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Abstract

Multimode superconducting parametric cavity is a flexible platform that has been used to
study a variety of topics in microwave quantum optics ranging from parametric amplifi-
cation, entanglement generation to higher order spontaneous parametric downconversion
(SPDC). Leveraging the extensive toolbox of interactions available in this system, we can
look to explore exciting applications in quantum computation and simulation. In this the-
sis, we study the use of the parametric cavity to realize continuous variable (CV) quantum
computation.

We propose and examine in detail the scheme to compute with the microwave photons in
the orthogonal frequency modes of the cavity via successive application of parametric pump
pulses or cavity drives. The family of all Gaussian transformations can be accomplished
easily with interactions already demonstrated in this system. From recent results and
proposals involving higher order SPDC, there are also clear pathways towards realizing the
non-Gaussian resources necessary for universal computation. Common measurements on
the system are accomplished with standard measurement techniques on the output state
of the cavity and additional useful measurements may be implemented using available
parametric interactions or new device designs involving a qubit as a nonlinear probe.

Using the parametric cavity, we experimentally implemented a hybrid quantum-classical
machine learning algorithm called the Quantum Kitchen Sinks (QKS) as the first step to-
wards developing this platform for quantum computation. The algorithm is studied over
two sets of experiments starting from partial experimental implementation of the quantum
variational circuits to fully experimental implementation using multiple simultaneous con-
tinuous wave (CW) pumps. In both cases, we find that the quantum part of the algorithm
implemented in the parametric cavity improved the classification accuracy on a difficult
synthetic data set up to 90.1% and 99.5% respectively when compared to a classical linear
machine learning algorithm.
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Chapter 1

Introduction

The past few decades have been exciting for the field of quantum computation with the
discovery of algorithms that promise significant speed-up and the development of many
quantum computation platforms based on different physical systems. However, in order
to achieve a practical and fault-tolerant quantum computer, many challenges still need to
be addressed. Of the various systems actively studied in quantum computing, supercon-
ducting quantum circuit has become a well-established and leading platform for research in
quantum computation due to its flexibility and potential for scaling. Many research groups
and industry partners are tackling the challenges to implement a quantum computer using
superconducting quantum circuits as the main platform.

The first step in implementing a quantum computation platform involves encoding
quantum information in the properties of a chosen physical system. For example, in op-
tical quantum computing, the information may be encoded in a discrete variable (DV)
fashion using a photon’s discrete spatial modes, such as its polarization or optical path
[1]. A value of 1 or 0 may be represented by polarizing the photon in either the horizon-
tal or vertical direction. Alternatively, the information can also be encoded in so-called
continuous variable (CV) states, such as the electric field amplitude and phase [2]. These
encoding schemes have their advantages and disadvantages, but they can all achieve uni-
versal quantum computation given an appropriate source of nonclassical light [3, 4].

In the realm of superconducting quantum computers, the dominant paradigm for quan-
tum information encoding is to use the discrete energy levels of transmon qubits. Nonethe-
less, there are some efforts to consider CV systems in superconducting systems. For ex-
ample, the “cat code” technique uses interaction between qubits and oscillator to encode
quantum information in a type of CV state, a “cat” state, that can implement hardware-
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efficient quantum error correction [5]. More recently with the advancements in quantum
control of an oscillator, many more CV qubit encoding schemes have been realized exper-
imentally, such as, the binomial code [6] and the Gottesman-Kitaev-Preskill code [7].

The majority of investigation in superconducting devices on quantum computation us-
ing CV states involves encoding logical qubits in these systems. Alternatively, instead of
encoding a qubit, one can also consider quantum computation over continuous variables
directly with the so-called qumodes. Traditionally more frequently explored in the optical
domain, such schemes often involve linear optical elements acting on bosonic modes along
with some non-Gaussian resources such as the single photon state or photon number reso-
lution measurement. The superconducting parametric cavity offers an exciting opportunity
to implement computation over continuous variables in the superconducting domain due
to the rich toolbox of available interactions. Many transformations equivalent to linear op-
tical elements as well as some novel non-Gaussian resources that cannot yet be achieved in
the optical domain can be readily realized in this device. The superconducting parametric
cavity is essentially like a single-chip optical table for microwave photons that comes with
new components which opens up exciting new opportunities.

1.1 Overview

The goal of my research detailed in this thesis is to investigate and develop supercon-
ducting parametric cavities as an alternative computation platform based on CV states
of microwave photons in cavities. Building upon recent work on two and three photon
parametric interactions from colleagues in the Engineered Quantum Systems Laboratory
(EQSL), we seek to characterize and harness these interactions along with other interac-
tions to realize a complete framework for CV quantum computation. In parallel with the
development of this computation platform, we also work towards the implementation of
some simple quantum algorithms to demonstrate the capability of this platform for use
in quantum computation. This thesis presents the first steps in our efforts towards these
goals.

In chapter 2, we start by introducing the superconducting parametric cavity device
explored in this thesis. The basic superconducting circuit building blocks are introduced
along with a discussion of how parametric interactions are realized in this device. Addi-
tionally, important design details that enable us to use this device for computation are
examined as well.

In chatper 3, we propose a scheme to realize CV quantum computation in this device.
We then cover the realization and some initial characterization of various CV gates and
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resource states in this device. We also discuss the requirement for universality as well as
pathways to achieve it. Since measurement is another crucial part of quantum computation,
the focus then moves to the discussion of the measurement channels and measurement
schemes we can implement for this device. In addition, we also introduce some proposals
to improve the measurement schemes using features of the device. Finally, we discuss other
measurements that may be enabled by some design modifications and briefly introduce a
new device design currently in the works.

In chapter 4, we detail the experimental implementation of the Quantum Kitchen Sinks
(QKS) algorithm in our effort towards demonstrating the capability of the parametric
cavity as a quantum computation device. We first discuss various components of the
experiments from the classical part of algorithm to the specific implementation of the
quantum part as well as the experimental setup. We then carry out two sets of experiments
to demonstrate the algorithm and benchmark its performance.
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Chapter 2

Superconducting Parametric Cavity

The device explored in this thesis is a superconducting parametric cavity consisting of an
aluminum thin film coplanar waveguide (CPW) microwave resonator capacitively coupled
to an open transmission line at one end and terminated by a flux-pumped SQUID at the
other end. This chapter introduces the constituent elements of the device, principles behind
flux-pumped parametric interactions, and finally notable design considerations that enable
us to explore quantum computation with this device.

2.1 Josephson Junctions

Found in many applications from magnetometers to classical computation with single flux
quantum logic and quantum computation with artificial atoms, Josephson junction is a
simple device that is at the heart of superconducting circuits.
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Figure 2.1: Josephson Junction. (a) Schematic symbol of a Josephson junctions. (b) Two
pieces of superconducting Al thin films are separated by a thin insulating barrier made
of Aluminum oxide. Cooper pairs can tunnel through the barrier as supercurrent which
relates to the phase difference ϕ between the two superconductors. (c) An SEM image of a
Josephson junction where the critical current Ic is lithographically defined by the overlap
area of the Al layers.

Josephson junction consists of two pieces of superconductors coupled by a weak link
such as a thin insulating barrier (see Fig. 2.1). For low temperature superconductors
described by the BCS theory, such as Al, an effective attractive interaction between elec-
trons of opposite spin mediated by phonons results in the formation of pairs of electrons
called Cooper pairs in the material’s superconducting phase [8]. The Cooper pairs form a
condensate which can be described with a macroscopic wavefunction of the form

Ψ(~r, t) =
√
n(~r, t)eiθ(~r,t) (2.1)

where n(~r, t) is density of Cooper-pairs and θ(~r, t) is phase.

When two pieces of superconducting metal are separated by a thin insulating barrier,
the wavefunctions have decaying but non-zero magnitude across the barrier resulting in
non-zero probability for Cooper pairs to tunnel across the junction. The supercurrent
across the Josephson junction that arises as a result of this is described by the two Joseph-
son relations [9]

I = Ic sin(ϕ) (2.2)

V =

(
~
2e

)
∂ϕ

∂t
=

(
Φo

2π

)
∂ϕ

∂t
(2.3)
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where Ic is critical current of the junction and Φo = h/2e is the flux quantum and ϕ = θ1−θ2

is the difference in phase of the two macroscopic wavefunction describing the Cooper-pair
condensates in each piece of superconductor.

From the Josephson relations, one can consider the I-V characteristic of this device to
see that it behaves like a nonlinear inductance

V =

(
Φo

2πIc cosϕ

)
∂I

∂t
= LJ(ϕ)

∂I

∂t
(2.4)

where the inductance LJ(ϕ) depends nonlinearly on the phase difference across the junc-
tion. The energy stored in this device is

U(ϕ) =

∫
IV dt = −EJ cosϕ (2.5)

where Josephson energy EJ = U(0) =
ΦoIc
2π

is a characteristic of the device based on

design and fabrication. The nonlinearity of Josephson junctions coupled with negligible
dissipation makes it a vital component in creating artificial atoms for quantum information
processing and engineering interactions between microwave photons.

2.2 DC SQUID

A key element in superconducting parametric cavity is the DC superconducting quantum
interference device (SQUID). It is a device formed by two Josephson junctions connected
in a loop. See Fig. 2.2. The device couples the magnetic flux threaded through the loop
to phase difference across the Josephson junctions. The SQUID acts effectively as a flux-
tunable nonlinear inductive element which has applications in creating frequency tunable
devices as well as realizing parametric interactions by fast flux modulation.
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Figure 2.2: DC SQUID. (a) Circuit diagram of DC SQUID. (b) Optical microscope image
of a SQUID with junctions of different EJ .

In the presence of a magnetic field and where current density ~J = 0, the gradient of
the macroscopic wavefunction phase can be related to the magnetic vector potential ~A as

∇θ =
2π

Φo

~A [8]. Consider a loop Γ deep within the superconductor such that ~J = 0 along

the path, we can find the loop integral of phase gradient to be∮
Γ

∇θ · d~l =
2π

Φo

∮
Γ

~A · d~l + ϕ1 − ϕ2 = 2π
Φext

Φo

+ ϕ1 − ϕ2 (2.6)

where ϕ1 and ϕ2 are the phases across the two Josephson junctions. The loop integral of
vector potential is also related to the magnetic flux threaded through the loop. Similar
to fluxoid quantization argument, we require that the loop integral of phase gradient be
integer multiple of 2π for the phase of the macroscopic wavefunction to be single-valued.
As such, we find that

2π
Φext

Φo

+ ϕ1 − ϕ2 = 2πn , n ∈ Z (2.7)

In the regime where n = 0, this connects the external flux threading the SQUID to the
phase difference between the two Josephson junctions as

ϕ2 − ϕ1 = 2π
Φext

Φo

(2.8)

Now, by charge conservation or Kirchoff’s current law, the total current passing through
the SQUID Isq can be written in terms of phases of individual junctions as

Isq = I1 + I2 = Ic1 sin(ϕ1) + Ic2 sin(ϕ2) (2.9)
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For simplicity, let us first consider symmetrical SQUID with the same junction on either
side of the loop such that Ic1 = Ic2 = Ic, then the SQUID current can be expressed as

Isq = 2Ic cos

(
ϕ2 − ϕ1

2

)
sin

(
ϕ2 + ϕ1

2

)
= 2Ic cos

(
π

Φext

Φo

)
sin(ϕsq) (2.10)

where the phase across the SQUID is defined to be ϕsq =
ϕ1 + ϕ2

2
.

