o l d e r = output fo lder name + ”/ d o s t e s t s ”
a s s e r t n o t e x i s t s ( d o s t e s t f o l d e r )
os . mkdir ( d o s t e s t f o l d e r )

f o r t r i a l in range (1 , NUM TRIALS + 1 ) :
f i l ename = ’ ’ . j o i n (

[ d o s t e s t f o l d e r , ”/ dos ” , s t r ( t r i a l ) , ” . csv ” ] )
# Star t LOIC be f o r e c a l l i n g r u n t e s t ( ) , because that func t i on b locks
# u n t i l the t e s t i s complete .
l o i c ( )
r u n t e s t ( f i l ename , sample engine , c l i e n t , [ULTRASONIC COMMAND] )

i f name == ” main ” :
main ( )

211


	List of Figures
	List of Tables
	Introduction
	Problem Overview
	Challenges
	Objectives
	Contributions

	Thesis Structure

	Background and Literature Review
	Internet of Things
	Reference Architecture
	Opportunity and Challenges

	Anomalous Behavior Detection
	Phase 1: Monitoring
	Phase 2: Analysis
	Phase 3: Decision
	Putting it together

	Literature Review of Existing Research
	Security threats
	Fault Detection
	Discussion

	Summary

	Models and Assumptions
	System Model
	Architecture Model
	Anomaly Models: Threats and Faults

	Detection Model
	Problem Description
	Solution strategy

	Summary

	Experimental Setup and Dataset collection 
	Experimental Setup
	IoT Based Experiments
	Distributed Denial of Service (DDOS) attack
	Cryptocurrency Mining Malware
	Faulty CPU
	Datasets

	Smartphone Based Experiments
	Emulated malware
	Real Malware
	Datasets

	Preliminary Research: Investigating a Device's Power Signals Information for Detection Purposes
	Exploratory data analysis
	Machine learning Analysis
	Sampling Frequency impact Analysis
	Summary

	Transforming the 1-D anomalous behaviour detection problem into an Image Classification Problem: A Supervised Approach
	Problem Description
	Solution Strategy
	Methodology
	Feature Extraction: From 1-D signals to 2-D images
	Signals Partitioning
	Constant Q Transformation (CQT)
	Histogram of Oriented Gradients (HOG)

	Model Generation - Building Deep Learning Model
	Classification of Power Signals
	Results
	Classification results analysis
	Results and analysis on the effectiveness of HOG features
	Detection coverage results
	Comparison results

	Case study II: A Strongly Non-Intrusive Detection Methodology
	Results

	Summary

	Solving the Limitation of Labeled Dataset Problem: An Unsupervised Approach
	Problem Description
	Solution Strategy
	Methodology
	Preliminaries
	Restricted Boltzmann Machine (RBM)
	Principal Component Analysis (PCA)
	Classification - One Class SVM

	Model Pipeline
	Procedure 1: Features Extraction and Model Generation
	Procedure 2: Detection Procedure

	Results
	Features’ visualization and results
	Classifier performance analysis
	Comparison results
	Detection coverage results

	Summary

	Conclusions and Future Work
	Conclusion
	Future Work

	References
	Appendices
	Appendix A
	IoT Based Experiments Code


