
Efficient Oblivious Database Joins

by

Simeon Krastnikov

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2020

c© Simeon Krastnikov 2020

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

This thesis contains content from the PVLDB 2020 paper “Efficient Oblivious Database
Joins” [28]. The author of this thesis was responsible for all parts of the paper, while being
supervised by his co-authors Professor Florian Kerschbaum and Professor Douglas Stebila.

iii

Abstract

A major algorithmic challenge in designing applications intended for secure remote exe-
cution is ensuring that their execution is oblivious to their inputs, in the sense that their
memory access patterns do not leak sensitive information to the server. This problem is
particularly relevant to cloud databases that wish to allow queries over the client’s en-
crypted data. One of the major obstacles to such a goal is the join operator, which is
non-trivial to implement obliviously without resorting to generic but inefficient solutions
like Oblivious RAM (ORAM).

We present an oblivious algorithm for equi-joins which (up to a logarithmic factor)
matches the optimal O(n log n) complexity of the standard non-secure sort-merge join (on
inputs producing O(n) outputs). We do not use use expensive primitives like ORAM
or rely on unrealistic hardware or security assumptions. Our approach, which is based
on sorting networks and novel provably-oblivious constructions, is conceptually simple,
easily verifiable, and very efficient in practice. Its data-independent algorithmic structure
makes it secure in various different settings for remote computation, even in those that
are known to be vulnerable to certain side-channel attacks (such as Intel SGX) or with
strict requirements for low circuit complexity (like secure multiparty computation). We
confirm that our approach is easily realizable by means of a compact implementation which
matches our expectations for performance and is shown, both formally and empirically, to
possess the desired security characteristics.

iv

Acknowledgements

Above all, I would like thank my supervisors Professor Florian Kerschbaum and Professor
Douglas Stebila for their invaluable guidance, inspiration, and support. I am also grateful
to my readers Professor Xi He and Professor Semih Salihoglu for their insightful questions
and suggestions. Lastly, I would like to acknowledge the financial support provided by
NSERC and the Royal Bank of Canada.

v

Table of Contents

List of Figures viii

List of Tables ix

1 Introduction 1
1.1 Contributions . 3
1.2 Outline of Thesis . 4

2 Oblivious Programs 5
2.1 Computing on Encrypted Data . 5
2.2 Adversarial Model . 7
2.3 Degrees of Obliviousness . 7
2.4 Oblivious RAM (ORAM) . 10
2.5 From Oblivious Programs to Circuits . 10
2.6 Oblivious Sorting . 12

3 Problem Overview 13
3.1 Problem Definition . 13
3.2 Non-Oblivious Sort-Merge Join . 13
3.3 Prior Work on Oblivious Joins . 14
3.4 Security Characteristics . 17
3.5 Overview of Approach . 17

4 Algorithm Description 20
4.1 Obtaining Group Dimensions . 20
4.2 Oblivious Distribution . 23
4.3 Oblivious Expansion . 27
4.4 Table Alignment . 30

vi

5 Evaluation 32
5.1 Security Analysis . 32
5.2 Performance Analysis . 35

6 Conclusions and Future Work 38
6.1 Compound Join Queries . 38
6.2 Non Equi-Joins . 39
6.3 Other Oblivious Algorithms . 39
6.4 Obliviousness-Preserving Compilers . 40

References 42

APPENDICES 48

A Additional Pseudocode 49
A.1 Group Dimension Computation . 49

vii

List of Figures

3.1 Memory access patterns of the sort-merge algorithm on two different inputs. 15
3.2 Main idea of the algorithm. 19

4.1 Example group dimension calculation. 21
4.2 Example oblivious distribution. 25
4.3 Example oblivious expansion. 28
4.4 Example table alignment. 31

5.1 Summary of type system used to model level II obliviousness and verify
implementation. 34

5.2 Visualization of our implementation’s input-independent pattern of memory
access. 35

5.3 Performance results for sequential prototype implementation. 37

viii

List of Tables

1.1 Comparison of approaches for oblivious database joins. 3

2.1 Properties of three levels of obliviousness. 8

5.1 Comparison count and runtime share for each component of the algorithm. 37

ix

Chapter 1

Introduction

With an increasing reliance on cloud-based services to store large amounts of user data
securely, there is also a growing demand for such services to provide remote computation
in a privacy-preserving manner. This is a vital requirement for cloud databases that store
sensitive records and yet wish to support queries on such data.

Various different mechanisms exist that achieve this purpose, for instance, dedicated
hardware in the form of secure cryptographic coprocessors or hardware enclaves like Intel
SGX [11], which come in the form of a dedicated set of processor instructions that allow
computation on encrypted data. Although such approaches provide good cryptographic
guarantees in that they ensure the contents of the user’s data remain encrypted throughout
the execution of the remote program, on their own they provide no guarantees to address
a major source of information leakage: the memory access patterns of the execution. If
the program reads and writes to specific addresses of the untrusted server’s memory in a
way that depends on the input user data it receives, these access patterns can reveal, via
various side-channels, information to the server about the user’s data.

Consider, for example, the standard O(n log n) sort-merge algorithm for database joins.
The two input tables are first sorted by their join attribute values and then scanned for
matching entries by keeping track of a pointer at each table. At each step either one of
the pointers is advanced (depending on the result of the comparison between the two join
attribute values), or an entry is appended to the output. If the tables are stored in regular
memory, an adversary observing memory patterns will obtain input-dependent information
at each step. Namely, at each step it will learn the locations of the two entries read from the
input table, and depending on whether an entry is written to output, it will learn whether
the entries match. This information can reveal critical information about the user’s input.

Protecting a program against such leaks amounts to making it oblivious : that is, en-
suring that its decisions about which memory locations to access do not depend on the

1

actual contents of its input data. For many programs this is difficult to accomplish with-
out introducing substantial computational overhead [47]. The generic approach is to use
an Oblivious RAM (ORAM), which provides an interface through which a program can
access memory non-obliviously, while at the same time providing guarantees that the ac-
tual physical accesses of such programs turn out to be oblivious. Though the design of
ORAM schemes has been the central focus of oblivious algorithm design, such schemes
have a very high computational overhead, not only due to their asymptotic overhead (due
to a theoretical lower bound of O(log n) for every access to an array of n entries) but also
due to the fact that they can be inefficient in practice [26, 27, 38, 47] and in some cases –
insecure [1].

Another approach to guaranteeing obliviousness is to assume a limited but non-constant
amount of memory that can be accessed non-obliviously. While such an assumption may
make sense in certain settings (for example, cryptographic coprocessors may provide in-
ternal memory protected from the untrusted system), it is unsafe to make in the more
common hardware enclave setting due to a wide range of attacks that can infer access
patterns to enclave memory itself [9, 25,29,40,42,44].

These considerations motivate the need for the design of problem-specific oblivious
algorithms that closely approach the efficiency of their non-secure counterparts without
the use of generic primitives or reliance on hardware assumptions. Such algorithms are
very similar to circuits in that their control flow is independent of their inputs. This not
only provides security against many side-channel attacks (beyond those involving memory
accesses), but also makes them very suitable for use in secure multiparty computation
where programs with low circuit complexity achieve the best performance [43, 48]. One
of the best-known oblivious algorithms are sorting networks such as those proposed by
Batcher [6], which match (up to at most a logarithmic factor) the standard O(n log n)
complexity of sorting and are often a critical component in other oblivious algorithms such
as ours.

Many database operators such as selection and aggregation can be implemented obliv-
iously as trivial linear passes through the table. On the other hand, database joins, being
among the most algorithmically complex operators, have proven to be very difficult to
make oblivious in the general case. This is due to the fact that one cannot allow any such
oblivious algorithm to base its memory accesses on the structure of the input tables (with
respect to how many entries from one table match a given entry in the other table). As
such, joins have been the prime focus of work on oblivious database operators: prior work
is summarized in Table 1.1 and discussed in detail in Section 3.3.

2

Algorithm/System Time complexity Local Memory Limitations

Standard sort-merge join O(m′ logm′) O(1) not oblivious

Agrawal et al. [2] (Alg. 3) O(n1n2) O(1) insecure (see § 2.3.1 of [30])

Li and Chen [30] (Alg. A2) O(mn1n2/t) O(t) –

Opaque [49] and ObliDB [14] O(n log2(n/t)) O(t) primary-foreign key joins only

Oblivious Query Processing [4] O(m′ log2 m′) O(logm′) details missing; perf. concerns

Ours O(m′ log2 m′) O(1) –

Table 1.1: Comparison of approaches for oblivious database joins. n1 and n2 are
the input table sizes, n = n1 + n2, m is the output size, m′ = m+ n1 + n2, t is the amount
of memory assumed to be oblivious. The time complexities are in terms of the number
of database entries and assume use of an O(n log2 n) sorting network for oblivious sorting
(where applicable).

1.1 Contributions

We fully describe an oblivious algorithm for binary database equi-joins that achieves
O(n log2 n + m log2m) running time, where n is the input length (the size of both ta-
bles) and m is the output length, thus matching the running time of the standard non-
oblivious sort-merge join up to a logarithmic factor. It can also achieve a running time of
O(n log n + m logm) but only using a sorting network that is too slow in practice. Our
algorithm does not use ORAM or any other computationally-expensive primitives and it
does not make any hardware assumptions other than the requirement of a constant-size
working set of memory (on the order of the size of one database entry), for example to
compare two entries. In other words, any model of computation that can support a sorting
network on encrypted data can also support our algorithm; this includes secure coproces-
sors or hardware enclaves like Intel SGX, in which case obliviousness provides resistance
against various side-channel attacks. In addition, because our program is analogous to a
circuit, it is very suitable for use in settings like secure multiparty computation and fully
homomorphic encryption.

Our approach is conceptually very simple, being based on a few repeated runs of a
sorting network and other basic primitives. As such, it is both efficient, amenable to a
high degree of parallelization, and easy to verify for obliviousness. We have a working
prototype implementation consisting of just around 600 lines of C++ code, as well as a
version that makes use of SGX. We have used a dedicated type system to formally verify
the obliviousness of the implementation and have conducted experiments that empirically
examine its memory accesses and runtime.

3

1.2 Outline of Thesis

We begin by providing, in Chapter 2, a background on the different modes of computation
that our algorithm is compatible with and discuss the goals, challenges, and methodologies
related to oblivious algorithm design. Chapter 3 describes the target problem, prior related
work, and the intuition behind our approach. The full algorithm is then described in detail
in Chapter 4, followed by the specifics of our implementation in Chapter 5, where we
also analyze its security and performance. Finally, Chapter 6 summarizes our results and
discusses directions for future work.