Comparing Eq. (2.10) to Eq. (2.2), the SQUID essentially resembles JJ with critical
current that is tunable via externally applied flux where the flux-tunable critical current is

Ic,sq(Φext) = 2Ic cos

(
π

Φext

Φo

)
(2.11)

The effective inductance of the SQUID can similarly be derived to be

Lsq(ϕsq,Φext) =
Φo

2πIc,sq(Φext) cosϕsq
=

1

2

(
φo

2πIc

) 1∣∣∣cos
(
πΦext

Φo

)∣∣∣ cos(ϕsq)

 . (2.12)

2.3 Multimode Tunable Cavity

The other main element in this device are microwave resonators which can be tuned and
modulated by external flux. Microwave resonators can be realized in many ways such as
with lumped element inductor and capacitor or as a cavity where a microwave waveguide
is terminated by reflective boundary conditions. Here we consider a 1D microwave cavity
composed of coplanar waveguide (CPW) terminated at one end with a low impedance
element shunting the centre conductor to ground. The other end of the waveguide is
connected to an output transmission line via a capacitor acting as a semi-reflective mirror.
This is commonly known as the λ/4 transmission line resonator where the length of the
transmission line is a quarter of the fundamental mode wavelength.
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Figure 2.3: Tunable λ/4 cavity. (a) A tunable CPW transmission line resonator where
the length of the transmission line is a quarter of the fundamental mode wavelength.
The resonator is coupled externally via capacitor Cg and terminated by a small tunable
inductance Lsq from the SQUID. (b) The tunable inductive boundary condition can be
equivalently seen as an additional tunable electrical length before a short circuit.

First let us consider the resonant frequencies of a regular capacitively coupled λ/4
transmission line cavity. Here we consider a circuit similar to one shown in Fig. 2.3 (a)
but with the SQUID side directly shorted to ground. A transmission line is characterized
by its characteristic impedance Zo and complex propagation constant γ = α + jβ where
α is the per unit length attenuation constant and β = 2π/λ = ω

√
εeff/c is the phase

change per unit length. εeff is the effective dielectric constant for the propagating mode
of the transmission line. The input impedance Zin of the resonator can by found by the
impedance of series connected capacitor summed with the impedance transformation of the
short circuit boundary condition ZL = 0 across transmission line of length l. For simplicity,
we consider lossless case where α = 0.

Zin(ω) =
1

jωCg
+ Zo

ZL + Zo tanh γl

Zo + ZL tanh γl
= j

(
− 1

ωCg
+ Zo tan βl

)
(2.13)

Resonance occurs when the input impedance is purely real [10]. We can therefore find the
resonance frequency by solving the following transcendental equation.

Im(Zin(ω)) = − 1

ωCg
+ Zo tan βl = 0 (2.14)

In the limit of small external coupling Cg → 0 or the case of unloaded resonator, resonances
occur when βl = π(1/2 +m). The resonance frequency of mth mode is

fm = f0(1 + 2m) (2.15)

f0 =
c

4
√
εeff l

(2.16)
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where m ∈ N and f0 is the fundamental mode frequency. In short, the λ/4 resonator
supports multiple resonant modes that are all roughly separated by 2f0 in frequency. The
mode frequencies in practice are never perfectly evenly spaced due to various frequency
dependent effects ranging from impedance of output coupling element to load impedance.

To make this cavity tunable, instead of shorting one end of the waveguide to ground,
it is instead shunted by a SQUID which can be considered a flux-tunable inductance. See
Fig. 2.3 (a). One can follow the same procedure as in Eq. (2.13) with the appropriate ZL
of the SQUID to determine the input impedance and thus the resonant frequency of the
SQUID terminated λ/4 resonator. To more effectively illustrate the effect of the SQUID
on resonance frequencies, first consider the impedance of a symmetric SQUID modelled as
a tunable inductor. We assume small ϕsq here to linearize the nonlinear inductance.

Zsq(Φext) = jωLsq(Φext) = jω
Lsq,min∣∣∣cos
(
πΦext

Φo

)∣∣∣ (2.17)

where Lsq,min =
Φo

4πIc
is the minimum SQUID inductance at Φext = 0. As we sweep the

external flux from 0 to Φo/2, the inductance and therefore the reactance increases from
a minimum to infinity or equivalently an open circuit. For an incident wave V + on the
SQUID, the reflected wave V − always has equal magnitude but acquires a phase shift φ
dependent on the value of the inductance that ranges from close to π in the case of small
minimum inductance to 0 in the case of maximum inductance or equivalently open circuit.
This is to say that the the reflection coefficient is

Γsq(Φext) =
V −

V +
=
Zsq(Φext)− Zo
Zsq(Φext) + Zo

= ejφ(Φext) (2.18)

As illustrated in Fig. 2.3 (b), this acquired phase shift in the reflection from tuning the
SQUID with flux is equivalent to moving a short circuit boundary condition closer or
further away – effectively shortening or lengthening the cavity.

Finally, we need to consider the coupling of the cavity through the capacitor to an
external load such as the measurement chain. While for most of the analysis so far we
have assume the cavity to be lossless, in practice there are still various loss mechanisms
in the resonator including substrate dielectric losses, losses at interfaces and surfaces, and
coupling to stray two-level systems [11]. The internal losses of the resonator is captured in
the internal quality factor Qi which is typically above ≈ 50, 000 for our SQUID terminated
λ/4 cavity. The coupling of excitation in the cavity to the external load through the
coupling capacitor Cg defines the external quality factor Qe. The external quality factor
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can be numerically derived from the input reflection coefficient which is found in a similar
way as Eq. (2.13) where we transform effect of the load down the transmission line. The
device is designed to be overcoupled to the external load such that Qe < Qi. In this case,
the external coupling is the dominant loss channel so most of the photons in the cavity
are lost to the measurement chain instead of through other loss mechanisms that do not
contribute to the measurement process.

2.4 Parametric Interactions

In section 2.3, the ability to tune the resonant frequencies of cavity modes through external
magnetic flux threading the SQUID is introduced. In typical operation, the resonant
frequencies are tuned to certain set points with static magnetic field generated by a DC
coil attached to the sample holder. In addition to the DC magnetic flux, there is also an
on-chip fast-flux line that allows us to introduce fast-oscillating flux to the SQUID which
drives the parametric processes.

Following the derivations in [12, 13, 14], we can show how the parametric interactions
between modes are realized in a SQUID-terminated cavity. Ignoring parasitic capacitance
of the Josephson junctions, the Hamiltonian of a symmetric SQUID consisting of junctions
with Josephson energy EJ is

Ĥsq = 2EJ

∣∣∣∣∣cos

(
π

Φ̂ext

Φo

)∣∣∣∣∣ cos

(
2π

Φ̂c

Φo

)
(2.19)

Here we used a change of variable from the phase across the SQUID ϕsq to the node flux
Φc. The node flux variable commonly used in cQED is defined in relation to the voltage at
a node as Φ =

∫ t
t0
dτV (τ). From the second Josephson equation in Eq. (2.3), the node flux

across Josephson junction at one end of the cavity is related to phase across the junction
as ϕ = 2πΦ/Φo.

The node flux at some point along the cavity is related to the normal mode flux Φk

and spatial profile uk of the cavity modes as Φ(x, t) =
∑∞

k=0 uk(x)Φk(t). In the quantum
treatment of transmission line cavity resonances, the cavity modes are quantized and the
flux of each mode Φ̂k is proportional to the bosonic annhilation âk and creation â†k operators

of the mode Φ̂k ∝ âk + â†k [11]. The node flux across the SQUID Φ̂c is thus some linear
combination of all the cavity modes creation and annihilation operators. Now we also
consider both static and fast-oscillating parts of the externally threaded flux as Φ̂ext =
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ΦDC + Φ̂p where ΦDC is the static flux bias from the DC coil and Φ̂p is the pump signal
injected through the fast flux line.

Expanding cosines in Eq. (2.19) to first order of Φ̂p around ΦDC and to second order of

Φ̂C , the approximate Hamiltonian ignoring some constant factors for purpose of illustration
shown below

Ĥsq ≈ ~go
(
âp + â†p

)( ∞∑
k=0

âk + â†k

)2

(2.20)

The cosine nonlinearity involving the cavity flux Φ̂c gives rise to quadratic cross terms
between the creation and annihilation operators of the cavity modes. Due to the even
nature of the cosine function, we only have even power terms in the expansion. Now, the
Hamiltonian of the system considering the energy of the cavity modes and pump field in
addition to the small modulation of SQUID energy is

Ĥ = Ĥo + Ĥsq

= ~ωpâ†pâp +
∞∑
k=0

~ωkâ†kâk + Ĥsq (2.21)

Moving to the interaction picture with the unitary transformation Ûo = e
i
~ Ĥot, the inter-

action Hamiltonian is

Ĥint = i~ ˙̂
UoÛ

†
o + ÛoĤÛ

†
o = ÛoĤsqÛ

†
o

= ~go
(
âpe
−iωpt + â†pe

iωpt
)( ∞∑

k=0

âke
−iωkt + â†ke

iωkt

)2

(2.22)

where the annihilation and creation operators acquire a time dependency in phase âk →
âke
−iωkt. Since the pump tone is a strong coherent tone, we can apply the parametric

approximation âp → |αp|e−iθp where the operator is replaced with the classical amplitude
|αp| and phase θp. In the interaction picture, different cross terms has different frequency
dependencies. We can selectively activate the interactions of interest by setting the pump
frequency resonant to the terms of interest. For instance, if we would like to activate
coherent coupling between two modes, we set the pump frequency to be the difference fre-
quency between the two modes ωp = |ω2 − ω1|. Looking only at two modes, the interaction
Hamiltonian is

Ĥint = ~go|αp|
(
eiθp â†1â2 + e−iθp â†2â1

)
+ Ĥrot(t) (2.23)
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where we have a static term and other fast oscillating terms in Ĥrot. With rotating wave
approximation, we can ignore the effect of the fast oscillating terms as the effects would
quickly average out, leaving us with the desired coherent coupling interaction

ĤCC = ~go|αp|
(
eiθp â†1â2 + e−iθp â†2â1

)
. (2.24)

Notice here that the pump amplitude and phase gives us control over the interaction
strength g = go|αp| as well as the well defined phase θp of the interaction. This ability to
create coherent coupling between arbitrary modes of the system with well defined phase
proves to be particularly useful in our other work on quantum simulation of lattice models
under magnetic field [15].

