
Squeezer - A Tool for Designing Juicy Effects
Mads Johansen

IT University of Copenhagen
Copenhagen, Denmark

madj@itu.dk

Martin Pichlmair
IT University of Copenhagen

Copenhagen, Denmark
mpic@itu.dk

Sebastian Risi
IT University of Copenhagen

Copenhagen, Denmark
sebr@itu.dk

ABSTRACT
This paper introduces Squeezer, a tool for designing juicy effects in
the Unity game engine. Drawing upon inspiration from sound effect
synthesizers and description languages, Squeezer can "synthesize"
common types of juice effects, by combining simple effects into
effect sequences. These effect sequences can be edited and executed
even while playing the game in the editor, lowering iteration times
and easing the exploration of effects. We make a preliminary usabil-
ity test to verify the functionality and scope of the tool. Squeezer is
available at: https://github.com/pyjamads/Squeezer

CCS CONCEPTS
•Applied computing→Computer games; •Human-centered
computing → Graphical user interfaces; Usability testing.

KEYWORDS
Game Development; Game Design; Juice Effects; Interaction Feed-
back; Toolkit; Prototyping; Generator

1 INTRODUCTION
In this work, we present a tool for assisting game designers in apply-
ing common juice effects to game prototypes. Designing prototypes
is a very common practice in game design. Their purpose is to ex-
plore a design space or to communicate a game mechanic. Squeezer
seeks to enrich prototypes with Game Feel [25] by adding juice [13].
We aim to create a way for designers to quickly find or generate
effect sequences that are “good enough” for their prototyping needs.
This kind of tool that is not currently available.

Squeezer can generate various juice effects to quickly and effi-
ciently find effect sequences that can serve as "good enough" in
the prototyping stage of game development. The goal of proto-
typing is always to verify or communicate concepts and ideas; in
prototyping, the faster the design is revealed to fail or succeed, the
better. As the preliminary user study suggests, Squeezer can help
to quickly determine which kinds of juice effects detract from and
which enhance certain features in a game prototype.

To guarantee practical application and good test cases, we choose
to develop the tool in the widely used Unity1 game engine. Unity
lets users quickly develop and integrate custom tools to extend
their editor. Those tools can even be sold commercially via the
Unity Asset Store2. Users are used to adding extra libraries to their
projects to extend the functionality of the game engine and its
editor. By developing Squeezer for Unity, we increase the real-
world application probability and the number of available expert
users.

1https://unity.com/
2https://assetstore.unity.com/

The three main parts of Squeezer are (1) trigger setup, (2) ef-
fect sequencing, and (3) effect execution. Effects are triggered by
a simple event system that ties into the prototype’s code. Effects
are sequenced by structuring them into a tree and using relative
time offsets (delays). The execution of effects is managed by a
simple Tweening [3] system that schedules effects and continu-
ously updates ongoing effects after they are triggered. The word
tween comes from "in betweening" [21], which comes from cartoon
animation, where a senior would draw keyframes of animation
sequences, and juniors would then fill in the timelines between
those keyframes. A tweening system interpolates over a duration
between a beginning and end value (also known as keyframes).
The interpolation can be linear or eased in and/or out using easing
curves3.

Importantly, Squeezer is more than a tweening system: the de-
scriptions allow runtime manipulation and fast iteration on ideas.
Additionally, with the export and import of full or partial descrip-
tions, users can easily create a library of effect sequences and apply
themwidely in or between projects. Squeezer also includes complex
effects such as the SFXR audio synth effect and the spawner effects
which create objects and build initial effects sequences for their
offspring, allowing users to alter them easily.

This paper has two contributions. The first one is the introduc-
tion of Squeezer, a new tool for exploring juice effects during game
prototyping. It combines structure and ontology ideas from the
Video Game Description Language (VGDL) [17] with Unity editor
integration for quick iterations. The second contribution is the idea
of a juice effect "synthesizer", combining modular sequencing and
presets to generate complex effect sequences, based on categories
similar to those used in SFXR [20].