4

Chapter 2

Oblivious Programs

Intuitively, a program is data-oblivious (or simply oblivious) if its control flow, in terms of
the memory accesses it makes, is independent of its input given the input size. That is,
for all inputs of the same length, the sequence of memory accesses made by an oblivious
program is always identical (or identically distributed if the program is probabilistic). This
is indeed well-defined for simple computational models like random-access machines and
Turing machines; for instance, a Turing machine is said to be oblivious if the motions of
its head are independent of its input. However, we need to carefully account for real-world
hardware where there can be different types of memory as well as various side-channels
unaccounted for in simpler models.

In this chapter, we talk about the various mechanisms used to perform computation
on encrypted data, we define our adversarial model, and introduce different degrees of
obliviousness that one can obtain under such model. We also introduce various tools and
methodologies related to obliviousness.

2.1 Computing on Encrypted Data

Users who have securely stored their data on a remote server often need to perform com-
putation on their encrypted data, for example, to execute database queries. We discuss
and contrast several different approaches that strive to achieve this purpose.

Outsourced External Memory

In this setting (discussed in [24]), there is no support for server-side computation on the
client’s private data. The client treats the server as external memory: if they wish to com-

5

pute on their data, they must do so locally. This scenario is clearly impractical for intensive
computations due to the significant differences between RAM and network latency.

Secure Cryptographic Coprocessors

A cryptographic coprocessor (e.g., [5]) is a tamper-proof device that can perform compu-
tation within its own trusted region isolated from its external host. Through the use of
remote attestation, the client can send a trusted code base (TCB) to the coprocessor and
have it execute within a secure environment shielded from the semi-trusted server (accord-
ing to the Trusted Platform Module specification [15]). The drawback to this approach is
that such hardware provides very limited memory and computational power, and imposes
hardware requirements on the server.

Trusted Execution Environments (TEE)

Hardware enclaves such as Intel SGX [11], provide similar guarantees to coprocessors in
that the client can make use of remote attestation to run a TCB within a trusted execution
environment (TEE) that provides guarantees for authenticity and some protection against
an untrusted OS. Such designs are becoming increasingly prevalent in new processors,
taking the form of a specialized set of instructions for setup and access to the TEE. The
enclave provides a limited amount of memory called the Enclave Page Cache (EPC), which
resides on the system’s main memory but cannot be accessed by other processes (including
the kernel). In addition, the contents of the enclave are encrypted, and the processor
can seamlessly read, write and perform logical and arithmetic operations on this data.
Although these properties make it seem that hardware enclaves provide a secure container
completely isolated from the untrusted OS, numerous papers [9,25,29,40,42,44] have shown
that enclaves like Intel SGX are susceptible to numerous side-channel attacks, e.g., cache
attacks that infer data-dependent information based on memory access patterns to enclave
memory.

Secure Multiparty Computation (SMC)

In the general setting, secure multiparty computation [19] allows several parties to jointly
compute functionalities on their secret inputs without revealing anything more about their
inputs than what can be inferred from the output. The two standard approaches are Yao’s
garbled circuit protocol [45], and the Goldreich-Micali-Wigderson protocol [20], based on
secret sharing. Both approaches require the desired functionality to be expressed as a
boolean circuit, and the output is computed gate by gate. Practical implementations of
SMC include the SCALE-MAMBA system [3], as well as the ObliVM framework [32], which

6

allows programs to be written in a (restricted) high-level syntax that can then be compiled
to a circuit. Outsourcing computation using SMC is usually done using a distributed
protocol involving a cluster of several servers [7].

Fully Homomorphic Encryption (FHE)

Cryptosystems such as that of Gentry et al. [16] allow arbitrary computation on encrypted
data. As in SMC, such schemes require the target computation to be represented as a
boolean circuit. Although FHE provides solid theoretical guarantees and several imple-
mentations already exist, it is currently computationally too expensive for practical use.

2.2 Adversarial Model

We will use an abstract random access machine model of computation where we distinguish
between two types of memory. During an execution of a program, the adversary has
complete view and control of the public memory (for example, RAM) used throughout its
execution. However, the program may use a small amount of local memory (or protected
memory) that is completely hidden from the adversary (for example, processor registers).
The program may use this memory to perform computations on small chunks of data; the
adversary learns nothing about such computations except the time spent performing them
(we assume that all processor instructions involving local memory that are of the same
type take an equal amount of time).

We assume that the adversary cannot infer anything about the individual contents of
individual cells of public memory, as well as whether the contents of a cell match a previous
value. This can be achieved through the use of a probabilistic encryption scheme.

2.3 Degrees of Obliviousness

We distinguish between three different levels of obliviousness that a given program may
satisfy (summarized in Table 2.1), from weakest to strongest, each subsuming the lower
levels. The distinctions will be based on how much local memory the program assumes
and whether the program’s use of local memory leaks information through side-channels.
We will restrict our attention to deterministic programs; the concepts easily generalize to
the probabilistic case.

7

Property/Setting I II III

Constant local memory × � �
Circuit-like × × �

Ext. Memory t t �
Secure Coprocessor t t �

TEE (enclave) t, pd, pc, c, b t, pc, c, b �
Secure Computation n/a n/a �

FHE n/a n/a �

Table 2.1: Properties of three levels of obliviousness. Top portion of the table
shows whether the given property is satisfied at each of the levels. Bottom portion shows
vulnerability of programs satisfying these levels to timing (t), page access attacks on data
(pd), page access attacks on code (pc), cache-timing (c), or branching (b) attacks when
used in different settings.

Level I

A program is oblivious in this sense if its accesses to public memory are oblivious but it
requires a non-constant amount of local memory used for non-oblivious computation. This
memory may be accessed whenever required and for any duration of time. Such programs
are suitable for use in the outsourced external memory model since the client can use as
much local memory as there is memory on his machine. They may also be suitable for use
in a secure coprocessor model setting since coprocessors have an internal memory separated
from the rest of the system. However, in both of these scenarios, timing attacks may be an
issue: e.g., if the local memory is used for variable lengths of time between pairs of public
accesses.

Examples of algorithms that are oblivious in this sense are those proposed by Goodrich
[13,22,24], which are well-suited for the outsourced external memory model.

Level II

At this level we not only require, as before, accesses to public memory to be oblivious but
also that the amount of local memory used by the program be bounded by a constant. In
practice, the exact size of this constant depends on the amount of available CPU register
and cache memory, which can be used for example, to compute the condition for a branch
or to perform an arithmetic operation on two words read (obliviously) from RAM. Any
such accesses must be on inputs that fit in one cache line so as to not cause non-oblivious

8

RAM accesses due to cache evictions.
Making the distinction between this level and the previous is motivated by the fact

that hardware enclaves like Intel SGX are vulnerable to side-channel attacks based on
page-level accesses patterns to enclave memory itself [40, 44], which have been shown to
be extremely powerful, often succeeding in extracting sensitive data and even whole files.
Therefore one cannot assume that the Enclave Page Cache provides oblivious memory. In
works like Oblix [33] level II programs are called doubly-oblivious since, in the hardware
enclave context, their accesses to both regular and enclave memory are oblivious.

Although it may seem that a level II program is safe against the above attacks, this is
not quite the case, though it certainly fares better in this respect than a level I program.
The data of the program will be accessed obliviously, but its actual machine code, which is
stored in memory, will be accessed based on the control flow of the program. The program
may branch in a data-dependent way and though the memory accesses to public data in
both branches are required to be the same, each branch will access a different fragment of
the program’s machine code, thus leaking information about the data that was branched
on.

Level III

This is a strong notion of obliviousness where we require that the control flow of the
program, down to the level of the exact processor instructions it executes, be completely
independent of its input, except possibly its length. In other words, the program counter
has to always go through the same sequence of values for all inputs of the same length. We
can think of such a program as a family of circuits, one for each input size; as such, it is
very well-suited for secure multiparty computation (and fully homomorphic encryption).

This definition is also motivated by the fact that additional measures are required to
provide protection against attacks based on accesses to machine code as well as the fact that
hardware enclaves have also been shown to be vulnerable to a variety of other side-channel
attacks such as cache-timing [9, 25, 42], branching [29], or other types of timing attacks.
Such attacks can infer data based on the control flow of a program at the instruction level:
this includes the way it accesses the registers and cache of the processor, as well as the exact
number of instructions it performs. Making sure that a given program compiles to a level
III binary is a challenging problem that requires thorough consideration of the compiler’s
enabled optimizations as well as the target architecture. Therefore this level pertains more
to a specific implementation of an algorithm as opposed to its high-level description.

9

Revealing Output Length

By producing an output of length m, a program reveals data-dependent information about
the input. We can always eliminate this problem by padding the output to its maximum
possible size; however, this can result in suboptimal running time. For instance, the join
operator can produce an output of up to O(n2) on an input of size n, which means that any
join algorithm that pads its output must have at least quadratic runtime. For this reason,
we will only consider programs that do not pad their output and thus leak the output size
m, as well as their runtime.

2.4 Oblivious RAM (ORAM)

The most general approach to making arbitrary programs oblivious (in any of the above
senses) is to use an Oblivious RAM (ORAM), a primitive first introduced by Goldreich
and Ostrovsky [18, 21]. An ORAM simulates a regular RAM in such a way that its ap-
parent physical memory accesses are independent of those being simulated, thus providing
a general approach to compiling general programs to oblivious ones. In other words, by
using an ORAM as an interface through which we store and access sensitive data, we can
eliminate access pattern leaks, though in doing so we incur at least a logarithmic overhead
per memory access according to the Goldreich-Ostrovsky lower bound [21]. Even if such
overhead is acceptable in terms of the overall asymptotic complexity, ORAM constructions
tend to have prohibitively large constant overhead, which make them impractical to use
on reasonably-sized inputs.

One of the well-known ORAM schemes is Path ORAM [39], which produces programs
that satisfy level I obliviousness (Oblix [33] gives a modification that is oblivious at level
II). Various schemes have been introduced that make ORAM more suitable for SMC by
optimizing its resulting circuit complexity (i.e., how close it is to producing a level III
program) [12,17,43,48]. Despite the abundance of ORAM schemes, their high performance
cost [26, 27, 38, 47] (due to their polylogarithmic complexity overhead, their large hidden
constants, and issues with parallelizability), calls for a need for problem-specific oblivious
algorithm design.