The example so far illustrates how quadratic interactions in this system are achieved
with parametric pumping of a symmetric SQUID. From Eq. (2.19), it is evident that the
expansion of the cavity flux Φ̂c only has even order terms as cosine is an even function. To
achieve cubic interactions such as three-photon spontaneous parametric down conversion
(SPDC), there needs to be some odd order expansion involving the cavity flux. This is
achieved through making the SQUID junctions asymmetric where EJ1 6= EJ2. See Fig. 2.2
(b). From [14], the Hamiltonian of an asymmetric SQUID is

Ĥsq = EJ(Φ̂ext) cos

(
2π

Φ̂c

Φo

− α(Φ̂ext)

)
(2.25)

EJ(Φ̂ext) =

√√√√E2
J,1 + E2

J,2 + 2EJ,1EJ,2 cos

(
2π

Φ̂ext

Φo

)
(2.26)

α(Φ̂ext) = arctan

[
tan

(
π

Φ̂ext

Φo

)
EJ,1 − EJ,2
EJ,1 + EJ,2

]
(2.27)

where we still have an external flux tunable EJ of the SQUID as well as a external flux
dependent bias α in the cavity flux cosine term. α comes from the asymmetry between
the SQUID junctions as shown in Eq. (2.27) and gives the desired odd order terms in
expansion of the cavity flux term. With similar resonant selection by the choice of pump
frequency, we can parametrically activate interactions of interest such as three photon
SPDC ~g(â†1â

†
2â
†
3 + â1â2â3) or the 1-to-2 photon conversion ~g(â†1â2â2 + â1â

†
2â
†
2).
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2.5 Device

(c)

(b)

(a)

(a)

(b,c)

1 mm

Figure 2.4: CAD drawing of the parametric cavity designed by Sandbo Chang. (a) Trans-
mission line characteristic impedance is modulated along the cavity by altering the width
of the centre conductor. This impedance modulation give rise to non-degenerate frequency
spacings. (b) SQUID is composed of asymmetric junctions which gives us access to third
order interactions between cavity modes. (c) Ground current of the pump line directly
couples to the SQUID through kinetic inductance from a thin meandering structure.

The device used to conduct the experiments in this thesis was designed and fabricated by
Chung Wai Sandbo Chang [12](see Fig. 2.4). Originally designed as a source for generating
propagating quantum states of microwave, Chang achieved the generation of multimode en-
tangled microwaves [13], the application of entangled microwaves for quantum illumination
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[16], and the first observation of direct three-photon SPDC [14]. These experiments and the
engineering of the device by Chang paved the way for further applications of this device in
the context of a quantum information processing device rather than a quantum microwave
source. The flexible and controllable parametric interactions enabled by Chang’s design
allows us to explore this device as a programmable analog quantum simulator and as a
continuous variable quantum computer in the case of this thesis.

The λ/4 coplanar waveguide resonator is patterned on an electron-beam evaporated
Al thin film on intrisic Si substrate using standard electron-beam and optical lithography
techniques. The cavity is overcoupled to an output 50 Ω transmission line via an ap-
proximately 16 fF gap capacitor which gives a measured Q of around 7000 for the 4 GHz
mode. The cavity length is chosen to be long enough such that the fundamental mode is
at approximately 1 GHz which gives us access to around 4 or 5 modes within our typical
measurement bandwidth of 4 to 12 GHz.

For the most part this device resembles a typical SQUID terminated λ/4 resonator, but
there are three key design details that enable us to use this device for computation. The first
being the engineering of cavity mode frequencies in a way such that the frequency spacings
are non-degenerate. This means that interactions that would typically be activated by
parametric pumps of the same frequency, such as coherent coupling between successive
modes, can now be individually addressed with different pump frequencies. This is achieved
through impedance modulation of the λ/4 line where Chang split the transmission line into
12 sections of different characteristic impedance and joins the sections with short CPW
tapers (see Fig. 2.4 (a)). The second design detail is the SQUID asymmetry which gives us
access to three-photon parametric interactions as introduced in section 2.4. This device has
an asymmetry of 1:1.7 defined by a difference in junction overlap width (see Fig. 2.4 (b)).

Finally, the coupling of pump signal to SQUID is enhanced by the use of kinetic induc-
tance in the ground path of the pump line in order to efficiently achieve stronger third order
interaction strengths. One way to improve the pump coupling would be to increase the
area of the SQUID loop thereby increasing flux threading the loop. However, this comes
with the disadvantage of stronger coupling to flux noise from the environment which is
detrimental to the coherence of the system. In this design, an additional kinetic induc-
tance arising from kinetic energy of Cooper pairs in a thin superconductor is placed in the
SQUID loop along the path travelled by the ground current of the pump line (see Fig. 2.4
(c)). This directly couples the pump signal into the loop integral of the condensate phase
gradient and thus improves pump coupling by roughly 30 dB in comparison to designs
without the kinetic inductance [14].
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Chapter 3

CV Quantum Computation in
Parametric Cavity

The multimode parametric cavity device described in Chapter 2 turns out to be a flexible
platform to explore microwave quantum optics due to the scalability in the number of
bosonic modes and the wide variety of interactions between these modes achievable via
parametric modulation of the SQUID. Continuous variable (CV) quantum computation is
natural to explore on this bosonic platform as many of the common transformations in
CV protocols such as squeezing (â†1â

†
2 + â2â1) and beamsplitter (â†1â2 + â†2â1) interactions

are straightforward to implement. Some higher order non-Gaussian interactions not yet
demonstrated in other physical systems, such as direct 3-photon SPDC, present further
exciting possibilities to achieve important CV resources like the cubic phase state. In
this chapter, we introduce our proposal to use the multimode parametric cavity as a CV
quantum computation platform.

3.1 Short Introduction to CV Quantum Computation

A CV quantum system is one that has an infinite-dimensional Hilbert space with observ-
ables or quantum operators that can be continuous in nature, such as the position and
momentum of an oscillator. A basic type of CV system is the harmonic oscillator that
describes many common physical systems including the resonant modes of electromagnetic
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field in the parametric cavity. The hamiltonian of a single harmonic oscillator is

Ĥ = ~ω
(
â†â +

1

2

)
(3.1)

In place of the Pauli operators (σ̂x,σ̂y,σ̂z) which describe a qubit, the relevant operators for
the quantum harmonic oscillator are the bosonic mode annihilation and creation operators
(â,â†) and the quadrature field operators describing the position and momentum (q̂, p̂).
Taking the convention of setting ~ = 1, these unitless quadrature operators relate to the
bosonic mode operators as

q̂ = (â + â†)/
√

2 (3.2)

p̂ = −i(â − â†)/
√

2.

In the parametric cavity, the unitless quadrature operators relate by some scaling factors to
the pairs of physical continuous observables such as the voltage and current or the charge
and flux of the resonant modes.

Much like the case of computation with qubits where one performs single and multi
qubit transformations to manipulate the information encoded in a collection of N qubits,
quantum information in the CV paradigm is encoded in a collection of N harmonic oscilla-
tors where each harmonic oscillator is called a qumode. Similarly, single and multi qumode
transformations are performed to manipulate the quantum state. The system is described
by a collection of bosonic mode operators {âi, â†i}Ni=0 and quadrature operators {q̂i, p̂i}Ni=0

satisfying the commutation relationships[
âi, â

†
j

]
= δij (3.3)[

q̂i, p̂j

]
= iδij.

The Bloch sphere is a useful visualization of a qubit where any state of a qubit lies in
or on the Bloch sphere as a point. In a CV system, the Wigner function is one of the many
ways to represent the state of a qumode. The Wigner function W (q, p) is a quasiprobability
distribution in the phase space (quadrature space) that fully represent any pure and mixed
state of a qumode. The Wigner function of a density matrix ρ̂ is defined as

W (q, p) =
1

4π2

∫∫
Tr
[
ρ̂e−iuq̂−ivp̂

]
eiuq̂+ivp̂dudv (3.4)
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3.1.1 Gaussian states and gates

Gaussian states are a class of quantum states in CV that by definition has Wigner functions
that are Gaussian and is therefore completely characterized by the first two moments of
the quadrature operators [17]. Gaussian states and their manipulation are of particular
interests as many common states falls in this category including vacuum, coherent, squeezed
and thermal states. Gaussian gates are unitary transformations that transform Gaussian
states to Gaussian states and are generated by Hamiltonians that are up to quadratic
order in the bosonic mode operators [2]. Transformations in this class includes one and
two mode squeezing as well as those achieved by linear optical elements such as phase
rotation, displacement and beamsplitting.

Gaussian states and gates are central to many CV computation protocols and are
generally the most commonly available elements in many physical systems. However,
Gaussian states and gates alone are insufficient for classically intractable computation. A
purely Gaussian process can be efficiently simulated on a classical computer much like the
case of qubit based computation with only gates from the Clifford group [18].

3.1.2 Universality

In the case of discrete variable systems, a quantum computer is universal if it is capable
of approximating any unitary to arbitrary accuracy [19]. While one can encode a logical
qubit into a CV system and compute over a discrete variable space, here we consider a
system to compute directly over the infinite Hilbert space to implement algorithms such as
CV versions of the Grover search [20] and Deutch-Jozsa algorithm [21]. In considering an
infinite Hilbert space, the definition of universality needs to be more constrained. Lloyd and
Braunstein defines universality in a CV quantum computer as the ability to approximate
any transformation that is polynomial in the bosonic mode operators to arbitrary precision
in finite steps [4].

As mentioned earlier, a purely Gaussian process can only achieve Gaussian states. In
order to achieve universality, some non-Gaussian states or transformations are necessary
and are therefore considered a resource in the system. To promote a purely Gaussian
system to universality, it suffices to have a non-Gaussian resource that is of cubic order or
higher [4]. A non-Gaussian resource state of particular interest is the cubic phase state |γ〉
generated by the action of cubic phase gate V (γ) on an ideally infinitely squeezed vacuum
state such as the zero momentum eigenstate |0〉p

|γ〉 = V (γ) |0〉p = eiγq̂
3 |0〉p (3.5)
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where γ is the cubicity. While there are many proposals to generate the cubic phase state
via nonlinearities such as photon subtraction, photon number measurements or higher
order parametric downconversion, there has been no experimental demonstration of the
cubic phase state so far.

