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Abstract 

The objective of this dissertation was to test and quantify the hypothesis from ecosystem 

thermodynamics: that the surface temperature of a terrestrial ecosystem changes with the state of the 

ecosystem in general, and with plant species diversity in particular. Daytime surface temperature of 

vegetated terrestrial ecosystems has been hypothesized to decrease with increased biomass and diversity 

as they in turn increase transpiration, respiration, physical thermal inertia, and productivity, thereby 

reducing the portion of energy re-emitted as thermal radiation. The hypothesis is tested, and the results 

and applications are discussed, within the context of ecosystem restoration. 

I investigated the relationship between ecosystem surface temperature and time since restoration, 

type of restoration methods, and changes in ecological attributes, including plant species diversity, in two 

projects restoring temperate wooded ecosystems.  

The first restoration studied, described in Chapter 2, was a 500+ ha project restoring farmland to 

oak woodland, spread over 31 fields. Thermal images from 4 space-based instruments along with 12 years 

of in-situ sampled ecological data of the project were analyzed and compared. Significant decreases in 

daytime summer surface temperature (4.5 °C in 12 years), and summer diurnal temperature variation (5 

°C in 8 years) over time since restorations were found. The study also found a significant relationship 

between increased plant species diversity and decreased surface temperature when controlling for plant 

cover and other vegetation attributes. Native plant species had a more pronounced relationship with 

surface temperature than exotic ones. The results from this study supported the hypothesis, quantified its 

effect, and showed how thermal imaging from space-based instruments may be used to assess the 

progress of restoration and the increase in species diversity.  

The second project studied, in Chapters 3 and 4, was of application of multiple overlapping 

restoration treatments to experimental plots at two former farmland sites already planted with trees, and 

one abandoned gravel pit. The main experimental restoration treatment was the transfer of topsoil from a 

donor forest. On top of the topsoil, further additions were made of woody debris, shrub plantings, and 

shade shelters. In-situ sampled ecological differences between experimental restoration treatments and 

controls were assessed in Chapter 3 and thermal differences in Chapter 4. 

Results from Chapter 3 indicated that most native forest plant species survived within the topsoil 

as it was transferred from the forest, and re-sprouted in the experimental plots on the second season after 

the transfer. The plant species community of topsoil recipient plots was significantly different from both 

recipient and donor site control plots as it contained both the transferred plant species and the species 

already present at the recipient sites. There was no significant effect on the plant community found from 

the woody debris, shrub plantings, or shade shelter treatments.  
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Since significant ecological differences were found in Chapter 3, it would be possible to find 

thermal differences in the same plots in Chapter 4 if the hypothesized relationship was true. To overcome 

the spatial and temporal resolution limitations of space-based instruments, an Unmanned Aerial Vehicle 

(UAV)-borne thermal camera was utilized to image the sites four times per day over 9 days. It was found 

that topsoil recipient plots in the gravel pit site, as well as the smaller and flatter of the two reforestation 

sites, had significantly lower temperatures than controls (7.0 °C and 2.0 °C respectively) and that the 

difference in temperature peaked at 2 pm. In the larger and more heterogeneous reforestation site, the 

normalized surface temperature was only significantly lower than controls (0.7 °C) at 8 pm. There was a 

significant negative correlation between native forest plant species and surface temperature at all three 

sites.  

The combined evidence from the two projects studied was that temperate wooded ecosystems 

undergoing restoration decreased in their daytime surface temperature and diurnal temperature variation 

over time, and compared to controls. This decrease is partly due to increasing species diversity. These 

results support the existence and the direction of the hypothesized, and before this mostly untested, 

relationship between ecosystem change (including species diversity) and temperature. It also provides 

examples of the relative significance and quantity of the same relationship using more ecological, and 

thermal imaging, data over a longer time-span than in previous studies. Both Chapters 2 and 4 found 

evidence for native and later succession forest plant species having a stronger effect on surface 

temperature than non-native and ruderal plant species. The dissertation makes a case for thermal imaging 

to be used both to evaluate and monitor the progress of restoration, and to quantify the ecosystem service 

of thermal buffering provided by restoration. It also demonstrates the relative strengths and limitations of 

space-based and UAV-borne thermal imaging instruments. 
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Chapter 1. Introduction 

“The intermediate forms assumed by solar energy until it falls to terrestrial temperatures can 

be fairly improbable, so that we can easily use the transition of heat from the sun to earth for 

the performance of work1” – Ludwig Boltzmann, 1886 

1.1. Objective 

The objective of this dissertation was to test and quantify the hypothesis from ecosystem thermodynamics 

that a terrestrial ecosystem’s surface temperature changes with the state of the ecosystem in general, and 

with plant species diversity in particular. The hypothesis is tested, and the results are quantified and 

discussed, within the context of restoring temperate wooded ecosystems. The discussion is especially 

focused on applying thermal imaging to restoration to evaluate and monitor its progress and to quantify 

the thermal buffering ecosystem service it provides. Two restoration projects are studied in this 

dissertation, one in Chapter 2, and the other in Chapters 3 and 4. Chapters 2 and 4 explore the objective 

directly, through the use of different technologies (space-based versus Unmanned Aerial Vehicle (UAV)-

borne thermal imagers), sites, and restoration methods (Table 1.1), but asking similar questions2: 

1. Does restoration of wooded ecosystems decrease its daytime summer surface temperature, and if 

so, by how much, either over time (Chapter 2) or by type of restoration method (Chapter 4)? 

2. When during the day is the thermal buffering effect of the restoration the most pronounced 

(Chapter 4) and could restoration increase relative nighttime temperatures, thereby decreasing 

diurnal temperature variation (Chapter 2)? 

3. What is the relationship between plant species diversity (native and exotic) and surface 

temperature, when taking into account total plant cover and other ecological attributes?  

Chapter 3 tests the relative ecological success of different restoration methods, including forest 

topsoil transfer, in moving the restored sites towards a state more like reference forest sites. Through this 

testing, Chapter 3 provides the necessary in-situ measured ecological data for comparisons to be made 

with surface temperature data in Chapter 4. Chapter 3 is tied to the main objective in that if there were no 

ecological differences between treatment and control plots found in that chapter, then there would be no 

reason to expect finding surface temperature differences in Chapter 4 experiments, and therefore no way 

of answering the dissertation questions.  

                                                      
1 Work, in Boltzmann’s writing and in thermodynamics in general is defined as any process in a system which exerts 

force on its surroundings. This includes any work by an ecosystem, including photosynthesis and transpiration. 
2 Chapter 4 combines the first and second dissertation question into one combined question in the chapter. 
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Table 1.1: Details of the two projects studied, illustrating how they attempt to answer similar questions at 

different sites and with different thermal imaging instruments.  

Sites and data collection details Project 1 (Chapter 2) Project 2 (Chapter 3 & 4) 

Location 
Norfolk County, Ontario, near 

Long Point and Lake Erie 

Simcoe County, Ontario, partially 

on the Niagara escarpment 

Site conditions before restoration 

method tested was implemented 
Active agriculture 

Former agriculture sites planted 

with trees (2 sites) and gravel pit 

Type of restoration treatment 

tested 

Oak woodland restoration by high 

diversity seeding of mid and late 

succession species 

Topsoil transfer from forest, woody 

debris, shrub planting and shade 

shelters (described in Chapter 3) 

Period of implementation of 

restoration 

First site (out of 31) initially 

restored in 2006, last site initially 

restored in 2013 

Trees planted in 2015 and 2016, 

topsoil transfer in fall 2017, 

additional treatments fall 2017 – 

spring 2018 

Ecological data collector 
Nature Conservancy of Canada 

trained staff (2007-2018) 

Author and research assistants in 

2019 (described in Chapter 3) 

Ecological attributes sampled and 

measured 

Abundance of plant species, ground 

cover, canopy cover and number of 

woody stems 

Abundance of plant species, ground 

cover, diameter and height of trees 

(described in Chapter 3) 

Thermal imaging platforms and 

instruments 

Landsat 5 (TM), 7 (ETM+) and 8 

(TIRS) satellites and the 

ECOSTRESS instrument on the 

International Space Station 

UAV quadcopter with DJI Zenmuse 

XT2 - FLIR Tau 2, uncooled 

microbolometer (Chapter 4 only) 

Thermal imagery collected and 

used 

53 thermal images during summer 

(May 31st to September 31st), over 

17 years, one image covered all 

sites 

Multiple imaging flights per day, 

over 9 days in July and September, 

2019, totaling 98 flights, collecting 

1080 images (Chapter 4 only) 

Tests of dissertation questions Chapter 2 Chapter 4 

1. Testing and quantifying 

temperature change due to 

restoration 

Linear mixed effects model and 

repeated measures correlation of 31 

field sites compared before and 

after restoration over 17 years 

(2002-2018) 

ANOVAs on linear mixed effects 

models of surface temperature of 

topsoil recipient plots versus 

controls at 3 sites 

2. Comparing differences in 

temperature change at different 

times of the day 

Linear mixed-effects model and 

repeated measures correlation of 

day and nighttime surface 

temperature of 19 sites of different 

age since restoration during 

growing season 2018 

ANOVAs, as above - comparing 

surface temperature difference of 

plot-types at 12, 2, 4 and 8 pm in 

June and September 

3. Relationship of surface 

temperature with plant species 

diversity and other ecological 

attributes 

Multiple linear regression of 

ecological data from 59 2x2 m 

sampling plots in 3 sites under 

active and passive restoration 

against normalized surface 

temperature over 12 years 

Correlation analyses of plant data 

from 150 2x0.5 m sampling plots, 

and size of all planted trees in 25 

12.5 x 10 m plots against 

normalized surface temperature in 

July 2019 
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1.2. Why focus on restoration of temperate wooded ecosystems?  

Increased loss and degradation of forests, and other wooded ecosystems3, due to human development, has 

led to a global decrease in biodiversity and ecosystem services such as carbon sequestration, soil 

protection, pollination, and water filtration (Chazdon, 2008; Costanza et al., 2014; De Groot et al., 2002; 

Löf et al., 2019; Sutton et al., 2016). Temperate forests and woodlands are threatened by invasive species, 

tree disease, and climate change, and have been cleared for agriculture and mono-culture tree plantations 

in many parts of the world (Millar and Stephenson, 2015; Newton and Featherstone, 2005). Specific types 

of temperate forests and woodlands are especially threatened. For example, less than 1 % of the historical 

extent of oak woodland, the focus of Chapter 2, remains in Ontario (Bakowsky and Riley, 1994). 

Translated into economic terms, ecosystem services provided by temperate forests are estimated to have 

been worth $US 9.4 trillion per year in 2011 (Costanza et al., 2014), which would equate to 13 % of 

global GDP in the same year (World Bank, 2020).  

Ecosystem restoration is the process of assisting and guiding the recovery of degraded or 

destroyed ecosystems (Clewell et al., 2004). When implemented successfully, restoration can change the 

ecosystems successional trajectory (Choi et al., 2008; Suding and Gross, 2006; Walker and del Moral, 

2009) and increase the speed of its recovery (Dobson et al., 1997; Suding, 2011); thereby returning many 

of the sought after ecosystem services (Benayas et al., 2009; Chazdon, 2008; De Groot et al., 2013; 

Perring et al., 2015). Due to the increasing need to recover ecosystem services, and the potential of 

restoration to do so, there have been multiple calls for scaling up restoration efforts massively (DellaSala 

et al., 2003; Löf et al., 2019; Suding et al., 2015). Prominent among these calls are the 2011 Bonn 

Challenge, where nations committed to restore 350 million ha of degraded and deforested terrestrial 

ecosystems by 2030, (Suding et al., 2015), and the United Nations declaration of 2021-2030 as the 

‘Decade on Ecosystem Restoration’ (Aronson et al., 2020; Young and Schwartz, 2019).  

1.3. Why does cooling and thermal buffering matter in restoration? 

A vegetated ecosystem decreases its surface4 temperature by transforming and storing some of the 

incoming solar energy through transpiration, respiration, and production of new biomass (Bonan, 2008 

chap. 16-18; Schneider and Kay, 1994), which decreases the proportion re-emitted as radiated thermal 

                                                      
3 The term ‘wooded ecosystems’ are used to refer to both closed canopy forests and more open woodland, such as 

the oak woodland restoration project presented in Chapter 2. 
4 Surface is referred to in this dissertation as the surface as seen by the thermal imager from above, which in a closed 

canopy forest means the canopy, or in the case of an more open woodland, or area undergoing restoration is a mix of 

the ground vegetation layer, soil, and canopy. 
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energy (sensible heat)5. In one study of a temperate mature forest ecosystem, 49 % of the energy absorbed 

by the forest was transformed into latent heat through evapotranspiration6 and 2.5 % was transformed and 

stored through respiration and production of new biomass (Gosz et al., 1978).  

The relative decrease of extreme or peak temperature by vegetation, referred to as thermal 

buffering (e.g. Aerts et al., 2004; Lin et al., 2020; Wagendorp et al., 2003) or temperature regulation 

(Costanza et al., 1997), has been considered an ecosystem service under the wider umbrella of climate 

regulation (Betts et al., 2018; Costanza et al., 1997; Lin et al., 2020). However, while it has been 

discussed within the context of urban heat island effects (e.g. Jenerette et al., 2011; Livesley et al., 2016; 

Rafiee et al., 2016) and green-roofs (e.g. MacIvor et al., 2016; Simmons et al., 2008), the service of 

thermal buffering provided by vegetated ecosystems has not yet been explored or quantified within 

the field of restoration ecology. Many large reviews and studies on ecosystem services affected by 

restoration have not included thermal buffering, or similar concepts, at all (e.g. Barral et al., 2015; 

Benayas et al., 2009; Birch et al., 2010; Bullock et al., 2011; Palmer and Filoso, 2009); even though the 

value of thermal buffering to restoration funders and stakeholders could be high. 

Areas affected by human development, such as quarries, pits, roads, and farm-fields, can all have 

increased daytime summer temperature compared to forests and other vegetated natural ecosystems under 

the same weather conditions (Holbo and Luvall, 1989; Lin et al., 2020; Tuff et al., 2016). These 

developed areas can also increase local temperatures into the edges of adjacent areas (e.g. Delgado et al., 

2007; Robinson et al., 2009; Tuff et al., 2016). If the adjacent areas are natural ecosystems, including 

forests, then plant and animal life could be adversely affected if temperatures rise beyond their tolerance-

limit (e.g. Hijmans and Graham, 2006; Jiguet et al., 2007; Tuff et al., 2016). If the adjacent areas are 

urban instead, then the increased peak temperatures can decrease human well-being (Douglas, 2012; 

Heaviside et al., 2017). Conversely, if the restoration of ecosystems can re-establish the cooling and 

buffering effects of more natural terrestrial ecosystems, and size of this effect can be quantified, it can 

become an effective argument for more restoration in both rural and urban areas.  

Exploring the relative cooling and thermal buffering effect of different ecosystem restoration 

methods could also lead to new methods for evaluating and monitoring the progress of restoration of 

wooded ecosystems. Through measurements from flux-towers, two studies have shown that temperature 

buffering ability increases as forests increase in age and height (Lin et al., 2017b) and decreases in forests 

                                                      
5 Heat is energy in transfer, and sensible heat is the transfer of energy that can be measured as a temperature change. 

Latent heat is the energy that is transferred through a phase change, due to a shift in volume or pressure – including 

the change of water from liquid to vapor (Cengel and Boles, 2008 chap. 3). 
6 Evapotranspiration refers to both transpiration from plants and evaporation from soil. For forested ecosystems the 

active transpiration of plants tends to dominate over passive evaporation, and can make up over 90% of the total of 

evapotranspiration during the growing season (Jasechko et al., 2013; Wilson et al., 2001).  
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that are considered more degraded (Lin et al., 2017a). An earlier study using an airborne thermal infrared 

scanner also showed that younger recovering forests and plantations were warmer than older forests 

(Holbo and Luvall, 1989). Through thermal imaging from UAV, one study has shown that relative surface 

temperatures of diseased trees increase in semi-naturalized tree plantations (Smigaj et al., 2019). Water 

stress has also been shown to increase surface temperatures in monoculture tree plantations (e.g. Iizuka et 

al., 2018; Ludovisi et al., 2017). With the results from these studies in mind, it seems plausible that the 

relative progress of a forest restoration project could be evaluated and monitored by its ability to cool and 

buffer temperatures through mapping and comparisons over space and time. Aside from a single one-year 

study conducted using hand-held infrared thermometers (Aerts et al., 2004), the use of surface 

temperature for monitoring and evaluation has not been explored within the field of restoration ecology.  

1.4. Why does it matter when the cooling and buffering occurs? 

The surface temperatures of ecosystems decrease as incoming energy from the sun is stored and 

transformed. Some of that energy is only stored for a short period – minutes to hours – either as 

physically stored thermal inertia7 (Jayalakshmy and Philip, 2010) or as chemical energy stored in the 

respiration process. The respiration process uses energy taken up during the day, releasing some of the 

remaining energy as sensible heat during the night. With an increase in biomass, the capacity to 

physically and chemically store energy increases, and more of it is released later in the day, and into the 

evening and night, leading to increasing temperatures away from the daytime peak (Chen et al., 1999; e.g. 

Lin et al., 2020). In this way, recovery after ecosystem restoration could be evaluated not only by how 

much it lowered high temperatures during the day, but also on how it raised low temperatures at night – 

or, taken together, by the range of diurnal variation in surface temperature (Figure 1.1), as explored in the 

second experiment of Chapter 2. 

                                                      
7 Thermal inertia is the relatively slow conduction of energy through a material, which is based on the material’s 

heat capacity and its conductivity (Jayalakshmy and Philip, 2010; Kondepudi and Prigogine, 2014).  



 

6 

 

 

Figure 1.1: Illustration of hypothesized difference in diurnal temperature variation of a forest ecosystem 

early after restoration versus later. The same illustration also works for comparing the difference between 

same-aged projects where the restoration effort was more or less successful. Projects and sites can be 

compared by subtracting temperature variations at the same two points in time (lines with arrows), near their 

daily maximum and minimum temperatures. 

It should not be assumed that the diurnal pattern is always that surface temperature is buffered 

most at the time of peak incoming radiation, or highest overall temperatures. For example, in a very hot 

and arid climate, where plants would shut down their activity during the mid-afternoon to preserve water 

(Chaves et al., 2016) it may be that more cooling occurs later in the day and evening when transpiration 

resumes. Exploring when during the day thermal buffering was most pronounced for our temperate forest 

site in southern Ontario is part of the contribution of Chapter 4.  

Humans, non-human animals, and plants all have rhythms of activity during the day and night 

(circadian, or otherwise), and it matters not just how much thermal buffering happens but also when it 

happens. A relative increase in nighttime temperature during the growing season could be a benefit for 

some organisms that cannot regulate their own temperature well, such as ectothermic lizards (Kearney et 

al., 2009; Tuff et al., 2016). For humans in urban settings, cooling is most sought after during summer 
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afternoons, as evidenced by air-conditioning usage (e.g. Salamanca et al., 2013). If it can be shown that 

restored ecosystems not only cool average surface temperatures but that they do so at times when cooling 

is needed the most, then it adds further to the argument for the thermal buffering service of restoration, 

whether urban or rural. 

1.5. Why explore the relationship between surface temperature and diversity? 

Increasing biodiversity is often considered both a goal and a measure of restoration project success 

(Benayas et al., 2009; Bull et al., 2013; Bullock et al., 2011). Studies based on the thermodynamics of 

ecosystems have hypothesized that species diversity, along with increased trophic, structural, and 

functional complexity, could further increase the cooling and temperature buffering of ecosystems (Fraser 

and Kay, 2004; Kay, 2000; Schneider and Kay, 1994). If we can establish that temperature buffering 

increases not just with biomass but also with plant species diversity, then thermal imaging becomes a 

much more interesting and useful tool for ecosystem evaluation and monitoring.  

The mechanisms through which increased biodiversity could decrease and buffer surface 

temperatures are indirect. Increased plant diversity has been shown to be able to increase and stabilize 

both transpiration (Baldocchi, 2005) and productivity (Cardinale et al., 2007; Hooper et al., 2005; Tilman 

et al., 2001), which are the principal processes of ecosystem energy transformation and cooling. This 

increase and stabilization in transpiration and productivity with increasing diversity has been ascribed to, 

among others, an increase in nutrient cycling (Loreau, 1995), and an increase in variations in root depth, 

life-span, leaf assemblage (overlap and shape), and phototropism (Baldocchi, 2005; Schneider and Kay, 

1994). This dissertation contributes by testing the hypothesis brought forward by Schneider and Kay 

(1994) – that diversity decreases surface temperatures – which so far remains mostly untested (Avelar et 

al., 2020; Cushman, 2015). The dissertation further explores if later succession native plant species have a 

stronger cooling effect than more ruderal exotic plant species. The theoretical argument for native and 

later succession plant species having a stronger effect on surface temperature is that they have evolved to 

be more effective at energy uptake in their native range. They may also increase structural and trophic 

complexity more than exotic and ruderal species, which further increases energy uptake. If it is true that 

native and later succession species cool more, then this also strengthens the use-case for thermal imaging 

of restoration, as the goal of many forest restoration projects is not just an increase in species diversity, 

but specifically an increase in native species diversity (Stanturf et al., 2014). 

The tests on the relationship between temperature and diversity were done by combining thermal 

imaging and in-situ measurements of plant species diversity and other ecological data. I have so far not 

come across any other comparison of thermal imagery from space or UAV with in-situ sampling of plant 

diversity. The closest study used surface temperature taken from data loggers, compared with forest sites 
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of different species diversity, mainly old-growth forests, and tree plantations, and found a significant 

cooling in the more diverse and complex old-growth forests (Norris et al., 2012). Another study used 

thermal imaging but used structural complexity as measured remotely as a proxy for diversity (Avelar et 

al., 2020). Unfortunately, there seems to be a lack of collaboration between thermal remote sensing 

scientists and field ecologists.  

While the results and applications discussed in this dissertation are done so mainly within the 

context of restoration, I also believe the findings can be expanded and adapted further into related areas of 

research and practice, such as conservation, ecosystem management, and systems ecology.  

1.6. Dissertation outline 

This dissertation aims directly, or indirectly, to answer the questions outlined at the beginning of this 

chapter and discuss the implications of these answers. It consists of three manuscript data chapters and a 

concluding chapter: 

Chapter 2 presents the first study of the dissertation, which was comprised of three connected 

experiments. For the three experiments, we8 utilized thermal imaging and in-situ sampled ecological data 

from a 500+ ha oak woodland restoration project, spread over 31 fields in Norfolk County, Ontario, 

Canada. Experiment 1 compared the surface temperatures of 31 former agricultural fields before and after 

undergoing restoration for a total of 16 years, using thermal images from three Landsat satellites and the 

ECOSTRESS instrument on the International Space Station. Experiment 2 compared daytime thermal 

images from Landsat 8 and ECOSTRESS against nighttime imagery only available from ECOSTRESS, 

during 2018. Experiment 3 compared in-situ sampled ecological data, including plant species diversity 

data, against thermal data for 3 restoration fields (more details in Table 1.1). This chapter is published in 

the journal Ecological Indicators as Hamberg et al. (2020). 

Chapter 3 describes the implementation of an experiment (and second study of the dissertation) 

applying multiple restoration treatments methods to plots in two former farm-field sites already planted 

with trees, and one gravel pit site in Simcoe County, Ontario. The most prominent treatment applied and 

tested was that of topsoil transfer from a nearby deciduous forest. The experiment also included the 

addition of woody debris, shrub plantings, and shade-shelters on top of the added topsoil. Multiple types 

of control plots were also established at both topsoil donor and recipient sites. The plant diversity, plant 

community composition, and tree growth of the topsoil and control treatments were compared, through 

ANOVA and Analysis of Deviance Wald Chi-Square tests on linear mixed regression models, and 

through PERMANOVA tests on Non-Metric Multidimensional Scaling models. These tests were 

                                                      
8 These chapters uses the third person ‘we’, as committee members have provided guidance and are, or will be, co-

authors of these studies.  
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conducted to ascertain if the topsoil transfer and additional methods were useful for improving the 

trajectory of the restoration towards a native late-succession forest species composition. The tests were 

also conducted to see if there were ecological differences that could be investigated through thermal 

imaging in the following chapter. 

Chapter 4 compares the surface temperature of topsoil recipient, and control, plots of the three 

experimental sites described in Chapter 3. To compare and quantify the surface temperature at different 

times of the day and of the growing season, we utilized thermal images from a UAV taken 4 times per 

day over 9 days total in July and September 2019. We then used correlation analyses to explore the 

relationship between the normalized surface temperature of all treatment and control plots and the in-situ 

sampled ecological data from Chapter 3, to test if increased species diversity, and other ecological 

attributes, correlated significantly with decreased surface temperatures as hypothesized (more details in 

Table 1.1).  

Chapter 5 concludes the dissertation by considering what the results of the studies mean for how 

we think about the surface temperature of ecosystems undergoing restoration, and how thermal imaging 

from both space-based instruments and UAV could potentially be utilized by restoration and conservation 

managers. It also outlines potential paths of research to further test and deepen our understanding of how 

ecosystem diversity, function, and structure affect temperature.  
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Chapter 2. Surface temperature as an indicator of plant species 

diversity and restoration in oak woodland 

2.1. Introduction 

A goal in many restoration projects of wooded ecosystems is to establish a highly diverse mix of native 

vegetation (Ruiz-Jaén and Aide, 2005; Suding et al., 2015). However, recovery may take decades, and 

issues such as low viability of planting stock or seeds, changes to the surrounding landscape or climate, 

disease, or invasive species can put the ecosystem on an unwanted trajectory (Halme et al., 2013; Suding, 

2011). To identify these issues before they become irreversible, and adjust restoration procedures to reach 

a goal of high native species diversity requires consistent monitoring (DeLuca et al., 2010; Wortley et al., 

2013).  

The most common form of monitoring and evaluation of terrestrial restoration efforts is through 

in-situ sampling of vegetation (e.g., ground and canopy-cover, composition, species diversity) and soil 

factors that are used as indicators of the current state of the ecosystem and when repeated offer insight 

about the trajectory of the ecosystem (Ruiz-Jaén and Aide, 2005; Wortley et al., 2013). However, as 

restoration projects increase in their number, size, and complexity (DeLuca et al., 2010; Suding et al., 

2015), in-situ sampling can become too costly and time-consuming (Henry et al., 2019; Reif and Theel, 

2017). 

Remote sensing offers one approach to overcome the spatial and cost limitations of field sampling 

(DeLuca et al., 2010; Reif and Theel, 2017). Satellite imagery can be used to quantify patterns of plant 

diversity, but to do so directly requires very high-resolution imagery (<= 5 m), which is expensive 

(Nagendra et al., 2013; Turner et al., 2003). In addition to diversity, a compilation of spectral bands has 

been used to estimate vegetation cover (e.g. Leaf Area Index) and photosynthetic activity (e.g. 

Normalized Difference Vegetation Index) in scientific studies of restoration, but implementation of these 

methods by restoration practitioners remains uncommon (Nagendra et al., 2013; Reif and Theel, 2017). 

Less common still is the use of remotely sensed thermal imaging to monitor and assess ecosystem 

restoration projects. Contemporary reviews of remote sensing of ecosystems and monitoring of 

restoration fail to mention thermal imaging or do so only briefly (e.g., de Almeida et al., 2019; Pettorelli 

et al., 2018; Reif and Theel, 2017). Yet, thermal data can be used to measure or estimate important 

ecosystem characteristics such as canopy temperature (Luvall et al., 1990) and evapotranspiration and 

water stress (Fisher et al., 2017).  

Thermal imaged relative surface temperature may also have potential as an indicator of relative 

change in plant species diversity. Plants have some capacity to regulate their leaf temperature using 
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evolved traits such as stomatal conductance, geometry, and absorptivity (Michaletz et al., 2015). An 

increase in plant species diversity increases the diversity of functions (e.g., nutrient uptake), structures 

(e.g., root-depth and xylem structure), and phenology (e.g. leaf-out timing) in an ecosystem (Baldocchi, 

2005; Isbell et al., 2009). These variations can increase the ratio of incoming solar energy used by the 

ecosystem both through evaporation and photosynthesis, and decrease the ratio of energy reflected or re-

emitted as heat (Baldocchi, 2005; Jorgensen and Svirezhev, 2004; Kay, 2000; Schneider and Kay, 1994). 

This means that on a warm clear summer day without strong winds and all other factors being equal, more 

diverse ecosystems should be cooler than less diverse ecosystems (Fraser and Kay, 2004). 

 An increase in diversity of function and structure has also been theorized to allow for an 

ecosystem to retain solar radiation for longer, both through physical and chemical heat storage; 

moderating daily thermal fluctuations (Norris et al., 2012; Ulanowicz and Hannon, 1987). By retaining 

the heat and releasing a larger portion of it at night, the more diverse ecosystem remains warmer at night 

and cooler during the day (i.e. less diurnal temperature variation) relative to a less diverse, but otherwise 

similar, ecosystem (Fraser and Kay, 2004; Ulanowicz and Hannon, 1987).  

Ecosystem development has been shown to correlate positively with cooler temperatures, as 

measured with airborne thermal sensors (Luvall et al., 1990). Ecosystems with more structural complexity 

and trophic interactions heat up slower than less complex ecosystems when measured with hand-held 

thermometers (Aerts et al. 2004). Studies of flux-net tower measurements have found that mature forest 

buffer temperature change most effectively and that this capacity decreases with degradation of the forest 

(Lin et al., 2017a). Similarly, thermal imagery from an Unmanned Aerial Vehicle has been used to detect 

stress due to disease in trees by patterns of increased heat (Smigaj et al., 2019). However, thermal 

imaging has not been applied using satellite data over time on ecosystems undergoing restoration. 

Thermal imaging data has also not been compared to in-situ sampled plant species diversity and cover 

data.  

To overcome these gaps, and answer calls to expand the toolset of remote sensing indicators for 

restoration monitoring and evaluation (Anderson et al., 2017; de Almeida et al., 2019; Reif and Theel, 

2017), we sought to answer the following three questions: 

1. Is there a difference in ecosystem surface temperature before and after restoration and if so, what 

is the rate of change over time since restoration commenced? 

2.  To what extent does diurnal temperature variation change with time since initial restoration? 

3. Accounting for biomass and shade conditions, what, and how large, is the effect of increasing 

plant species diversity on surface temperature? 
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To answer these questions, we quantify surface temperature from thermal satellite imagery across 

a set of fields undergoing active restoration (through seeding), and passive restoration (unseeded), and 

normalize the temperature against stable areas made up of nearby mature forests. We compare satellite-

based measurements to ground-surveys to determine the efficacy of satellite-based thermal data for 

predicting changes in ecosystem diversity as a function of surface temperature change. Furthermore, we 

use ground and canopy cover data to control for effects of biomass or shade. 

2.2.  Methods 

2.2.1. Study Area 

A large-scale restoration project was established in Norfolk county, southern Ontario in 2006 by the 

Nature Conservancy of Canada (NCC). The goal of the project was to restore 700+ ha of mainly 

agricultural fields to prairie, wetland, mixed forest, and oak woodland (Figure 2.1). The project is spread 

over 34 properties, some of which contain multiple fields.  

The majority of the fields are on eolian fine sand to sandy loam soil, with some edges of fields on 

variable alluvial deposits. Fields LBC 3-E and LBC 5 are on clay soil (OMAFRA, 2015). The area is flat 

except for sand dunes and smaller stream valleys (OMNRF, 2019). Preparation for restoration included 

earth moving to recreate microhabitat, plowing, spraying of herbicides, and fencing to reduce grazing by 

deer. All fields were seeded with a high diversity seed mix containing between 85 and 106 species of 

native herbaceous plants, prairie grasses, shrubs, and trees, dominated by oaks (Gartshore, Unpublished; 

Henry et al., 2019; Inlow, 2010, pp. 23–29; Nature Conservancy of Canada, 2006).  
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Figure 2.1: Map of NCC restoration fields that fulfill the criteria for the study (blue) and paired mature 

forest normalization areas (black). The red rectangle represents the most mature deciduous forest in the 

region, and it was used to normalize images for the map in Experiment 1. Green represents forested areas. 

Names of sub-areas and numbering of fields are the same as used for NCC property maps. Cardinal 

directions are used for separate fields within NCC properties. 

The first NCC property site to undergo restoration in the project was Lake Erie Farms. The site is 

composed of three fields and is the only site in the project to be in-situ sampled. During restoration one 

area in each field was left unseeded and represents a passive restoration area. The areas surrounding the 

Lake Erie Farm restoration fields are mainly mature (50+ years) mixed hardwood forest, dominated by 

oak (Quercus spp.) and maple (Acer spp.) with a closed canopy (Henry et al., 2019; Nature Conservancy 

of Canada, 2006). The majority of the property is on well-drained Plainfield fine sand soil (Nature 

Conservancy of Canada, 2006). While only these three fields have been systematically surveyed, 

discussions with NCC staff and the practitioner responsible for the seeding and upkeep (personal 

communications, Liv Monck-Whipp 2019 and Mary Gartshore 2016) and personal observations in 2016 
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and 2017 indicated that most restoration fields in the project were increasing in both biomass and plant 

species diversity. 

2.2.2. Experiments 

We designed three experiments that each corresponds with, and seek to answer, one of the three questions 

posed: 

Experiment 1: Temperature change over time since restoration. The relative mid-day land-surface 

temperature of 31 agricultural fields being restored to woodland by NCC was compared, both before and 

after restoration, over the period 2002-2018 using Landsat and ECOSTRESS imagery.  

Experiment 2: Comparison of diurnal temperature variation and time since restoration. The difference 

of surface temperature between day and night for three pairs of ECOSTRESS and Landsat images was 

compared for 19 restoration fields in 2018, through a space-for-time substitution, with years since 

restoration as the independent variable.  

Experiment 3: Comparison of vegetation and temperature. Relative land surface temperature data from 

three Landsat satellites were compared to vegetation data, including plant species diversity data, sampled 

at ground level for three restoration fields at the Lake Erie Farms property from 2007 to 2018. 

2.2.3. Site and imagery selection 

To allow for sufficient photosynthetic activity, the criteria for including satellite imagery in the study 

were that imagery had <20% cloud cover over the study area (full extent of Figure 2.1) and that it was 

captured between May 31st and September 31st of 2002 to 2018. Weather data (Figure 2.2), taken from the 

Delhi weather station (Environment Canada, 2019), 26 km north of the southern-most restoration site, 

was used to exclude any image taken when surface temperature measurements of vegetation would not 

accurately reflect the energy use of the ecosystem. To avoid a large cooling effect on leaves from wind, 

imagery was only selected if wind-speeds were below 25 km/h (Grace, 1988). To avoid transpiration and 

photosynthesis slow-down imagery was only selected if air-temperatures were between 10 and 40 °C and 

relative humidity was below 75% (Körner, 2006).  
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Figure 2.2: Air temperature, relative humidity and wind-speed measured within 30 minutes from imagery 

taken for all daytime imagery used in the experiments.  

2.2.3.1. Site selection for Experiment 1 - Temperature change over time 

To be included in this experiment, restoration fields had to have at least 5 years of data (initially restored 

by 2013 latest), to limit the effect of variable weather conditions and short-term disturbances. Fields had 

to be at least two hectares in size and a minimum of 100 m wide on the shortest side, to decrease edge 

effects. Thirty-one fields fulfilled our selection criteria (Figure 2.1). To further decrease edge effects, all 

field polygons were reduced by a 20 m interior buffer before analysis. The total size of all fields after 

removing the buffer area was 294.5 ha, with a mean field size of 9.4 ha (SD 6.8 ha), the largest field was 

26.8 ha and the smallest 2.6 ha.  

To allow for normalization of temperature over time, each restoration field was paired with an 

adjacent mature forest area. Hereafter referred to as ‘normalization areas’. These areas were selected to 

border the restoration field, have an area within 10% of the restoration field’s size, have as similar 

perimeter-to-area ratio as the landscape permits, have a similar amount of edge adjacent to active 

agriculture fields and be composed of a closed canopy deciduous forest. Each forest area was checked 

visually using aerial high-resolution imagery from 2006, 2009, 2010, 2014, 2016 and 2018, and lower 

resolution satellite imagery from 2002 in Google Earth (Google Inc.), and adjusted to avoid canopy 

openings or other visible disturbances. We further checked to avoid any major differences in elevation or 

soil conditions using a Lidar-derived terrain model and the Ontario Soil Survey Complex (OMAFRA, 

2015; OMNRF, 2019). For analyses, the forest areas were reduced by a 20 m interior buffer, similar to the 

restoration field. 
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2.2.3.2. Site selection for Experiment 2 - Diurnal temperature variation change with time 

The criteria for site selection for Experiment 1 were also used for Experiment 2. Additionally, this 

experiment uses space-for-time substitution – i.e., different fields representing different ages since 

restoration, measured at the same time – and further criteria were needed to control for edge and center 

effects due to field size and shape differences. Temperature has been shown to be affected by the edge up 

to 50 meters into an oak-chestnut forest (Matlack, 1993; Robinson et al., 2009) and forests also influence 

prairie and open fields ecologically, through in-seeding, and thermally, through shading and its effect on 

wind-patterns and moisture (Dovčak et al., 2005; Gehring and Bragg, 1992). To minimize edge effects 

between adjacent forest and our restoration areas the internal edge buffer was increased to 70 m. Further, 

to give each field a more equal amount of perimeter-to-area ratio (Hunsaker et al., 1990) any area more 

than 140 m from the edge of the field was removed. After applying the buffers we removed all areas that 

were under 1 ha, resulting in 19 field areas of analysis between 1 and 10.5 ha. 

2.2.3.3. Site selection for Experiment 3 - Comparison of vegetation and temperature 

For Experiment 3, sites were selected from Lake Erie Farms, as it is the only property where vegetation 

monitoring has taken place. The criteria for selecting the areas of study within the property was for all 

areas to have a minimum of 6 sampling plots within them, and for each area to be as large as possible 

while keeping all sites approximately the same size, shape, and edge and distance to forest. We also 

checked the altitude and slope of restoration areas from Lidar-derived data (OMNRF, 2019). 

All three passive restoration areas were retained and three active restoration areas of similar size 

(2589-2708 m2), shape and distance to forest edge were selected; one near each of the passive restoration 

areas. A similarly sized and configured mature forest normalization area was selected to pair with each 

restoration area in order to compute relative temperatures between restoration areas and mature forest 

areas to allow for comparisons of temperature and vegetation over time. All polygons used for thermal 

measurements were given a minimum 20 m internal buffer from any other treatment or ecosystem type 

(Figure 2.3).  
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Figure 2.3: Map of the Lake Erie Farms property and restoration sites. Three paired active restoration, 

passive restoration and mature forest normalization areas were selected for the study, along with the nearest 

transect of vegetation sampling plots.  