2.5 From Oblivious Programs to Circuits

Given a program that satisfies level II obliviousness, approaches exist to transform it into
a a circuit-like level III program while introducing only a constant overhead [31,32,34,37].

10

There are three additional constraints that the control flow of the program must satisfy
for this to be the case:

1. Any loop condition must depend on either a constant or the input size. This
corresponds to the fact that all loops must be unrolled if one wishes to obtain a literal
boolean circuit. For instance if secret is a variable that depends on the contents of the
input data, we cannot allow behaviour like:

i← 0
while i < secret do

i← i+ 1

Though this code will make no memory accesses if the i counter is stored in a register,
it is very hard to automatically protect such code against timing attacks in general (though
in this case the fix is obvious: replace the while loop with i← secret).

2. The branching depth of the program — the maximum number of conditional
branches encountered by any given run — is constant. This requirement allows us to
eliminate conditional statements without affecting runtime complexity. A statement like

if secret then
x1 ← y1
x3 ← y3

else
x1 ← z1
x2 ← z2

can be replaced by the following, where secret is treated as a numerical value from the set
{0, 1}:

x1 ← y1 · secret+ z1 · (¬secret)
x2 ← z2 · 0 + z2 · (¬secret)
x3 ← y3 · secret+ y3 · 0

This increases the total computation by a factor of 2. On the other hand, if we have
a sequence of d nested conditional statements, the computational overhead will be on the
order of 2d, which is why we require d to be constant.

3. If the program reveals the output length m, it does so only after allocating m0 ∈
Ω(m) memory. This is so the level II program can be split into two circuit-like level III
programs that are to be run in sequence: one parameterized by n that computes the value
of m0, and a second parameterized by both n and m0.

11

2.6 Oblivious Sorting

Sorting networks such as bitonic sorters [6] provide an in-place input-independent way
to sort n elements in O(n log2 n) time, taking the form of an O(log2 n)-depth circuit.
Although O(n log n) constructions also exist (such as Goodrich’s Zig-zag sort [23]), they
are either very inefficient in practice (due to large constant overheads) or non-parallelizable.
Each non-recursive step of a bitonic sorter reads two elements at fixed input-independent
locations, runs a comparison procedure between the two elements and swaps the entries
depending on the result. To ensure obliviousness, even if the elements are not to be
swapped, the same (re-encrypted) entries are written to their original locations. When a
probabilistic encryption scheme is used, this leaks no information about whether the two
elements were swapped.

We parameterize our calls to a bitonic sorter with a lexicographic ordering on chosen
element attributes. For example, if A is a list of elements where each element has attributes
x, y, z, . . ., then

Bitonic-Sort〈x ↑, y ↑, z ↓〉(A)

will sort the elements in A by increasing x attribute, followed by increasing y attribute,
and then by decreasing z attribute.

We can use sorting networks as filters. For instance, we will use ∅ to designate a void
(null) entry that is marked to be discarded (or often a “dummy” entry) so that if we know
that A of size n has k non-null elements, we can run

Bitonic-Sort〈6= ∅ ↑〉(A)

and collect the first k non-null elements in the output. Alternatively, Goodrich [22] has
proposed an efficient O(n log n) oblivious algorithm specifically for this problem (there
referred to as compaction).

12

Chapter 3

Problem Overview

In this chapter, we describe the general problem, the security goals our solution will satisfy,
and prior work in similar directions. We then briefly outline the general idea behind our
approach.

3.1 Problem Definition

We are given as input two unsorted tables T1 and T2 and are interested in computing the
binary equi-join of both tables. For simplicity, we can assume that T1 and T2 each consist
of respectively n1 and n2 (possibly-repeated) pairs (j, d) (we call j a join (attribute) value
and d a data (attribute) value). The output we would like to compute is the multiset

T1 ./ T2 = {(d1, d2) | (j, d1) ∈ T1, (j, d2) ∈ T2}.

The tables T1, T2, and T1 ./ T2 are not assumed to be ordered.

3.2 Non-Oblivious Sort-Merge Join

The sort-merge join algorithm (Algorithm 3.1) is, along with hash join algorithm, one of
the frequently used implementations of the join operator. After the two input tables are
sorted by their join attribute values, the matching output entries can be obtained in a
linear merge phase. In this phase, the progress made in each of the two tables is tracked
by two indices (i1 and i2 in the pseudocode), which in turn determine the next two entries
to be fetched from memory and compared against each other. Thus a certain structure of
the tables is revealed through the sequence of entries accessed through time (see Figure

13

Algorithm 3.1 Sort-merge join

1: function Sort-merge(T1, T2)
2: sort T1 and T2 on j
3: initialize output table TO
4: i1 ← 1
5: i2 ← 1
6: i′2 ← 1
7: while i1 ≤ |T1| ∧ i2 ≤ |T2| do
8: if T1[i1].j = T2[i2].j then
9: add (T1[i1].d, T2[i2].d) to TO
10: i2 ← i2 + 1
11: else if T1[i1].j < T2[i2].j then
12: i1 ← i1 + 1
13: i2 ← i′2
14: else
15: i2 ← i2 + 1
16: i′2 ← i2

17: return TO

3.1). If, for example, there are many entries in the second table matching an entry from
the first, an adversary observing memory will see a long sequence of consecutive accesses
to the second table, as the index to the first table stays fixed. Even though in practice, the
adversary would be able to access such information only via side channels, such leakage
can completely undermine any encryption of the input data, especially if the adversary has
prior knowledge about the data stored in the tables.

3.3 Prior Work on Oblivious Joins

The design of oblivious join operators has been studied both in isolation and also as part of
larger privacy-oriented database systems, where it is emphasized as the most challenging
component; we compare several different approaches in Table 1.1. Agrawal et al. [2] propose
several join algorithms for use in a setting similar to ours; however, their roughly O(n1n2)
complexity is close to that of a trivial O(n1n2 log2(n1n1)) oblivious algorithm based on a
nested loop join. Additionally, their security definition allows leakage of a certain prop-
erty of the inputs (as pointed out in [30], where the issue was fixed without significant
improvements in runtime). SMCQL [7] is capable of processing SQL queries through se-

14

T2

1

2

3

4

5

10

20

30

40

50

j d

10

20

30

40

50

10

20

30

40

50

d1 d2

T1

1

2

3

4

5

10

20

30

40

50

j d

TO

T2

1

1

1

3

5

10

11

12

30

50

j d

10

10

10

30

31

10

11

12

30

30

d1 d2

T1

1

3

3

4

4

10

30

31

40

41

j d

TO

T1[0]

T2[0]

...

...

iteration

T1[0]

T2[0]

...

...

iteration

./

./

Figure 3.1: Memory access patterns of a sort-merge join’s merge phase on two
different inputs. Two examples are shown, each consisting of a pair of input tables with
five entries each that produce an output with five entries. The graphs on the right show
the sequence of accesses to the input tables at every iteration where an entry is added
to the output. The two sequences completely reveal the join relationship between the
corresponding input tables.

15

cure computation primitives but its secure join also runs in O(n1n2) time. Conclave [41]
implements join operators for SMC; however, its approach involves revealing entries to a
“selectively-trusted party”.

Opaque, which is geared towards private database queries in a distributed setting, im-
plements an oblivious sort-merge algorithm [49] (as well as its variant in ObliDB [14]) but
handles only the specific case of primary-foreign key joins (in which case m = O(n) and
their O(n log2(n/t)) complexity matches ours for constant t). Though Opaque makes use
of the O(t) available enclave memory to optimize its running time, such optimizations rely
on “enclave designs that protect against access patterns to the EPC” such as “Sanctum,
GhostRider, and T-SGX” to obtain a pool of oblivious memory (meaning that the opti-
mized versions are only level I oblivious). Such constructions could potentially introduce
a computational overhead that outweigh any optimizations (GhostRider for instance relies
on ORAM) or introduce additional hardware requirements and security assumptions.

The closest to our work is that of Arasu and Kaushik [4], which mirrors the overall
structure of our algorithm but ultimately reduces to a different (arguably more challenging)
problem than the one we deal with (“obliviously reordering [sequences] to make [them]
barely prefix heavy”). The details for the proposed solution to this problem are incomplete
and the authors have not provided a proof-of-concept implementation that shows empirical
results. We believe that even if a solution to the problem in question exists, the overall
algorithm will be less efficient than ours due to the high constant overheads from repeated
sorts. Lastly, their approach also assumes, by default, a local memory of O(log(m + n))
entries (thus being level I oblivious) since it is intended for use in a secure coprocessor
setting. For use in more practical settings like Intel SGX, such memory would either have
to be obtained in the same manner as was argued above for the case of Opaque or through
an O(log(m+ n)) time complexity overhead for each local memory access (that is, if each
access achieves obliviousness by reading all entries in local memory).

Encrypted databases like CryptDB [36] employ deterministic and partial homomor-
phic encryption to process databases in a hardware-independent way but such databases
are non-oblivious. Private Set Intersection (PSI) and Private Record Linkage (PRL) are
somewhat similar problems to the one considered in this work in that they involve finding
matching entries among different databases. Although some protocols for these problems
rely solely on SMC techniques (by constructing circuits as in our work), more efficient pro-
tocols make use of cryptographic primitives like oblivious transfer that are not applicable
to database joins (see the survey on PSI in [35]).

16

3.4 Security Characteristics

Intuitively, our algorithm will be oblivious with regards to the way it accesses any memory
with non-constant size. More precisely, we will provide security in the form of level II
obliviousness, as described in Section 2.3. Hence, our condition will be that for all inputs
of length n that produce outputs of equal length m, the sequence of memory accesses our
algorithm makes on each the inputs is always the same (or identically distributed if we
make use of randomness).

We will use a constant amount of local memory on the order of the size of a single
database entry, which we will use to process entries and keep counters. That is, our accesses
to public memory (where the the input, output and intermediate tables are stored) will be
of the form

e
?← T [i]

. . .
(sequence of operations on e)
. . .
T [i]

?← e

The notation e
?← T [i] explicitly signifies that the i-th entry of the table T , which is

stored in public memory, is read into the variable e stored in local memory. Our code will
be such that the memory trace consisting of all

?← operations (distinguished by whether
they read or write to public memory), are independent of the input contents (other than
their impact on the output size).