2 BACKGROUND
Around a decade ago, the concept of game feel and juiciness gained
traction after being discussed mostly for prototyping [9] in the
indie game community. Juice is a game design term for abundant
feedback that amplifies interactions related to input and other in-
game events [10, 15]. It is superfluous from a strictly mechanical
perspective but makes interacting with the systemmore pleasurable.
Juice helps sell the illusion that the game world has real properties,
just like exaggeration in cartoons create the illusion of life [26].
Hunicke [11] says "Juiciness can be applied to abstract forms and
elements and it is a way of embodying arbitrarily defined objects and
giving them some aliveness, some qua, some thing, some tenderness."

The term ’Game Feel’ was coined by Swink, who first wrote
an article [24] and later a book on ’Game Feel’ [25]. One part of
designing of game feel Swink calls ’polish’, which is also seen
in other academic contexts [8, 16] described as the impression of

3see examples on http://easings.net/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/362610511?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


physicality created by layering of reactive motion, proactive motion,
sounds, and effects, and the synergy between those layers. Which has
a remarkable resemblance to Hunicke’s description of ’juiciness’.

Both game feel and juiciness have been widely discussed in the
game development community, leading to developers like Jonasson
& Purho [13] as well as Nijman [18] to talk about juice and game
feel from their respective points of view. Swink’s book and the talks
by Jonasson & Purho and Nijman are still the primary sources for
introducing the concepts of game feel and juiciness. Although all
three had excellent demos available when they were released, these
resources have unfortunately since deteriorated or disappeared.
However, more recent projects such as MMFeedbacks [7] and Game
Maker’s Toolkit [1, 2] continue the work on this topic.

With MMFeedbacks, Forestié has created an expert tool for
adding juiciness to Unity games. However, MMFeedbacks handles
triggering, delaying, and sequencing effects, but subsidizes design-
ing some effects to various subsystems in Unity. For instance, the
user still needs to understand the Unity particle system and create
the effect they want with that system. This design choice makes
sense for MMFeedbacks as an expert tool because the Unity subsys-
tems (Particle system, Cinemachine, Timeline, Animator, and more)
are powerful for their specific purposes. However, an inexperienced
user or a designer who is sketching out part of a game, might not
have the skill or the time to use MMFeedbacks meaningfully in this
context.

On the other hand, the sound effect tool SFXR [20] has long been
used heavily for prototyping and game jamming purposes [9], to
lift the appeal of a prototype with "good enough" placeholder sound
effects. Pettersson originally developed SFXR in 2007 for game jam
participants, to

...provide a simple means of getting basic sound effects
into a game for those people who were working hard to
get their entries done within the 48 hours...

SFXR is a procedural content generator (PCG) and a synthesizer. It is
operated simply by selecting a category of sound effect, and pressing
the category button repeatedly until the user hears a desirable sound
effect. Apart from the main sound generation, the user can also
manually tune each of the more than twenty different parameters,
or mutate all parameters a small amount by the click of another
button. The categories read as follows [Coin/Pickup, Laser/Shoot,
Explosion, Power-up, Hit/Hurt, Jump, Blip/Select]. The categories
act as presets, explicitly setting some parameters, limiting others to
preset ranges, and randomizing the rest. The sounds generated by
SFXR can then be inserted as placeholders until a game or prototype
is mature enough to get a sound designer involved or a sound pack
implemented. For a game designer, applying placeholders can often
reveal which effects and mechanics they can lean into or should
steer clear off. Thus to create a sound effect that works with their
particular game, designers might have to generate 10-20 different
sound effects to find a suitable one. Similarly, finding suitable effects
for the remaining aspects of feedback for a game prototype requires
a lot of trial and error. The tool proposed here makes trial and error
faster and simpler by allowing the designer to test effect sequences
triggered by events in the game, similarly to MMFeedbacks, but
with a stronger sense of proceduralism for generating common
types of effect sequences.

