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Chapter 1

Introduction

As humans, we have an astonishing ability to focus our auditory attention to
specific objects or events. For example, when we attend parties where many
guests are talking simultaneously, we are able to selectively listen to certain
individuals, while ignoring the surrounding noise from the other guests. And
when we listen to music, we hear distinct instruments, even though they are
mixed together to a single track. All that our ears receive is a continuous
stream of sound waves, the sum of all currently active sounds. It is up to
our brains to disentangle this chaos into a multitude of perceived concurrent
sources. And not only that, we also have to piece together sounds temporally
by consistently attributing sounds at different instants of time to the same
sources.

To illustrate the difficulty of this task, consider the following two lines from
a famous pop song, overlaid on a single line:

SHE WAS MORE LIKE A BEAUTY QUEEN FROM A MOVIE SCENEI SAID DON’T MIND, BUT WHAT DO YOU MEAN, I AM THE ONE

This is analogous to the mixture sound wave that our ears receive when two
party guests are talking. In order to untangle this jumble of characters, we
have to both figure out which two characters are overlaid at each vertical
character position, and which characters go together horizontally to form
words and sentences. In the same way, when we hear a musical recording
of two instruments playing together, we have to both determine which sonic
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events belong to which instrument at each point in time, as well as follow
the two instruments over time to form coherent melodic lines.

The answer to the riddle above is this:

SHE WAS MORE LIKE A BEAUTY QUEEN FROM A MOVIE SCENE

I SAID DON’T MIND, BUT WHAT DO YOU MEAN, I AM THE ONE

While our eyes have not developed the ability to easily disentangle overlap-
ping characters, if we were presented with a recording of these two lines of
text read aloud simultaneously, we would likely be able to separate the two
sources in our mind. This process, when emulated mathematically and in
software, is known as Blind Source Separation (BSS). It is “blind” since we
do not have any information about the sources other than the signals them-
selves. In the real world, non-blind source separation could correspond to
visually seeing the two speakers while they read the words, seeing their lips
move, etc. In blind source separation we are deprived of any non-sonic cues.
While non-blind source separation using multi-modal approaches is an active
field of research, it is outside the scope of this thesis. Therefore we will use
the term “source separation” to refer to blind source separation explicitly for
the remainder of this document, unless explicitly state otherwise.

Furthermore, we will investigate a subset of source separation concerned with
music: Musical Source Separation (MSS). Musical source separation differs
from other types of source separation in several ways. In speech separation,
speakers tend to talk at their own pace, independent of each other. However,
when several people play music together in a group, they specifically attempt
to play at the same pace, or tempo. Speakers tend to have different vocal
pitch ranges, but musicians often play the same notes in unison or in close
harmony. This makes musical source separation a particularly challenging
task.

Why then would we invest time and effort to try to solve source separation in
general, and specifically musical source separation? General source separa-
tion has many proven real-world applications, from separating radar sources,
to mother vs. fetus heartbeat separation, hearing aids, etc.(Deville, Jutten, &
Vigario, 2010). Products and tools based on musical source separation have
yet to be developed and deployed at scale, but there are many promising av-
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enues. For example, music education could greatly benefit from the ability to
mute and solo individual instruments in arbitrary recordings. Source separa-
tion could enable re-mixing of existing musical recordings to better balance
instrument levels, or to replace instruments or re-record instruments. One
could imagine a future where the listener can control the levels of individual
instruments in real-time, or where music software intelligently mixes music
to the personal tastes of the listener.

Vocal source separation has the potential to revolutionize the karaoke indus-
try, through the ability to attenuate or remove the vocals from any recording.
It could also enable “gamification” in karaoke applications, e.g. by awarding
points to performances that are more similar to the original.

Source separation can also simplify the time-consuming task of transcription.
When a human transcriber manually transcribes polyphonic music to score,
they first have to intently and carefully listen for the source to be transcribed.
Transcribing from individual sources is both faster and less error-prone.

The same is true for automatic transcription systems. In fact, many common
tasks in Music Information Retrieval (MIR) could benefit from using source
separation as a preprocessing step. Automatic drum transcription and vocal
pitch transcription systems are likely to yield more accurate models when
presented with solo drums and solo vocals; chord detection systems may
improve in the absence of drums; automatic lyric transcription is very difficult
task when the input is musical mixtures, but could be achievable on solo
vocals, etc. Conversely, we believe that semi-blind source separation, where
attributes such as beat positions or pitch salience are available, could show
improvements over purely blind source separation. This “chicken-and-egg”
problem could be overcome by advances in multi-task learning, combining
source separation and other MIR tasks in jointly optimized machine learning
models.

It is also conceivable that source separation could play a major role in future
generations of creative tools. Sampling, re-mixing, “mash-ups”, etc., have
become commonplace in modern music, thanks to innovations in hardware
and software such as the Akai MPC60 and Ableton Live. Yet these tools
are limited to the multi-source content that is present in existing recordings.
Automatic source separation could enable creative uses of extracted instru-
ment and vocal tracks from existing music, launching entirely new forms of
musical expression.
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1.1 Thesis outline

Throughout this thesis we will explore automatic music source separation by
utilizing modern (at the time of writing) techniques and tools from machine
learning and big data processing. The bulk of this work was carried out
between 2016 and 2019.

In Chapter 2 we conduct a review of source separation literature. We start
by outlining a subset of applications of source separation in some depth.
We describe some of the early, pioneering work in automatic source separa-
tion: Auditory Scene Analysis, and its digital counterpart, Computational
Auditory Scene Analysis.

We then introduce matrix decomposition-based methods such as Indepen-
dent Component Analysis and Non-Negative Matrix factorization, and pitch-
informed methods where the separation algorithm is guided by pitch informa-
tion that is known a priori. We briefly discuss user-guided methods, before
conducting a thorough review of Deep Learning-based source separation, in-
cluding recurrent, convolutional, deep clustering-based, and Generative Ad-
versarial Networks.

We then proceed to describe common evaluation metrics and training datasets.
Finally, we list a number of current challenges and drawbacks of current sys-
tems.

Chapter 3 focuses on datasets for musical source separation. First we show
the growth of dataset sizes for both machine learning in general and music
information retrieval specifically. We give several examples of the complexi-
ties and idiosyncrasies that are intrinsic to music datasets. We then proceed
to present a method for extracting ground truth data for source separation
from large unstructured musical catalogs.

In Chapter 4 we design a novel deep learning-based source separation al-
gorithm. Motivation is provided by means of a musicological study1 that
showed the high importance of vocals relative to other musical factors, in
the minds of listeners. At the core of the vocal separation algorithm is the
U-Net, a deep learning architecture that uses skip connections to preserve
fine-grained detail. It was originally developed in the biomedical imaging

1This work was carried out in collaboration with Andrew Demetriou, PhD candidate
at Delft University.
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domain, and later adapted to image-to-image translation. We adapt it to
the source separation domain by treating spectrograms as images, and we
use the dataset mining methods from Chapter 3 to generate sufficiently large
training data. We evaluate our model objectively using standard evaluation
metrics, subjectively using “crowdsourced” human subjects. To the best of
our knowledge, this is the first use of U-Nets for source separation.

In the introduction above we proposed joint learning to optimize source sep-
aration and other objectives. In Chapter 5 we investigate one such instance:
multi-task learning of vocal removal and vocal pitch tracking. We com-
bine the vocal separation model from Chapter 4 with a state of the art pitch
salience estimation model2, exploring several ways of combining the two mod-
els. We find that vocal pitch estimation benefits from joint learning when
the two tasks are trained in sequence, with the source separation model pre-
ceding the pitch estimation model. We also report benefits from fine-tuning
by iteratively applying the model.

Chapter 6 extends the U-Net model to multiple instruments. In order to
minimize the phase artifacts that were a common issue in Chapter 4, we
modify the model to operate in the complex domain. We run experiments
with several loss functions: Time-domain loss, magnitude-only frequency-
domain loss, and joint time and frequency-domain loss. Our experiments
are evaluated both objectively and subjectively, and we carry out extensive
qualitative analysis to investigate the effects of complex masking.

Finally, we conclude the thesis in Chapter 7 by summarizing this work and
highlighting several future directions of research.

1.2 Notation

1.2.1 Notational conventions

Throughout this document we will use the following conventions:

Example Name Description
x Lowercase italic Scalar values
x Lowercase bold Vector
X Uppercase bold Matrix

2The pitch salience model was created by Dr. Rachel Bittner.
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Xi,j Uppercase italic with subscript Single matrix element

1.2.2 Symbols

We will use these symbols consistently:

Notation Description
x Mixture audio signal
y Single source audio signal
X Mixture spectrogram
Y Single source spectrogram
S f0 salience produced by Deep Salience
ŷ Model estimate of single source audio signal

Ŷ Model estimate of single source spectrogram

Ŝ Model estimate of f0 salience, Sv

M Soft ratio mask

Ô Final neural network layer output

1.2.3 Abbreviations

These abbreviations are used in this thesis:

Abbreviation Meaning
AI Artificial Intelligence
API Application Programming Interface
ASA Auditory Scene Analysis
BLSTM Bidirectional Long Short-Term Memory
BSS Blind Source Separation
CASA Computational Auditory Scene Analysis
cIRM Complex Ideal Ratio Mask
CNN Convolutional Neural Network
DL Deep Learning
DNN Deep Neural Network
f0 Fundamental Frequency
FFT Fast Fourier Transform
FMA Free Music Archive
GAN Generative Adversarial Network
GFS Google File System
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GMM Gaussian Mixture Model
GRU Gated Recurrent Unit
HCQT Harmonic Constant-Q Transform
HPSS Harmonic / Percussive Source Separation
IBM Ideal Binary Mask
ICA Independent Component Analysis
IRM Ideal Ratio Mask
ISA Independent Subspace Analysis
ISMIR International Society for Music Information Retrieval
ISTFT Inverse Short-Time Fourier Transform
LSTM Long Short-Term Memory
MIR Music Information Retrieval
MIREX Music Information Retrieval Evaluation eXchange
MPI Message Passing Interface
MSS Musical Source Separation
NMF Non-negative Matrix Factorization
NSDR Normalized Signal-to-Distortion Ratio
OA Overall Accuracy
PCA Principal Component Analysis
RAID Redundant Array of Inexpensive Disks
RAM Random Access Memory
RBM Restricted Boltzmann Machine
RNN Recurrent Neural Network
RPA Raw Pitch Accuracy
RPCA Robust Principal Component Analysis
ReLU Rectified Linear Unit
SAR Signal-to-Artifacts Ratio
SDR Signal-to-Distortion Ratio
SIR Signal-to-Interference Ratio
SiSEC Signal Separation Evaluation Campaign
SQL Structured Query Language
SSD Solid State Drive
STFT Short-time Fourier Transform
STOI Short-Time Objective Intelligibility
T-F Time-Frequency
VAD Vocal Activity Detection
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1.2.4 Pluralis modestiae

Throughout this thesis I use the first-person plural pronoun “we” to describe
my own work, unless explicitly stated otherwise.
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Chapter 2

Literature Review

2.1 Mathematical preliminaries

2.1.1 Time-domain Audio Signals

Sound is made from fluctuations in air pressure. Digitally, this is represented
as a stream of numbers, usually ranging between −1 and 1, corresponding to
the displacement of air at discrete instances in time. We notate this audio
signal xt, where t is the time step. In vector notation we denote x = x0...t.

Digital signals can be sampled at different frequencies. The sample rate of
a signal is defined as the number of observations, or samples, are recorded
per second. The sample rate determines the frequency range of the signal:
the highest frequency that can be recovered (also referred to as the Nyquist
frequency) is half of the sample rate.

2.1.2 The Discrete Fourier Transform

Any audio signal can be represented as a sum of sinusoids at various fre-
quencies, phase offsets, and magnitudes. This representation can be derived
through the Fourier transform. The focus of this thesis is on digital signal
processing, so we will limit our discussion to the Discrete Fourier Transform
(DFT).

The DFT is defined as
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DFT(x)k :=
N−1∑
n=0

xne
−i2πkn
N , k ∈ {0...N − 1} (2.1)

where k is the coefficient index, n is the time step, N is the total number of
time steps, and i is the imaginary unit.

The frequency of each coefficient k is dependent on both the sample rate and
the number of time steps N :

fk =
kR

N
, k ∈

{
0...

N

2
− 1

}
(2.2)

where R is the sample rate. When the signal x is real (as opposed to
complex), the second half of the DFT is the mirror conjugate of the first
half and contains no additional information. For that reason, we disregard
the second half and only use the coefficients k ∈

{
0...N

2
− 1
}

. Frequencies
are spaced equally from 0 Hz to the Nyquist frequency, R

2
, where the 0 Hz

component represents a constant offset.

2.1.3 The Short-Time Fourier Transform

0 4 8 13 17 21 26 30
Time (seconds)

0

392

784

1176

1568

1960

2352

2744

3136

Fr
eq

ue
nc

y 
(H

z)

Figure 2.1: STFT example

In many applications we are interested in the frequency response of a signal
over time. The Short-Time Fourier Transform (STFT) computes the DFT
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over short windows of the signal, resulting in a matrix of frequency bins and
time frames.

STFT(x)n,k := DFT(w(xhn...(hn+N)))k (2.3)

where t is the time STFT frame, k is the DFT bin, w(·) is a window function
(e.g. the Hamming or Hann window), and h is the hop length between
windows..

Like the DFT, the STFT is complex-valued. In polar coordinates, the magni-
tude component of the STFT represents the amplitude of various frequencies
at each time step, and the phase component describes the phase offset of
each frequency. In musical applications it is common to discard the phase
component and only employ the STFT magnitude component. This is also
true in musical source separation, but as we shall see in Section 2.4.9, several
examples exist of phase-aware source separation models.

2.1.4 Fundamental frequencies and harmonics

The saxophone spectrogram in Figure 2.1 has a number of parallel “lines”
at roughly equal spacing, decreasing in intensity as the frequency increases.
At first glance it may appear that this is a spectrogram of multiple instru-
ments, but is in fact a natural phenomenon that occurs in all pitched musical
instruments to varying degrees. The timbre of an instrument is defined by
these overtones — frequencies that resonate with the fundamental frequency
at different amplitudes. When we talk about the “pitch” of a sound, we
actually refer to the fundamental frequency (commonly denoted f0) of the
sound.

2.2 Musical Source Separation

As was mentioned in the introduction, musical source separation is not en-
tirely analogous to speech separation. However, our description of speech
separation was somewhat simplified. In fact, the human voice has several
characteristics that complicates the separation of voices (Diehl, 2008).

For example, human voices have a wide range of vocal registers. Studies have
shown that it is easier to separate a female voice when the interfering voices
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are male than it is to separate a female voice from other female voices, and
vice versa (Darwin, Brungart, & Simpson, 2003).

This would suggest that separation of different musical instruments should
be a simpler problem than separation of different speakers. A saxophone
and a tambourine have completely different timbres, pitch ranges, amplitude
envelopes, etc.

However, there are several complicating factors. While different speakers
pace their words differently, musicians do their best to play in time with
each other. The result is that note onsets often coincide, causing transients
to be masked.

Similar masking issues arise in the frequency domain. In polyphonic music,
the same notes are often played by several instruments. A guitar might play
a G major chord (G/B/D) while a singer sustains a D note. We now have
to listen for several sources at the same fundamental pitch.

Timbral masking is yet another complicating feature of music. While a sax-
ophone and a tambourine sound very different, an alto saxophone and a
distorted solo electric guitar occupy similar frequency ranges, and can sound
almost identical.

2.3 Musical Applications

Applications of musical source separation can broadly be categorized as user-
facing systems and as components of higher-level systems. In the following
sections we present several examples of both categories.

2.3.1 User-facing Applications

Perhaps the most obvious application of source separation in music is Karaoke.
The worldwide Karaoke industry has an estimated annual value of $10 billion
US Dollars1. Popular Karaoke providers Sound Choice and Sunfly report-
edly own catalogs of 16,5002 and 18,0003 tracks respectively, re-recorded by
professional musicians employed by these companies. Since 2015, Sunfly has

1http://www.prweb.com/releases/2017/07/prweb14507690.htm
2https://pep.rocks/pep, retrieved December 2018
3https://www.sunflykaraoke.com/about-sunfly-karaoke, retrieved December 2018
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grown their catalog by approximately 4,000 songs4. This means that, on av-
erage, Sunfly records, mixes, masters, and produces Karaoke videos for circa
five tracks per day.

The Spotify music streaming service hosts a catalog in excess of 40 million
songs (as of December, 20185). Listening patterns on the popular streaming
platform is heavily skewed to popular music, with 80% of streams come from
the most popular 5% songs (TechDirt, 2010). With 40 million songs on the
platform, that corresponds to around 200,000 songs. Sunfly’s ability to gen-
erate five tracks per day is an impressive feat, but it is clear that manual ways
of creating Karaoke content can not scale past the most mainstream top of
the worldwide music catalog. Niche audiences in the “long tail”(Brynjolfsson,
Hu, & Smith, 2006) stand little hope of being able to perform their favorite
songs in a Karaoke venue.

Automatic source separation could revolutionize the Karaoke industry, let-
ting users automatically remove or attenuate the vocals from any piece of
recorded music. In addition to greater scale, the automatically generated
Karaoke songs would sound just like the originals (except the vocals), as
opposed to being re-recordings.

Source separation could also add additional layers of interactivity, by an-
alyzing the original vocals, and compare them to the vocals sung by the
karaoke performer. Pitch-tracking features that award points for singing
correct pitches are already part of the popular Smule Sing! Karaoke appli-
cation6.

In a similar vein, the Guitar Hero suite of video games7 let the user take the
role of the guitarist (or other instrumentalist) of a rock band, who virtually
performs in front of a live audience. The guitar part of a track is mapped to
a sequence of key presses that the player must perform on a custom guitar-
shaped game controller. As the player moves around the virtual stage, the
game mixes the sounds of the other instrument to make the illusion seem even
more realistic. Source separation combined with automatic pitch tracking
should be able to produce similar experiences, but for any available track.

4Archived web site from October, 2015: https://web.archive.org/web/20151024223224/
https://www.sunflykaraoke.com/about-sunfly-karaoke

5https://newsroom.spotify.com/company-info/, retrieved December 2018
6https://www.smule.com/
7https://www.guitarhero.com/
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The term “edu-tainment” has become a popular way to describe educational
tools that take inspiration from video games. This style of teaching is also
making inroads in music education, for example with tools like Yousician8.
Automatic source separation could enable musical instruments to be taught
by isolating individual instruments from pieces that are already familiar to
the student.

2.3.2 Using Separated Sources in Higher-level Systems

Musical source separation is one of many subtasks in the field of Music In-
formation Retrieval (MIR). At the highest level, MIR is concerned with the
automatic analysis, classification, and generation of music. The various tasks
of MIR, e.g. chord recognition, fundamental frequency estimation, mood es-
timation, etc., are often tackled in isolation. It has long been argued that
we, as a community, should take a more holistic approach, and let outputs
of one task become inputs to other tasks, or even that several tasks could be
approached in tandem (Liem, Müller, Eck, Tzanetakis, & Hanjalic, 2011).
Source separation can be considered a fundamental building block, on top of
which systems can be built for other MIR tasks.

For example, vocal pitch estimation should benefit from vocal source separa-
tion; automatic drum transcription from an isolated drum track should be a
simpler problem than drum transcription from a mixture; chord estimation
results might improve if the inputs are separated guitar and bass tracks, etc.

Individual source separated instrument tracks could also be used as inputs
to music generation systems. “Mashups” are a genre of music in which the
accompaniment from one song is combined with the vocals from a different
song, resulting in surprising and often musically appealing outputs.9

Isolated instruments could also be used as training data for algorithmic com-
position and music synthesis, where the generative model is optimized to ap-
proximate the sound and musical qualities of existing, human-created music.
It is arguably easier for a machine learning system to learn representations
for individual instruments, than the greatly varying mixture.

8https://yousician.com
9See for example DJ Danger Mouse’s “The Grey Album”, that combines the vocals

from Jay-Z’s “Black Album” with The Beatles’ “White Album”.

22

https://yousician.com


Similarly, auto-accompaniment systems (“Band-in-a-box”) can be learned in
a leave-one-out fashion. An automatic accompaniment for guitar could be
trained on source separated outputs to predict the most likely mixture of
bass and percussion that best matches a solo guitar performance.