As argued in Section 2.5, a level II program can in theory be transformed to a level III
program with constant computational overhead as long as no loop conditions depend on
the input and the branching depth is constant. Our approach will satisfy these properties
and thus yield a program that is secure against many of the side-channel attacks listed in
Section 2.3.

3.5 Overview of Approach

If j1, . . . , jt are the unique join attribute values appearing at least once in each table, then
T1 ./ T2 can be written as the (multiset) union of t groups :

T1 ./ T2 =
⋃t

i=1{(d1, d2) | (ji, d1) ∈ T1, (ji, d2) ∈ T2}.

Each group corresponds to a Cartesian product on sets of size

α1(ji) = |{(ji,d1)∈ T1}|,

17

and
α2(ji) = |{(ji,d2)∈ T2}|,

respectively, which we call the dimensions of the group.
Each entry (ji, d1) ∈ T1, needs to be matched with α2(ji) elements in T2; similarly each

element (ji, d2) ∈ T2 needs to be matched with α1(ji) elements in T1. To this end, and in
similar vein to the work of Arasu and Kaushik [4], we form two expanded tables S1 and
S2 (this terminology is borrowed from their paper), each of size m = |T1 ./ T2|, such that
there are α2(ji) copies in S1 of each element (ji, d1) ∈ T1 and α1(ji) copies in S2 of each
element (ji, d2) ∈ T2. Once the expanded tables are obtained, it only remains to reorder S2

to align with S1 so that each copy of (ji, d2) ∈ T2 appears at indices in S2 that align with
each of its α1(ji) matching elements from T1. At this point, obtaining the final output is
simply a matter of iterating through both tables simultaneously and collecting the d values
from each pair of rows. See Figure 3.2 for an illustration of the overall idea.

The approach we use to obtain the expanded tables is very simple, relying on an
oblivious primitive that sends elements to specified distinct indices in a destination array.
Namely, to expand a table T to S we will first obliviously distribute each entry of T to
the index in S where it ought to first occur; this is achieved by sorting the entries in T by
their destination index and then performing O(m logm) data-independent swaps so that
the entries “trickle down” to their assigned indices. To complete the expansion, we then
perform a single linear pass through the resulting array to duplicate each non-null entry
to the empty slots (containing null entries) that succeed it.

18

(2)

Obliv.

expand

(3)

Obliv.

expand

(4)

Align

table

(5) Obtain output

by means of a sim-

ple row-by-row join

(1) Com-

pute group

dimensions

in T1 and T2

x

x

y

y

y

a1

a2

b1

b2

b3

T1

x

x

x

y

y

u1

u2

u3

v1

v2

T2

j d

y b4

x

x

x

x

x

a1

a1

a1

a2

a2

S1

x

y

y

a2

b1

b1

...

z w1

j dj d

S2

x

x

x

x

x

u1

u2

u3

u1

u2

x

y

y

u3

v1

v2

...

j d j d

x

x

x

x

x

u1

u1

u2

u2

u3

x

y

u3

v1

...

y v1

S2

Figure 3.2: Main idea of the algorithm: The input tables T1 and T2 are expanded to
produce S1 and S2, and S2 is aligned to S1. The output table is then readily obtained by
“zipping” together the d values from S1 and S2.

19

Chapter 4

Algorithm Description

The complete algorithm is outlined in Algorithm 4.1, and its subprocedures are described
in the following sections. We use the notation T (a1, . . . , al) when we want to explicitly list
the attributes a1, . . . , al of table T , for clarity.

We first call Augment-Tables to augment each of the input tables with attributes α1

and α2 corresponding to group dimensions: this process is described in Section 4.1. Then,
as detailed in Section 4.3, we obliviously expand T1 and T2 into two tables S1 and S2 of size
m each: namely, S1 will consist of α2 (contiguous) copies of each entry (j, d1, α1, α2) ∈ T 1,
and likewise S2 will consist of α1 copies of each entry (j, d1, α1, α2) ∈ T 2. To achieve this,
we rely on the oblivious primitive, Oblivious-Distribute, which is the focus of Section
4.2. After expanding both tables, we call Align-Table to align S2 with S1 (with the help
of the α1 and α2 values stored in S2): this amounts to properly ordering S2, as described
in Section 4.4. Finally, we collect the data a values from matching rows in S1 and S2 to
obtain the output table TD.

4.1 Obtaining Group Dimensions

Before we expand the two input tables, we need to augment them with the α1(ji) and
α2(ji) values corresponding to each join value ji, storing these in each entry that matches
ji (Algorithm 4.2). To this end, we need to group all entries with common join values
together into contiguous blocks, further grouping by them by their table ID. This is achieved
by concatenating both tables (augmented with table IDs) together and sorting the result
lexicographically by (j, tid), thus obtaining a table TC of size n = n1 + n2.

The α1 and α2 values for each group can then be obtained by counting the number
of entries originating from table 1 and table 2, respectively. Since such entries appear in

20

Algorithm 4.1 The full oblivious join algorithm

1: function Oblivious-Join(T1(j, d), T2(j, d))
2: T1, T2(j, d, α1, α2)← Augment-Tables(T1, T2)
3: S1(j, d, α1, α2)← Oblivious-Expand(T1, α2)
4: S2(j, d, α1, α2)← Oblivious-Expand(T2, α1)
5: S2 ← Align-Table(S2)
6: initialize TD(d1, d2) of size |S1| = |S2| = m
7: for i← 1 . . .m do
8: TD[i].d1 ← S1[i].d
9: TD[i].d2 ← S2[i].d

10: return TD

(1
)
D
ow

nw
ar
d
sc
an
:
st
or
e
in
cr
em

en
ta
l

co
u
nt
s
as

te
m
p
or
ar
y
α

1
an
d
α

2
at
tr
ib
u
te
s

(2
)
U
pw

ar
d
sc
an
:
p
ro
p
ag
at
e
co
rr
ec
t
α

1

an
d
α

2
va
lu
es

st
or
ed

in
”b
ou
n
d
ar
y”

en
tr
ie
s

x

x

x

x

x

a1

a2

u1

u2

u3

j d

y

y

y

y

y

b1

b2

b3

b4

v1

y

z

v2

w1

1

1

tid α1

2

2

2

1

1

1

1

2

2

2

-

-

1

2

3

-

-

-

-

1

2

1

α2

1

2

2

2

2

1

2

3

4

4

4

0

x

x

x

x

x

a1

a2

u1

u2

u3

j d

y

y

y

y

y

b1

b2

b3

b4

v1

y

z

v2

w1

1

1

tid α1

2

2

2

1

1

1

1

2

2

2

3

3

3

3

3

2

2

2

2

2

2

1

α2

2

2

2

2

2

4

4

4

4

4

4

0

TC TC

Figure 4.1: Example group dimension calculation. The dimensions of each group
can be computed by storing temporary counts during a forward pass through TC , and then
propagating the totals backwards.

21

Algorithm 4.2 Augment the tables T1 and T2 with the dimensions α1 and α2 of each
entry’s corresponding group. The resulting tables are sorted lexicographically by (j, d).
n1 = |T1|, n2 = |T2|, n = n1 + n2.

1: function Augment-Tables(T1, T2) . O(n log2 n)
2: TC(j, d, tid)← (T1 × {tid = 1}) ∪ (T2 × {tid = 2})
3: TC ← Bitonic-Sort〈j ↑, tid ↑〉(TC)
4: TC(j, d, tid, α1, α2)← Fill-Dimensions(TC)
5: TC ← Bitonic-Sort〈tid ↑, j ↑, d ↑〉(TC)
6: T1(j, d, α1, α2)← TC [1 . . . n1]
7: T2(j, d, α1, α2)← TC [n1 + 1 . . . n1 + n2]
8: return T1, T2

contiguous blocks after the sort, this is a matter of keeping count of all entries with the
same ID and storing these counts within all entries of the same group; in this manner,
we can compute all α1 and α2 values in two linear passes through T (one forward and
one backward), as shown in Figure 4.1 (full pseudocode for Fill-Dimensions is given in
Section A.1). Note that by keeping a sum of the products α1α2, we also obtain the output
size m, which is needed in subsequent stages.

Take for example the join value x, which corresponds to a group with dimensions α1 = 2
and α2 = 3 (since these are the number of entries with ID 1 and 2, respectively). While
encountering entries with j = x and tid = 1 during the forward pass, we temporarily
store in the α1 attribute of each entry an incremental count of all previously encountered
entries with j = x. When we reach entries with tid = 2, we can propagate the final count
α1 = 2 to all these entries, while starting a new incremental count, stored in α2. After
iterating through the whole table TC in this manner, TC holds corrects α1 and α2 values
in each “boundary” entry (the last entry within a group, such as (x, u3, . . .)), which can
then be propagated to all remaining entries within the same group by iterating through
TC backwards.

It remains for us to extract the augmented T1 and T2 from TC : to accomplish this, we
re-sort TC lexicographically by (tid, j, d): the first n1 values of TC then correspond to T1
(augmented and sorted lexicographically by (j, d)), the remaining n2 values correspond to
T2.

22

4.2 Oblivious Distribution

We will reduce expansion to a slightly generalized version of the following problem: given an
input X = (x1, . . . , xn) of n elements each indexed by an injective map f : X → {1, . . . ,m}
where m ≥ n, the goal of Oblivious-Distribute is to store element xi at index f(xi) of
an array A of size m. Note that for m = n, the problem is equivalent to that of sorting
obliviously; however for m > n, we cannot directly use a sorting network since the output
A needs to contain m− n elements that are not part of the output (such as placeholder ∅
values), and we do not know what indices to assign to such elements so that the xi appear
at their target locations after sorting.

One approach to this problem is probabilistic and requires us to first compute a pseu-
dorandom permutation π of size m. We scan through the n elements, storing element xi at
index π(f(xi)) of A. We then use a bitonic sorter to sort the m elements of A by increasing
values of π−1 applied to each element’s index in A. This has the effect of “undoing” the
masking effect of the permutation π so that if xi is stored at index π(f(xi)) of A, then as
soon asA is sorted, it will appear in its correct destination at index f(xi) ofA. An adversary
observing the accesses of this procedure observes writes at locations π(f(x1)), . . . , π(f(xn))
of A, followed by the input-independent accesses of the bitonic sorter. Since f is injective,
f(x1), . . . , f(xn) are distinct and so the values π(f(x1)), . . . , π(f(xn)) will correspond to a
uniformly-random n-sized subset of {1, . . . ,m}. This approach is therefore oblivious in the
sense that the two distributions of memory accesses corresponding to two different inputs
are computationally indistinguishable (in this case, they are equal distributions).