3 IMPLEMENTATION
A simple breakout clone provided a point of reference and informed
the development of Squeezer. Fig. 1 shows the basic game and setup
window in the top left. After setting up the triggers the top right
shows the game with a bit of color and an initial generated effect
sequence for block destruction. The bottom left shows the foldout
menu for editing parameters of a color tween effect. And along
the bottom towards the right you can see various effects executed
over a single play session. In the juiced versions Squeezer is adding,
effects such as ball trail, impact squashing, sound effects, block
shattering, explosions, color changes, simple starting animations,
and time dilation effects. Fig. 1 shows a potential workflow for
Squeezer, but designers usually work iteratively, repeating step one
to three for each class of objects.

One consideration made early on, was to implement a simple
tweening system, for scheduling and executing effects. The reason
for doing this was not to rely too heavily on Unity features, to allow
the open-source community to adapt the code to other engines
more easily. The class structure used within Squeezer, is almost
entirely pure C# classes without Unity dependencies except for
Random, and Unity specific effect logic.

3.1 Analysis
The initial problem of triggering effects based on events or inter-
actions has been solved many times in the past. One solution is
a hierarchical description approach, including an ontology, such
as PyVGDL, JavaVGDL, and UnityVGDL [12, 19, 22]. These VGDL
frameworks execute entire games based on this structure and ef-
fectively hide complexity in the descriptions with the provided
ontology. However, effect sequences for juice effects additionally
require scheduling, both sequentially and simultaneously, which
adds the need for more complex nesting of effects.

Apart from the structure of descriptions, analyzing which events
commonly trigger juice effects is needed. As well as what the kinds
of effects most frequently used are, how they get applied and where.
By reviewing industry talks [13, 18], we identified an initial set
of triggers, those are: OnStart, triggered when creating an ob-
ject/when the game starts. OnCollision, triggered when a colli-
sion occurs. OnMove, triggered while moving or changing move-
ment state. OnRotate, triggered when the object rotates in some
way.OnDestroy, triggered when destroying an object.OnDisable,
triggered when an object becomes disabled (a common way of "de-
stroying" objects, without invoking garbage collection in Unity).
OnCustomEvent, triggered when the system receives a custom
event (e.g., Shoot, Jump or when some effect terminates like FadeIn-
Complete).

We also identified a few different groups of effects. Sound effects,
color effects, particle and trail effects, transform effects (translate,
rotate, scale), time dilation effects, flashing effects (full-screen or
localized), wiggle (a combination of several transform effects) and
shake (quick random translations) effects. However, common for
all effects is that they can be delayed, can be applied to various
targets, can be sequenced (scheduled in relation to other effects),
and can be independent of in-game time. Apart from those common
properties, feedback effects tend to be durational, most common are
tween effects. Tweening [21] moves a value, between a start and



Figure 1: Step (1) take a game prototype and setup the Squeezer event triggers using the setup window. Step (2) add some color
and generate or manually add initial effect sequences. Step (3) explore or design parameters of individual effects until they
suit the game mechanics.

end value, using an easing function. The simplest easing function is
linear interpolation, but to simulate acceleration and deceleration
when starting and stopping easing curves such as a sine wave or an
exponential function can be used instead. Another class of effects
is the ones that spawn additional objects in the game instead of
manipulating objects that already exist. Trails and other particle
effects that generate objects will contain an additional list of effects
administered to their offspring. The four types of effects are One
shot (can be delayed), Durational, Tween, and Spawner effects. Lastly,
we look at the relationship between the trigger and the affected
objects. The most common target is the object that detected the
event itself. However, other targets include: objects of a certain
type or with a certain tag, the other object in a collision, specific
objects (e.g., the camera) and editor values (e.g., time scale).

3.2 Implementation details
Based on the analysis above and working with a hierarchical ap-
proach, broken down from root to leaf, Squeezer’s functionality
is as follows: Description, in charge of attaching triggers to ac-
tual game objects in the game, contains a list of Triggers. Trigger,
managing which events cause effects to occur, selected from the
seven identified trigger types, contains a list of effect groups. Effect
Group, determines which game objects the effects will be executed
and contains a list of effects. Effect, includes functionality to ex-
ecute the effect itself, and contains a list of effects to apply on
completion (spawner effects also contain a list of effects to run on
any generated objects).