3.1.3 CV Computation Protocols

Since the first proposal of CV quantum computation by Lloyd and Braunstein using Gaus-
sian transformations along with a non-Gaussian resource [4], there are many more proposals
of computations both universal and not universal in the realm of CV. One computation
protocol is the one-way quantum computation (1WQC) with CV cluster states. Also known
as measurement-based quantum computation, 1WQC is different from the typical circuit
model of quantum computing in the sense that the complexity of computation is moved
from the successive gates that prepare and evolve the quantum states to a highly entangled
initial state and a sequence of adaptive local measurements. The CV version of 1WQC
uses multimode squeeze state or the so-called Gaussian cluster state as a resource along
with homodyne measurements to achieve arbitrary Gaussian transformation [22]. With an
addition of a single non-Gaussian resource state or measurement, the 1WQC with Gaussian
cluster state can be universal as well.

Another well known protocol is Gaussian Boson sampling (GBS) which is an adaptation
of Boson sampling protocol to use squeezed states as the resource instead of single photon
Fock states [23]. GBS consists of interfering the input squeezed and vacuum states with
a network of beamsplitters and rotation gates before sampling the output in the Fock
basis. While GBS is not universal in terms of computation, it finds application in solving
many relevant hard and possibly classically intractable problems including simulation of
molecular vibronic spectra [24] and various graph problems [25, 26, 27].

More recently, with the development of the field of quantum machine learning, there
has also been various proposals for quantum machine learning algorithms that can be im-
plemented on CV systems. Some relevant proposals include CV quantum neural networks
[28], Gaussian quantum reservoir computing [29], and various quantum-classical hybrid
algorithms like machine learning with quantum kernels [30] and Quantum Kitchen Sinks
[31]. The hybrid algorithms are of particular interest as they seek quantum enhance-
ment by leveraging the limited quantum processing capability of currently available noisy,
intermediate-scale quantum (NISQ) computers with the help of classical computation.
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3.2 Quantum Computation with the Multimode Para-

metric Cavity

In the following sections, we introduce our proposal to use the multimode parametric
cavity as a CV quantum computer starting with the overview of the computation scheme
followed more detailed descriptions of various aspects such as gates and measurements in
this system.

Time

Fr
eq
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nc

y

Single Mode 
Squeezing

Two Mode 
Squeezing

Beam 
Splitter

Figure 3.1: CV quantum computation on parametric cavity. Orthogonal frequency modes
of the multimode cavity are the qumodes of the system and gates are implemented as
successive parametric pump pulses or drive on the cavity.

Figure 3.1 illustrates the process to compute with the multimode parametric cavity. The
orthogonal frequency modes of the cavity are the basis or qumodes in the CV quantum
computer. In the cryogenic environment, the intial states of the qumodes are vacuum states
or thermal states with low average photon number. Transformations on the qumodes are
achieved either by successive application of parametric pump pulses to the SQUID to
activate the desired interactions or by driving the cavity through the coupling capacitor.
In the current parametric cavity design, the qumodes are finally measured by coupling
the cavity state to an output tranismission line via the coupling capacitor then measuring
the output propagating state appropriately. With some modifications to the design, we
can also envision expanding the measurement capability by methods such as parametric
coupling to low Q modes for faster readout or dispersively coupling a transmon qubit to
the cavity as a nonlinear probe which enables parity and photon number measurement of
the cavity state.

The flexibility of parametric interactions in this cavity presents advantages like in-line
squeezing as well as exciting opportunities such as the efficient generation of multimode
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entanglement by simultaneous parametric pumping and the generation of the cubic phase
state from trisqueezed state. While the asymmetric SQUID is the centrepiece to this system
and presents many opportunities, the undesirable nonlinearity introduced by the SQUID
even in the absence of parametric pumps may very well be a limiting factor of this system.

3.3 Gates

As mentioned in section 3.1.2, to achieve universality, it suffices to have the capability to
generate all Gaussian transformations as well as a single non-Gaussian transformation of
polynomial degree 3 or higher in the quadrature operator.

3.3.1 Gaussian Gates

Any Gaussian gate can be decomposed into a combination of displacement D(α), rota-
tion R(φ), squeezing S(r) and any two-mode transformations [2]. Here we outline the
implementation of this set of gates in the parametric cavity.

(c)(b)(a)

Figure 3.2: Action of common Gaussian transformations. Wigner function of (a) displace-
ment acting on vacuum to create coherent state (b) squeezing of vacuum state, and (c)
rotation of coherent state.

Displacement

The displacement transformation D(α) is defined as the unitary transformation

D(α) = eαâ
†−α∗â (3.6)
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where α ∈ C. In the Heisenberg picture, the unitary acts on the quadrature operators as(
x̂′

p̂′

)
=

(
D†(α)x̂D(α)
D†(α)p̂D(α)

)
=

(
x̂+ Re(α)√

2

p̂+ Im(α)√
2

)
(3.7)

In other words, D(α) displaces the state in phase space by α, see Fig. 3.2 (a). The
displacement gate on any mode is achieved by resonantly driving a mode with microwave
signal through the coupling capacitor. The resonant drive can be described by adding an
additional term to the Hamiltonian in the rotating frame of the drive as

Ĥd

~
= ε(t)â† + ε∗(t)â (3.8)

where ε(t) is the time dependent drive and α =
∫ t

0
ε(t′)dt′.

Rotation

The rotation transformation R(φ) is defined as the unitary transformation

R(φ) = eiφâ
†â (3.9)

where φ ∈ [0, 2π]. The rotation gate acts to rotate a state in phase space by φ about the
origin, see Fig. 3.2 (c).(

x̂′

p̂′

)
=

(
R†(φ)x̂R(φ)
R†(φ)p̂R(φ)

)
=

(
cosφ − sinφ
sinφ cosφ

)(
x̂
p̂

)
(3.10)

R(φ) can be implemented by using a DC pulse in the fast flux line to detune the frequency
of a mode briefly in order to accumulate excess phase or it could be simply implemented
by changing the rotating frame. Alternatively, one can also make use of the beamsplitter
operation and an ancilla qumode to achieve the desired single mode rotation.

BS(π/4, φ)BS(π/4, 0) = −R(φ)⊗R(−φ) (3.11)

Squeezing

Single mode squeezing S(ξ) is defined as

S(ξ) = e(ξ∗â2−ξâ†2)/2 (3.12)
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where ξ ∈ C. Setting ξ = r where r ∈ R for purpose of illustration, we can see the
squeezing gate acts on the quadrature operator as(

x̂′

p̂′

)
=

(
S†(r)x̂S(r)
S†(r)p̂S(r)

)
=

(
e−rx̂
erp̂

)
(3.13)

where for r > 0 the p quadrature is amplified by er at the expense of x quadrature being
de-amplified by e−r. Here the Baker Campbell Hausdorff formula is applied noting the
commutation relationship

[
r(â†2 − â2)/2, â

]
= −râ†.

Applying the squeezing gate on vacuum states gives the squeezed vacuum state where
the fluctuation is squeezed below vacuum for one quadrature at the expense of amplified
fluctuation in the other quadrature (see Fig. 3.2 (b)). In the limit of infinite squeezing
followed by appropriate displacement, one can achieve the zero position |0〉x and zero
momentum eigenstates |0〉p which are used in CV quantum teleportation and CV cluster
states. Of course, in practice the amount of squeezing r is finite which inevitably introduces
errors into these CV protocols that assume an ideal zero momentum eigenstate.

The single mode squeezing gate is achieved in the parametric cavity by degenerate two-
photon SPDC process realized through pumping the SQUID at twice the mode frequency.
The interaction picture Hamiltonian with the 2ω pump after rotating-wave approximation
(RWA) is

Ĥint

~
= g(eiθp â2 + e−iθp â†2) (3.14)

where g is dependent on pump power and the axis of the squeezing is determined by the
pump phase θp.

Beamsplitter

The beamsplitter transformation is defined as

BS(θ, φ) = eθ(e
iφâ†i âj−e

−iφâiâ
†
j) (3.15)

where θ determines the beamsplitter transmittivity T and reflectivity R and φ introduces
a relative phase shift. The beamsplitter gate acts on the mode operators to mix the two
modes(

BS†(θ, φ)âiBS(θ, φ)
BS†(θ, φ)âjBS(θ, φ)

)
=

(
cos θ eiφ sin θ

−e−iφ sin θ cos θ

)(
âi
âj

)
=

(
T R
−R∗ T

)(
âi
âj

)
(3.16)
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where T = cos θ, R = eiφ sin θ and |T |2 + |R|2 = 1.

The beamsplitter gate is achieved by pumping the SQUID at the difference of two
modes frequencies ωp = |ωi − ωj| which gives the following interaction Hamiltonian after
RWA

Ĥint

~
= g(eiθp â†i âj + e−iθp âiâ

†
j) (3.17)

where the interaction strength g is dependent on pump power and relative phase φ is
determined by the pump phase θp. θ is then the product of interaction strength and the
duration of interaction.

Two-mode squeezing

Two mode squeezing is defined by the unitary operator

S2(z) = e(zâ†i â
†
j−z

∗âiâj)/2 (3.18)

where z = reiφ with r being the squeezing parameter and φ being the squeezing angle. In
the Heisenberg picture, the operator acts on the bosonic mode operators as(

S†2(θ, φ)âiS2(θ, φ)

S†2(θ, φ)â†jS2(θ, φ)

)
=

(
cosh r eiφ sinh r

e−iφ sinh r cos r

)(
âi
â†j

)
. (3.19)

Applying two-mode squeezing to vacuum states, we can get the two-mode squeezed
vacuum state also known as the Einstein Podolski-Rosen (EPR) state. This is a commonly
used CV entangled state where the modes considered individually are thermal states. How-
ever, there exists correlation between the two as seen from squeezing below vacuum in the
joint quadratures x̂i± x̂j and p̂i± p̂j. In the limit of infinite squeezing, the ideal EPR state
exhibits perfect correlations between the quadratures of the two modes.

The two-mode squeezing transformation can also model the phase-insensitive amplifi-
cation process where the signal in one mode is amplified by a gain G = cosh2(r) while
mixing in noise from the second mode (idler) commonly modeled as a thermal state with
average photon number nth.

Two-mode squeezing is achieved by nondegenerate two-photon SPDC through pumping
the SQUID at the sum of two mode frequencies ωp = ωi+ωj. The process can be visualized
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as a pump photon being split into two correlated photons, each in one of the cavity modes.
The interaction picture Hamiltonian with the sum frequency pump is

Ĥint

~
= g(eiθp â†i â

†
j + e−iθp âiâj) (3.20)

Alternatively, two-mode squeezing may be decomposed into single-mode squeezing and two
50-50 beamsplitter transformation.

S2(z) = BS†(π/4, 0)(S(z)⊗ S(−z))BS(π/4, 0) (3.21)

3.3.2 Non-Gaussian Resources

We have shown how to implement the basic set of Gaussian transformation and more
through driving the cavity or pumping the SQUID. Here we introduce the non-Gaussian
resources enabled by the SQUID asymmetry.