2.4 Existing Systems for Automatic Source

Separation

2.4.1 Auditory Scene Analysis

A music source separator can be seen as an automatic “listening machine”.
The goal is to build a machine that is able to perceive sound like humans
do, where mixtures of sources are consistently and coherently grouped. In
order to build computational models of sound perception, we may want to
take inspiration from physiological and neurological model of how humans
recognize sound.

In 1990, as a result of decades of extensive research, Arthur Bregman pro-
posed “Auditory Scene Analysis” (ASA) as a framework to understand how
the brain processes incoming sound and creates the perception of distinct
sound sources (Bregman, 1990). ASA draws heavily from Gestalt theory, a
field of psychology that attempts to explain how our brain discerns patterns
and groups visual objects into coherent groupings. Gestalt theory presents a
number of principles for visual grouping: Proximity, similarity (of color, size,
etc.), common fate (e.g. shared direction), continuity (the tendency to see
continued structures, even in the presence of overlapping objects), closure
(the ability to complete partial shapes), symmetry, parallelism, and disjoint
allocation (visual elements belong only to single objects) (Wagemans et al.,
2012).

Many similar effects can be found in sound perception (Deutsch, 1999). For
example, a single monophonic melody played one note at a time is heard
as a single source as long as the notes are close in pitch and time. If notes
are added that are distant in pitch, we no longer hear a single source but
multiple. The principle of continuity can be observed in that we hear the
original melody continue “past” the outlier note. If we listen to the melody
on headphones, and randomly assign notes left and right, we tend to group
notes into multiple sources by spatial proximity.
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These are examples of what Bregman refers to as sequential integration, the
ability to attribute sequential sounds to the same source. But we are also
able to perceive several sounds at the same instant in time, an effect called
simultaneous (spectral) integration in the ASA literature. This is believed to
be influenced by a number of factors, e.g. proximity of pitch, similarity of
timbre and spatial origin. Many of these factors are themselves the result
of complex processes. For example, in order to perceive proximity in pitch,
the auditory system has to “explain away” overtones that are near multiples
of the same fundamental frequency, collapsing the perception of overtones
into a single frequency. Bregman refers to this effect as the principle of
harmonicity.

The common fate principle can also be observed during spectral integration.
Harmonics that belong to the same source tend to synchronously fluctuate
in similar patterns, e.g. a violin with vibrato.

Gestalt-like grouping principles of auditory perception have been observed in
infants (Demany, 1982) as well as animals (Fishman, Arezzo, & Steinschnei-
der, 2004), and are sometimes collectively referred to as primitive auditory
scene analysis. We also develop our ability to discern sources through learn-
ing over time. As we grow up, there is evidence that we internalize “schemas”
or templates of sounds and patterns. These schemas can be single timbres
(the sound of a spoken vowel), or longer sequences of sounds or musical notes.
For example, it has been shown that familiar melodies are more easily heard
as individual sources than unfamiliar melodies, in the presence of interfering
noise (Dowling, 1973).

2.4.2 Computational Auditory Scene Analysis

The Auditory Scene Analysis framework provides a number of empirically
grounded insights into how we perceive sound. While ASA is essentially a
high-level approximation of auditory perception, it is still a complex model
with many interconnected components and variables. This fact, combined
with inherent ambiguities, leads to several trade-offs when we try to build
computational models based on ASA. How closely do we try to emulate the
ASA principles in software? How do we set the values of the many free
variables?

The term Computational Auditory Scene Analysis was coined in (Brown
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& Cooke, 1994). The authors take a rather literal approach to modeling
ASA through a processing graph where each node is a model of acoustical,
neurological, or psycho-perceptual auditory function.

In the later sections of this chapter we will describe several deep learning-
based source separation methods, where heuristics and manual feature en-
gineering has been replaced by automatically learned feature sets. These
learned features tend to self-organize hierarchically, such that early network
layers correspond to low-level audio features, and later layers map to courser,
high-level features. It is therefore instructive to investigate the details of
CASA, which also follows a hierarchical organization that progressively trans-
forms low-level audio features into high-level audio “objects”. Below is a
summary of the CASA system.

First, the input audio signal is low-pass filtered to simulate filtering that
occurs in our outer ear. The filtered signal is then fed through a series of
gammatone filters to produce a two-dimensional time-frequency representa-
tion that resembles a spectrogram.

Taking inspiration from neural functions, the authors compute auto-correlation
maps over the extracted time-frequency representation, for each spoken syl-
lable of interest. They then compute a frequency-wise cross-correlation map
over each auto-correlation map. Similar to the Gestalt principle of common
fate, frequency bins of the auto-correlation map that have a cross-correlation
above a certain threshold are grouped into periodicity groups.

In the next step, sequential integration is modeled as short-term frequency
transition curves. The intuition is that spoken words advance through time
by continuously sliding pitch, and that continuity helps us perceive words as
emanating from the same source, invoking the Gestalt principles of proximity
as well as continuity. The authors model pitch transitions using a bank
of two-dimensional Gaussian filters rotated at different angles. The filters
are convolved with the time-frequency representation from above, and the
per time frame and frequency bin maxima are computed into a frequency
transition map.

One key component of spectral integration in the ASA framework is onset
times. When several sounds start at the same time, the brain tends to
attribute them to the same source. In CASA, this behavior is modeled using
per-frequency onset detectors, implemented as leaky integrators. This results
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in a time-frequency onset map.

The periodicity groups, frequency transition map, and onset map are fed
through a series of heuristic rules to form a set of auditory elements, a seg-
mentation of the spectrogram into higher-level connected regions. These
elements are then further grouped into the final source-specific spectrogram
masks by estimated fundamental frequency, and shared onset and offset. The
gammatone-filtered spectrogram is multiplied element-wise with each mask,
and resynthesized back to the time domain.

Several other computational models of auditory scene analysis have been
proposed. For example, (Ellis, 1996) takes a more data-driven approach.
A hierarchical series of processing components, similar to the CASA model
outlined above, compute a source separation hypothesis. But in contrast to
(Brown & Cooke, 1994), Ellis’ model then compares the predicted isolated
sources from real isolated sources. The difference between the real and pre-
dicted sources is then fed back into the system, and is used to update the
processing components to better match the real isolated sources.

REPET (Rafii & Pardo, 2013) makes the observation that, in music, the
background is often repeating, whereas the foreground is dynamically chang-
ing over time. They exploit this fact for source separation. A beat tracking
algorithm is first run over the spectrogram. Repeating groups of beats are
subtracted out, and what remains is an isolated foreground signal.

In Kernel Additive Models (Liutkus, Fitzgerald, Rafii, Pardo, & Daudet,
2014), repetitions, as well as other local audio patterns, are modeled as 2-
dimensional kernels. Sources are extracted by median filtering or convolving
the mixture spectrogram with the pre-defined kernels. Kernels can be de-
signed for locally smooth signals, such as vocals, as well as percussive and
harmonic signals.

2.4.3 Matrix Decomposition Methods

We can pose the source separation problem as a decomposition of a multi-
dimensional mixture signal xi of into sources yj:

xi,t =
K∑
j=0

ai,jyj,t (2.4)
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where t is the discrete time step, and ai,j is a projection weight from mixture
dimension i to source j. In matrix notation:

xt = Ayt (2.5)

where xt ∈ RN , A ∈ RN×K , and yt ∈ RK , N is the number of input
dimensions and K is the number of sources. It should be noted that xt

can represent a multi-channel time-domain audio signal, a frequency domain
spectrogram, or any other multi-dimensional time series.

By approximating an inversion of A, W ≈ A−1 we can estimate the original
sources:

ŷt = Wxt (2.6)

Independent Component Analysis (ICA), proposed in (Comon, 1994), makes
the observation that a mixture of sources will be more Gaussian than in-
dividual sources. ICA attempts to optimize W such that the extracted
sources y maximize non-Gaussianity. It can be shown that maximizing non-
Gaussianity is equivalent to minimizing mutual information.

In classical ICA for audio source separation, the number of sources are re-
quired to be fewer than the number of input channels. That means that ICA
is mostly applicable for multi-microphone recordings.

One simple way to handle the overcomplete case where K > N is to perform
dimensionality reduction on x. This is the basic idea behind Independent
Subspace Analysis (ISA) (Casey & Westner, 2000). In audio-based ISA, the
input time-domain signal is first transformed to a frequency-domain spectro-
gram. The spectrogram is then dimensionality reduced using PCA, ICA is
applied to extract low-dimensional source matrices, and source spectrograms
are retrieved by inverting the PCA. Finally, the extracted source spectro-
grams are clustered according to KL-divergence.

A slightly different formulation of source separation decomposes a mixture
into a linear mixture of a set of source basis functions, weighted over time:
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xt =
K∑
i=0

bigi,t (2.7)

where gi,t is the gain of source i at time t, and bi is the basis function for
source i.

In matrix notation:

X = BG (2.8)

where X ∈ RT×N , B ∈ RN×K , and G ∈ RK×T , where T is the number of
time steps, N is the number of input dimensions, and K is the number of
basis functions.

Basis functions can be interpreted as per-source spectral prototypes. For ex-
ample, if we hand craft basis functions corresponding to the spectral profiles
of keys on a piano, and let xt be spectrogram frames of a piano recording,
the time-varying gain gi,t will correspond to notes being played on the piano.
Hence, we have designed a piano note transcription system, by means of a
note separation system (Smaragdis & Brown, 2003). Similarly, if we knew
the prototypical spectral profiles for musical instruments, we should be able
to decompose a musical mixture signal into individual source signals.

This problem is related to schema-based auditory scene analysis, described
in 2.4.1. Spectral profiles can be considered schemas or templates of sound
sources. In a process analogous to human schema learning, we can algorith-
mically learn a dictionary of spectral profiles from audio examples.

Non-negative Matrix Factorization (NMF) is an unsupervised method to
learn source basis functions from a mixture. It has been applied extensively
to musical source separation, e.g. in (B. Wang, Mary, Plumbley, & Mary,
2005).

In (FitzGerald, Lawlor, & Coyle, 2003), templates for individual drum sounds
are extracted with ISA. Each drum sound is itself separated into a number
of templates that together capture the various characteristics of that drum
sound, the intuition being that a real drum can be hit in many ways. A full
mixture of different drum sounds is then analyzed by the instrument-specific
ISA models.
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It can be argued that a mixture of drum sounds is one of the simpler forms of
musical source separation, since drums are not pitched instruments. Drums
are also fairly well separated in the frequency domain, with kick drums, snare
drums, hi-hats, and cymbals occupying relatively different parts of the spec-
trogram, with comparatively little overlap of harmonics. These are indeed
some of the factors that make musical source separation a more difficult task
than speech separation.

Template learning for pitched instruments is discussed in (Vincent & Rodet,
2004). In contrast to the drum transcription system described above, sepa-
rate ISA models are learned for each source and note pitch pair. By building
per-genre dictionaries, (Laroche, Papadopoulos, Kowalski, & Richard, 2016)
find that genre-specific dictionaries outperform global dictionaries.

Harmonic/Percussive Source Separation (HPSS) attempts to decompose a
mixture spectrogram into two matrices representing harmonic and percussive
components of the input spectrogram. A simple, yet effective algorithm
was introduced by (FitzGerald et al., 2003), who applies median filtering
over time to retrieve harmonic components, and similarly median filters over
frequency to retrieve percussive components.

(Jeong & Lee, 2014) observes that vocals are neither exclusively harmonic
nor percussive in nature, and thus decomposes the mixture spectrogram into
harmonic, percussive, and vocal components. They do so by enforcing a
sparsity constraint on the residual vocal component.

The inherent sparsity of the vocal signal is also exploited in (P.-S. Huang,
Chen, Smaragdis, & Hasegawa-Johnson, 2012), which uses Robust PCA
(RPCA) (Candes, Li, Ma, & Wright, 2010) to separate vocals from accom-
paniment. RPCA decomposes the mixture signal into a sparse matrix and a
low-rank matrix. Instrumental music signals tend to be repetitive, and there-
fore their magnitude spectrograms can be considered low-rank matrices.

2.4.4 Pitch-informed Methods

In the template learning methods in (FitzGerald et al., 2003) and (Vincent
& Rodet, 2004), the ISA-based source separators effectively double as drum
and pitch transcription systems. Pitch tracking is also a key element in the
CASA system described in 2.4.2 There are many examples in the literature
where source separation has been approached in conjunction with pitch tran-
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scription. Intuitively, it makes sense that a separated source should be easier
to transcribe. And conversely, if we knew the vocal melody a priori, it should
be possible to follow that melody during vocal source separation.

(Kashino & Murase, 1999) proposes a multi-agent system for musical source
separation. Each agent adapts to process an individual instrument, using a
bank of adaptively updated waveform templates, tuned to musical pitches.
Agents cooperate via a “mediator”, to group an auditory scene into segments
labeled by instrument and pitch.

In (Durrieu, Richard, & David, 2008), the authors augment an NMF model
with a vocal pitch tracker. The vocal source is estimated with a pitch-
dependent Gaussian Mixture Model (GMM) and all non-vocal sources are
modeled with NMF. The GMM and NMF models are combined into a single
graphical model that is jointly optimized.

A related vocal separation algorithm is presented in (Virtanen, Mesaros, &
Ryynänen, 2008). First, pitch transcription based on the most prominent
detected fundamental frequency is performed on the input spectrogram. It is
assumed that the vocal signal is responsible for the most prominent f0, and
the spectrogram partials that are found to originate in that f0 are designated
as the vocal source. It is then masked out of the input spectrogram, and NMF
is performed on the remaining non-zero bins.

An iterative approach is presented in (Hsu, Wang, Jang, & Hu, 2012), where
a rough pitch estimation is used to inform a rough source separation. This
process is then iterated: the rough separation results produce a slightly better
pitch estimation, which produces a slightly better separation, and so forth.

2.4.5 User-guided separation

Machine learning is often applied to problems that humans can solve triv-
ially, but that are difficult to design procedural algorithms and heuristics for.
For example, hand-written digit recognition is a domain where we, up until
relatively recently, had to employ human data entryists to transfer numbers
from paper to digital databases. Source separation is arguably an even more
intuitive for human brain function than reading text. However, actually sep-
arating an audio mixture into several isolated audio files is not an easy task
for humans to perform. While software packages exist for this task, e.g.
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SADiE10, they require painstaking human intervention.

Several user-guided source separation have been proposed to simplify the
process of manual source separation. While these systems are not able to
process audio at the scale of the fully automatic systems that are reviewed
throughout this chapter, they often produce higher quality separation results
than automatic systems.

The pitch-informed system in (Durrieu & Thiran, 2012) first estimates mul-
tiple fundamental frequencies in the mixture. A user then selects which
fundamentals to extract sources for. In (Bryan, Mysore, & Wang, 2013),
the user interface consists of a piano roll representation of separation results,
that the user can manipulate to improve the automatic source separation.

2.4.6 Frequency-domain masking

Many of the deep learning architectures presented below in Section 2.4.7 pro-
duce “masks” that are applied to frequency-domain spectrograms. A mask
is typically a matrix of the same shape as the target spectrogram, whose aim
is to selectively “let pass through” only those components of the input signal
corresponding to the particular source. A similar form of frequency-domain
masking is known to be present in the auditory system of the human brain:
a quiet sound becomes imperceptible if a different, louder sound is activated
close to it in time and frequency (Moore, 2004), suggesting that each time-
frequency component could be associated to a single, dominant source. This
notion is formalized in (D. Wang, 2005): in the Ideal Binary Mask (IBM)
each time-frequency (T-F) component is either 1 or 0, depending on the
intensity of the target signal with respect to background noise. The IBM
has been used in the context of neural network-based speech enhancement
(P.-S. Huang, Kim, Hasegawa-Johnson, & Smaragdis, 2014; Narayanan &
Wang, 2013) and musical source separation (Luo, Chen, Hershey, Roux, &
Mesgarani, 2017b; Simpson, Roma, & Plumbley, 2015).

Given a set of source spectrograms Xi, the Ideal Binary Mask MIBM
s for

source s is defined as:

MIBM
st,f

=

{
1, if s = arg maxiX

i
t,f

0, otherwise
(2.9)

10http://www.sadie.com
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where T and F are the number of time steps and frequency bins in the
spectrogram, t and f are time and frequency indices, and s and i are source
indices.

Given the input mixture spectrogram, X, the isolated source spectrogram,
Ŷ, is estimated as

Ŷ = X⊗ ¯IBM (2.10)

where ⊗ represents the Hadamard product.

The Hadamard product is simply an element-wise multiplication. Given two
matrices of the same shape, A and B, the Hadamard product is defined as:

C = A⊗B (2.11)

Ci,j = Ai,j ·Bi,j (2.12)

Although there are arguments in favor of binary masks – namely, that the
network is forced to make hard decisions about the source to which each T-F
component belongs, thus reducing interference (Grais, Roma, Simpson, &
Plumbley, 2016) – it is becoming increasingly common for source separation
models to estimate soft masks, to be applied to the mixture spectrogram.
As the name implies, the components of a soft mask are not restricted to be
binary-valued.

A soft mask, denoted by M, may either be real-valuedMi,j ∈ R, 0 ≤Mi,j ≤ 1,
or complex Mi,j ∈ C, 0 ≤ |Mi,j| ≤ 1. The application of a soft mask is
typically performed by multiplication to the input mixture spectrogram; in
such case it should be noted that the estimation of the mask is invariant to
differences in the scaling of the input signal. Soft ratio masks are applied the
same way as binary masks:

Ŷ = X⊗M (2.13)

A common post-processing technique involves the use of multi-channel Wiener
filtering (Nugraha, Liutkus, & Vincent, 2018). Source spectrograms are ini-
tially estimated using some source separation algorithm (DNN, NMF, etc.),
and then refined in an expectation-maximization setting that maximizes the
consistency of source estimates. For an implementation of multi-channel
Wiener filtering, refer to the Norbert Python package (Liutkus & Stöter,
2019).
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2.4.7 Deep Learning Methods

Computation models of the neural networks that exist in the brain have been
investigated since this 1950s (Rosenblatt, 1958). Since then, artificial neural
networks have shifted away from simulation of biological systems, to become a
useful computational technique in their own right. Deep learning represents
the latest “wave” of interest in neural networks, propelled by advances in
computer hardware and software (Bengio, 2016). For a historical perspective
of deep learning, please refer to (Schmidhuber, 2015).

Deep Neural Networks (DNN) have are now responsible for state-of-the-art
results in a wide range of applications of supervised and unsupervised ma-
chine learning, as well as reinforcement learning. For several years deep neu-
ral networks have surpassed human accuracy in image classification (Geirhos
et al., 2017). Deep networks are also used in state-of-the-art results in seman-
tic image segmentation (Tao, Sapra, & Catanzaro, 2020), object detection
(Qiao, Chen, & Yuille, 2020), image generation (Ho, Jain, & Abbeel, 2020),
image super-resolution (Y. Zhang et al., 2018), image captioning (Yun et al.,
2019), as well as many other image processing tasks.

Tranformer-based architectures (Vaswani et al., 2017) have resulted in suc-
cessful natural language processing processing models for common sense
reasoning (Devlin, Chang, Lee, & Toutanova, 2019), machine translation
(Edunov, Ott, Auli, & Grangier, 2018), question answering, and sentiment
analysis (Raffel et al., 2019).

Deep networks are have also been shown to outperform previous methods
in tasks as diverse as graph processing (R. Wang, Li, Hu, Du, & Zhang,
2020), time series forecasting (Lim, Arik, Loeff, & Pfister, 2019), program-
ming code generation (Yu, Li, Zhang, Zhang, & Radev, 2018), reinforcement
learning-based computer game play (Vinyals et al., 2017), and has also been
instrumental in the development of self-driving car technology (Liang, Jiang,
Niebles, Hauptmann, & Fei-Fei, 2019)

The Music Information Retrieval community has been swift to adopt deep
learning techniques for many tasks. (Eric J. Humphrey, Bello, & LeCun,
2013) outlined several opportunities where DL could have a transformative
effect on MIR. The authors argued that the hand-crafted features that dom-
inated the field at the time were inherently suboptimal and lead to overly
complicated architectures; that current methods were too localized in time
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and failed to take advantage of long-term musical structure; that shallow
models struggle to approximate the highly non-linear functions that underlie
real-world musical audio signals; and that music itself exhibits deep hierar-
chical internal structure. They suggested that the MIR community embrace
deep feature learning to address these issues.