The second approach, which we use in our implementation and outlined in Algorithm 4.3
(visualized in Figure 4.2), is deterministic and does not require the use of a pseudorandom
permutation, which can be expensive in practice and also introduces an extra cryptographic
assumption. This method is similar to the routing network used by Goodrich et al. [22] for
tight order-preserving compaction, except here it is used in the reverse direction (instead
of compacting elements together it spreads them out). It makes the whole algorithm
deterministic (making it easy to empirically test for obliviousness) and has running time
O(n log2 n + m logm): the sort takes O(n log2 n) time, the outer loop performs O(logm)
iterations, and the inner loop performs O(m). Intuitively, it is oblivious since the loops do
not depend on the values of A[i], and though the conditional statement statement depends
on f(A[i]), both branches make the same accesses to A.

The idea is to first sort the xi by increasing destination indices according to f (by using
the notation Bitonic-Sort〈f〉(A), we assume that the f value of each element is stored
as an attribute). Each element can then be sent to its destination index by a series of
O(logm) hops, where each hop corresponds to an interval j that is a power of two. For
decreasing values of j, we iterate through A backwards and perform reads and writes to

23

Algorithm 4.3 Obliviously map each x ∈ X to index f(x) of an array of size m ≥ n,
where f : X → {1 . . .m} is injective.

1: function Oblivious-Distribute(X, f,m)
2: A[1 . . . n]← X
3: Bitonic-Sort〈f ↑〉(A) . O(n log2 n)
4: A[n+ 1 . . .m]← ∅ values
5: extend f to f̂ such that f̂(∅) = 0
6: j ← 2dlog2 me−1

7: while j ≥ 1 do . O(m logm)
8: for i← m− j . . . 1 do
9: y

?← A[i]

10: y′
?← A[i+ j]

11: if f̂(y) ≥ i+ j then

12: A[i]
?← y′

13: A[i+ j]
?← y

14: else
15: A[i]

?← y

16: A[i+ j]
?← y′

17: j ← j/2

18: return A

24

(1) Sort

on f (x),

add

empty

rows

(2) Obliviously

route each x

to f (x)

x1

x2

x3

x4

x5

4

1

3

8

6

X

1

2

3

4

5

x2

x3

x1

x5

x4

A

x f (x) i x

6

7

8

-

-

-

1

3

4

6

8

-

-

-

f (x)

1

2

3

4

5

x2

-

x3

x1

-

A

i x

6

7

8

x5

-

x4

1

-

3

4

-

6

-

8

f (x)

Figure 4.2: Example oblivious distribution with n = 5 and m = 8. The inter-
mediate step involves sorting the elements by their target indices. The elements are then
passed through a routing network, which for m = 8 has hop intervals of size 4, 2, and 1.

elements j apart. Most of these will be dummy accesses producing no effect; however, if we
encounter an xi such that xi can hop down a distance of j and not exceed its target index,
we perform an actual swap with the element stored at that location. This will always
be a ∅ element since the non-null elements ahead of xi make faster progress, as we will
formally show. Therefore each xi will make progress at the values of j that correspond to
its binary expansion, and it will never be the case that it regresses backwards by virtue of
being swapped with a non-null element that precedes it in A.

In Figure 4.2, for example, each element must move a distance that for m = 8, has a
binary expansion involving the numbers 4, 2 and 1. No xi can make a hop of length 4 in
this example; however, for the next hop length, 2, element x4 will advance to index 7, after
which element x5 will advance to index 6 (which at this point corresponds to an empty cell
containing a ∅ value). Finally, for a hop length of 1, element x4 will advance to index 8,
element x1 will advance to index 4 and element x3 will advance to index 3, in that order;
at this point all the elements will be stored at their desired locations.

We deal with correctness in the following theorem:

Theorem 4.1. If m > n and f : {x1, . . . , xn} → {1, . . . ,m} is injective, then Oblivious-
distribute(X, f,m) returns an A such that for 1 ≤ i ≤ n, A[f(xi)] = xi (and the

25

remaining elements of A are ∅ values).

Proof. Note that after A is initialized, any write to A is either part of a swap or leaves
A unchanged; thus at the end of the procedure, A is a permutation of its initial elements
and therefore still contains all the n elements of X and m− n ∅ values. After A is sorted,
its first n elements, y1, . . . , yn, are the elements of X sorted by their values under f (their
destination indices). Note that since f is injective, it follows that for all i < j,

j − i ≤ f(yj)− f(yi) (4.1)

Let k = dlog2me − 1 and let Ir(yi) be the index of yi at the end of the r-th outer
iteration (for 0 ≤ r ≤ k + 1 with r = 0 corresponding to the state at the start of the
loop). We want to show that for all i, Ik+1(yi) = f(yi); this will follow from the following
invariant: at the end of the r-th outer iteration, we have that for all i,

0 ≤ f(yi)− Ir(yi) < 2k+1−r.

For r = 0, the left inequality follows from the fact the yi are sorted by their values
under f and f is injective with minimum value equal 1; the right inequality is simply the
bound f(yi)− i ≤ f(yi) ≤ m < 2k+1. Assuming the invariant holds at iteration r, we show
that it holds at iteration r + 1 as well.

Consider all (non-dummy) swaps that happen at iteration r + 1 between y = yi for
some i (y 6= ∅ since f̂(∅) = 0) and some element y′ at the index Ir(yi) + 2k−r. We show
that it must be the case that y′ = ∅. Suppose instead that y′ = yj for some j 6= i. Since
neither the index of yi or yj has at that point exceeded Ir(yi) + 2k−r ≤ f(yi) < f(yj),
yi and yj must have both moved forwards the same total distance throughout the first r
iterations and therefore Ir(yj)− Ir(yi) = I0(yj)− I0(yi) = j− i. Since we’re assuming that
this difference shrinks to zero at the (r + 1)-th iteration, it must be the case that

Ir+1(yi) = Ir(yi) + 2k−r = I ′r+1(yj) = Ir(yj),

where I ′r+1(yj) is the index of yj just before it is swapped with yi. Therefore

j − i = Ir(yj)− Ir(yi) = 2k−r.

This contradicts the fact that

j − i ≤ f(yj)− f(yi) (by (4.1))

≤ f(yj)− Ir(yj) (Ir(yj) = Ir+1(yi) ≤ f(yi))

< 2k−r (since I ′r+1(yj) = Ir(yj))

26

It follows that no two elements yi and yj are ever swapped, and therefore:

Ir+1(yi) =

{
Ir(yi) + 2k−r, Ir(yi) + 2k−r ≤ f(yi)

Ir(yi), otherwise.

We can now show that for i < j

0 ≤ f(yi)− Ir+1(yi) < 2k−r.

If Ir(yi) + 2k−r ≤ f(yi), then

f(yi)− Ir+1(yi) = f(yi)− Ir(yi)− 2k−r ≥ 0,

and

f(yi)− Ir+1(yi) = f(yi)− Ir(yi)− 2k−r

< 2k−r+1 − 2k−r

= 2k−r.

If Ir(yi) + 2k−r > f(yi), then

f(yi)− Ir+1(yi) = f(yi)− Ir(yi) ≥ 0

f(yi)− Ir+1(yi) = f(yi)− Ir(yi) < 2k−r,

which finishes the proof of the invariant.
It then follows from the invariant that Ik+1(yi) = f(yi), and so when the k+1 iterations

of the outer loop complete, each yi will appear in its correct index according to f .

4.3 Oblivious Expansion

Oblivious-Expand takes an array X = (x1, . . . , xn) and a function g on X which assigns
non-negative integer counts to each x, and outputs

A = (x1, . . . , x1︸ ︷︷ ︸
g(x1) times

, x2, . . . , x2︸ ︷︷ ︸
g(x2) times

, . . .).

This can easily be achieved using Oblivious-Distribute (see Figure 4.3) if we assume
m ≥ n and g(xi) > 0 for all xi: we compute the cumulative sum f(xi) = 1 +

∑i−1
j=1 xj,

27

(1) Oblivious

distribute
Fig. 4.2

(2) Fill down

x1

x2

x3

x4

x5

2

3

0

2

1

X

1

2

3

4

5

x1

-

x2

-

-

A

x g(x) i x

6

7

8

x4

-

x5

1

3

-

6

8

f (x)

1

2

3

4

5

x1

x1

x2

x2

x2

A

i x

6

7

8

x4

x4

x5

Figure 4.3: Example oblivious expansion. This is achieved by obliviously distributing
each element to where it ought to first appear and then scanning through the resulting
array to duplicate each entry in the null slots that follow.

and obliviously distribute the xi according to f (in practice, the values of f are stored as
attributes in augmented entries). The resulting array A is such that each xi is stored in
the first location that it needs to appear in the output of Oblivious-Expand; the next
g(xi) − 1 values following xi are all ∅. Thus we only need to iterate through A, storing
the last encountered entry and using it to overwrite the ∅ entries that follow.

To account for the possibility that g(xi) = 0 for certain xi (which means that m may
possibly be less than n), we simply need to modify Oblivious-Distribute to take as
input an n-sized array X such that the subset X ′ of X of entries not marked as ∅ has
size n′ ≤ m and f ′ : X ′ → {1 . . .m} is injective. The output will be an array A with each
xi ∈ X ′ stored at index f(xi) of A; the remainder of A will consist of ∅ values as before.
This modified version of Oblivious-Distribute (Ext-Oblivious-Distribute) will
allow Oblivious-Expand to mark entries xi with g(xi) = 0 as ∅ (done in practice by
first making sure the entries are augmented with an extra flag bit for this purpose) to the
effect that they can be discarded by Ext-Oblivious-Distribute, as shown in Algorithm
4.4.

28

Algorithm 4.4 Obliviously duplicate each x ∈ X g(x) times.