Trisqueezed State

A resource state of particular interest is the trisqueezed state defined in [32] as the appli-
cation of the trisqueezing unitary on the vacuum state

|t〉 = ei(t
∗â3+tâ†3) |0〉 (3.22)

where t is the triplicity of the trisqueezed state. This state is realized with the degenerate
three photon SPDC interaction from pumping the asymmetric SQUID at 3 times the mode
frequency ωp = 3ω. The interaction Hamiltonian is

Ĥint

~
= g(eiθp â3 + e−iθp â†3) (3.23)

where g is dependent on pump strength and θp is dependent on pump phase. The Wigner
function of an ideal trisqueezed state with triplicity t = 0.1 is shown in Fig. 3.3 (a). Non-
Gaussianity of the state can be immediately observed from the Wigner function where
the distributions has clear dependence on moments of quadratures greater than 2nd order.
Further, the negativity in the Wigner function indicates that the state is nonclassical.
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(c)(b)(a)

Figure 3.3: Trisqueezed state. (a) Wigner function of an ideal trisqueezed state with
t = 0.1 where negative regions are highlighted in pink. (b) Photon statistics of this
ideal trisqueezed state showing occupation of only Fock states that are multiple of 3. (c)
Klyshko’s criterion where a state is nonclassical when (n + 1)Pn−1Pn+1 − nP 2

n is below 0
for any photon number n.

Much like the squeezed vacuum state which consists of only Fock states that are multiple
of two, the trisqueezed state only has Fock states that are multiple of three. This can be
thought of as a consequence of the three-photon SPDC process always splitting one pump
photon into three. Nonclassicality of the trisqueezed state can similar be assessed with
the Klyshko’s Criterion whereby a state is nonclassical if (n + 1)Pn−1Pn+1 − nP 2

n < 0 for
any photon number n where n = {1, 2, 3..} and Pn is photon number probability [33]. The
photon number distribution of the ideal trisqueezed state with t = 0.1 is shown in Fig. 3.3
(b). The values of (n+ 1)Pn−1Pn+1−nP 2

n are plotted in Fig. 3.3 (c) where we can see that
it is below the nonclassicality threshold for any n that is a multiple of three.

Cubic Phase State via Gaussian Conversion Protocol

While the trisqueezed state certainly demonstrates both nonclassicality as well as non-
Gaussianity, a preferred choice of non-Gaussian resources used in various CV computation
protocols is the cubic phase state. Unlike the trisqueezed state which we already have access
to experimentally, the generation of cubic phase state has been elusive so far. However,
a recent theoretical proposal by Zheng et al. [32] puts forth an exciting protocol that
uses only Gaussian transformations to deterministically convert a trisqueezed state into
the long sought after cubic phase state. The deterministic conversion protocol involves
applying in-line squeezing followed by displacement on the trisqueezed state as shown in
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|t〉 S(ξ) D(α) |target γ〉

1

Figure 3.4: Cubic Phase State (a) Wigner function of cubic phase state with 0.5 squeezing
and 0.15 cubicity (b) Deterministic protocol to convert a trisqueezed state to cubic phase
state [32]

Fig 3.4 (b). This deterministic conversion protocol achieves the cubic phase state with
maximum fidelity of 0.971 from input trisqueezed state of t = 0.1 [32]. Alternatively,
another theoretical proposal from the same group shows one can generate a cubic phase
gate directly via simultaneous parametric pumping of the SQUID [34]. Both of these
proposals are promising methods to pursue with our device.

3.3.3 Multitone Pumping

Beyond the set of Gaussian gates and non-Gaussian resource state that offers a pathway
to the cubic phase state, there are a few other possibly useful transformations involving
multitone parametric pumping.

Multimode Entanglement with Multitone Pumping

As mentioned previously, two-mode entanglement can be achieved by two-mode squeezing
the initial vacuum states. Chang et al. extended the two-mode entanglement process to
multimode entanglement using simulataneous parametric interactions. In Ref. [13], Chang
et al. demonstrated genuine tripartite entanglement in the propagating output state of
the parametric cavity by two multitone pumping schemes (see Fig. 3.5). In the coupled-
mode (CM) scheme, the SQUID is pumped simultaneously at the sum of first and second
mode frequencies ωp1 = ωi +ωj and at the difference of second and third mode frequencies
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ωp2 = |ωj − ωk|. In the bisqueezing (BS) scheme, both pumps are at the sum of the mode
frequencies ωp1 = ωi + ωj and ωp2 = ωj + ωk.

(b)(a)

Figure 3.5: Multimode entanglement with simultaneous parametric pumps [13] (a)
Coupled-mode (CM) scheme (b) Bisqueezing (BS) scheme

The action of simultaneous pumping is different from if one were to apply the pumps
sequentially. For instance, in the CM scheme, the interaction Hamiltonian with the two
pump tones under the doubly rotating frame of the pump is

Ĥint

~
=
Ĥ ij
S + Ĥjk

BS

~
= g1

(
â†i â
†
j + âiâj

)
+ g2

(
â†j âk + âj â

†
k

)
(3.24)

where the sum frequency pumps between modes i and j introduces the two-mode squeezing
term Ĥ ij

S and difference pump between j and k gives the beamsplitter term Ĥjk
BS. Time

evolution under this Hamiltonian cannot be simply factored into the two-mode squeezing
part and beamsplitter coupling part as the two terms do not commute.[

Ĥ ij
S , Ĥ

jk
BS

]
= g1g2

(
âiâk − â†i â†k

)
. (3.25)

Despite the two terms not commuting, it turns out the time evolution operator of the CM
Hamiltonian can be exactly factored into the following [13]

Û(t) = exp
(
−iĤintt/~

)
= exp

(
−iĤ ik

S t/~
)

exp
(
−iĤ ij

S t/~
)

exp
(
−iĤjk

BSt/~
)

(3.26)

We see that two-tone pumping results in an additional two-mode squeezing transformation
between modes i and k on top of the the expected two-mode squeezing between i and j
and beamsplitter transformation between j and k. The additional transformation from
simultaneous pumping is responsible for the generation of tripartite entanglement.

While genuine tripartite entanglement was demonstrated in the continuous wave out-
put propagating state of the same parametric cavity device [13], these schemes should be
applicable as a gate generating tripartite entangled cavity state which may be a useful
resource for computation.
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CX and CZ gates

Any two-qumode gate is sufficient to achieve universal CV quantum computation and the
beamsplitter transformation is the most commonly used and available one. Nonetheless,
there are other two qumode Gaussian gates that may be useful for more efficient implemen-
tation of certain algorithms. Controlled-X (CX) and controlled-phase (CZ) gates are two
such gates which can also be decomposed into single mode Gaussian gates and beamsplitter
gates. CX and CZ gates are defined as the following

CX(s) = e−isx̂i⊗p̂j/~ (3.27)

CZ(s) = eisx̂i⊗x̂j/~ (3.28)

where one can see that the gate couples specific quadrature operators between two modes.
CX(s) is also known as the sum gate since the momentum operator is a generator of
translation and thus it acts on a state in position basis to add the position in mode i to
mode j.

CX(s) |xi, xj〉x̂ = |xi, xj + sxi〉x̂ (3.29)

On the other hand, the CZ gate is commonly used as the entangling gate in various
protocols such as ones to generate CV Gaussian cluster states.
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Figure 3.6: Experimental characterization of simultaneous downconversion and beamsplit-
ter pumps (a) Pumping scheme (b) Transport from ωi to ωj that is sensitive to input signal
phase (c) Contrast of transported quadrature versus suppressed quadrature as a function of
downconversion pump power. Unity contrast indicates perfect phase dependent transport
at the point of balanced interaction strengths where only one quadrature is transported
from input to output mode.

29



CX and CZ can be implemented in the parametric cavity by two-tone pumping at the
sum frequency ωp1 = ωi + ωj and difference frequency ωp2 = |ωi − ωj| as shown in Fig. 3.6
(a). The same two-tone parametric pumping scheme has been used recently in a similar
architecture to implement a phase-sensitive amplifier with gain-independent bandwidth
[35].

The interaction Hamiltonian in the doubly rotating frame of the two pumps consists of
both the squeezing term ĤS and beamsplitter term ĤBS.

Ĥint

~
=
ĤS + ĤBS

~
= g

(
eiθ1 â†i â

†
j + e−iθ1 âiâj

)
+ g

(
e−iθ2 â†i âj + eiθ2 âiâ

†
j

)
(3.30)

where θ1 and θ2 are pump phases of the sum and difference frequency pumps respectively.
Here the parametric drives are assumed to be balanced such that the interaction strength
g are the same for both terms. Experimentally this can be simply achieved by character-
izing the device much like a phase-sensitive amplifier in the case of [35] where the phase
sensitivity of the frequency converting transport between the modes is dependent on the
balance of the parametric drives. Fig. 3.6 (c) shows the phase sensitivity of transport as a
function of the downconversion pump power given a set beamsplitter pump power.

Eq. 3.30 can be rewritten into the following

Ĥint

~
= g

(
eiθa â†i + e−iθa âi

)(
eiθb â†j + e−iθb âj

)
(3.31)

where θa = (θ1 − θ2)/2 and θb = (θ1 + θ2)/2. One can see that the sum and difference
between the pump phases controls the quadratures from each mode that are coupled to-
gether through this interaction. For instance, choosing θa = 0 and θb = π/2, we get the
interaction that gives us the CX(s) gate.

3.3.4 Summary of Gate Implementations

Summarized in Table 3.1 are the proposed implementation of various continuous variable
gates or resource states. These gates include the basic set of gates necessary to generate
the family of all Gaussian transformation (displacement, rotation, single-mode squeezing
and beamsplitter) as well as non-Gaussian resource states from three-photon parametric
processes.
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Gate Symbol Implementation

Displacement D(α)
Resonant drive of cavity modes through the
coupling capacitor

Rotation R(φ)
Change of reference or brief detuning of cav-
ity frequency through flux bias of SQUID

Single-mode
Squeezing S(ξ) Parametric pump at ωp = 2ω

Beamsplitter Parametric pump at ωp = |ωi − ωj|

Two-mode
Squeezing S2(z)

Parametric pump at ωp = ωi + ωj

CX
CX(s)

Simultaneous parametric pump at ωp1 = ωi+
ωj and ωp2 = |ωi−ωj| with appropriate pump
phases

CZ
CZ(s)

Simultaneous parametric pump at ωp1 = ωi+
ωj and ωp2 = |ωi−ωj| with appropriate pump
phases

Trisqueezed S3(t) Parametric pump at ωp = 3ω

Cubic Phase V (γ)

Cubic phase state by Gaussian conversion
protocol from trisqueezed state [32] or simul-
taneous parametric pumping scheme [34]

Table 3.1: Summary of CV gates and their proposed implementations in the parametric
cavity.
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3.4 Measurements

Measurement plays a big role in quantum computation and understanding the type of mea-
surements one can do reliably is especially important. Here we describe the measurement
channels and measurements that can be accomplished on the current design as well as
potential measurements enabled by minor design modifications.