We can get a rough idea of the adoption of deep learning in MIR by looking
at the appearance of the string “deep” in the titles of papers submitted to the
ISMIR conference between 2000 and 2018. Since 2004, around 100 papers
per year have been accepted. From 2000 to 2015, 7 papers in total had the
string “deep” in the title. In 2016, 2017, and 2018, there were 8, 6, and 7
“deep” papers per year, respectively.

There are many examples of deep learning-based methods in the larger speech
and sound source separation communities. However, neural networks have
been applied to source separation before the emergence of Deep Learning.
Here follows a review of a few selected papers from the source separation
literature that uses neural networks and deep learning. It can also be read
as a brief (and rather incomplete) history of the evolution of neural networks
over the past twenty years, through the lens of audio source separation.

One of the earliest source separation systems that employed neural networks
is (Herault & Jutten, 1986), later refined in (Jutten & Hérault, 1991). In
this work, a single-layer linear recurrent neural network is optimized using
an unsupervised learning function. Another early unsupervised neural model
is presented in (Burel, 1992), where a three-layer feed-forward network is
trained to minimize a cost function based on statistics of the input signal,
using backpropagation. Speech denoising, a problem related to segregation
of vocals and music accompaniment, was addressed in 1988 using neural
networks (Tamura & Waibel, 1988). A linear four-layer feed-forward network,
operating in the time-domain, learns to remove synthetically added room
noise from speech recordings.

In (Berenzweig & Ellis, 2001), a neural network-based method for Vocal Ac-
tivity Detection (VAD) is proposed. VAD is similar to source separation,
but instead of estimating a continuous source signal, the model predicts a bi-
nary vocal activation function over time. The authors extract audio features
by using a multi-class neural network trained to predict spoken phonemes.
These extracted features are then fed through a Hidden Markov Model to
produce the vocal/music segmentation.
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Deep Learning was applied to speech enhancement in (Lu, Matsuda, Hori, &
Kashioka, 2012). Using an architecture common in the early Deep Learning
literature, the authors build an bottle-necked autoencoder to reconstruct a
clean speech signal. When presented with the Mel spectrogram of a noisy
speech signal, the model removes noise and outputs a clean signal.

One of the first models to apply deep neural networks to musical source
separation was presented in (Grais, Sen, & Erdogan, 2014). A five-layer feed-
forward network is first initialized by layer-wise pre-training using Restricted
Boltzmann Machines. It is then trained to separate artificially synchronized
mixtures of speech and piano music.

Recurrent Neural Networks

Several Recurrent Neural Network (RNN) models have been explored for
source separation and related fields. In (Maas et al., 2012), a Deep Recur-
rent Denoising Auto-Encoder is applied to speech enhancement. (Weninger,
Hershey, Roux, & Schuller, 2014) trained a two-layer Long Short-Term Mem-
ory (LSTM) network to output spectral masks for each source.

(Erdogan, Hershey, Watanabe, & Roux, 2015) used a deep Bidirectional
LSTM (BLSTM) model for speech separation, and uses a loss function that
incorporates the phase difference between the estimated and actual sources.
This system also incorporates speech recognition, by adding phoneme infor-
mation as an additional input feature to the separation network.

An extension of Restricted Boltzmann Machines (RBM) to temporal data,
RNN-RBM, is used in (Boulanger-Lewandowski, Mysore, & Hoffman, 2014)
for separating vocals and accompaniment in music. Their RNN-RBM net-
work is combined with unsupervised NMF, and they find that the joint model
outperforms the individual components.

Another deep RNN for separating vocals from accompaniment is presented
in (P. Huang, Kim, Hasegawa-Johnson, & Smaragdis, 2014). A three-layer
RNN with ReLU non-linearities is trained to predict a soft spectrogram mask.
When synthesizing the masked estimated source magnitude spectrogram, the
phase from the original complex spectrogram is combined with the estimated
magnitudes. Their system is trained on 1000 short clips of Chinese karaoke
music, with durations between 4-13 seconds.
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In (Mimilakis, Drossos, Virtanen, & Schuller, 2017), a recurrent encoder-
decoder architecture is built with Bidirectional GRU units. Skip connections
are added from the input to the decoder. To fine-tune the estimated source
spectrogram, a highway network and a generalized Wiener filter are added
after the decoder.

Convolutional Networks

The benefits of using recurrent networks over convolutional networks are gen-
erally cited as (theoretically) infinite memory, compared to the finite context
window of convolutional networks. However, that apparent truism has been
repeatedly challenged in non-recurrent architectures such as dilated convo-
lutions (van den Oord et al., 2016), “transformer networks” (Vaswani et
al., 2017), temporal convolutional networks (Bai, Kolter, & Koltun, 2018),
among others. Convolutional networks have been successfully applied to
musical source separation too, and below follows a selection of highlighted
papers from the rather large literature.

A convolutional encoder-decoder architecture for source separation is intro-
duced in (Chandna, Miron, Janer, & Gómez, 2017). After transforming the
mixture signal to the frequency domain, the network consists of a vertical con-
volution (across frequency) layer followed by horizontal convolution (across
time) layer. After a fully connected bottleneck layer, the decoder mirrors
the encoder with horizontal transposed convolution and vertical transposed
convolution layers. The output of the network is source-specific soft ratio
mask, that is then multiplied element-wise with the input spectrogram.

The ratio mask is an estimate of the Ideal Ratio Mask (IRM), MIRM, which
is defined as

MIRM = Y �X (2.14)

where Y is a spectrogram magnitude matrix corresponding to a single source,
X is a mixture spectrogram containing Y and other sources, and � denotes
element-wise division.

The hierarchical nature of music is explicitly modeled in (Grais, Wierstorf,
Ward, & Plumbley, 2018). Three parallel convolutional encoder-decoder net-
works are jointly optimized to predict source spectrograms. The networks
differ in receptive field sizes, thus allowing the network to learn dependencies
at different time scales.
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The DenseNet (G. Huang, Liu, Van Der Maaten, & Weinberger, 2017) is
a neural network architecture consisting of blocks of fully connected layers
where all layers in a block have all-to-all skip connections. Similar to the
way convolutional networks have been constructed as encoder-decoders with
a bottleneck layer, (Takahashi & Mitsufuji, 2017) builds an hourglass-like ar-
chitecture of DenseNet blocks. In the encoder path the blocks are connected
using pooled, and in the decoder using transpose convolutions. Several iden-
tical networks are applied to different frequency bands of the input, concate-
nated with a full-band network, and fed through a final DenseNet block to
produce the spectrogram prediction.

Deep Clustering

Clustering has been applied to source separation, for example using self-
organizing maps (Herrmann & Yang, 1996), density-based clustering (Van
Hulle, 1999), and spectral clustering (Bach & Jordan, 2006). A deep neural
network approach to clustering is introduced in (Hershey, Chen, Roux, &
Watanabe, 2015).

We transpose Ms into an indicator matrix I ∈ ZTF×S where S is the number
of sources:

Iix(t,f),s = M s
t,f (2.15)

where the indexing function ix(t, f) = Tt+ f .

From the indicator matrix we derive an affinity matrix A ∈ ZTF×TF

A = IIT (2.16)

An element in the affinity matrix Aix(t1,f1),ix(t1,f1) will be 1 if Mt1,f1 = Mt2,f2 ,
otherwise 0.

The Deep Clustering algorithm uses a deep BLSTM network to produce
an encoding vector for each time-frequency component, V ∈ RTF×D, where
D is the encoding dimension. Encoding vectors are used to estimate the
affinity matrix, Â = VVT , where Â is the estimated affinity matrix. The
loss function for the network is defined as the squared Frobenius norm of the
difference between the estimated affinity and real matrices

C(A, Â) =
∥∥∥(Â−A)

∥∥∥2
F

(2.17)
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After training, encoding vectors V are grouped into sources using k-means
clustering, creating source-specific binary spectrogram masks.

One limitation of deep clustering is that the final clustering step is not part
of the optimization procedure. To overcome this issue, the “Chimera” archi-
tecture is proposed in (Luo et al., 2017b). The Chimera network, like the
eponymous mythological creature, has two heads. A deep BLSTM network
produces an intermediate encoding that is then split into a deep clustering
head, and a mask inference head. The deep clustering head has the same
loss as in 2.17, and the mask inference head produces a spectrogram mask
that optimizes similarity to the original source spectrogram. When trained
independently, the mask inference head performs better than deep cluster-
ing. However, jointly training both objectives improve the performance of
the mask inference head.

Generative Adversarial Networks

Generative Adversarial Networks (GAN) are a recent family of deep neu-
ral networks, originally proposed for realistic image generation (Goodfellow
et al., 2014). Two networks, a generator network and a discriminator net-
work, with different objectives are optimized independently, in tandem. The
discriminator is trained to discriminate between real and generated images,
while the generator is trained to produce images that the discriminator clas-
sifies as real. The generator has to adapt to a constantly improving dis-
criminator by producing more and more realistic images, and not leave any
“hints” that the discriminator can use to correctly classify generated images
as generated.

The SEGAN applies a GAN architecture to speech enhancement (Pascual,
Bonafonte, & Serrà, 2017). The generator consists of a 1D convolutional
encoder-decoder. The input to the generator is speech with added noise and
the discriminator is presented with clean speech.

GANs are used in a similar way for vocal separation in (Fan, Lai, & Jang,
2018) and (Stoller, Ewert, & Dixon, 2018). Here, the generator is conditioned
on a musical mixture, and the discriminator is presented with examples of
clean, isolated vocals.
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Stacking networks

As deep neural networks have grown deeper and deeper with increasing num-
bers of layers, the risk of information being lost increases. Several methods
have been proposed to facilitate the flow of information from lower layers to
upper layers.

The U-Net (Ronneberger, Fischer, & Brox, 2015), introduced in detail in
Chapter 4, is a popular architecture that concatenates the relatively un-
processed output from lower layers with the heavily processed inputs to the
upper layers, by means of skip connections. Similar skip connections can be
found in Highway Networks (Srivastava, Greff, & Schmidhuber, 2015), where
skip connections are used to connect lower layers with upper layers to allow
the flow of information.

In Recurrent Deep Stacking Networks (Palangi, Deng, & Ward, 2014) several
RNN modules are stacked and the inputs are fed to each of the RNNs in the
stack. This architecture was used for speech separation in (Z.-Q. Wang &
Wang, 2017).

The DeepOtsu model (He & Schomaker, 2019) for image enhancement uses
a stack of equivalent convolutional networks to iterative enhance the results
of previous models. We investigate this iterative enhancement framework in
the context of source separation in Chapter 5.

2.4.8 Training objectives

When the training target is a spectrogram, the L1 and L2 loss functions are
commonly employed. The L1 loss, sometimes called “mean absolute error”,
measures the average of the absolute deviation between a target y and a
prediction ŷ:

L1(y, ŷ) =
1

N

N∑
i

‖y − ŷ‖ (2.18)

where N is the number of elements in y and ŷ.

The L2 loss, or “mean squared error” is defined as:
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L1(y, ŷ) =
1

N

N∑
i

(y − ŷ)2 (2.19)

In the context of speech enhancement (Pandey & Wang, 2018) and (Z.-Q.
Wang & Wang, 2017) both found that the L1 loss consistently performed
better than the L2 loss when estimating spectrograms. It is believed that
the L2 loss tends to produce blurry images when applied to image generation
tasks, since the penalty for pixel-wise error is higher.(Pathak, Krähenbühl,
Donahue, Darrell, & Efros, 2016)

Since the standard evaluation method in many cases is the Signal-to-Distortion
Ratio (SDR, see in Section 2.6), the authors of (Venkataramani, Casebeer, &
Smaragdis, 2018) designed a loss function that directly optimized SDR. They
somewhat unsurprisingly found that the SDR loss performed better than L2

loss on the SDR metric.

The Phase-U-Net (Choi et al., 2019) utilizes a time-domain SDR loss, de-
spite the fact that the network produces spectrogram outputs. Since the
spectrograms are complex, L1 and L2 losses are undefined. They solve this
by computing the SDR loss in the time-domain and backpropagating the loss
through the ISTFT.

Multi-objective learning is becoming increasingly common for deep learning
models, in which multiple loss functions are linearly weighted by fixed (or
trained) hyperparameters, and combined to a single training objective. For
example, the automatic anime sketch colorization model in (Y. Liu, Qin,
Luo, & Wang, 2017) uses a four-term loss function to jointly optimize for
pixel-level similarity, colorfulness, realness, and color smoothness.

In speech enhancement, (Y. Zhao, Xu, Giri, & Zhang, 2018) combine a dif-
ferentiable modification to the Short-Time Objective Intelligability (STOI)
measure with a spectrogram similarity measure in a single loss function. A
combination of time and frequency domain loss function is presented in (Fu,
yao Hu, Tsao, & Lu, 2017), as the objective for a complex valued spectro-
gram estimation model for speech enhancement. The authors construct a loss
function out of three weighted terms: complex valued distance, spectrogram
magnitude difference, and time domain L2 difference. As in the Phase-U-Net,
the time domain loss is backpropagated through the ISTFT. A similar model
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was introduced in (Arik, Jun, & Diamos, 2019), for spectrogram inversion in
speech generation. The model outputs time-domain samples, but the loss is
computed in the frequency domain by means of a fully differentiable STFT.
The loss function is a combination of four terms: Spectral convergence, mag-
nitude spectrogram difference, instantaneous frequency difference, and phase
difference.

2.4.9 Phase-aware methods

The majority of the deep learning architectures reviewed in Section 2.4.7 op-
erate on the magnitude component of spectrograms. The phase component
is mostly ignored during training, and at inference time the phase of the mix-
ture is combined with the estimated magnitude before inverting the STFT
back to the time domain. This is in spite of ample evidence that phase is
highly important for accurate reconstruction, both from the image process-
ing (Oppenheim & Lim, 1981), speech enhancement (Paliwal, Wójcicki, &
Shannon, 2011), and source separation domains (Dubey, Kenyon, Carlson,
& Thresher, 2017).

Several systems have been proposed that operate directly in the complex
domain. Prior and parallel to the advent of deep learning, complex Non-
negative Matrix Factorization was explored in (King & Atlas, 2010) and
(Magron, Badeau, & David, 2018).

It was shown in (Erdogan et al., 2015) that incorporating phase informa-
tion in the mask function resulted in more accurate source estimation, even
though the actual mask was real-valued. However, predicting phase directly
appears to be intractable (Williamson, Wang, & Wang, 2016), presumably
because of lack of inherent structure due to the wrap-around nature of phase.
In order to mitigate this problem, phase unwrapping (the addition of appro-
priate multiples of 2π to individual parts of the phase component of a signal,
so as to avoid discontinuities) has been applied in the context of source sep-
aration (Mayer, Williamson, Mowlaee, & Wang, 2017; Spoorthi, Gorthi, &
Gorthi, 2019). Another potential solution is to discretize phase and treat
phase prediction as a classification problem, rather than regression (Taka-
hashi & Mitsufuji, 2017).

Complex inputs and outputs have been applied to deep neural networks as
well. For example (Simpson, 2015), introduces a complex convolution oper-
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ation. The ReLU non-linearity is adapted to the complex domain in (Lee,
Wang, Wang, Wang, & Wu, 2017).

A deep feed-forward network using phase features is presented in (Muth
et al., 2018). This network consists of two parallel feed-forward networks
(“heads”); magnitude and phase features. Several different phase features are
tested: instantaneous frequency, group delay, and raw phase. Instantaneous
frequency and group delay both enhance the network performance compared
to only using magnitude features.

The Phase-U-Net, introduced in (Choi et al., 2019) introduces a U-Net that
is internally complex and outputs a constrained polar complex spectrogram
mask. The mask is then applied to the mixture complex spectrogram mask.
We expand on this model in Chapter 6 and apply it to multi-instrument
source separation.

The majority of deep networks for musical source separation operate on time-
frequency representations (spectrograms) of both the input and output sig-
nals. Usually separation is achieved using masks in the magnitude domain,
as discussed above. However, a number of recent systems propose alternative
models that explicitly attempt to estimate the time domain signals.

In (Rethage, Pons, & Serra, 2018), the authors construct a non-causal WaveNet
(van den Oord et al., 2016) for speech enhancement entirely in the time do-
main. The Wave-U-Net (Stoller et al., 2018) is an extension of the WaveNet
that adds skip connections in the time domain, analogous to the U-Net in the
frequency domain. TasNet is a time-domain model that employs a sample-
level convolutional encoder-decoder, with an LSTM in the bottleneck layer
to capture long-term dependencies (Luo & Mesgarani, 2018).

2.5 Multi-instrument separation

So far, the systems we have reviewed have concerned the separation of vocals
from non-musical noise or background music. Algorithms have also been de-
veloped specifically for the separation of multiple instruments. While the ap-
proaches to instrument separation typically differ little from vocal separation,
the multi-instrument separation task provides a challenging testbed, that
stressed the algorithms’ abilities to function in environments where sources
are heavily overlapping, and often ambiguous in timbre.
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The annual Signal Separation Evaluation Campaign (SiSEC)(Vincent, Araki,
& Bofill, 2009) has, since 2008, conducted standardized evaluation of multi-
instrument separation algorithms submitted by researchers. The SiSEC cam-
paign evaluates the performance of each algorithm on a test set consisting of
musical stereo mixtures, and the constituent sources bass, guitar, vocals, and
“other”, where the “other” category is the sum of all sources that are not
bass, guitar, or vocals. SiSEC has been host to many promising algorithms;
as of 2018 most algorithms were based on deep learning.(Stöter, Liutkus,
& Ito, 2018) The highest scoring algorithm in 2018 (Takahashi & Mitsu-
fuji, 2017), previously described in section 2.4.7 trained individual networks
per-source, in a fully convolutional setting using DenseNets.

Joint, concurrent learning of all instrument sources with a shared deep net-
work has been explored in (Llúıs, Pons, & Serra, 2018) and (J.-Y. Liu &
Yang, 2018). The former builds a non-causal WaveNet-like (van den Oord et
al., 2016) model, that predicts vocals, bass, and percussion as three separate
outputs from the same model; the network is optimized by maximizing the
similarity between each target source and estimated source, while minimizing
the similarity between the estimated source and the other sources’ targets.
The latter model builds a U-Net like architecture, where skip connections are
long-term dependency-preserving GRUs; the output is the concatenation of
vocals, bass, drums, and “other” sources.

Many multi-instrument separation systems are trained on the DSD100 dataset
(described in Section 2.7.4. We mentioned in Section 2.4.7 how “data hun-
gry” deep networks are, and deep source separation models are no excep-
tions. Unfortunately DSD100 is a relatively small training dataset. Attempts
have been made to remedy this through data augmentation: (Uhlich et al.,
2017) proposes to increase the training dataset size by swapping source stereo
channels, randomly scaling the amplitudes of the sources, randomly chunk-
ing into new sequences, and randomly mixing sources from different tracks.
This increases the dataset size, but has the potential drawback of skewing
the dataset to a less realistic distribution. Special care has to be taken when
mixing instruments from different sources to preserve the correlation between
sources that makes multi-source separation a challenging problem.

A multi-source classical music separation system using data augmentation is
presented in (Miron, Janer, & Gómez, 2017). A set of classical scores are
augmented through tempo changes, key shifts, dynamic range alterations,
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etc., and then synthesized using virtual software instruments.

2.6 Evaluation of Musical Source Separation

Systems

The evaluation of source separation systems is an inherently difficult task,
for the same reasons that the development of automatic source separation
systems is difficult. In order to give an accurate score to a particular source
separation algorithm, we ideally need a perceptual model of how well humans
perceive sources to be separated. The same kind of modeling of the human
auditory system that we undertake as we develop source separation algo-
rithms, would have to be performed in order to make evaluation consistent
with human perception.

While we have been able to collect and create training datasets for source
separation, no such datasets exist for the evaluation of source separation
systems. For that reason, we are forced to resort to heuristic evaluation
metrics.

Early source separation systems used simple distance functions such as the
Euclidean distance, either in the time domain or the frequency domain, to
compare their estimations to true isolated sources. This method has several
shortcomings.

Firstly, it does not take into account the mixture from which the source is
isolated. For example, say that we attempt to separate vocals from musical
accompaniment. If we accurately estimate the vocals we will get the same
score if the accompaniment is a quiet guitar or a loud heavy metal band —
a far more difficult condition for source separation. In the latter case the
algorithm has to remove more of the interference than in the former, but this
is not rewarded by source-specific evaluation metrics.