1: function Oblivious-Expand(X, g)
2: . obtain f values and distribute according to f
3: s← 1
4: for i← 1 . . . n do . O(n)

5: x
?← X[i]

6: if g(x) = 0 then
7: mark x as ∅
8: else
9: store f(x) = s at x

10: s← s+ g(x)

11: X[i]
?← x

12: A← Ext-Oblivious-Distribute(X, f, s− 1)
13: . fill in missing entries
14: px← ∅
15: for i← 1 . . . s− 1 do . O(m)

16: x
?← A[i]

17: if x = ∅ then
18: x← px
19: else
20: px← x

21: A[i]
?← x

22: return A
23:

24: function Ext-Oblivious-Distribute(X, f,m)
25: A[1 . . . n]← X
26: Bitonic-Sort〈6= ∅ ↑, f ↑〉(A) . O(n log2 n)
27: if m ≥ n then
28: A[n+ 1 . . .m]← ∅ values

29: extend f to f̂ such that f̂(∅) = 0
30: continue as in O(m logm) loop of Algorithm 4.3...
31: return A[1 . . .m]

29

Algorithm 4.5 Reorder S2 so that its m entries align with those of S1.

1: function Align-Table(S2)
2: S2(j, d, α1, α2, ii)← S2(j, d, α1, α2)× {ii = NULL}
3: for i← 1 . . . |S2| do . O(m)

4: e
?← S2[i]

5: q ← (0-based) index of e within block for e.j
6: e.ii← bq/e.α2c+ (q mod e.α2) · e.α1

7: S2[i]
?← e

8: S2 ← Bitonic-Sort〈j, ii〉(S2) . O(m log2m)
9: return S2

4.4 Table Alignment

Recall that S1 is obtained from T1 based on the counts stored in α2 since for each entry
(ji, d1) ∈ T1, α2(ji) is the number of entries in T2 matching ji, and these are all the
entries that (ji, d1) must be matched with. Likewise S2 is obtained from T2 based on the
counts stored in α1. It remains for us to properly align S2 to S1 so that each output entry
corresponds to a row of S1 and a row of S2 with matching index. More precisely, we need
to sort S2 so that the sequence of pairs {(S1[i].d1, S2[i].d2)}mi=1 is a lexicographic ordering
of all the pairs in T1 ./ T2. For example, in Figure 4.4, the α2(x) = 2 copies of (x, u1) in S2,
need to be matched with α2(x) = 2 entries from T1: (x, a1) and (x, a2). Since the entries
in S1 occur in blocks of size α1(x) = 3, this means that the copies of (x, u1) in S2 need to
occur a distance of α1(x) = 3 apart: at indices 1 and 4 in S2. In general, these indices
can be computed from the α1 and α2 attributes, as outlined in Algorithm 4.5. Note that
q is simply a counter that is reset when a new join value is encountered, similarly to the
counter c in Algorithm 4.2.

30

Reorder

d values

within each

group of S2.

x

x

x

x

x

a1

a1

a1

a2

a2

S1 S2

x

y

a2

b1

...

x

x

x

x

x

u1

u1

u2

u2

u3

x

y

u3

v1

...

j d j d

S2

x

x

x

x

x

u1

u2

u3

u1

u2

x

y

u3

v1

...

j d

Figure 4.4: Example table alignment. S2 is reordered to align with S1. In this
example, each of the two copies of (x, u1) in S2 ends up appearing at two indices matching
both (x, a1) and (x, a2) from S1; the same applies to the copies of (x, u2) and (x, u3).

31

Chapter 5

Evaluation

We implemented a (sequential) C++ prototype of the general algorithm, which we then
readily adapted as an SGX application whose entire execution takes place within the en-
clave (code available at https://git.uwaterloo.ca/skrastni/obliv-join-impl). We
empirically tested for correctness on varying input sizes n (10 to 1,000,000): for each n,
we automatically generated 20 tests consisting of various different inputs of size n (for
instance, one inducing n 1 × 1 groups, one inducing a single 1 × n group, and several
where the group sizes were drawn from a power law distribution). In the remainder of this
chapter, we evaluate the security and performance of the implementation.

5.1 Security Analysis

We verified the obliviousness of our prototype both formally, through the use of a dedi-
cated type system, and empirically, by comparing the logs of array accesses for different
inputs. To ensure that that the actual low-level memory accesses were also oblivious, we
transformed it as per Section 2.5 and inspected its accesses using an instrumentation tool.

Verification of Obliviousness through Typing

Liu et al. [31] showed that programming language techniques can be used to verify the
obliviousness of programs. The authors formally define the concept of memory trace obliv-
iousness, and define a type system in which only programs satisfying this property are
well-typed. We adapted a simplified version of their system that does not incorporate the
use of ORAM (since we do not use any), and which corresponds to level II obliviousness
in accordance with our high-level description in the previous chapter.

32

https://git.uwaterloo.ca/skrastni/obliv-join-impl

The type system is presented in Figure 5.1, in a condensed format. Each type is a pair
of the form τ ; T , where τ is either Var l, Array l, or a statement, and T is a corresponding
trace. In the case when τ is Var l or Array l, the label l is either L (“low” security) if the
variable or array stores input-independent data, or H (“high” security) otherwise. The
ordering relation on labels, l1 v l2, is satisfied when l1 = l2 = L, or l1 = L and l1 = H.
We define l1 t l2 to be H if at least one of l1 or l2 is H and L otherwise. In an actual
program, we would set to L the label of variables corresponding to the values of n and m,
and set to H the label of all allocated arrays that will contain input-dependent data (in
our program all arrays are such). The trace T is a sequence of memory accesses 〈R, y, i〉
(reads) or 〈W, y, i〉 (writes), where y is the accessed array and i is the accessed index. We
use ε to denote an empty trace and || to denote the concatenation operator.

All judgements for expressions are of the form Γ ` exp : τ ; T, where Γ is an environment
mapping variables and arrays to types, exp is an expression and τ is its type, and T is the
trace produced when evaluating exp. Judgments for statements are of the form Γ ` s; T.

Note that all rules that involve reads and writes to only Var types emit no trace since
they model our notion of local memory. The rule T-Asgn models the flow of high-security
data: a variable x that is the target of an assignment involving an H variable y must always
be labeled H. The rules T-Read and T-Write are similar to T-Asgn but also ensure two
other properties: that arrays are always indexed by variables labeled L (for otherwise the
memory access would leak data-dependent data), and that the reads and writes to arrays
emit a trace consisting of the corresponding memory access. The two rules that play an
important role in modeling obliviousness are T-Cond, which ensures that the two branches
of any conditional statement emit the same memory traces, and T-For, which ensures the
number of iterations of any loop is a low-security variable (such as a constant, n, or m).

We manually verified that our implementation is well-typed in this system by annotating
the code with the correctly inferred types. For example, every if statement was annotated
with the matching trace of its branches.

Experiments: Memory Access Logs

In our prototype all contents of (heap-allocated) memory that correspond to public memory
— all except a constant number of variables such as counters and those used to store the
results of a constant number of read entries — are accessed through a wrapper class which
is used to keep a log of such accesses. For small n (n ≤ 10), we manually created different
test classes (around 5), where each test class corresponds to values of n1 and n2 (summing
to n), and an output length m. We verified, by direct comparison, that the memory access
logs for each of the inputs in the same class were identical. Figure 5.2 visualizes the full
sequence of memory accesses for n1 = n2 = 4 and m = 8.

33

T-Var
Γ(x) = Var l

Γ ` x : Var l; ε
T-Const

Γ ` Var L; ε

T-Op
Γ ` x : Var l1; ε Γ ` y : Var l2 : ε

Γ ` x op y : Var l1 t l2; ε

T-Asgn
Γ(x) = Var l1; ε Γ ` y : Var l2; ε l2 v l1

Γ ` x← y; ε

Γ(y) = Arr l′ l′ v l

T-Read
Γ ` i : Var L; ε Γ ` x : Var l; ε

Γ ` x ?← y[i]; 〈R, y, i〉

Γ(y) = Arr l′ l v l′

T-Write
Γ ` i : Var L; ε Γ ` x : Var l; ε

Γ ` y[i]
?← x; 〈W, y, i〉

T-Cond
Γ ` c : Var l; ε Γ ` s1; T Γ ` s2; T

Γ ` if c then s1 else s2; T

T-For
Γ ` t : Var L; ε Γ ` s; T

Γ ` for i← 1 . . . t do s; T || . . . ||T︸ ︷︷ ︸
t copies

T-Seq
Γ ` s1; T1 Γ ` s2; T2

Γ ` s1; s2; T1||T2

Figure 5.1: Summary of type system used to model level II obliviousness and
verify implementation.

34

Figure 5.2: Visualization of our implementation’s input-independent pattern
of memory access as it joins two tables of size 4 into a table of size 8. Horizontal
axis is (discretized) time, vertical axis is the memory index; light shade denotes a read;
dark denotes a write.

For larger values of n where the logs were too large to fit in memory, we kept a hash of
the log instead. That is, we set H = 0, and for every access to an index i of an array Ar

allocated by our program, we updated H as follows:

H ← h(H||r||t||i),

where h is a cryptographic hash function (SHA-256 in our case) and t is 0 or 1 depending
on whether the access is a read or a write to Ar. With n ranging from 10 to 10,000, we
generated a diverse range of tests, in the manner described at the beginning of this chapter,
but also under the restriction that the tests for each n produce outputs of the same size.
We verified that for each n the tests produced the same hash.

Experiments: Memory Trace Instrumentation

Through a mix of manual and automated code transformations similar to those outlined
in Section 2.5, we obtained a program where all virtual memory accesses of the program
are oblivious. To verify this we ran the same hash-based tests as previously described
except that the target memory accesses were obtained by using Intel’s Pin instrumentation
framework to inject the hash computation at every program instruction involving a memory
operand. The verification was successful when the program was compiled with GCC 7.5.0
with an -O2 optimization level (whereas -O3 did not preserve the intended properties of
our transformation).

5.2 Performance Analysis

Taking into account the fact that performing a bitonic sort on input n makes roughly
n(log2 n)2/4 comparisons, the cost breakdown of the full algorithm is summarized in Table
5.1, which supports the fact that our time complexity of O(n log2 n + m logm) does not
hide large constants that would make the algorithm impractical.

35

In terms of space usage, the total (non-oblivious) memory we use is max(n1,m) +
max(n2,m) entries since the table TC has size n1 + n2, the augmented tables T1 and T2
correspond to two regions of TC , and the expanded tables S1 and S2 can be obtained from
T1 and T2 by only allocating as many extra entries as needed to expand T1 and T2 to tables
of size m (if one of the original tables has size less than m, then no extra entries will be
allocated for that table’s expansion).