3.4.1 Cavity Output Mode

LO
Linear

Ampli�er

Figure 3.7: Measurement channel of the device. Excitation in the cavity mode is coupled to
an output transmission line connecting to a linear amplifier chain leading out of the fridge.
At room temperature, the signal is then mixed with local oscillators (LO) and measured.

The primary measurement channel in the device is the capacitively coupled semi-infinite
transmission line ideally terminated by a matched load such that device output is not
reflected back. The schematic of the measurement setup is shown in Fig. 3.7 where the
cavity is connected to transmission line via a partially transmitting boundary condition.
The excitation in the cavity decays into the transmission line with a rate of κext after
which the excitation travels along the transmission line towards the measurement chain
consisting of microwave amplifiers, mixers, and finally digitizers that measure the signal.

A semi-infinite lossless transmission line may be modeled as a distributed network of
inductors and capacitors that supports the propagation of microwaves. The left âin and
right âout propagating modes are orthogonal but interact with the cavity mode â at the
coupling point which is described by the input-output relation

âout(t) =
√
κextâ(t)− âin(t) (3.32)

âin is typically in vacuum state during measurement and âout propagates toward the mea-
surement chain where linear measurements like heterodyne or homodyne detection are
carried out.
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Following the analysis in [36], we can relate the measurement of the output signal
sampled continuously in time âout(t) to the time independent mode â of the cavity at
measurement time t = 0 by the process of temporal mode matching. The cavity dynamics
is described by the following

â(t) = e−κextt/2â(0) +
√
κexte

−κextt/2
∫ t

0

dτeκextτ/2âin(τ) (3.33)

Integrating the output signal over time with a filter function f(t) gives a time independent
mode operator â

â =

∫
dtf(t)âout(t) (3.34)

With the choice of an optimal filter function that depends on temporal shape of âout as
well as properties of coupling between the cavity and transmission line, â then corresponds
to the cavity mode at the start of the measurement process â(0). In this case, the optimal
filter function would be one of exponential decay at the rate of κext

f(t) =
√
κexte

−κextt/2H(t) (3.35)

where H(t) is the Heaviside function. A non-optimal choice of filter function such as a flat
integration window would lead to a reduction in detection efficiency.

3.4.2 Heterodyne Detection

In heterodyne detection, the two quadratures x̂ and p̂ are measured simultaneously. These
two conjugate operators do not commute so the accuracy of the simultaneous measurement
is limited by Heisenberg’s uncertainty principle. In a typical experimental setup, not
only are there significant losses from device output to room temperature instruments, the
microwave instruments are also not sensitive enough to detect the low power device output.
As such, the signal must first be amplified by a phase insensitive amplifier at cryogenic
temperatures. At room temperature, the amplified signal is then mixed with in-phase and
out-of-phase local oscillators before sampling with analog-to-digital converters (ADCs) to
obtain the two quadrature components.
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Figure 3.8: Linear measurements. (a) Heterodyne measurement of qumodes involves first
amplifying the output state with a phase insensitive linear amplifier chain starting at with
a HEMT at 4K stage in our case. The signal is then demodulated with an IQ mixer then
the quadratures are measured. (b) Homodyne measurement starts with a phase sensitive
amplifier such as a JPA followed by the rest of the amplifier chain. The signal is then
mixed with an LO of appropriate phase then measured for the desired quadrature.

In the limit of large gain, this process shown in Fig. 3.8 (a) is modeled as the measure-
ment of the complex amplitude operator Ŝ that has additional noise mixed in defined as
[37]

Ŝ =
√
G(x̂′ + ip̂′) =

√
G(â + ĥ†) (3.36)

where G is the gain of the phase insensitive amplification and ĥ is an ancilla mode to
model the noise of the amplification process. Assuming high enough gain for the first
amplifier, the noise is dominated by the noise of the first amplifier. With a quantum
limited amplifier, such as a Josephson parametric amplifier, the ancilla is in vacuum state
and adds the minimum half a photon of noise. In our setup where the first stage of amplifier
is a High Electron Mobility Transistor (HEMT) amplifier at the 4K stage, the ancilla is
best modeled as a thermal state with average photon number of nth ≈ 25− 40 photons.

3.4.3 Homodyne Detection

Homodyne detection is the measurement or projection onto the eigenstates of a single
generalized quadrature x̂φ

x̂φ = cos(φ)x̂+ sin(φ)p̂ (3.37)

In contrast to heterodyne detection, homodyne detection of a single quadrature can be
performed in a noiseless fashion without violating Heisenberg’s uncertainty principle. This
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measurement can be achieved in our system by using a phase sensitive amplifier as the first
stage of amplification for the propagating output mode, see Fig. 3.8 (b). In the ideal case,
the amplifier’s action is described by the squeezing transformation along φ axis in phase
space where the quadrature x̂φ is noiselessly amplified at the expense of its conjugate being
deamplified. In practice, perfect measurement efficiency of η = 1 in noiseless homodyne
detection is difficult to achieve especially in microwave regime where the best reported η
is only 0.68 [38].

3.4.4 In-Situ Amplification

So far, we have discussed the implementation of common linear measurements on the
device output state by the use of linear amplifiers connected to the output transmission
line. While state of the art Josephson junction based parametric amplifiers can achieve
performance close to the quantum limit in phase insensitive amplification and beyond
the quantum limit for phase sensitive amplification, the overall measurement efficiency is
typically significantly reduced due the losses from additional required components between
the device and the amplifier [39]. This motivates the search for methods to optimize and
reduce the losses in the signal path between device and amplifier.

|ψ〉 S(r, φ) x̂φ

(a)

|ψ〉
S2(r)

x̂, p̂

|0〉

(b)

|ψ〉
x̂

(1)
φ x̂

(2)
θ

|0〉 x̂, p̂

(c)

Figure 3.9: Possible schemes for amplification using the same parametric cavity device. (a)
Phase sensitive amplification by application of single-mode squeezing. (b) Phase insensitive
amplification by application of two-mode squeezing. (c) Phase sensitive amplification with
simultaneous beamsplitter and downconversion pumps.

The parametric cavity discussed in this thesis is a device derived from a standard
flux pumped JPA and can achieve the same type of parametric interactions as a typical
JPA. This presents an interesting opportunity to explore the possibility to use the same
device as the first stage of amplification on the cavity modes – allowing us to reduce the
impact of losses after device outputs if this in-situ amplification can achieve sufficient gain
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and low noise. Some possible in-situ amplification schemes are shown is Fig. 3.9 where
single mode, two mode squeezing or two-tone pumping may be used to implement phase
sensitive and insensitive amplification. Of course, these proposals are not without flaws.
Some immediate concerns may be saturation of device from high signal power or the effect
of amplification on other modes of the cavity that all likely have significant undesirable
coupling like the cross Kerr due to the SQUID.

(b)(a)

Parametric 
Interaction

Figure 3.10: Two channel detection for measurement of moments. (a) The detection
scheme involves beamsplitting the signal mode with an ancilla mode followed by amplifi-
cation then heterodyne measurement of both modes. (b) Possible implementation of the
measurement scheme using parametric interaction to mix the signal with ancilla mode at
different frequency instead of using a physical beamsplitter device.

Another opportunity to make use of the device as part of a measurement chain is
the two channel detection setup [40] shown in Fig. 3.10 (a) which can be useful for state
tomography. Instead of phase insensitively amplifying then measuring a single complex
amplitude operator, the signal mode is first mixed with an ancilla in vacuum then the
two output modes Ŝ1 and Ŝ2 are measured by heterodyne detectors. Under reasonable
assumption of ancilla being in vacuum and noise modes of detectors being uncorrelated,
the cross-correlations of the two measured complex amplitude operators directly gives the
moments of the signal mode which completely describes the state of the mode [40].

〈(â)mân〉 =
〈

(Ŝ†1)mŜn2

〉
(3.38)

Similar experimental setup has been implemented in microwave with the use of transmission
line hybrids structure as the beamsplitter [41]; however, these structures are typically
designed for narrow bandwidths around a specific frequency. In our device, one can imagine
a more flexible implementation where the beamsplitter is a parametric pump pulse between
signal and ancilla mode in the same cavity, see Fig. 3.10 (b). The output states are now
frequency instead of spatially separated and can be amplified by the same broadband linear
amplifier.
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3.4.5 Fast Measurement of Cavity State

Thus far, we have discussed linear measurements of cavity modes via the amplification
and measurement of the output state in the coupled transmission line. As mentioned in
section 2.3, the design is optimal when the cavity is overcoupled to the output transmission
line as we don’t lose information to channels that are not measured. This presents a trade-
off between measurement integration time and cavity lifetime as both are dependent on
the same coupling rate to the output transmission line. This is especially an issue for
algorithms where additional gates needs to be applied after a measurement is completed,
such as quantum state teleportation shown in Fig. 3.11.

|ψ〉 • Homodyne p̂

|0〉p • X† F † |ψ〉

Figure 3.11: Algorithm to realize CV quantum state teleportation. Algorithms like this
require application of additional gates dependent on measurement results. As such, it is
necessary to have measurements that are magnitudes faster than cavity lifetime.

To address the need to have measurement that is faster than the qumode lifetime, we can
employ the same method used in [42] to parametrically convert cavity state to propagating
state three order of magnitude faster than the cavity lifetime. The mechanism involves a
much lower Q ancilla mode with high coupling rate κout to the output transmission line.
Beamsplitter coupling with coupling g � κout converts the state of the high Q mode to the
low Q mode which then quickly decays into the output line. In a multimode transmission
line resonator, the external coupling naturally increases for higher harmonics as the same
coupling capacitor has less impedance at higher frequency. In the current device, a coupling
rate ratio of around 8 is already achievable between the 4 GHz mode (κ/2π ≈ 0.5 MHz)
and 10 GHz mode (κ/2π ≈ 4 MHz). The more strongly coupled 10 GHz mode can serve
as the readout ancilla mode for the higher Q 4 GHz mode used in computation.

3.4.6 Photon Counting

Photon counting measurement is a useful common component in many CV protocols in-
cluding Gaussian Boson Sampling. Photon counting involves projecting the state to the

37



Fock basis with the measurement operators

En = |n〉 〈n| (3.39)

In optics, relatively high efficiency photon counting measurement up to tens of photons can
be easily achieved with various photon counting detectors like the avalanche photodiode.
In microwaves, photon counting especially on a propagating state has been more difficult to
do well in part due to the much lower energy of single microwave photon. Nonetheless, in
recent years there has been many demonstration and proposals for various photon counters
of propagating states typically based on qubits [43] and Joseph junction metamaterial [44].
Integrating these detectors in the measurement chain will enable us to achieve photon
counting measurement on the qumodes.