Squeezer addresses two user interaction aspects apart from the
descriptions. One is a setup window, easing the process of setting
up the descriptions initially. The second is shorter iteration cycles,
by allowing persistent editing while playing. To facilitate editing
while playing, Squeezer has a Step-Through Mode feature inspired

by the Klik’n’Play4 feature of the same name. This mode pauses
the game automatically when collisions or other selected events
occur, allowing users to add or modify effects as the game plays
out. Step-Through Mode also includes a random effect sequence
generator called "Assist Me", which generates a random set of up to
five effects. The randomness was intended as a proof of concept, for
more advanced generation features later on. However, the feature
generated a surprising amount of exciting combinations during
development.

A few built-in effects, like TrailEffect and ShatterEffect, combine
their spawning logic with other effects such as color-changing and
destruction. However, you can create very complex effects, with the
building blocks in Squeezer. Imagine a vehicle exploding. First, we
could add a positional flash and a sound effect and then "shatter" the
object. This debris could then fly off, and after a while, they explode,
making a small positional flash and sound. The initial explosion
could also be extended, by adding several flashes, scale them in/out
to simulate smoke and shaking the camera.

3.3 Secondary analysis
After the initial implementation of a random effect sequence gener-
ator, the need arose to consider implementing categories of gener-
ated effects. Using SFXR’s seven different categories as a starting
point, we found the following initial set of categories: Pick-up, De-
stroy/Explode, Jump, Shoot, Hit/Hurt, Interact/Use, Projectile move
and Player move. The only additions being Player and Projectile
move for continuous triggers, which have no counterpart in SFXR.

4 USER TEST
We conducted a preliminary user test divided into three parts; a
briefing 15 minutes, the user test 30-60 minutes, and lastly, the
participants answered a set of 15 questions about their experience.
4Klik’n’Play by Clickteam https://knpforschools.webs.com/



The briefing included how to set up and interact with Squeezer and
introduce the breakout clone we provided as an example game. The
participants were first shown a version that showcased most of the
available effects, and then for the actual test, they were provided a
completely juice free version of the game. The participants were told
to spend 30-60 minutes adding any effects they saw fit, exploring
the possibilities of Squeezer. During this part of the test, their usage
was recorded anonymously, and any bugs and user experience
issues encountered were logged by the authors. The participants
had the option of asking for clarification on anything and which
effects to use to achieve specific ideas.

5 RESULTS
A video and gif showcase of Squeezer and the breakout example
game is available in the repository5.

5.1 Preliminary Qualitative User tests
We tested Squeezer with four users ranging between two and ten
years of experience using Unity. Out of the four participants, only
one had recently been in charge of implementing game effects.
When prompted on how they would usually mock-up juice effects
in games, they all replied they would make small scripts or use
the Unity Animator for simple things, and use a Tweening library
for more complicated effects. Each participant found novel effect
combinations that resulted in a very different look and feel for the
same basic breakout clone. All four users claimed they would love
to use this kind of tool for testing out ideas or during game jams.
One participant, who also teaches game design to students said:

I would also definitely give this to my students when
talking about game feel and juice. I think letting them
play with these effects would be a nice, time-efficient
way of getting to experiment with juice and exploring
how it changes game feel.

And another said:
I would be interested in using this in small experiments
and at game jams. I could also see it being useful as a
communication tool on teams, using the tool to quickly
demonstrate various intents.