Secondly, it does nothing to quantify the sound quality of the output. An
algorithm that aims to isolate a high pitch voice from a low pitch voice might
simply apply a steep high-pass filter, removing any frequency components
below the average pitch of the interfering speaker. That algorithm would
receive high scores if the metric was a time-domain L1 loss, but the result
would sound muffled or possibly even be unintelligible. If the sources were
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musical instruments, say a viola and a violin, attempting to remove the viola
through high-pass filtering would distort the output signal, leaving a timbre
that no longer was characteristic of the violin.

Thirdly, many source separation algorithms introduce artifacts, unintended
sonic effects that are often small in magnitude, but immediately noticed
by human hearing. A simple distance-based evaluation function would not
penalize such artifacts more than inaudible deviations in other parts of the
output.

Several attempts have been made to address these issues.

2.6.1 BSS Eval

The BSS Eval family of metrics, introduced in (Vincent, Gribonval, & Févotte,
2006), produces not one, but four metrics relating to the distortion, inter-
ference, noise, and artifacts present in the source estimate. BSS Eval de-
composes the estimated source into the true source and error components
representing interference, noise, and artifacts.

ŝ = s+ einterf + enoise + eartif (2.20)

where ŝ is the estimated source, s is the part of ŝ coming from the target
source, einterf is the interference error, enoise is the noise error, and eartif is the
artifact error.

The Signal-To-Distortion Ratio (SDR), Signal-to-Interference Ratio (SIR),
and Signal-to-Noise Ratio (SNR), and Signal-to-Artifact Ratio (SAR) are
defined as
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SDR(ŝ, s) := 10 log10

‖s‖2

‖einterf + enoise + eartif‖2
(2.21)

SIR(ŝ, s) := 10 log10

‖s‖2

‖einterf‖2
(2.22)

SNR(ŝ, s) := 10 log10

‖s+ einterf‖2

‖enoise‖2
(2.23)

SAR(ŝ, s) := 10 log10

‖s+ einterf + enoise‖2

‖eartif‖2
(2.24)

(2.25)

Additionally, we define the Normalized Signal-to-Distortion Ratio (NSDR)
(“MIREX 2014:Singing Voice Separation”, 2014) as

NSDR(ŝ, s) = SDR(ŝ, s)− SDR(m, s) (2.26)

where m is the mixture source.

2.6.2 PEASS

The motivation behind the PEASS family of evaluation metrics (Vincent,
2012) is that BSS Eval correlates poorly with human judgments. The au-
thors attempt to remedy this by introducing a new set of metrics based on
a gammatone filter decomposition of the original signal. Their method pro-
duces metrics that correlate very with human perception, but it has seen
limited adoption due to its high computational cost.

2.7 Training Datasets

Below follows a list of publicly available datasets that are commonly used
for training music source separation models. The datasets are summarized
in Table 2.1.
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Dataset Genre Channels Sample rate Sources Tracks Length
MIR-1K Karaoke Mono 16kHz Vox+Accomp. 1000 snippets 2:13h
CCMixter Various Stereo 44.1kHz Vox+Accomp. 50 full tracks 3:12h
iKala Karaoke Mono 44.1kHz Vocal+Accomp. 126 snippets 2:06h
DSD100 Various Stereo 44.1kHz Dr.+Bass+Vox+Other 100 full tracks 7h
MedleyDB Various Stereo 44.1kHz 82 instruments 122 full tracks 7:17h
MedleyDB 2.0 Various Stereo 44.1kHz 47 instruments 74 full tracks 6:32h
MedleyDB 1+2 Various Stereo 44.1kHz 82 instruments 196 full tracks 13:49h
MUSDB18 Various Stereo 44.1kHz Dr.+Bass+Vox+Other 150 full tracks 10h

Table 2.1: Music source separation datasets

2.7.1 MIR-1K

The MIR-1K dataset (Hsu & Jang, 2010) contains 1000 clips of Chinese
karaoke songs. The dataset is structured as a number of 16kHz stereo audio
files, where one channel contains accompaniment, and the other channel is
a solo voice, which means that both vocal and accompanying instrumental
are mono sources. Singers are amateurs, recruited from the authors’ research
lab. Each clip is between 4 and 13 seconds, with a total dataset length of
133 minutes.

2.7.2 CCMixter

The CCMixter dataset (Liutkus et al., 2014) is comprised of 50 full-length,
44.1kHz stereo mixes, in various different genres, downloaded from the CCMix-
ter web site11. CCMixter is an online community where professional and
hobbyist electronic music producers share and collaborate on mixes. The
dataset has a total duration of 3:12 hours.

2.7.3 iKala

iKala was12 an online karaoke service, based in China. The iKala dataset
(Chan et al., 2015), like to MIR-1K, consists of 44.1kHz mono accompaniment
and vocal recordings for Chinese karaoke songs. The accompaniment was
provided by iKala, and the vocal tracks are recorded by professional singers.
The dataset contains 252 30-second snippets, i.e. a total dataset size of 126

11http://ccmixter.org/
12http://mac.citi.sinica.edu.tw/ikala/, retrieved 2019-01-17
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minutes. Unfortunately, the iKala dataset is no longer available for download,
due to legal constraints.

2.7.4 DSD100

The DSD100 dataset (Liutkus et al., 2014) (sometimes also referred to as the
“SISEC dataset”) consists of 100 full-length tracks in different genres, col-
lected from the “Mixing Secrets” multi-track library13. Tracks are provided
as isolated stereo stems for drums, bass, vocals, and “other”, where “other”
is a summed mix of all remaining sources. Track lengths range from 2:22 to
7:10, with a total duration of 7 hours of audio.

2.7.5 MedleyDB

MedleyDB (Rachel M. Bittner et al., 2014) is a dataset of professionally
recorded multi-tracks in several different genres. The dataset contains 122 full
length stereo tracks at 44.1kHz, ranging from approximately 3 to 5 minutes,
at a total of 7:17 hours of audio. Isolated sources for 82 different instruments
are included, along with pitch ground truth and other metadata.

2.7.6 MedleyDB 2.0

A second version of MedleyDB was presented in (R. Bittner, Wilkins, Yip,
& Bello, 2016). The data format is unchanged from the original MedleyDB,
but with new tracks. MedleyDB 2.0 contains 47 unique instruments, and
new 74 tracks at a total of 6:32 hours.

2.7.7 MUSDB18

MUSDB18 is a concatenation of the 100 tracks from DSD100, 46 tracks from
MedleyDB, and 4 new professionally recorded multi-tracks. This dataset,
like DSD100, contains isolated sources for drums, bass, vocals, and “other”.
Instruments from MedleyDB have been mapped into these categories. The
total length of data is approximately 10 hours of stereo audio at 44.1kHz.

13http://www.cambridge-mt.com/ms-mtk.htm, retrieved 2019-01-17

48

http://www.cambridge-mt.com/ms-mtk.htm


2.8 Summary

We began this chapter by introducing some of the digital signal processing
prerequisites of source separation. We then introduced automatic musical
source separation by listing some current and potential future applications
of the technology, both user facing applications such as karaoke, as well as
source separation as a building block for other MIR tasks.

This was followed by an extensive literature review of musical source sepa-
ration and related domains: from Bregman’s Auditory Scene Analysis and
its software approximations, to matrix decomposition methods like ICA and
NMF, to methods that incorporate pitch information and user inputs. We
then listed several masking schemes common to source separation in the spec-
tral domain. In the following section, we presented a number of deep learning-
based methods, starting with early feed-forward networks, and moving on to
more complicated architectures, such as RNNs, convolutional networks, deep
clustering, GANs, and stacking networks.

We then introduced a number of training objectives that have been employed
by machine learning-based source separation models, both in the frequency
and time-domain. Phase-aware methods were then explored — frequency-
domain models that incorporate phase information, followed by a review of
multi-instrument separation systems.

Finally, we discussed several evaluation metrics for source separation, as well
as a number of publicly available datasets.
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Chapter 3

Data Mining Source Separation
Datasets from Large-Scale
Music Catalogs

In this chapter we will develop a methodology for extracting meaningful
training examples for vocal source separation, from a large commercial music
database. Our method is primarily based around music metadata, with a
final content-based post-processing step. Music metadata is inherently noisy,
and we will describe some of the sources for this noise and ways to make our
algorithms robust to noise.

In addition to noisy metadata and inconsistencies, commercial music databases
are large, with hundreds of millions of data rows. This allows us to create
the kinds of large datasets that are required for effective training of modern
deep learning architectures, but also complicates the data engineering pro-
cess: these databases are too large to fit in the memory of single computers,
and we have to resort to distributed computing in order to process the data.
This also means that our algorithms need to be designed for a distributed
setting. Fortunately, modern distributed computing software can abstract
the intrinsic complexities of distributed data processing. We will begin this
chapter with a brief history and overview of distributed data processing.
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3.1 Brief History of Distributed Data Pro-

cessing

The rise of deep learning has gone hand-in-hand with the increased availabil-
ity of large training datasets (Goodfellow, Bengio, & Courville, 2018). Deep
neural network models have huge capacity in terms of trainable variables,
but are also prone to overfitting if presented with small datasets. Only when
deep models are trained with large datasets is deep learning able to achieve
state-of-the-art results. This is reflected in the exponential increase in the
number of examples available in datasets released over the past decade. A
subset of machine learning dataset sizes over the last century can be found
in Figure 3.1 (figure from (Goodfellow et al., 2018)).

Figure 3.1: Machine learning dataset sizes over time (from (Goodfellow, Ben-
gio, & Courville, 2018))

The dependency on deep learning and big data is symmetric. Deep learning
models need to be fed with big data to function, but big data also require
models with enough capacity to capture all the information hidden in these
big datasets.

Over the past couple of decades, the Internet has allowed businesses to log
and track more and more of their customers’ behavior. This has lead to
data-driven decision making, highly targeted marketing, algorithmic recom-
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mendation systems, etc., increasing both the profitability and productivity
of the companies who have embraced “big data” (McAfee & Brynjolfsson,
2012).

However, simply logging every user interaction into a mountain of data does
not create value on its own. In order to gain understanding and make predic-
tions from this data we need algorithms that are able to learn from such large
datasets. Deep learning has emerged as one of the most powerful big data
processing tools, causing top technology companies in the world to invest
heavily in deep learning research and further fueling growth of the field.

While deep learning models are able to learn from big data, it does not
provide any solutions to storage, preprocessing, and exploratory analysis of
such datasets. In the remained of this section we turn to this important, but
often overlooked, prerequisite task.

Data preprocessing is often one of the most time-consuming activities in
machine learning. Unfortunately, when dealing with gigabytes, terabytes,
and even petabytes of data, preprocessing tends to become exponentially
more complex.

Modern, high-end SSD hard drives are able to read contiguous data at around
500 MB/sec, meaning that one terabyte of data can be read in 30 minutes
on a single computer.1 It is clear that processing terabyte or petabyte-scale
datasets in a tractable amount of time requires some means of reading data
from multiple disks in a distributed fashion.

The same is true for the computational aspect of data processing: given the
size of our data, processing on a single server — even a high performance
server with tens or even hundreds of CPU cores — has become infeasible.

Distributed storage and computation has been extensively studied in the
software engineering literature, and many systems have been used in indus-
try over the years (Fox et al., 1989). In early systems it was up to the
the programmer to synchronize processes on distributed compute nodes, as
well as handle message passing between nodes. Several architectures were
proposed to improve this difficult and error-prone paradigm. MPI (Snir,

1This is a highly optimistic approximation, since data is rarely completely contiguous
but fragmented across the disk, forcing the disk to seek with considerable slowdown in
read performance.
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Otto, Huss-Lederman, Walker, & Dongarra, 1996) standardized the message
passing interface, but the programmer was still responsible for most of the
delicate synchronization work.

Google addressed this in their seminal MapReduce paper (Dean & Ghe-
mawat, 2008). By providing a highly restricted API, consisting mainly of
two operations: “map” and “reduce”, they decoupled data processing opera-
tions from cluster management, message passing, synchronization, and fault
tolerance. MapReduce was built on top of the Google File System (GFS)
(Ghemawat, Gobioff, & Leung, 2003), a highly distributed data storage sys-
tem. Both MapReduce and GFS were designed to be massively scalable, and
deployed on large numbers of consumer-grade computers. An open-source
re-implementation of MapReduce and GFS called Hadoop (White, 2010)
quickly gained adoption in industry, outside of Google.

A decade after MapReduce, Google released DataFlow (Akidau et al., 2015)
(later re-branded as “Apache Beam”). The DataFlow API has a larger set
of primitive operations than MapReduce, while maintaining the strong en-
capsulation of the underlying distributed computing model.

For many smaller data analysis tasks, the overhead of developing a MapRe-
duce/DataFlow pipeline can seem excessive. This use case was explored by
researchers at Facebook, leading to the release of Hive (Thusoo et al., 2010),
a distributed database on top of Hadoop with a SQL-like interface. Around
the same time, Google developed their own SQL-based query system for
petabyte-scale data (Melnik et al., 2010). This system was later publicly
released as BigQuery, a cloud-hosted data warehouse.

3.2 Big Datasets in Music Information Re-

trieval

Datasets for music information retrieval have seen a similar evolution to the
general machine learning field. Figure 3.2 shows approximations of the total
length of audio for MIR datasets that include audio data, since the year 2000.

This chart was created using the list of datasets maintained on the web site
www.audiocontentanalysis.org/data-sets (Lerch, 2019). Release years and
audio lengths were taken from the linked dataset web sites, when they were
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Figure 3.2: MIR dataset estimated audio length over time

accessible. Audio lengths are mostly exact, but were estimated in some cases
where exact numbers were not easily accessible. For example, large datasets
containing full-length tracks were assumed to have an average length of 3:30.
Datasets of single notes, one-shots, chords, etc., were assumed to have an
average length of one second.

We have overlaid the (logarithmic) plot with a linear trendline, showing the
exponential trend of dataset growth. A similar trend can be observed in
absolute storage sizes. In Figure 3.3 we have plotted dataset sizes in bytes
over release year, not limited to datasets with audio.

The five largest MIR datasets, in bytes, are:

• FMA-full (Defferrard, Benzi, Vandergheynst, & Bresson, 2017), 879GB.
A dump of the entire Free Music Archive.
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Figure 3.3: MIR dataset size in bytes

• The Million Song Dataset (Bertin-Mahieux, Ellis, Whitman, & Lamere,
2011), 280GB. Metadata and audio features for 1,000,000 songs.

• The Stanford Digital Archive of Mobile Performances (Smule, 2017).
34,000 amateur acapella recordings.

• MedleyDB (Rachel M. Bittner et al., 2014), 40GB. 122 multi-track
recordings.

• NMED-T (Losorelli, Nguyen, Dmochowski, & Kaneshiro, 2017), 39GB.
EEG data collected during music listening.
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3.3 Structure of Music Data

Music data processing has additional layers of complexity, compared to many
other types of data. A structured music database will have many types of
entities, often with idiosyncratic relationships. Commercial music databases
differ between organizations, but the open MusicBrainz database has a schema
that is representative of contemporary digital streaming services. A visual-
ization of the MusicBrainz database schema can be found in Figure 3.42.

The main musical entities in the MusicBrainz schema are:

• Artist

• Label

• Work

• Recording

• Release group

• Release

• Track

The Artist and Label entities unambiguously represent music artist and la-
bels. A Work is what we would colloquially refer to as a “song” or “com-
position”. Recorded music is complicated by the fact that a Work usually
has multiple Recordings. A Recording is one particular recording of a Work
(e.g., a live version would be a different Recording than the studio version of
the same song).

A Release Group is what we refer to as “album”, “single”, “EP”, etc. Al-
bums are often released on different dates in different locales, sometimes with
slightly different track lists. Single instances of Release Groups are called Re-
leases. Tracks relate to Recordings like Releases relate to Release Groups,
one Recording has several instantiations as Tracks across different Releases.

In the following text we will use the terms (with equivalent MusicBrainz
terms in parenthesis):

2Via https://musicbrainz.org/doc/MusicBrainz Database/Schema, retrieved 2019-01-
15
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Figure 3.4: MusicBrainz database schema
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• Artist (Artist)

• Track (Track)

• Recording (Recording)

• Song (Work)

• Album (Release group)

We will primarily focus on individual songs, so we will not need to differen-
tiate between Releases and Release Groups.

3.4 Metadata Quality

Music databases are generally filled with misspellings, ambiguous transliter-
ation, inconsistent letter casing, aliases, and other metadata quality issues
that make querying these databases particularly challenging. For example,
MusicBrainz has 14 aliases for The Supremes3, including “The Surpremes”,
“Supremes”, “Diana Ross & The Supremes”, and “Diana Ross and The
Supremes”. The Russian composer Tchaikovsky has 79 aliases4, mostly due
to different Cyrillic transliterations.

(Freed, 2006) analyzed the causes for incorrect and ambiguous metadata,
in the context of 1930s blues singer Skip James. The author tracked the
mutations of track and album titles over time, and found many causes for
metadata errors, such as malfunctioning printers, truncation due to sleeve
space constraints, inconsistent use of numerals and letters, etc. Some artists
even deliberately obfuscate metadata as a creative device. For example, the
second track on Aphex Twin’s EP “Window Licker” is named

∆M−1
i = −α

N∑
n=1

Di[n]

∑
j∈C[i]

Fji[n− 1] + Fexti[n
−1]


which most music services do not even try to render (Lamere, 2008).

3https://musicbrainz.org/artist/c1aa2ec9-53e7-4d90-8d36-bac75832e986/aliases,
retrieved 2019-01-15

4https://musicbrainz.org/artist/9ddd7abc-9e1b-471d-8031-583bc6bc8be9/aliases, re-
trieved 2019-01-15
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3.5 Mining Ground Truth for Music Source

Separation from Commercial Music Data-

bases

Despite the complex structure and inherent noise of music databases, they
still present a promising target for mining ground truth for music informa-
tion retrieval tasks. Spotify has 40+ million songs, each song have several
recordings, which in turn have several tracks. Given associated audio and
metadata, one can assume that many potential MIR training datasets could
be created by filtering and transforming music catalogs such as this.

The metadata matching method described here was my contribution to (E.
Humphrey, Montecchio, Bittner, Jansson, & Jehan, 2017), published at IS-
MIR 2017. It was further refined in (Jansson et al., 2017) to also include
a spectrogram-based post-processing step, which differs from Humphrey, et
al.’s fingerprint-based post-processing technique.

3.5.1 Instrumental Versions of Popular Music

It is a relatively common practice for artists to release instrumental versions
of songs (“instrumentals”), or sometimes even entire albums. Instrumentals,
like CD booklets, provide the listener with additional media. By making it
easier for the listener to sing along with the background accompaniment, or
use the instrumental as less distracting background music, the instrumental
brings a new level of interactivity to the listening experience.

The release of instrumental versions of tracks is not a new phenomenon, but
have seen a significant increase since the 2000s. Figure 3.5 shows the relative
prevalence of instrumental versions compared to the full catalog, from 1950
to 2018.

If our dataset contains both original and instrumental versions of songs, we
should be able to create pairs of originals and instrumentals, creating a train-
ing dataset for vocal source separation. If we assume that the instrumental
is simply the original with the vocal subtracted, we should be able to sub-
tract the instrumental from the original to retrieve the vocal track, to use
for training a vocal isolation model. Below follows a detailed explanation of
our method, originally introduced in (E. Humphrey et al., 2017).
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Figure 3.5: Relative proportion of releases that had instrumental versions,
1950–2018. The Y-axis has purposely been omitted for data anonymization
reasons.

3.5.2 Mining Instrumentals

The first step in building a dataset of original mixtures, instrumentals, and
isolated vocal tracks, is to define a function that lets us pair the original
recording with the instrumental version. This is not a trivial task, both
because of the size of the dataset, and the metadata noise that is inherent to
music datasets.

By loading our data into BigQuery (described in Section 3.1), we are able to
process this large music dataset in a matter of minutes. This enables us to
construct a data processing pipeline iteratively and interactively, by testing
parts of queries one step at a time, instead of having to meticulously prepare
the program in advance5.

