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VISDOM

Abstract

In recent years, the evolution of software ecosystems and the detection of technical

debt received significant attention by researchers from both industry and academia.

While a few studies that analyze various aspects of technical debt evolution already

exist, to the best of our knowledge, there is no large-scale study that focuses on the

remediation of technical debt over time in Python projects—that is, one of the most

popular programming languages at the moment. In this paper, we analyze the evolu-

tion of technical debt in 44 Python open-source software projects belonging to the

Apache Software Foundation. We focus on the type and amount of technical debt that

is paid back. The study required the mining of over 60K commits, detailed code analy-

sis on 3.7K system versions, and the analysis of almost 43K fixed issues. The findings

show that most of the repayment effort goes into testing, documentation, complexity,

and duplication removal. Moreover, more than half of the Python technical debt is

short term being repaid in less than 2months. In particular, the observations that a

minority of rules account for the majority of issues fixed and spent effort suggest that

addressing those kinds of debt in the future is important for research and practice.
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1 | INTRODUCTION

Technical debt (TD) is a metaphor used to describe a trade-off between the short-term benefits of ‘cutting corners’ in software development and

the long-term sustainability of a software system.1 Incurring technical debt through these shortcuts can bring benefits in terms of time and/or

resources (e.g., shorter time to market and less effort required to implement a feature). However, this expediency has a detrimental effect on the

future maintainability and evolvability of the system, as it becomes increasingly harder to make changes.2,3 This hardening translates into an addi-

tional effort for developers and, in turn, costs that can even become prohibitive to organizations. If not repaid, TD can lead to severe quality prob-

lems, unexpectedly cost overruns and substantial financial loss on software maintenance.4 It can even lead to crisis points when entire

components or the system need to be replaced.5

Although the technical debt community has reached a basic consensus on the concepts around TD,6 we still need to understand better the

realization and impact of TD in practice. One important aspect of that is how TD evolves over time and how it is paid back. Obtaining such knowl-

edge can be useful, among others, for urging refactoring activities when the amount of TD increases fast or for preventing the accumulation of

new TD if repayment strategies are too costly.
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Several studies that analyzed technical debt evolution have primarily focused on software written in Java.3,7,8 Few other languages besides

Java have been studied in the context of TD, including C#9 and C/C++.10 TheTiobe Index* ranks Java as the most popular programming language,

with C coming in second place and Python in third. At the time of writing this paper—the beginning of 2020—GitHub contains more than 1M open

source Python projects and almost 1M involved developers†.

Despite the huge importance of Python in current software engineering practice, reflected also in several recent empirical studies,11,12 we are

not aware of any studies that focus on the evolution of technical debt in Python. This raises the question of whether and to what extent the

results of the existing studies on TD evolution are applicable to Python. If we compare, for example, Python and Java, although they are both

interpreted languages, they represent two different schools of thought: Java is statically typed while Python is served by a dynamic type system.

Generally, developers have to spend extra effort on software maintenance13 and software quality improvement14 in Python, because Python code

is more change-prone due to having a higher number of dynamic features.13 In addition, Python code containing dynamic features is inserted or

updated more frequently when fixing bugs.15

Furthermore, Python code is characterized by a unique kind of technical debt: Python has two major versions in use (i.e., Python 2 and

Python 3), and developers often add workarounds and mix code from the two versions. Even though there is consensus that the latest version

should be the de facto standard, it is common to still use Python 2 libraries because old code may rely on them. This kind of backward compatibil-

ity results in the usage of redundant and complicated features of the language. To make matters worse, as of 1 January 2020, Python 2 is no lon-

ger maintained‡; this will cause security vulnerabilities.

Given these unique characteristics of Python, studying the TD evolution of Python programs can guide developers specifically in managing

TD for this language. It can also highlight the differences with other languages, for example, Java; this can be used to further help developers,

team leaders, or teams that transition from Java to Python projects or work in both languages.

In this study, we investigate the evolution of technical debt remediation in Python; in other words, how technical debt is paid back along time.