2.2.4. Vegetation sampling and measurements 

Once per year, from 2007 to 2018, trained NCC staff surveyed 137 2x2 m plots on the Lake Erie Farms 

property, for percentage ground cover of each plant species present. From 2011 onwards, the sampling 

also included a count of the number of woody stems and percentage canopy cover for each species. In 

total, the areas included in Experiment 3 include 59 survey plots with at least 6 plots per studied area 

(Figure 2.3). The mean measurements of each plot transect were used for statistical analysis. Our use of 6 

plots or more for each area provides a representative sample of the larger area as determined by previous 

research at our study site (Henry et al., 2019). 
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The percentage ground cover of each plant species in each plot was used to calculate the 

‘effective number of species’ or ‘Hill number’ (Table 2.1). The Hill number is based on the Simpson-

dominance diversity index and accounts for both total species richness and its evenness (Chao et al., 

2014). Species were defined as native or exotic to Ontario according to the Database of Vascular Plants of 

Canada (Brouillet et al., 2010). Ecological data from the project are available in Hamberg (2019). 

Table 2.1: Summary of diversity measurement equations, where λ is the diversity or evenness, R is the total 

species richness for the plot surveyed, and p is the proportional cover of species i. 

Simpson-dominance index 𝜆 =∑𝑝𝑖
2

𝑅

𝑖=1

 

Simpson Hill number 1 ∑𝑝𝑖
2

𝑅

𝑖=1

⁄  

 

In-situ sampled percentage ground cover by vegetation, number of woody stems, and percentage 

canopy cover, as well as relative NDVI derived from Landsat imagery were used as proxies for biomass. 

Total percentage canopy cover was also used an indicator for potential shading effects.  

2.2.5. Selecting and processing satellite imagery 

Satellite data were acquired from NASA/USGS satellites Landsat 5, Landsat 7 and Landsat 8, and from 

the ECOSTRESS thermal imaging instrument mounted to the International Space Station (ISS). Landsat 

imagery thermal bands from each satellite (Band 6, Band 6 VCID_2, and Band 10 respectively) were used 

to estimate at-satellite brightness temperature. The red and near-infrared bands from the Landsat satellites 

were used to derive NDVI measurements. Landsat 7, 8 and ECOSTRESS thermal radiometric accuracy 

has been found to be within ±1 °C at 27 °C when validated against ground measurements (Hook et al., 

2019). To process and correct Landsat level-1 satellite data (Zanter, 2019) a Digital Number to Land 

Surface Temperature (DNtoLST) model was constructed using ArcGIS Desktop 10.5.1 (ESRI) Model 

Builder. 

Landsat data is adjusted for emissivity in the DNtoLST model using NDVI threshold method 

(Jiménez-Muñoz et al., 2009). Soil and vegetation emissivity values were sourced from the ECOSTRESS 

library (Meerdink et al., 2019) and literature (Sobrino et al., 2008) based on soil maps of the site and 

vegetation surveys (Nature Conservancy of Canada, 2006). Atmospheric adjustment were done using the 

Atmospheric Correction Parameter Calculator (Barsi et al., 2005). Any area within 200 m of a cloud was 

removed from analysis. For a detailed description of processing methods, see Appendix 2A. With the 

surface temperature adjusted for emissivity and atmospheric conditions, the DNtoLST model then outputs 
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summary statistics weighted by the percentage of the pixels that were inside the polygon of interest 

(Conrad, 2003). 

The native resolution of thermal images from Landsat 5 and 7 is 120x120 m, and 100x100 m for 

Landsat 8 but all Landsat level-1 thermal data are provided as resampled to 30x30 m pixels (U.S. 

Geological Survey, 2016). Data from each field were only used if at least 75% of pixels were available for 

the sampled restoration area polygon and its paired normalization area polygon.  

In addition to the acquired Landsat data, land surface temperature data were acquired from 

ECOSTRESS (build version 5.03) for 2018 through the Early Adopter program (Hulley and Hook, 2018) 

and converted to geo-located grid data using the swath2grid python programming tool (Krehbiel, 2019). 

ISS orbit varies and therefore so does ECOSTRESS time of local imagery acquisition. Imagery from 

ECOSTRESS were considered as taken during the day and included in all experiments if it was captured 

between 10:00 and 19:00 eastern standard time, which provided a buffer following sunrise for the 

ecosystem to warm up and commence photosynthetic activity. ECOSTRESS imagery were considered as 

taken during the night, and included in Experiment 2, if taken between 22:00 and 07:00, to allow the 

ecosystem to cool after sunset. ECOSTRESS has a spatial resolution of 69x38 m.  

Out of approximately 232 images available for the area and time from Landsat 5, 7 and 8, 48 

images fulfilled the criteria for the 2002 to 2018 period. The only year without a single useable product 

was 2012 (Figure 2.4). Five cloud-free ECOSTRESS images between first imagery of the site in July 30 

to September 21 2018 were found and included in the study. Two of these images were recorded close to 

mid-day and were included in all experiments. Three of the 5 useable ECOSTRESS images were taken 

during nighttime and were only included in Experiment 2. 

 

Figure 2.4: Imagery taken near noon and used for Experiments 1 and 3 by instrument year and month.  L5-

L8 - Landsat 5-8 satellites.  
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2.2.6. Statistical comparison and analysis 

To test the statistical significance of temperature and vegetation changes over time in all experiments in 

this study we fit linear mixed effects models, repeated measures correlations and multiple linear 

regressions (ordinary least square). All analyses were performed in R. The linear mixed effects models 

use the ‘lme4’ package in R, and we report confidence intervals but p-values are not appropriate for these 

mixed models and are therefore not reported (Bates et al., 2015). Repeated measures correlation were 

calculated using the ‘rmcorr’ package in R (Bakdash and Marusich, 2017). This tests for the significance 

of the correlation of slopes between different grouping factors while allowing for varied intercept. The r-

value reported for these tests signify how correlated the slopes are, with 1 and -1 being perfect 

correlation. It does not signify anything about the angle of the slope, beyond it being positive or negative 

(Bakdash and Marusich, 2017).  

The data used for multiple linear regression analyses were checked to see that they fulfill the 

assumptions of linearity, near-normal distributions, and equal variance by plotting values, histograms and 

residuals and computing Pearson correlation matrices. Presence of collinearity of ecological variables was 

tested using the variance inflation factor (VIF) using the ‘olsrr’ package in R (Hebbali, 2017). For linear 

mixed effect models and repeated measures correlations, the independence within random grouping 

factors are relaxed (Bakdash and Marusich, 2017; Bates et al., 2015), but all other assumptions for linear 

regression hold and were tested as above. In all cases, for all experiments, all assumptions were met in 

this study without any transformation needed of any data. 

2.2.6.1. Normalizing temperature by paired mature forest normalization areas  

As thermal imagery is taken at different days with different air temperature and weather conditions, the 

surface temperature change within fields cannot be compared directly over time from image to image. For 

Experiment 1 and 3, the relative surface temperature data for each restoration field was therefore 

computed as the percentage difference between the restoration field’s surface temperature and the surface 

temperature of its adjacent mature forest normalization area (Figure 2.1). 

 Mature forests change in biomass and diversity only slowly and should therefore not change 

nearly as much as the restoration areas from 2002-2018. Surface temperature response from the forest 

should therefore also remain the same and the forest should have a similar surface temperature on a day in 

2002 and 2018 if solar insulation, ground water availability, wind and humidity are the same on those 

days. To test this assumption, we performed a linear-mixed effect model on all measurements from 

Landsat satellites of all mature forest normalization areas from 2002 to 2018 with each field of the 31 

fields as random grouping factor. Although these measurements depend on the weather of the day they 
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were acquired, as long as there is no significant decreasing or increasing trend over time the assumption 

of the mature forest being relatively stable for normalization of temperature over time holds.  

2.2.6.2. Statistical analysis and mapping for Experiment 1 - Temperature change over time 

To test if relative temperature (dependent variable) changed significantly with time since restoration 

(independent variable) we performed a linear-mixed effects model, and to test if the change was 

significantly correlated between fields, we performed a repeated measures correlation. To control for the 

same fields being measured repeatedly over time, and as each field varied in size and in their landscape 

context, the restoration field was used as the grouping factor in both methods. Before restoration, all 31 

fields were in agricultural production. To determine if there was a change in the pattern of temperature 

after initial restoration, a linear effects model and repeated measures correlation were performed 

separately first for all 31 fields for the time from 2002 to initialization of restoration (2006 to 2013, 

depending on the field), when they were still agricultural fields. The same methods are then used for the 

same fields after initial restoration (2007-2014) until 2018. A pattern of decrease in temperature only after 

initial restoration would indicate that the plant growth from restoration is behind the effect. 

A map was created of the mean temperature change of restoration areas between 2014 (the first 

year all restoration had been initialized) and 2018 to test if temperature change can be located and 

displayed within and between fields. All temperature data in imagery for these years was first subtracted 

by the temperature of the Backus Woods normalization area (Figure 1), the mean of the temperature of 

the three images from 2014 was then subtracted from the mean of the 4 images from 2018. 

2.2.6.3. Statistical analysis for Experiment 2 - Diurnal temperature variation change with time 

In this experiment, we define diurnal temperature variation as the temperature difference between mid-

day and late night. First, we compared mean surface temperatures to time since restoration for each 

restoration field within one image for daytime and nighttime ECOSTRESS and Landsat images in 2018. 

Second, to test if nighttime imagery showed a common trend in temperature change with time since 

restoration, we fit a repeated measures correlation and linear mixed-effects model with the imagery from 

which the measurement was extracted as random grouping factor. The same statistical methods were used 

separately to test the common trend temperature of daytime imagery. 

To test if diurnal temperature variation decreased over time since restoration, we paired each 

nighttime imagery’s temperature data with the nearest unused daytime imagery’s temperature data by 

date, subtracting the nighttime temperature from the paired daytime temperature for the same field to find 

the diurnal variation. We then performed a repeated measures correlation with percentage diurnal 

temperature difference as the dependent variable, the field’s time since restoration as independent variable 



 

22 

 

and imagery as grouping factor, to test the significance of the common trend. A linear mixed-effects 

model with the same factors was used to find the mean slope and its confidence interval. 

2.2.6.4. Statistical analysis for Experiment 3 - Comparison of vegetation and temperature 

To determine the relative effects of plant species diversity, percentage ground cover, percentage canopy 

cover, stem count, and years since restoration on surface temperature measurements, a multiple linear 

regression model was used. Data from 2018 were excluded from this model as canopy cover and stem 

count was not properly recorded that year. 

To test the relationship between relative surface temperature as the dependent variable and 

vegetation abundance, plant species diversity and time since restoration as independent variables while 

including 2018 data, we performed two more multiple linear regression models. As proxies for biomass, 

the first model used total percentage vegetation ground cover and the second used the percentage 

difference of NDVI between the restoration fields and their normalization area. To test for a potential 

difference in effect of native versus exotic plant species, we performed a simple linear regression of 

native and exotic diversity against relative temperature. To test which variables have the most statistical 

explanation power we compared the Akaike Information Criterion – corrected (AICc) using the ‘dredge’ 

function of the ‘MuMin’ package in R (Barton, 2020). The AICc compares different combinations of 

independent variables ability to statistically explain change in the dependent variable, penalizing models 

with higher number of variables (Brewer et al., 2016). 

2.3. Results 

The linear-mixed effects model performed shows no significant change (95 % CI: -0.003 to 0.100 

C°/year, N = 1148) of surface temperature in the mature forest normalization areas from 2002 to 2018. 

This indicates that the normalization areas are appropriate stable comparisons for the restoration areas in 

Experiment 1 and 3. 

2.3.1. Results of Experiment 1 - Temperature change over time 

For the experiment comparing relative surface temperature of 31 restoration fields over time between 

2002 and 2018, 1109 measurements of mean land surface temperature were included; 599 of those 

measurements were taken after restoration was initialized. On average, each field had 34 measurements of 

land surface temperature. All data are available in Hamberg (2019). The mean surface elevation of all 

selected areas was 201 m above sea level with a mean difference of 1.1 m (SD: 4.0 m, maximum: 9.9 m) 

between restoration fields and their paired normalization areas. All paired normalization areas shared 

major soil type with its nearby restoration area. 
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When comparing the relative surface temperature of the pre-restoration agricultural fields, we 

found no evidence of a significant and consistent change. The linear mixed effects model comparison of 

relative temperature over time grouped by field was -0.1 percentage point (p.p.) per year, with the 

possibility of no change being within the 95% confidence interval (-0.57 to 0.35). The repeated measures 

correlation was low (r= -0.017) and not significant (p=0.711), meaning that there was no common pattern 

of change in temperature over time among the restoration fields (Figure 2.5). Pre-restoration agriculture 

fields showed a high variance in surface temperature between years, which we suspect was due to 

changes between years and time of imagery in which fields were fallow, planted, or already harvested. 

Temperature variation may also be due to what crop was grown, and in the amount of fertilizer and 

irrigation used. 

After initial restoration, 30 of 31 restoration fields decreased in temperature relative to their 

paired normalization areas over time. BB4-W was the only field increasing in temperature over time 

(Figure 2.5). The mean decrease in temperature, as measured through the linear mixed-effects model, was 

1.5 p.p. per year (95% CI: -1.73 to -1.26) and the repeated measures correlation of slopes in between the 

different fields was significant (p<0.001) and moderately strong (r=0.36).  
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Figure 2.5: Best fit linear regression models for each restoration field (N = 31) in our study for temperature 

difference against days before and days after restorations using Landsat 5, 7 and 8 and ECOSTRESS data 

from 2002 to 2018. The black dashed line shows the average slope and intercept from the linear-mixed effects 

model. 

The average restoration area was 25.6 % warmer than its normalization area when restoration 

began, falling to 7.7 % warmer 12 years later. To put this into context, if the surface of one of the mature 

forest normalization areas experienced a 25 °C day in 2007, and another one in 2018, we would expect its 

paired restoration area to have been 31.4 °C in 2007 and 26.9 °C in 2018, a 4.5 °C drop.  

The apparent increase in temperature the first year after restoration can be explained by the 

considerably higher biomass of fertilized and irrigated agricultural fields, as compared to the restoration 

fields in the first year after restoration when plants have not yet had time to establish and spread. The 

difference in mean relative temperature between fields could be due to differences in field size, shape, 

elevation, slope and different surrounding land-use matrix. Differences in the angle of the slope in figure 

2.5 between different fields can be due to differences in the ground water levels and weather conditions of 

the first few year of restoration, as restoration was initialized in stages between 2006 and 2013. Variation 
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in quality of the seeds, mainly harvested the year before from wild populations, may also have affected 

the speed of restoration. 

 

Figure 2.6: Map of mean temperature change between 2014 and 2018 imagery. All imagery was subtracted 

against Backus Woods mature forest normalization area (Figure 1). Active restoration areas are outlined in 

magenta and paired normalization areas in black, not including the 20 m internal buffer. Full map in 

Appendix 2B. 

The temperature difference map (Figure 2.6) shows that most restoration areas have decreased in 

temperature over time 2014-2018. Pixels near the edge of the restoration fields generally show a less 

steep decline than those in the center, as the edge pixels are more affected by the stable forests near them. 

. Field CBC 3-E exhibit almost no decline and may be an ideal candidate for follow-up monitoring to find 

out why that is. Areas decreasing in temperature outside restoration areas may be agricultural fields that 

have changed crops, fertilizer or irrigation intensity, or have gone from being fallow to active.  

2.3.2. Results of Experiment 2 – Diurnal temperature variation change with time  

Comparing diurnal temperature change in the space-for-time substitution experiment, we first analyzed 

temperature change for 2018 data separately for night and day. The three nighttime temperature 

measurements from ECOSTRESS all showed an increasing trend over time since restoration. The linear 

mixed effects model of the nighttime measurements showed a mean increase in nighttime temperature of 

0.20 °C per year (95% CI: 0.07 to 0.32) and the repeated measures correlations for them showed a 

significant (p=0.004), and moderately strong (r=0.38), correlation between the measurements. Taken 

together this provides evidence that nighttime temperatures of restoration areas were increasing at a 
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significant, and relatively consistent, rate with time since initial restoration, independent of which 

imagery the data was taken from.  

While the linear mixed-effects model using the two ECOSTRESS and two Landsat daytime 

measurements showed a mean decrease of 0.42 °C per year, the decrease was not significant (95% CI: -

0.85 to 0.01) and the repeated measures correlation was relatively weaker than the nighttime 

measurements (r=-0.22) and not statistically significant at the 95% confidence level (p=0.058).  

To study change in diurnal temperature variation, we paired daytime and nighttime readings 

together, removing the Landsat 8 observation taken in June, as it was the furthest away in the season from 

the others. The linear mixed-effects model showed a decrease of 4.14 p.p. per year in diurnal temperature 

difference since restoration (95% CI: -6.68 to -1.59) (Figure 2.7). The repeated measures correlation 

showed that the slopes were significantly (p=0.002), and moderately strongly correlated (r=0.40). For the 

time studied, the mean diurnal difference fell from 86 % 4 years after restoration, to 50 %, 12 years after 

restoration. As an example, a field restored in 2006 with a 28 °C day and 15 °C night in 2010 would be 

expected, on a similar day in 2018, to have a 25 °C day and a 17 °C night.  

Comparing these results with those of Experiment 1 shows that diurnal temperature change could 

decrease faster than just daytime temperature change. The variation that was not explained by time since 

restoration may be explained by remaining differences in size, shape, elevation and the seed-mix viability, 

weather and ground water levels in the first few years after initial restoration. 
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Figure 2.7: Percent diurnal temperature difference for paired data over time since restoration. Separate 

linear regression lines are shown for each pair of measurements and the mean slope coefficient for the linear 

mixed-effects model is shown as a dashed black line. Legend shows instrument (ECOS – ECOSTRESS, L7 – 

Landsat 7) of paired day-night imagery. 

2.3.3. Results of Experiment 3 - Comparison of vegetation and temperature 

All Lake Erie Farms restoration areas were found to have a mean altitude between 197 and 203 m and a 

mean slope between 1.78 and 2.81°. To compare thermal and ecological data over time for the Lake Erie 

Farms property we performed three separate multiple linear regression models based on theory, and two 

more based on highest statistical explanation power as per AICc. For the first model performed, for the 

period 2007-2017, using all in-situ measured independent variables (Table 2.2) there was a mean decrease 

of relative temperature of 5.06 p.p. for each one increase in the effective species number, when 

controlling for all other factors (Table 2.2A). There was also a 1.00 p.p. mean increase in relative 

temperature per year after restoration that was not explained by other factors and was significant at the 

95% confidence level (p=0.03).  

Our proxies for biomass and shade - ground cover, canopy cover and number of woody stems do 

not significantly affect temperature. This analysis provides evidence that the relative temperature of 
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restoration areas was mainly affected by species diversity. When translated on to a day with 24 °C surface 

temperature in the mature forest normalization area, an increase of one in effective species number for 

plant diversity, without an increase in ground cover, canopy cover or stem count would decrease 

temperatures in the average restoration field from 30 °C to 29.7 °C. The model with the lowest AICc 

value (Table 2.2B), highest statistical explanation power (lowest AICc) only include plant species 

diversity, % ground cover, and years since restoration as independent variables (Table 2.2B).  

Table 2.2: Two multiple linear regression models with relative land surface temperature as the dependent 

variable were performed for the period 2007-2017. Model A includes all in-situ measured independent 

variables. Model B includes the variables that has the lowest AICc of all combinations of in-situ measures and 

the relative NDVI. 

 Relative surface temperature – 2007-2017 
 

(A) All variables (B) Lowest AICc 

Species diversity -5.06, p < 0.001 -6.25, p < 0.001 

% Ground cover -0.09, p = 0.24 -0.12, p = 0.07 

% Canopy cover -0.13, p = 0.48  

# Woody stems -0.25, p = 0.80  

Relative NDVI   

Years since restoration 1.00, p = 0.03 0.68, p = 0.09 

Constant 34.11, p < 0.01 33.41, p < 0.01 

Observations 60 60 

R2 0.44 0.41 

AICc delta 6.53 0 

Adjusted R2 0.39 0.39 

Residual Std. Error 7.82 (df = 54) 7.83 (df = 57) 

 

Variance inflation factor (VIF) for canopy cover (3.90) and number of woody stems (5.67) was 

high in the 2007-2017 model, indicating a high amount of collinearity between the two factors. This 

makes sense as all canopies have one or more stems. However, removing either canopy cover or number 

of woody stems from the model does not affect the significance or coefficient of any of the remaining 

variables noticeably. No VIF for any other variable in any other model in Experiment 3 was > 3.  

Two separate models were fitted for 2007-2018 (Table 2.3). These models excluded canopy cover 

and stem count as these variables were not properly recorded that year. The first model (Table 2.3A) 

includes ground cover as the only proxy for biomass, with similar results to the model in Table 2.2B. 

Using relative NDVI as the proxy for biomass instead of ground cover, showed similar results, with 

relative NDVI not significantly affecting relative temperature (Table 2.3B). The model using cover as 
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biomass proxy (Table 2.3A) was found to have the lowest AICc when testing all combinations of the 

independent variables presented in Table 2.3. 

Table 2.3: For 2007-2018 two regressions models are fitted against the dependent variable relative surface 

temperature : (A) uses percent ground cover as the independent variable proxy for biomass and (B) uses 

percent difference of NDVI between restoration area and normalization area as the proxy for biomass. 

 Relative temperature 
 (A) Cover as biomass proxy  (B) NDVI as biomass proxy 

Species diversity -5.08, p < 0.001 -4.96, p < 0.001 

% Ground cover -0.12, p = 0.07  

Relative NDVI  -0.18, p = 0.19 

Years since restoration 0.66, p = 0.07 0.75, p = 0.08 

Constant 36.47, p <0.01 23.22, p = 0.01 

Observations 66 66 

R2 0.40 0.39 

Adjusted R2 0.37 0.36 

AICc delta 0 1.73 

Residual Std. Error 7.82 (df = 62) 7.92 (df = 62) 

 

Separating the diversity measurements of native and exotic plant species of both passive and 

active restoration treatments through linear regressions for 2007-2018 showed a significant (p<0.0001) 

decrease in temperature (-5.09) with an increase in native species diversity (Figure 2.8 A). Conversely, 

relative temperature was not significantly (p=0.34) affected by exotic species diversity and the slope 

coefficient (-1.68) was also smaller (Figure 2.8 B). This indicates that native species may have a stronger 

decreasing effect on temperature in restoration areas than exotic ones. Caution should however be 

exercised when comparing the relative effect of native and non-native plants on temperature for our plots, 

as the plots had a maximum of 2.3 in effective number of species of exotics, compared to 5.1 for natives.  
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Figure 2.8: Linear regression of relative temperature with native and exotic species richness and diversity. 

Each point represents an active or passive restoration plot and its native or exotic diversity as compared to its 

relative temperature as compared to its paired normalization area. 

2.4. Discussion 

We find compelling evidence that relative surface temperature decreased with an increase in plant species 

diversity, beyond what was explained by proxies for biomass or shade. We propose that it is the new 

functions, structures, phenology and trophic interactions that were introduced with new species that 

decreases temperature. This aligns with the idea that an increase in biodiversity, structural and functional 

complexity and ecosystem self-organization should increase use of available energy, also called exergy, 

and decrease reflected and reemitted daytime heat (Fraser and Kay, 2004; Jorgensen and Svirezhev, 2004; 

Kay, 2000; Maes et al., 2011; Schneider and Kay, 1994). More simply, transpiration is the main method 

of cooling for plants (Michaletz et al., 2015) and diversity of structure and function increases transpiration 

under more conditions (Baldocchi, 2005). Structures and functions that increases available energy use and 

potential transpiration, lowering vegetation surface temperature, include phototropism, stomatal 

arrangement, xylem structure, and optimized overlapping leaf arrangements (Baldocchi, 2005; Schneider 

and Kay, 1994).  

Although our comparison of native and non-native species should be interpreted with caution, 

there is an argument for why native plants may cool more than non-natives could. Native species may be 

better adapted to the local site conditions, having structures and functions that are especially effective at 

using energy in the local environment. Native prairie-grasses have deep roots (Hayes and Seastedt, 1987; 

Nippert et al., 2012), allowing them to take up water in the local sandy soil and continue to transpirate and 

photosynthesize, when non-native ruderals, such as the creeping Poa annua, would be unable to. Many of 
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the same native prairie grasses also employ the C4 photosynthesis pathway which allows for more 

efficient energy usage at high temperatures and low nitrogen levels, which was the case for our study sites 

(Howe, 1994; Nippert et al., 2012). Native tallgrass prairie plants can also have more developed 

relationships through mycorrhizae (Hartnett and Wilson, 1999) and may more effectively provide habitat 

and food to native fungi, insects and other organisms that they have co-evolved with; and this cycles, and 

makes available, nutrients needed for plants to build structure (Loreau, 1995). There is also evidence that 

leaves have evolved directly to regulate their temperature for climate conditions within its natural range 

(Michaletz et al., 2015). These examples provide a potential explanation for our findings that increases in 

native species increases the system’s ability to use available energy, manifesting as lower land surface 

temperature. Conversely, many of the more common exotic species in the study plots are considered 

invasive in the area and are generally ruderals (e.g., Meliolotus alba, Poa annua and Vicia cracca). These 

exotic invasive ruderals rely on spreading quickly and modifying the environment (e.g. by shading) to 

their favor, while potentially being less efficient at using available energy than native and non-ruderal 

plants, especially in varying conditions and under moderate stress (Grime, 1977; Norris et al., 2012).  

Overall, relative temperature has fallen over the 12 years since restoration. Due to cost and time 

restrictions, vegetation sampling has only been conducted on the Lake Erie Farms property. However, all 

31 fields have similar soil, similar history of agricultural use, similar landscape context and all sown with 

a similar seed-mix. There has also been no indication of any large-scale disturbances or failures in the 

project (personal communication, Liv Monck-Whipp, 2019). For these reasons, it is likely that both 

biomass and plant species diversity would be increasing for most of the 31 fields as it did at the Lake Erie 

Farm fields; and, based on the results from the third experiment, the decrease in relative temperature 

should be an indicator of an increase in plant diversity in these fields. Diurnal temperature variation also 

decreased with time since restoration, with restoration areas becoming warmer at night. Ulanowicz & 

Hannon (1987) posited that this should happen as the ecosystem increases in structures which hold on to 

more of the heat for a longer time, even into the night, through physical heat storage and chemical bonds. 

Kutsch et al. (2001) criticized attempts at measuring ecosystem development, organization or 

complexity through temperature, as they found that a monoculture cornfield was as cool as a mature 

beech forest. However, they did not consider the input of fertilizer to the cornfield or that the two systems 

were very different from each other. In our study, we do not assume that if we compared two ecosystems 

in different climate, soil or nutrient availability, the one with higher plant species diversity would 

necessarily be colder than the other, less diverse, ecosystem. Alvar ecosystems, for example, can have 

very high plant species diversity while being quite warm in the day, due to lack of soil and water 

availability (Tomlinson et al., 2008). We argue that, all other factors equal between two ecosystems, 

higher plant species diversity should lead to lower temperatures, which is still useful in relative 
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comparisons of multiple fields in a restoration project. Terrestrial ecosystems are open and complex 

thermodynamic systems and even with the controls and assumptions given, we expected and detected 

variation that could be accounted to landscape context, ground water change and precipitation before the 

imagery was acquired. Acknowledging the caveats and limitations above, the evidence from the current 

study lend support to relative land surface temperature readings as a potential indicator of change in plant 

species diversity in restoration projects, at least for the first decade of restoration.  

Many earlier studies of thermal energy budgets in ecosystem focus on measures of entropy, 

exergy (e.g., Kutsch et al., 2001; Lin et al., 2018) or measures of temperature buffer capacity (Aerts et al., 

2004; Luvall et al., 1990). Energy budget methods may be less affected by other energy flows, such as 

wind, but require expensive and location-specific equipment such as flux-towers, multiple aircraft fly-

overs or an arrangement of thermometers and net-radiometers. Due to its free and public availability, 

large extent and coverage, and spatial resolution that allows for imaging restoration sites down to one 

hectare, Landsat and ECOSTRESS thermal instruments could also be used to identify problem areas and 

emerging issues in large scale, remote or fragmented restoration projects. Algorithms could potentially be 

developed to compare imagery over time, to find spots where temperature is not decreasing as fast as their 

surroundings – thus, guiding professionals on the ground to the problem spot for more in-depth diagnosis 

and adaptive management. To operationalize surface temperature as a useful indicator of plant species 

diversity and restoration progress more experiments in other locations and ecosystems are needed to 

establish when and how plant species diversity affects ecosystem surface temperature. If the linear trend 

continues, then restoration areas will be as cold as the forest in another decade, which is improbable. 

Continued longitudinal research can give us insight into the curve of temperature decrease, allowing for 

stronger predictions of restoration progress. 
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Chapter 3. Topsoil transfer to a reforestation site and gravel pit 

increases native forest plant diversity 

 

3.1. Introduction 

Deforestation and forest degradation due to construction projects and extraction of resources lead to 

decreases in biodiversity and ecosystem services including climate mitigation, biodiversity, soil retention, 

pollination, and water filtration (Chazdon, 2008; Costanza et al., 2014; Thompson et al., 2012). To 

mitigate the loss of forests and their services, projects can be encouraged or mandated to reforest, afforest 

or restore nearby areas (Aerts and Honnay, 2011; Holl and Howarth, 2000; Poulton, 2014).  

In this study, the terms ‘reforestation’ (of areas that have historically held forests), and 

‘afforestation’ (of areas that have not held forests), are used for projects where only trees are planted, 

which is the method most commonly employed by commercial and industry-led projects (Cunningham et 

al., 2015; Mansourian et al., 2005; Stanturf et al., 2014). In contrast, the term ‘restoration’ is used for 

methods that aim to re-establish more of the full biodiversity, function, structure, and integrity of the 

forest ecosystem (Aerts and Honnay, 2011; DeLuca et al., 2010; Dudley et al., 2005). Methods of forest 

restoration include ‘directed succession’ seeding of mid and late succession herbaceous species and trees, 

as seen with the tallgrass prairie and oak woodland seeding in Chapter 2 (e.g. Henry et al., 2019; 

Mansourian et al., 2005). The drawback when only planting trees, and even in part when seeding mixed 

woody and herbaceous plant species, is that locally adapted understory species and soil biota, needed for a 

functioning forest ecosystem, would still have to colonize from outside the project area, which can take 

over a century (Harmer et al., 2001; Vellend, 2003). 

A method of forest restoration that can increase both locally adapted forest understory vegetation 

and soil conditions rapidly is direct transfer of topsoil (e.g. Buckley et al., 2017; Ferreira et al., 2015; Hall 

et al., 2010; Hietalahti et al., 2005; Koch, 2007). The topsoil of forest ecosystems contains many of the 

components needed to recreate a forest, including plant propagules (Fowler et al., 2015), mycorrhizae 

(Harley, 1989), fungi, soil microorganisms, nutrients, and the organic detritus that accumulates and 

decomposes on its surface (Raven et al., 2003 chap. 30). While there are examples of forest topsoil 

transfer in academic literature, it is still an uncommon enough method that it was not mentioned in a large 

review of reforestation and forest restoration methods (see Stanturf et al., 2014). 

For restoration by topsoil transfer, topsoil is excavated from the donor forest where the 

construction or extraction (quarrying or mining) project will take place. It is then moved to a nearby 

recipient area suitable for forest restoration. The main limitation of this method is that transfer of forest 
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topsoil is generally only considered when a nearby forest is to be removed (e.g. Buckley et al., 2017; 

Fowler et al., 2015; Koch, 2007), presumably because the excavation of the topsoil will by necessity 

cause as much or more destruction in the donor forest as it will help to restore in the recipient area.  

Quarrying and mining projects often transfer topsoil and deposited it on bare rock or crushed 

mine tailings to restore or create different types of ecosystems (e.g. Ferreira et al., 2015; Hall et al., 2010; 

Rodgers et al., 2011; Sheoran et al., 2010; Waterhouse et al., 2014). Although, if there are no parts of the 

quarry or mine that is already decommissioned, where the topsoil can be transferred to, it means that the 

topsoil has to be stored in berms. Storage is not ideal, as many of the components of the topsoil are alive, 

and can die or go dormant (e.g. Abdul-Kareem and McRae, 1984; Boyer et al., 2011; Golos et al., 2016; 

Rivera et al., 2012). Depending on soil depth, temperature, and humidity, one study showed that up to 90 

% of plant propagules can become unviable in a year (Golos et al., 2016). 

An alternative to moving the topsoil to the quarry or mine-floor, or store it, is to move it to nearby 

farmland in or near forests. In many parts of the world farmland, especially small and marginal plots of 

farmland, were being abandoned at an increasing rate throughout the last century, reaching over 200 

million ha by 1992 (Cramer et al., 2008; Ramankutty and Foley, 1999). This abandonment opens up 

possibilities of restoration if the land is not developed in other ways (Hobbs and Cramer, 2007). While 

there are large possibilities, there are so far few examples of forest topsoil transfer to farmland in 

scientific literature. 

In one of the few well-documented cases of forest topsoil transfer to farmland, the topsoil of the 

recipient site – a former pasture in southern England - was first removed before the transferred forest 

topsoil was deposited and young trees were planted (Buckley et al., 2017; Helliwell et al., 1996). The 

pasture topsoil was removed to make the soil's chemical profile more like the forest topsoil in terms of 

soil nutrients and to remove the seedbank of ruderal field species. Even so, with the open conditions and 

young planted trees after topsoil transfer, ruderal species did re-emerge and out-compete much of the 

transferred forest understory vegetation in the British study. Only when the tree canopy closed, 20 years 

later, did the ruderal field species diminished, and remaining forest understory vegetation return (Buckley 

et al., 2017). To overcome the issue of lack of shade, which can aid ruderal field species (e.g. Valladares 

et al., 2016), Zhao et al. (2020) added artificial shade, through shade cloth, as well as weeding of ruderal 

species (herbaceous and liana species in their case) to their forest topsoil transfer experiment. The shade 

did improve the species richness and growth of forest plants in their experiment.  

Another option for overcoming the issue of lack of shade leading to ruderal species takeover is to 

deposit the forest topsoil on farmland where reforestation through tree-planting has already been done. 

This method would preclude topsoil removal, as it would damage tree-roots, but may still lower the 
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competition from ruderal species by providing faster canopy closure and shade. This option is what will 

be tested in this study.  

Not only could the shade of the already planted trees potentially aid the competitive ability of the 

understory species in the forest topsoil, but the topsoil addition may potentially increase tree growth and 

survival. The planted trees may benefit from lowered competition from ruderal field species as the added 

topsoil may lower germination from the original topsoil of the recipient site (Bliss and Smith, 1985; 

Fowler et al., 2015). Trees may also benefit from increasing soil-water retention (e.g. Douterlungne et al., 

2018), changed soil nutrient conditions, mycorrhizae, and microbes in the topsoil (Hietalahti et al., 2005, 

p. e.g.; Morris et al., 2014). However, adding topsoil on top of already planted trees could also potentially 

decrease growth and survival: Increasing soil depth decreases root respiration (Makita et al., 2011; 

Pregitzer et al., 1998), new soil may contain tree pathogens (e.g. Reinhart et al., 2005) and machines may 

damage trees directly at the time of soil transfer. 

Along with topsoil transfer, other parts of the forest structure can also be moved, including coarse 

woody debris. Woody debris can increase habitat heterogeneity, habitat for microbes, insects, and other 

small animals, nutrient availability, and water retention (McIntyre et al., 2015, p. e.g.; Shoo et al., 2014). 

A study tested the addition of woody debris together with forest topsoil transfer in a boreal forest with 

large amounts of peat and found that the combination of these two treatments increased both native and 

non-native plant species diversity and cover (Brown and Naeth, 2014).  

The goal of this study was to test if direct transfer of forest topsoil, along with additional shade 

and/or woody debris treatments, could speed up and alter the successional trajectory of a reforestation 

site, towards a native and diverse forest ecosystem. The relative improvement of the reforestation sites on 

former farmland was compared against controls with no added topsoil and with topsoil transfer to an 

abandoned gravel pit. In line with common usage in restoration ecology literature, the relative success of 

restoration and its trajectory is measured through plant growth, species diversity, and community 

composition (Ruiz-Jaén and Aide, 2005; Ruiz‐Jaen and Aide, 2005; Wortley et al., 2013). In this case, a 

successfully improved successional trajectory is specifically measured as (1) an increase in native forest 

plant species diversity in the recipient sites towards that of the donor site, (2) the plant community in the 

recipient sites becoming more like that of the donor forest, and (3) an increase, or at least lack of 

decrease, in the growth of planted trees. 
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3.2. Methods 

3.2.1. Study Area 

All sites in this study were located within Clearview Township, Simcoe County, Ontario. Three sites were 

selected to have experimental plots which received topsoil – two of these were former farmland that had 

been planted with trees in 2015 (Figure 3.1e) and 2016 (Figure 3.1d), and the third was an abandoned 

gravel pit site (Figure 1g). Topsoil was excavated from a northern (Figure 1b) and a southern (Figure 

3.1c) forest donor area within the boundaries of a planned quarry expansion (Figure 3.1a). To control for 

the effect of topsoil excavation and mixing, without the change in ecosystem, ‘lift-and-drop’ control plots 

were also prepared in a protected forest site (Figure 3.1f). 

Except for the gravel pit, all sites were located within the quarry company properties, within 1.3 

km of each other (44.39° N, 80.25° W), on the Niagara Escarpment at 510-535 m asl. The 2015 

reforestation site was 5.1 ha in size, while the 2016 reforestation site was 1.0 ha. The donor forests were 

both hardwood forest dominated by sugar maple (Acer saccharum) with a closed canopy since at least 

1954 (Hunting Survey Corporation Limited, 1954), both donor sites were within the planned extent of a 

quarry expansion. The protected forest site was located approximately 50 m outside of the planned quarry 

expansion and was shielded from future quarrying as it was within the buffer zone for the provincially 

protected Asplenium scolopendrium (Hart’s tongue fern) and Juglans cinerea (butternut tree) species.  

The gravel pit was located 6.5 km away to the north-east (44.43° N, 80.18° W), below the 

Niagara Escarpment at 235 m asl. The full gravel pit is 14.3 ha in size, but the section of the gravel pit site 

used for the experiment was 0.5 ha in size. The section of the gravel pit site used for the experiment had 

been inactive for at least 28 years (1989) before the study, according to the previous landowner (Stephen 

Sage, Chief Administrative Officer, Clearview Township – Personal Communication, July 14-16 2020). 