While BigQuery largely mitigates the complexities of handing billions of
database records, we still have to develop some way to address noisy meta-

5The difference in developer experience between older systems like Hive and modern
tools like BigQuery is comprable to the difference between the hours-long compilation cycle
of large C++ programs, and the immediate feedback provided by the Python “Read-Eval-
Print-Loop.”
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data. In an ideal scenario, with perfect metadata, a simple algorithm for
finding pairs of original mixtures and instrumentals would be:

1. Find a set of tracks that are not instrumentals,

M = {t ∈ T | ¬is instrumental(t)}, where T is the set of all tracks

2. Find a set of tracks that are instrumentals,

I = {t ∈ T | is instrumental(t)}

3. Join the sets into a set of pairs,

P = {(m, i) ∈M × I | is instrumental version of(m, i)}

We define is instrumental(t) as

is instrumental(t) := regex match(/instrumental|karaoke/,

lowercase(title(t)))
(3.1)

where /·/ represents a regular expression pattern (Friedl, 2006), regex match(r, s)
evaluates to true if the regular expression pattern r matches the string s, and
lowercase(s) returns the string s with all characters lowercased. In this case
it returns true if and only if the lowercased title of t contains either of the
strings “instrumental” or “karaoke”.

This purely text-based method of applying the instrumental label has the
disadvantage that non-instrumentals that have the string “instrumental” or
“karaoke” in the title will falsely be classified as instrumental. We acknowl-
edge this limitation, but we find it an acceptable trade-off, given that the
alternative would have been to train a content-based instrumental classifier.

In an idealized scenario with clean metadata, the function that matches orig-
inal mixes to instrumentals, is instrumental version of(m, i), could be ex-
pressed as

is instrumental version of(m, i) :=(artist id(m) = artist id(i))

∧ |duration(m)− duration(m)| < 1.0

∧ (title(m) = title sans instrumental(i))

(3.2)
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Here we make the assumption that two tracks by the same artist, with the
same title (except for the string “instrumental” or “karaoke”), where the
difference in duration is less than one second, are derived from the same
recording. In this ideal scenario, we assume that the string “instrumen-
tal”/“karaoke” is always prefixed by “ - ”, .e.g. the instrumental version of
“My Song Title” would be “My Song Title - Instrumental”. Then we can
define title sans instrumental(i) as

title sans instrumental(i) = regexp remove(/ - (instrumental|karaoke)/,

title(m))

(3.3)

where regexp remove(r, s) removes the part of s that matches the regular
expression r.

Unfortunately, as we saw in the previous section, actual music metadata is
not as clean and consistent as the matching logic above requires.

Fuzzy title matching

In order to work in real-world scenarios, our matching logic should have the
following properties:

• Tolerance to use of various non-alphanumeric symbols

• Equivalence of numerals and spelled out numbers

• Basic transliteration of non-English characters

• Robustness to text patterns idiomatic to music titles

We satisfy these constraints by redefining is instrumental version of(x) as

is instrumental version of(m, i) := (artist id(m) = artist id(i))

∧ |duration(m)− duration(m)| < 1.0

∧ (fuzzy(title(m)) = fuzzy(title(i)))

(3.4)
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where fuzzy is defined as the following function composition:

fuzzy := latinize

≫ lowercase

≫ trim

≫ strip comments

≫ normalize ampersand

≫ normalize numerals

≫ strip leading the

≫ strip non alphanumeric

(3.5)

where ≫ denotes left-to-right function composition, (f ≫ g)(x) = g(f(x)).
For example, (latinize ≫ lowercase)(s) can be read as “First latinize s, then
lowercase the latinized string”.

The function latinize(s) replaces non-ASCII characters in s with ASCII
equivalents. For example, latinize(Våffeljärnet) = Vaffeljarnet.

The trim(s) function removes any leading and trailing whitespace from s.

strip comments(s) is defined as

strip comments(s) := regex split(/\(|\[| - /, s)[0] (3.6)

where regex split(r, s) splits the string s based on the regular expression
pattern r. In this case, this splits s at the substrings (, [, and - . This
is based on the observation that music producers often include comments in
parenthesis, square brackets, and after a dash. For example:

strip comments(Taki Taki (with Selena Gomez)) = Taki Taki

strip comments(Don’t Stop Me Now - Remastered) = Don’t Stop Me Now

(3.7)

The normalize ampersand(s) function replaces all instances of & in s with
the string and . Similarly, normalize numerals(s) replaces the strings zero,
one, ..., nine with the numerals 0, 1, ..., 9.
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x fuzzy(x)
Seasons in the Sun seasonsinthesun

Gold (Stupid Love) gold

Don’t Follow dontfollow

Swim - RAMI Remix swim

The Zone zone

Sácate Uno sacateuno

One For My Baby 1formybaby

Fear & Delight fearanddelight

Ahora No [feat. Fiestero] ahorano

Figure 3.6: Examples outputs of the fuzzy(·) function

strip leading the(x) strips the string “the” from the beginning of x. Finally,
strip non alphanumeric(x) deletes any non-alphanumeric characters, i.e. any
characters that do not match the regular expression /[a-z0-9]/. This re-
moves all spaces, as well as any punctuation.

Table 3.5.2 shows several applications of the fuzzy(·) function.

Candidate Pruning

After applying the fuzzy string matching algorithm 3.5.2, we end up with a set
of candidate vocal mix/instrumental pairs. However, due to inconsistent and
erroneous metadata, not all pairs have one vocal mix and one instrumental.
Specific error cases include:

• Instrumentals that are not explicitly labeled as “instrumental”.

• Tracks that have “instrumental” in their titles but are not actually
instrumental.

• Tracks that have been mis-labeled with the title of a different track.

• Candidate pairs that are not derived from the same original recording,
despite having approximately equal title and duration.

These errors could have been avoided if we had taken a content-based ap-
proach rather than the string-matching based heuristic outlined above. That
would have required many-to-many comparisons between tens of millions of
audio signals, an extremely computationally intensive task. However, now
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that we have identified a set of pairs, some of which are false positives, we
can apply content-based methods as a filter to prune the candidate pool.
We implement the filtering system as a DataFlow pipeline (as introduced in
Section 3.1).

We take a fairly cautious approach to filtering, optimized for high quality
rather than quantity, since the candidate pool is large enough to begin with.
Pruning is performed by filtering out pairs who’s audio spectrograms are
either too different, or too similar.

First we strip out any silent frames from the beginning and end of the audio
signals for the two tracks in the pair. We then convert the audio to a mix-
ture spectrogram X and a Y instrumental spectrogram. We compute the
spectrogram difference for pair i as

di =
∑
|X−Y| (3.8)

In the absence of validation data, we empirically define a minimum difference
dmin and maximum difference dmax. Any pair i where dmin ≤ di < dmax is
kept in the final dataset. These thresholds were chosen by manually checking
a random sample of 100 pairs, such that all pairs consisted of one vocal
mixture track and one instrumental.

After this process is complete, we arrive at a dataset with 20,000 examples.

3.6 Summary

This chapter introduced a novel method for extracting structured source
separation training data from large unstructured commercial music catalogs.
Processing these terabyte-scale datasets would not be possible without recent
developments in distributed data storage and processing, and we began this
chapter by presenting a number of such tools. We showed how dataset sizes
have grown exponentially in the past decades, in machine learning generally,
as well as in MIR specifically. We then used MusicBrainz as an example of
the schematic complexities of music databases, and highlighted some typical
types of noise that are common in such databases. For the remainder of
the chapter we gradually derived an algorithm for finding pairs of original
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mixtures and instrumentals in music databases, taking into account various
types of noise and metadata inconsistencies.
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Chapter 4

Vocal Separation from
Commercial Recordings

4.1 Motivation

Vocals are prominent in the music of practically every known culture. It has
even been theorized that music emerged from early humans using the voice
to convey emotions (Juslin, 2003). While vocals have been extensively stud-
ied in the MIR literature1, very little research has investigated the relative
importance of vocals to other aspects of modern popular music.

To remedy this, we performed an interdisciplinary study in collaboration with
Andrew Demetriou at the University of Delft (Demetriou, Jansson, Kumar, &
Bittner, 2018). Our belief was that vocals mattered more than other aspects
of music in the minds of music listeners, but we wanted to collect unbiased
evidence.

We first carried out a quantitative analysis of several proprietary data sources
at Spotify, expecting to find significant evidence of the importance of vocals.
We started by looking at playlist tags and search queries. These datasets
are composed of user-provided descriptions of the music they listen to. We
grouped playlist tags and search queries into semantic categories, and com-
pared their relative frequencies. Surprisingly, this experiment yielded a neg-

1A review of singing-voice analysis can be found in (Eric J Humphrey et al., 2018)
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ative result: vocals were not commonly used by end-users to describe their
music collections (Figure 4.1, top and middle).

We then turned our attention to how professional music writers describe
music. Artist biographies on Spotify are authored by the artist themselves,
or by professional writers. We analyzed these biographies, comparing the
term frequencies to Wikipedia. The top terms, unambiguously music-related,
were clustered into groups, as in the playlist tag analysis. Our hypothesis
was that vocal-related terms would appear at or near the top of the list of
terms. But again, the result was negative. Vocal terms appeared in the list
of top terms, but not near the top of the list (Figure 4.1, bottom).

Perhaps our hypothesis was invalid, and users are not interested in vocals.
Or, perhaps vocals are so ubiquitous that they are not explicitly mentioned
in playlist titles and artist biographies. Instead of searching for answers
quantitatively in data, we decided to ask listeners directly.

Two surveys were sent out to 50,000 random Spotify users in English-speaking
countries (different cohorts for different surveys). We received 626 responses
to the first survey and 531 responses to the second.

In the first survey, we asked the open ended question, “When you listen to
music, what things about the music do you notice?” The answers from this
survey were printed on physical cards and sorted by the research team into
emerging categories, such as “Genre”, “Musicianship”, “Lyrics”, “Vocals”,
etc.

The second survey then presented the users with a shuffled list of the cat-
egories derived from the first survey. The respondents where asked to rank
these categories based on how important they were to the users’ perception
of a song.

This study, in contrast to the two data analyses we had performed previously,
provided strong corroboration of our initial hypothesis. The most important
category, in the minds of listeners, was “Emotion/mood”. This is consistent
with research from music psychology which suggests that the primary purpose
of music is communication of emotions (Juslin, 2003).

The second and third top-most categories were “Voice” and “Lyrics”. This
result shows that vocals are in fact highly salient in the minds of listeners.
Statistical significance was verified using Robust Rank Aggregation (Kolde,
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Figure 4.1: (Top) Percentage of playlists containing one of the top 1000
tags corresponding to each tag category. (Middle) Percentage of descriptive
search queries corresponding to each tag category, sampled from one day of
search data. (Bottom) tf-idf for each term category in artist biographies com-
pared with wikipedia term frequencies. Adapted from (Demetriou, Jansson,
Kumar, & Bittner, 2018)
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Laur, Adler, & Vilo, 2012). The full ordered list of categories can be found
in Table 4.1.

Broad Semantic Cat.Description Borda score p-value
Emotion/mood How it makes you feel - the emotions/mood 4641 <0.001
Voice Voice/vocals 3688 <0.001
Lyrics Lyrics 3656 <0.001
Beat/rhythm Beat/rhythm 3460 <0.001
Structure/Complexity How it’s composed, the hook, the structure 2677 1.000
Musicianship Skill of the musicians, musicianship 2583 1.000
Melody The main melody 2577 1.000
Sound The “sound”, or the recording quality 2406 1.000
Specific Artist The specific artist 2349 1.000
Genre The specific genre 2293 1.000
Instrumentation The musical instruments (e.g. drums, bass, guitar) 2084 1.000
Tempo/BPM How fast or slow the song is 1828 1.000
Harmony Harmony 1763 1.000
Chords The chords 1086 1.000
Popularity/Novelty How popular or unique it is 777 1.000

Table 4.1: Broad semantic categories and their clarifying descriptions created
during Study 1, ordered by rankings from Study 2. The Borda scores and p-
values (as reported by Robust Rank Aggregation) from Study 2 are reported
in columns 3 and 4, respectively. Statistically significant p-values are shown
in bold. p-values of 1.000 indicate that the ranking is no different from
random. Adapted from (Demetriou, Jansson, Kumar, & Bittner, 2018).

The importance of vocals and lyrics motivates further work on vocal process-
ing and analysis. Listeners self-report that they care more about the vocals
than any other aspect of music, with the exception of the overall mood. This
suggests that altering the vocals of a piece of music would have a high impact
on listeners’ impression perception of the piece. It also indicates that in or-
der to better understand music perception, we should study the contents of
the vocal signal. Both vocal processing and vocal signal analysis require the
ability to isolate the vocal signal from the accompanying instrument sources,
which brings us to the main focus of this chapter: Vocal source separation.
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Figure 4.2: Network Architecture
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4.2 Methodology

The remainder of this chapter is adapted from our paper (Jansson et al.,
2017), presented at the ISMIR 2017 conference in Suzhou, China.

4.2.1 Intuition

This work adapts the U-Net (Ronneberger et al., 2015) architecture to the
task of vocal separation. The architecture was introduced in biomedical imag-
ing, to improve precision and localization of microscopic images of neuronal
structures.

The U-Net builds upon the fully convolutional network (Long, Shelhamer,
& Darrell, 2015) and is similar to the deconvolutional network (Noh, Hong,
& Han, 2015). In a deconvolutional network, a stack of convolutional layers
— where each layer halves the size of the image but doubles the number of
channels — encodes the image into a small and deep representation. That
encoding is then decoded to the original size of the image by a stack of
upsampling layers. Upsampling can be performed in several ways (linear
interpolation, max-unpooling, etc.). In the work presented below we use
strided transpose convolutions (Dumoulin & Visin, 2016).

U-Nets have has been used in many domains outside of medical applications,
for example in (Isola, Zhu, Zhou, & Efros, 2017) who uses U-Nets to perform
pixel-to-pixel translations of images. The image translations in Isola, et al.,
ranged from image colorization to generating maps from aerial images. While
their architecture used U-Nets as part of a generative adversarial network,
the U-Net itself was found to yield a higher level of detail compared to
deconvolutional encoder-decoders. For this reason we decided to investigate
the use of U-Nets for vocal source separation. We treat source separation in
the time-frequency domain as an image-to-image translation, where we map
mixture spectrograms to isolated source spectrograms.

In the reproduction of a natural image, displacements by just one pixel are
usually not perceived as major distortions. In the frequency domain how-
ever, even a minor linear shift in the spectrogram has disastrous effects on
perception: this is particularly relevant in music signals, because of the log-
arithmic perception of frequency. Moreover, a shift in the time dimension
can become audible as jitter and other artifacts. Therefore, it is crucial that
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the reproduction preserves a high level of detail. The U-Net adds additional
skip connections between layers at the same hierarchical level in the encoder
and decoder. This allows low-level information to flow directly from the
high-resolution input to the high-resolution output.

4.2.2 Architecture

Let X denote the magnitude of the spectrogram of the original, mixed signal,
that is, of the audio containing both vocal and instrumental components. Let
Y denote the magnitude of the spectrograms of the target audio; the latter
refers to either the vocal (Yv) or the instrumental (Yi) component of the
input signal. The estimated magnitude spectrogram is denoted by Ŷ. Vocal
and instrumental estimates are denoted by Ŷv and Ŷi respectively.

The goal of the neural network architecture is to predict the vocal and instru-
mental components of its input indirectly: the output of the final decoder
layer is a soft mask that is multiplied element-wise with the mixed spectro-
gram to obtain the final estimate. Given that the network outputs a mask
M, the predicted source spectrogram is computed as

Ŷ = X⊗M (4.1)

where ⊗ denotes element-wise multiplication.

Figure 4.2 outlines the network architecture. In this work, we choose to
train two separate models for the extraction of the instrumental and vocal
components of a signal, to allow for more divergent training schemes for the
two models in the future.

Training

The loss function used to train the model is the L1 norm of the difference of
the target spectrogram and the masked input spectrogram:

L = |Y − Ŷ|1 (4.2)

As discussed in Section 2.4.8, the L1 loss has been shown to yield better re-
sults in spectrogram reproduction, as well as “crisper” outputs when applied
in the image domain.
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Two independent U-Nets are trained to predict vocal and instrumental spec-
trogram masks, respectively. The reason for this choice, as opposed to treat-
ing estimated vocal spectrograms as the inverse of the estimated instrumen-
tal, is two-fold: We initially planned to replicate the GAN architecture from
(Isola et al., 2017), which would have meant that the instrumental and vo-
cal model would diverge. Even though we decided against implementing the
GAN architecture, the vocal and instrument training data prevented us from
training a single network for both tasks, since we apply half-wave rectification
to the vocal residual.

Network Architecture Details

Our implementation of U-Net is similar to that of (Isola et al., 2017). Each
encoder layer consists of a strided 2D convolution of stride 2 and kernel
size 5x5, batch normalization, and leaky rectified linear units (ReLU) with
leakiness 0.2. The leaky ReLU is defined as

lrelu(x) :=

{
x if x > 0

λx otherwise
(4.3)

where λ is the leakiness factor.

In the decoder we use strided deconvolution (sometimes referred to as trans-
posed convolution) with stride 2 and kernel size 5x5, batch normalization,
plain ReLU, and use 50% dropout to the first three layers, as in (Isola et al.,
2017). The plain ReLU is defined as

relu(x) :=

{
x if x > 0

0 otherwise
(4.4)

In the final layer we apply a sigmoid activation function, σ(·), element-wise
to the output matrix:

σ(x) :=
1

1 + e−x
(4.5)

While (Isola et al., 2017) used tanh activation in the final layer, we opted for
the sigmoid function since the spectrogram output should fall in the range
[0, 1].
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The model is trained using the ADAM (Kingma & Ba, 2014) optimizer with
a learning rate of 0.0002 and a β1 value of 0.5.

Given the heavy computational requirements of training such a model, we
first downsample the input audio to 8192 Hz in order to speed up processing.
We then compute the Short Time Fourier Transform with a window size
of 1024 and hop length of 768 frames, and extract patches of 128 frames
(roughly 11 seconds) that we feed as input and targets to the network. The
magnitude spectrograms are normalized to the range [0, 1].

Audio Signal Reconstruction

The neural network model operates exclusively on the magnitude of audio
spectrograms. The audio signal for an individual (vocal/instrumental) com-
ponent is rendered by constructing a spectrogram: the output magnitude is
given by applying the mask predicted by the U-Net to the magnitude of the
original spectrum, while the output phase is that of the original spectrum,
unaltered. Experimental results presented below indicate that such a simple
methodology proves effective.

4.2.3 Dataset

Our dataset is collected from the Spotify music collection, using the method-
ology outlined in Chapter 3. The final dataset contains approximately 20,000
track pairs, resulting in almost two months worth of continuous audio. To
the best of our knowledge, this is the largest training data set ever applied
to musical source separation.

Table 4.2 shows the relative distribution of the most frequent genres in the
dataset, obtained from the catalog metadata.

We split the data into 90% training and 10% validation. For testing we use
different datasets entirely (described below in Section 4.3), ensuring that the
test set is completely out-of-distribution with respect to the training set.

4.3 Evaluation

We compare the proposed model to the Chimera model (Luo, Chen, Hershey,
Roux, & Mesgarani, 2017a) that produced the highest evaluation scores in
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Genre Percentage
Pop 26.0%
Rap 21.3%
Dance & House 14.2%
Electronica 7.4%
R&B 3.9%
Rock 3.6%
Alternative 3.1%
Children’s 2.5%
Metal 2.5%
Latin 2.3%
Indie Rock 2.2%
Other 10.9%

Table 4.2: Training data genre distribution

the 2016 MIREX Source Separation campaign (“MIREX 2016:Singing Voice
Separation Results”, 2016); we make use of their web interface2 to process
audio clips. It should be noted that the Chimera web server is running
an improved version of the algorithm that participated in MIREX, using a
hybrid “multiple heads” architecture that combines deep clustering with a
conventional neural network (Luo et al., 2017a).

For evaluation purposes we built an additional baseline model; it resembles
the U-Net model but without the skip connections, essentially creating a
convolutional encoder-decoder, similar to the “Deconvnet” (Noh et al., 2015).

Both the U-Net model and the baseline model were trained on the large,
proprietary Spotify dataset, whereas the Chimera model was trained on the
smaller DSD100 dataset.