Alternative and likely more efficiently, instead of counting the photons of the propagat-
ing output state, we can directly measure the photon number in a cavity with a dispersively
coupled qubit. In the dispersive limit where the qubit σ̂z is far detuned in frequency but
strongly coupled to the resonator â†â the hamiltonian of the system is approximated to be

Ĥ

~
= ωrâ

†â +
ω̃q
2
σ̂z + χâ†âσ̂z (3.40)

where χ is the dispersive shift that can be seen as qubit state dependent shift of resonator
frequency or resonator photon number depend shift of qubit frequency. Naively, to resolve
the photon number of the resonator one can just drive with π-pulse and readout the qubit at
each of the possible photon number dependent qubit frequency ω̃q+nχ. More efficiently, one
can use a Ramsey-like measurement and fast feedforward control to sequentially determine
each bit of the photon number in base-2 [43], or synthesize control pulses consisted of
arbitrary drive of both qubit and resonator to determine bits of photon number in base-2
[45].
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(c)(a)

CPW

(b)

Figure 3.12: Device with qubit probe. (a) A transmon qubit is capcitively coupled to
the voltage antinode of the cavity near the coupling capacitor. The qubit frequency and
coupling strengths are chosen such that it is dispersively coupled to several modes within
our measurement band – allowing us to use it as a nonlinear measurement device of the
cavity states. (b) A photograph of the fabricated device. (c) The modified device design
where the additional transmon is shown in blue.

fq EC/h EJ/h g1q χ1q g2q χ2q

5.2 GHz 253 MHz 14.686 GHz 146.3 MHz -21.6 MHz 214.75 MHz 47.06 MHz

Table 3.2: Device parameters for a transmon qubit coupled to the parametric cavity

Fig. 3.12 shows the design and layout of a device currently being fabricated to enable
some form of photon number related measurement. In this device, a single transmon qubit
couples capacitively to the resonator at the voltage antinode near the output capacitor so
that it is coupled to all cavity modes. The frequency is chosen such that the transmon
is sufficiently detuned from all modes of interest. This qubit is expected to be used as a
probe for a lower frequency mode (higher Q) and be readout through a higher frequency
mode (lower Q) to which it is also dispersively coupled.

Design parameters for the first devices currently being fabricated are shown in Table 3.2.
The resonator frequencies are assumed to be f1 = 4.21 GHz and f2 = 6.18 GHz. giq and
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χiq are the coupling strength and dispersive shift respectively between the ith resonator
mode and the qubit. The first device is designed with relatively strong coupling strengths
to observe photon number distribution of the trisqueezed state as the initial objective.
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Chapter 4

Experimental Implementation of
QKS Algorithm

While we work towards the implementation and characterization the CV gates and resource
states detailed in Chapter 3, we can start to demonstrate in parallel the capability of this
platform as a quantum computation device by implementing interesting algorithms. We
start with using the device to experimentally realize the Quantum Kitchen Sinks (QKS)
algorithm [31] which is a hybrid quantum-classical machine learning (ML) algorithm meant
for noisy intermediate-scale quantum (NISQ) devices.

4.1 Quantum Machine Learning and the Quantum

Kitchen Sinks Algorithm

Quantum machine learning (QML) is an emerging field of research in recent years where
there has been many exciting developments especially due to the availability of NISQ
devices. Out of the various research directions in QML, quantum kernel methods is a class
of algorithms that has been receiving especially more attention in terms of proposals and
experimental implementation in various platforms [30, 31, 46, 47, 48].

Quantum kernel methods [49] are inspired by the family of classical ML techniques
called kernel methods which includes popular ML algorithms like the support vector ma-
chine (SVM). Kernel methods are used for pattern recognition tasks such as the classifi-
cation problem where the ML algorithm learns to separate data into appropriate classes
given some set of labeled training data. Kernel methods involves the use of a similarity
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function k(x, x′) called the kernel that allows the algorithm to operate on the data points
in a higher dimensional feature space where separability of the different classes may be
clearer. The kernel function between two data points x and x′ is defined as

k(x, x′) = 〈φ(x), φ(x′)〉 (4.1)

where φ is a map of data from the input space to feature space and the kernel is a proper
inner product between the data points in the feature space.
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210-1-2
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(b)(a)

Figure 4.1: (a) Data set containing two classes (red and green) in 2-dimensional input data
space. The distributions of concentric circles makes it difficult for linear classifiers to tackle
the data set. (b) Data in a higher dimensional feature space become linearly separable.

For instance, Fig. 4.1 shows two classes of data (red and green) in the two dimensional
input data space. If one were to use a linear ML algorithm, which learns a linear boundary
separating the data classes, it can be seen easily that the classification can never be perfect
as the data cannot be separated by a linear boundary. However, imagine the data points
in a 3 dimensional feature space with the third dimension being the radius from centre,
the data can then be more easily separated even by a linear ML algorithm as one can draw
a plane between the two classes.

Quantum kernel methods essentially follow the same logic as classical kernel methods,
but seeks to achieve quantum enhancement and perhaps quantum advantage with the use of
classically hard kernels implemented in quantum computers. One particular approach is a
hybrid one where a quantum computer evaluates a quantum kernel from classical input data
then the results are used in a classical ML algorithm to learn the classes. QKS is one such
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hybrid algorithm where classical ML techniques are used in tandem with a quantum kernel
evaluated on quantum variation circuits. QKS is inspired by a classical kernel method
called Random Kitchen Sinks (RKS) [50]. RKS uses many randomized simple nonlinear
functions to approximate a kernel in place of the computationally intensive process of
optimizing over a complex kernel as one would typically do in other kernel methods like
the SVM. In the same spirit, the QKS algorithm is shown in Fig. 4.2 where classical linear
random encoding of the data along with the subsequent simple quantum variational circuit
are used to implement or approximate a quantum kernel. The result of the quantum circuit
is then fed into a classical linear classifier to learn the data classes.

Random Linear 
Encoding

Linear ML 
Algorithm

Nonlinear 
Transformation

Classical ClassicalQuantum

Input
Class

Fisher’s Linear 
Discriminant

Figure 4.2: Quantum Kitchen Sinks algorithm. The hybrid quantum-classical algorithm
consists of classical random encoding and quantum variation circuit implementing some
nonlinear transformation to create the quantum kernel of the algorithm. The classification
is then done by a linear classical ML algorithm on the output.

4.2 Experiment

Here we look to realize the QKS algorithm experimentally with the quantum part being
implemented with the superconducting parametric cavity.
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4.2.1 Quantum Variational Circuit with the Parametric Cavity

Randomly 
encoded input

Transformed
feature

Figure 4.3: The quantum variational circuit implemented in the parametric cavity with
two parameters φ1 and φ2. The circuits starts with 3-photon downconversion to create a
non-Gaussian resource state which is then mixed with two beamsplitter gates.

A core component of the QKS is the quantum variational circuit that realizes some nonlin-
ear transformation of the data with a quantum system. The quantum variational circuit
implemented is shown in Fig. 4.3. Starting with all modes in vacuum, a pump at the
sum of three mode frequencies (4 GHz, 6 GHz, and 7 GHz) first realizes nondegenerate
3-photon SPDC – creating a non-Gaussian resource state which is a necessary condition
for potentially classically intractable kernel. The three modes are then mixed with two
beamsplitter gates where the phases of the beamsplitters are the parameters of this varia-
tional circuit. Finally, a measurement of this quantum variational circuit such as the skew
of a quadrature 〈x̂3〉 is taken as the output.

4.2.2 Classical Components of QKS

The quantum variation circuit is only one part of the hybrid algorithm. The relevant
classical components includes random linear encoding of the input data as well as a classical
ML algorithm. Random linear encoding of the input data x has the form

φ = Ωx+ β (4.2)

where x is a vector in the input data space. Ω and β are matrices of random variables that
are sampled once throughout the algorithm. Ω has a normal distribution with standard
deviation σ and mean 0 while the offset β is uniformly distributed from 0 to 2π.

Ω ∼ N(0, σ2) (4.3)

β ∼ U(0, 2π) (4.4)
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The encoding is done such that for each data point, we get a number of encoded parameter
that matches the number of parameters in the quantum variational circuit.

The other classical component of QKS is the classical ML algorithm taking the output
of the quantum variational circuits to learn and classify the data. The algorithm used here
is a linear binary classifier called the Fisher linear discriminant. This algorithm essentially
takes the labeled training data set and finds the best line of projection such that the data of
different classes are best separated in this projection in terms of having furthest separated
mean as well as smallest variance among each class [51]. The direction of projection is
captured in the weight vector w which is optimized by maximizing the ratio of separation
of means over the total within-class variance when the training data are projected. The
optimal w can be found in closed form as

w ∝ S−1
W (m2 −m1) (4.5)

where m1 and m2 are mean vectors and SW is the total within-class covariance matrix.
Unknown data can then be projected along this best line of projection “learned” by the
algorithm to reduce the data to a single dimension where a threshold then determines the
data’s membership to a certain class. See Fig. 4.4.
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Figure 4.4: An example of Fisher linear discriminant method applied the two classes of
data as shown in (a). The ML algorithm learns the projection line as shown in (a) which
best separates the projected training data as shown in (b).
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4.2.3 Experiment Setup
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Figure 4.5: Overview of the experiment. Training and testing sets of data are first sampled
from the concentric square data set. Training set is used to train the QKS algorithm.
Testing set is then used to test the trained classifier to benchmark the performance in
terms of classification accuracy.

The experiment carried out is summarized in Fig. 4.5. We start first with a synthetic data
set in two dimensions containing two classes (red and green) where the data are drawn
from uniform distributions over two concentric squares. This synthetic data set is chosen
to benchmark the algorithm as it is a difficult data set to tackle for linear classifiers since
it is clear that the data cannot be separated by a simple linear boundary.

A labeled training set of data is first sampled from the distributions then used in
the algorithm to build the classifier for the data set. The accuracy of the classifier is
then measured by testing the classifier with a testing set of data sampled from the same
distributions but have not yet been seen by the algorithm.

In machine learning, there are the so-called hyper-parameters which are higher-level
parameters that controls the learning process as opposed to parameters which are “trained”
as a part of the learning. We characterize the performance of the algorithm as a function
of the two relevant hyper-parameters in our system: σ and the number of episodes. σ
is the standard deviation controlling the distribution used in random linear encoding of
data. The number of episodes refers to the dimensionality feature space after the data goes
through the quantum transformation. Ideally, one would increase the dimensionality and
complexity of the quantum transformation by implementing a quantum variational circuit
involving more qumodes. However, with the limited size and depth of NISQ devices, we
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can increase the dimensionality of the feature space by repeating the same small quantum
variational circuit with different sets of random encoding parameters.