From aerial imagery, the gravel pit was established sometime between 1954 and 1984 (Hunting Survey 

Corporation Limited, 1954; USGS, 2019). Most of the site was devoid of vegetation at the beginning of 

this study, presumably due to lack of topsoil after gravel excavation ended. Some smaller patches (5 - 20 

m2) within the site did have ground vegetation and trees, including Pinus sylvestris, Juniperus communis, 

and Salix sp. The gravel pit site was selected based on distance to the donor site, accessibility, and land-

owner permission. 
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Figure 3.1: Main map (a-g) of topsoil donor and recipient sites near or within the planned expansion (a – 

orange, dashed) of the current (as of 2018, a – orange, solid) Duntroon quarry located on the Niagara 

Escarpment, Clearview Township, Ontario. Topsoil was excavated from northern (b) and southern (c) donor 

forest. Topsoil was transferred to plots within the 2016 (d) and 2015 (e) post-agricultural reforestation sites. 

Topsoil was also excavated and deposited in plots within the protected forest site (f). Insert map shows the 

gravel pit topsoil recipient site (g) 6.5 km away from the other sites. All plots are to scale within each of the 

maps. 
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The reforestation sites are referred to as such (as opposed to afforestation) in this study as their 

surroundings are mainly mixed deciduous and coniferous forest, and that is the type of ecosystem the area 

would over time return to without human intervention. The reforestation sites were on former farmland, 

last in production in 2014, and planted with young trees in spring 2015 and 2016, as part of a larger (51.5 

ha) industrial reforestation project. The reforestation project was undertaken to mitigate impacts on 

ecosystem services and to satisfy legal requirements in order to expand quarry operations nearby 

(Charlton and Hims, 2013). 

Before tree planting, the reforestation sites were plowed and seeded with a non-native 

commercial ground cover seed-mix (Lolium multiflorum, Secale cereale, Avena sativa, and Trifolium 

repens). Every 10th row was a windrow created from soil, stumps, boulders and brush-piles from nearby 

cleared forest areas; no trees were planted in the windrows. A mix of 20 deciduous and coniferous tree 

species of different size-categories were planted in the reforestation sites (Table 3.1), based on inventories 

of nearby forests (Charlton and Hims, 2013). Tree tubes and support stakes were installed after planting 

and the reforestation sites were managed through herbicide spraying, mowing, irrigation, tree tubes, and 

rodent trapping for two years.  

The two reforestation sites used in this study differed not only in size but also in that the 2015 site 

had a year of no mowing, spraying, or irrigation before topsoil transfer and one extra year of tree-growth, 

as compared to the 2016 site. The two reforestation sites were selected among all reforestation areas 

based on accessibility from donor to recipient sites. 
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Table 3.1: Mean number of trees per ha planted in the two reforestation sites in 2015 and 2016 by species and 

size-category, as well as totals planted per species per ha for both 2015 and 2016. 

  
2015 plantings by height (cm) 2016 plantings by height (cm) Totals per 

species per ha   10 - 60 60-150 150-250 10 - 60 60-150 150-250 

Abies balsamea 122   76   99 

Acer rubrum  46 51 60  19 88 

Acer saccharum  46 131  64 383 312 

Betula alleghaniensis  28  64   46 

Betula papyrifera  46 64  60 74 122 

Carya cordiformis  46  86   66 

Fagus grandifolia    13   6.5 

Juglans nigra  46  71   58.5 

Larix laricina 122   64   93 

Picea glauca 103   218   160.5 

Pinus resinosa 128      64 

Pinus strobus 128   218   173 

Populus tremuloides  46 86  26 77 117.5 

Prunus serotina  46 36 12 38  66 

Quercus macrocarpa  46  90   68 

Quercus rubra  46 71 64  32 106.5 

Thuja occidentalis 100   77   88.5 

Tilia americana  42   58 85 92.5 

Tsuga canadensis 128   90   109 

Ulmus americana   46   64     55 

 

3.2.2. Experimental setup 

Approximately 525 tonnes of topsoil (A-horizon) was excavated from the southern (Figure 3.1b) and 

northern (Figure 3.1c) donor forests using mini-excavators (Takeuchi TB-138 and TB285, Takeuchi Mfg. 

Co., Ltd.) in October and November 2017. All matter on top of the topsoil was transferred along with the 

soil; this included leaves, woody debris, small shrubs and trees (approximately below 2 m in height), 

rocks, moss, and fungi. The gravel pit (Figure 3.1g) received topsoil exclusively from the southern donor 

forest, while the reforestation sites (Figure 3.1d-e) received a majority of its topsoil from the northern 

donor forest.  

Topsoil was excavated and transferred after senescence of most plants in late fall, as one study 

(Craig et al., 2015) has shown that this timing minimizes plant mortality, and increases the speed of 

recovery of vegetation cover, compared to excavation and transfer during spring. Topsoil was excavated 

at a minimum distance of 20 m from the edge of the donor forest. This distance was selected as a 

compromise between reducing forest edge effects while allowing for machinery access. For all plots in 
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the reforestation sites and the protected forest site, the topsoil was excavated, transferred, and spread on 

the same day. Due to weather conditions limiting equipment access, topsoil for the gravel pit plots had to 

be stockpiled for 2-3 days before being spread. Further details on the methods of topsoil excavation and 

transfer are available in section 1 of Appendix 3A. 

3.2.2.1. Plot setup 

Forest topsoil was transferred to, and loose-tipped inside 5 ‘topsoil recipient plots’ measuring 12.5 x 10 m 

in each for the three recipient sites (Figure 3.1 & Table 3.2). Topsoil was added and spread until it 

reached a depth of approximately 20 cm, similar to the depth of the A-horizon in the donor sites. The 

plot-size was a compromise between minimizing edge effects, by having larger plots, while using the 

resources available to have 5 plot replicates at each site. Loose-tipping, as opposed to moving soil in 

intact turfs, has been recommended for forest soil transfer as tree roots make intact turf moving 

technically difficult (e.g. Buckley et al., 2017; Hietalahti et al., 2005) and the difference in impact on 

vegetation sprouting of the two methods has been shown to be small (e.g. Craig et al., 2015).  

Before adding the forest topsoil to plots in the two reforestation sites the plots were prepared by 

mowing between tree-rows and then spraying with a glyphosate herbicide. Mowing and spraying were 

done 1-2 weeks before topsoil transfer took place, to suppress ruderal field species. Due to the mostly 

bare ground in the gravel pit, no mowing or spraying was done for any plots in that site.  

Along with the topsoil recipient plots, each site also had 5 passive control plots where no 

treatment was done (Table 3.2). These were quarter-plot sized (6.25 x 5 m) in terms of vegetation 

sampling, but 12.5 x 10 m for planted tree sampling in the reforestation sites. Additionally, 5 more 12.5 x 

10 m plots in the 2015 reforestation site were mowed and sprayed but received no topsoil. These 5 ‘mow-

and-spray control plots’ were used as controls for the effect of mowing and spraying.  
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Table 3.2: Site, plot, and sub-plot setup. For passive control plots in the reforestation sites, only the northeast 

corner was sampled for vegetation diversity, but the full plot was used for tree growth measurements. TRo – 

Topsoil recipient only, MSO – Mow-and-spray only, WD – additional woody debris, DS – additional dogwood 

shrubs + woody debris, SS – additional shade shelter + woody debris. 

Site 

Number of topsoil 

recipient plots  

(sub-plot treatments) 

Number of mow-and-spray 

control plots  

(sub-plot treatments) 

Number and size 

of passive control 

plots 

Reforestation 2015 
5 ( TRO, WD, DS, 

SS) 5 ( MSO, WD, DS, SS) 5 (12.5x10 m) 

Reforestation 2016 
5 ( TRO, WD, DS, 

SS) - 5 (12.5x10 m) 

Gravel Pit 
5 (TRO, WD, DS, 

SS) - 5 (6.25x5 m) 

Southern Donor Forest - - 5 (6.25x5 m) 

Northern Donor Forest - - 5 (6.25x5 m) 

Protected Forest 5 ( TRO, WD, DS) - 5 (6.25x5 m) 

 

The selection of plot locations in the two reforestation sites was based on accessibility for 

equipment, a minimum of 10 m to the forest edge, and avoidance of unplanted windrows. Plot locations 

in the gravel pit were selected based on having a minimum amount of spontaneous succession, defined as 

at least 3 woody stems at > 1 m height and similarities in terms of soil moisture. The passive control plots 

in the gravel pit site were shaped to create as much similarity as possible with the treatment plot in terms 

of previous vegetation cover and tree cover. Shape and placement also attempted to avoid past 

recreational vehicles tracks and, as much as could be predicted, potential future routes for recreational 

vehicles that regularly trespassed on the property. Further details on plot selection methods and criteria 

for all sites are available in section 2 of Appendix 3A. 

The protected forest site was selected to be as similar to the donor forest sites as possible while 

being outside the planned quarry expansion. Similarities were qualitative and based on visual inspection 

of aboveground vegetation species community and structure, species make-up, and amount of tree 

canopy, soil moisture, and litter layer. In the protected forest site, a mini-excavator (TB285, Takeuchi 

Mfg. Co., Ltd.) was used to excavate topsoil and loose-tip it in a 12.5 x 10 m plot area within 10 m of the 

point of excavation, to make 5 ‘lift-and-drop control plots’. These lift-and-drop control plots were created 

to test and quantify the impact of excavation and mixing of the topsoil, without a change of the 

surrounding ecosystem. 5 (6.25 x 5 m) passive control plots were also set up at a 10-30 m distance for 

comparisons (Figure 3.1f).  

In each of the two donor forest sites, 5 (6.25x5 m) passive control plots were set up randomly at a 

distance of approximately 10 m from where topsoil had been excavated, with an understanding at the time 

that these plots may become cut and quarried before the end of this experiment.  
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3.2.2.2. Sub-plot treatment area set-up 

After mowing, spraying and topsoil transfer, each topsoil recipient plot was split into 4 sub-plot treatment 

units of 6.25x5 m (Figure 3.2). Different but overlapping treatments were then added to each of the 4 sub-

plot treatment units:  

1. Topsoil recipient only (TRo) 

2. Topsoil recipient and woody debris addition (WD) 

3. Topsoil recipient, woody debris, and dogwood (C. alternifolia) shrubs (DS) 

4. Topsoil recipient, woody debris, and a shade shelter (SS) 

For the mow-and-spray control plots in the 2015 reforestation site, the same sub-plot treatments 

(woody debris, shrubs, and shade shelter) were applied, but without receiving topsoil. The protected forest 

‘lift-and-drop’ topsoil treatment plots were also divided in 4, with woody debris added to three quarters 

and dogwood shrubs added to one quarter, but no shade shelter was added as these plots were already 

under full tree canopy. 

Woody debris was gathered from the forest using mini-excavators, focusing on pieces showing 

signs of decay. Most woody debris material was gathered and stockpiled in the forest sites in November 

2017 and spread in recipient plots in May 2018 as winter weather conditions limited access to sites. C. 

alternifolia shrubs were planted in fall 2017 and spring 2018 to add understory shade. The species was 

chosen as it was a common understory species in the donor forests and is relatively tolerant to full sun. 

Six shrubs from one-gallon pots (approximately 0.5-1 m in height) were planted in a 2-3 m diameter ring 

to add understory shade.  

Square shade shelters with a width of 3.7 m were constructed and installed in spring 2018 out of 

sturdy wooden poles with a shade-cloth rated to filter 75 % of sunlight, attached at 1.8 m height. The 

shade cloth had a 0.3 m overlap over the sides to filter diagonal sunlight. The shade cloths were attached 

and removed at the approximate time of leaf-out and leaf drop, to simulate the predominantly deciduous 

canopy in surrounding forests.  
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Figure 3.2: Diagram of topsoil recipient plot layout and sub-plot treatments. Image was taken of plot #09 in 

the 2015 reforestation site, in mid-May 2019. Shade shelter cloth is superimposed on the image from summer 

imagery as it would only be attached at the time of canopy leaf-out, 1-2 weeks later. Dogwood shrubs are 

symbolized by the 6 green circles. Inner and outer sampling frames are indicated by the orange rectangles, to 

scale.  

3.2.3. Sampling and measurements 

3.2.3.1. Sampling of soil characteristics 

Measurements of the depth of excavation and the depth of the soil A-horizon (topsoil) were taken in the 

northern donor forest during the topsoil excavation in November 2017 in order to establish if it was 

mainly the targeted A-horizon that was excavated. No excavation depth measurements were taken in the 

southern donor forest, but the author of this study had supervised all excavation at this site and had 

adjusted the depth of excavation when needed. 
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Soil moisture was measured on site for all plots in each recipient site. Soil moisture is important 

as it sets the limit of potential evapotranspiration, and thereby photosynthesis. Soil moisture was 

measured at a depth of 6.5 cm using a W.E.T. sensor (Delta-T Devices) in September 2019. Three 

measurements of both soil moisture were taken in each sub-plot treatment of each plot in each site within 

a span of 2 hours in the afternoon, on a day with at least two rainless days preceding it. The same 

measurements of the two reforestation sites were taken on the same day, with the gravel pit measured on a 

separate day.  

3.2.3.2. Census of planted trees 

Height and diameter of all row-planted trees in all plots in the two reforestation fields were measured on 

May 12-13 2018 before leaf-out; and then again, two growing seasons later, in November 16-18 2019, 

following leaf senescence. Height was measured to the nearest cm using a pole and measuring-tape from 

the base of the tree to the highest live growth point vertically.  

Diameter was measured by caliper at ground level for topsoil recipient plots and at 20 cm above 

the ground for trees in passive and mow-and-spray control plots, in order to equal the new ground level of 

plots with topsoil added. Only the thickest stem was measured in the case of multiple tree-stems but 

measurement was taken below stem branching if within 10 cm of the original measurement point. Any 

visible signs of disease or damage to the trees were noted. Trees were recorded as dead if there were no 

observed living buds or signs of resprouting.  

3.2.3.3. Plant diversity sampling  

Vegetation sampling was conducted in 2019, in the second growing season after topsoil transfer. 

Sampling took place in May, mid-June to mid-July, and mid to late September, to coincide with the 

flowering of early, mid- and late-flowering species. All vascular plants were identified to species level if 

possible. Plants belonging to Poaceae and Cyperaceae were identified to section, genus, or in some cases, 

to family. Species were categorized as ‘native’ to Ontario following the VASCAN database (Brouillet et 

al., 2010). Species were considered ‘forest species’ if their main habitat was described in the literature as 

being forest (e.g. Voss and Reznicek, 2012), and if they were not considered a weed species as per the 

province of Ontario weed-database (OMAFRA, 2020). 

The first vegetation sampling was done in mid-May (spring), mainly to identify spring-

ephemerals. Presence of all vascular plant species in all sub-plot treatment areas of all plots in the 

reforestation, gravel pit, and protected forest sites was recorded, except for passive control plots in the 

gravel pit site. Plots in the donor forest sites were not sampled in spring. Due to low overall plant cover in 
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all plots (estimated to < 10 %) for the early season, all plant species present were very likely found and 

recorded.  

The second vegetation sampling took place mid-June to mid-July (summer) and measured both 

species richness and the abundance of species occurrence within each sub-plot in all sites. For sampling 

two 2 x 0.5 m metal-wire sampling frames were positioned at a diagonal 2.7 m from the edge and center 

of each sub-plot (as illustrated in Figure 3.2). Each of the two metal-wire sampling frames were 

subdivided into 64 12 cm2 squares and each plant species was counted as present or absent from each of 

the 64 squares. The presence count, between 0 and 64, was translated to percent to obtain each species’ 

abundance (methods comparable to: Schaefer and Larson, 1997; Tomlinson et al., 2008). 

Abundance measurements from sampling frames were used to capture the differences in species 

evenness between common and rare plants for the summer sampling when live vegetation dominated the 

plots. Due to the low overall plant cover in spring (< 10 %) no sampling frames were used for the May 

sampling, as relative abundance measurements from sampling frames would have provided very little 

additional information. A follow-up sampling in September was conducted to identify late-flowering 

species. The same 2 x 0.5 m sampling frames were used in the same locations as the summer and all 

plants not identified to species in summer, according to the summer sampling-sheets, were located and re-

identification was attempted, but no changes to abundance were made. Further details on summer and fall 

follow-up sampling in section 3 of Appendix 3A. 

3.2.4. Statistical analysis 

3.2.4.1. Soil characteristics 

The depth of excavation and depth of A-horizon in the northern donor forest were compared using a non-

parametric paired Wilcox signed rank test due to non-normality of paired differences (Shapiro-Wilks test 

p = 0.017). The differences in soil moisture between plot-types and sub-plot treatments within each site 

were tested through a three-way ANOVA with interactions on a linear mixed-effects models. Plot-type 

and sub-plot treatments, and their interactions were considered fixed effects while each plot was 

considered as a random intercept effect. The formula used was: Soil moisture ~ Plot-type * Sub-plot 

treatment + (1 | Plot). Tukey HSD post-hoc tests were performed on all significant linear models 

throughout this study. 

The W.E.T. sensor had a minimum level of detection, causing an inflation of zeros, especially in 

the relatively dry gravel pit site, which in turn caused the variance of residuals to become unequal 

(Appendix 3B). To adjust, 0.5 was added to each observation of the soil moisture in the gravel pit site and 
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the values were then log-transformed. 0.5 was selected as a reasonable value of minimum detection in the 

context of other measures within the site. 

3.2.4.2. Planted trees 

Both reforestation sites were grouped together when comparing tree survival and damage to trees between 

plot-types, as the same methods of tree planting and topsoil transfer were used at both sites. Sub-plot 

treatments were not taken into account as the study was only concerned with the potential damage from 

the transfer, tipping, and spreading of the topsoil. The data on trees in the shade shelter sub-plot treatment 

area was removed before analysis, as many of these were damaged or had stunted growth due to physical 

resistance from the shade shelter cloth, and because this method was not considered for application in 

large-scale restoration projects.  

The differences in plot-wise ratio of survival were tested through the non-parametric Kruskal-

Wallis test as assumptions of normality were not met in the Shapiro-Wilks test (Appendix 3B). 

Differences in plot-wise ratio of tree damage were tested through a one-way ANOVA on a simple linear 

model.  

All trees that were dead, missing, or had a lost its main stem were omitted from the analysis of 

height and diameter change. Our rationale was that the focus of the test of difference in tree growth due to 

plot-type was on the effect of the added forest topsoil, and the loss of the main stem could cause very 

large changes that were not attributable to the topsoil itself. Loss of main stem was either recorded 

directly or indicated by a negative change in height beyond what could be accounted for by seasonal 

differences (> 5 cm in height or > 5 mm in width) (Pastur et al., 2007). Out of a total of 467 trees, 34 (6.9 

%) were dead and 33 (6.8 %) experienced a loss of main stem. The effect of full plot treatments on tree 

height (cm) and diameter (mm) in both reforestation fields between May 2018 and November 2019 were 

compared by applying a three-way ANOVA without interactions  to a linear mixed-effects model.  

The formula for the linear mixed effect model was: height_change ~ Plot_type + 

(1|genus_and_planting_size) + (1|Site/Plot). This formula considered each combination of genus and 

planting size separately and handled it as a random effect in terms of intercept. It also used the plots, 

nested within their respective sites, as a random intercept effect. The same formula was used with 

diameter change as the fixed effect dependent variable as well. To create a more balanced model, trees 

from specific genera were only included if at least 20 trees of that genus were alive by November 2019 

and the genus was represented in at least 3 topsoil recipient plots and 3 of either control plot. Genera 

fulfilling these conditions were Acer, Tilia, Quercus, Betula, Pinus and Picea, which were represented by 

a total of 267 trees throughout all reforestation plots.  
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3.2.4.3. Plant species richness and community composition 

This part of the study tested both the differences in native forest plant species richness and the differences 

of plant species community composition. The first test was needed to make sure that the plant community 

composition (tested second) was not changed solely by transfer of non-native or non-forest species from 

the donor forest, which was a possibility as the donor forest did contain large populations of non-native 

species including Alliaria petiolata and Tussilago farfara. Tests on spring and the summer sampled plant 

data were performed separately as sampling strategies differed between them. 

3.2.4.3.1. Spring plant sampling 

The spring native forest species presence/absence was compared for both plot-type and sub-plot 

treatment, and their interactions, by fitting a generalized linear-mixed effects model with a Poisson 

distribution and testing it through an Analysis of Deviance type III Wald chi-square (χ2) test. A Poisson 

distribution was used as the species richness data took the form of non-negative integer counts. Poisson 

generalized linear mixed-effects model assumes equal variance and no significant outliers. Plots were 

included as random intercept effect as per the formula: Native forest species richness ~ Site and plot-type 

* Sub-plot treatment + (1|Plot). Tukey HSD test were performed for site and plot-type only on a model 

where sub-plot treatments were considered as random effects: Native forest species richness ~ Site and 

plot-type (1|Sub-plot treatment) + (1|Plot). To test the potential ability of topsoil transfer to decrease or 

delay field ruderal species germination, the same Wald χ2 test on the same model was utilized, but with 

non-native/non-forest species richness as independent factor. This test was only performed on plots within 

each of the two reforestation fields.  

Spring plant communities composition, based on sub-plot presence absence data was compared 

through a Non-Metric Multidimensional Scaling (NMDS) using the Jaccard index method (Baselga and 

Leprieur, 2015; Koch, 1957). Sub-plots with additional treatments (woody debris, shrubs and, shade 

shelter) were excluded in the NMDS analysis of difference of plant communities between full plot-type 

treatments and sites. These additional sub-plot treatments were instead compared separately to each other. 

The NMDS method is non-metric as it uses ranking and aims to collapse the many dimensions of 

the plant community differences (as many as there were plant species in this case) into fewer dimensions. 

It aims to do so with as little ‘stress’ as possible, shifting the positions of each plot as little as possible 

while trying to visualize the relative difference between plots as well as possible.  

The goodness-of-ordination fit, a measure of the ‘stress’ of the NMDS plot was assessed using 

the non-metric R2 fit in a stress-plot. Higher stress levels and lower R2 indicate that the NMDS ordination 

may be more arbitrary. Two dimensions for NMDS were used if stress-values were < 0.2, as this is 

considered a usable fit (Clarke, 1993). The NMDS was performed using the ‘metaMDS’ package in R 
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(Kenkel and Orlóci, 1986; Kruskal, 1964; Oksanen et al., 2019) with the ‘monoMDS’ engine set to 1000 

random starts to find a stable solution. The NMDS was visualized through an NMDS scatter plot with 

hierarchical clustering of plots.  

The significance of the NMDS results, i.e. the difference in plant communities, was tested using a 

permutational multivariate analysis of variance (PERMANOVA) on a distance matrix (Anderson, 2017). 

The PERMANOVA tests whether the centroids of the plant community of each plot-type and their spread 

were significantly dissimilar from other centroids and spread. The PERMANOVA was conducted using 

the ‘adonis’ function in the ‘vegan’ package in R (Oksanen et al., 2019). 100,000 permutations were used 

to calculate an approximate p-value from F-value obtained from the non-metric distance matrix 

(Anderson, 2001).  

PERMANOVA assumes exchangeability of the sample units between groups, which was fulfilled 

by testing sub-treatments separately. It also assumes similar multivariate dispersion between groups; this 

was tested using an ANOVA on the ‘multivariate homogeneity of groups dispersions’ through the 

‘betadisper’ function in the ‘vegan’ package (Oksanen et al., 2019) of R. The violation of similar 

multivariate dispersion does not invalidate the test, but results need to be considered in connection with 

the NMDS visualization (Anderson, 2017). Significant differences of groups that have high overlap in 

location but differ in dispersion should be evaluated with caution (Anderson, 2017). 

After significant PERMANOVA results, plot-types at different sites were compared by post-hoc 

pairwise PERMANOVA tests. To avoid overtesting, to reduce the risk of type-1 errors in unadjusted p-

values and type-2 errors in adjusted p-values, and to increase visual clarity, plot-types were grouped 

together further (see section 3.3.1.2). P-values were adjusted for multiple tests using the Benjamini-

Hochberg procedure for false discovery (Benjamini and Hochberg, 1995). P-values from full and pairwise 

PERMANOVA are approximate as they depend on the random start and permutations.  

An NMDS was also performed for sub-plot treatments in topsoil recipient plots within the gravel 

pit and reforestation sites. No distinction was made between the two reforestation sites for this analysis. 

The statistical significance of the difference between sub-plot treatments for the combined reforestation 

sites and the gravel pit site was tested separately through PERMANOVA to fulfill the assumption of 

exchangeability of units. 

3.2.4.3.2. Summer plant sampling 

To analyze the results from the 2019 summer sampling and fall follow-up, observations of row-planted 

trees in the reforestation sites were omitted, as the focus of the analysis was on the potential of the 2017 

topsoil transfer to move plants. The difference in species richness of native forest species between plot-

types and sub-plot treatments was compared using the same models and post-hoc tests as in spring. The 
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Poisson linear mixed-model equation was: Native forest species richness ~ Site and plot-type * Sub-plot 

treatment + (1|Plot). The difference in non-native/non-forest species were also tested in the same way, for 

the same reason, and for the same sites, as it was for the spring sampling.  

Plant community composition from the summer sampling were compared between sites, plot 

treatments and sub-plot treatments through NMDS using the Bray-Curtis method (Beals, 1984; Clarke et 

al., 2006). NMDS and PERMANOVA tests were performed in the same way as for the spring sampling 

but with values based on the Bray-Curtis method. The Bray-Curtis method takes into account not just the 

presence of species, but also their relative abundance. Sub-plots with additional treatments beyond 

receiving topsoil were again excluded when comparing plot-types and sites. As in the case of the spring 

sampling, sub-plot treatments were only compared within topsoil recipient plots in the gravel pit site, as 

well as in the two reforestation sites combined together. 

3.2.4.4. General statistical details, and assumption testing 

All statistical analysis in this study were performed in R (R foundation) and all code for the analysis as 

well as all diagnostics plot and tests of assumptions are available as a Rmarkdown document in Appendix 

3B organized by the sub-headings within the results section. All tests applied a 95 % confidence limit for 

significance as an appropriate limit for the number of plot and sub-plot replicates, to balance the risk of 

type-1 and type-2 error (Lakens et al., 2018).  

The ‘lme4’ and ‘lmerTest’ packages in R were used for all linear mixed-effect models (Bates et 

al., 2015; Kuznetsova et al., 2017). For Gaussian distributed linear-mixed effect models, the Kenward-

Roger (K-R) degrees of freedom method was used to determine the p-values of type-III ANOVAs. The 

K-R method resolves variability issues in the default “Satterwithe method” (Chawla et al., 2014; 

Keselman et al., 1999). Variance explained in mixed models were calculated as the conditional R2 (c-R2) 

for the full model, and marginal R2 (m-R2) for fixed effects only, using the ‘MuMin’ R package (Barton, 

2020; Nakagawa and Schielzeth, 2013). Tukey HSD test was performed using the ‘emmeans’ R package 

(Lenth et al., 2018; Searle et al., 1980).  

Levene’s test for equal variance, Bonferroni outlier tests, and Shapiro-Wilks normality test was 

used to check assumptions of simple linear models. However, for linear mixed models these tests are 

considered too conservative; visual inspection of diagnostic plots was used instead (Gelman and Hill, 

2006; Winter, 2013; Zuur et al., 2009)  
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3.3. Results 

3.3.1. Soil depth and moisture 

The mean depth of excavation in the northern donor forest was 19.6 cm (SD = 8.8), and the A-horizon 

had a mean depth of 15.5 cm (SD = 6.2). These measures were not statistically significantly different 

from each other (Wilcoxon signed rank test p = 0.177).  

In the gravel pit site, the difference in soil moisture between sub-plot treatments was significant 

(p < 0.001) in a K-R method three-way ANOVA on the log-transformed mixed linear model. The full 

model explained 33 % of variance (c-R2) and the fixed effects explain 14 % (m-R2). The mean soil 

moisture of passive control treatments was 2.73 %, and this treatment was significantly (p < 0.05) drier 

than all soil recipient sub-plot treatments in a Tukey HSD post-hoc test. There was no significant (p < 

0.05) differences between the different sub-plot treatments in the topsoil recipient plots. There were no 

statistically significant differences in soil moisture between plot-types or sub-plot treatments in either of 

the two reforestation sites.  

3.3.2. Tree survival, damage, and growth results 

3.3.2.1. Tree survival and damage 

Out of 467 planted trees measured in the two reforestation sites in spring 2018, 34 (7.3 %) were dead or 

could no be found (due ~30 cm snow-cover during November 2019 sampling), and 75 were damaged 

(16.1 %). Mean tree survival did not differ significantly between plot treatment types (Kruskal-Wallis test 

H = 3.5, p = 0.172), and neither did tree damage (95 % CI, p = 0.282). Most signs of damage were from 

rot or loss of bark where tree-tubes were used or breakage at the point where the trees were tied to 

supporting bamboo poles. There was no indication of tree damage specifically related to the transfer, 

tipping or spreading of the topsoil. 

3.3.2.2. Change in tree height and diameter by plot-type  

The change in height between May 2018 and November 2019 was not significantly different between 

tree-types (three-way ANOVA F = 2.0, p = 0.163).  

The stem tree diameter change for the same period, was significantly different between plot-types 

(three-way ANOVA F = 3.8, p = 0.036). The full linear mixed-model c-R2 was 45 %, but the m-R2 was 

only 4 %, indicating a relatively low explanatory power of the fixed effects. The estimated mean marginal 

diameter increase was 16.8 mm for both topsoil recipient and mow-and-spray control plots, but 13.6 mm 

(23 % less) for passive control plots (Table 3.3).  
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In the post-hoc Tukey HSD test, the difference between passive plots and topsoil recipient plots 

was found to be statistically significant (95 % CI, p = 0.049), while the mow-and-spray control plots were 

not significantly different from any other plot treatments (Table 3.3). The marginally statistical 

significance and low explanatory power of the fixed effect means we should be cautious about 

interpreting the difference in diameter growth. 

Table 3.3: Post-hoc Tukey HSD test between plot-types, based on the mixed effects model controlling for tree 

genera, planting size, field and plot. MSC = mow-and-spray control, PC = passive control plots, TR = topsoil 

recipient plots. 

Contrast Difference SE df t-ratio p-value 

MSC - PC 3.22 1.79 25.6 1.803 0.1887 

MSC – TR 0.06 1.8 26.5 0.031 0.9995 

PC - TR -3.17 1.25 20 -2.536 0.0495 

 

3.3.3. Plant richness and diversity results 

3.3.3.1. Spring vegetation sampling  

3.3.3.1.1. Comparing native forest species richness between plot and sub-plot treatments  

A total of 65 species were identified in the spring sampling, 34 (52 %) of those were categorized as native 

forest species (Appendix 3C). 1029 out of 1129 observations were done to species level, with the 

remainder to genus level because the specimens were too immature. All observation of plants that could 

only be identified to genus-level were still possible to be categorized as being either native forest plants or 

not. The species occurring in the highest number of sub-plots was non-native Taraxacum officinale 

(84/106 sub-plots). Native forest species that were most abundant in sub-plots which received forest 

topsoil at the reforestation and gravel pit sites included Geranium robertanium (59/60 sub-plots), 

Erythronium americanum (56/60), Viola sororia (47/60), Caulophylum giganteum (29/60) and Trillium 

grandiflora (28/60). 

The difference of native forest plant species richness between plot-types was statistically 

significant (Wald type III χ2: 57.2, p < 0.001) between full plot-types, but not significantly different (χ2 = 

0.3, p = 0.960) between sub-plot treatments or from the interaction effect between plot-type and sub-plot 

treatment (χ2 = 2.2, p = 0.998). The explanatory power of the fixed effects was high (m-R2 = 90 %).  

Plots in the protected forest, as well as topsoil recipient plots in all recipient sites had 

significantly higher (95 % CI) native forest species richness than control plots in the reforestation sites as 

per the post-hoc Tukey HSD test (Table 3.4).  
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The number of non-native/non-forest species were significantly (χ2 = 7.2, p = 0.007, m-R2 = 19 

%) lower in topsoil recipient plots than in passive control plots in the 2016 reforestation site by an 

estimated marginal mean of 1.6 species, indicating that the topsoil transfer may have delayed or decreased 

non-native and non-forest species sprouting in the spring at this site. No such difference was found 

between plot-types in the 2015 reforestation plot. 

Table 3.4: Estimated marginal mean of total species richness and native forest species richness for spring 

sampling 2019 by field and plot-type, sorted in falling order of native forest species richness. All data to the 

right of the dotted line refer to native forest species richness, including standard error (SE), asymptotic (z-

distributed) 95 % confidence intervals, and post-hoc Tukey HSD test of native forest species richness, based 

on a generalized linear mixed-effects model with Poisson distribution– plot-types with the same letter were 

found to be not significantly different from each other. P. Forest = Protected Forest, RF = Reforestation. 

Site Plot-type 
# of plots 

(sub-plots) 
Sp. 

richness 
Native forest 

sp. rich. SE 
asympt. 

95 % CL 
Post-hoc 

grouping 

P. Forest Passive control 5 (1) 12.2 9.8 1.2 7.4 - 13 A 

P. Forest Lift-and-drop 5 (3) 10.27 8.6 1.1 7.2 - 10.2 A 

Gravel pit Topsoil recipient 5 (4) 13.7 8.0 1.1 6.8 - 9.3 A 

RF 2016 Topsoil recipient 5 (4) 12.75 7.1 1.1 6.1 - 8.4 A, B 

RF 2015 Topsoil recipient 5 (4) 10.9 5.2 1.1 4.3 - 6.3 B 

RF 2015 Passive control 5 (1) 7.4 1.2 1.5 0.5 - 2.7 C 

RF 2016 Passive control 5 (1) 9.4 0.4 2.0 0.1 - 1.6 C 

RF 2015 Mow-and-spray 5 (4) 5.19 0.4 1.5 0.2 - 0.8 C 

 

Fragaria vesca was the most common native forest species identified in control plots in the 

reforestation site; making up 11 out of 15 of total native forest species presences noted during the 

sampling. Fragaria vesca is a common species to both fields, edges and forests in this region and its 

occurrence throughout the post-agricultural reforestation fields, even without forest topsoil added is not 

out of the ordinary.  

3.3.3.1.2. Comparing plant community composition between plot-types and sub-plot treatments 

The overall visual pattern of the Jaccard index NMDS on full plot treatments (Figure 3.3) was that the 

plant community composition of topsoil recipient plots in the two reforestation sites were separate from 

control plots in the same sites. Topsoil recipient plots in reforestation sites were positioned in between the 

protected forest and the control plots in the reforestation sites as they encompass species from both the 

donor and recipient communities. 

While separate from all other sites, the plant community composition of the two plot-types in the 

protected forest site were similar to each other, indicating that there were no clear shift in species 

composition from lifting and dropping the forest topsoil within the same site. The stress-plot goodness of 
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ordination fit was high, with a non-metric R2 = 0.989 and a stress value of 0.10, which is generally 

considered good (e.g. Dexter et al., 2018). 
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Figure 3.3: NMDS of plant communities in all plot-types and sites in the spring 2019 sampling, using the 

Jaccard index method for presence/absence data. Axes represent rank-ordered (non-metric) dissimilarity of 

plant communities. No data from sub-plots with additional treatments beyond topsoil addition were used. 

Colored hulls outline extent in non-metric ranked space of plot plant community. Gray dashed ellipsis outline 

larger patterns of reforestation control plots, plots with added topsoil in reforestation sites and in gravel pit, 

and forest site plots. RF – Reforestation, P. Forest – Protected Forest.  

Differences between sites and plot-types were statistically significant (PERMANOVA: F=10.1, 

R2 = 0.69, p < 0.001), with no problematic significant differences in multivariate dispersion between 
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group (dispersion ANOVA p = 0.057). The post-hoc pairwise PERMANOVA was performed on sites and 

plot-types grouped into one of 4 groups; (1) all control plots in reforestation sites, (2) all topsoil recipient 

plots in reforestation sites, (3) all topsoil recipient plots in the gravel pit site, and (4) all plots in the 

protected forest site (Appendix 3D - Table I). The procedure found that the plant community of each 

grouping of plot-types and fields were significantly dissimilar from others (p-adjusted <0.001) when the 

p-value was adjusted using the Benjamini-Hochberg procedure. In terms of spring plant communities, 

plots that had received forest topsoil were significantly different from both controls in recipient sites and 

from the protected forest site, set close to where the topsoil was excavated from. All pairwise 

PERMANOVAs of the 4 groups fulfilled the assumption of similar multivariate dispersion. 

There were no statistically significant differences found between sub-plot treatments within either 

an NMDS or a PERMANOVA. Results for these are available in section 2.1 of Appendix 3D. 

3.3.3.2. Summer and fall vegetation sampling results 

The summer vegetation sampling, and fall follow-up, included 246 2 x 0.5 frames sampled over 123 sub-

plot treatment areas. A total of 162 vegetation species were identified, of which 50 were considered native 

forest species. A total of 44569 observations of vascular plants were made in the 12.5 x 12.5 cm sub-

quadrats in the sampling frames. Of these, 39539 (89 %) were made to species level and 3077 to genus 

level (6.9 %) with the remaining observations identified to family level.  

Poaceae made up 99.9 % of the observations which could only be made to family level. No native 

forest species in Poaceae were observed in this study. Carex arctata, Carex gracilima and Carex debilis 

are difficult to distinguish from each other and were grouped by their common section, Hymenochlaenae 

(Voss and Reznicek, 2012). In the summer, Viola sp. could be identified to either a grouping of all native 

forest Viola species, or the non-native and non-forest species Viola arvensis.  

The most abundant species was Daucus carota with 3435 observations (7.7 % of total). Impatiens 

pallida was the second most frequent species overall, and the most frequent native forest species with 

3092 observations (6.9 %). I. pallida was also the most frequent native forest species when only counting 

recipient (reforestation and gravel pit) sites. Ciricea lutetiana and Geranium robertanium was the second 

and third most frequent native forest species in recipient sites. The native forest species Caulophylum 

giganteum was the most frequent species in donor and protected forest plots with 891 out of 4694 

observations total in these areas. However, C. giganteum had low abundance in recipient sites with 94 

observations, pointing to low viability of transfer of this species.  
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3.3.3.2.1. Comparing summer species richness and diversity of plot-type and sites and sub-plot treatments 

Similar to the spring-sampling results, there was a statistically significant (Wald type-III test χ2 = 100.1, p 

< 0.001) difference in summer native forest species richness between plot-types and sites for the summer 

sampling but not between sub-plot treatments (χ2 = 0.8, p = 0.835) or the interaction between sub-plots (χ2 

= 17.7, p = 0.088). The explanatory power of the fixed effects was high (m-R2 = 81 %). 