We ran the different variants of our implementation on a single core of an Intel Core
i5-7300U 2.60 GHz laptop with 8 GB RAM; the runtime of the prototype, the SGX version,
and the transformed SGX version is shown in Figure 5.3 and compared to a non-oblivious
sort-merge join. The performance gap between the implementation and sort-merge can
be explained by the additional logarithmic factor in the former’s complexity, as well as
the overhead from having to store and process auxillary attributes used by the oblivious
primitives.

Since our SGX versions exclusively use the limited Enclave Page Cache (EPC) of size
approximately 93 MiB for all allocated memory, we anticipate a drop in performance for
input sizes where the EPC size is insufficient (due to swapping). However, this size is
expected to be increased considerably in future versions of SGX.

The only related join algorithm with an implementation that has been evaluated on
input sizes up to 106 is the one proposed by Opaque, which we remind is restricted to
primary-foreign key joins. Its SGX implementation, despite being evaluated on better
hardware and on multiple cores, runs approximately five times slower for an input size of
n = 106.

Although our implementation is non-parallel, almost all parts of our algorithm are
amenable to parallelization since they heavily rely on sorting networks, whose depth is
O(log2 n). The only exception is the sequence of O(m logm) operations following the sorts
in each of the two calls to Oblivious-Distribute. However, as is shown in Table 5.1,
these operations account for a negligibly small fraction of the total runtime.

36

Subroutine Comparisons Runtime

initial sorts on TC n(log2 n)2/2 60%
o.d. on T1, T2 (sort) n1(log2 n1)

2/2 25%
o.d. on T1, T2 (route) 2m log2m 3%

align sort on S2 m(log2m)2/4 12%

total
n(log2 n)2 + n log2 n 100%

(when m ≈ n1 = n2)

Table 5.1: Comparison count and runtime share for each component of the
algorithm. For each (non-linear) component of the algorithm: approximate counts of
total comparisons (or swaps) when m ≈ n1 = n2, as well as empirical share of total
implementation runtime for n = 106.

0.1 0.25 0.5 0.75 1

·106

0

2

4

6
6.30
5.67

2.35

0.03

Input size (n)

R
u
n
ti

m
e

(s
)

SGX (transformed)
SGX
prototype
insecure sort-merge

Figure 5.3: Performance results for sequential prototype implementation. The
inputs are such that m ≈ n1 = n2 = n/2.

37

Chapter 6

Conclusions and Future Work

Our algorithm for oblivious equ-joins has optimal runtime in the sense that its time com-
plexity is determined by that of oblivious sorting, an algorithmic necessity for the problem.
Its reliance on sorting networks, which are characterized by a small total operation count,
means that its complexity does not hide prohibitively large constants, and we show by
means of a prototype implementation that this translates into practical efficiency. Our
approach has low circuit complexity and introduces novel data-independent techniques for
query processing. There is an increasing demand for such approaches due to their resistance
against side-channel attacks and suitability for secure computation.

In the remainder of this chapter, we give an outline of several directions for future work,
including the consideration of other types of join-based queries, other types of oblivious
algorithms, and the design of compilers for oblivious programs.

6.1 Compound Join Queries

In multi-way equi-joins, there are k tables T1, . . . , Tk (again though of as having join and
data attributes), and we wish to compute

T1 .// Tk =
⋃t

i=1{(d1, . . . , dk) | (ji, d1) ∈ T1, . . . , (ji, dk) ∈ Tk}.

One solution is to associatively apply our binary equi-join algorithm k times. This
is problematic not only because its runtime depends on k but also because it leaks the
intermediate table sizes |T1 .// Ti| for 1 < i < k, whereas a formulation of the
problem in the data-oblivious setting allows leakage of only the final table size |T1 .//
Tk|. However, Arasu and Kaushik [4] argue that if a multiway join satisfies a property
called acyclicity, then it can be computed obliviously and efficiently (they also show, using

38

a hardness argument, that this is not possible for cyclic joins). Such approach can be
combined with the oblivious primitives constructed in this thesis. The same applies to
other queries considered in that paper such as grouping aggregations over joins, in which
case the goal is to optimize the query so that a full join is not necessary.

6.2 Non Equi-Joins

This thesis focuses on equi-joins, where the join predicate is equality. A natural question is

whether the ideas extend to more general predicates. For instance, in a band join T1
R
./ T2

of two tables, the join attribute values ji are integers, and an entry (j1, d1) ∈ T1 is joined
with an entry (j2, d2) ∈ T2 whenever j2 is within a “band” R of j1, that is, |j1 − j2| ≤ R.
Even more generally, one can consider spatial joins, where the ji are vertices in two or
more dimensions. It is an interesting question whether the techniques from this thesis can
be extended to these types of joins.

6.3 Other Oblivious Algorithms

The primitives constructed in this thesis, for instance oblivious distribution and expansion,
could potentially be useful in providing a general framework for oblivious algorithm design
and possibly have direct applications in various different problem areas with similar security
goals.

As an example of an application unrelated to the main problem considered in this
thesis, consider a scenario where a client would like access to n memory cells stored on
an untrusted server, and suppose that any sequence of accesses requested by the client is
dominated by writes (it requests, on average, O(n) writes for every read). For example,
the client may need to run an experiment whereby it frequently updates statistical data in
a database of users and collects the results only at the end of the experiment. Though one
can use ORAM in such a scenario, the oblivious distribute primitive offers a much simpler
and practically efficient solution. Namely, we can construct a primitive called write-heavy
ORAM (not to be confused with write-only ORAM, which supports fast reads but does
not hide them) that has an amortized O(log2 n) overhead per write and O(n) overhead per
read.

The construction is as follows: when a request for a write is received, a record consisting
of the index, data, and sequence number of the write is appended to a log, separate from
the n memory cells. When the size of the log becomes n, the records in the log are sorted
by increasing values of their indices, followed by increasing sequence numbers. The sorted

39

log is then scanned to invalidate all entries except those with the latest sequence number
for a given index. Finally, oblivious distribute is used to route the data in the valid entries
to their intended location within the n memory cells. Reads are implemented by scanning
through the whole log of n entries to find the latest record with the given index, or if no
such record exists, proceeding to scan all n memory cells.

6.4 Obliviousness-Preserving Compilers

Though a program may be designed to be oblivious in theory, achieving actual security
guarantees in practice is a difficult language- and platform-dependent problem. Though
the source code of the program may seem to be data-independent, a standard compiler
provides no guarantees that such property is preserved, as it it is free to apply optimiza-
tions that transform the code. Even if this is not the case, the target architecture may
process data-independent machine code in a data-dependent way, as is the case in out-
of-order processors. In addition, there is the question of how to enforce and verify the
data-obliviousness property on the source code level in the first place.

There have been several works that elucidate and attempt to address these prob-
lems. Molnar et al. [34] employ a source-to-source transformation approach to guarantee
a straight-line property of code, in the spirit of the ideas outlined in Section 2.5. However,
they point out that gcc compiler does not preserve such property, having discovered be-
haviours like “[the compilation] of the logical negation operator into an assembly sequence
involving a conditional branch”. Coppens et al. [10] describe several different properties
of a program that potentially influence its timing behaviour: not only its control flow,
but also its data flow (for example, in certain architectures the division instruction can
exit early depending on the values of its operands), and the tendency of the out-of-order
target processor to reorder instructions. They argue that a source-to-source approach is
incapable of accounting for all these properties, and propose a way to guarantee input-
dependent control flow on x86 processors by generating code for if-else statements in a way
that makes use of the conditional move instruction available for that architecture.

Other related works in this direction include: ConfLLVM [8], an LLVM-based compiler
that aims to prevent information flow violations in the presence of an active adversary;
Raccoon [37], a tool that uses transactional memory to obfuscate code and defend it against
side-channel attacks; OISA [46], an instruction set architecture extension, which supports
low-level data-oblivious instructions.

Despite such abundance of research on the implementation-specific details of oblivious
program design, unfortunately there does not yet exist a unified tool which allows a pro-
grammer to write a (possibly annotated or restricted) program in a standard language and

40

have it compiled to an executable with strong guarantees. A worthy starting goal would
be the development of a tool that takes LLVM IR (intermediate representation), checks
for data-dependent control flow, and upon detection of a branching instruction tainted
by private data, attempts to transform the code (for instance by generating IR to execute
both branches and then combining the results using a select IR instruction). This approach
would allow the programmer to use the language of their choice (since LLVM compilers
exist for a plethora of languages), and would give them some freedom over how they handle
the private input data, such as allowing the use of certain if-else statements with tainted
conditions.

41

References

[1] Ittai Abraham, Christopher W Fletcher, Kartik Nayak, Benny Pinkas, and Ling Ren.
Asymptotically tight bounds for composing ORAM with PIR. In IACR International
Workshop on Public Key Cryptography, volume 10174 of Lecture Notes in Computer
Science, pages 91–120. Springer, 2017.

[2] Rakesh Agrawal, Dmitri Asonov, Murat Kantarcioglu, and Yaping Li. Sovereign joins.
In 22nd International Conference on Data Engineering, pages 26–26. IEEE, 2006.

[3] Abdelrahaman Aly, Marcel Keller, Emmanuela Orsini, Dragos Rotaru, Peter Scholl,
Nigel P Smart, and Tim Wood. SCALE–MAMBA v1. 3 documentation. https:

//homes.esat.kuleuven.be/~nsmart/SCALE, 2019.

[4] Arvind Arasu and Raghav Kaushik. Oblivious query processing. In Proceedings of the
17th International Conference on Database Theory, pages 26–37. Springer, 2014.

[5] Todd W Arnold, Carl Buscaglia, Felix Chan, Vincenzo Condorelli, John Dayka,
William Santiago-Fernandez, Nihad Hadzic, Michael D Hocker, Michael Jordan,
Thomas E Morris, et al. IBM 4765 cryptographic coprocessor. IBM Journal of Re-
search and Development, 56(1.2):10–1, 2012.

[6] Kenneth E Batcher. Sorting networks and their applications. In Proceedings of the
April 30–May 2, 1968, Spring Joint Computer Conference, pages 307–314. ACM,
1968.

[7] Johes Bater, Gregory Elliott, Craig Eggen, Satyender Goel, Abel Kho, and Jennie
Rogers. SMCQL: secure querying for federated databases. Proceedings of the VLDB
Endowment, 10(6):673–684, 2017.