Our scope is TD at the source code level: We use static source code analysis to examine how TD issues are fixed. Specifically, we (1) provide an

overview of the fixing rates for a number of projects and investigate whether the fixing rates of issues differ among projects (as each project has

a different size and number of issues); (2) examine the prevalence of the various types of issues; (3) analyze the fixing rate of the most frequent

issues; (4) investigate the remediation effort for the various issues; and (5) look at the remediation time for various types of debt.

Furthermore, to understand how the aforementioned unique characteristics of Python affect TD remediation, we compare our findings with

a similar study in Java.3 We expect to observe several differences between Python and Java due to the aforementioned aspects: static versus

dynamic type system and transition from Python 2 to Python 3. In addition, we highlight technical debt that is language-dependent and further

discuss the possible reasons for the differences, both in terms of Python features and the transition from Python 2 to Python 3.

Our findings show some similarities between Python and Java; 20–30% of TD issues have a great chance to be fixed in large projects, while

smaller projects have lower fixing rates. Furthermore, issues related to duplicated code require the most remediation effort, and the majority of

issues with the highest fixing rate are language-specific (i.e., either Python-specific or Java-specific). In addition, the majority of issues are fixed

relatively quickly while a minority of issues can live for a long time. Finally, issues that pertain to the same type of TD (e.g., design debt or defect

debt) tend to have similar survival times.

On the other hand, we found a considerable amount of debt repayment that is specific to Python. For example, test and documentation debt

account for almost half of all the fixes and the majority of the remediation effort, while significant debt repayment is related to changes between

major versions of the Python interpreter.

These findings can serve both researchers and practitioners: Researchers can benefit from the knowledge in future approaches for automated

and semi-automated debt remediation; practitioners can consider the highlighted findings and suggestions as a starting point for discussions about

establishing their own practices and guidelines.

The remainder of this paper is structured as follows. Section 2 presents our study design, elaborating on the research questions, as well as

data collection and analysis. Section 3 reports the results of our study, and Section 4 offers a discussion of the results. Section 5 discusses the

threats to the validity of our study, and Section 6 elaborates on the dataset and the replication package. After the discussion of related work in

Section 7, Section 8 concludes the paper and outlines directions for future work.

2 | STUDY DESIGN

In this section, we describe the design of our study. We first state our goal and elaborate on the derived research questions. Then, we present

and justify the population of the study (i.e., the selected cases). Next, we discuss the variables and procedures for the data collection, that is, tech-

nical debt identification. Finally, we describe the analysis method for each question and subquestion.

*One of the best known indexes of programming languages popularity, https://www.tiobe.com/tiobe-index/, visited January 2020.
†https://github.com/search?l=Python&q=language%3APython&type=Repositories
‡https://www.python.org/doc/sunset-python-2
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2.1 | Objective and research questions

In this section, we follow the Goal-Question-Metric (GQM) approach16 to describe the goal of our study. The GQM is a measurement paradigm

based on three levels: conceptual, operational, and quantitative. The conceptual level (i.e., the Goal) is defined with respect to the object of study,

the purpose, the focus, the stakeholders, and the context. The operational level (i.e., the Question) regards a set of questions to describe the

assessment or achievement of the goal that is defined at the conceptual level. Finally, the quantitative level (i.e., the Metric) regards a set of

metrics that can be measured to address each question of the operational level in a measurable way. The goal of our study is to ‘analyze software

systems written in Python for the purpose of understanding technical debt remediation with respect to its evolution and comparison with Java,

from the point of view of software developers in the context of object-oriented open source software.’ This objective is further refined in terms

of the following research questions:

RQ1 How doesTD remediation evolve in Python projects?

RQ1.1 How does the issue fixing rate vary for different projects?

RQ1.2 What is the fixing prevalence for various issues?

RQ1.3 How does the fixing rate vary for different issues?

RQ1.4 How is the effort of debt repayment distributed over different issues?

RQ1.5 After how much time is technical debt paid back?

RQ2 How does the evolution of TD remediation in Python projects compare with that of Java projects?

RQ3 How are the differences between Python and Java explained?