Native forest species richness was significantly higher (95 % CI) in topsoil recipient plots in each 

of the recipient sites, compared to the control plots in their respective sites in pairwise tests (Table 3.5). 

The topsoil recipient plots in each of the recipient sites did not have significantly different native forest 

species richness as compared to the donor forest site from which they had received a majority of their 

topsoil. Considered together, this indicates that native forest species were introduced through the topsoil 

transfer, and that most of these species survived the transfer after two years. 

In the gravel pit site, the topsoil recipient plots had a significantly (χ2 = 15.3, p < 0.001, m-R2 = 

50 %) higher richness of non-native/non-forest species, with an estimated marginal mean difference of 1.9 

additional species. This result indicate that the topsoil transfer had either brought in new non-native/non-

forest species, or had improved conditions for spread of those types of species already within the gravel 

pit site. No such increase of non-native/non-forest species were found for the two reforestation sites. 

  



 

57 

 

Table 3.5: Estimated marginal mean of total species richness and native forest species richness for summer 

sampling 2019 by field and plot-type, sorted in falling order of native forest species richness. All data to the 

right of the dotted line refer to native forest species richness, including standard error (SE), asymptotic (z-

distributed) 95 % confidence intervals, and post-hoc Tukey HSD of native forest species richness, based on a 

generalized linear mixed-effects model with Poisson distribution– plot-types with the same letter were found 

to be not significantly different from each other. P. Forest – Protected Forest; RF – Reforestation; D. Forest – 

Donor Forest. 

Site Plot-type 
# plots/sub-

plots/frames 
Species 

richness 

Native 

forest 

sp. rich. SE 
asympt. 95 

% CI 
 Post-hoc 

grouping 

S. D. Forest Passive Control  5/1/2 17.6 13.8 1.1 10.9 - 17.5 A 

Gravel pit Topsoil Recipient  5/4/2 31.8 11.2 1.1 9.8 - 12.8 A, B 

P. Forest Lift-and-drop  5/3/2 11.5 9.6 1.1 8.2 - 11.4 A, B, C 

P. Forest Passive control  5/1/2 11.1 8.8 1.2 6.5 - 11.8 A, B, C, D 

N. D. Forest Passive Control  5/1/2 10.6 8.6 1.2 6.4 - 11.6 A, B, C, D 

RF 2016 Topsoil Recipient  5/4/2 25.3 8.1 1.1 6.9 - 9.4 B, C, D 

RF 2015 Topsoil Recipient  5/4/2 25.8 6.7 1.1 5.7 - 8 C, D 

Gravel pit Passive Control  5/1/2 14.7 3.8 1.3 2.4 - 5.9 D, E 

RF 2015 Passive control  5/1/2 21.3 1.9 1.2 1.4 - 2.6 E 

RF 2016 Passive control  5/1/2 18.4 1.8 1.4 0.9 - 3.5 E 

RF 2015 Mow-and-spray  5/4/2 18.7 1.8 1.4 0.9 - 3.5 E 

 

3.3.3.2.2. Comparing plant community composition of sites, plot-types and sub-plot treatments 

Most site and plot-type combinations of plots were visually grouped separately by the scaling function in 

the NMDS of summer plant species community composition, based on Bray-Curtis dissimilarity of 

relative species abundance (Figure 3.4). The only exception being the passive and ‘lift-and-drop’ plot-

types within the protected forest site, which, similar to the spring NMDS, indicates that the mixing from 

excavating and dropping the topsoil does not affect the plant species community significantly. There was 

an overall visual grouping of all forest sites and plots together and all plots in the reforestation sites 

together. All plots that received topsoil in the reforestation and gravel pit were closer in community 

similarity to forest sites than control plots in the same sites. The goodness of ordination test fit for the 

NMDS had a high non-metric R2 of 0.977 and the stress value was 0.15, which is considered fair. 
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Figure 3.4: NMDS of summer 2019 plant species community in all sub-plots with no additional treatments 

beyond receiving topsoil in all sites . Calculated using the Bray-Curtis method on the abundance of plant 

species averaged over two sampling frames (2 x 0.5 m each). Axes represent rank-ordered (non-metric) 

dissimilarity of plant communities. RF – Reforestation, P. Forest – Protected Forest,  

There was a statistically significant differences between sites and plot-types as per a 

PERMANOVA on the NMDS data (F = 6.57, p = 0.001, R2 = 0.60). However, due to a significant 

difference in multivariate dispersion in the data used for the PERMANOVA (p = 0.0489), care should be 

taken to evaluate PERMANOVA results against the NMDS visualization. Differences in dispersion, 
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rather than difference in location, may account for any significant dissimilarity for overlapping groups. 

The difference in dispersion between the two plot-types in the protected forest site; and possibly the 

passive and mow-and-spray controls in the 2015 reforestation area may be affected by dissimilar 

dispersion effects (Figure 3.4). We do not compare these pairs of plot-types further.  

Pairwise PERMANOVA tests were conducted on the Bray-Curtis dissimilarity between sites 

which had donated or received topsoil from each other, or were controls for the other (Appendix D, Table 

II). The Benjamini-Hochberg adjusted pairwise tests showed that all topsoil recipient plots in recipient 

sites were statistically dissimilar (adjusted p > 0.05) from both the control plots at their respective sites, 

and from the donor forest where the majority of the topsoil was taken for that recipient site. Taken 

together with the native forest species richness and diversity results, this indicates that while success was 

high in transferring native species, there was also a strong presence of the plant community of the 

recipient site within topsoil recipient plots.  

The post-hoc pairwise comparison between topsoil recipient and passive control plots in the 2016 

reforestation site showed significantly dissimilar multivariate dispersion (p = 0.023), which is 

problematic. However, considering the lack of overlap in the NMDS and the highly significant pairwise 

PERMANOVA (p = 0.008) it is likely that the difference of location of centroids is still significantly 

dissimilar.  

There was no visual or significant difference of plant species community composition between 

sub-plot treatments within topsoil recipient sites when tested through the Bray-Curtis method NMDS and 

PERMANOVA (Appendix 3D, section 2.2).  

3.3.4. Summary of results 

1. An increase in native forest species diversity in the recipient sites – 

 The spring and summer native forest species richness of topsoil recipient in 

recipient sites was similar to that of donor forest sites, and dissimilar to that of 

control plots in the respective recipient sites. This demonstrated that the native 

forest species came with the forest topsoil and survived at a high rate two years after 

transfer. 

 There were no significant effects on plant species richness due to additional woody 

debris, C. alternifolia plantings, or shade shelters. 

2. The plant community in the recipient sites becoming more like that of the donor forest – 

 The spring and summer plant community composition of topsoil recipient plots was 

in between control plots in their respective recipient site and the donor forests, and 

significantly dissimilar from both. This demonstrated that the plant community of 
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the topsoil recipient plots had become more like the donor forests, but also retained 

part of the recipient site community. 

 There were no significant effects on plant community composition due to additional 

woody debris, C. alternifolia plantings, or shade shelters. 

3. An increase, or at least lack of decrease, in the growth of planted trees - 

 Topsoil recipient plots did not have significantly more damaged or dead trees than 

controls plots. This suggests that the topsoil can be transferred into a site where 

trees are already planted without excess damage to trees. 

 Trees in topsoil recipient plots grew on average 23 % more in diameter than passive 

control plots over two years. This difference was however only marginally 

statistically significant. 

 There was no significant difference in diameter growth between topsoil recipient 

plots and mow-and-spray control plots. The difference in growth of trees may partly 

be due to the weed-supressing effects of mowing and spray.  

 There was no difference in tree height growth between plot treatments. 

3.4. Discussion 

The two first attributes of a restored ecosystem, according to the Society for Ecological Restoration 

primer on restoration is for it to contain similar species diversity and community composition as a 

reference ecosystem, and that these species are mainly indigenous (native) to the area (Clewell et al., 

2004; Ruiz‐Jaen and Aide, 2005). Results showed that native forest plant species were 3 to 5 times higher 

in topsoil recipient plots, as compared to recipient site controls. Native forest plant species were not 

significantly lower in topsoil recipient plots as compared to the reference sites – the donor forest control 

plots. Compared to unassisted recovery of forests and reforestation by tree-planting, where it can take 

many decades, even up to a century, for a native herbaceous understory to colonize (Harmer et al., 2001; 

Vellend, 2003), the topsoil transfer caused a rapid increase in these important ecosystem attributes.  

That the plant community composition of the topsoil recipient plots became a mixture of that of 

the donor and recipient site in this study is similar to the results of the majority of forest topsoil transfer 

projects (e.g. Buckley et al., 2017; Ferreira et al., 2015; Hall et al., 2010; Ryan, 2013). However, those 

projects differed by removing (or not having) topsoil at the recipient site and either planting trees after 

topsoil transfer (Helliwell et al., 1996) or not planting trees at all (Ferreira et al., 2015; Hall et al., 2010; 

Koch, 2007; Ryan, 2013; Zhao et al., 2020). The risk of transferring topsoil after tree-planting is that the 

machinery required to do so could damage the planted trees and removing the previous topsoil is not 

possible without damaging the roots. However, there were no significant increases in damaged or dead 
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trees in topsoil recipient plots. The results from our study was also in agreement with most of the 

literature on forest topsoil transfer in that the stripping of topsoil with excavators and loose-tipping it at 

recipient sites cause no significant decrease of plant species emerging from the transferred soil (e.g. 

Buckley et al., 2017; Craig et al., 2015). 

A benefit of transferring topsoil to a site after tree planting is that there would be less time before 

canopy closure (e.g. Buckley et al., 2017; Zhao et al., 2020). Improving the chances of shade-tolerant 

understory plants to survive long enough to outcompete ruderal field species (Valladares et al., 2016). For 

sites with a less pressure from ruderal plants, such as the gravel pit site, early canopy closure is less 

important for help in outcompeting ruderals, but it is still important for avoiding drought stress and direct 

sun-damage to shade-tolerant understory species (Valladares et al., 2016)(e.g. Hall et al., 2010). Topsoil 

recipient plots in the gravel pit site were mostly located near the edge of surrounding forests, which may 

have aided with further shade. If possible, depositing topsoil in circles from edge to center in over 

multiple decades could help the forest encroach into these more bare-soil areas. 

While waiting to deposit topsoil in a reforestation site until canopy is nearly closed may be 

preferred, the decision of when to transfer the topsoil will depend on the schedule of the project requiring 

its removal. Depending on how close to each other trees are planted, and the growth form and spread of 

different tree species, the reforestation site may not be accessible by the time the quarry is ready to 

expand and move the topsoil. For example, in this study, the trees in the reforestation sites were planted 

2.5 m apart, allowing for access for small machinery (e.g. skid-steers, mini-excavators and tractors). 

However, there were already re-sprouting Populus tremuloides trees in between planting rows, and Picea 

glauca canopies which were spreading out from near ground level. This type of spread would make 

access, without tree damage, impossible even with small vehicles in these types of sites.  

The time-line and speed of quarry expansion depends on market demand and decisions by the 

industry. Because of this, it may be that the donor forest in this project will be cut at any time between 

year after this study to a decade later, and quick decisions need to be made about where the forest topsoil 

should be moved to when that happens. For this reason a two-year study like this one still carries 

importance as it informs the time-sensitive decision of where the resource – the forest topsoil – should be 

deposited to mitigate the loss in forest biodiversity. 

Each excavation or development project where topsoil transfer is possibly would be different in 

terms of what kind of topsoil recipient sites are available and accessible nearby (e.g. brown-field areas, 

former roads, quarries, agricultural fields). Having short-term but site-specific experimental data, even if 

incomplete, can help improve decision-making about how, and at what site, the topsoil will do the most 

good in accelerating succession towards a native and diverse forest ecosystem. Short term data of both 

tree growth and plant species composition, with and without addition of topsoil, can be used in meta 
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analyses of restoration success (e.g. Crouzeilles et al., 2016), and be applied through plant community 

modeling in a similar manner to earlier modelling studies of plant traits and competition in forests (e.g. 

Berger et al., 2008; Warren and Topping, 2004; Wramneby et al., 2008). The data collected can be useful 

in predicting different scenarios and potential successional trajectories (e.g. Rastetter et al., 2003; Young 

et al., 2001) based on when canopy closure can be expected. It may also in turn be used to predict the 

value of the ecosystem services improved upon by the topsoil transfer over time (Turner et al., 2016). 

The economic cost and benefits of topsoil transfer should be weighted against each other by the 

quarry operator. Assuming the same costs and methods used for the experimental topsoil transfer in this 

study, it would cost 720,000 CAD (2017 value) to cover the full 5.1 ha 2015 reforestation site to 20 cm 

depth (10,000 m3 of topsoil or 10,000 – 15,000 loads using the bucket of a tractor or skid-steer). The 

benefits, on the other hand, is avoiding delays in achieving goals of tree growth and spread of a ‘tolerant 

hardwood understory’ (Charlton and Hims, 2013), which were required to be met to be permitted to 

expand the quarry further. Delays to achieving these goals and thereby delays to quarry expansion could 

be very costly.  

Considering that it can take over a century for forest restored through tree planting to achieve an 

understory similar to that of older intact forests (Harmer et al., 2001; Vellend, 2003). The opportunity cost 

of not doing the topsoil transfer, and thereby slowing understory creation and tree growth, may outweigh 

the cost of going through with it, even in terms of just the economics of the project operator. And that is 

not even to speak of the ecological opportunity cost of slower recovery of the ecosystem services the site 

could be providing to the local community. 

While this study found no effect of the woody debris, shrubs or shade shelter treatments on plant 

species diversity, they may have had effects on other aspects of the ecosystem, the treatments may have 

been too small, and/or 2 years may have been too short to notice any effect. Woody debris did not affect 

plant communities or tree growth in this experiment, but it may still have affected soil microbial and 

insect communities. While not monitored systematically in this study, there seemed to be a low rate of 

survival of C. alternifolia shrubs. Better planting and protection methods of these shrubs may have 

yielded more of an effect on understory plant species diversity. Shade shelter construction caused a large 

amount of damage and were limited in size by tree-plantings. A future experiment, perhaps done jointly 

with a larger topsoil transfer, would be to hang larger shade cloth between tree-stems under their canopy, 

this would avoid the damage and cost of installing poles to hang the shade cloth on, simplify installation 

and allow for larger areas to be covered.  
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3.5. Recommendations 

Based on the results of this study, it is recommended that forest topsoil be loose-tipped directly to old 

field tree planting areas or pit or quarry sites. For sites with trees already planted, soil should be added 

using small equipment, such as tractors, taking care to not harm any existing trees or overly compacting 

the new topsoil once it has been spread. To increase chances of canopy closure aiding shade-tolerant 

forest understory species, and to improve tree growth, the priority should be to add topsoil to tree-planting 

areas. However the decision of using the soil on pit and quarry sites or in reforestation areas would 

depend on accessibility, pressure from ruderal species, and projections of where canopy can be expected 

to close earliest.  
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Chapter 4. UAV thermal imaging detects lower temperatures after 

topsoil transfer restoration increased native forest plant species 

richness 

4.1. Introduction 

Vegetated terrestrial ecosystems can decrease local daytime surface temperatures during the growing 

season (e.g. Aerts et al., 2004; Lin et al., 2020; Luvall et al., 1990). Short-wave radiation energy from the 

sun is absorbed, transformed, and stored by plants through transpiration, respiration, and creation of new 

biomass (Gosz et al., 1978; Raven et al., 2003 chap. 5). Transformation and storage of part of the 

incoming energy reduces the portion of energy that is re-emitted directly as long-wave thermal radiation, 

i.e. sensible heat (Fraser and Kay, 2004; Luvall et al., 1990; Schneider and Kay, 1994). Sensible heat is 

measured as surface temperature, therefore, the more transformation and storage of energy by an 

ecosystem, the lower the surface temperature. 

If there is enough soil-water available, and photosynthetic and respiration capacity is not yet at 

maximum, the relative capacity of ecosystems to transform and store energy increases with increasing 

solar energy radiation (Bonan, 2008 chap. 17; Raven et al., 2003 chap. 5; Wilhelm and Selmar, 2011). 

This increased transformation and storage means vegetated ecosystems tend to have more of a cooling 

effect at daily and seasonal peaks of radiation compared to non-peak times (e.g. Aerts et al., 2004; Frey et 

al., 2016; Lin et al., 2020; Wagendorp et al., 2003). This mitigating of peak temperatures, and storage of 

heat until later in the day, is referred to as the ecosystem thermal buffering capacity (Aerts et al., 2004; 

Lin et al., 2020; Wagendorp et al., 2003). The cooling and buffering of summer daytime temperatures has 

been shown to be higher in forest ecosystems than croplands, grasslands, and savannah in similar climate 

conditions (e.g. Lin et al., 2020; Luvall et al., 1990). Buffering and cooling has also been shown to 

increase as forest ecosystems mature (e.g. Aerts et al., 2004; Lin et al., 2017b) and decrease with forest 

degradation (e.g. Lin et al., 2017a; Luvall and Holbo, 1989).  

The ability to buffer daytime surface temperatures during the growing season increases with 

photosynthetically active biomass (PAS) (e.g. Lin et al., 2020, 2017b). Increased photosynthetically 

active biomass (PAS) increases total physical heat capacity (Jayalakshmy and Philip, 2010) and gross 

primary productivity (GPP) (Williams et al., 1997). Increased GPP in turn increases potential 

transpiration and respiration (e.g. Baldocchi, 2005; Lin et al., 2018). Increased transpiration, respiration 

and heat capacity thereby transform and store more of the incoming energy, releasing less as sensible 

heat. 
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Thermal buffering has also been shown to increase with increasing species diversity (Hamberg et 

al., 2020). Plant diversity can affect temperature indirectly through an increase in the variation and 

effectiveness of different water, energy, and nutrient cycling related functions and structures (Baldocchi, 

2005; Hooper et al., 2005; Loreau, 1995). These functions and structures include, among others, 

variations in root depth (Guderle et al., 2018; O’Keefe et al., 2019), leaf shape, timing of leaf-out, and 

phototropism; all of which can aid in increasing and stabilizing respiration, gross primary productivity 

(GPP) and transpiration (Baldocchi, 2005; Hooper et al., 2005; Loreau, 1995; Schneider and Kay, 1994).  

We found that surface temperature decreased faster year-to-year in sites with higher plant 

diversity, controlling for understory cover, tree cover, and number of tree stems (Hamberg et al., 2020). 

However, satellite thermal imagery has a relatively low spatial resolution. Thermal image resolution 

varies between 60 to 120 m2 for Landsat and ECOSTRESS instruments and is 1 km2 for instruments on 

MODIS and Sentinel satellites (Barnes et al., 1998; Guzinski and Nieto, 2019; Hook et al., 2019; Zanter, 

2018). These coarse resolution satellite images are not suitable for comparing vegetation differences in 

small plot-level experiments, or in sites smaller, or narrower, than the satellite’s pixel size. This matters as 

many restoration sites are at or smaller than these pixel-sizes. For example, out of the 100 pits and 

quarries that are planned to be restored, or are already being restored, closest to our research site, 17 sites 

are ≤ 1 ha (100 m2) (TOARC, 2020). If this size pattern is true for all of Ontario’s 6527 surrendered pits 

and quarries, then there would be 1110 potential project sites that are <1 ha, which could not be imaged 

by satellite. 

Satellite thermal images also have limited temporal resolution – the coarse (1 km2) resolution data 

from MODIS and Sentinel satellites can be acquired approximately once per day, while the moderate 

resolution data from Landsat can be acquired every 16 days (Barnes et al., 1998; Guzinski and Nieto, 

2019; Zanter, 2018). The satellite data acquired is also only useable if acquired under cloud-free 

conditions.  

In contrast to thermal imagers on satellites, thermal imagers on UAVs can have spatial 

resolutions down to single-digit centimeters, depending on the instrument and the distance between the 

UAV and surface (Kelly et al., 2019; Santesteban et al., 2017). Also, in contrast to satellites, UAVs can 

be used on-demand to image a site multiple times per day, over multiple set times each day, allowing for 

comparison of thermal buffering at different times of the day. Beyond just temperature measurements, 

this potentially consistent and high temporal resolution of UAV’s can also be important for studying 

many other diurnal ecosystem processes, including transpiration and CO2 exchange. 

Research on vegetated areas using remote sensing thermal cameras attached to UAV has mostly 

focused on identifying water-stressed areas in managed production landscapes, especially in agriculture 

(Berni et al., 2009b; Maes and Steppe, 2019), but also in orchards and monoculture tree-plantations (e.g. 
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Iizuka et al., 2018; Ludovisi et al., 2017; Smigaj et al., 2019; Zarco-Tejada et al., 2012). Using UAV-

mounted thermal cameras, significant temperature differences have been detected between diseased and 

non-diseased pine (Pinus sp.) in a semi-naturalized plantation setting (Smigaj et al., 2019). While tree 

plantations have some of the structure and function of more diverse forests, plantations are generally 

simpler, often with only one even-aged tree species (Aerts and Honnay, 2011; Brockerhoff et al., 2008; 

Chazdon et al., 2016). In comparison to plantations, forests have a larger variation in species, height, age, 

structure, and overall complexity (Brockerhoff et al., 2008; Chazdon et al., 2016). There is so far a lack of 

published studies on UAV thermal imaging of diverse, non-commercial ecosystems. There are also no 

studies comparing thermal images from UAV with in situ measured plant species diversity, biomass, 

cover, or other ecosystem attributes, which would be needed in order to operationalize UAV thermal 

imaging for detecting ecosystem change.  

Measuring ecosystem change, and change in plant diversity through thermal imaging, could be 

useful for conservation and restoration evaluation and monitoring. While there has been interest in using 

UAVs in conservation and restoration initiatives, there has so far been very little knowledge of, or interest 

displayed in, thermal imagers specifically (e.g. Buters et al., 2019; Cordell et al., 2017; Nagendra et al., 

2013; Reif and Theel, 2017). Thermal imaging of restoration projects can potentially be relevant to 

restoration in multiple interconnected ways. It can be used both to quantify the amount of thermal 

buffering ability added by restoration, and it can be used as a holistic metric of ecosystem change to 

monitor and evaluate the trajectory of the restoration, and thereby the treatments and methods used.  

Thermal image data was collected using a UAV, and ecological data was collected in-situ, to 

determine if restoration of post-agricultural reforestation sites, and gravel pit sites could be accelerated 

through the transfer of topsoil. Using a series of control and topsoil transfer restoration plots, we sought to 

determine (1) if plots with forest topsoil, added two growing seasons prior, cool and buffer surface 

temperatures more than non-topsoil recipient control plots; and if so by how many degrees at different 

times of the day and season? And, (2) are there significant correlations between summer daytime surface 

temperature and ground-measured ecological attributes, including plant cover, plant species richness and 

diversity of all plants, native forest plant species richness, and tree size; and if so, what are the patterns of 

correlations within and between sites? 

4.2. Methods 

4.2.1. Study site 

This study was conducted at two reforestation sites on former agricultural land, and one inactive gravel 

pit. All sites are located in Clearview Township, southern Ontario, Canada.  
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The two reforestation sites are both located on the Niagara Escarpment, 510-530 m asl, and 

between 30 to 500 m from a planned quarry expansion (Figure 3.1). The reforestation sites were part of a 

larger effort aimed at mitigating the negative effects of a quarry expansion (Charlton and Hims, 2013). 

The planned quarry expansion encompasses the forest from which the topsoil was excavated and donated 

for all topsoil recipient plots in the experiment. The two reforestation sites are referred to in this study by 

the year they were planted with trees – 2015 and 2016. Both reforestation sites were planted in spring 

with a mix of native trees in rows (Table 3.1). After every 5th row of planted trees, a windrow was created 

by heaping up woody debris, rocks, and soil (Charlton and Hims, 2013). No trees were planted in the 

windrow. The 2015 site was 5.1 ha in size, with a mean slope of 6.4° at a mean aspect of 142° and a 

maximum difference in elevation of 17.2 m. The 2016 reforestation site was 1.0 ha, with a mean vertical 

slope of 5.7° at a mean aspect of 185° and a maximum difference in elevation of 4.5 m. Methods for 

acquiring the digital elevation model used to aquire slope, aspect and elevation differences are available 

in Appendix 4A. 

The gravel pit site is located 6.5 km north-east from the reforestation sites, below the escarpment 

at 235 m asl. The full gravel pit is 14.3 ha in size, but the section of the gravel pit site used for the 

experiment is 0.5 ha in size. No elevation model was created for the gravel pit site, but topographic data 

shows a maximum of 5 m elevation difference within the site (OMNRF, 2020), however, due to the 

gravel extraction the section of the site used for plots appeared nearly flat. While gravel pits resemble 

quarries, the pits are generally shallower, with only excavation of surface gravel and without the blasting 

done to break rocks in quarries. Prior to the experiment, in summer 2017, the site mostly had exposed 

sand and gravel, with 16 % overall vegetation cover.  

More details on the study sites and the excavation of the forest topsoil are described in section 2.1 

of Chapter 3. 

4.2.2. Topsoil transfer and plot setup 

Topsoil was moved from two deciduous temperate forest donor sites to plots within a post-agricultural 

reforestation site as well as to a post-extraction gravel pit. Topsoil transfer moves not just the soil itself 

but also the propagules, mycorrhizae, nutrients, and other valuable ecosystem components in and on top 

of the soil (Fowler et al., 2015; Raven et al., 2003 chap. 30). The intent of restoration by topsoil transfer is 

to improve the restoration trajectory, by increasing the diversity and biomass of native forest plants, 

including trees (e.g. Douterlungne et al., 2018; Koch, 2007). Depending on the condition of the recipient 

site, an added reason for topsoil transfer is to suppress ruderal field species of plants, even to the point of 

causing a net-loss in total species diversity (e.g. Buckley et al., 2017; Fowler et al., 2015).  
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The inclusion of reforestation sites with an already high richness of ruderal and non-native field 

species allows for a comparison of the effect on the surface temperature of all plant species as compared 

to the effect of only native forest species, most of which were introduced with the forest topsoil. In each 

of the three sites studied (gravel pit site, 2016 reforestation site, and 2015 reforestation site), 5 plots 

received forest topsoil in October and November 2017. The topsoil recipient plots were 12.5 x 10 m in 

size (Figure 4.1A), with topsoil added to a depth of approximately 20 cm. For the two reforestation sites, 

the topsoil recipient plots were mowed and then sprayed with glyphosate herbicide one to two weeks 

before receiving topsoil, to limit the re-emergence of ruderal field species. 

In the 2015 reforestation site, 5 plots of the same size were also mowed and sprayed but received 

no topsoil. These mow-and-spray control plots were used as control for the effect of the mowing and 

spraying done before the topsoil transfer. No mow-and-spray control plots were established in the 2016 

reforestation field. Each topsoil recipient treatment plot and mow-and-spray control plot was divided into 

4 sub-plot treatment areas: One sub-plot area had no further treatment (TRo), one was provided additional 

woody debris (WD), one had woody debris and C. alternifolia (alternate-leaved dogwood) shrubs added 

(DS), and one had woody debris and a 3.7m2 shade shelter added (SS) (Figure 4.1B). The sub-plots 

containing the shade shelter were not included in this study as the shade-cloth material affected the 

surface temperature registered by the UAV.  

Five passive control plots, where no experimental treatment was applied, were established at all 

three sites. The passive control plots were 12.5 x 10 m in the reforestation sites and 6.25 x 5 m at the 

gravel pit site. In the gravel pit site, each of the passive control plots was paired with, and established 

adjacent to, each of the topsoil-recipient only (TRo) sub-plot of the topsoil recipient plots (Figure 3.1g)  

 The set-up of the experimental plots is described in more detail in section 2.2 of Chapter 3. 



 

69 

 

 

Figure 4.1: Example of full plot set-up and thermal imagery. All images are of the same topsoil recipient plot 

within the 2015 reforestation site. A – Mosaic of optical images taken from UAV in May 2018, 6 months after 

soil transfer, but before the addition of woody debris and shade shelter. Dashed black lines indicate 

approximate edges of the nearest unplanted windrow (also in Fig. 1C). B - Single optical image taken from 

UAV at 12 pm, July 9th, 2019 with sub-plot treatments noted: TRo – Topsoil recipient only, WD – Soil 

transfer and woody debris, DS – Soil, woody debris, and dogwood shrubs, SS – Soil, woody debris, and shade 

shelter. C - Single false-color thermal image taken of the same plot and simultaneously with image B. 

Rectangular sub-plot areas of interest are marked by white rectangles. For the 2015 Reforestation area only, 

temperatures were normalized by subtracting the mean temperature of the sub-plot area (white rectangle) by 

that of an area adjacent to it, outside the plot, and parallel to the tree rows, avoiding unplanted windrows 

(black rectangle) (see section 2.5.1). Reflective corner markers noted were used to identify the plot corners 

and guide manual extraction of mean temperature in FLIR Thermal Studio software (FLIR Systems Inc.). 

Length of side of plot as dashed white line. 
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4.2.3. Selection and field methods of measuring and sampling ecological attributes 

The ecological attributes (Schick et al., 2019) used in this study were selected based on whether they were 

hypothesized to directly or indirectly affect surface temperatures. The variables included were % plant 

cover, species richness of all vascular plants, native forest species richness, species inverse Simpson 

diversity of all vascular plants, tree diameter, tree height, and tree genera richness.  

Plant sampling was conducted in June and July 2019, with a follow up for further species 

identification in September 2019. Two 2 x 0.5 m sampling frames, subdivided into 64 12.5 cm2 squares, 

were used to quantify the abundance of vascular plant species occurrence in each sub-plot. The same 

sampling frames were used to estimate % of living plant cover inside the frame. The areas not covered by 

living plants were observed to be covered with bare soil, woody debris, rocks, or dead biomass. Plants 

were included in measurements of cover and diversity if they were present below chest-height of 

sampling personnel (110-140 cm). Row-planted trees in the two reforestation sites were excluded from 

this sampling. Measurements from the two sampling frames were averaged by sub-plot area for statistical 

analyses to avoid pseudoreplication (Hurlbert, 1984). 

All sub-plots within topsoil recipient plots and mow-and-spray control plots were sampled for 

plant species and ground cover. For passive control plots in the two reforestation sites, only the north-east 

quarter sub-plot was sampled. For the gravel pit site, the passive control plot only consisted of one sub-

plot, which was sampled.  

The plant species diversity was calculated using the inverse Simpson diversity index, which 

weighs the plant species richness (i.e. number of species) against the overall evenness of plant species 

distribution (Chao et al., 2014). Native forest species richness was a subset of the total plant species 

richness that only includes vascular plant species considered native to Ontario and generally found in a 

forest habitat (Chapter 3, section 2.3.3.).  

Tree height and diameter at ground-level of planted trees in the two reforestation sites were 

measured in November 2019. The same planted trees were identified to genera. Tree diameter, tree height 

and tree genera richness were measured as the cumulative total of all living planted trees within the sub-

plot. Tree height and diameter were included in this study as an increase in height and diameter should, on 

average, correlate with higher total leaf area, more root-mass and higher potential xylem flow (e.g. 

Vertessy et al., 1995; Wullschleger et al., 2001), in turn correlating with higher potential transpiration and 

lower temperatures.  

The tree genera richness of planted trees was also included as a separate variable for similar 

reasons as the measures of plant species richness. Tree genera richness was not manipulated through the 

study; however, tree planting was done semi-randomly and depended on the availability of stock of 
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seedlings and saplings of different species. Because of potential patterns in tree species distribution, and 

because of potentially higher tree mortality of certain genera, it was still possible that there may have 

been enough variation in tree genera richness to influence surface temperature. 

The vegetation and tree sampling methods are described in further detail in Chapter 3, sections 

2.3.2 and 2.3.3. Data on the number of vegetation samples taken and trees measured and their growth and 

survival are available in section 3.2 and 3.3 of Chapter 3. 

4.2.4. Thermal imagery acquisition and processing 

Thermal imagery was acquired using a Zenmuse XT2 (SZ DJI Technology Co., Ltd.) gimbal and camera-

housing system, which contains a FLIR Tau 2 radiometrically calibrated uncooled microbolometer (FLIR 

Systems, Inc.) and an optical camera in the visual spectrum, mounted to a DJI Matrice 200 (SZ DJI 

Technology Co., Ltd.) quadcopter. The Tau 2 thermal imager had a 13 mm lens, a 640 x 512 resolution, 

and a field-of-view of 45 x 37°. The UAV was flown at a height of 60 meters above its take-off location, 

providing a pixel size of approximately 7-9 cm2. Due to the sloping terrain of the 2015 reforestation site, 

the height of the UAV above ground level varied by ± 5 m between plots at this site. 

GPS points of each plot were taken to allow for automatic waypoint flying and imaging. To avoid 

trampling inside the plots, GPS points were acquired at the north-east corner of each plot. GPS data was 

recorded using a Garmin Montana 650 GPS unit (Garmin Ltd.) with an accuracy of 1.98-4.3 m in open 

conditions (USDA Forestry Service, 2020). Waypoints were input and flown using the DJI Pilot App (SZ 

DJI Technology Co., Ltd.), on a DJI CrystalSky tablet. Wooden corner-stakes with 12.5 cm2 plywood 

squares, with reflective low-emissivity tape on top, were added to each plot corner to locate plot-corners 

in thermal imagery (Figure 4.1C). 

To calibrate the full field of the microbolometer, the instrument was turned on 5 minutes before 

beginning the flight take-off, and flat-field correction was performed at the beginning of each flight 

(Kelly et al., 2019). Some of the images taken still showed pronounced patterns of lowered temperatures 

towards the edges of each image, a common issue with these types of uncooled microbolometers, even 

when radiometrically calibrated, due to the temperature of the camera-housing (Kelly et al., 2019). The 

area of each image was about 40 x 50 m in size, with the 10 x 12.5 m plot near the center, and therefore 

the edge cooling error effect was limited within the area of interest. With all plots near the middle of the 

image, and relative temperature comparisons made within the same site and flight, the relative effect of 

the edge cooling error effect should be further reduced. 

UAV thermal imagery was acquired over 5 days in July, and 4 days in September 2019 (Table 

4.1). July and September were selected as months representative of the middle and late growing season, 

respectively. Each day imaged either the two reforestation sites together, due to their close proximity to 
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each other, or the gravel pit site. In July all plots were imaged twice per hour at 12, 2, 4, and 8 pm, except 

for on July 7th, due battery charging issues, and on July 14th at 12 pm due to mixed cloud conditions. In 

September all plots were imaged twice per hour at 12, 2, and 4 pm. Flights began within half an hour of 

the beginning of the flight hour, ending at the latest 35 minutes after the beginning of the flight hour. All 

flight times and temperature data are available in Appendix 4B. The duration of one flight, from first to 

the last image, was 191 seconds (15 images) for the 2015 reforestation site, 82 seconds (10 images) for 

the 2016 reforestation site, and 57 seconds for the gravel pit site (5 images). 
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Table 4.1: Number of thermal imaging flights flown by site, month, date, and hour of the day, local time 

(EDT) in 24-hour format. 

    July - dates September - dates 

Site Hour 7 8 9 14 15 7 8 9 17 

Gravel Pit 12     2    2 

 14    2 2    2 

 16    2 2    2 

  20       2 2        

RF-2016 12  2 2     2 2 2   

 14 1 2 2    2 2 2  

 16 1 2 2    2 2 2  

  20 1 2 2             

RF-2015 12 2 2 2    2 2 2  

 14 1 2 2    2 2 2  

 16 1 2 2    2 2 2  

  20 2 2 2             

 

In total 98 flights were conducted (Table 4.1), acquiring a total of 1080 thermal images of plots. 

Each plot in the gravel pit site was imaged 20 times each, while each plot in the 2016 and 2015 

reforestation site was imaged 38 and 40 times respectively. The difference in the number of days a site 

was imaged was due to appropriate weather conditions and site access. The two reforestation sites were 

prioritized over the gravel pit site. The most comparable studies are those using UAV thermal imaging of 

tree plantations and low-diversity tree stands. These studies include Izuka et al. (2018), which flew a total 

of 4 times over 2 days, Smigaj et al. (2019), which flew 6 times during 1 day, and Ludovisi et al. (2017) 

which flew 1 time.  

Flights were flown on days with uniformly clear, hazy, or overcast skies to keep incoming solar 

radiation equal throughout each flight. Skies were nearly clear or had light haze for 7 out of 9 flight-days 

(excepting July 14th at 12 pm, which had partially cloudy conditions). The two other days - September 7th 

and 8th - were uniformly overcast.  

The relative humidity had to be below 75 % and wind-speeds below 5 m/s for imaging to take 

place. Low wind-speeds minimize unpredictable cooling and movement of heat from wind, and the 

humidity threshold allows for active cooling by transpiration (Bonan, 2008 chap. 14 and 17; Grace, 

1988). Air temperature, relative humidity, and wind-speed were recorded with a Kestrel Weather Meter 

(ITM Instruments Inc.) at each flight-hour. For the days with acceptable sky-conditions, no flight had to 

be canceled due to humidity or wind-speeds above acceptable levels. Relative humidity had a mean of 42 

% (SD = 8.4) for afternoon flights (12 – 4 pm), with humidity rising at 8 pm to a mean of 64.1 % (SD = 

8.1). Wind speeds were overall low, with a mean of 0.6 m/s (SD = 0.7) and a maximum of 2.6 m/s. The 
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mean air temperature for July flights was 28.3 °C (SD = 2.4) during the day and 20.2 °C (SD = 2.4) in the 

evening; and for September flight-days it was 24.9 °C (SD = 4.8) in the day and 14.8 °C (SD = 4.5) in the 

evening. 

Differences in atmospheric conditions (humidity and atmospheric transmissivity) can affect the 

accuracy of absolute temperatures derived from thermal data acquired from UAV (Berni et al., 2009a; 

Hammerle et al., 2017; Kelly et al., 2019). However, with the low flight altitude (60 m) and with flights 

conducted at times of relatively low humidity, errors due to atmospheric conditions should be minimal 

(see Fig. 7a in Berni et al. (2009a)). FLIR Thermal Studio software (FLIR Systems, Inc.) was used to 

process all images to an emissivity of 0.95 for all images. Emissivity is the ratio of emittance of radiation 

as compared to a perfectly emitting blackbody. The emissivity of bare soil and vegetation can vary 

between approximately 0.90 and 0.99, depending on the type of soil and vegetation, and the part of the 

thermal spectrum used for imaging. An emissivity of 0.95 was selected as it is a measure between bare 

soil and vegetation for the spectral band of the camera (7.5 - 13.5 µm) (for several different emissivity 

estimations, see: Meerdink et al., 2019; Rubio et al., 1997; Sobrino et al., 2008). Changes in emissivity 

and albedo were not measured separately as they were considered a secondary effect of plant cover, tree 

size, and species diversity. Mean, maximum and minimum temperatures for each image were extracted 

manually using the polygon measurement tool in the FLIR Thermal Studio software (FLIR Systems, 

Inc.). While the camera was always directly downward vertically, the horizontal angle of the camera had 

slight variations. Due to these variations, the imagery could not easily be batch-processed, and manual 

extraction of data was found to be faster than geo-referencing each image.  