5.2 Participant usage
One participant decided to manipulate gameplay elements. They
added a resource management layer to the breakout game by modi-
fying the size of the paddle, making it smaller when it moved, and
larger again as the ball hit blocks. These modifications of the game-
play made the player ration their paddle movements. Three out
of the four users decided to go for many of the elements touched
upon by Jonasson & Purho [13], such as adding screen shake, sound
effects, block destruction by shattering and scaling various objects
up/down due to interactions. One participant tried to make a color-
changing effect repeat indefinitely. However, due to a limitation
in the Tweening effects, the blocks stopped changing their color
after five seconds. Another participant got around this limitation
by tying the color-changing to the OnMove event of the paddle,
which essentially restarted the effect whenever it would end.
5https://github.com/pyjamads/Squeezer/tree/master/Showcase

We asked the participants, ’Which features and effects did you
find most useful?’ one participant noted:

Screen shake, shatter, trail, and color changes were easy
and powerful to apply. It felt like it would save me a
significant amount of work if I were prototyping and
e.g., at a game jam, this would be useful to throw in
some nice effects quickly.

while another said:
The sound effect, it just added life.

6 FUTUREWORK
The current Squeezer prototype is just a first step towards a more
powerful tool for designing juicy effects. We plan to continue ex-
ploring how to best present the effect sequences and other user
experience elements with the aid of more user testing:

• Adding more powerful generator options that can add effect
sequences based on selected categories is an important next
step. The current "assist me" feature is the first step, but
unfortunately, our user study participants did not get to use
it due to the current interface.

• For more straightforward sequencing, we will explore a time-
line visualization, and a way to preview the effect.

• Squeezer can collect anonymous usage data. We will explore
improvements to automatically create categories and effect
sequences based on usage data from our user tests.

• We will be looking towards interactive evolution and ex-
pressive range analysis, exploring approaches similar to
Picbreeder [23] and Danesh [6] but applied to effect se-
quences.

• Another aspect we would like to explore is automated game
design [4, 5], and how to use code to provide additional
context to a system generating effects for a prototype.

7 CONCLUSION
While still a work in progress, Squeezer is a promising juice "syn-
thesizer" that can create a wide range of different effect sequences
by combining more than twenty different effects. Our initial user
test confirmed that there is an interest and a place for a tool that
simplifies creating juice effects, both as a tool for learning, game
jamming, and ideation [14].

REFERENCES
[1] Mark Brown. 2015. Secrets of Game Feel and Juice.
[2] Mark Brown. 2019. Why Does Celeste Feel So Good to Play? | Game Maker’s

Toolkit.
[3] N. Burtnyk and M. Wein. 1971. Computer-Generated Key-Frame Animation.

Journal of the SMPTE 80, 3 (March 1971), 149–153. https://doi.org/10.5594/J07698
[4] Michael Cook. 2017. A Vision For Continuous Automated Game Design.

arXiv:1707.09661 [cs] (July 2017). arXiv:1707.09661 [cs]
[5] Michael Cook. 2020. Software Engineering For Automated Game Design.

arXiv:2004.01770 [cs] (April 2020). arXiv:2004.01770 [cs]
[6] Michael Cook, Jeremy Gow, and Simon Colton. 2016. Danesh: Helping Bridge

The Gap Between Procedural Generators And Their Output. (2016), 16.
[7] Renaud Forestié. 2019. How to Design with Feedback and Game Feel in Mind -

Shake It ’til You Make It.
[8] Tracy Fullerton. 2014. Game Design Workshop: A Playcentric Approach to Creating

Innovative Games (3rd ed.). A K Peters/CRC Press.
[9] Kyle Gray, Kyle Gabler, Shalin Shodhan, and Matt Kunic. 2005. How to Prototype

a Game in Under 7 Days.

https://doi.org/10.5594/J07698
https://arxiv.org/abs/1707.09661
https://arxiv.org/abs/2004.01770


[10] Kieran Hicks, Patrick Dickinson, Juicy Holopainen, and Kathrin Gerling. 2018.
Good Game Feel: An Empirically Grounded Framework for Juicy Design. (2018),
17.