The measurement setup for implementation of the quantum variational circuit in the
superconducting parametric cavity is shown in Fig. 4.6. The device is cooled down to
7 mK in the dilution refrigerator and we have the output of the cavity connected to an
amplifier chain which starts with a HEMT amplifier at 4K. The device is connected to
a coil through which we tune the DC flux and parametric modulation of the SQUID is
accomplished through a fast flux line with the other end terminated by a 50 Ω thermalized
to the mixing chamber. Heterodyne measurement of the amplified output signal is done
at room temperature using the Aeroflex digitizer which measures the quadratures by I/Q
demodulating then digitizing the signal.
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Figure 4.6: Room temperature and cryogenic microwave setup for the experiment.
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4.2.4 Mixed Experiment/Simulation

As we work towards implementing control and measurement electronics for pulsed experi-
ments, QKS is first implemented in a mixed experiment/simulation fashion where parts of
the quantum variational circuit is simulated in the classical computer.

Experiment Simulation

Figure 4.7: Experimental (in orange) time series record of the steady state output under
3-photon downconverion is mixed by digitally simulated beamsplitter gates (in black).

In this scheme as illustrated in Fig. 4.7, the parametric cavity is pumped with a con-
tinuous wave (CW) tone at the sum of three mode frequencies to generate a non-Gaussian
output state. The steady state output is amplified then its quadratures are measured and
stored as classical time series records. Beamsplitter operations between modes are then
simulated by digitally mixing the signals. Finally, the skew of one of the quadrature 〈x̂3〉
is taken as the output.

Note in this case where we have CW steady state output, instead of using temporal
mode matching to relate the output to the cavity state, we can instead make a discrete
mode approximation which allow us to relate the statistics of the output signal to the
moments of the cavity state quadrature operators with some factors depending on gain
and bandwidth of the measurement [12]. Though in our case, the absolute scaling of the
measurement is of no concern as the algorithm is insensitive to constant scaling factor.
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Figure 4.8: Results of the mixed experiment/simulation case (a) classification accuracy
of test data as a function of hyperparameters (b) visualization of the classifier by looking
at the decision boundary for a specific hyperparameter configuration of σ = 2.094 and
Episode = 300.

Classification accuracy of test data as a function of hyperparameters σ and episodes is
shown in Fig. 4.8 (a). It can be observed that in certain regions of the hyperparameter
space, the algorithm with the quantum part implemented in the parametric cavity can
achieve a classification accuracy up to 90.1% – an improvement over the 50.29 ± 1.23%
accuracy when using only the linear classifier.

Successful classification can further be visualized by the use of the decision boundary
representing how the classifier built by QKS divides the input data space into regions for
each class. The optimal decision boundary would be one that best separates the two classes
in input data space, which in this case should be a concentric square with width right in
between the two square distributions. To draw the decision boundary shown in Fig. 4.8
(b), the classifier output is measured throughout the input data space and the contour at 0
which is the threshold between two classes is then the decision boundary. As one can see,
with the help of the quantum addition, purely linear classical machine learning algorithm
can successfully learn a nonlinear (square) decision boundary to best separate this data
set.
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4.2.5 CW Pump Experiment

Simultaneous CW Pumps

Figure 4.9: The quantum variational circuit is implemented fully experimentally with
the device in the dilution refrigerator. Simultaneous CW pumps activating the three
interactions of interest are applied in 1ms windows during which the statistics are calculated
from heterodyne measurement of the steady state output.

For the next part of the experiment, we implemented the quantum variational circuits fully
experimentally in the parametric cavity using simultaneous CW pumps (see Fig. 4.9). The
phases of the beamsplitter pump tones are modulated according to encoded data using
an IQ mixer and arbitrary waveform generators. For each measurement of the quantum
variational circuit, we used an integration window of 1 ms during which we sample the
steady state output of the cavity with sampling frequency of 1 MHz.

The classification accuracy as well as decision boundary of at a specific hyperparameter
setting are shown in Fig. 4.10. In some region of the hyperparameter space, the algorithm
with fully experimental quantum variational circuit can achieve successful classification
of the data up to 99.5% accuracy. CW pump experiment achieved a higher classification
accuracy due to the better measurement signal-to-noise ratio from a longer integration
window. In addition, the mixing of the three modes are done before measurement noise
is added which further improves the classification accuracy. Due to the long experimental
time required for each configuration of hyperparameters, the CW pump experiment have
much lower resolution than the mixed experiment/simulation case. Nonetheless, one can
observe general features that agree between the two cases in terms of classification accuracy
where the optimal σ is somewhere near π/2 and optimal episodes is at least 200.
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Figure 4.10: Results of CW pump case (a) classification accuracy as a function of hyperpa-
rameters (b) visualization of the classifier by looking at the decision boundary for a specific
hyperparameter configuration of σ = 1.5 and Episode = 100.

4.2.6 Summary

In this experiment, we demonstrated the use of the parametric cavity for CV quantum
computation by implementing the QKS algorithm experimentally. While we have only
tackled a synthetic data set, the experiment shows that the addition of the quantum
variational circuit implemented in the parametric cavity is able to realize a significant
improvement in classification accuracy in comparison to the baseline case of just a classical
linear classifier.
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Chapter 5

Conclusion

In chapter 2, the working principle, design and notable features of the superconducting
parametric cavity device under study is introduced.

In chatper 3 we present the proposal to realize CV quantum computation using super-
conducting parametric cavity and provide an overview of the main aspects of computation
from gates to measurements. We envision the various harmonics of the parametric cav-
ity being a collection of qumodes and CV gates are successive cavity drive or parametric
pump pulses that transform or couple these qumodes. We also discuss the the measure-
ment channels and schemes to realize common CV measurements in the current device as
well as proposals and new designs which can allow us to achieve other useful measurements
on the system.

In chapter 4 we look at demonstrating the capability of the parametric cavity as a
computation platform by implementing simple algorithms experimentally. The algorithm
of choice is the QKS algorithm which is a hybrid quantum-classical machine learning al-
gorithm that tackles the classification problem. We implemented and benchmarked the
performance of QKS in the parametric cavity over two sets of experiments. In the mixed
experiment/simulation case, we used available experimental data and digitally simulated
beamsplitter operations to realize the quantum part of the algorithm. In the CW pump
case, we realize the quantum variational circuit fully experimentally by the use of simul-
taneous parametric pumps with modulated phase. In both cases, we observed that the
quantum part of the algorithm is able to significantly elevate the performance of the lin-
ear classifier used in the algorithm – leading to the successful classification of a difficult
synthetic data set.
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5.1 Future Directions

The work discussed in this thesis is just the start towards the goal of developing a CV
quantum computer using the superconducting parametric cavity. The main focus of future
work would be to implement various components of the system and characterize them in
depth - understanding details such as fidelity of gates and measurement as well as limitation
of the architecture. These type of investigations will require efforts from a variety of aspects
including the ongoing efforts in scaling up control electronics and improving internal quality
factors from fabrication and cryogenic setups.

An especially important near-term goal is the implementation of robust cavity state to-
mography which will enable us to explore interesting projects such as the characterization
of the trisqueezed state, the implementation of the Gaussian conversion protocol for cubic
phase state, and another recent proposal in generation of cubic phase state via simultane-
ous parametric pumping [34]. We have a variety of pathways towards robust tomography
and some are as simple as improving our output amplification chain with quantum limited
amplifiers to improve noise performance in heterodyne and homodyne detection. Alterna-
tively, we are currently working towards a new device with a coupled qubit as a nonlinear
probe to the system which will enable us to directly measure the Wigner function of the
cavity state.

Beyond continued efforts in the development of CV quantum computation on cavity
states, there are also many interesting research direction in quantum computation using
the parametric cavity device. More generally this device can be seen as a flexible platform
that provides an extensive toolbox of interactions between the microwave photons confined
in the cavity modes. We need not constrain ourselves to the proposed computation scheme
that manipulates the cavity state; these interactions can find use in a variety of other
computation schemes as well.

One such research direction is the exploration of quantum reservoir computing on this
system. Quantum reservoir computing involves the use of a randomly connected quantum
network called the reservoir that acts on the input data to this network for a variety of
tasks such as the realization of universal quantum computation[52] and machine learning
problems [53, 54]. The individually controllable interactions between the multiple bosonic
modes in our device makes it a perfect candidate to implement quantum reservoirs. Another
direction to explore is the generation of CV cluster state which is the basic resource in
measurement-based quantum computation. In an extension to the work on the generation
of multipartite entanglement using parametric interactions, there are proposals such as [55]
that discusses generation of CV cluster state based on the similar principles.
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[46] Vojtěch Havĺıček, Antonio D. Córcoles, Kristan Temme, Aram W. Harrow, Abhinav
Kandala, Jerry M. Chow, and Jay M. Gambetta. Supervised learning with quantum-
enhanced feature spaces. Nature, 567(7747):209–212, March 2019. Number: 7747
Publisher: Nature Publishing Group.

[47] Yi Xia, Wei Li, Quntao Zhuang, and Zheshen Zhang. Quantum-enhanced data clas-
sification with a variational entangled sensor network. arXiv:2006.11962 [physics,
physics:quant-ph], June 2020. arXiv: 2006.11962.

[48] Moslem Noori, Seyed Shakib Vedaie, Inderpreet Singh, Daniel Crawford, Jaspreet S.
Oberoi, Barry C. Sanders, and Ehsan Zahedinejad. Analog-Quantum Feature Mapping
for Machine-Learning Applications. Physical Review Applied, 14(3):034034, September
2020. Publisher: American Physical Society.

[49] Riccardo Mengoni and Alessandra Di Pierro. Kernel methods in Quantum Machine
Learning. Quantum Machine Intelligence, 1(3):65–71, December 2019.

[50] Ali Rahimi and Benjamin Recht. Weighted Sums of Random Kitchen Sinks: Replacing
minimization with randomization in learning. In D. Koller, D. Schuurmans, Y. Bengio,
and L. Bottou, editors, Advances in Neural Information Processing Systems 21, pages
1313–1320. Curran Associates, Inc., 2009.

[51] Christopher Bishop. Pattern Recognition and Machine Learning. Information Science
and Statistics. Springer-Verlag, New York, 2006.

[52] Sanjib Ghosh, Tanjung Krisnanda, Tomasz Paterek, and Timothy C. H. Liew. Uni-
versal quantum reservoir computing. arXiv:2003.09569 [cond-mat, physics:quant-ph],
March 2020. arXiv: 2003.09569.

[53] Aki Kutvonen, Keisuke Fujii, and Takahiro Sagawa. Optimizing a quantum reservoir
computer for time series prediction. Scientific Reports, 10(1):14687, September 2020.
Number: 1 Publisher: Nature Publishing Group.

[54] L. C. G. Govia, G. J. Ribeill, G. E. Rowlands, H. K. Krovi, and T. A. Ohki. Quantum
reservoir computing with a single nonlinear oscillator. arXiv:2004.14965 [cond-mat,
physics:quant-ph], April 2020. arXiv: 2004.14965.

[55] David Edward Bruschi, Carlos Sab́ın, Pieter Kok, Göran Johansson, Per Delsing, and
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