4.2.5. Statistical analyses 

4.2.5.1. Ecological attributes and thermal buffering over time in topsoil and control plots 

To characterize the ecological attributes of topsoil transfer and control sub-plots at each site, their means 

are presented along with thermal data for each site. Separate one-way ANOVAs were performed 

comparing each ecological attribute (section 2.3.) in each site by plot-type. More in-depth comparisons of 

ecological differences between plot-types are available in Chapter 3.  

To test the effect of topsoil transfer on surface temperature at different times of the day and in 

different seasons, sub-plots that received topsoil were compared to controls within the same site and at the 

same flight-hour and month. Sub-plots with additional treatments (woody debris and dogwood shrubs) 

were not used in these analyses to avoid the confounding effects of these treatments. For the two 

reforestation sites, only the north-east quarter of passive control plots were used, in order to balance the 

statistical models in terms of having the same number and size of samples per plot-type. The north-east 
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quarter was selected as this was the only quarter of passive control plots that were sampled for ecological 

attributes. For the gravel pit site, the full plot was used as it was already quarter-sized (5 x 6.25 m) and 

sampled as a sub-plot (section 2.3.). 

To compare surface temperature over time for topsoil recipient and control sub-plots, at all sites, 

the primary response variable used was the mean surface temperature of the sub-plot. 

For the 2015 reforestation site, a normalized mean ‘net-temperature’ was tested as well. The net-

temperature normalization was calculated by subtracting the mean temperature of the sub-plot by that of a 

same-sized area adjacent (0-30 cm distance) to the sub-plot. The adjacent area was always in the direction 

of the planted tree rows, to avoid un-planted windrows (Figure 4.1C). The normalized net-temperature 

was used to control for the possible effect of higher variation in terrain in the 2015 reforestation site (up 

to 17.2 m difference in elevation), as compared to the other two sites (up to 5 m difference in elevation). 

The more varied terrain in the 2015 site may have affected the plots beyond the effect of the experimental 

treatment, through differences in soil-moisture availability, incoming sunlight, and differing wind-

conditions (Bennie et al., 2008; Cantlon, 1953; Iizuka et al., 2018). This was especially relevant as 4 out 

of 5 of the mow-and-spray control plots were all located within one corner of the 2015 site (Figure 3.1e). 

In contrast, the other sites were smaller in size, with less difference in elevation. Net-temperature 

normalization would not be appropriate for the gravel pit site as the passive control plots were already 

established next to the topsoil transfer sub-plot. It would also not be helpful for the 2016 reforestation site 

as passive control plots were already spaced out closely (15-40 m) in between each topsoil transfer plot. 

Measurements of the same sub-plot, taken on the same flight-hour, within the same day, were 

averaged before analysis to avoid temporal pseudoreplication issues (Hurlbert, 1984). The estimated 

marginal mean surface temperature of sub-plots within a site was then compared by plot-type within the 

same combination of flight hour (12, 2, 4, and 8 pm) and month (July and September). For the gravel pit 

site during all of September, and July at 12 pm, temperature data was only acquired on one day (Table 

4.1). For these single-day data, a one-way ANOVA was performed on a linear model, with plot-type as 

predictor and surface temperature as the response variable. For all other sites and flight hours, 

measurements were collected on more than one day. With multiple day measurements, two-way 

ANOVAs with interactions were performed on a linear mixed effect model. The linear mixed effect 

model included the date of the flight and its interaction with plot-type, to control for the influence of 

different weather at different flight-days (Zuur et al., 2009). The linear mixed effect models also included 

the plot number, or ID, as a random intercept effect to control for temporal autocorrelation between 

images of the same plots on different days (Zuur et al., 2009). Since the 2015 reforestation site had three 

plot-types (topsoil recipient, passive control, and mow-and-spray control) a pairwise Tukey HSD post-hoc 
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test was performed if significant differences were observed in the ANOVA. No post-hoc test was needed 

for the two other sites as they only contained two plot-types.  

All statistical analyses in this study were performed in the R programming language code (Core 

Team, 2013). Estimated marginal means of surface temperature and its standard error were calculated 

using the ‘emmeans’ package (Lenth et al., 2018). The linear mixed-effects models were fitted using the 

‘lme4’ package (Bates et al., 2015) and the ANOVAs on linear mixed-effects models were performed 

using the ‘lmerTest’ package (Kuznetsova et al., 2017). The ANOVAs on the mixed-effects models used 

the Kenward-Roger degrees of freedom method (Chawla et al., 2014; Keselman et al., 1999). For mixed-

effects models where p-values were found to be statistically significant, the variance explained was 

calculated as the marginal R2 (mR2) for fixed effects (plot-type, date, and their interaction), using the 

‘MuMin’ R package (Barton, 2020; Nakagawa and Schielzeth, 2013). The code and output (models, 

visualization, diagnostic graphs, and assumption tests) of all statistical analyses used in this study are 

available in Appendix 4C, organized by the results sub-sections. 

For all statistical analyses in this study, a two-sided 95 % confidence interval was used (α = 0.05) 

to determine if results were statistically significant. This confidence interval and p-value α-level was 

selected based on the number of plots and measurements available in the experiment, and to balance the 

risk of false positive (type-1) and false negative (type-2) error (Lakens et al., 2018).  

Bonferroni outlier tests, from the ‘car’ package (Fox et al., 2012), were used to identify 

significant outliers for all ANOVAs. One data-point was removed at 12 pm, September 9th as it was a 

significant outlier (Bonferroni outlier test p = 0.045). The reason for the outlier value was due to a corner 

shading of the sub-plot area by the nearby forest. ANOVAs on simple linear models were tested for 

assumptions of normality of residuals using the Shapiro-Wilks test in the core R stats package (R. Core 

Team, 2013), and of equal variance using Levene’s test in the ‘car’ package (Fox et al., 2012). For 12 pm 

September flights at the gravel pit site, the assumption of normality was not met, and a non-parametric 

Kruskal-Wallis test was therefore performed instead of the ANOVA. Normality and equal variance 

assumptions of ANOVA on linear mixed-effects models were checked visually through diagnostics plots 

(Appendix 4C), as the Shapiro-Wilks and Levene’s tests are considered too conservative for these models 

(Gelman and Hill, 2006; Winter, 2013; Zuur et al., 2009). No diagnostic plots of mixed-effects linear 

models appeared to indicate heteroscedasticity or non-normality issues.  

4.2.5.2. Comparing temperature response and ecological attributes 

To test if there was a potential statistical relationship between surface temperature and the selected 

ecological attributes, correlation analyses were calculated for all sub-plots within each of the three study 

sites separately. Correlations of the different ecological attributes with each other were also performed to 
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ascertain potential interactions and underlying factors that may affect multiple attributes. Spearman’s 

ranked correlation coefficient was used to detect monotonic relationships as not all variables were 

normally distributed (Appendix 4C). The ‘Hmisc’ package in R was used to perform the correlation 

analyses (Harrell Jr and Dupont, 2017) 

Because ground vegetation data (richness, diversity, and cover) was collected during mid-June to 

mid-July it was correlated to July surface temperatures only, excluding temperature data from September. 

Only the surface temperature data from afternoon flights (12 to 4 pm) were used, excluding temperature 

from 8 pm flights as vegetation was expected to have a stronger effect on temperature during active 

photosynthesis and transpiration. Photosynthesis peaks during mid-afternoon and is mostly inactive by 8 

pm in July at the latitude of the experiment (Raven et al., 2003 chap. 31). To control for the difference in 

solar radiation and weather at different days and times of the afternoon, the mean surface temperature of 

each sub-plot measurement was normalized and then averaged together over all July afternoon flights. For 

the gravel pit site and the 2016 reforestation site, temperature was normalized by dividing the mean 

temperature of each sub-plot with the combined mean temperatures of all sub-plots within that site during 

the same flight. For the 2015 reforestation site the already normalized net-temperatures, described in 

section 2.5.1, were used and no further normalization was needed. 

Detecting correlation between ecological attributes and temperature requires that there be enough 

variation in the ecological attribute to overcome noise and uncertainty in measurements (Aggarwal and 

Ranganathan, 2016). To investigate the variation of ecological attributes between sites, we compared their 

standard deviation and examined whether they correlate significantly with temperature or not. Standard 

deviation was used as the measure of variation, rather than variance, to retain the unit of measure in 

comparisons. There is no specific level of variation that could be said to be ‘enough’, but by comparing 

between sites, we could potentially rule out lack of variation as a reason for non-correlation in a site. If 

sites with lower variation in an ecological attribute showed a significant correlation with temperature, and 

those with higher variation did not, then a lack of variation could be ruled out as a reason for non-

significant correlation. Only attributes that were significant in one, but not all sites were included, as it 

was only with these variables that comparisons of variation and significant correlation between fields 

could be made. 
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4.3. Results 

4.3.1. Ecological attributes and surface temperature change over time by plot-type 

4.3.1.1. Gravel pit site in July and September 

Species richness and inverse Simpson diversity of all plant species, and species richness of native forest 

species only, were significantly (p < 0.05) higher in topsoil recipient plots compared to passive controls 

the gravel pit site in one-way ANOVAs (Table 4.2). There was no significant difference in % plant 

ground cover between the two plot-types in a one-way ANOVA. 

Table 4.2: Ecological attributes of topsoil recipient (TR) and passive control (PC) plots in the 2016 

reforestation site sampled in June-July 2019. Mean values and mean difference between the two plot-types. 

Bolded mean differences were found to be significant (p < 0.05) in one-way ANOVA. * p < 0.05, ** p < 0.01, 

*** p < 0.001. NF sp. richness – Native forest plant species richness; all sp. richness – Species richness of all 

plants; all sp. diversity – Species inverse Simpson diversity of all plant 

  N 
% ground 

cover 
NF sp. 

richness 
All sp. 

richness 
All sp. 

diversity 

TR mean 5 70 11.0 29.2 11.0 

PC mean 5 43 3.8 14.8 5.2 

TR-PC 

diff. 
 

27 
7.2** 14.4*** 5.8** 

 

Surface temperatures were significantly lower in the topsoil recipient plots, compared to the 

passive control plots during the afternoon (12- 4 pm) in July at the gravel pit site (Figure 4.2). The 

afternoon temperatures were buffered the least at 12 pm and 4 pm, with an estimated marginal mean 

difference of 6.2 °C (SE = 1.4), and the most at 2 pm, by 8.7 °C (SE = 1.12). The mean difference in 

surface temperature for the full afternoon (12-4 pm) was 7.1 °C.  
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Figure 4.2: Estimated marginal (EM) mean surface temperature of topsoil recipient and passive control plots 

in the gravel pit site July 14th-15th 2019 by time of day. Results from multiple flights on multiple days are 

grouped by flight-hour, presented on the x-axis. Dashed lines are only visual aids for grouping by plot-type 

and do not pre-suppose linear relationships of temperature between flight-hours. Error bars at each flight-

hour represent the 95 % confidence interval (p < 0.05) of temperatures by plot-type when taking into account 

the effect of date and plot ID. P-values from ANOVAs are presented in the boxes below each flight-hour, 

along with total number of flights and number of flight-days in parenthesis. For significant (p < 0.05) 

differences R2 or marginal-R2 (mR^2) are also presented in the same box. 

There were no significant (p < 0.05) differences in surface temperature at any of the flight hours 

on September 17th for the gravel pit site (Figure 4.3).  
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Figure 4.3: Estimated marginal (EM) mean surface temperature of topsoil recipient and passive control plots 

in the gravel pit site September 17th, 2019 by time of day. Results from multiple flights on multiple days are 

grouped by flight-hour, presented on the x-axis. Dashed lines are only visual aids for grouping by plot-type 

and do not pre-suppose linear relationships of temperature between flight-hours. Error bars at each flight-

hour represent the 95 % confidence interval (p < 0.05) of temperatures by plot-type when taking into account 

the effect of date and plot. P-values from the ANOVAs, and marginal-R2 (mR^2, only if p-value was 

significant), are presented in the boxes below each flight-hour, with total number of flights and number of 

flight-days in parenthesis. Kruskal-Wallis test used for 12 pm due to non-normality issues.  

4.3.1.2. 2016 reforestation site in July and September 

The topsoil recipient plots in the 2016 reforestation site had significantly higher species richness (all plant 

species and native forest species only) and % ground cover than passive controls in the same site in one-

way ANOVAs (Table 4.2). There was no significant difference in inverse Simpson species diversity of all 

plants or any of the tree measures between the two plot-types in a one-way ANOVA. 
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Table 4.3: Ecological attributes of topsoil recipient (TR) and passive control (PC) plots in the 2016 

reforestation site sampled in June-July 2019. Mean values and mean difference between the two plot- types. 

Bolded mean differences were found to be significant (p < 0.05) in one-way ANOVA. * p < 0.05, ** p < 0.01, 

*** p < 0.001. † Kruskal-Wallis test used as ANOVA did not fulfill assumptions. NF sp. richness – Native 

forest plant species richness; all sp. richness – Species richness of all plants; all sp. diversity – Species inverse 

Simpson diversity of all plant; Tree gen. rich. – Planted tree genera richness; Cum. tree height – Total 

cumulative tree height of planted tree; Cum. tree diameter – Total cumulative tree diameter of planted trees. 

  
% ground 

cover 
NF sp. 

richness 
All sp. 

richness 
All sp. 

diversity 
Tree gen. 

richness 
Cum. Tree 

height (cm) 
Cum. tree 

diam. (mm) 

TR mean 79 9.0 27.6 9.4 4.0 1482 236 

PC mean 50 1.8 18.4 8.4 3.0 1592 219 

TR-PC 

diff. 
29* 7.2*** 9.2** 1 1.0† 110 17 

 

The topsoil recipient plots had significantly (p < 0.05) lower surface temperatures than passive 

control plots at 12, 2 and 4 pm, but not at 8 pm, in the 2016 reforestation site in July (Figure 4.4). The 

difference in estimated marginal mean afternoon temperature was highest at 2 pm by 2.1 °C (SE = 0.4), 

with a mean difference of 1.9 °C at 12 pm (SE = 0.4) and 1.9 °C at 4 pm (SE = 0.5). The overall mean 

afternoon difference in temperature was 2.0 °C.  
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Figure 4.4: Estimated marginal (EM) mean surface temperature of topsoil recipient and passive control plots 

in the 2016 reforestation site July 7th-9th 2019 by time of day. Results from multiple flights on multiple days 

are grouped by flight-hour, presented on the x-axis. Dashed lines are only visual aids for grouping by plot-

type and do not pre-suppose linear relationships of temperature between flight-hours. Error bars at each 

flight-hour represent the 95 % confidence interval (p < 0.05) of temperatures by plot-type when taking into 

account the effect of date and plot. P-values from the ANOVAs are presented in the boxes below each flight-

hour, with total number of flights and number of flight-days in parenthesis. Marginal-R2 (mR^2) are 

presented in the same box if differences were significant. 

At the 2016 reforestation site in September, topsoil recipient plots had significantly (p < 0.05) 

lower temperatures than passive control plots at 2 and 4 pm, but not at 12 pm (Figure 4.5). The estimated 

marginal mean difference between plot-types was 1.8 °C (SE = 0.5) at 2 pm and 1.7 °C (SE = 0.4) at 4 

pm.  
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Figure 4.5: Estimated marginal (EM) mean surface temperature of topsoil recipient and passive control plots 

in the 2016 reforestation site September 7th-9th 2019 by time of day. Results from multiple flights on multiple 

days are grouped by flight-hour, presented on the x-axis. Dashed lines are only visual aids for grouping by 

plot-type and do not pre-suppose linear relationships of temperature between flight-hours. Error bars at each 

flight-hour represent the 95 % confidence interval (p < 0.05) of temperatures by plot-type when taking into 

account the effect of date and plot. P-values from the ANOVAs, and marginal-R2 (mR^2, only if p-value was 

significant), are presented in the boxes below each flight-hour, with total number of flights and number of 

flight-days in parenthesis.  

4.3.1.3. 2015 reforestation site in July and September 

There were no significant differences in any ecological attributes between topsoil recipient plots and 

either the mow-and-spray control plots or passive control plots in the 2015 reforestation site (Table 4.4). 
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Table 4.4: Ecological attributes of topsoil recipient (TR), mow-and-spray control (MSC), and passive control 

(PC) plots in the 2015 reforestation site sampled in June-July 2019. Mean values and mean difference 

between the three plot-types. Bolded mean differences were found to be significant (p < 0.05) in one-way 

ANOVA. * p < 0.05, ** p < 0.01, *** p < 0.001. † Kruskal-Wallis test used as ANOVA did not fulfill 

assumptions. NF sp. richness – Native forest plant species richness; all sp. richness – Species richness of all 

plants; all sp. diversity – Species inverse Simpson diversity of all plant; Tree gen. rich. – Planted tree genera 

richness; Cum. tree height – Total cumulative tree height of planted tree; Cum. tree diameter – Total 

cumulative tree diameter of planted trees. 

  N 
% ground 

cover 
NF sp. 

richness 
All sp. 

richness 
All sp. 

diversity 
Tree gen. 

richness 
Cum. tree 

height (cm) 
Cum. tree 

diam. (mm) 

TR mean 5 94 5.8 27.6 11.0 2.8 1295 227 

MSC mean 5 96 2.6 20.2 8.2 3.4 1384 180 

PC mean 5 87 1.8 21.4 10.2 2.6 945 151 

TR-MSC 

diff.  -2† 3.2 7.4 2.8 -0.6 -89 47 

TR-PC diff.   7† 3.0 6.2 0.8 0.2 250 76 

 

During the July flights, mean temperature of mow-and-spray control plots in the 2015 

reforestation site was significantly (p = 0.046) lower than passive control plots at 4 pm by a mean of 2.4 

°C (SE = 0.9) (Figure 4.6A). There were no significant differences in mean surface temperature between 

any plot-types at any other hours.  

When normalizing surface temperatures of each sub-plot by their adjacent surroundings as ‘net-

temperatures’ the pattern changed. Net-temperature of topsoil recipient plots were significantly lower 

than passive controls (p = 0.025) and mow-and-spray control plots (p = 0.028), but only at 8 pm (Figure 

4.6B) as per a post-hoc Tukey HSD test. The estimated marginal mean difference of net-temperature at 8 

pm between the topsoil recipient plots, and both the mow-and-spray plots and passive control plots, was 

0.7 °C (SE = 0.2).  
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Figure 4.6: (A) Estimated marginal (EM) mean surface temperature and (B) normalized EM mean surface 

net-temperature of topsoil recipient, mow-and-spray control, and passive control plots in the 2015 

reforestation site, July 7th-9th 2019 by time of day. Results from multiple flights on multiple days are grouped 

by flight-hour, presented on the x-axis. Dashed lines are only visual aids for grouping by plot-type and do not 

pre-suppose linear relationships between flight-hours. Error bars at each flight-hour represent the 95 % 

confidence interval (p < 0.05) of temperatures by plot-type when taking into account the effect of date and 

plot. P-values from ANOVAs are presented in the boxes above each flight-hour. For the significant ANOVAs, 

post-hoc Tukey HSD pairwise p-value and marginal R2 of fixed effects (mR^2) are presented in the box. Total 

number of flights and number of flight-days are presented in the boxes in parenthesis.  



 

86 

 

There were no significant (p < 0.05) differences in either mean temperature or normalized net-

temperature between plot-types for September at any flight-hour (Figure 4.7). 

 

Figure 4.7: (A) Estimated marginal (EM) mean surface temperature and (B) normalized EM mean surface 

net-temperature of topsoil recipient, mow-and-spray control, and passive control plots in the 2015 

reforestation site September 7th-9th 2019 by time of day. Results from multiple flights on multiple days are 

grouped by flight-hour, presented on the x-axis. Dashed lines are only visual aids for grouping by plot-type 

and do not pre-suppose linear relationships between flight-hours. Error bars at each flight-hour represent the 

95 % confidence interval (p < 0.05) of temperatures by plot-type when taking into account the effect of date 

and plot. P-values from the ANOVAs are presented in the boxes below each flight-hour, with total number of 

flights and number of flight-days in parenthesis. 
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4.3.1.4. Contrasting the effect of topsoil transfer on ecology and temperature between sites 

Topsoil recipient plots in both the 2016 reforestation site and the gravel pit site both had significantly 

higher plant species richness (all and native forest species only) and significantly lower July afternoon 

temperatures compared to passive control plots. Topsoil recipient plots also had higher % plant cover in 

the 2016 reforestation site and higher inverse Simpson diversity of all plants in the gravel pit site. In 

contrast, the 2015 reforestation site, with no statistically significant differences in ecological attributes, 

only showed a significant net-temperature difference between topsoil recipient plots and both control 

plot-types at 8 pm in July.  

4.3.2. Surface temperature response and ecological attributes 

4.3.2.1. Correlations of temperature and ecological attributes within fields 

At the gravel pit site, there was a significant (p < 0.05) monotonic correlation between lower normalized 

surface temperature ratio and higher native forest plant species richness and % plant ground cover (Figure 

4.8). Native forest species richness and % plant ground cover also correlated significantly and positively 

(0.79) with each other. Species richness and inverse Simpson species diversity of all plant species were 

not significantly correlated with temperature. 

 

Temp. 

norm. 
Sp. 

diversity 
All. sp. 

rich. 
NF. sp. 

rich 

% ground 

cover 
-0.6** 0.28 0.37 0.79*** 

NF sp. rich. 
-0.47*  0.57**  0.70***  

Sp. rich. 
-0.29 0.92***   

Sp. diversity 
-0.28    

 

Figure 4.8: Matrix of Spearman rank correlation coefficients for correlations of temperature (bolded outline) 

and ecological variables within the gravel pit site. Numbers explain the direction and strength of the 

Spearman correlation coefficient. Significant (p < 0.05) correlations bolded and: * p < 0.05, ** p < 0.01, *** p 

< 0.001. NF sp. rich. – Native forest plant species richness; all sp. rich. – Species richness of all plants; all sp. 

diversity – Species inverse Simpson diversity of all plants; Temp. norm. – Normalized surface temperature. 

At the 2016 reforestation site, a lower normalized surface temperature correlates significantly (p 

< 0.05) with a higher plant species richness of all species, native forest plant species richness, and % plant 

ground cover (Figure 4.9). There were no significant correlations between temperature and cumulative 

tree diameter, cumulative tree genus richness, or the inverse Simpson diversity of all plant species.  
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Temp. 

norm. 
Tree 

diameter 
Tree 

height 
Tree gen. 

rich. 
All sp. 

diversity 
All sp. 

rich. 
NF. sp. 

rich 

% ground 

cover 
-0.63** -0.22 -0.27 0.23 0.27 0.3 0.46* 

NF sp. rich. -0.64** -0.13 -0.16 0.39 0.34 0.76**  

All sp. rich. -0.58** -0.21 -0.20 0.23 0.47*   

Sp. diversity -0.39 -0.22 -0.19 -0.01    

Tree gen. rich. -0.31 0.27 0.06     

Tree height 0.19 0.88***      

Tree diameter 0.02       

 

Figure 4.9: Matrix of Spearman rank correlation coefficients for correlations of temperature (bolded outline) 

and ecological variables within the 2016 reforestation site. Numbers explain the direction and strength of the 

Spearman correlation coefficient. Significant (p < 0.05) correlations bolded and: * p < 0.05, ** p < 0.01, *** p 

< 0.001. NF sp. rich. – Native forest plant species richness; all sp. rich. – Species richness of all plants; all sp. 

diversity – Species inverse Simpson diversity of all plants; Tree gen. rich. – Planted tree genera richness; Tree 

height – Total cumulative tree height of planted tree; Tree diameter – Total cumulative tree diameter of 

planted trees; Temp. norm. – Normalized surface temperature. 

At the 2015 reforestation site, there was a significant (p < 0.05) negative correlation between 

normalized surface temperature and native forest understory species, tree diameter, and tree height 

(Figure 4.10). There was no significant correlation at this site between temperature and % ground cover, 

species richness of all plants, species diversity of all plants, or tree genera richness.  
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Temp. 

norm. 
Tree 

diameter 
Tree 

height 

Tree 

gen. 

rich. 

Sp. 

diversity 
All Sp. 

rich. 
NF. sp. 

rich 

% ground 

cover 
-0.02 0.05 -0.08 -0.05 0.23 0.31 0.34* 

NF sp. rich. -0.37* 0.21  0.01  0.04 0.81*** 0.84***  

All sp. rich. -0.22 0.17 -0.02  0.09 0.92***   

Sp. diversity -0.15 0.03 -0.16 -0.06    

Tree gen. rich. -0.14 0.48** 0.52**     

Tree height -0.57*** -0.93***      

Tree diameter -0.57***       

 

Figure 4.10: Matrix of Spearman rank correlation coefficients for correlations of temperature (bolded 

outline) and ecological variables within the 2016 reforestation site. Numbers explain the direction and 

strength of the Spearman correlation coefficient. Significant (p < 0.05) correlations bolded and: * p < 0.05, ** 

p < 0.01, *** p < 0.001. NF sp. rich. – Native forest plant species richness; all sp. rich. – Species richness of all 

plants; all sp. diversity – Species inverse Simpson diversity of all plants; Tree gen. rich. – Planted tree genera 

richness; Tree height – Total cumulative tree height of planted tree; Tree diameter – Total cumulative tree 

diameter of planted trees; Temp. norm. – Normalized surface temperature. 

Native forest plant species richness was the only variable that correlated significantly with 

normalized surface temperature in all sites, with a Spearman correlation between -0.37 and -0.64. Native 

forest plant species richness in turn positively and significantly correlated with % plant ground cover at 

all sites; likely due to both these factors increasing with forest topsoil transfer. 

4.3.2.2. Variation in ecological attributes and their correlation with temperature contrasted 

Species richness of all plants, % plant ground cover, and cumulative tree height and tree diameter had 

significant correlations with surface temperature in some, but not all sites. For % plant ground cover, 

cumulative tree height, and tree diameter, the lowest standard deviation was found at sites where no 

significant correlation with temperature was found (Table 4.1). The lack of variation in these attributes 

could therefore be a reason for the lack of correlation with temperature in the respective sites. For species 

richness of all plants, the relationship was the opposite. The two sites with a significant correlation 

between surface temperature and species richness of all plants had the lowest and highest variation in 

terms of standard deviation. The lack of correlation between species richness of all plants with 



 

90 

 

temperature in the 2015 reforestation area cannot, therefore, be ascribed to a lack of variation in the mean 

number of plant species between sub-plots. 

Table 4.5: Comparison of variation (standard deviation - SD) of ecological variables by sub-plots in the three 

sites and whether the variable correlated significantly (sig. corr.) with surface temperature. Only variables 

that were significantly related to temperatures in some, but not all, sites are included.  

  
Sp. richness of all 

plants  
Plant ground cover 

(%) 
Tree height 

 (cm - sum) 
Tree diameter  

(mm - sum) 

 Sig. corr. (p) SD 
Sig. corr. 

(p) SD Sig. corr. (p) SD Sig. corr. (p) SD 

Gravel pit Yes (0.022) 9.5 
Yes 

(<0.001) 18.6 Not included Not included 

RF 2016 Yes (<0.001) 4.7 Yes (0.003) 19.5 No (0.442) 344 No (0.946) 50 

RF 2015 No (0.212) 7.1 No (0.898) 10.0 Yes 

(<0.001) 
465 Yes 

(<0.001) 
66 

 

4.3.3. Summary of results 

Two questions were asked in this study, here we summarize the answer to each: 

(1) Do plots with forest topsoil, added two growing seasons prior, cool and buffer surface 

temperatures more than non-topsoil recipient control plots; and if so by how many degrees at 

different times of the day and season? 

 Topsoil recipient plots had significantly lower surface temperature than controls in 

the gravel pit site (7.0 °C), and in the 2016 reforestation site (2.0 °C) during July 

afternoons (12 – 4 pm). At both these sites, the difference in temperature buffering 

effect was most pronounced at 2 pm. 

 Topsoil recipient plots in the 2015 reforestation site had significantly lower 

normalized surface net-temperatures than both passive and mow-and-spray control 

plots at 8 pm in July only. At all other flight-hours, in September, and using non-

normalized temperatures there were no significant differences between topsoil 

recipient plots and control plots for this site. 

 For September flights, only the 2016 reforestation site showed a significant 

difference, where surface temperature of topsoil recipient plots were 1.7 °C lower 

than controls at 2 pm and 4 pm.  

(2) Are there significant correlations between summer daytime surface temperature and ground-

measured ecological attributes, including plant cover, plant species richness and diversity of all 

plants, native forest plant species richness, and tree size; and if so, what are the patterns of 

correlations within and between sites? 
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 In all three sites, lower temperatures were significantly correlated with higher 

native forest plant species diversity (Spearman r = -0.37 to -0.64).  

 Higher total plant species diversity was only significantly correlated with lower 

temperatures in the 2016 reforestation site (r = -0.58). 

 In the gravel pit and 2016 reforestation site a higher % of ground covered by living 

plants was significantly correlated with lower temperatures (r = -0.60 and r = -0.63). 

 In the 2015 reforestation site higher cumulative tree size (diameter and height) was 

correlated with lower temperatures (r = -0.57 and -0.57 respectively). 

4.4. Discussion 

4.4.1. Thermal buffering and its applications in evaluating restoration and its benefits 

Previous studies on surface or air temperature of more diverse forest ecosystems have mostly compared 

these to other types of ecosystems; for example, comparing mature forests to grasslands, burns, pastures 

(e.g. Luvall et al., 1990; Luvall and Holbo, 1989; Wagendorp et al., 2003), croplands (e.g. Kutsch et al., 

2001; Maes et al., 2011) or monoculture tree plantations (e.g. Lin et al., 2020, 2017a; Norris et al., 2012). 

In all cases, these were comparisons of very dissimilar ecosystems with large differences in potential 

transpiration, structure, and function of plants. In contrast, the addition of forest topsoil in this study was 

created a relatively subtle difference, at least for the two reforestation sites. At these sites, the forest 

topsoil was added under and around already planted trees and on top of already existing agricultural soil. 

In the 2016 reforestation site, the topsoil recipient plots did not differ significantly in tree size, only in 

plant species richness, by a mean of 9.2 additional species and % plant ground cover, by a mean 

difference of 29 % (Table 4.3), but that was enough for afternoon surface temperature in July to differ 

significantly, by 2.0 °C (Figure 4.4). Finding a significant summer daytime cooling effect at topsoil 

recipient plots that are otherwise ecologically similar to its control, two years after the transfer took place, 

shows that even a relatively small difference ecosystem state can be detected through thermal imaging 

from UAV.  

For the 2016 reforestation site and the gravel pit site, the largest surface temperature difference 

between plot-types occurred during 2 pm flights in July. In comparison, an earlier study also using 

thermal imaging from UAV found the largest surface temperature difference between diseased and non-

diseased trees in a semi-naturalized tree plantation between 12 and 1 pm in August (Smigaj et al., 2019). 

That study did however not fly at 2 pm and had increased cloud cover as the one flight-day progressed 

(Smigaj et al., 2019). It is probable that the timing of maximum difference will vary by latitude, time-

zones, and season. Finding generalizable patterns in the timing of the largest temperature difference can 
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aid in creating best-practices of when to fly, for when the objective is to search for ecosystem state 

change through thermal imaging.  

It is not surprising that the surface temperature difference between topsoil recipient and control 

plots was found to be highest in the afternoon of July; photosynthetic activity and transpiration would be 

nearer their seasonal and circadian peak at these times compared to evenings and to September (Bonan, 

2008 chap. 27 and 30; Raven et al., 2003 chap. 29). More surprising was the result of cooling at soil 

transfer plots in the 2015 reforestation site only being significant at 8 pm in July. Due to a lack of 

incoming sunlight and circadian rhythm of plant activity (Raven et al., 2003 chap. 29), changes in surface 

temperature at this time of day may have more to do with the physical heat capacity and respiration of 

plants than with transpiration. These evening cooling effects and the mechanisms behind it warrant 

further study. 

As discussed in Chapter 3, the forest topsoil available for transfer is in limited supply, and when 

considering where to transfer it, one site-selection criterion is where the soil can do the most in terms of 

improving ecosystem services (Box, 2003; Holl and Aide, 2011). In the case of the service of cooling and 

thermal buffering, the gravel pit site was cooled more than the two reforestation sites by the topsoil, with 

a mean July afternoon cooling effect of 7.1 °C.  

The ability to buffer temperatures provided by forests in both urban and rural areas has been 

considered an ecosystem service under the umbrella of climate regulation (Betts et al., 2018; Costanza et 

al., 2014; Lin et al., 2020). And, while the service of thermal buffering has been discussed within the 

context of urban heat island effects (e.g. Jenerette et al., 2011; Livesley et al., 2016; Rafiee et al., 2016) 

and green-roofs (e.g. MacIvor et al., 2016; Simmons et al., 2008), it has not yet been explored within the 

field of restoration ecology. Many large reviews and studies on ecosystem services affected by restoration 

have not included thermal buffering, or similar concepts, at all (e.g. Barral et al., 2015; Birch et al., 2010; 

Bullock et al., 2011); even though the value of thermal buffering to restoration funders and stakeholders 

could be high. 

Quarries and pits, with their mainly bare ground, and often minimal soil cover (Chenot et al., 

2018; Tomlinson et al., 2008) can become very hot, potentially influencing the climate of nearby 

ecosystems. One study has shown a mean summer surface temperature of a quarry to be 20 °C higher than 

nearby forests (Holbo and Luvall, 1989). Asphalt and gravel roads, which are similar in surface to 

quarries and pits, but usually narrower, have been shown to increase air-temperature up to 50 m into 

adjacent forests (e.g. Delgado et al., 2007; Pohlman et al., 2009; Tuff et al., 2016; Wright et al., 2010). In 

a study of temperature edge effects from agricultural fields, increased air-temperatures were found 80 m 

into the forest (Robinson et al., 2009). Agricultural fields are less narrow than roads, but have more soil 

and vegetation, and are often cooler than quarries and pits (Holbo and Luvall, 1989). It is therefore 
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possible that the temperature edge effect of quarries and pits on bordering ecosystems are even more 

pronounced than either roads or agricultural fields.  

Temperature edge effects of quarries and pits on nearby ecosystems may change animal and plant 

habitat suitability as all organisms have a certain temperature tolerance range and climate envelope 

(Hijmans and Graham, 2006; Jiguet et al., 2007; Tuff et al., 2016). One review argues that temperature 

edge effects especially reduce habitat for animals that require stable temperatures, including ectothermic 

lizards and certain bird species (Tuff et al., 2016). If temperatures increase beyond species-specific 

tolerance levels, the increased heat can also directly stress and damage plants in both natural landscapes 

and agriculture (Michaletz et al., 2015; Wahid et al., 2007).  

For the 6527 surrendered pits and quarries which need to be, or have been, restored in Ontario, 

30.2 % are bordered by ‘natural’ terrestrial landscapes, and 15.6 % border residential areas (TOARC, 

2020). Based on the results of our study, topsoil transfer restoration could mitigate the excess summer 

temperatures of a quarry or pit by 36 % (a reduction of 7.1 °C from 20 °C increase) in only two years, 

potentially decreasing the former quarry or pit’s effect on the ecosystems which surround it. With 

increasing evidence of the ability of restoration to increase the rate of thermal buffering from this study 

and others (Aerts et al., 2004; Hamberg et al., 2020), thermal buffering should be taken into consideration 

as an ecosystem service when accounting for the benefits of restoration projects. With their ability to 

thermally image the same site multiple times per day, UAV mounted thermal cameras could become 

useful tools for evaluating the positive impact of local thermal buffering of a restoration project at 

different times of the day. Thermal imaging from UAV to evaluate restoration benefits may be 

particularly relevant for projects and experiments where the narrowest part of the site is > 100 m (at or 

below most thermal imaging satellite pixel size). These could include linear restoration projects of former 

power-corridors, roads, stream-banks and seismic lines for oil-exploration (Finnegan et al., 2019), or 

projects where the individual sites of restoration are small, such as compensatory restoration of smaller 

farm fields, quarries, and pits.  

To operationalize restoration evaluation and monitoring through UAV thermal imaging more 

research is needed. Further research needs to test the technology’s reliability and accuracy in detecting 

ecosystem state change in different types of diverse non-production ecosystems, as well as detecting 

common ecological issues, including tree disease, water-stress, and invasive species. Studies are also 

needed on how practitioners would use this technology and what they see as major barriers (e.g. cost, 

knowledge, awareness) to implementation.  
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4.4.2. Surface temperature and its relationship with ecological attributes 

Low variation in % ground covered by living plants in the 2015 reforestation may explain why it 

was the only site with no significant correlation between % plant ground cover and temperature (Table 

4.5. Conversely, the higher variation in measures of tree size in the same site may explain why it was the 

only site in this study with significant correlations between tree size and temperature. The higher variation 

in cumulative tree size in plots in the 2015 reforestation site can be explained by the site having been 

established for one year longer than the 2016 reforestation site. The 2015 reforestation site also had one 

more year without active management that attempts to reduce mortality and competition (irrigation, 

mowing, application of glyphosate herbicide, and trapping of rodents) than the 2016 reforestation site. 

The more varied terrain of the 2015 reforestation site could also have affected the soil-moisture and 

sunlight available to the trees throughout the site, leading to more uneven growth than in the flatter 2016 

reforestation site.  

Higher native forest species richness was correlated with lower normalized surface temperature at 

all sites in this study, but species richness and diversity of all plant species were not. As discussed in the 

introduction of this study, and in Hamberg et al. (2020) (Chapter 2, Section 4), the connection between 

native species richness or diversity and temperature is not direct but is possibly related to variation in 

structure (e.g. leaf-shape and root depth), function (e.g. types of photosynthesis), and trophic complexity 

(e.g. mycorrhizae associations) (Hooper et al., 2005; Loreau, 1995). These variations in structure and 

function in turn increase potential transpiration (Baldocchi, 2005) and other plant activity that absorbs and 

transforms energy, and thereby decreases temperatures (Schneider and Kay, 1994). 