[8] Ajay Brahmakshatriya, Piyus Kedia, Derrick P McKee, Deepak Garg, Akash Lal,
Aseem Rastogi, Hamed Nemati, Anmol Panda, and Pratik Bhatu. ConfLLVM: A

42

https://homes.esat.kuleuven.be/~nsmart/SCALE
https://homes.esat.kuleuven.be/~nsmart/SCALE

compiler for enforcing data confidentiality in low-level code. In Proceedings of the
Fourteenth EuroSys Conference 2019, pages 1–15. ACM, 2019.

[9] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan Cap-
kun, and Ahmad-Reza Sadeghi. Software grand exposure: SGX cache attacks are
practical. In 11th USENIX Workshop on Offensive Technologies, 2017.

[10] Bart Coppens, Ingrid Verbauwhede, Koen De Bosschere, and Bjorn De Sutter. Prac-
tical mitigations for timing-based side-channel attacks on modern x86 processors. In
2009 30th IEEE Symposium on Security and Privacy, pages 45–60. IEEE, 2009.

[11] Victor Costan and Srinivas Devadas. Intel SGX explained. Cryptology ePrint Archive,
Report 2016/086, 2016. https://eprint.iacr.org/2016/086.

[12] Jack Doerner and Abhi Shelat. Scaling ORAM for secure computation. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
pages 523–535, 2017.

[13] David Eppstein, Michael T Goodrich, and Roberto Tamassia. Privacy-preserving
data-oblivious geometric algorithms for geographic data. In Proceedings of the 18th
ACM SIGSPATIAL International Conference on Advances in Geographic Information
Systems, pages 13–22, 2010.

[14] Saba Eskandarian and Matei Zaharia. ObliDB: oblivious query processing for secure
databases. In Proceedings of the VLDB Endowment, volume 13, pages 169–183. VLDB
Endowment, 2019.

[15] International Organization for Standardization. Information technology – Trusted
platform module library – Part 1: Architecture. Technical Report ISO/IEC TR 11889-
1:2015, 2015.

[16] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of
the 41st Annual ACM Symposium on Theory of Computing, pages 169–178, 2009.

[17] Craig Gentry, Kenny A Goldman, Shai Halevi, Charanjit Julta, Mariana Raykova, and
Daniel Wichs. Optimizing ORAM and using it efficiently for secure computation. In
International Symposium on Privacy Enhancing Technologies, pages 1–18. Springer,
2013.

[18] Oded Goldreich. Towards a theory of software protection and simulation by oblivious
RAMs. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing,
pages 182–194, 1987.

43

https://eprint.iacr.org/2016/086

[19] Oded Goldreich. Foundations of cryptography: volume 2, basic applications. Cam-
bridge University Press, 2009.

[20] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game,
or a completeness theorem for protocols with honest majority. In Providing Sound
Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali,
pages 307–328. Morgan & Claypool, 2019.

[21] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious
RAMs. Journal of the ACM, 43(3):431–473, 1996.

[22] Michael T Goodrich. Data-oblivious external-memory algorithms for the compaction,
selection, and sorting of outsourced data. In Proceedings of the 23rd Annual ACM
Symposium on Parallelism in Algorithms and Architectures, pages 379–388, 2011.

[23] Michael T Goodrich. Zig-zag sort: A simple deterministic data-oblivious sorting algo-
rithm running in O(n log n) time. In Proceedings of the 46th Annual ACM Symposium
on Theory of Computing, pages 684–693, 2014.

[24] Michael T Goodrich and Joseph A Simons. Data-oblivious graph algorithms in out-
sourced external memory. In International Conference on Combinatorial Optimization
and Applications, pages 241–257. Springer, 2014.

[25] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller. Cache attacks
on Intel SGX. In Proceedings of the 10th European Workshop on Systems Security,
pages 1–6. ACM, 2017.

[26] Thang Hoang, Ceyhun D Ozkaptan, Attila A Yavuz, Jorge Guajardo, and Tam
Nguyen. S3ORAM: A computation-efficient and constant client bandwidth blowup
ORAM with Shamir Secret Sharing. In Proceedings of the 2017 ACM SIGSAC Con-
ference on Computer and Communications Security, pages 491–505, 2017.

[27] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. Access pattern
disclosure on searchable encryption: Ramification, attack and mitigation. In Network
and Distributed System Security Symposium, page 12, 2012.

[28] Simeon Krastnikov, Florian Kerschbaum, and Douglas Stebila. Efficient oblivious
database joins. In Proceedings of the VLDB Endowment, volume 13, pages 2132–
2145, 2020.

44

[29] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus
Peinado. Inferring fine-grained control flow inside SGX enclaves with branch shadow-
ing. In 26th USENIX Security Symposium, pages 557–574, 2017.

[30] Yaping Li and Minghua Chen. Privacy preserving joins. In 2008 IEEE 24th Interna-
tional Conference on Data Engineering, pages 1352–1354, 2008.

[31] Chang Liu, Michael Hicks, and Elaine Shi. Memory trace oblivious program execution.
In 2013 IEEE 26th Computer Security Foundations Symposium, pages 51–65, 2013.

[32] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi. ObliVM:
A programming framework for secure computation. In 2015 IEEE Symposium on
Security and Privacy, pages 359–376, 2015.

[33] Pratyush Mishra, Rishabh Poddar, Jerry Chen, Alessandro Chiesa, and Raluca Ada
Popa. Oblix: An efficient oblivious search index. In 2018 IEEE Symposium on Security
and Privacy, pages 279–296, 2018.

[34] David Molnar, Matt Piotrowski, David Schultz, and David Wagner. The program
counter security model: Automatic detection and removal of control-flow side channel
attacks. In International Conference on Information Security and Cryptology, pages
156–168. Springer, 2005.

[35] Benny Pinkas, Thomas Schneider, and Michael Zohner. Scalable private set intersec-
tion based on OT extension. ACM Transactions on Privacy and Security, 21(2):1–35,
2018.

[36] Raluca Ada Popa, Catherine MS Redfield, Nickolai Zeldovich, and Hari Balakrishnan.
CryptDB: protecting confidentiality with encrypted query processing. In Proceedings
of the Twenty-Third ACM Symposium on Operating Systems Principles, pages 85–100,
2011.

[37] Ashay Rane, Calvin Lin, and Mohit Tiwari. Raccoon: Closing digital side-channels
through obfuscated execution. In 24th USENIX Security Symposium, pages 431–446,
2015.

[38] Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. Practical dynamic search-
able encryption with small leakage. In Network and Distributed System Security Sym-
posium, pages 72–75, 2014.

45

[39] Emil Stefanov, Marten Van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren, Xi-
angyao Yu, and Srinivas Devadas. Path ORAM: an extremely simple oblivious RAM
protocol. In Proceedings of the 2013 ACM SIGSAC Conference on Computer and
communications security, pages 299–310, 2013.

[40] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and Raoul Strackx.
Telling your secrets without page faults: Stealthy page table-based attacks on enclaved
execution. In 26th USENIX Security Symposium, pages 1041–1056, 2017.

[41] Nikolaj Volgushev, Malte Schwarzkopf, Ben Getchell, Mayank Varia, Andrei Lapets,
and Azer Bestavros. Conclave: secure multi-party computation on big data. In
Proceedings of the Fourteenth EuroSys Conference 2019, pages 1–18. ACM, 2019.

[42] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng Wang, Vincent
Bindschaedler, Haixu Tang, and Carl A Gunter. Leaky cauldron on the dark land:
Understanding memory side-channel hazards in SGX. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, pages 2421–2434,
2017.

[43] Xiao Wang, Hubert Chan, and Elaine Shi. Circuit ORAM: On tightness of the
Goldreich-Ostrovsky lower bound. In Proceedings of the 2015 ACM SIGSAC Con-
ference on Computer and Communications Security, pages 850–861, 2015.

[44] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel attacks: De-
terministic side channels for untrusted operating systems. In 2015 IEEE Symposium
on Security and Privacy, pages 640–656, 2015.

[45] Andrew Chi-Chih Yao. How to generate and exchange secrets. In 27th Annual Sym-
posium on Foundations of Computer Science, pages 162–167. IEEE, 1986.

[46] Jiyong Yu, Lucas Hsiung, Mohamad El’Hajj, and Christopher W Fletcher. Data
oblivious isa extensions for side channel-resistant and high performance computing.
In Network and Distributed System Security Symposium, 2019.

[47] Samee Zahur and David Evans. Circuit structures for improving efficiency of security
and privacy tools. In 2013 IEEE Symposium on Security and Privacy, pages 493–507,
2013.

[48] Samee Zahur, Xiao Wang, Mariana Raykova, Adrià Gascón, Jack Doerner, David
Evans, and Jonathan Katz. Revisiting square-root ORAM: efficient random access in

46

multi-party computation. In 2016 IEEE Symposium on Security and Privacy, pages
218–234, 2016.

[49] Wenting Zheng, Ankur Dave, Jethro G Beekman, Raluca Ada Popa, Joseph E Gon-
zalez, and Ion Stoica. Opaque: An oblivious and encrypted distributed analytics
platform. In 14th USENIX Symposium on Networked Systems Design and Implemen-
tation, pages 283–298, 2017.

47

APPENDICES

48

Appendix A

Additional Pseudocode

A.1 Group Dimension Computation

1: function Fill-Dimensions(TC) . O(n)
2: c← 0
3: pe← dummy entry with j = tid =∞
4: for i← 1 . . . n do
5: e

?← TC [i]
6: if e.tid = 1 and e.j 6= pe.j then
7: c← 1
8: e.α1 ← c
9: else if e.tid = 1 and e.j = pe.j then
10: c← c+ 1
11: e.α1 ← c
12: else if e.tid = 2 and e.j 6= pe.j then
13: c← 1
14: e.α1 ← 0
15: e.α2 ← c
16: else if e.tid = 2 and e.j = pe.j then
17: c← c+ 1 if pe.tid = 2, 1 otherwise
18: e.α1 ← pe.α1

19: e.α2 ← c

20: pe← e
21: TC [i]

?← e

22: pe← dummy entry with j = tid =∞

49

23: for i← n . . . 1 do
24: e

?← TC [i]
25: if e.tid = 1 and e.j 6= pe.j then
26: e.α2 ← 0
27: else if e.tid = 1 and e.j = pe.j then
28: e.α1 ← pe.α1

29: e.α2 ← pe.α2

30: else if e.tid = 2 and e.j = pe.j then
31: e.α2 ← pe.α2

32: pe← e
33: TC [i]

?← e

34: return TC

50