RQ3.1 How are Python features associated with the explanations?

RQ3.2 How is the transition from Python 2 to Python 3 associated with the explanations?

This is one of the first studies to examineTD in Python, and thus, the answers to RQ1 have great value to both researchers and practitioners.

An overview of TD remediation in practice can inform researchers about the generalization of existing findings in scientific literature. For example,

it can provide evidence about to what extent remediation strategies at source code level are common among open-source projects or even among

object-oriented languages; this may, in turn, drive the proposal of guidelines or development of tools. Furthermore, practitioners can use the

results to understand the TD repayment in their own projects. For example, a development team can use the findings to discuss how much TD

related to source code issues they expect to incur and how much they plan to pay back in the near future.

We note that research subquestions RQ1.1–RQ1.5 are the same as those posed by Digkas et al3 in a study to examine TD remediation in Java

projects. We used the same questions in order to be able to address RQ2, that is, to compare the evolution of TD remediation between Python

and Java. Answering RQ2 thus allows to discuss and highlight the differences and similarities with Java. The answer to RQ2 is particularly relevant

to researchers and practitioners that are experienced with Java development. Practitioners that work on both languages can interpret the differ-

ences in TD remediation and better understand TD analysis output. Researchers that aim at extending or fork their tools to work on Python can

use our findings to inform their decisions and consider potential changes on how to interpret the output.

Identifying the differences and similarities between the two languages raises the question of how they can be explained. We particularly

focus on differences as these can provide important lessons. The answer to RQ3 can help researchers understand the impact of Python features

on technical debt and further consider which features could lead to more debt in Python projects. Furthermore, practitioners can use the results

to improve the cost estimation of their debt, for example, when planning to migrate a project from Python 2 to Python 3 or re-implement a

component in Python 3.

2.2 | Cases selection

The projects that we use for studying debt evolution and, in particular, TD repayment strategies are all the Python projects of the Apache Soft-

ware Foundation ecosystem§ (hereafter referred to as the Apache ecosystem or the ASF ecosystem). We made this choice for several reasons.

(1) The Apache ecosystem contains a diverse set of Python projects of various sizes (up to 1000 KLOC), activity (up to 10K commits to master),

and domains. (2) Using the ASF ecosystem results in an implicit quality filter for the analyzed projects: Every project is managed by a self-selected

team of technical experts and is accepted in the foundation only after an initial incubation process¶. (3) The ecosystem has been used before in

§As not all projects are tightly integrated, opinions regarding the terminology may differ. We use the term ecosystems to maintain consistency with Java study3 and Bavota et al.17

¶https://incubator.apache.org/policy/process.html
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the study of Digkas et al. for technical debt repayment in Java,3 the use of Python projects that are part of the same organization increases the

comparability of the results in the two papers.

The GitHub organization of the ASF contains projects in more than 30 programming languages. For the purpose of our study, we used the

GitHub programming language filter and selected all the 44 Python projects without filtering them by any further criterion. The majority of the

projects have a long history of commits, which ensures that the evolution of technical debt symptoms can be followed over an extensive period.8

In order to focus on the complete ecosystem, we decided to include in our study also the minority of projects with a small number of commits

and thus a short history.

Table A1 shows that these projects present considerable variation in their characteristics, that is, their number of commits, their size as mea-

sured by counting the source lines of code (SLOC) and the number of classes, their age (in the number of days the project has existed), and the

contributors. As shown in theTable A1, these projects cover a wide range of different sizes, domains, survival times, and the number of contribu-

tors, which could strengthen the external validity.18

2.3 | Technical debt identification

One important step for efficiently monitoring the evolution of TD is the selection of a tool that will be able to measure various aspects of techni-

cal debt, as accurately as possible. In the state-of-research and -practice, one can identify several tools and approaches for measuring technical

debt. To detect the evolution and remediation of technical debt in the subject systems, we rely on a third-party detection tool: SonarQube, an

open-source code-quality measuring and management tool.19 The tool was selected for three main reasons: (1) its broad usage for estimating

technical debt, both in academic research studies3,7,20,21 and in industry (being used by more than 1000 companies#); (2) its capacity to perform

multiversion analysis and thus track the evolution and repayment of technical debt over time; and (3) the fact that the tool is based on the SQALE

method,22,23 which has been published and evaluated academically.24-27 Of course it is not a perfect solution for measuring TD, as a perfect solu-

tion does not exist; we expand on the limitations of using SonarQube in theThreats to Validity Section.