In this study, many of the non-native and/or non-forest plant species already present in the 

recipient sites before topsoil transfer were herbaceous and graminoid ruderal field species. In comparison, 

the native forest species introduced through soil transfer included herbaceous plants, ferns, woody shrubs, 

and trees. On a continuum between an old-field ecosystem to mature forest, the understories of the non-

topsoil control plots are located more towards the old field, and the topsoil recipient plots are closer to the 

mature forest. It has been observed that structural and functional diversity increases in succession of old 

fields towards forest (e.g. Bazzaz, 1975; Dölle et al., 2008; Guariguata and Ostertag, 2001; Perino and 

Risser, 1972; Tatoni and Roche, 1994). The assemblages of different types of native forest plants 

introduced from the forest topsoil may be structurally, and functionally, more diverse than the non-native 

and/or non-forest plants.  

Another issue which warrants study and experimentation is how to separate the effect on surface 

temperature of cover and biomass from that of diversity. Both cover and diversity were correlated 

significantly, although not perfectly, with each other and they have direct and indirect effects on each 
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other. For example, more ground covered by living plants may allow for more species richness and 

diversity to be found in sampling, and higher species diversity may increase % of ground covered by 

plants as it may increase biomass (Hughes and Roughgarden, 2000; Tilman et al., 2001; Van Ruijven and 

Berendse, 2003). To disentangle the effects of the different ecological attributes, functions, structures, and 

mechanisms on surface temperature, at different times of the day and night, I suggest that the next step is 

to conduct UAV thermal-imaging of a physically controlled plot experiment. Long term plot experiments 

which vary species and functional diversity, but control other factors, such as those in the International 

Diversity Experiment Network with Trees (IDENT) (Tobner et al., 2014), may be ideal testing sites. 

These ideas are explored in more detail in Section 5.3.2 of Chapter 5. 
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Chapter 5. Conclusion 

 

“You need coolin', baby, I'm not foolin'” – Whole Lotta Love, Led Zeppelin, 1969 

5.1.1. Summary of results on ecosystem change and surface temperature 

Like much of ecology and remote sensing science, this dissertation was about finding the signal among 

the noise. In this case, the signal is produced by ecosystem change and recovery, assisted by restoration, 

causing differences in outgoing thermal energy radiation, as measured through thermally imaged surface 

temperature. There are many sources of noise that may obscure the signal, including wind, errors in 

imaging receptors, emissivity, terrain, clouds, and errors and uncertainties in ecological sampling.  

Overall, the results of this dissertation showed that the signal was both statistically and ecologically 

significant and detectable above the noise. The results are synthesized below by the questions from 

Chapter 1: 

1. Does restoration of wooded ecosystems decrease its daytime summer surface temperature, 

and if so, by how much, either over time or by type of restoration method? 

Yes, the results from both projects indicate a decrease in daytime temperature over time or by type of 

restoration method. The statistical analysis in Chapter 2 provides evidence that oak woodland restoration 

caused a significant reduction in normalized midday summer surface temperature in 30 out of 31 fields, 

by an average of 1.5 percentage points per year, translating to 4.5 °C in 12 years.  

Chapter 3 showed that topsoil recipient plots in all sites in the second restoration project studied 

were more similar to the reference forest where the topsoil was taken from, than to the control plots in the 

recipient sites in terms of plant species community composition. This indicated that the topsoil transfer 

had caused ecological change and that we could expect to be able to find surface temperature differences. 

In Chapter 4, a consistent pattern of surface temperature differences was indeed found in 2 out of 3 

topsoil recipient sites. In the gravel pit site, the mean temperature difference between topsoil transfer plots 

and control plots was 7.0 °C and in the younger reforestation site (2016) it was 2.0 °C. These differences 

were significant for flights at 12, 2, and 4 pm in July. In the older and more heterogeneous (2015) 

reforestation site, there was a significant reduction in normalized ‘net-temperature’ of topsoil plots only at 

8 pm in July, with a difference of 0.7 °C compared to controls. Because there was no significant 

ecological change found in Chapter 3 in sub-plots that received additional woody debris or shrub 

plantings, these treatments were not included in surface temperature comparisons in Chapter 4. 
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2. When during the day is the thermal buffering effect of the restoration the most pronounced 

and could restoration increase relative nighttime temperatures, thereby decreasing diurnal 

temperature variation? 

In Chapter 4, the maximum difference/buffering occurred at 2 pm in July (mid growing season) for both 

the gravel pit site (8.7 °C) and the 2016 reforestation site (2.1 °C). In these two sites, there was no 

significant difference/buffering at 8 pm in July. Conversely, as noted in the answer above, in the 2015 

reforestation site 8 pm was the only time when the temperature of topsoil recipient plots was significantly 

lower than controls. Later in the growing season, in September, only the 2016 reforestation site showed a 

significant difference/buffering, where topsoil plots were 1.8 and 1.7 °C cooler at 2 pm and 4 pm 

respectively. 

In Chapter 2, a significant increase in normalized summer nighttime surface temperature of 0.2 

°C per year since restoration was found. The decrease in diurnal temperature variation per year since 

restoration was 4 percentage points, which translated to a total mean reduction of 5 °C in 8 years.  

3. What is the relationship between plant species diversity (native and exotic) and surface 

temperature, when taking into account total plant cover and other ecological attributes?  

In Chapter 4, the two sites where thermal buffering of topsoil recipient plots was most pronounced (gravel 

pit site and 2016 reforestation site) were also the ones where there were significant differences in plant 

species richness, diversity, or % plant cover (as measured and tested in Chapter 3). When tested through 

Spearman correlation analysis, all three sites in the study showed a significant negative monotonic 

correlation between native forest plant species richness and surface temperature. Some, but not all, sites 

showed significant correlations between surface temperature and % of plant ground cover, tree height, 

tree diameter, and all plant species richness and diversity. 

In Chapter 2, in the three oak woodland restoration fields that had been in-situ sampled, there was 

a significant relationship between relative summer daytime surface temperature and plant species 

diversity over time, in a multiple linear regression model. Plant species diversity had a more significant 

relationship with surface temperature than plant ground cover, canopy cover, and the number of woody 

stems. One additional species corresponded with a decrease of summer daytime surface temperature of 

5.06 percentage points, which translates to approximately 0.3 °C. When comparing native and non-native 

plant species separately, only the native species had a significant relationship with surface temperature, of 

-5.09 percentage points decrease in temperature per additional native species.  

Together, Chapters 2 and 4 provide evidence to support the existence of the hypothesized, but 

relatively untested (Cushman, 2015), relationship between increased plant species diversity and 

ecosystem thermal buffering (Fraser and Kay, 2004; Schneider and Kay, 1994). The studies also find that 

the direction of the relationship between plant species diversity and surface temperature is negative and 



 

98 

 

that this was in many cases more relevant than the relationship between surface temperature and other 

measured ecological attributes. And, going beyond earlier hypotheses, the evidence suggests further that 

surface temperature is reduced more by later succession native forest plant species diversity than by all 

plant species diversity or by exotic and ruderal plant species diversity. This evidence should be 

considered preliminary, and I argue that the connection between temperature and ‘nativeness’ of plants is 

indirect. It may be due to diversity of functional traits of the mostly later succession native species 

compared to the mostly ruderal non-native species.  

5.1.2. Summary of ecological effects of adding topsoil, woody debris, and shade 

Beyond the importance of Chapter 3 in providing the necessary ecological data for Chapter 4, it also 

asked its own questions, whose answers may improve methods for rapid forest restoration. We found that 

the topsoil transfer increased native forest plant species diversity significantly in the recipient plots as 

compared to control plots in the same sites for all three sites in the study (two reforestation sites and the 

gravel pit site). Topsoil transfer plots in all sites did not have significantly lower native forest plant 

species diversity than the forest sites from which the topsoil was donated. In terms of plant species 

communities, the topsoil recipient plots contained species from donor and recipient sites and were 

therefore significantly different from both. The addition of woody debris, planting of shrubs, and erection 

of shade-shelters had no significant effect on plant species diversity and community in the second season 

after their application. Any potential effect of these treatments may take longer or affect measures other 

than plant species diversity and community composition (e.g. soil-chemistry, microbes, and animal 

habitat). 

 The analysis of tree species mortality, damage, and growth between 2018 and 2019 in the two 

reforestation sites showed no significant increase in damage or mortality from the topsoil application. 

There was a marginally (p = 0.0495) significant increase in diameter growth of 23 % over 2 growing 

seasons for trees in topsoil recipient plots compared to those in control plots. This shows that topsoil can 

be safely transferred to areas where trees have already been planted, allowing for quicker canopy closure 

compared to methods where trees are planted after topsoil transfer. 

5.1.3. The contribution of using large quantities of interdisciplinary and multi-platform 

data 

On reflection, I submit that the overall contribution of this dissertation is not just in testing hypotheses of 

a relationship between diversity and surface temperature, or advancing new potential applications for 

thermal imaging in ecosystem restoration, but also how it does so with a comparatively large amount of 

interdisciplinary data. It is common practice, so far, in the field of thermal imaging using UAVs to 
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analyze and publish data from relatively few imaging flights. Comparable example studies include Izuka 

et al. (2018), which used 4 imaging flights of one site over 2 days, Smigaj et al. (2019), which flew and 

imaged 1 site 6 times during 1 day, and Ludovisi et al. (2017) which flew and imaged 1 time over 1 site. 

Results from a few flights are seemingly acceptable even though weather, time of day, and time of season 

effects on temperature dynamics can be significant (e.g. Smigaj et al., 2019). In contrast, Chapter 4 of this 

dissertation presents data on 20-40 imaging flights each for three sites over 9 days. The larger amount of 

data analyzed here, I believe, will improve the chance of detecting real ecological change, and decrease 

the effect of weather variations causing patterns which are not due to actual differences in ecosystem 

state. 

Similarly, studies of ecosystems using moderate resolution satellite thermal imaging from the last 

decade have often used a relatively small number of images over a short time-span from one instrument, 

substituting space for time. Relevant examples include Avelar et al. (2020), which used 13 images over 2 

years from Landsat 8, and Vlassova et al. (2014) which used 13 images over 3 years from Landsat 5. One 

large review of using Landsat data for studies of ecological change (longitudinal or otherwise) only 

recognizes thermal imaging in one revealing sentence: “Greater use of time-series thermal data from 

Landsat may also provide important new insights into ecological systems, but to date, these data have 

been underutilized.” (Kennedy et al., 2014). In contrast, Chapter 2 analyzed a total of 53 images from 4 

instruments, longitudinally over 12 years, only using space-for-time substitution where necessary in one 

experiment, as the equipment needed (ECOSTRESS) was not launched until 2018. The in-situ sampled 

ecological data used was also substantial – 59 2x2 m plots sampled every year for 12 years in Chapter 2, 

and 150 2x0.5 m frames sampled, and 467 trees measured in Chapter 4. 

By using both space-based and UAV-borne thermal imagers, this dissertation demonstrates their 

relative strengths and use-cases. The medium spatial resolution (60-120 m2) space-based instruments used 

can cover 150-400 km in one image, and historic data going back as far as the instrument has been 

running are available (Hook et al., 2019; Zanter, 2019). Space-based instruments thereby allow for 

comparisons of large and distributed projects over time. In contrast, the UAV allows for both higher 

spatial resolution (<10 cm2) and on-demand usage, which, depending on site size, can allow for multiple 

imaging flights per hour. This makes the UAV ideal for physically smaller or narrower restoration project 

sites, and it allows for testing and comparing the variation of thermal buffering hour-by-hour over 

multiple days, which satellites are unable to do. 

5.2. Areas of future research 

The findings in this dissertation raise many new questions and avenues of inquiry. In this section, I will 

focus the discussion on the two lines of inquiry which I think are the most relevant in expanding both our 
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theoretical understanding of the connections between ecosystem change and temperature, and the 

practical application of that knowledge.  

The first, and more theory-based line of inquiry, aims to identify which ecosystem attributes and 

traits matter to temperature. It is in turn divided into three parts. The first part discusses how we can 

utilize the concept of functional traits to test if the relationship between species diversity (particularly 

later succession native species) and temperature depends on specific functional traits, and if so which 

ones. The second part considers how we can disentangle the effect on the temperature of several different 

ecological attributes, including biomass and diversity, through the thermal imaging of already established 

and highly controlled plot-based ecosystem experiments. The third part discusses the potential for also 

comparing ecosystem complexity against temperature, but how this could probably not be done in 

controlled plot experiments. 

The second, and more application-focused line of inquiry, discusses what steps need to be taken 

to operationalize thermal imaging as a tool for restoration managers to evaluate the benefits of, and 

monitor for issues in, their projects.  

5.3. Further interrogating the diversity-temperature connection 

The studies in this dissertation found a statistical relationship between increased plant species diversity 

and decreased surface temperature, when controlling for biomass or cover. However, the mechanisms and 

interactions of these, and other ecosystem attributes (e.g. native provenance, functional diversity, and 

complexity) remain unknown. For one, plant species diversity can increase cover and biomass (Cardinale 

et al., 2007; Hooper et al., 2005), and statistically, an increase in cover and biomass can correlate with a 

higher chance of discovering more plant species in the sampling process. These relationships may also 

vary depending on climate, nutrient availability, soil-water levels, and type of plant community (Allan et 

al., 2013; Hooper et al., 2005).  

5.3.1. Functional diversity, native plant species, and surface temperature 

While plant species diversity, as used in this dissertation, quantifies the amount of taxonomic variation 

that exists in the ecosystem, many species can be very similar in their functions (Tilman, 2001). 

Functional diversity instead measures the variation of functional traits. Functional traits have been defined 

as ‘what organisms do, rather than their evolutionary history’ (Petchey and Gaston, 2006). These include, 

for example, the ability to uptake nitrogen in different forms (Mason et al., 2005), and the seasonal timing 

of leaf-out and flowering (Petchey and Gaston, 2006). Functional traits also commonly include what in 

common language could be considered structural; for example, functional traits often include plant height 

(e.g. Falster et al., 2018) and root depth (Zhou et al., 2020). The best way to consider these ‘structural 
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functions’ is that they are traits inherent in the genetics of the plant and it is their interaction with the 

environment that begins the process of growth (function) that in turn creates the structure.  

The variation in functional traits may be more important to surface temperature than taxonomic 

variation as it provides a measure of niche complementarity, and difference in resource use (Mason et al., 

2005). For example, consider an ecosystem which has one species with the functional trait of seasonally 

early leaf-out and one with late leaf-out – this may allow for more transpiration, and lower temperatures 

over time as a larger portion of the season is utilized, than an in an ecosystem with two species that both 

leaf out late. 

The evidence from Chapters 2 and 4 suggests that native and later succession forest plant species 

seem to have a stronger effect on surface temperature than non-native and ruderal ones. I have argued that 

this may be due both to a larger variation in functional traits of later succession species and to evolution 

of the functions of native species to the environmental conditions in their native range. Evolutionary 

changes may have allowed native plants to be more effective at absorbing and transforming incoming 

solar energy than exotic ones. In Chapter 2, I provide the examples that native mid-succession tallgrass 

prairie plants seeded in the oak woodland restoration have deeper roots than ruderal exotic plants and 

utilize different photosynthetic pathways (Howe, 1994; Nippert et al., 2012). These traits may aid their 

transpiration in the sandy soil and dry conditions of the mid-growing season. In one study which 

compared similar native and exotic plant species in a tallgrass prairie, the exotic species had a higher 

specific leaf area – i.e. thinner leaves with more surface (Smith and Knapp, 2001). This may help them 

take up energy and spread early in the season compared to the native plants. However, the native species 

in the same study had higher total leaf area, and up to three times as much total biomass by the end of the 

season (Smith and Knapp, 2001), indicating that their architecture may have allowed for more water 

retention and more effective energy transformation through the mid and late season, potentially allowing 

for more cooling.  

This is only a preliminary hypothesis so far, but it could be tested further by exploring functional 

trait diversity. To test the effect of functional trait diversity on surface temperature, a future study could 

use functional trait categories from the literature and apply them to the species data already assembled in 

this dissertation. The functional trait diversity could then be compared with the temperature 

measurements. The challenge is figuring out and selecting the right functional traits to focus on. There are 

multiple large function and trait databases available. For example, the TRY Plant Trait Database, one of 

the largest databases of plant traits includes information on 2100 traits of 160,000 different plant taxa 

(Kattge et al., 2020). With this amount of functional traits available to choose from, it would be unwise to 

try to conduct analysis by throwing all traits or functions into statistical analysis against temperature, as 

this would undoubtedly yield falsely positive (Type-1 error) results due to the large number of 
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comparisons made. Instead, any study on functional diversity and surface temperature must be firmly 

based in theory. 

There is at least one study of functional traits and ecosystem thermal buffering, wherein plant 

species were given traits as per Grime’s CSR (Competitive, Stress-tolerant, Ruderal) model (Norris et al., 

2012). A significant thermal buffering effect was found for systems with a larger portion of species 

considered ‘competitive’ or ‘stress-tolerant’. There was no further breakdown of traits, and sites were 

only compared over space, for one season using ground-based surface temperature data-loggers.  

Moving beyond the CSR model, and basing our selection of functional traits for diversity analysis 

in ecosystem energetics and thermodynamic theory, the traits affecting transpiration may be most 

important, as transpiration transforms the largest amount of energy in the ecosystem (Baldocchi, 2005; 

Gosz et al., 1978; Monteith, 1981). Focusing on transpiration, some of the traits to be included would be 

rooting depth, stomatal conductance, and xylem flow. Other traits to be selected may have to do with 

respiration, productivity, and the albedo and emissivity of different plants. A major gap is that the 2,100 

functional traits in the TRY database do not include albedo or emissivity values. These traits would 

instead have been sourced from elsewhere, including the ECOSTRESS spectral library (Meerdink et al., 

2019), which holds reflectivity and emissivity values for 61 common tree and shrub genera. 

Statistical analysis to compare functional diversity and surface temperature can shed light on 

what type of functional traits matters to temperature change, and if native plant species show more 

functional diversity than exotic ones. However, many of these functional traits will also interact in 

complex ways, affecting both diversity and biomass in ways that are hard to untangle by statistical 

methods alone. 

5.3.2. Controlled experiment to separate the effects of different attributes and functions  

Acquiring UAV thermal imaging of a more controlled ecological experiment, where several ecosystem 

attributes (e.g. biomass, cover, height) are physically controlled for, while varying the attribute of concern 

(e.g. species or functional diversity), could potentially isolate these ecological factors’ separate effects on 

surface temperature. There are many long-term ecological experiments where this could be done. Some 

examples include the JENA grassland experiment in Germany (Weisser et al., 2017), and the Sabah 

Biodiversity Experiment of tropical forests on Borneo, Malaysia (Hector et al., 2011). In Canada, three 

long term plot experiments of forest restoration exist as part of The International Diversity Experiment 

Network with Trees (IDENT) (Tobner et al., 2014). One IDENT site, located in Sault Ste. Marie, Ontario, 

contains 408 plots, with 4 levels of species diversity, 3 levels of functional diversity, and plots with either 

angiosperm or gymnosperm trees. The same site also has controlled variations in water-availability. 

Thermally imaging this site, and other ecosystem diversity experiments throughout the world, frequently 
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(hourly) throughout multiple day-night cycles and at different seasons, could go a long way towards 

answering several questions about the relationship between species and functional diversity and 

temperature. Including: 

1. Is the relationship between species diversity and surface temperature linear or non-linear? And is 

this relationship different for different combinations of species?  

2. What are the limits of the relationship between surface temperature and species or functional 

diversity? – I.e. when is the ecosystem ‘saturated’ in terms of the possible effects of diversity? 

3. How strong is the relative effect of cover and biomass as compared to the effect of species or 

functional diversity, and does it change with time, age, or size of trees? 

4. How generalizable is the diversity-temperature relationship between different tree species 

communities? Do certain combinations of trees cool more than others? 

5. Which combination of functions have the strongest effect on surface temperature; and how do 

different functional diversity compare in terms of their cooling effect?  

6. How do these effects of species and functional diversity differ during the day and season? Do 

more diverse tree assemblages also increase the nighttime temperature more than less diverse 

ones with the same biomass and cover?  

7. With varying water levels – how important is transpiration for cooling relative to all other factors 

(e.g. thermal inertia, respiration, albedo, etc.), and how does this vary between different tree 

assemblages? 

5.3.3. Limits of controlled experiments – ecosystem complexity and temperature 

Thermally imaging controlled plot experiments, such as the IDENT sites, do not preclude the need to also 

continue to thermally image natural ecosystems, as plants in controlled plots may behave differently from 

those in complex natural ecosystems (Wardle, 2016). Experimental plots are generally small – the Sault 

Ste Marie ones are 10 m2 – and are therefore potentially affected by wind and other edge effects. The 

experiments also only vary the number of trees, with no shrubs or herbaceous plants included, and they 

exclude large herbivores through fencing. Landscape context (Zirbel et al., 2019) and the nutrient cycling 

done by the many species of animals, fungi, and microbial decomposers (Loreau, 1995) can be significant 

for the impact of diversity in ecosystem functions, and therefore temperature (Schneider and Kay, 1994). 

The interactions and connections between the different species and their environment over space and time 

is what creates ecological complexity (Cadenasso et al., 2006; Kay and Schneider, 1994; Norris et al., 

2012; Parrott, 2010; Riede et al., 2010; Vihervaara et al., 2019). 
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Authors have argued from a thermodynamic basis, that increased complexity should decrease 

surface temperature (Fraser and Kay, 2004; Kay, 2000; Schneider and Kay, 1994). The argument is based 

on the idea that more complexity would provide more pathways for energy transformation and storage. 

Measuring complexity in ecosystems has proven difficult, in part because there are many kinds of 

complexity, including trophic (e.g. Riede et al., 2010), functional (e.g. Cadenasso et al., 2006), structural 

(e.g. Parrott, 2010), and informational (e.g. Brunetti et al., 2018; Vihervaara et al., 2019). However, 

methods of measuring expressions of complexity are emerging, including those which can be done 

through remote sensing – for example by looking at heterogeneity in structure or greenness of ecosystems 

(Parrott, 2010). One study (Avelar et al., 2020) has so far compared this type of remotely sensed 

complexity measure against thermal imaging, but only through comparing different sites at the same point 

in time. A possible next step would be to conduct a more longitudinal study of in-situ measured diversity 

and spatio-temporal complexity, measured remotely or in-situ, against surface temperature.  

In summary, I would argue that the path forward is to look for generalizable patterns by thermally 

imaging both plot experiments and natural ecosystems in as many sites and ecosystem types as possible, 

utilizing the strengths of each: the ease of measurements and ability to physically control certain factors in 

plot experiments, and the more realistic, but harder to measure, conditions in natural ecosystems. 

5.4. Operationalizing thermal imaging for restoration and conservation managers 

5.4.1. Accounting for the benefits of cooling provided by restoration 

Showing the benefits of earlier restoration, and predicting the benefits of future restoration, in terms of the 

local cooling effects can be a potent tool for increasing popular support and funding for new restoration 

projects (Figure 5.1). Most people have an intuitive understanding of temperature and have experienced 

the sensation of being uncomfortably hot.  

Considering the continued global warming effect of climate change causing more extreme heat 

events (Mann et al., 2017; Stott, 2016), the idea of adaptation by reduction of local temperatures will only 

become more important. For the region of Southern Ontario, Canada where this study was conducted, it is 

estimated that mean summer temperature will increase by 2.1 °C, and the number of days a year with 

above 30 °C weather will increase from 5 to 16, between the periods 1971-2005 and 2021-2050 (Prairie 

Climate Centre, 2018). In this context, showing that restoration of gravel pits and agricultural fields to 

wooded ecosystems in or near a village, town, or city can reduce local afternoon summer surface 

temperature significantly, can be a strong motivator for funding and action at national, provincial, and 

local levels. 
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Increasing the use of temperature benefit accounting requires outreach to restoration practitioners, 

developing more intuitive tools for historical evaluations, and gathering more data for predictive 

modeling. Through presenting the research in this dissertation to practitioners, I have managed to reach 

out to multiple conservation authorities, which manage the conservation and restoration of lands in 

Ontario. There is a definite interest, but often a lack of funding and knowledge. After one presentation, 

managers at Credit Valley Conservation Authority (Peel Region, Ontario), conducted a pilot study of the 

benefits of their plantings, finding a temperature decrease of 1-3 C° for agricultural fields turned into 

coniferous plantations (Schuurman, 2020). In aiding this pilot study, I found that the major hurdles for 

practitioners were accessing, processing, and analyzing historical thermal imaging satellite data. NASA 

Earthdata, USGS EarthExplorer, and Google Earth Engine provide platforms for accessing and 

downloading thermal data, but part of the processing and the analysis and comparisons of temperatures 

over time still needs to be done manually through GIS or programming software (e.g. ArcGIS, QGIS, and 

R). A next step in applied research would be to build a dedicated platform where thermal images from 

different years, of the same restoration site, could be normalized, adjusted, and analyzed in a way that is 

easily understandable and accessible to practitioners while remaining accurate. 

This kind of tool would still only work for evaluating historic restoration sites, as temperature 

change takes time. To instead model and predict temperature change into the future, more data is needed. 

A large scale campaign of collecting thermal imaging data of well-documented and monitored historical 

restoration projects could provide a basis for a model that can predict the amount of cooling that can be 

expected in a certain amount of time, depending on starting landscape, climate zone, method of 

restoration and goal ecosystem.  
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Figure 5.1: Thermal imaging of ecosystems undergoing restoration can be useful to quantify the thermal 

buffering benefit of restoration (section 5.4.1), and also as a way to evaluate restoration progress and monitor 

for issues (section 5.4.2). 

5.4.2. Thermal imaging for monitoring ‘hot-spots’ in restoration projects 

Beyond measuring and predicting benefits, a thermal mapping tool can also be used for identifying literal 

hot-spot areas, indicating potential issues that may affect the trajectory of restoration projects (Figure 

5.1). As shown in figure 2.6, maps can be used to find areas where the temperature has not been 

decreasing, as compared to other areas around it. If satellite data are used, then the issue hot-spot can be 

detected down to an area the size of the pixel resolution – 60 to 100 m2. This may seem like a large area, 

but considering projects with sites that can be thousands of hectare in size (e.g. Cao et al., 2011; Melo et 

al., 2013), and which may also be remote, difficult to access, and difficult to traverse on foot, narrowing 

down problems to a hectare or less can help guide and speed up in-situ monitoring and adaptive 

management greatly.  

In case resources limit the number of restoration project sites that can be in-situ monitored in a 

year, as was the case for the study in Chapter 2, then what I have termed the ’mean thermal recovery 

trajectory’ of each site (Figure 5.2.) can be used to triage which sites need attention first. This would be 

done by comparing the normalized mean summertime daytime temperature (similar to figure 2.5 but 

without linear regression), or the mean diurnal temperature variation (similar to figure 2.7 but without 

linear regression) over time and against the other project sites. Normalization of temperatures would need 

to be conducted against a mature and stable forest area, as was done in Chapter 2. 
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Figure 5.2: Illustration of the relative thermal recovery trajectory of three sites in an imagined restoration 

project. All sites are experiencing a downward trend in normalized summer daytime temperature or diurnal 

temperature variation, until year 9. After year 9, site A deviates from the other sites, increasing in 

temperature or its diurnal variation, indicating an ecological issue at the site, moving it up on the triage list of 

fields that require further in-situ monitoring and adaptive management.  

Temperature change maps and trajectories could be monitored manually, but they could also 

potentially be automated to look for hot-spots and deviations that stand out against their surroundings, 

other fields, or over time. A future collaborative project would be to use historical data to train a thermal 

imaging mapping tool to spot actual problem areas, such as disease outbreaks, droughts, or encroachment, 

as compared to natural variations in temperature. 

If sites are smaller, or higher spatial and temporal resolution monitoring is needed in order to be 

effective, then UAV- mounted thermal imaging could be used by practitioners. This method will be more 

expensive than publicly available satellite imagery, and there will be no historical comparisons to be 

made, thermal imagery could potentially guide personnel on the ground to find out what the issue is that 

is affecting the temperature of a single tree or colony of plants. To operationalize UAV thermal imaging 

for restoration projectscheaper and more accurate methods of stitching thermal imaging are needed, along 

with standardized protocols for when (weather and time during the day and season) and how to accurately 

gather and compare the data. At the moment stitching together thermal imagery from UAV is difficult due 
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to the smaller variation in each image, as compared to visual imagery, making it harder for software to 

find overall. Another option would be to fly at higher altitudes (e.g. 200-500 m), where resolution would 

suffer but still be good enough to find single trees or 1 m2 spots of stressed vegetation within unstitched 

imagery that could cover over a hectare in one image. UAV thermal imaging monitoring may sound 

expensive, but depending on the size and accessibility of a site, it may still be cheaper than hiring ground-

personnel to wander the field without direction. UAV monitoring would also be less disruptive, as it 

would avoid trampling or spread of invasive species from pants, boots, or land-vehicles. To provide this 

type of monitoring as an attractive method to practitioners, further studies are needed of the cost-

effectiveness of monitoring by UAV thermal imaging, comparing it both to alternative monitoring 

methods, but also to the opportunity cost of not monitoring at all, and thereby increasing the risk of 

failure. 

5.5. Final thoughts 

The practice of ecosystem restoration is already expanding rapidly in terms of numbers and size of 

projects, including mega-reforestation projects spanning millions of hectares in China (e.g. Cao et al., 

2011), Brazil (e.g. Melo et al., 2013), and south of the Sahara (e.g. O’Connor and Ford, 2014). And, if 

intentions of the Bonn Challenge (Stanturf et al., 2019; Suding et al., 2015) and the UN Decade of 

Ecosystem Restoration (Aronson et al., 2020; Young and Schwartz, 2019), to restore 350 ha of deforested 

and degraded land by 2030 are realized, the pace of expansion of restoration will only increase. 

Unfortunately, many restoration projects fail, both due to lack of knowledge and because the 

existing knowledge may not flow between practitioners and scientists (Cooke et al., 2019; Menz et al., 

2013; Suding et al., 2015; Suding, 2011). The larger the projects become, the higher the stakes and the 

amount of resources potentially squandered in case of a failure (Cooke et al., 2019; De Groot et al., 2013). 

It is within this context that the search for new and improved methods for implementing, evaluating, and 

monitoring restoration, including thermal imaging, is urgently needed. It is not efficient or plausible for 

field ecologists to become thermal remote sensing specialists, or vice versa. Instead, the way forward 

should be through collaboration between fields of study and usage of the open data that is already 

available in order to test our assumptions, and to create reliable tools in a format that can be rapidly 

disseminated to practitioners who need them as aids in restoring a more sustainable world. 

Much of the data analyzed in this dissertation would not have been possible to acquire until the 

last few years. For example, Chapter 2 was published as one of the first studies using the new 

ECOSTRESS equipment on the International Space Station which was made operational in July 2018. 

The launch of ECOSTRESS enabled the Chapter 2 study to possibly be the first to use nighttime thermal 

imaging to image ecosystems from space with a < 1 km2 resolution. Beyond ECOSTRESS, the type of 
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high-resolution uncooled microbolometer thermal imager used in the UAV has only recently become 

affordable enough for research (Sagan et al., 2019). The time-series of thermal images from Landsat 

satellites grows each year, allowing for longer retrospective studies of restoration projects. The 

possibilities for thermal imaging of ecosystems will only grow in the near future with UAVs and their 

thermal imagers becoming cheaper and more accessible and with the planned commissioning of multiple 

new moderate spatial resolution thermal imaging satellites, including the NASA-led SBG Observable 

(Poulter et al., 2019) and the French-Indian TRISHNA (Lagouarde et al., 2018). I look forward to being 

part of growing the collaboration, combination, and understanding of new thermal imaging tools, and the 

usage of their output to aid in the future success of ecosystem restoration globally. 

  



 

110 

 

Bibliography 

Abdul-Kareem, A.W., McRae, S.G., 1984. The effects on topsoil of long-term storage in stockpiles. Plant 

Soil 76, 357–363. 

Aerts, R., Honnay, O., 2011. Forest restoration, biodiversity and ecosystem functioning. BMC Ecol. 11, 

29. 

Aerts, R., Wagendorp, T., November, E., Behailu, M., Deckers, J., Muys, B., 2004. Ecosystem Thermal 

Buffer Capacity as an Indicator of the Restoration Status of Protected Areas in the Northern 

Ethiopian Highlands. Restor. Ecol. 12, 586–596. 

Aggarwal, R., Ranganathan, P., 2016. Common pitfalls in statistical analysis: The use of correlation 

techniques. Perspect. Clin. Res. 7, 187. 

Allan, E., Weisser, W.W., Fischer, M., Schulze, E.-D., Weigelt, A., Roscher, C., Baade, J., Barnard, R.L., 

Beßler, H., Buchmann, N., 2013. A comparison of the strength of biodiversity effects across 

multiple functions. Oecologia 173, 223–237. 

Anderson, K., Ryan, B., Sonntag, W., Kavvada, A., Friedl, L., 2017. Earth observation in service of the 

2030 Agenda for Sustainable Development. Geo-Spat. Inf. Sci. 20, 77–96. 

Anderson, M.J., 2017. Permutational multivariate analysis of variance (PERMANOVA). Wiley Statsref 

Stat. Ref. Online 1–15. 

Anderson, M.J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 

26, 32–46. 

Aronson, J., Goodwin, N., Orlando, L., Eisenberg, C., Cross, A.T., 2020. A world of possibilities: six 

restoration strategies to support the United Nation’s Decade on Ecosystem Restoration. Restor. 

Ecol. 

Avelar, D., Garrett, P., Ulm, F., Hobson, P., Penha-Lopes, G., 2020. Ecological complexity effects on 

thermal signature of different Madeira island ecosystems. Ecol. Complex. 43, 100837. 

Bakdash, J.Z., Marusich, L.R., 2017. Repeated measures correlation. Front. Psychol. 8, 456. 

Bakowsky, W., Riley, J.L., 1994. A survey of the prairies and savannas of southern Ontario, in: 

Proceedings of the Thirteenth North America Prairie Conference. p. 16. 

Baldocchi, D.D., 2005. The role of biodiversity on the evaporation of forests, in: Forest Diversity and 

Function. Springer, pp. 131–148. 

Barnes, W.L., Pagano, T.S., Salomonson, V.V., 1998. Prelaunch characteristics of the moderate 

resolution imaging spectroradiometer (MODIS) on EOS-AM1. IEEE Trans. Geosci. Remote 

Sens. 36, 1088–1100. 

Barral, M.P., Benayas, J.M.R., Meli, P., Maceira, N.O., 2015. Quantifying the impacts of ecological 

restoration on biodiversity and ecosystem services in agroecosystems: a global meta-analysis. 

Agric. Ecosyst. Environ. 202, 223–231. 

Barsi, J.A., Schott, J.R., Palluconi, F.D., Hook, S.J., 2005. Validation of a web-based atmospheric 

correction tool for single thermal band instruments, in: Earth Observing Systems X. International 

Society for Optics and Photonics, p. 58820E. 

Barton, K., 2020. Package “MuMIn” - Multi-Model Inference v1.43 [WWW Document]. URL 

https://cran.r-project.org/web/packages/MuMIn/MuMIn.pdf (accessed 5.9.19). 

Baselga, A., Leprieur, F., 2015. Comparing methods to separate components of beta diversity. Methods 

Ecol. Evol. 6, 1069–1079. 

Bates, D., Mächler, M., Bolker, B., Walker, S., 2015. Fitting linear mixed-effects models using lme4. J. 

Stat. Softw. 67, 1–48. 

Bazzaz, F.A., 1975. Plant species diversity in old-field successional ecosystems in southern Illinois. 

Ecology 56, 485–488. 

Beals, E.W., 1984. Bray-Curtis ordination: an effective strategy for analysis of multivariate ecological 

data. Adv. Ecol. Res. 14, 1–55. 



 

111 

 

Benayas, J.M.R., Newton, A.C., Diaz, A., Bullock, J.M., 2009. Enhancement of biodiversity and 

ecosystem services by ecological restoration: a meta-analysis. Science 325, 1121–1124. 

Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery rate: a practical and powerful 

approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300. 

Bennie, J., Huntley, B., Wiltshire, A., Hill, M.O., Baxter, R., 2008. Slope, aspect and climate: spatially 

explicit and implicit models of topographic microclimate in chalk grassland. Ecol. Model. 216, 

47–59. 

Berger, U., Piou, C., Schiffers, K., Grimm, V., 2008. Competition among plants: concepts, individual-

based modelling approaches, and a proposal for a future research strategy. Perspect. Plant Ecol. 

Evol. Syst. 9, 121–135. 

Berni, J.A., Zarco-Tejada, P.J., Suárez, L., Fereres, E., 2009a. Thermal and narrowband multispectral 

remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Trans. Geosci. 

Remote Sens. 47, 722–738. 

Berni, J.A., Zarco-Tejada, P.J., Suárez, L., González-Dugo, V., Fereres, E., 2009b. Remote sensing of 

vegetation from UAV platforms using lightweight multispectral and thermal imaging sensors. Int 

Arch Photogramm Remote Sens Spat. Inf. Sci 38. 

Betts, M.G., Phalan, B., Frey, S.J.K., Rousseau, J.S., Yang, Z., 2018. Old-growth forests buffer climate-

sensitive bird populations from warming. Divers. Distrib. 24, 439–447. 

Birch, J.C., Newton, A.C., Aquino, C.A., Cantarello, E., Echeverría, C., Kitzberger, T., Schiappacasse, I., 

Garavito, N.T., 2010. Cost-effectiveness of dryland forest restoration evaluated by spatial 

analysis of ecosystem services. Proc. Natl. Acad. Sci. 107, 21925–21930. 

Bliss, D., Smith, H., 1985. Penetration of light into soil and its role in the control of seed germination. 

Plant Cell Environ. 8, 475–483. 

Bonan, G.B., 2008. Ecological climatology: concepts and applications. Cambridge University Press, 

Cambridge, UK. 

Box, J., 2003. Critical factors and evaluation criteria for habitat translocation. J. Environ. Plan. Manag. 

46, 839–856. 

Boyer, S., Wratten, S., Pizey, M., Weber, P., 2011. Impact of soil stockpiling and mining rehabilitation on 

earthworm communities. Pedobiologia 54, S99–S102. 

Brewer, M.J., Butler, A., Cooksley, S.L., 2016. The relative performance of AIC, AICC and BIC in the 

presence of unobserved heterogeneity. Methods Ecol. Evol. 7, 679–692. 

Brockerhoff, E.G., Jactel, H., Parrotta, J.A., Quine, C.P., Sayer, J., 2008. Plantation forests and 

biodiversity: oxymoron or opportunity? Biodivers. Conserv. 17, 925–951. 