We evaluate the three models on the standard iKala (Chan et al., 2015) and
MedleyDB dataset (Rachel M. Bittner et al., 2014). The iKala dataset has
been used as a standardized evaluation for the annual MIREX campaign
for several years, so there are many existing results that can be used for
comparison. MedleyDB on the other hand was recently proposed as a higher-
quality, commercial-grade set of multi-track stems. We generate isolated
instrumental and vocal tracks by weighting sums of instrumental/vocal stems

2danetapi.com/chimera
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U-Net Baseline Chimera
NSDR Vocal 11.094 8.549 8.749
NSDR Instrumental 14.435 10.906 11.626
SIR Vocal 23.960 20.402 21.301
SIR Instrumental 21.832 14.304 20.481
SAR Vocal 17.715 15.481 15.642
SAR Instrumental 14.120 12.002 11.539

Table 4.3: iKala mean scores

U-Net Baseline Chimera
NSDR Vocal 8.681 7.877 6.793
NSDR Instrumental 7.945 6.370 5.477
SIR Vocal 15.308 14.336 12.382
SIR Instrumental 21.975 16.928 20.880
SAR Vocal 11.301 10.632 10.033
SAR Instrumental 15.462 15.332 12.530

Table 4.4: MedleyDB mean scores

by their respective mixing coefficients as supplied by the MedleyDB Python
API3. We limit our evaluation to clips that are known to contain vocals,
using the melody transcriptions provided in both iKala and MedleyDB.

The following BSS Eval functions are used to measure performance: Signal-
To-Distortion Ratio (SDR), Signal-to-Interference Ratio (SIR), Signal-to-
Artifact Ratio (SAR), and Normalized Signal-to-Distortion Ratio (NSDR).
We compute performance measures using the mir eval toolkit (Raffel et al.,
2014).

Table 4.3 and Table 4.4 show that the U-Net significantly outperforms both
the baseline model and Chimera on all three performance measures for both
datasets. In Figure 4.3 we show an overview of the distributions for the
different evaluation measures.

Assuming that the distribution of tracks in the iKala hold-out set used for
MIREX evaluations matches those in the public iKala set, we can compare
our results to the participants in the 2016 MIREX Singing Voice Separa-

3github.com/marl/medleyDB
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Figure 4.3: iKala vocal and instrumental scores. The top and bottom of
boxes represent first (Q1) and third quantiles (Q3), with the middle line
corresponding to the median. “Whiskers” are set at Q1 − 1.5 ∗ IQR and
Q3 + 1.5 ∗ IQR, where IQR is the inter-quantile range, Q3-Q1. Crosses
outside of the whiskers indicate outliers.

tion task.4 “LCP2”, “LCP1”, and “MC2” refer to the top-scoring models
that were submitted to MIREX 2016. Table 4.5 and Table 4.6 show NSDR
scores for our models compared to the best performing algorithms of the 2016
MIREX campaign.

In order to assess the effect of the U-Net’s skip connections, we can visualize
the masks generated by the U-Net and baseline models. From Figure 4.4 it
is clear that while the baseline model captures the overall structure, there is
a lack of fine-grained detail observable.

4.3.1 Subjective Evaluation

Emiya et al. introduced a protocol for the subjective evaluation of source
separation algorithms (Emiya, Vincent, Harlander, & Hohmann, 2011). They
suggest asking human subjects four questions that broadly correspond to the
SDR/SIR/SAR measures, plus an additional question regarding the overall
sound quality.

4http://www.music-ir.org/mirex/wiki/2016:Singing Voice Separation Results
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Model Mean SD Min Max Median
U-Net 14.435 3.583 4.165 21.716 14.525
Baseline 10.906 3.247 1.846 19.641 10.869
Chimera 11.626 4.151 -0.368 20.812 12.045
LCP2 11.188 3.626 2.508 19.875 11.000
LCP1 10.926 3.835 0.742 19.960 10.800
MC2 9.668 3.676 -7.875 22.734 9.900

Table 4.5: iKala NSDR Instrumental, MIREX 2016

Model Mean SD Min Max Median
U-Net 11.094 3.566 2.392 20.720 10.804
Baseline 8.549 3.428 -0.696 18.530 8.746
Chimera 8.749 4.001 -1.850 18.701 8.868
LCP2 6.341 3.370 -1.958 17.240 5.997
LCP1 6.073 3.462 -1.658 17.170 5.649
MC2 5.289 2.914 -1.302 12.571 4.945

Table 4.6: iKala NSDR Vocal, MIREX 2016

As we asked these four questions to subjects without music training, our
subjects found them ambiguous, e.g., they had problems discerning between
the absence of artifacts and general sound quality. For better clarity, we
distilled the survey into the following two questions in the vocal extraction
case:

• Quality: “Rate the vocal quality in the examples below.”

• Interference: “How well have the instruments in the clip above been
removed in the examples below?”

For instrumental extraction we asked similar questions:

• Quality: “Rate the sound quality of the examples below relative to the
reference above.”

• Extracting instruments: “Rate how well the instruments are isolated
in the examples below relative to the full mix above.”

Data was collected using CrowdFlower5, an online platform where humans

5www.crowdflower.com
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Figure 4.4: U-Net and baseline masks

carry out micro-tasks, such as image classification, simple web searches, etc.,
in return for small per-task payments.

In our survey, CrowdFlower users were asked to listen to three clips of isolated
audio, generated by U-Net, the baseline model, and Chimera. The order of
the three clips was randomized. Each question asked one of the Quality and
Interference questions. In the Interference question we also included a refer-
ence clip. The answers were given according to a 7 step Likert scale(Likert,
1932), ranging from “Poor” to “Perfect”. Figure 4.5 is a screen capture of a
CrowdFlower question.

To ensure the quality of the collected responses, we interspersed the survey
with “control questions” that the user had to answer correctly according
to a predefined set of acceptable answers on the Likert scale. Users of the
platform are unaware of which questions are control questions. If they are
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Figure 4.5: CrowdFlower example question

answered incorrectly, the user is disqualified from the task. A music expert
external to our research group was asked to provide acceptable answers to a
number of random clips that were designated as control questions.

For the survey we used 25 clips from the iKala dataset and 42 clips from Med-
leyDB. We had 44 respondents and 724 total responses for the instrumental
test, and 55 respondents supplied 779 responses for the voice test6.

Figure 4.6 shows mean and standard deviation for answers provided on Crowd-
Flower. The U-Net algorithm outperforms the other two models on all ques-
tions, though the differences are not statistically significant.

4.4 Conclusion and Future Work

We have explored the U-Net architecture in the context of singing voice
separation, and found that it brings clear improvements over the state-of-
the-art. The benefits of low-level skip connections were demonstrated by
comparison to plain convolutional encoder-decoders.

A factor that we feel should be investigated further is the impact of large
training data: work remains to be done to correlate the effects of the size of

6Some of the audio clips we used for evaluation can be found on http://mirg.city.ac.
uk/codeapps/vocal-source-separation-ismir2017
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Figure 4.6: CrowdFlower evaluation results. Circles represent mean values,
and lines extend one standard deviation in each direction.
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the training dataset to the quality of source separation.

We have observed some examples of poor separation on tracks where the
vocals are mixed at lower-than-average volume, uncompressed, suffer from
extreme application of audio effects, or otherwise unconventionally mixed.
Since the training data consisted exclusively of commercially produced record-
ings, we hypothesize that our model has learned to distinguish the kind of
voice typically found in commercial pop music. We plan to investigate this
further by systematically analyzing the dependence of model performance on
the mixing conditions.

Finally, subjective evaluation of source separation algorithms is an open re-
search question. Several alternatives exist to 7-step Likert scale, e.g. the
ITU-R scale (Thiede et al., 2000). Tools like CrowdFlower allow us to quickly
roll out surveys, but care is required in the design of question statements.

4.4.1 Recent developments

Since the publication of the work that we describe in this section, a number of
articles and been published that build on this work. Below follow summaries
of some notable examples:

(Stoller et al., 2018) trained a model for source separation in the time-domain,
by combining the Wavenet (van den Oord et al., 2016) with the U-Net.
This Wave-U-Net architecture has also been applied to speech enhancement
(Macartney & Weyde, 2018) and lyric alignment (Stoller, Durand, & Ewert,
2019).

In (Choi et al., 2019), the authors train a speech enhancing U-Net in the
complex domain. We investigate this architecture for music separation in
Chapter 6.

Researchers at Deezer have developed an open-source software library for vo-
cal source separation, “Spleeter” (Hennequin, Khlif, Voituret, & Moussallam,
2020), which has similarities with the model described in this chapter.

(Meseguer-Brocal & Peeters, 2019) introduced an instrument-specific con-
ditioning vector for multi-instrument separation. This conditioning vector
represents the embedding of a single instrument, and can be understood as a
query key which the network uses to select the instrument signal to output.
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Chapter 5

Joint Vocal Removal and Vocal
Pitch Tracking

5.1 Introduction

In the previous chapter we developed a method for isolating vocals from a
musical mixture. Given this newly improved capability, we would like to
investigate potential applications. In the introduction we hypothesized that
automatic transcription systems could benefit from vocal separation, based
on the intuition that a less noisy input signal should result in less noisy
transcriptions. In this chapter we will discuss ways of combining automatic
vocal separation with the estimation of vocal fundamental frequency, f0. This
chapter is based on our paper (Jansson, Bittner, Ewert, & Weyde, 2019),
presented at the 2019 EUSIPCO conference. We will tackle the challenging
multi-f0 case, where the f0 estimator can predict one or many simultaneous
pitches at each time frame.

Interdependencies between the two tasks have been demonstrated in litera-
ture. For example, (Virtanen et al., 2008) reported improved performance
on one task by integrating information obtained via a method designed for
the other. These dependencies can be modeled in different ways. For ex-
ample, the fundamental frequency can be estimated and employed as side
information in the separation process (Li & Wang, 2007; Virtanen et al.,
2008). Alternatively, an estimate of the clean singing voice can be used as
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input to simplify the estimation of the fundamental frequency of the voice
(Durrieu, Richard, David, & Févotte, 2010). Given that both directions were
successfully exploited in the past, it remains unclear how these dependencies
should be modeled, especially given that prior work typically solves one task
independently of the other and conditions the other on the resulting point
estimate — eliminating the potential benefits of circular influence. Attempts
have been made to learn both tasks iteratively, in an alternating fashion (Hsu
et al., 2012). Learned joint pitch and separation models have been proposed
for speech (X. Zhang, Zhang, Nie, Gao, & Liu, 2016). However, we are not
aware of prior work in music that jointly performs vocal separation and vocal
melody estimation.

Another important aspect of combining models for different tasks is the issue
of a resulting mismatch between the data distributions at training and test
time. Consider performing vocal f0 estimation by first applying a source sepa-
ration algorithm to a mixed signal and then running a standard pitch tracker.
Pitch trackers are typically designed based on two assumptions: the signal
being pitch tracked has little to no noise or interference, and is monophonic.
Due to these assumptions, pitch tracker performance can suffer from artifacts
introduced by source separation, which can include residual sounds that are
pitched or other interference in the background. Figure 5.1 shows the perfor-
mance of three different pitch tracking algorithms — Crepe (Kim, Salamon,
Li, & Bello, 2018), pYIN (Mauch & Dixon, 2014), and Deep Salience (Rachel
M. Bittner, McFee, Salamon, Li, & Bello, 2017) on both clean and source-
separated vocals in the iKala dataset (Chan et al., 2015).

In this work we use U-Nets for both vocal separation and fundamental fre-
quency estimation. U-Nets were first proposed for f0 estimation in (Doras,
Esling, & Peeters, 2019).

The Overall Accuracy (OA) and Raw Pitch Accuracy (RPA) metrics (see Sec-
tion 5.4 for details about these metrics) considerably decrease for all three
algorithms when applied to source separated instead of clean vocals. Addi-
tionally, many source separation systems which isolate the singing voice will
isolate all singing voices, which can break the monophonic requirement and
severely reduce the accuracy of pitch trackers.

Given this interdependent nature of the two tasks, it is an open question
how to design a joint estimator, and whether such a system would actually
yield benefits. As a first contribution in this chapter, we demonstrate that
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Figure 5.1: Performance of pYIN (Mauch & Dixon, 2014), Crepe (Kim,
Salamon, Li, & Bello, 2018), and Deep Salience (Rachel M. Bittner et al.,
2014) on the iKala (Chan et al., 2015) dataset. pYIN and Crepe are run on
clean iKala vocals and on vocals computed by running a source separation
algorithm (“Source Only” in Figure 5.3) from iKala mixtures as input. Deep
Melody and Melodia are run on iKala mixtures as input. Boxplots show the
distribution of OA and RPA over each track in the dataset. The left and right
borders of boxes indicate first (Q1) and third (Q3) quartile, respectively; left
and right “whiskers” show Q1−(Q3−Q1) and Q3+(Q3−Q1); the median is
notated by a straight line through the box; averages are notated by triangles.

incorporating “oracle” (ground truth) information for both pitch and sepa-
rated vocals can indeed improve the learned results for the other task. As a
second contribution, we then design, implement and evaluate different model
architectures that estimate pitch and vocals individually or jointly in a vari-
ety of ways, each reflecting a different perspective on the interdependency of
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the two tasks. Finally, inspired by end-to-end unfolding techniques for rep-
resenting iterative re-estimation processes of dependent components inside a
network (Wisdom, Hershey, Le Roux, & Watanabe, 2016) as well as stacking
networks (Park, Kim, Lee, & Kwak, 2018), we propose an architecture which
resolves the task dependencies within a sequential re-estimation model.

Several of the models presented in this chapter can be classified as “multi-
task learners”. An overview of multi-task learning with deep neural networks
can be found in (Ruder, 2017).

5.2 Input and Output Representations

We make use of an internal dataset of roughly 2500 pairs of music audio
signals x and corresponding isolated vocal audio signal y from a number of
musical genres, including pop, rock and rap vocals. All singing voices present
in the mixture x are included in the isolated vocals signal y, meaning that
y may — and often does — contain more than one active voice at a time
(e.g. a lead singer and background harmonies). x and y are converted to
mono with a sample rate of 22050 Hz. Let X and Y be the magnitude of the
Short Time Fourier Transform (STFT) spectrogram of x and y respectively.
STFTs are computed with a hop size of 256 and with 1024 points in the
FFT, as shown in Figure 5.2 (left) and (middle) respectively.

Our dataset does not contain ground truth vocal f0 annotations. As a
proxy for ground truth f0, we run the Deep Salience multiple-f0 estimation
model (Rachel M. Bittner et al., 2017) on the isolated vocals y in our train-
ing set. Deep Salience predicts a matrix S of f0 salience values — i.e. the
likelihood of an f0 value being present over a grid of time-frequency points
(see Figure 5.2, right). Note that this algorithm does not assume the audio
is monophonic — if multiple pitches are present at the same time, there can
be multiple high-likelihood f0 bins.

S is the target output for the vocal f0 estimation (pitch) component of our
models. Note that we are training a model to reproduce the output of an-
other trained model (Deep Salience), similar to a teacher-student training
paradigm (Hinton, Vinyals, & Dean, 2015). One notable difference is we
are training our model to produce S given mixtures as input, while the pre-
trained Deep Salience model is given isolated vocals as input. This also
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X Y S

Figure 5.2: An example of the input and output representations used for
training. (Left) Input magnitude STFT of the mixture audio. (Middle)
Target magnitude STFT of the isolated vocal audio. (Right) Target vocal
salience produced by the Deep Salience algorithm (Rachel M. Bittner, McFee,
Salamon, Li, & Bello, 2017). The top row shows an example where there is
one solo singer, while in the bottom row, three singers are singing in harmony.

means that the performance of our model will likely be upper bounded by
the performance of Deep Salience on isolated vocals.

The largest public datasets with mixtures, corresponding isolated vocals and
annotated vocal f0 are iKala (Chan et al., 2015) (≈ 2 hours) and Med-
leyDB (Rachel M. Bittner et al., 2014) (≈ 3 hours, since only half of the
tracks contain vocals). Because Deep Salience was trained using MedleyDB,
we evaluate the performance of our models on iKala. We compare vocal
f0 outputs with iKala’s f0 annotations using the mir eval (Raffel et al.,
2014) implementation of standard melody metrics (Salamon, Gómez, Ellis,
& Richard, 2014). Vocal source separation outputs are evaluated using the
Signal-to-Distortion Ratio (SDR) metric1 from the mir eval implementation
of BSS Eval (Vincent et al., 2006).

1Signal-to-Interference and Signal-to-Artifact Ratios followed the same trends as SDR
and are therefore not included.
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5.3 Model Overview and Training

The models presented in the subsequent sections are composed of one or
more U-Nets. We use the exact same U-Net architecture as in Chapter
4 for estimating both vocal separation Ŷ and vocal f0 salience Ŝ. In all
experiments we optimize the model weights using the ADAM (Kingma &
Ba, 2014) optimizer, using the same parameters as in Chapter 4.

The vocal separation network produces a soft ratio mask M from where we
derive the vocal magnitude spectrogram

Ŷ = M�X (5.1)

Ŷ is optimized by minimizing the loss L1 loss:

Lv =
∥∥∥Ŷ −Y

∥∥∥
1

(5.2)

The isolated vocal signal ŷ is synthesized by applying the phase of the original
complex mixture spectrogram to the estimated magnitude spectrogram, and
transforming to the time-domain by means of the Inverse Short Time Fourier
Transform (ISTFT). The salience network outputs Ŝ directly and is optimized
with L2 loss:

Ls =
∥∥∥Ŝ− S

∥∥∥
2

(5.3)

The below experiments which jointly estimate vocal source and salience are
optimized by summing the vocal and salience losses:

Ljoint = Lv + Ls (5.4)

In the case of monophonic targets (e.g. as in iKala), f0 time series are gen-
erated from Ŝ by returning the frequency with maximum likelihood at each
time frame. The voicing (when the voice is active/inactive) is determined by
a simple threshold on the maximum likelihood at each time frame; frames
where the likelihood falls below the threshold are reported as “unvoiced”.
In the results from our models, we fix the voicing threshold to 0.4. For the
comparison models (Crepe, Melodia, etc.), we compute performance for a
full grid of possible thresholds, and report the performance for the threshold
that maximizes performance in each case (“oracle” threshold).
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Ŝ ŜŶ Ŷ

Figure 5.3: (Left) Baseline models take the mixture magnitude STFT X
as input, and output vocal f0 salience Ŝ in “Pitch Only”, and the vocal
magnitude STFT Ŷ “Source Only”. (Right) Oracle models which are given
“perfect” input information. “Oracle Source” is given isolated vocals magni-
tude STFTs Y as input and trained to output S. “Oracle Pitch” is given X
and oracle vocal f0 salience S as input and trained to output Y.

5.4 Evaluation measures

In addition to the source separation metrics described in Section 2.6.1, we
evaluate the f0 estimation using the objective measures Raw Pitch Accuracy
(RPA) and Overall Accuracy (OA) (Salamon et al., 2014). Note that the
ground truth vocal f0 is undefined during parts of the track where the singers
are silent. This is reflected in the definition of the evaluation measures.

• Raw Pitch Accuracy is defined as the proportion of frames in which the
ground truth has active vocals, that the estimated melody is correct
within half a semitone.

• Overall Accuracy is defined as the proportion of frames that are cor-
rectly labeled, where correct labeling is defined differently for frames
with and without vocal activity. For frames that have active ground
truth vocals, correct is defined as in RPA to accuracy within half a semi-
tone. Unvoiced frames are marked as correct if the algorithm marked
them as unvoiced.
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5.5 Baselines and Oracle Experiments

As a baseline, we first train separate models, shown in Figure 5.3 (left): Pitch
only which estimates f0 salience given mixtures as inputs, and Source only
which performs vocal source separation. These models are completely inde-
pendent and do not share weights.

As an upper bound, we train models that receive oracle information —
Oracle Vocals which estimates vocal salience Ŝ given ground truth vocals
Y as input, and Oracle Pitch which estimates the vocal spectrogram mag-
nitudes Ŷ given the mixture X and ground truth f0 salience S as inputs, as
shown in Figure 5.3 (right). Oracle Vocals tells us how well we can esti-
mate f0 performance given perfect information, i.e. the performance reported
provides an estimate for the upper bound achievable with this architecture
and number of parameter. Oracle Pitch tells us how much it helps source
separation performance to have f0 salience as side information, and similarly
gives us an upper bound on source separation performance.

The results in Figure 5.4a clearly show that a vocal pitch estimator trained
on clean vocals Y (Oracle Vocals) performs better than one trained on
mixtures X (Pitch only). This is consistent with Figure 5.1 where pitch
trackers with clean vocals as input outperform pitch trackers that operate
on mixtures. A similar effect can be seen for vocal separation in Figure 5.4b,
where the inclusion of ground truth pitch salience S improves the source
separation metric.