[11] Robin Hunicke. 2009. Loving Your Player With Juicy Feedback.
[12] Mads Johansen, Martin Pichlmair, and Sebastian Risi. 2019. Video Game Descrip-

tion Language Environment for Unity Machine Learning Agents. In 2019 IEEE
Conference on Games (CoG). 1–8. https://doi.org/10.1109/CIG.2019.8848072

[13] Martin Jonasson and Petri Purho. 2012. Juice It or Lose It. (2012).
[14] Ben Jonson. 2005. Design Ideation: The Conceptual Sketch in the Digital Age.

Design Studies 26, 6 (Nov. 2005), 613–624. https://doi.org/10.1016/j.destud.2005.
03.001

[15] Jesper Juul and Jason Scott Begy. 2016. Good Feedback for Bad Players? A
Preliminary Study of ‘Juicy’ Interface Feedback. In Proceedings of First Joint
FDG/DiGRA Conference. Dundee, 2.

[16] Lasse Juel Larsen. 2016. Collision Thrills: Unpacking the Aesthetics of Action in
Computer Games. Journal of Computer Games and Communication 1, 1 (April
2016), 41–52. https://doi.org/10.15340/2148188111997

[17] John Levine, Clare Bates Congdon, Marc Ebner, Simon M Lucas, Risto Miikku-
lainen, Tom Schaul, and Tommy Thompson. 2013. General Video Game Playing.
(2013), 7.

[18] Jan Willem Nijman. 2013. The Art of Screenshake.

[19] Diego Perez-Liebana, Spyridon Samothrakis, Julian Togelius, Tom Schaul, Si-
mon M. Lucas, Adrien Couetoux, Jerry Lee, Chong-U Lim, and Tommy Thomp-
son. 2016. The 2014 General Video Game Playing Competition. IEEE Transac-
tions on Computational Intelligence and AI in Games 8, 3 (Sept. 2016), 229–243.
https://doi.org/10.1109/TCIAIG.2015.2402393

[20] Tomas ’DrPetter’ Pettersson. 2007. SFXR.
http://www.drpetter.se/project_sfxr.html.

[21] William T. Reeves. 1981. Inbetweening for Computer Animation UtilizingMoving
Point Constraints. In Proceedings of the 8th Annual Conference on Computer
Graphics and Interactive Techniques - SIGGRAPH ’81. ACM Press, Dallas, Texas,
United States, 263–269. https://doi.org/10.1145/800224.806814

[22] Tom Schaul. 2013. A Video Game Description Language for Model-Based or
Interactive Learning. In 2013 IEEE Conference on Computational Inteligence in
Games (CIG). IEEE, Niagara Falls, ON, Canada, 1–8. https://doi.org/10.1109/CIG.
2013.6633610

[23] Jimmy Secretan, Nicholas Beato, David B. D Ambrosio, Adelein Rodriguez, Adam
Campbell, and Kenneth O. Stanley. 2008. Picbreeder: Evolving Pictures Collab-
oratively Online. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’08). Association for Computing Machinery, Florence,
Italy, 1759–1768. https://doi.org/10.1145/1357054.1357328

[24] Steve Swink. 2007. Game Feel: The Secret Ingredient.
[25] Steve Swink. 2009. Game Feel. Morgan Kaufmann.
[26] Frank Thomas and Ollie Johnston. 1981. The Illusion of Life: Disney Animation.

Abbeville Press, New York.

https://doi.org/10.1109/CIG.2019.8848072
https://doi.org/10.1016/j.destud.2005.03.001
https://doi.org/10.1016/j.destud.2005.03.001
https://doi.org/10.15340/2148188111997
https://doi.org/10.1109/TCIAIG.2015.2402393
https://doi.org/10.1145/800224.806814
https://doi.org/10.1109/CIG.2013.6633610
https://doi.org/10.1109/CIG.2013.6633610
https://doi.org/10.1145/1357054.1357328

	Abstract
	1 Introduction
	2 Background
	3 Implementation
	3.1 Analysis
	3.2 Implementation details
	3.3 Secondary analysis

	4 User Test
	5 Results
	5.1 Preliminary Qualitative User tests
	5.2 Participant usage

	6 Future Work
	7 Conclusion
	References