Brouillet, L., Coursol, F., Meades, S.J., Favreau, M., Anions, M., Bélisle, P., Desmet, P., 2010. 

VASCAN, the database of vascular plants of Canada [WWW Document]. Website Accessed 8 

Febr. 2012. URL http://data.canadensys.net/vascan/ 

Brown, R.L., Naeth, M.A., 2014. Woody debris amendment enhances reclamation after oil sands mining 

in Alberta, Canada. Restor. Ecol. 22, 40–48. 

Brunetti, A.E., Neto, F.C., Vera, M.C., Taboada, C., Pavarini, D.P., Bauermeister, A., Lopes, N.P., 2018. 

An integrative omics perspective for the analysis of chemical signals in ecological interactions. 

Chem. Soc. Rev. 47, 1574–1591. 

Buckley, P., Helliwell, D.R., Milne, S., Howell, R., 2017. Twenty-five years on–vegetation succession on 

a translocated ancient woodland soil at Biggins Wood, Kent, UK. For. Int. J. For. Res. 90, 561–

572. 

Bull, J.W., Suttle, K.B., Gordon, A., Singh, N.J., Milner-Gulland, E.J., 2013. Biodiversity offsets in 

theory and practice. Oryx 47, 369–380. 

Bullock, J.M., Aronson, J., Newton, A.C., Pywell, R.F., Rey-Benayas, J.M., 2011. Restoration of 

ecosystem services and biodiversity: conflicts and opportunities. Trends Ecol. Evol. 26, 541–549. 

Buters, T.M., Bateman, P.W., Robinson, T., Belton, D., Dixon, K.W., Cross, A.T., 2019. Methodological 

ambiguity and inconsistency constrain unmanned aerial vehicles as a silver bullet for monitoring 

ecological restoration. Remote Sens. 11, 1180. 



 

112 

 

Cadenasso, M.L., Pickett, S.T.A., Grove, J.M., 2006. Dimensions of ecosystem complexity: 

heterogeneity, connectivity, and history. Ecol. Complex. 3, 1–12. 

Cantlon, J.E., 1953. Vegetation and microclimates on north and south slopes of Cushetunk Mountain, 

New Jersey. Ecol. Monogr. 23, 241–270. 

Cao, S., Chen, L., Shankman, D., Wang, C., Wang, X., Zhang, H., 2011. Excessive reliance on 

afforestation in China’s arid and semi-arid regions: lessons in ecological restoration. Earth-Sci. 

Rev. 104, 240–245. 

Cardinale, B.J., Wright, J.P., Cadotte, M.W., Carroll, I.T., Hector, A., Srivastava, D.S., Loreau, M., Weis, 

J.J., 2007. Impacts of plant diversity on biomass production increase through time because of 

species complementarity. Proc. Natl. Acad. Sci. 104, 18123–18128. 

Cengel, Y.A., Boles, M.A., 2008. Thermodynamics: An Engineering Approach. McGraw-Hill, New 

York, NY. 

Chao, A., Chiu, C.-H., Jost, L., 2014. Unifying species diversity, phylogenetic diversity, functional 

diversity, and related similarity and differentiation measures through Hill numbers. Annu. Rev. 

Ecol. Evol. Syst. 45, 297–324. 

Charlton, D., Hims, A., 2013. Adaptive Management Plan Duntroon Expansion Quarry. Stantec 

Consulting Ltd. 

Chaves, M.M., Costa, J.M., Zarrouk, O., Pinheiro, C., Lopes, C.M., Pereira, J.S., 2016. Controlling 

stomatal aperture in semi-arid regions—the dilemma of saving water or being cool? Plant Sci. 

251, 54–64. 

Chawla, A., Maiti, T., Sinha, S., 2014. Kenward-Roger approximation for linear mixed models with 

missing covariates (Technical Report No. RM 704). Department of Statistics and Probability, 

Michigan State University. 

Chazdon, R.L., 2008. Beyond Deforestation: Restoring Forests and Ecosystem Services on Degraded 

Lands. Science 320, 1458–1460. 

Chazdon, R.L., Brancalion, P.H., Laestadius, L., Bennett-Curry, A., Buckingham, K., Kumar, C., Moll-

Rocek, J., Vieira, I.C.G., Wilson, S.J., 2016. When is a forest a forest? Forest concepts and 

definitions in the era of forest and landscape restoration. Ambio 45, 538–550. 

Chen, J., Saunders, S.C., Crow, T.R., Naiman, R.J., Brosofske, K.D., Mroz, G.D., Brookshire, B.L., 

Franklin, J.F., 1999. Microclimate in forest ecosystem and landscape ecology: variations in local 

climate can be used to monitor and compare the effects of different management regimes. 

BioScience 49, 288–297. 

Chenot, J., Jaunatre, R., Buisson, E., Bureau, F., Dutoit, T., 2018. Impact of quarry exploitation and 

disuse on pedogenesis. Catena 160, 354–365. 

Choi, Y.D., Temperton, V.M., Allen, E.B., Grootjans, A.P., Halassy, M., Hobbs, R.J., Naeth, M.A., 

Torok, K., 2008. Ecological restoration for future sustainability in a changing environment. 

Ecoscience 15, 53–64. 

Clarke, K.R., 1993. Non-parametric multivariate analyses of changes in community structure. Aust. J. 

Ecol. 18, 117–143. 

Clarke, K.R., Somerfield, P.J., Chapman, M.G., 2006. On resemblance measures for ecological studies, 

including taxonomic dissimilarities and a zero-adjusted Bray–Curtis coefficient for denuded 

assemblages. J. Exp. Mar. Biol. Ecol. 330, 55–80. 

Clewell, A., Aronson, J., Winterhalder, K., 2004. The SER international primer on ecological restoration. 

Society for Ecological Restoration (SER). 

Conrad, O., 2003. Module Grid Statistics for Polygons [WWW Document]. SAGA-GIS Module Libr. 

Doc. URL http://www.saga-gis.org/saga_tool_doc/2.1.4/shapes_grid_2.html (accessed 5.9.19). 

Cooke, S.J., Bennett, J.R., Jones, H.P., 2019. We have a long way to go if we want to realize the promise 

of the “Decade on Ecosystem Restoration.” Conserv. Sci. Pract. 1, e129. 

Cordell, S., Questad, E.J., Asner, G.P., Kinney, K.M., Thaxton, J.M., Uowolo, A., Brooks, S., 

Chynoweth, M.W., 2017. Remote sensing for restoration planning: how the big picture can 

inform stakeholders. Restor. Ecol. 25, S147–S154. 



 

113 

 

Costanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., 

O’Neill, R.V., Paruelo, J., Raskin, R.G., Sutton, P., van den Belt, M., 1997. The value of the 

world’s ecosystem services and natural capital. Nature 387, 253–260. 

Costanza, R., de Groot, R., Sutton, P., van der Ploeg, S., Anderson, S.J., Kubiszewski, I., Farber, S., 

Turner, R.K., 2014. Changes in the global value of ecosystem services. Glob. Environ. Change 

26, 152–158. 

Craig, M., Buckley, P., Howell, R., 2015. Responses of an ancient woodland field layer to soil 

translocation: methods and timing. Appl. Veg. Sci. 18, 579–590. 

Cramer, V., Hobbs, R., Standish, R., 2008. What’s new about old fields? Land abandonment and 

ecosystem assembly. Trends Ecol. Evol. 23, 104–112. 

Crouzeilles, R., Curran, M., Ferreira, M.S., Lindenmayer, D.B., Grelle, C.E., Benayas, J.M.R., 2016. A 

global meta-analysis on the ecological drivers of forest restoration success. Nat. Commun. 7, 

11666. 

Cunningham, S.C., Mac Nally, R., Baker, P.J., Cavagnaro, T.R., Beringer, J., Thomson, J.R., Thompson, 

R.M., 2015. Balancing the environmental benefits of reforestation in agricultural regions. 

Perspect. Plant Ecol. Evol. Syst. 17, 301–317. 

Cushman, S.A., 2015. Thermodynamics in landscape ecology: the importance of integrating measurement 

and modeling of landscape entropy. Springer. 

de Almeida, D.R.A., Stark, S.C., Valbuena, R., Broadbent, E.N., Silva, T.S.F., de Resende, A.F., Ferreira, 

M.P., Cardil, A., Silva, C.A., Amazonas, N., 2019. A new era in forest restoration monitoring. 

Restor. Ecol. 1–4. 

De Groot, R.S., Blignaut, J., Van Der Ploeg, S., Aronson, J., Elmqvist, T., Farley, J., 2013. Benefits of 

Investing in Ecosystem Restoration: Investing in Ecosystem Restoration. Conserv. Biol. 27, 

1286–1293. 

De Groot, R.S., Wilson, M.A., Boumans, R.M., 2002. A typology for the classification, description and 

valuation of ecosystem functions, goods and services. Ecol. Econ. 41, 393–408. 

Delgado, J.D., Arroyo, N.L., Arévalo, J.R., Fernández-Palacios, J.M., 2007. Edge effects of roads on 

temperature, light, canopy cover, and canopy height in laurel and pine forests (Tenerife, Canary 

Islands). Landsc. Urban Plan. 81, 328–340. 

DellaSala, D., Martin, A., Spivak, R., Schulke, T., Bird, B., Criley, M., Van Daalen, C., Kreilick, J., 

Brown, R., Aplet, G., 2003. A citizen’s call for ecological forest restoration: forest restoration 

principles and criteria. Ecol. Restor. 21, 15. 

DeLuca, T.H., Aplet, G.H., Wilmer, B., Burchfield, J., 2010. The unknown trajectory of forest 

restoration: a call for ecosystem monitoring. J. For. 108, 288–295. 

Dexter, E., Rollwagen-Bollens, G., Bollens, S.M., 2018. The trouble with stress: A flexible method for 

the evaluation of nonmetric multidimensional scaling. Limnol. Oceanogr. Methods 16, 434–443. 

Dobson, A.P., Bradshaw, A.D., Baker, A. áM, 1997. Hopes for the future: restoration ecology and 

conservation biology. Science 277, 515–522. 

Dölle, M., Bernhardt-Römermann, M., Parth, A., Schmidt, W., 2008. Changes in life history trait 

composition during undisturbed old-field succession. Flora-Morphol. Distrib. Funct. Ecol. Plants 

203, 508–522. 

Douglas, I., 2012. Urban ecology and urban ecosystems: understanding the links to human health and 

well-being. Curr. Opin. Environ. Sustain. 4, 385–392. 

Douterlungne, D., Martínez, G.M.C., Badano, E.I., Cano, J.A.F., Rivas, J.D.F., 2018. Restoring oak 

forests on bare ground using topsoil translocation. Ecol. Eng. 120, 76–84. 

Dovčak, M., Frelich, L.E., Reich, P.B., 2005. Pathways in old-field succession to white pine: seed rain, 

shade, and climate effects. Ecol. Monogr. 75, 363–378. 

Dudley, N., Mansourian, S., Vallauri, D., 2005. Forest landscape restoration in context, in: Forest 

Restoration in Landscapes. Springer, pp. 3–7. 



 

114 

 

Environment Canada, 2019. Historical Data - Climate - Environment and Climate Change Canada 

[WWW Document]. URL 

http://climate.weather.gc.ca/historical_data/search_historic_data_e.html (accessed 7.21.19). 

Falster, D.S., Duursma, R.A., FitzJohn, R.G., 2018. How functional traits influence plant growth and 

shade tolerance across the life cycle. Proc. Natl. Acad. Sci. 115, E6789–E6798. 

Ferreira, M.C., Walter, B.M., Vieira, D.L., 2015. Topsoil translocation for Brazilian savanna restoration: 

propagation of herbs, shrubs, and trees. Restor. Ecol. 23, 723–728. 

Finnegan, L., Pigeon, K.E., MacNearney, D., 2019. Predicting patterns of vegetation recovery on seismic 

lines: Informing restoration based on understory species composition and growth. For. Ecol. 

Manag. 446, 175–192. 

Fisher, J.B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R., McCabe, M.F., Hook, S., 

Baldocchi, D., Townsend, P.A., 2017. The future of evapotranspiration: Global requirements for 

ecosystem functioning, carbon and climate feedbacks, agricultural management, and water 

resources. Water Resour. Res. 53, 2618–2626. 

Fowler, W.M., Fontaine, J.B., Enright, N.J., Veber, W.P., 2015. Evaluating restoration potential of 

transferred topsoil. Appl. Veg. Sci. 18, 379–390. 

Fox, J., Weisberg, S., Adler, D., Bates, D., Baud-Bovy, G., Ellison, S., Firth, D., Friendly, M., Gorjanc, 

G., Graves, S., 2012. Package ‘car.’ Vienna R Found. Stat. Comput. 

Fraser, R., Kay, J.J., 2004. Exergy analysis of ecosystems: establishing a role for thermal remote sensing, 

in: Thermal Remote Sensing in Land Surface Processing. Taylor and Francis, London. CRC 

Press, Boca Raton, pp. 283–360. 

Frey, S.J., Hadley, A.S., Johnson, S.L., Schulze, M., Jones, J.A., Betts, M.G., 2016. Spatial models reveal 

the microclimatic buffering capacity of old-growth forests. Sci. Adv. 2, e1501392. 

Gartshore, M.E., Unpublished. Seed-Lists for NCC properties in Norfolk Forest and Long Point Wetland 

project. 

Gehring, J.L., Bragg, T.B., 1992. Changes in prairie vegetation under eastern red cedar (Juniperus 

virginiana L.) in an eastern Nebraska bluestem prairie. Am. Midl. Nat. 209–217. 

Gelman, A., Hill, J., 2006. Data analysis using regression and multilevel/hierarchical models. Cambridge 

University Press, Cambridge, UK. 

Golos, P.J., Dixon, K.W., Erickson, T.E., 2016. Plant recruitment from the soil seed bank depends on 

topsoil stockpile age, height, and storage history in an arid environment. Restor. Ecol. 24, S53–

S61. 

Gosz, J.R., Holmes, R.T., Likens, G.E., Bormann, F.H., 1978. The flow of energy in a forest ecosystem. 

Sci. Am. 238, 92–103. 

Grace, J., 1988. 3. Plant response to wind. Agric. Ecosyst. Environ. 22, 71–88. 

Grime, J.P., 1977. Evidence for the existence of three primary strategies in plants and its relevance to 

ecological and evolutionary theory. Am. Nat. 111, 1169–1194. 

Guariguata, M.R., Ostertag, R., 2001. Neotropical secondary forest succession: changes in structural and 

functional characteristics. For. Ecol. Manag. 148, 185–206. 

Guderle, M., Bachmann, D., Milcu, A., Gockele, A., Bechmann, M., Fischer, C., Roscher, C., Landais, 

D., Ravel, O., Devidal, S., 2018. Dynamic niche partitioning in root water uptake facilitates 

efficient water use in more diverse grassland plant communities. Funct. Ecol. 32, 214–227. 

Guzinski, R., Nieto, H., 2019. Evaluating the feasibility of using Sentinel-2 and Sentinel-3 satellites for 

high-resolution evapotranspiration estimations. Remote Sens. Environ. 221, 157–172. 

Hall, S.L., Barton, C.D., Baskin, C.C., 2010. Topsoil seed bank of an Oak–Hickory forest in eastern 

Kentucky as a restoration tool on surface mines. Restor. Ecol. 18, 834–842. 

Halme, P., Allen, K.A., Auniņš, A., Bradshaw, R.H., Brūmelis, G., Čada, V., Clear, J.L., Eriksson, A.-M., 

Hannon, G., Hyvärinen, E., 2013. Challenges of ecological restoration: lessons from forests in 

northern Europe. Biol. Conserv. 167, 248–256. 

Hamberg, J., 2019. Data for: Thermal imaging relative surface temperature as an indicator of plant 

species diversity and restoration progress. Mendeley Data. 



 

115 

 

Hamberg, L.J., Fraser, R.A., Robinson, D.T., Trant, A.J., Murphy, S.D., 2020. Surface temperature as an 

indicator of plant species diversity and restoration in oak woodland. Ecol. Indic. 113. 

Hammerle, A., Meier, F., Heinl, M., Egger, A., Leitinger, G., 2017. Implications of atmospheric 

conditions for analysis of surface temperature variability derived from landscape-scale 

thermography. Int. J. Biometeorol. 61, 575–588. 

Harley, J.L., 1989. The significance of mycorrhiza. Mycol. Res. 92, 129–139. 

Harmer, R., Peterken, G., Kerr, G., Poulton, P., 2001. Vegetation changes during 100 years of 

development of two secondary woodlands on abandoned arable land. Biol. Conserv. 101, 291–

304. 

Harrell Jr, F.E., Dupont, C., 2017. Hmisc: Harrell miscellaneous. R package version 4.0-3 [WWW 

Document]. URL https://cran.r-project.org/web/packages/Hmisc/index.html 

Hartnett, D.C., Wilson, G.W., 1999. Mycorrhizae influence plant community structure and diversity in 

tallgrass prairie. Ecology 80, 1187–1195. 

Hayes, D.C., Seastedt, T.R., 1987. Root dynamics of tallgrass prairie in wet and dry years. Can. J. Bot. 

65, 787–791. 

Heaviside, C., Macintyre, H., Vardoulakis, S., 2017. The urban heat island: implications for health in a 

changing environment. Curr. Environ. Health Rep. 4, 296–305. 

Hebbali, A., 2017. Package “olsrr”: Tools for building OLS regression models. R package version 0.4.0 

[WWW Document]. URL https://mran.microsoft.com/snapshot/2017-12-

15/web/packages/olsrr/olsrr.pdf 

Hector, A., Philipson, C., Saner, P., Chamagne, J., Dzulkifli, D., O’Brien, M., Snaddon, J.L., Ulok, P., 

Weilenmann, M., Reynolds, G., 2011. The Sabah Biodiversity Experiment: a long-term test of the 

role of tree diversity in restoring tropical forest structure and functioning. Philos. Trans. R. Soc. B 

Biol. Sci. 366, 3303–3315. 

Helliwell, D.R., Buckley, G.P., Fordham, S.J., Paul, T.A., 1996. Vegetation succession on a relocated 

ancient woodland soil. For. Int. J. For. Res. 69, 57–74. 

Henry, H.A., Murphy, S.D., McFarlane, M.L., Barna, H., Dunning, K., Hood, A., Crosthwaite, J.C., 2019. 

Evaluating outcomes of restoration ecology projects on limited budgets: assessment of variation 

in sampling intensity and sampling frequency for four habitat types. Restor. Ecol. 27, 457–465. 

Hietalahti, M., Cadisch, G., Buckley, G.P., 2005. The effect of woodland soil translocation on carbon and 

nitrogen mineralisation processes. Plant Soil 271, 91–107. 

Hijmans, R.J., Graham, C.H., 2006. The ability of climate envelope models to predict the effect of climate 

change on species distributions. Glob. Change Biol. 12, 2272–2281. 

Hobbs, R.J., Cramer, V., 2007. Why old fields? Socioeconomic and ecological causes and consequences 

of land abandonment. Old Fields Dyn. Restor. Abandon. Farml. 1–14. 

Holbo, H.R., Luvall, J.C., 1989. Modeling surface temperature distributions in forest landscapes. Remote 

Sens. Environ. 27, 11–24. 

Holl, K.D., Aide, T.M., 2011. When and where to actively restore ecosystems? For. Ecol. Manag. 261, 

1558–1563. 

Holl, K.D., Howarth, R.B., 2000. Paying for Restoration. Restor. Ecol. 8, 260–267. 

Hook, S.J., Cawse-Nicholson, K., Barsi, J., Radocinski, R., Hulley, G.C., Johnson, W.R., Rivera, G., 

Markham, B., 2019. In-Flight Validation of the ECOSTRESS, Landsats 7 and 8 Thermal Infrared 

Spectral Channels Using the Lake Tahoe CA/NV and Salton Sea CA Automated Validation Sites. 

IEEE Trans. Geosci. Remote Sens. 58, 1294–1302. 

Hooper, D.U., Chapin Iii, F.S., Ewel, J.J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J.H., Lodge, 

D.M., Loreau, M., Naeem, S., 2005. Effects of biodiversity on ecosystem functioning: a 

consensus of current knowledge. Ecol. Monogr. 75, 3–35. 

Howe, H.F., 1994. Managing species diversity in tallgrass prairie: assumptions and implications. Conserv. 

Biol. 8, 691–704. 

Hughes, J.B., Roughgarden, J., 2000. Species diversity and biomass stability. Am. Nat. 155, 618–627. 



 

116 

 

Hulley, G.C., Hook, S.J., 2018. ECOSTRESS Level-2 LST and Emissivity Algorithm Theoretical Basis 

Document (ATBD) (No. JPL D-94643). Jet Propulsion Laboratory, California Institute of 

Technology. 

Hunsaker, C., Carpenter, D., Messer, J., 1990. Ecological indicators for regional monitoring. Bull. Ecol. 

Soc. Am. 71, 165–172. 

Hunting Survey Corporation Limited, 1954. Digital Aerial Photographs, Southern Ontario 1954 [WWW 

Document]. URL https://mdl.library.utoronto.ca/collections/air-photos/1954-air-photos-southern-

ontario/index (accessed 6.3.20). 

Hurlbert, S.H., 1984. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54, 

187–211. 

Iizuka, K., Watanabe, K., Kato, T., Putri, N.A., Silsigia, S., Kameoka, T., Kozan, O., 2018. Visualizing 

the spatiotemporal trends of thermal characteristics in a peatland plantation forest in Indonesia: 

Pilot test using Unmanned Aerial Systems (UASs). Remote Sens. 10, 1345. 

Inlow, K.J., 2010. The Early Post-restoration Population Dynamics and Community Interactions of a 

Former Agricultural Field in the Carolinian Canada Life Zone (Master’s thesis). University of 

Waterloo, Waterloo, Canada. 

Isbell, F.I., Polley, H.W., Wilsey, B.J., 2009. Biodiversity, productivity and the temporal stability of 

productivity: patterns and processes. Ecol. Lett. 12, 443–451. 

Jasechko, S., Sharp, Z.D., Gibson, J.J., Birks, S.J., Yi, Y., Fawcett, P.J., 2013. Terrestrial water fluxes 

dominated by transpiration. Nature 496, 347–350. 

Jayalakshmy, M.S., Philip, J., 2010. Thermophysical properties of plant leaves and their influence on the 

environment temperature. Int. J. Thermophys. 31, 2295–2304. 

Jenerette, G.D., Harlan, S.L., Stefanov, W.L., Martin, C.A., 2011. Ecosystem services and urban heat 

riskscape moderation: water, green spaces, and social inequality in Phoenix, USA. Ecol. Appl. 21, 

2637–2651. 

Jiguet, F., Gadot, A.-S., Julliard, R., Newson, S.E., Couvet, D., 2007. Climate envelope, life history traits 

and the resilience of birds facing global change. Glob. Change Biol. 13, 1672–1684. 

Jiménez-Muñoz, J.C., Cristóbal, J., Sobrino, J.A., Sòria, G., Ninyerola, M., Pons, X., 2009. Revision of 

the single-channel algorithm for land surface temperature retrieval from Landsat thermal-infrared 

data. IEEE Trans. Geosci. Remote Sens. 47, 339–349. 

Jorgensen, S.E., Svirezhev, Y.M., 2004. Towards a thermodynamic theory for ecological systems. 

Elsevier. 

Kattge, J., Bönisch, G., Díaz, S., Lavorel, S., Prentice, I.C., Leadley, P., Tautenhahn, S., Werner, G.D., 

Aakala, T., Abedi, M., 2020. TRY plant trait database–enhanced coverage and open access. Glob. 

Change Biol. 26, 119–188. 

Kay, J., Schneider, E., 1994. Embracing complexity: The challenge of the ecosystem approach. 

Alternatives 20, 32–39. 

Kay, J.J., 2000. Ecosystems as Self-organising Holarchic Open Systems: Narratives and the Second Law 

of Thermodynamics, in: Jørgensen, S.E. (Ed.), Handbook of Ecosystem Theories and 

Management. Lewis Publishers, Boca Raton, pp. 135–160. 

Kearney, M., Shine, R., Porter, W.P., 2009. The potential for behavioral thermoregulation to buffer “cold-

blooded” animals against climate warming. Proc. Natl. Acad. Sci. 106, 3835–3840. 

Kelly, J., Kljun, N., Olsson, P.-O., Mihai, L., Liljeblad, B., Weslien, P., Klemedtsson, L., Eklundh, L., 

2019. Challenges and best practices for deriving temperature data from an uncalibrated UAV 

thermal infrared camera. Remote Sens. 11, 567. 

Kenkel, N.C., Orlóci, L., 1986. Applying metric and nonmetric multidimensional scaling to ecological 

studies: some new results. Ecology 67, 919–928. 

Kennedy, R.E., Andréfouët, S., Cohen, W.B., Gómez, C., Griffiths, P., Hais, M., Healey, S.P., Helmer, 

E.H., Hostert, P., Lyons, M.B., 2014. Bringing an ecological view of change to Landsat-based 

remote sensing. Front. Ecol. Environ. 12, 339–346. 



 

117 

 

Keselman, H.J., Algina, J., Kowalchuk, R.K., Wolfinger, R.D., 1999. The analysis of repeated 

measurements: A comparison of mixed-model Satterthwaite F tests and a nonpooled adjusted 

degrees of freedom multivariate test. Commun. Stat.-Theory Methods 28, 2967–2999. 

Koch, J.M., 2007. Restoring a jarrah forest understorey vegetation after bauxite mining in Western 

Australia. Restor. Ecol. 15, S26–S39. 

Koch, L.F., 1957. Index of biotal dispersity. Ecology 38, 145–148. 

Kondepudi, D., Prigogine, I., 2014. Modern thermodynamics: from heat engines to dissipative structures. 

John Wiley & Sons. 

Körner, C., 2006. Significance of temperature in plant life. Plant Growth Clim. Change 48–69. 

Krehbiel, C., 2019. ECOSTRESS Swath to Grid Conversion Script [WWW Document]. NASA - LP 

DAAC Data User Resour. URL 

https://git.earthdata.nasa.gov/projects/LPDUR/repos/ecostress_swath2grid/browse/ECOSTRESS

_swath2grid.py (accessed 5.9.19). 

Kruskal, J.B., 1964. Nonmetric multidimensional scaling: a numerical method. Psychometrika 29, 115–

129. 

Kutsch, W.L., Steinborn, W., Herbst, M., Baumann, R., Barkmann, J., Kappen, L., 2001. Environmental 

indication: a field test of an ecosystem approach to quantify biological self-organization. 

Ecosystems 4, 49–66. 

Kuznetsova, A., Brockhoff, P.B., Christensen, R.H.B., 2017. lmerTest package: tests in linear mixed 

effects models. J. Stat. Softw. 82. 

Lagouarde, J.-P., Bhattacharya, B.K., Crebassol, P., Gamet, P., Babu, S.S., Boulet, G., Briottet, X., 

Buddhiraju, K.M., Cherchali, S., Dadou, I., 2018. The Indian-French Trishna mission: Earth 

observation in the thermal infrared with high spatio-temporal resolution, in: IGARSS 2018-2018 

IEEE International Geoscience and Remote Sensing Symposium. IEEE, pp. 4078–4081. 

Lakens, D., Adolfi, F.G., Albers, C.J., Anvari, F., Apps, M.A., Argamon, S.E., Baguley, T., Becker, R.B., 

Benning, S.D., Bradford, D.E., 2018. Justify your alpha. Nat. Hum. Behav. 2, 168–171. 

Lenth, R., Singmann, H., Love, J., 2018. Emmeans: Estimated marginal means, aka least-squares means. 

v1.5.0 [WWW Document]. URL https://cran.r-project.org/web/packages/emmeans/index.html 

Lin, H., Chen, Y., Song, Q., Fu, P., Cleverly, J., Magliulo, V., Law, B.E., Gough, C.M., Hörtnagl, L., Di 

Gennaro, F., 2017a. Quantifying deforestation and forest degradation with thermal response. Sci. 

Total Environ. 607, 1286–1292. 

Lin, H., Fan, Z., Shi, L., Arain, A., McCaughey, H., Billesbach, D., Siqueira, M., Bracho, R., Oechel, W., 

2017b. The cooling trend of canopy temperature during the maturation, succession, and recovery 

of ecosystems. Ecosystems 20, 406–415. 

Lin, H., Tu, C., Fang, J., Gioli, B., Loubet, B., Gruening, C., Zhou, G., Beringer, J., Huang, J., Dušek, J., 

2020. Forests buffer thermal fluctuation better than non-forests. Agric. For. Meteorol. 107994. 

Lin, H., Zhang, H., Song, Q., 2018. Transition from abstract thermodynamic concepts to perceivable 

ecological indicators. Ecol. Indic. 88, 37–42. 

Livesley, S.J., McPherson, E.G., Calfapietra, C., 2016. The urban forest and ecosystem services: impacts 

on urban water, heat, and pollution cycles at the tree, street, and city scale. J. Environ. Qual. 45, 

119–124. 

Löf, M., Madsen, P., Metslaid, M., Witzell, J., Jacobs, D.F., 2019. Restoring forests: regeneration and 

ecosystem function for the future. New For. 50, 139–151. 

Loreau, M., 1995. Consumers as maximizers of matter and energy flow in ecosystems. Am. Nat. 145, 22–

42. 

Ludovisi, R., Tauro, F., Salvati, R., Khoury, S., Mugnozza Scarascia, G., Harfouche, A., 2017. UAV-

based thermal imaging for high-throughput field phenotyping of black poplar response to 

drought. Front. Plant Sci. 8, 1681. 

Luvall, J.C., Holbo, H.R., 1989. Measurements of short-term thermal responses of coniferous forest 

canopies using thermal scanner data. Remote Sens. Environ. 27, 1–10. 



 

118 

 

Luvall, J.C., Lieberman, D., Lieberman, M., Hartshorn, G.S., Peralta, R., 1990. Estimation of tropical 

forest canopy temperatures, thermal response numbers and evapotranspiration using an aircraft-

based thermal sensor. Photogramm. Eng. Remote Sens. 56, 1393–1401. 

MacIvor, J.S., Margolis, L., Perotto, M., Drake, J.A., 2016. Air temperature cooling by extensive green 

roofs in Toronto Canada. Ecol. Eng. 95, 36–42. 

Maes, W.H., Pashuysen, T., Trabucco, A., Veroustraete, F., Muys, B., 2011. Does energy dissipation 

increase with ecosystem succession? Testing the ecosystem exergy theory combining theoretical 

simulations and thermal remote sensing observations. Ecol. Model. 222, 3917–3941. 

Maes, W.H., Steppe, K., 2019. Perspectives for remote sensing with unmanned aerial vehicles in 

precision agriculture. Trends Plant Sci. 24, 152–164. 

Makita, N., Hirano, Y., Mizoguchi, T., Kominami, Y., Dannoura, M., Ishii, H., Finér, L., Kanazawa, Y., 

2011. Very fine roots respond to soil depth: biomass allocation, morphology, and physiology in a 

broad-leaved temperate forest. Ecol. Res. 26, 95–104. 

Mann, M.E., Rahmstorf, S., Kornhuber, K., Steinman, B.A., Miller, S.K., Coumou, D., 2017. Influence of 

anthropogenic climate change on planetary wave resonance and extreme weather events. Sci. 

Rep. 7, 45242. 

Mansourian, S., Lamb, D., Gilmour, D., 2005. Overview of technical approaches to restoring tree cover at 

the site level, in: Forest Restoration in Landscapes. Springer, pp. 241–249. 

Mason, N.W., Mouillot, D., Lee, W.G., Wilson, J.B., 2005. Functional richness, functional evenness and 

functional divergence: the primary components of functional diversity. Oikos 111, 112–118. 

Matlack, G.R., 1993. Microenvironment variation within and among forest edge sites in the eastern 

United States. Biol. Conserv. 66, 185–194. 

McIntyre, S., Cunningham, R.B., Donnelly, C.F., Manning, A.D., 2015. Restoration of eucalypt grassy 

woodland: effects of experimental interventions on ground-layer vegetation. Aust. J. Bot. 62, 

570–579. 

Meerdink, S.K., Hook, S.J., Roberts, D.A., Abbott, E.A., 2019. The ECOSTRESS spectral library version 

1.0. Remote Sens. Environ. 230. 

Melo, F.P., Pinto, S.R., Brancalion, P.H., Castro, P.S., Rodrigues, R.R., Aronson, J., Tabarelli, M., 2013. 

Priority setting for scaling-up tropical forest restoration projects: Early lessons from the Atlantic 

Forest Restoration Pact. Environ. Sci. Policy 33, 395–404. 

Menz, M.H., Dixon, K.W., Hobbs, R.J., others, 2013. Hurdles and opportunities for landscape-scale 

restoration. Science 339, 526–527. 

Michaletz, S.T., Weiser, M.D., Zhou, J., Kaspari, M., Helliker, B.R., Enquist, B.J., 2015. Plant 

thermoregulation: energetics, trait–environment interactions, and carbon economics. Trends Ecol. 

Evol. 30, 714–724. 

Millar, C.I., Stephenson, N.L., 2015. Temperate forest health in an era of emerging megadisturbance. 

Science 349, 823–826. 

Monteith, J.L., 1981. Evaporation and surface temperature. Q. J. R. Meteorol. Soc. 107, 1–27. 

Morris, E.K., Caruso, T., Buscot, F., Fischer, M., Hancock, C., Maier, T.S., Meiners, T., Müller, C., 

Obermaier, E., Prati, D., 2014. Choosing and using diversity indices: insights for ecological 

applications from the German Biodiversity Exploratories. Ecol. Evol. 4, 3514–3524. 

Nagendra, H., Lucas, R., Honrado, J.P., Jongman, R.H., Tarantino, C., Adamo, M., Mairota, P., 2013. 

Remote sensing for conservation monitoring: Assessing protected areas, habitat extent, habitat 

condition, species diversity, and threats. Ecol. Indic. 33, 45–59. 

Nakagawa, S., Schielzeth, H., 2013. A general and simple method for obtaining R2 from generalized 

linear mixed-effects models. Methods Ecol. Evol. 4, 133–142. 

Nature Conservancy of Canada, 2006. Property Management Plan - Lake Erie Farms Property. NCC - 

Southwestern Ontario Region, London, Ontario. 

Newton, A., Featherstone, A.W., 2005. Restoring temperate forests, in: Forest Restoration in Landscapes. 

Springer, pp. 320–328. 



 

119 

 

Nippert, J.B., Wieme, R.A., Ocheltree, T.W., Craine, J.M., 2012. Root characteristics of C 4 grasses limit 

reliance on deep soil water in tallgrass prairie. Plant Soil 355, 385–394. 

Norris, C., Hobson, P., Ibisch, P.L., 2012. Microclimate and vegetation function as indicators of forest 

thermodynamic efficiency. J. Appl. Ecol. 49, 562–570. 

O’Connor, D., Ford, J., 2014. Increasing the effectiveness of the “Great Green Wall” as an adaptation to 

the effects of climate change and desertification in the Sahel. Sustainability 6, 7142–7154. 

O’Keefe, K., Nippert, J.B., McCulloh, K.A., 2019. Plant water uptake along a diversity gradient provides 

evidence for complementarity in hydrological niches. Oikos 128, 1748–1760. 

Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’hara, R.B., Simpson, G.L., 

Solymos, P., Stevens, M.H.H., Wagner, H., 2019. Package ‘vegan’ v. 2.5-6 [WWW Document]. 

URL https://cran.r-project.org/web/packages/vegan/vegan.pdf 

OMAFRA, 2020. Ontario Weeds - Weed Gallery [WWW Document]. Ont. Minist. Agric. Food Rural 

Aff. URL http://www.omafra.gov.on.ca/english/crops/facts/ontweeds/weedgal.htm (accessed 

4.18.20). 

OMAFRA, 2015. Soil Survey Complex [WWW Document]. Ont. Minist. Agric. Food Rural Aff. URL 

https://geohub.lio.gov.on.ca/datasets/soil-survey-complex (accessed 2.7.20). 

OMNRF, 2020. Make A Topographic Map [WWW Document]. URL 

https://www.gisapplication.lrc.gov.on.ca/matm/Index.html?site=Make_A_Topographic_Map&vi

ewer=MATM&locale=en-US (accessed 8.19.20). 

OMNRF, 2019. Ontario Digital Terrain Model (Lidar-Derived) [WWW Document]. Ont. Minist. Nat. 

Resour. URL https://geohub.lio.gov.on.ca/datasets/mnrf::ontario-digital-terrain-model-lidar-

derived (accessed 2.7.20). 

Palmer, M.A., Filoso, S., 2009. Restoration of ecosystem services for environmental markets. Science 

325, 575–576. 

Parrott, L., 2010. Measuring ecological complexity. Ecol. Indic. 10, 1069–1076. 

Pastur, G.M., Lencinas, M.V., Cellini, J.M., Mundo, I., 2007. Diameter growth: can live trees decrease? 

Forestry 80, 83–88. 

Perino, J.V., Risser, P.G., 1972. Some aspects of structure and function in Oklahoma old-field succession. 

Bull. Torrey Bot. Club 233–239. 

Perring, M.P., Standish, R.J., Price, J.N., Craig, M.D., Erickson, T.E., Ruthrof, K.X., Whiteley, A.S., 

Valentine, L.E., Hobbs, R.J., 2015. Advances in restoration ecology: rising to the challenges of 

the coming decades. Ecosphere 6, 131. 

Petchey, O.L., Gaston, K.J., 2006. Functional diversity: back to basics and looking forward. Ecol. Lett. 9, 

741–758. 

Pettorelli, N., Schulte to Bühne, H., Tulloch, A., Dubois, G., Macinnis-Ng, C., Queirós, A.M., Keith, 

D.A., Wegmann, M., Schrodt, F., Stellmes, M., 2018. Satellite remote sensing of ecosystem 

functions: Opportunities, challenges and way forward. Remote Sens. Ecol. Conserv. 4, 71–93. 

Pohlman, C.L., Turton, S.M., Goosem, M., 2009. Temporal variation in microclimatic edge effects near 

powerlines, highways and streams in Australian tropical rainforest. Agric. For. Meteorol. 149, 

84–95. 

Poulter, B., Zareh, S.K., Freeman, A., Schimel, D., Thompson, D.R., Middleton, E., Turpie, K.R., Miller, 

C.E., Glenn, N.F., 2019. Architecture Studies for NASA’s Surface Biology and Geology Targeted 

Observable. AGUFM 2019, GC54A–04. 

Poulton, D., 2014. Biodiversity offsets: A primer for Canada. Sustain. Prosper. Inst. Environ. 