5.6 Joint Models

In the following section, we present a series of different architectures that
perform both vocal source separation and f0 salience estimation. Figure 5.5
gives an overview of the architectures we compare; they share information
in various ways, either through weight sharing (treating the problem in a
standard multitask setup) or by directly giving the outputs of one stage of
the model as input to the next.
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(a) Pitch estimation results
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(b) Vocal separation results
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Shared Encoder
Cross-Stitch
Source  Pitch
Pitch  Source

S  P  S  P
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Deep Salience (Clean Vocal)
Deep Salience (Sep. Vocal)

Figure 5.4: Performance comparison of our experiments, oracle, and baseline
models, evaluated on iKala. (Top) Single-f0 metrics. (Bottom) Vocal source
separation metrics. Refer to Figure 5.1 for an explanation of the elements in
the plot.
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Figure 5.5: Joint U-Net models. Each model takes the magnitude spectro-
gram of the mixture X as input and outputs estimates of the vocal magnitude
spectrogram Ŷ and the vocal f0 salience Ŝ. In Pitch→Source model, X is
given as additional input to the vocal source separation portion of the model
(indicated by a dotted line), and similarly in the S→P→S→P model, the first
vocal estimate Ŷ′ is given as additional input to the second vocal source sep-
aration model. In Separately Trained, each network is trained separately,
first optimizing Ŷ, and then using the optimized Ŷ as input to a second
model that outputs Ŝ.

5.6.1 Conventional Multitask Models

We first experiment with architectures that share weights for both tasks.
The Shared Encoder model, Figure 5.5 (top left), shows the simplest such
architecture, which has one encoder that is shared and separate decoders
for each task. The results for this experiment show that the shared encoder
model is inferior to disjoint models for both vocal f0 estimation (Figure 5.4a)
and vocal separation (Figure 5.4b). One potential explanation for this result
is that the shared encoder reduces the number of parameters in the network
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by 25%.

In the Cross-Stich model, shown in Figure 5.5 (top right), each output has
separate encoder-decoders, but the encoders are concatenated before being
passed to the individual decoders. However, the skip connections are task-
specific. This model has a capacity equivalent to that of the two baseline
models, and should not suffer from the same potential capacity issue of the
Shared Encoder model. Cross-Stich performs slightly better than Shared
Encoder, but is still worse than the baseline models on both tasks.

5.6.2 Stacked Models

In Figure 5.5, (bottom left and middle), the tasks are learned in a cascaded
manner. In the Source→Pitch model, a first U-Net computes Ŷ given X,
and a second U-Net computes Ŝ given Ŷ as input. Pitch→Source is similar
but in the reverse order, and with the addition of concatenating X and Ŝ
as input to the second U-Net model. This concatenation was added because
there is not enough information in Ŝ alone to compute Ŷ — the mixture
information is needed as well.

As shown in Figure 5.4a, Source→Pitch outperforms all of Pitch only,
Shared Encoder and Cross-Stich for pitch estimation. This is perhaps un-
surprising, since the baseline model trained on clean vocals (Oracle Vocals)
performs better than the baseline trained on mixtures (Pitch only). How-
ever, Pitch→Source does not result in a similar improvement for vocal
separation, even though Oracle Pitch saw significant improvements. We
hypothesize that the lack of accuracy of pitch estimates from mixture (see
Figure 5.4a) prevents improvements of the vocal separation on the level of
Oracle Pitch.

5.6.3 Stacked Refinement

In our final experiment, we attempt to further refine the results of Source→Pitch.
Stacked Refinement (He & Schomaker, 2019) is an architectural pattern in
which a network module is repeated, feeding the output of a module as input
to an identically designed module, with different weights. We adapt this pat-
tern to our domain by extending Source→Pitch to a “Source → Pitch →
Source→ Pitch” (S→P→S→P) network 5.5 (right). We notate the output of
the first source network Ŷ′ and the output of the first pitch network Ŝ′. The
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second source network is fed a concatenation of Ŷ′ and Ŝ′, and it outputs Ŷ,
which it then feeds into the second pitch network to output Ŝ. This allows
higher level modules to learn a refinement function from initial predictions
to cleaner predictions.

The scores for the resulting model are plotted in Figure 5.4a and Figure 5.4b.
The stacked refinement model surpasses the performance of all of our other
models for both vocal source separation and vocal melody estimation.

The second source separation network is presented with an adequate pitch
estimation, which provides additional guidance to refine the vocal source
estimate. It is a somewhat surprising result that the difference for melody
estimation is higher than the difference for vocal separation, since that implies
that the inputs to the first and second melody estimation networks have little
difference. We hypothesize that the doubled network capacity might be an
important additional factor in explaining this result.

5.7 Joint vs. Separate Training

We saw in the previous section that Source→Pitch performs better than
the other configurations of the same network capacity. In order to test if the
joint training is necessary, we take the output Ŷ of Source only as input
to a model which outputs Ŝ, as shown in Figure 5.5 (Separately Trained

bottom, 2nd from right). The results, plotted as Separately Trained in
Figure 5.4a, show that joint optimization is indeed beneficial for vocal melody
estimation. This is possibly because our pitch model is “borrowing” capacity
from the separation model, or alternatively because the separation results
become more tailored towards pitch estimation.

5.8 Discussion

5.8.1 Vocal Melody Estimation from Mixtures

The fusion of vocal source separation and vocal salience estimation results
in system that is able to estimate vocal melody from musical mixtures. As
we saw in Section 5.1, vocal pitch trackers that take isolated vocals as input
have higher accuracy than systems that estimate vocal melody directly from
a mixture. We now pose the question of whether our jointly trained vocal
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Experiment OA RPA
Melodia 0.766 0.776
Deep Melody 0.695 0.788
Pitch only 0.721 0.751
Shared Encoder 0.717 0.727
Cross-Stitch 0.719 0.736
Source → Pitch 0.800 0.841
Pitch → Source 0.716 0.743
S → P → S → P 0.817 0.851

Table 5.1: Vocal Melody Estimation Results

separator and multi-f0 estimator can predict single-f0 vocal melody as well as
pitch trackers that were explicitly trained to predict single-f0 from mixtures.

Comparing our best model (S→P→S→P) to Melodia (Salamon et al., 2014)
and Deep Melody (Rachel M. Bittner et al., 2017), shows that our model
does indeed perform better than both other models on single-f0 vocal pitch
estimation, on the iKala dataset (Table 5.1). All three results were obtained
by presenting the models with mixture inputs.

5.8.2 Qualitative Analysis

To build an intuition of the characteristics of the model’s pitch estimates,
we zoom in on a few bars of the 1965 pop song “Turn! Turn! Turn!” by
The Byrds. This song is interesting for our multi-f0 model since its vocals
alternate between unison and multi-part harmony. Figure 5.6 shows the final
pitch estimation using S→P→S→P, with a voicing threshold set to 0.4. Since
we do not have vocal melody ground truth for this track, we only show the
model outputs. While there are a few scattered false positives, the majority
of the pitch estimates appear to belong to vocal notes. The likelihoods for
sustained notes sometimes drop below the voicing threshold, leaving only
activations at the initial note onset transient.

It is also instructive to visualize the raw estimated pitch salience, before
applying the voicing threshold. Figure 5.7 show vocal salience matrices,
estimated on the first phrase of the example above, using our model (left)
and Crepe (right).

96



Figure 5.6: Vocal f0 estimation from S→P→S→P on an excerpt from the pop
song “Turn! Turn! Turn!” by The Byrds.
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Figure 5.7: Estimated salience matrix Ŝ. Left: our S→P→S→P model,
predicted from mixture X. Right: Crepe, predicted from estimated vocal
source Ŷ. The excerpts begins with one voice, and a second voice enters at
1:29.

97



The most striking difference is our model’s ability to predict multiple simul-
taneous vocal parts, while Crepe oscillates between the two notes. Despite
the fact that our model is presented with a full mixture, and Crepe with
vocals isolated by the source separation output of our model, our model pro-
duces a cleaner salience matrix, with fewer artifacts. It appears that during
the joint training procedure, the vocal melody estimation module learns to
ignore source separation artifacts, despite the fact that artifacts are present
in this excerpt. It should also be noted that our model is less precise than
Crepe, lacking some of the fine-grained sharpness of the vibratos that Crepe
more accurately captures.

5.9 Conclusions and Future Work

In this work, one of the biggest challenges was in assessing why certain mod-
els performed better or worse than others, and in this chapter we suggested
hypotheses with possible reasons. Future work includes testing these spe-
cific hypotheses to obtain better insights about the specific advantages and
disadvantages of these architectures. Beyond this, we would like to explore
applying joint f0 and source separation models to other types of pitched
sources beyond the singing voice, such as the piano. We think the same
ideas could also be applied to drum separation and drum transcription.

Overall, we explored a number of different architectures for jointly separating
vocals and estimating fundamental frequency in a single data driven system
based on deep U-Net neural network architectures. We compared single-
task models with single-task models given oracle information from the other
task, and obtained ideal upper and lower bounds on performance. We saw
that including oracle information improves performance, in particular for
vocal-f0 information. A joint stacked model that first performs vocal source
separation followed by vocal f0 estimation approaches the performance of the
oracle models, and outperformed conventional multitask architectures, which
underscores the value of incorporating domain knowledge when designing
models. Additionally, we showed that the model achieves state-of-the-art
results for vocal-f0 estimation on the iKala dataset. Finally, we highlighted
the importance of performing polyphonic, rather than monophonic vocal-f0
estimation for many real-world cases.
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Chapter 6

Multi-instrument separation
with complex masks

6.1 Introduction

In the preceding chapters, we have developed source separation methods that
operate solely on the magnitude component of the STFT spectrogram. While
this makes it possible to translate algorithms from the image domain to the
source separation task, by treating spectrograms as images, this training
scheme also comes with significant drawbacks. Typically, masks are trained
to “let through” spectral magnitudes that correspond to some particular
instrument. Yet, when we apply the ISTFT to re-synthesize the estimated
isolated instrument, reproduction will never be perfect.

This is due to phase artifacts: sources that overlap in time and frequency
with the target source leave audible traces in the masked signal. These traces
are due to the phase of the interfering source being preserved after masking.
This effect is the more pronounced the greater the spectral overlap between
sources is, and is especially problematic in the music domain: due to the very
nature of (western) music, musical instruments and voices are synchronous
in time by following a shared meter (unlike speech), and their spectral com-
ponents tend to occupy the same frequency ranges when sounding together
in consonance (Schönberg, 1922).

The complex ideal ratio mask (cIRM) can be helpful in illustrating this effect.
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The cIRM, McIRM, given an isolated source complex spectrogram Y and a
mixture complex spectrogram X is defined as:

McIRM = Y �X (6.1)

where � denotes element-wise division.

From the definition of complex division,

|McIRM| = |Y| � |X| (6.2)

∠McIRM = ∠Y − ∠X (6.3)

where |·| denotes complex magnitude and ∠ denotes complex phase or angle.

Hence, the cIRM magnitude is simply the ideal ratio mask for magnitude
spectrograms that we have estimated in previous chapters, and the phase
of the cIRM is the difference between the phase of source and the mixture.
Figure 6.1 shows the mixture of a vocal source and a percussion source, and
the magnitude and phase components of cIRM that recovers the percussion
source from the mixture.

In the bottom right of Figure 6.1 is a plot of the ideal phase mask, multiplied
by the percussion source. This shows clearly how vocal components are
present in the percussion mask, especially during times when the sources
have high degrees of spectral overlap. Copying the phase from the mixture
to the isolated source estimate, as we have done in previous chapters, results
in audible phase artifacts due to unaltered phase differences between the
mixture and the source.

In this chapter we investigate using complex-valued masks as a drop-in re-
placement for magnitude-domain masks within the context of multi-instrument
source separation, in an attempt to reduce the effect of phase artifacts from
interfering instruments. Additionally, we examine several loss functions, in
both time and frequency domains.

6.2 Datasets

The proposed model is trained on a dataset of about 2000 professional quality
recordings. For each recording, five stems are available, grouped by instru-
ment: “Vocals”, “Guitar”, “Bass”, “Percussion”, and “Other”. Each record-
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Figure 6.1: Complex Ideal Ratio Masks. Top left: Percussion source; Top
middle: Vocal source; Top right: Mixture; Bottom left: Ideal magnitude
mask; Bottom middle: Ideal phase mask; Bottom right: Ideal phase
mask weighted by percussion source.

ing is, by design, the (unweighted) sum of its five stems. The distribution of
genres in the dataset is listed in table 6.1.

To increase the size of the training set, a series of augmentation steps is
performed on the stems. Two classes of augmentations are performed: stem-
level and track-level changes. Stem-level augmentations are applied to single
stems, and include random volume adjustments and equalization, as well
as randomized audio effects such as chorus, phasers, flangers, tremolo, etc.
Track-level augmentations are applied to the entire mixture, after each stem
has been augmented individually, including time stretching, pitch shifting,
and resampling. All augmentations were implemented using the PySOX
library.(Rachel Bittner, Humphrey, & Bello, 2016). Ranges of acceptable
random parameterizations were chosen empirically such that the resulting
mixture was still plausible from a musical standpoint.
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Figure 6.2: Architecture diagram of the proposed model.

For validation and testing, the MUSDB 2018 dataset (Stöter et al., 2018) is
used; in particular, the training split (100 tracks) is used to track the progress
of the model during training, and the test split (50 tracks) to evaluate the final
results. MUSDB contains only 4 instrument types, namely “Vocals”, “Bass”,
“Percussion”, and “Other”. When running validation and test results, we
group our model’s outputs for “Guitar” into the “Other” category.

6.3 Model

6.3.1 Architecture

The proposed model extends the U-Net source separation model detailed in
Chapter 4; pictured in Figure 6.2, it consists of 6 downsampling “encoder”
layers, 6 upsampling “decoder” layers, and skip connections between corre-
sponding encoder and decoder layers. Each encoder layer comprises a strided
convolution (with kernel size 5 × 5 and stride 2 × 2) followed by batch nor-
malization (except in the first layer), and a leaky ReLU activation function.
In the decoder, each layer consists of a strided transpose convolution (with
kernel size 5× 5 and stride 2× 2, as in the encoder); batch normalization is
applied to all decoder layers except the last, as well as 50% dropout in the
first five layers, and a ReLU activation function in all layers except the last.
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Genre Percentage
Rock 26.2%
Alternative 20.8%
Metal 14.6%
Indie Rock 9.1%
Punk 9.0%
Pop 8.0%
Electronica 2.5%
R&B 2.2%
Dance & House 1.3%
Rap 1.0%
Other 5.3%

Table 6.1: Stems data genre distribution

6.3.2 Input and Output Representation

For multi-source separation, independent models are trained for vocals, drums,
guitar, and bass. The “Other” source is estimated as the residual differ-
ence between mixture and the sum of the four estimated sources. Each
source-specific network is presented with mixture spectrograms, extracted
from 22050 Hz mono audio signals, with overlapping windows of size 1024,
and hop size 256. During training, we slice the spectrograms into patches
of 256 frames, and feed the network batches of 16 patches each. This is not
necessary during inference, since the network is fully convolutional and can
be applied to the spectrogram of the full length of the signal.

The network is trained to output a mask that is then applied to the mix-
ture spectrogram to produce the source spectrogram estimate. We evaluate
two variations of this architecture: non-complex, where the input is a single
mono channel representing the magnitude of the mixture spectrogram; and
complex, where the input is the complex spectrogram. In the non-complex
case, the mask is only applied to the magnitude component of the mixture,
whereas the complex experiments apply the mask in the complex domain.
After mask application, we synthesize the estimated source signal by means
of the Inverse Short-Time Fourier Transform (ISTFT).

In the complex case, the complex single-channel mono mixture spectrogram
matrix is transformed into a three-dimensional tensor where the third di-
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mension has two channels representing the real and imaginary components
of the complex mixture spectrogram. After having been transformed by an
internally real-valued neural network, the three-dimensional network output
is then transformed back to a complex two-dimensional matrix by treating
the two channels of the third dimension as real and imaginary. Mathemati-
cally, let OC-Network

i,j,c denote the real-valued final network layer output, where
i and j represents width and height indices, and c represents the channel
index, where c = 0 and c = 1 represents real and imaginary components. We
then transform this real-valued OC-Network into a complex output OC using

OC
i,j = OC-Network

i,j,0 eiO
C-Network
i,j,1 (6.4)

6.3.3 Masking

In the remainder of this section, OC and OR denotes the outputs by the
complex and non-complex networks; MC and MR denotes complex and non-
complex masks; X denotes the spectrogram of the input mixture to be sep-
arated by the model; for individual stems (individual instruments or voice),
Y and Ŷ denote the spectrograms of the recorded and estimated stems,
respectively, while y and ŷ denote their time-domain equivalent.

Non-complex masking

The non-complex mask is computed as

MR = σ
(
OR) (6.5)

where σ is the sigmoid function, constraining the (real-valued) network
output to the (0, 1) range. It is multiplied element-wise (denoted by ⊗)
with the mixture spectrogram magnitude to obtain the estimated source
spectrogram magnitude. The phase is copied from the mixture spectrogram
into the spectrogram of the estimated stem, unaltered.

Ŷ = MR ⊗ |X| ⊗ ei∠X (6.6)
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Figure 6.3: Magnitude and phase of learned complex masks (Complex-SDR)
for Bass, Voices, and Percussion on a test example from MUSDB18, and the
reference STFTs for each source. Top Row: Magnitude (dB) of the ideal
STFTs. Middle Row: Magnitude of the learned complex masks. Bottom
Row: Absolute value of the phase of the learned complex masks.

Complex masking

In the complex case we follow (Choi et al., 2019), by estimating a complex-
domain mask that is constrained in magnitude but not in phase. The tanh
magnitude constraint ensures that MC is bounded to the unit circle in the
complex plane.

|MC| = tanh(|OC|) (6.7)

∠MC = OC � |OC| (6.8)

where � denotes element-wise division.

The complex mask is then applied element-wise, as

Ŷ = |MC|⊗|X| ⊗ ei(∠MC+∠X) (6.9)

The mask applied determines a magnitude rescaling of the mixture STFT
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and a rotation (addition) in phase. This allows the model to not only remove
interfering frequency bins, but also to cancel the phase from other sources.

6.3.4 Loss

We evaluate three different loss functions: Magnitude loss, SDR loss, and the
combination SDR + Magnitude loss.

The Magnitude loss is optimized by minimizing the L1 distance between the
spectrogram magnitudes of the estimated and target components:

LMag = |Y − Ŷ|1 (6.10)

The time-domain SDR loss (Choi et al., 2019) is defined as:

LSDR = − y · ŷ
‖y‖‖ŷ‖

(6.11)

which smoothly upper bounds the SDR metric we are interested in optimiz-
ing.

The hybrid time-domain and frequency-domain SDR + Magnitude loss is
defined as:

LSDR+Mag = αLSDR + βLMag (6.12)

where α and β are weighting factors for the two losses. We use α = 1 and
β = 1 in our experiments.

We train our models in an end-to-end fashion using TensorFlow (Abadi et al.,
2016), taking advantage of its built-in short-time Fourier transform functions,
which allow back-propagation to be computed through the forward and back-
ward transforms themselves. All losses were optimized using Adam (Kingma
& Ba, 2014), as in previous chapters.

6.4 Results

We test three configurations of our system: “Non-complex”, “Complex-
SDR”, and “Complex-SDR+Mag”, outlined in Table 6.2. Objective eval-
uation is performed on the test portion of the MUSDB18 dataset, using the
museval toolkit (Stöter et al., 2018).
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Experiment Mask Loss
Non-complex Non-complex Magnitude
Complex-SDR Complex SDR
Complex-SDR+Mag Complex SDR+Magnitude

Table 6.2: Experimental configurations.

Objective scores, obtained using the tools detailed in Section 2.6.1, are
shown in Figure 6.4. There are slight differences between the results of
the different models when considering different metrics, however the com-
plex models achieve higher Signal to Distortion Ratio (commonly consid-
ered to be the most important metric) than the non-complex model for most
sources. Although these results do not compare favorably to State-of-the-Art
approaches, such as those reported in the yearly SiSEC evaluation cam-
paign (Stöter et al., 2018), they do yield insights into the design of such
systems, by providing a unified comparison not only in terms of dataset, but
also through the use of a single model in which individual aspects (masking,
loss function) are controlled.