Prairie Climate Centre, 2018. Climate Atlas of Canada [WWW Document]. Clim. Atlas. URL 

https://climateatlas.ca/home-page (accessed 10.16.19). 

Pregitzer, K.S., Laskowski, M.J., Burton, A.J., Lessard, V.C., Zak, D.R., 1998. Variation in sugar maple 

root respiration with root diameter and soil depth. Tree Physiol. 18, 665–670. 

R. Core Team, 2013. R: A language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria. 



 

120 

 

Rafiee, A., Dias, E., Koomen, E., 2016. Local impact of tree volume on nocturnal urban heat island: A 

case study in Amsterdam. Urban For. Urban Green. 16, 50–61. 

Ramankutty, N., Foley, J.A., 1999. Estimating historical changes in global land cover: Croplands from 

1700 to 1992. Glob. Biogeochem. Cycles 13, 997–1027. 

Rastetter, E.B., Aber, J.D., Peters, D.P., Ojima, D.S., Burke, I.C., 2003. Using mechanistic models to 

scale ecological processes across space and time. BioScience 53, 68–76. 

Raven, P.H., Evert, R.F., Eichhorn, S.E., 2003. Biology of plants, 7th ed. W.H. Freeman Publisher, New 

York, NY. 

Reif, M.K., Theel, H.J., 2017. Remote sensing for restoration ecology: Application for restoring 

degraded, damaged, transformed, or destroyed ecosystems. Integr. Environ. Assess. Manag. 13, 

614–630. 

Reinhart, K.O., Royo, A.A., Van Der Putten, W.H., Clay, K., 2005. Soil feedback and pathogen activity 

in Prunus serotina throughout its native range. J. Ecol. 93, 890–898. 

Riede, J.O., Rall, B.C., Banasek-Richter, C., Navarrete, S.A., Wieters, E.A., Emmerson, M.C., Jacob, U., 

Brose, U., 2010. Scaling of food-web properties with diversity and complexity across ecosystems. 

Adv. Ecol. Res. 42, 139–170. 

Rivera, D., Jáuregui, B.M., Peco, B., 2012. The fate of herbaceous seeds during topsoil stockpiling: 

restoration potential of seed banks. Ecol. Eng. 44, 94–101. 

Robinson, D.T., Brown, D.G., Currie, W.S., 2009. Modelling carbon storage in highly fragmented and 

human-dominated landscapes: Linking land-cover patterns and ecosystem models. Ecol. Model. 

220, 1325–1338. 

Rodgers, D., Bartlett, R., Simcock, R., 2011. Benefits of vegetation direct transfer as an innovative mine 

rehabilitation tool, in: Proceedings of the 2011 Workshop on Australian Mine Rehabilitation. 

JKTech Pty Ltd. pp. 285–303. 

Rubio, E., Caselles, V., Badenas, C., 1997. Emissivity measurements of several soils and vegetation types 

in the 8–14, μm Wave band: Analysis of two field methods. Remote Sens. Environ. 59, 490–521. 

Ruiz-Jaén, M.C., Aide, T.M., 2005. Vegetation structure, species diversity, and ecosystem processes as 

measures of restoration success. For. Ecol. Manag. 218, 159–173. 

Ruiz‐Jaen, M.C., Aide, T.M., 2005. Restoration Success: How Is It Being Measured? Restor. Ecol. 13, 

569–577. 

Ryan, L., 2013. Translocation and ancient woodland. The Woodland Trust, Grantham, UK. 

Sagan, V., Maimaitijiang, M., Sidike, P., Eblimit, K., Peterson, K.T., Hartling, S., Esposito, F., Khanal, 

K., Newcomb, M., Pauli, D., 2019. UAV-based high resolution thermal imaging for vegetation 

monitoring, and plant phenotyping using ICI 8640 P, FLIR Vue Pro R 640, and thermomap 

cameras. Remote Sens. 11, 330. 

Salamanca, F., Georgescu, M., Mahalov, A., Moustaoui, M., Wang, M., Svoma, B.M., 2013. Assessing 

summertime urban air conditioning consumption in a semiarid environment. Environ. Res. Lett. 

8, 034022. 

Santesteban, L.G., Di Gennaro, S.F., Herrero-Langreo, A., Miranda, C., Royo, J.B., Matese, A., 2017. 

High-resolution UAV-based thermal imaging to estimate the instantaneous and seasonal 

variability of plant water status within a vineyard. Agric. Water Manag. 183, 49–59. 

Schaefer, C.A., Larson, D.W., 1997. Vegetation, environmental characteristics and ideas on the 

maintenance of alvars on the Bruce Peninsula, Canada. J. Veg. Sci. 8, 797–810. 

Schick, A., Porembski, S., Hobson, P.R., Ibisch, P.L., 2019. Classification of key ecological attributes and 

stresses of biodiversity for ecosystem-based conservation assessments and management. Ecol. 

Complex. 38, 98–111. 

Schneider, E.D., Kay, J.J., 1994. Life as a manifestation of the second law of thermodynamics. Math. 

Comput. Model. 19, 25–48. 

Schuurman, D., 2020. Credit Valley Conservation surface temperature investigation. 

Searle, S.R., Speed, F.M., Milliken, G.A., 1980. Population marginal means in the linear model: an 

alternative to least squares means. Am. Stat. 34, 216–221. 



 

121 

 

Sheoran, V., Sheoran, A.S., Poonia, P., 2010. Soil reclamation of abandoned mine land by revegetation: a 

review. Int. J. Soil Sediment Water 3, 13. 

Shoo, L.P., Wilson, R., Williams, Y.M., Catterall, C.P., 2014. Putting it back: Woody debris in young 

restoration plantings to stimulate return of reptiles. Ecol. Manag. Restor. 15, 84–87. 

Simmons, M.T., Gardiner, B., Windhager, S., Tinsley, J., 2008. Green roofs are not created equal: the 

hydrologic and thermal performance of six different extensive green roofs and reflective and non-

reflective roofs in a sub-tropical climate. Urban Ecosyst. 11, 339–348. 

Smigaj, M., Gaulton, R., Suárez, J.C., Barr, S.L., 2019. Canopy temperature from an Unmanned Aerial 

Vehicle as an indicator of tree stress associated with red band needle blight severity. For. Ecol. 

Manag. 433, 699–708. 

Smith, M.D., Knapp, A.K., 2001. Physiological and morphological traits of exotic, invasive exotic, and 

native plant species in tallgrass prairie. Int. J. Plant Sci. 162, 785–792. 

Sobrino, J.A., Jiménez-Muñoz, J.C., Sòria, G., Romaguera, M., Guanter, L., Moreno, J., Plaza, A., 

Martínez, P., 2008. Land surface emissivity retrieval from different VNIR and TIR sensors. IEEE 

Trans. Geosci. Remote Sens. 46, 316–327. 

Stanturf, J.A., Kleine, M., Mansourian, S., Parrotta, J., Madsen, P., Kant, P., Burns, J., Bolte, A., 2019. 

Implementing forest landscape restoration under the Bonn Challenge: a systematic approach. 

Ann. For. Sci. 76, 50. 

Stanturf, J.A., Palik, B.J., Dumroese, R.K., 2014. Contemporary forest restoration: A review emphasizing 

function. For. Ecol. Manag. 331, 292–323. 

Stott, P., 2016. How climate change affects extreme weather events. Science 352, 1517–1518. 

Suding, K., Higgs, E., Palmer, M., Callicott, J.B., Anderson, C.B., Baker, M., Gutrich, J.J., Hondula, 

K.L., LaFevor, M.C., Larson, B.M., 2015. Committing to ecological restoration. Science 348, 

638–640. 

Suding, K.N., 2011. Toward an Era of Restoration in Ecology: Successes, Failures, and Opportunities 

Ahead. Annu. Rev. Ecol. Evol. Syst. 42, 465–487. 

Suding, K.N., Gross, K.L., 2006. The dynamic nature of ecological systems: multiple states and 

restoration trajectories. Found. Restor. Ecol. 190–209. 

Sutton, P.C., Anderson, S.J., Costanza, R., Kubiszewski, I., 2016. The ecological economics of land 

degradation: Impacts on ecosystem service values. Ecol. Econ. 129, 182–192. 

Tatoni, T., Roche, P., 1994. Comparison of old-field and forest revegetation dynamics in Provence. J. 

Veg. Sci. 5, 295–302. 

Thompson, I.D., Ferreira, J., Gardner, T., Guariguata, M., Koh, L.P., Okabe, K., Pan, Y., Schmitt, C.B., 

Tylianakis, J., Barlow, J., 2012. Forest biodiversity, carbon and other ecosystem services: 

relationships and impacts of deforestation and forest degradation. IUFRO World Ser. Vol. 31 P 

21-51 31, 21–50. 

Tilman, D., 2001. Functional diversity. Encycl. Biodivers. 3, 109–120. 

Tilman, D., Reich, P.B., Knops, J., Wedin, D., Mielke, T., Lehman, C., 2001. Diversity and productivity 

in a long-term grassland experiment. Science 294, 843–845. 

TOARC, 2020. The Ontario Aggregate Resource Corporation - Surrendered Sites Reporting and Mapping 

Tool [WWW Document]. URL https://toarc.com/surrendered-sites-reporting-and-mapping-tool/ 

(accessed 9.2.20). 

Tobner, C.M., Paquette, A., Reich, P.B., Gravel, D., Messier, C., 2014. Advancing biodiversity–

ecosystem functioning science using high-density tree-based experiments over functional 

diversity gradients. Oecologia 174, 609–621. 

Tomlinson, S., Matthes, U., Richardson, P.J., Larson, D.W., 2008. The ecological equivalence of quarry 

floors to alvars. Appl. Veg. Sci. 11, 73–82. 

Tuff, K.T., Tuff, T., Davies, K.F., 2016. A framework for integrating thermal biology into fragmentation 

research. Ecol. Lett. 19, 361–374. 

Turner, K.G., Anderson, S., Gonzales-Chang, M., Costanza, R., Courville, S., Dalgaard, T., Dominati, E., 

Kubiszewski, I., Ogilvy, S., Porfirio, L., 2016. A review of methods, data, and models to assess 



 

122 

 

changes in the value of ecosystem services from land degradation and restoration. Ecol. Model. 

319, 190–207. 

Turner, W., Spector, S., Gardiner, N., Fladeland, M., Sterling, E., Steininger, M., 2003. Remote sensing 

for biodiversity science and conservation. Trends Ecol. Evol. 18, 306–314. 

Ulanowicz, R.E., Hannon, B.M., 1987. Life and the production of entropy. Proc. R. Soc. Lond. B 232, 

181–192. 

U.S. Geological Survey, 2016. Landsat—Earth observation satellites (No. Fact Sheet 2015-3081). U.S. 

Geological Survey. 

USDA Forestry Service, 2020. NTDP GPS Receiver Horizontal Accuracy Reports [WWW Document]. 

URL https://www.fs.fed.us/database/gps/mtdcrept/accuracy/index.htm (accessed 8.16.20). 

USGS, 2019. EarthExplorer [WWW Document]. URL https://earthexplorer.usgs.gov/ (accessed 5.9.19). 

Valladares, F., Laanisto, L., Niinemets, Ü., Zavala, M.A., 2016. Shedding light on shade: ecological 

perspectives of understorey plant life. Plant Ecol. Divers. 9, 237–251. 

Van Ruijven, J., Berendse, F., 2003. Positive effects of plant species diversity on productivity in the 

absence of legumes. Ecol. Lett. 6, 170–175. 

Vellend, M., 2003. Habitat loss inhibits recovery of plant diversity as forests regrow. Ecology 84, 1158–

1164. 

Vertessy, R.A., Benyon, R.G., O’sullivan, S.K., Gribben, P.R., 1995. Relationships between stem 

diameter, sapwood area, leaf area and transpiration in a young mountain ash forest. Tree Physiol. 

15, 559–567. 

Vihervaara, P., Franzese, P.P., Buonocore, E., 2019. Information, energy, and eco-exergy as indicators of 

ecosystem complexity. Ecol. Model. 395, 23–27. 

Vlassova, L., Perez-Cabello, F., Nieto, H., Martín, P., Riaño, D., De La Riva, J., 2014. Assessment of 

methods for land surface temperature retrieval from Landsat-5 TM images applicable to 

multiscale tree-grass ecosystem modeling. Remote Sens. 6, 4345–4368. 

Voss, E., Reznicek, A.A., 2012. Field manual of Michigan flora. University of Michigan Press. 

Wagendorp, T., Rodriguez-Urbieta, T.I., Devriendt, K., Gulinck, H., Coppin, P., Muys, B., 2003. Thermal 

characterisation of land use impact at landscape scale, in: 3rd Earsel Workshop on Imaging 

Spectroscopy. Herrsching, Germany. 

Wahid, A., Gelani, S., Ashraf, M., Foolad, M.R., 2007. Heat tolerance in plants: an overview. Environ. 

Exp. Bot. 61, 199–223. 

Walker, L.R., del Moral, R., 2009. Transition dynamics in succession: implications for rates, trajectories 

and restoration. New Models Ecosyst. Dyn. Restor. 33–49. 

Wardle, D.A., 2016. Do experiments exploring plant diversity–ecosystem functioning relationships 

inform how biodiversity loss impacts natural ecosystems? J. Veg. Sci. 27, 646–653. 

Warren, J., Topping, C., 2004. A trait specific model of competition in a spatially structured plant 

community. Ecol. Model. 180, 477–485. 

Waterhouse, B.R., Adair, K.L., Boyer, S., Wratten, S.D., 2014. Advanced mine restoration protocols 

facilitate early recovery of soil microbial biomass, activity and functional diversity. Basic Appl. 

Ecol. 15, 599–606. 

Weisser, W.W., Roscher, C., Meyer, S.T., Ebeling, A., Luo, G., Allan, E., Beßler, H., Barnard, R.L., 

Buchmann, N., Buscot, F., 2017. Biodiversity effects on ecosystem functioning in a 15-year 

grassland experiment: Patterns, mechanisms, and open questions. Basic Appl. Ecol. 23, 1–73. 

Wilhelm, C., Selmar, D., 2011. Energy dissipation is an essential mechanism to sustain the viability of 

plants: the physiological limits of improved photosynthesis. J. Plant Physiol. 168, 79–87. 

Williams, M., Rastetter, E.B., Fernandes, D.N., Goulden, M.L., Shaver, G.R., Johnson, L.C., 1997. 

Predicting gross primary productivity in terrestrial ecosystems. Ecol. Appl. 7, 882–894. 

Wilson, K.B., Hanson, P.J., Mulholland, P.J., Baldocchi, D.D., Wullschleger, S.D., 2001. A comparison 

of methods for determining forest evapotranspiration and its components: sap-flow, soil water 

budget, eddy covariance and catchment water balance. Agric. For. Meteorol. 106, 153–168. 



 

123 

 

Winter, B., 2013. Linear models and linear mixed effects models in R with linguistic applications. ArXiv 

Prepr. ArXiv13085499. 

World Bank, 2020. World Bank national accounts data, and OECD National Accounts data files [WWW 

Document]. URL https://data.worldbank.org/indicator/ny.gdp.mktp.cd (accessed 7.25.20). 

Wortley, L., Hero, J.-M., Howes, M., 2013. Evaluating Ecological Restoration Success: A Review of the 

Literature: Trends and Gaps in Empirical Evaluations. Restor. Ecol. 21, 537–543. 

Wramneby, A., Smith, B., Zaehle, S., Sykes, M.T., 2008. Parameter uncertainties in the modelling of 

vegetation dynamics—effects on tree community structure and ecosystem functioning in 

European forest biomes. Ecol. Model. 216, 277–290. 

Wright, T.E., Kasel, S., Tausz, M., Bennett, L.T., 2010. Edge microclimate of temperate woodlands as 

affected by adjoining land use. Agric. For. Meteorol. 150, 1138–1146. 

Wullschleger, S.D., Hanson, P.J., Todd, D.E., 2001. Transpiration from a multi-species deciduous forest 

as estimated by xylem sap flow techniques. For. Ecol. Manag. 143, 205–213. 

Young, T.P., Chase, J.M., Huddleston, R.T., 2001. Community succession and assembly comparing, 

contrasting and combining paradigms in the context of ecological restoration. Ecol. Restor. 19, 5–

18. 

Young, T.P., Schwartz, M.W., 2019. The Decade on Ecosystem Restoration is an impetus to get it right. 

Conserv. Sci. Pract. 1, e145. 

Zanter, K., 2019. Landsat Collection 1 Level 1 Product Definition (No. LSDS-1656 Version 2.0). 

Department of the Interior, USGS, Sioux Falls, South Dakota. 

Zanter, K., 2018. Landsat 8 data users handbook (No. LSDS-1574 Version 4.0). Department of the 

Interior, USGS, Sioux Falls, South Dakota. 

Zarco-Tejada, P.J., González-Dugo, V., Berni, J.A., 2012. Fluorescence, temperature and narrow-band 

indices acquired from a UAV platform for water stress detection using a micro-hyperspectral 

imager and a thermal camera. Remote Sens. Environ. 117, 322–337. 

Zhao, G., Shen, Y., Liu, W., Li, Z., Tan, B., Zhao, Z., Liu, J., 2020. Effects of shading and herb/liana 

eradication on the assembly and growth of woody species during soil translocation in Southwest 

China. Ecol. Eng. 144, 105704. 

Zhou, Y., Wigley, B.J., Case, M.F., Coetsee, C., Staver, A.C., 2020. Rooting depth as a key woody 

functional trait in savannas. New Phytol. 

Zirbel, C.R., Grman, E., Bassett, T., Brudvig, L.A., 2019. Landscape context explains ecosystem 

multifunctionality in restored grasslands better than plant diversity. Ecology 100, e02634. 

Zuur, A., Ieno, E.N., Walker, N., Saveliev, A.A., Smith, G.M., 2009. Mixed effects models and 

extensions in ecology with R. Springer, New York, NY. 

 

  



 

124 

 

Appendix 2A: Details of processing and adjustment of Landsat 

thermal imagery 

The Digital Number to Land Surface Temperature (DNtoLST) model clips the images to the area of 

interest, removes pixels missing values due to the failed Scan Line Corrector on Landsat 7 and removes 

pixels within 200 m from any clouds, based on the cloud cover layer supplied with each image, so as to 

avoid effects of cloud shadow on temperature. The quantified and calibrated digital number (Qcal) of the 

thermal band was translated into top-of-atmosphere radiance (Lλ) (Jiménez-Muñoz et al., 2009; Sobrino et 

al., 2004; Yu et al., 2014). The DNtoLST model then estimates land surface temperature (Ts) from top-of-

atmosphere radiance using the single channel method from Jiménez-Muñoz and Sobrino (2003) as revised 

by Jiménez-Muñoz et al. (2009). The single-channel method is an approximation of the radiative transfer 

equation and includes corrections for atmospheric conditions in atmospheric transmission and upwelling 

and downwelling atmospheric radiance. These factors were estimated for the research area using the 

Atmospheric Correction Parameter Calculator (ACPC) (Barsi et al., 2005).  

The emissivity term in the single-channel method equation was estimated using the NDVI 

Threshold Method (NDVIthm) (Sobrino et al., 2008; Yu et al., 2014). The criteria for the use of the 

NDVIthm, which this study fulfilled, were that only images in the 10-12 μm wavelengths were used and 

that the site only contains soil and vegetation. In the NDVIthm, emissivity is based on proportion vegetated 

area, which in turn is based on NDVI. Based on NDVI results from areas of the study site known to be 

bare soil and closed canopy, NDVI values below 0.4 were assumed to be bare soil and values above 0.7 

were assumed to be fully vegetated. While 0.4 is a higher threshold than the recommended standard, the 

literature recommends that when possible, NDVI threshold should be set to real site conditions (Jiménez-

Muñoz et al., 2009; Sobrino et al., 2008, 2004; Van de Griend and Owe, 1993).  

Emissivity values for bare soil and vegetation for the different effective wavelengths were 

obtained from literature (Table 1, Sobrino et al., 2008; Yu et al., 2014). Due to similar effective 

wavelength and same bandwidth breadth, the Landsat 5 formula for estimating emissivity was also used 

for Landsat 7 imagery. Soil emissivity values were validated for local conditions against the 

ECOSTRESS (formerly ASTER) spectral library (Baldridge et al., 2009; Meerdink et al., 2019). The soil 

throughout the site is classified as Plainfield series fine, very well-drained, brown Aeolian sands in the 

Udipsamments (Nature Conservancy of Canada, 2006). This is an Entisol in the Psamments sub-order. 

Soil emissivity was then taken from the closet related soil in the ECOSTRESS library, which is 

Quartzipsamment, brown to dark brown Aeolian sand, in the same sub-order (Table).  
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Table 1: Comparison of Landsat 5, 7 and 8 bandwidth, wavelength and the recommended emissivities for soil 

and vegetation according to the ECOSTRESS spectral library, Sobrino et al. 2008 and Yu et al. 2014 and 

Snyder et al 1998, showing general agreement on soil and vegetation emissivity.  

Landsat 

satellite 

# 

Bandwidth 

(μm) 

Effective 

wave-

length 

ECOSTRESS 

Soil emissivity  

Soil emiss. 

from 

literature  

Veg. emiss. 

from 

literature 

Bare soil 

empirically 

derived equation 

5 10.40 - 12.50 11.457 0.972 0.973 0.985 0.979-0.035(ρRED) 

7 10.40 - 12.50 11.269 0.972 0.973 0.985 0.979-0.035(ρRED) 

810 10.60 - 11.19 10.904 0.966 0.967 0.986 0.973−0.047(ρRED) 
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Appendix 2B: Full map of temperature change 2014-2018 

 

Full map of restoration area temperature change for NCC sites in Norfolk County, 2014-2018  
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Appendix 3A: Details on methods of transfer of topsoil, plot 

selection criteria, and vegetation sampling 

1. Further details of transfer of topsoil 

Topsoil and overlaying matter were dug up by mini-excavators ( Takeuchi TB-138 and TB285, Takeuchi 

Mfg. Co., Ltd.) and moved directly to receiving sites using wheel-loaders (Takeuchi TW80), skid-steers  

with tracks (John Deere 270, Deere & Company; Case 95XT, Case Construction), dump trucks (Ford 

F800, Ford Motor Company) and a tractor (John Deere 2555). The topsoil was then loose-tipped in the 

experimental plots, and subsequently spread evenly by another mini-excavator. Trees and shrubs that 

were moved with the topsoil were stood back up and planted in plots where possible.  

 

2. Plot selection methods and criteria 

2.1. Reforestation site plot selection methods and criteria 

For the 2015 reforestation site 20 12.5 x 10 m plots plot locations were selected semi-randomly. Each 

potential plot-location was between 50 and 100 paces from each other, avoiding windrows and with 

minimum 10 m from forest edge, while taking into consideration equipment accessibility (Appendix D). 

Out of the 20 plot locations, 10 were randomly selected to be mowed between tree-rows and then sprayed 

with a glyphosate herbicide in fall 2017, 1-2 weeks before topsoil transfer took place in order to supress 

ruderal field species. Out of the 10 mowed and sprayed plot locations, 5 were selected to receive forest 

topsoil. Selection of which of the mowed and sprayed plots should receive topsoil had to be done non-

randomly and based on which plots were accessible for the soil-moving machinery due to a combination 

of mud and uneven terrain at the time of topsoil transfer. The 5 plot locations which had been mowed and 

sprayed but did not receive topsoil retained in the experiment as ‘mow-and-spray’ control plots and the 5 

of the 10 plot locations not mowed and sprayed were retained as passive control plots.  

For the 2016 reforestation site, 5 plot locations were randomly selected to be mowed and sprayed 

and then receive topsoil, using the same constraints as for the 2015 reforestation site. Another 5 plot 

locations were selected to be passive control plots. In order to maximize distance between plots with the 

same treatment, the locations of passive control plots were positioned in between the topsoil transfer plots 

but with the same constraints in terms of minimum distance to windrows and forest edge.  

 

2.1.1. Detailed plot selection criteria for reforestation sites (referred to as YA or S2) as described 

through email verbatim by post-doctoral fellow Paul Richardson 14th July 2020. 
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 “At YA (or S2) the approach was pretty much the same as for the other described sites, except that there 

was no constraint with respect to only selecting areas on a woody successional trajectory -- anywhere on 

the property was fair game, except for the windrows that had previously been applied with woody debris 

and other materials as part of Stantec's afforestation plan. The biggest constraint was accessibility for 

equipment, so I used random paces and headings (as described) to guide my path in from either outer 

perimeter points or the main trail. I wanted to avoid having all plots too near the field margins, however, 

or each other, and wanted to make use of the space at hand. Therefore, the range of paces selected from 

was 50-100 in the 2015-planted field (at plantions S3-S4, in contrast, space was much less available and 

paces reduced to 10-30). The plots in the 2016-planted field of YA had somewhat less space and paces 

were 20-40, I believe. In addition to the random paces, recall that the five plots in the 2015-planted field 

were randomly selected from the full set of 20 potential translocation-recipient plots that we assessed in 

2017 (the 5 plots that received habit amendment treatments but not translocated living mulch were also 

selected at random from this pool).” 

 

2.2. Gravel pit site plot selection methods and criteria 

Plot locations in the gravel pit site were selected semi-randomly. A random walk of 20-60 paces was 

taken from an arbitrary start position, and then from the previous plot from each other. At the end of the 

random walk, a plot outline was selected nearby to represent formerly mined conditions with a limited 

amount of spontaneous succession. This included having a minimum of 3 woody stems of at least 1 m 

height inside of it and be considered as not ‘too wet, too sparse or too harsh’ as compared to other 

potential plots in the same site (Paul Richardson - personal communication, 13/7/2020. Full methods of 

selection in Appendix D). A quarter-plot sized area, adjacent to the topsoil recipient plot was selected as a 

passive control. The exact location and configuration of the passive control quarter-plot was based on 

being similar in terms of vegetation cover, woody stems and vehicle tracks to that of its adjacent topsoil 

recipient plot (Figure 2). No mowing or spraying was considered necessary at the gravel pit site. 

 

2.2.1. Detailed plot selection criteria for reforestation sites (referred to as S1) as described through 

email verbatim by post-doctoral fellow Paul Richardson 13th July 2020. 

“In S1, the constraints on block location included minimizing likelihood of potential influence from: i) 

other experimental blocks; ii) the active industrial usage of the property; and iii) margins of the property 

that were never mined for gravel and currently feature forest cover. More importantly, the block locations 

at S1 were explicitly selected to represent conditions at the mined site consistent with spontaneous natural 

succession towards woodland cover: if substrates at a prospective experimental block location were too 

sparse, harsh, wet etc. to support spontaneous woody growth, that location was not included in the final 
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selection (in practice, I would veto a location if fewer than 3 woody stems greater than 1 m height were 

spontaneously growing in the prospective 10 m x 12.5 m area). Meeting these constraints guided the 

"haphazard" factor in the selection; the "random" factor was facilitated using a table of random numbers 

to dictate number of paces separating blocks from each other, as well as the distance between an arbitrary 

starting point (approximate NW corner of site area considered) and the first block. The list of random 

numbers dictating paces taken ranged from 20 to 60, while heading taken was partially guided by random 

selection between 1 and 3 (veer left, go straight, veer right) but also partially guided by locations of major 

abiotic site constraints (i.e. avoid big bare patches with no soil and no trees; avoid big wet patch with no 

trees; avoid property margin; avoid other blocks, etc.). Once I paced appropriately to the designated 

location, it was evaluated as a potential central point for an experimental block. If vetoed (due to any of 

the reasons discussed above), a new random number of paces at semi-random heading was selected and 

taken.” 

 

2.3. Protected forest site plot selection methods and criteria 

2.3.1. Detailed plot selection criteria for protected forest site (referred to as S5) as described 

through email verbatim by post-doctoral fellow Paul Richardson 13th July 2020. 

 “I used a similar set of guidelines to select the blocks at S5, though the main environmental factor I was 

seeking to represent at the locations was forest succession outcome equivalent to that observed in the 

donor forests -- i.e. woodland patches with the same approximate canopy species composition and size 

structure, as well as similar soils, moisture, litter layers and understory composition to the donor forest. 

Major constraints on location selection included: i) staying as far back as possible from the section of 

forest expected to be removed as the quarry expands over the next few years (i.e. southern limit); ii) 

remaining as close as possible to the donor forest, both to ensure continuity and representation of the 

donor forest "type" within the S5 blocks and to minimize distance and obstacles to equipment during the 

bulk materials relocation (i.e. western limit); avoiding the transition from upland sugar maple forest 

(consistent with the donor forest) to more lowland area with more persistently-wet soils and 

shorter/younger canopy that trends away from sugar maple to include much more ash and silver maple 

(i.e. northern limit). Within the delimited "safe" area to consider establishing experimental LM 

translocation blocks, I started at an arbitrary point near NW corner and used random paces/headings table 

similarly to the approach used at S1 to select potential block centres, vetoing and reselecting as required 

(e.g. first block selected was too wet, so moved).” 

 

3. Summer vegetation sampling details 
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All sub-plot treatments in all plots in all sites in the experiment were sampled using two 2 x 0.5 m 

quadrats made of thick metal wire, following a similar sampling design to Tomlinson et al. (2008). The 2 

x 0.5 m quadrat was sub-divided by thin metal wire into 16 squares measuring 25 cm2 each. The 

frequency of occurance of each species was estimated from a presence/absence count in an imagined 12 

cm2 quarter of each of the 25 cm2 squares.  

Species were considered present if the plant was alive and any part of it was within the 12 cm2 

quarter-square when looking straight down at the square at chest height, even if the plant was rooted 

outside of it. This count provided a presence/absence number between 0 and 64 for each species in each 

frame. These numbers were then converted to proportional frequency ratio (0 to 1) relative to all other 

species for diversity measurements. While the method was used to approximate abundance, or percentage 

cover, of plants, it was still based on presence/absence of species in very small (12.5x12.5 cm) squares. 

For this reason, this study uses the term ‘proportional frequency’ throughout.  

Two quadrats were laid in each subplot-treatment in each plot in all areas, with one quadrat 

approximately 2.7 m from the plot edge and the other 2.7 m from the plot center (Figure 3). For the SS 

and DS treatments, the quadrat’s distance from the edge and center was adjusted so that the sampling 

frames were positioned under the actual treatments.  

For the fall follow-up sampling, if a plant was identified to species that had only been identified 

to genus or family, it was updated in the list from the mid-summer sampling, but relative cover of that 

plant species was not changed. If a genus had been recorded and it turned out it was more than one 

species, the frequency from summer was divided based on the relative frequency in the fall. 
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Appendix 3B: Tests, diagnostic plots and assumption testing 

This appendix is a PDF file of R code output of statistical tests, diagnostic plots and assumption testing 

for all analysis in Chapter 3.  

 

The file name of this PDF file is “Appendix 3B - Tests, diagnostic plots and assumption testing.pdf”. 

 

If you accessed this thesis from a source other than the University of Waterloo, you may not have access 

to this file. You may access it by searching for this thesis on https://uwspace.uwaterloo.ca/UWSpace. 

  

https://uwspace.uwaterloo.ca/
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Appendix 3C: Species list and observations 

This appendix is a spreadsheet containing species list and all sampling observations of plants referred to 

in Chapter 3.  

 

The spreadsheet data can be accessed through Dataverse at: https://doi.org/10.5683/SP2/M4RTY0 in the 

dataset titled “Spreadsheet appendices (3C and 4B) for L. Jonas Hamberg dissertation” 

 

  

https://doi.org/10.5683/SP2/M4RTY0
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Appendix 3D: Further comparisons of plant community 

composition 

 

1. Paired comparisons of plant community between plot-types and sites 

1.1. Spring pairwise PERMANOVA comparison between plot-types 

Table I: F-statistic, R-square and adjusted p-value for post-hoc PERMANOVA on the Jaccard beta diversity 

of pairs of sites and plot-types. P-values were adjusted using the Benjamini-Hochberg procedure. P-values are 

approximate as they depend on the random start and number of combinations used. 100000 permutations used 

for each pairwise comparison. No measures from sub-plots with additional treatments beyond receiving topsoil 

were used. RF Control – all passive and mow-and-spray controls in both reforestation sites; RF Topsoil 

recipient – all topsoil recipient plots in both reforestation sites; , Protected Forest – all passive and ‘lift-and-

drop’ plots in the protected forest site. 

Paired plot-types : F R2 p 
P-adjusted 

(BH) 

RF Control (all) : Protected Forest (all) 20.1 0.48 <0.001 <0.001 

RF Control (all) : RF Topsoil recipient (all) 12.2 0.36 <0.001 <0.001 

RF Control (all) : Gravel Pit - Topsoil recipient 9.6 0.36 <0.001 <0.001 

Protected Forest (all) : RF Topsoil recipient (all) 11.5 0.39 <0.001 <0.001 

Protected Forest (all) : Gravel Pit - Topsoil recipient 6.4 0.33 <0.001 <0.001 

RF Topsoil recipient (all) : Gravel Pit - Topsoil recipient 4.3 0.25 <0.001 <0.001 

      

 

1.2. Summer pairwise PERMANOVA comparison between plot types 

Table II: Pairwise comparison of topsoil recipient plots by sites tested against control sites in the same site 

and against the revelant donor forest site. Test performed through pairwise PERMANOVA on dissimlarity 

index, with p-values adjusted using the Benjamini-Hochberg procedure.  

Paired plot-types F R2 p p-adjusted 

RF 2015 -  Topsoil recipient: RF 2015 - Mow-and-spray 4.2 0.34 0.0080 0.0096 

RF 2015 -  Topsoil recipient: RF 2015 - Passive 4.5 0.36 0.0080 0.0096 

RF 2015 -  Topsoil recipient: N. Donor Forest - Passive 11.1 0.58 0.0081 0.0096 

RF 2016 -  Topsoil recipient: RF 2016 - Passive 4.8 0.37 0.0082 0.0096 

RF 2016 -  Topsoil recipient: N. Donor Forest - Passive 7.9 0.50 0.0082 0.0096 

Gravel Pit - Topsoil recipient: Gravel Pit - Passive Control 2.4 0.23 0.0244 0.0244 

Gravel Pit - Topsoil recipient: S. Donor Forest - Passive 3.0 0.27 0.0075 0.0096 

 

2. Comparisons of plant communities in sub-plot treatments 
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2.1. Spring NMDS and PERMANOVA for sub-plot treatments 

A separate NMDS was performed to test if there were any differences in Jaccard beta diversity for the 

sub-plot treatments within any of the topsoil recipient plots in the 2015 and 2016 reforestation sites 

combined, as well as the gravel pit site (Figure 5). There is no apparent visual grouping of sub-plot 

treatments within either the combined reforestation sites, or the gravel pit as per the NMDS in Figure 5, 

and separate PERMANOVA tests of sub-plot treatments found no significant difference within either the 

combined reforestation sites (F = 0.9 R2 = 0.07 p = 0.676) or the gravel pit site (F = 0.8 R2 = 0.12 p = 

0.821). Multivariate dispersion was similar in both the combined reforestation site (p = 0.554) and the 

gravel pit site (p =  0.931). In both tests multivariate dispersion was found to be similar with the ANOVA 

on dispersion for reforestation sites. 
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Figure I: NMDS using the Jaccard method of beta diversity of spring-sampled vegetation communities of sub-

plot treatments within topsoil recipient plots in the two reforestation sites combined (blue outline) and the 

gravel pit (red outline). RF – 2015 & 2016 Reforestation, GP – Gravel pit.  

2.2. Summer NMDS and PERMANOVA for sub-plot treatments 

An NMDS on summer plant community dissimilarity was performed on sub-plot treatments within 

topsoil recipient plots in both the reforestation sites grouped together, and in the gravel pit site (Figure 7). 

Shade-shelter plots (green diamonds in figure 7) within the gravel pit site also seem to be visually 

distinct, but when testing all sub-plots by treatment within the gravel pit site through a PERMANOVA, 

there was no significant difference (F = 0.9, R2 = 0.17, p = 0.474). There was also no significant 

difference among treatments of sub-plots in topsoil recipient plots in the reforestation site (F = 1.3, R2 = 
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0.10, p = 0.163). In both cases, multivariate dispersion was not significantly dissimilar between different 

sub-plot treatment groups. 

 

Figure II: NMDS of Bray-Curtis dissimilarity of plant communities of subplot treatments in topsoil recipient 

plots in the reforestation sites (grouped) and the gravel pit. The NMDS was calculated on relative frequency of 

species in the summer sampling. Axes represent rank-ordered (non-metric) dissimilarity of plant communities. 

Red and blue lines mark the ‘hulls’ or furthest distribution of sub-plots within the gravel pit and reforestation 

site respectively in the two non-metric dimensions.  
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Appendix 4A: Digital Elevation Model methods 

The Digital Elevation Model (DEM) data was acquired by Dr. Derek Robinson and Benjamin Meinen 

with assistance from L. Jonas Hamberg. The DEM were processed by Benjamin Meinen. It was not used 

for analysis, just background site information. 

 

The methods below were written by Benjamin Meinen: 

 

“A FLIR Systems R60 Skyranger UAV was used to collect optical imagery with the SR-3SHD payload. 

The payload captures 15 MP RGB 4608 x 3288 resolution images and has a 46-degree field-of-view. The 

UAV was flown at 90m above-ground-level and used parallel-axis flight lines with a 70% overlap to 

collect imagery. A ground control survey was done using 24 ground control points (GCPs) measured with 

Smartnet’s RTK-GNSS using a Leica Viva GS14 and Leica Viva CS15 field controller. UAV imagery 

and the ground control survey were processed in Pix4D to generate an optical mosaic and digital surface 

model.” 
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Appendix 4B: Flight time, temperature and vegetation data 

This appendix is a spreadsheet containing times and details of UAV flights undertaken in Chapter 4 as 

well as temperature measurements extracted and vegetation data used to compare with temperature in the 

same chapter. 

 

The spreadsheet data can be accessed through Dataverse at: https://doi.org/10.5683/SP2/M4RTY0 in the 

dataset titled “Spreadsheet appendices (3C and 4B) for L. Jonas Hamberg dissertation” 

 

  

https://doi.org/10.5683/SP2/M4RTY0
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Appendix 4C: Tests, diagnostic plots and assumption testing 

This appendix is a PDF file of R code output of statistical tests, diagnostic plots and assumption testing 

for all analysis in Chapter 4.  

 

The file name of this PDF file is “Appendix 4C - Tests, diagnostic plots and assumption testing.pdf”. 

 

If you accessed this thesis from a source other than the University of Waterloo, you may not have access 

to this file. You may access it by searching for this thesis on https://uwspace.uwaterloo.ca/UWSpace. 

 

 

https://uwspace.uwaterloo.ca/