We also collected subjective judgments from a number of individuals, using
a methodology similar to that of (Cartwright, Pardo, & Mysore, 2018). A
questionnaire was prepared, in which subjects were prompted to compare
audio recordings in pairs, each pair presenting the outputs of two different
model configurations applied the same short audio excerpt. As a reference,
evaluators were given both the original mixture and the target single source
signal.

Two questions were asked per pair of audio excerpts:

• “Quality: Which one has better sound quality?”

• “Separation: Which one has better isolation from the other instruments
in the original mix?”

For each question, the test subject could select either of the two audio ex-
cerpts, as well as a third option “I don’t know”. The results from the qual-
itative test are shown in Figure 6.5. Because of the difficulty of the task,
we were unable to employ online “crowd worker” platforms, and had to rely
on a small number of individuals trained in audio engineering. This limited
the size of the test to 210 examples. The results show a slight preference for
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Figure 6.4: SDR (Signal to Distortion ratio), SIR (Signal to Interference
ratio), and SAR (Signal to Artifacts Ratio) across experimental conditions.

the complex models over the non-complex baseline, with a mostly equal split
between SDR loss and SDR+Magnitude loss.
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6.4.1 Qualitative Analysis

The biggest audible difference between the audio output by the complex
masking model and the non-complex masking model is the amount of phase
distortion, in particular for bass and percussion. When using real masks,
both bass and percussion tend to sound very tinny, and the phase of other
sources is often captured in the sound of the reconstructed source, such as
hearing faint voices in a percussion signal. The predicted vocals sound similar
in both types of model, and the overall quality is rather good.

6.4.2 Analysis of learned masks

Figure 6.3 displays the learned masks from the Complex-SDR model on a
test track from MUSDB18, and the STFTs of the clean reference sources.
The middle and bottom rows show the magnitude and (absolute) phase of
the learned masks respectively. Several interesting properties can be ob-
served. As expected, the magnitude of the learned masks looks like that of
a typical soft mask, where the time frequency bins of the target source have
values close to 1 and other bins have values close to 0. For bass, harmonic
patterns with few transients in the low frequency range are noticeable; for
voice, harmonic patterns tend to inhabit a higher frequency range and ex-
ibit stronger transients, e.g., at the starts of words; percussions exibit more
regular transients.

The phase of the mask determines how much the phase of the mixture should
be rotated: higher values indicate places where the phase of the mixture is
substantially different from the phase of the source (e.g., because it overlaps
with another source). In this example, we see that for percussions there are
large phase corrections being made for horizontal patterns, likely canceling
the phase from harmonic sources in the mixture. Additionally, the phase is
corrected the instant before an onset, which likely makes the onset sound
more crisp than if it were smeared with phase from other sources. For the
vocal signal, most of the phase corrections are made where the bass and
percussion masks are active, indicating that the phase of the bass and per-
cussion is being canceled out for the vocal mask. Interestingly, for the phase
of the bass mask, close inspection reveals that in the low frequency regions,
the frequency bands that have large values from the mask and for the phase
are interleaved, implying that the phase of closely overlapping low frequency
sources is being canceled.
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6.4.3 Benefits of Hybrid Loss

Empirical observations suggest that while the complex mask alleviates the
phase artifact problem, the SDR loss has a tendency to distort the spec-
tral envelope of the estimated source. It was this observation that led us to
implement the hybrid SDR+Magnitude loss; we hypothesize that incorporat-
ing the magnitude loss should improve the accuracy of the overall frequency
response. In order to assess this hypothesis, Figure 6.6 plots the average fre-
quency spectrum of the MUSDB18 test set, per source, for the target source
and our experiments. For every source except voice, the SDR+Magnitude
loss results in a frequency response that is more similar to that of the SDR
loss.

Figure 6.7 visualizes SDR and magnitude loss for both complex models at
training time (even though only the SDR+Magnitude loss model attempts
to minimize magnitude loss). The plots show that the SDR loss causes,
predictably, magnitude differences to decrease, however not to the extent
that the explicit optimization of the magnitude does. Notably, the combined
SDR+Magnitude loss does not degrade the SDR component.

6.5 Conclusions

In this chapter we explored the use of complex masks for multi-instrument
source separation using a U-Net architecture. It was found that learned
complex masks perform better than non-complex masks perceptually, and
marginally better in terms of SDR. An analysis of the learned masks found
interesting properties of phase masking for different sources, highlighting a
particularly strong effect when masking percussion and bass.

Additionally, the use of a hybrid SDR + magnitude loss, was found to
yield better average frequency spectra, in particular matching better in the
high frequency range. In future work we plan to incorporate additional
perceptually-informed loss functions.

Finally, a practical implication of the proposed approach is that the con-
strained complex mask is a viable low effort, drop-in replacement for common
magnitude-domain masks.
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Figure 6.5: Pairwise perceptual preference ratings. The length of the yel-
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example. For example, out of 21 examples of “Percussion (quality)”, 18
ratings favored the SDR+magnitude model, whereas 3 ratings favored the
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Figure 6.7: Training loss over time. Green line: Complex-SDR model. Red
line: Complex-SDR+Magnitude model.
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Chapter 7

Conclusion

7.1 Summary

In this thesis we have presented several ways of leveraging large-scale music
databases for musical source separation.

We have shown how music data presents many challenges, both in terms of
the complexity of music data modeling and the prevalence of inconsistent
and incorrect metadata, but also in terms of scale. We have seen how the
terabyte scale of contemporary music databases forces us to formulate our
problems in way that lends itself to distributed processing.

We have seen how modern distributed data processing frameworks can be
deployed for practical, real-world music and audio processing tasks. Using
these tools has allowed us to mine commercial music catalogs for meaningful
training data for source separation. We have compiled the — to the best
of our knowledge — largest dataset to date, of music mixtures mapped to
isolated vocals and accompaniment.

Guided by the observation that artists often release instrumental mixes as
“B-sides”, we designed a matching algorithm to retrieve pairs of instrumen-
tals and original mixtures. This algorithm was efficiently implemented and
executed on modern distributed systems, allowing us to quickly retrieve tens
of thousands of pairs.

Having a dataset of this size allowed us to build deep neural network models
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with high capacity for vocal source separation. While previous attempts to
leverage deep learning for music source separation has fallen short of the full
potential of these models, it appears that our dataset is sufficiently large.
We show new state-of-the-art results on vocal source separation, both on
objective and crowdsourced subjective evaluation metrics.

Our neural network architecture, the U-Net, was adapted from the image
segmentation domain. Two-dimensional mixture spectrograms were used as
input “images”, and vocal activation masks were analogous to soft segmen-
tation maps.

We then applied source separation as a preprocessing step to vocal funda-
mental frequency estimation, showing that joint learning of the two tasks
resulted in better pitch estimation than a separately learning the two tasks.
This work emphasized the importance of choosing the right architecture for
joint learning tasks, as several common multi-task architectures failed to im-
prove performance. The most successful architecture was one that stacked a
source separation training model followed by a fundamental frequency esti-
mation model, followed by another source separation and fundamental fre-
quency model pair for fine-tuning.

We then conducted research on adaptations of this architecture for multi-
source separation. Phase artifacts were a common cause of noise in the
magnitude spectrogram-based models for vocal separation. We hypothesized
that this problem would become more pronounced as we introduced addi-
tional instrument sources, since many instruments have overlapping spectra.

In order to remedy this problem we extended the source separating U-Net
to the complex domain, directly estimating magnitude and phase mask co-
efficients. Qualitatively we saw the phase component of the mask effectively
“filter” out the phase of the interfering instruments. In listening tests we
found that the resulting synthesized instrument sources suffered from phase
artifacts to a lesser degree than the baseline model.

For the complex architecture we used a joint loss function, that simultane-
ously operated in the time and frequency domains. The time-domain loss
was used instead of predicting complex spectrograms directly, and the addi-
tional magnitude spectrogram loss worked to preserve the overall frequency
characteristics.
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7.2 Discussion and future work

Musical source separation is a challenging task for several compounding rea-
sons.

In the commonly used time-frequency representation, sources tend to overlap.
The analogy to image segmentation is imperfect, since each “pixel” can be
attributed to several sources to varying degrees. Another difference is that
objects in images tend to be connected in space, whereas in a spectrogram,
instrument activations are represented as disjointed harmonics.

While this thesis has made use of several techniques from image segmenta-
tion and recognition, these issues suggest that we ought to invest research
into alternative representations that make better use of convolutional neural
work properties. The Harmonic Constant-Q Transform (Rachel M. Bittner
et al., 2017) (HCQT) is a three-dimensional time-frequency representation
where harmonics are stacked in the third dimension, creating continuously
connected “shapes” of musical events. While the HCQT was designed to
preserve musical pitch information, similar representations should be inves-
tigated for musical source separation.

We might also consider replacing the convolution operator with some oper-
ator that does not depend on the connectivity of elements. Several novel
transforms have been proposed, such as Deformable Convolutional Networks
(Dai et al., 2017) Non-local Neural Networks (X. Wang, Girshick, Gupta,
& He, 2018), and Point-wise Spatial Attention Networks (H. Zhao et al.,
2018) have been proposed to overcome the locality limitations of convolu-
tional network. These methods, which have yet to be applied to musical
source separation, could potentially offer improvements over traditional con-
volutions.

When we train the U-Net model we split the full spectrogram into patches,
and train each patch independently. Patches are usually on the order of a
few seconds in length, and while this reduces training complexity, it also
introduces several limitations. Crucially, we are not able to make use of in-
formation from other parts of the song. Several methods have been proposed
in other domains to manage such long-range dependencies. In future work
we plan to explore techniques such as hybrid convolutional-recurrent models
(Shi et al., 2015), Atrous convolution (Chen, Papandreou, Kokkinos, Mur-
phy, & Yuille, 2018), and multi-scale convolutional neural networks (Nah,
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Kim, & Lee, 2017).

In Chapter 5 we saw how multi-task learning can improve accuracy in individ-
ual tasks. While we did not see an improvement in the source separation task
in this scenario, intuition suggests that there exists cases where multi-task
learning and/or additional metadata can lead to better separation results.
For example incorporating or jointly learning musical genre could feasibly
lead to improvements, since different genres have different instrumentation,
and different instrument “sounds”. Other candidates include release year,
artist country of origin, and gender of singer.

The musical multi-source separation task itself is often ill-defined, due to
ambiguity in instrument labeling. Are vocoded vocals still considered vocals,
or perhaps synthesizer? In modern pop and dance music, most instrument
sounds are synthesized or drastically effected. This will have to be addressed
if we are to build a multi-instrument source separator that generalizes to
many different styles of music.

Parallel to model improvements is future work on dataset mining and creation
— large models need large datasets. This is especially important as we start
incorporating additional metadata such as genre. Ideally we should have
sufficient numbers of examples for each genre.

The most scalable way to increase the dataset size is through augmenta-
tion. Given a set of isolated stems, we should be able to automatically mix
stems together to new songs, under certain constraints. These constraints
should enforce realism, such that stems are correlated and overlapping. It is
properties such as these that make musical source separation a particularly
challenging problem, and if the augmentation system does not generate mu-
sic with these properties, the trained model will not generalize to real music.
In future work we plan to generate training data by automatically mixing
under constraints such as tempo and beat alignment, key matching, chord
alignment, and genre matching.

While labeled source separation data is scarce, unlabeled music data is ubiq-
uitous. The challenge is how to make use of this vast dataset to train a source
separation model. This problem is by no means unique to our task, but is
prevalent in many machine learning fields. Several kinds of unsupervised
learning architectures have been developed in order to address this prob-
lem, many of which can be adapted to source separation. Similar to how
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the U-Net model has been used in fully convolutional image segmentation
systems, the W-Net (Xia & Kulis, 2017) is an unsupervised auto-encoder
consisting of two stacked U-Nets, with the middle layer producing an image
segmentation map. Co-training has also been used for image segmentation
(Peng, Estradab, Pedersoli, & Desrosiers, 2019) as a way to augment a small
labeled dataset with a large unlabeled dataset from the same distribution.
These models should be applicable to source separation, potentially with
additional task-specific post-processing.

In the absence of true training data such as stems and instrumentals, we
may still be able to learn from weakly labeled data in a semi-supervised
fashion. The Discogs database1 contains instrumentation information for
a large number of tracks. We intend to make use of the semi-supervised
algorithm in (Xiao, Wei, Liu, Zhang, & Feng, 2018) to learn source separation
masks from these track-level instrument labels in conjunction with a small
strongly labeled dataset.

On the application side, we see plenty of popular games and features that
put isolated instrument sources and/or vocals at center stage. Through auto-
matic source separation, we will be able to extend these experiences beyond
the most mainstream content, creating personalized features that serve di-
verse tastes in music.

Digital music is becoming ubiquitous, yet the modes of music consumption
have barely changed since the beginning of recorded music. We are finally
starting to develop technologies that will allow new, creative, and unconven-
tional ways of interacting with music, beyond simply pressing play on the
latest releases. And we believe that automatic source separation has the
potential to be a driving force in this transformation of music consumption
and creation.

1https://www.discogs.com/
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Geirhos, R., Janssen, D. H. J., Schütt, H. H., Rauber, J., Bethge, M., & Wich-

mann, F. A. (2017). Comparing Deep Neural Networks Against Hu-
mans: Object Recognition when the Signal Gets Weaker. arXiv preprint
arXiv:1707.06969.

Ghemawat, S., Gobioff, H., & Leung, S.-T. (2003). The Google File System.
In M. L. Scott & L. L. Peterson (Eds.), Proceedings of the 19th ACM
Symposium on Operating Systems Principles 2003, SOSP 2003, Bolton
Landing, NY, USA, October 19-22, 2003 (pp. 29–43). ACM.

Goodfellow, I., Bengio, Y., & Courville, A. (2018). Deep Learning: Das um-
fassende Handbuch [Grundlagen, aktuelle verfahren und algorithmen,
neue forschungsansätze]. Frechen: MITP.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,
Ozair, S., . . . Bengio, Y. (2014). Generative Adversarial Nets. In Ad-
vances in neural information processing systems (pp. 2672–2680).

Grais, E. M., Roma, G., Simpson, A. J. R., & Plumbley, M. D. (2016). Com-
bining Mask Estimates for Single Channel Audio Source Separation
Using Deep Neural Networks. In N. Morgan (Ed.), INTERSPEECH
2013, 14th Annual Conference of the International Speech Communi-
cation Association, Lyon, France, August 25-29, 2013 (pp. 3339–3343).
ISCA.

Grais, E. M., Sen, M. U., & Erdogan, H. (2014). Deep Neural Networks for
Single Channel Source Separation. In IEEE International Conference

124



on Acoustics, Speech and Signal Processing, ICASSP 2014, Florence,
Italy, May 4-9, 2014 (pp. 3734–3738). IEEE.

Grais, E. M., Wierstorf, H., Ward, D., & Plumbley, M. D. (2018). Multi-
Resolution Fully Convolutional Neural Networks for Monaural Audio
Source Separation. In Y. Deville, S. Gannot, R. Mason, M. D. Plumb-
ley, & D. Ward (Eds.), Latent Variable Analysis and Signal Separa-
tion - 14th International Conference, LVA/ICA 2018, Guildford, UK,
July 2-5, 2018, Proceedings (Vol. 10891, pp. 340–350). Lecture Notes
in Computer Science. Springer.

He, S., & Schomaker, L. (2019). DeepOtsu: Document Enhancement and
Binarization Using Iterative Deep Learning. Pattern Recognition.

Hennequin, R., Khlif, A., Voituret, F., & Moussallam, M. (2020). Spleeter: A
Fast and Efficient Music Source Separation Tool with Pre-trained Mod-
els. Journal of Open Source Software, 5 (50), 2154. Deezer Research.

Herault, J., & Jutten, C. [C.]. (1986). Space or Time Adaptive Signal Pro-
cessing by Neural Network Models. AIP Conference Proceedings.

Herrmann, M., & Yang, H. (1996). Perspectives and Limitations of Self-
Organizing Maps in Blind Separation of Source Signals. In Progress in
Neural Information Processing. Proceedings of the International Con-
ference on Neural Information Processing (Vol. 2, p. 1211). Citeseer.

Hershey, J. R., Chen, Z., Roux, J. L., & Watanabe, S. (2015). Deep Clus-
tering: Discriminative Embeddings for Segmentation and Separation.
CoRR, abs/1508.04306.

Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the Knowledge in a
Neural Network. arXiv preprint arXiv:1503.02531.

Ho, J., Jain, A., & Abbeel, P. (2020). Denoising Diffusion Probabilistic Mod-
els. arXiv preprint arXiv:2006.11239.

Hsu, C.-L., & Jang, J.-S. R. (2010). On the Improvement of Singing Voice
Separation for Monaural Recordings Using the MIR-1K Dataset. IEEE
Trans. Audio, Speech & Language Processing, 18 (2), 310–319.

Hsu, C.-L., Wang, D., Jang, J.-S. R., & Hu, K. (2012). A Tandem Algorithm
for Singing Pitch Extraction and Voice Separation From Music Accom-
paniment. IEEE Trans. Audio, Speech & Language Processing, 20 (5),
1482–1491.

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely
Connected Convolutional Networks. In 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA,
July 21-26, 2017 (pp. 2261–2269).

125



Huang, P., Kim, M., Hasegawa-Johnson, M., & Smaragdis, P. (2014). Singing-
Voice Separation from Monaural Recordings using Deep Recurrent Neu-
ral Networks. In Proceedings of the 15th International Society for Music
Information Retrieval Conference, ISMIR 2014, Taipei, Taiwan, Octo-
ber 27-31, 2014 (pp. 477–482).

Huang, P.-S., Chen, S. D., Smaragdis, P., & Hasegawa-Johnson, M. (2012).
Singing-voice Separation from Monaural Recordings using Robust Prin-
cipal Component Analysis. 2012 IEEE International Conference on
Acoustics, Speech and Signal Processing, ICASSP 2012, Kyoto, Japan,
March 25-30, 2012.

Huang, P.-S., Kim, M., Hasegawa-Johnson, M., & Smaragdis, P. (2014). Deep
Learning for Monaural Speech Separation. In IEEE International Con-
ference on Acoustics, Speech and Signal Processing, ICASSP 2014, Flo-
rence, Italy, May 4-9, 2014 (pp. 1562–1566). IEEE.

Humphrey, E. J. [Eric J.], Bello, J. P., & LeCun, Y. (2013). Feature Learn-
ing and Deep Architectures: New Directions for Music Informatics. J.
Intell. Inf. Syst. 41 (3), 461–481.

Humphrey, E. J. [Eric J], Reddy, S., Seetharaman, P., Kumar, A., Bittner,
R. M. [Rachel M], Demetriou, A., . . . Lehner, B., et al. (2018). An In-
troduction to Signal Processing for Singing-Voice Analysis: High Notes
in the Effort to Automate the Understanding of Vocals in Music. IEEE
Signal Processing Magazine, 36 (1), 82–94.

Humphrey, E., Montecchio, N., Bittner, R., Jansson, A., & Jehan, T. (2017).
Mining Labeled Data from Web-Scale Collections for Vocal Activity
Detection in Music. In Proceedings of the 18th International Society for
Music Information Retrieval Conference, ISMIR 2017, Suzhou, China,
October 23-27, 2017.

Isola, P., Zhu, J.-Y., Zhou, T., & Efros, A. A. (2017). Image-to-Image Trans-
lation with Conditional Adversarial Networks. 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).

Jansson, A., Bittner, R. M., Ewert, S., & Weyde, T. (2019). Joint Singing
Voice Separation and F0 Estimation with Deep U-Net Architectures.
In Proceedings of the 27th European Signal Processing Conference.

Jansson, A., Humphrey, E. J., Montecchio, N., Bittner, R. M., Kumar, A., &
Weyde, T. (2017). Singing Voice Separation with Deep U-Net Convolu-
tional Networks. In S. J. Cunningham, Z. Duan, X. Hu, & D. Turnbull
(Eds.), Proceedings of the 18th International Society for Music Informa-

126



tion Retrieval Conference, ISMIR 2017, Suzhou, China, October 23-27,
2017 (pp. 745–751).

Jeong, I.-Y., & Lee, K. (2014). Vocal Separation from Monaural Music Using
Temporal/Spectral Continuity and Sparsity Constraints. IEEE Signal
Processing Letters, 21 (10), 1197–1200.

Juslin, P., Patrik N.and Laukka. (2003). Communication of Emotions in
Vocal Expression and Musical Performance: Different Channels, Same
Code? Psychological Bulletin, 129, 770–814.
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