This section briefly introduces the main terminology and concepts that are specific to SonarQube and are critical for understanding the

remainder of the paper. The tool analyzes source code to detect code smells, vulnerabilities, and bugs and assesses/calculates technical debt as

the time estimated to fix these issues.

SonarQube uses a set of rules, representing desirable code related practices, which, when absent, introduce technical debt. During the analy-

sis of a project, SonarQube creates a new issue every time a piece of code breaks one of the rules. The rules are based on well-known sources of

documented bugs and vulnerabilities such as CERT and CWEk, as well as the Python Enhancements Proposal** (PEP), which are standards largely

adopted and enforced by the Python community.

2.3.1 | Multiversion analysis

One limitation of SonarQube (and all the other equivalent tools that we have investigated) is that the evolutionary analysis is not incremental.28

This means that a new version (e.g., originated from a new commit) is fully parsed and analyzed, even if only a single line in a single file is changed.

This imposes constraints on evolution analysis because it becomes prohibitive to analyze all the commits of a system. It is only recently that

researchers have started proposing models of source code that are effective at incremental parsing and modeling of software, but no off-the-shelf

tools make use of them yet.29

Considering that the majority of the analyzed Python projects have at least 187 commits (with a maximum of 10 942 commits) at the time of

starting this work, one must make a trade-off in analyzing a limited but sufficient number of revisions of every system. In this study, we choose a

frequency of one week;that is, we analyze weekly versions of each project, just as it was done in the Java study we use for our comparison.

Furthermore, we only analyze the versions on the master branch of the studied systems.

2.3.2 | Issue classification and effort estimation

None of the project repositories of the 44 selected systems consists exclusively of Python code. By default, SonarQube detects issues for all the

source code files found in a system, and when analyzing the subject systems, it produces issues in code files written in different languages (includ-

ing JavaScript, Java, and XML). However, due to the focus of this study, we only analyze those issues that are found in Python files.

#https://www.sonarsource.com/customers/
khttps://www.sonarsource.com/products/codeanalyzers/sonarpython.html

**https://www.python.org/dev/peps/
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In terms of severity of the rules, SonarQube defines four levels (in decreasing order): blocker, critical, major, and minor. However, we limit the

severity level to blocker, critical, and major, because many of the minor issues are trivial and are not what developers normally think about when

they talk about technical debt (e.g., ‘Lines should not end with trailing whitespaces’). Moreover, the minor issues have low impact and likelihood††

and could, therefore, bias the results. The same decision was made in the Java study,3 and consequently, we are in a better position to compare

the Python results with the Java ones.

From the total set of rules for Python in SonarQube, we detected violations of 127 rules in this study. If we exclude the minor rules among

these 127, we are left with 56 blocker, critical, and major rules‡‡; Table A2 shows the types and their severity. Among them, 15 rules appear both

in Python and Java (marked as symbol). Furthermore, we grouped the rules into five higher-level technical debt categories defined by Alves

et al30 and Li et al1: Code Debt, Defect Debt, Design Debt, Documentation Debt, and Test Debt. Both Alves et al30 and Li et al1 contain these five

categories; yet, they were derived independently, and they have both been widely used in other studies.31,32 To perform this grouping, the first

and second authors classified the rules independently into the five TD categories, using the description of the rules and the definition of the cate-

gories. There were disagreements in the classification of eight rules. To assess the disagreements numerically, we estimated the inter-rater agree-

ment using Krippendorff's alpha33 (α= :74 ).§§ In the conflicting cases, the first and second authors discussed with the third author until they

achieved consensus.

To identify and analyze issues related to version migration, the first and second authors examined the description of all 56 rules together and

identified those that can be associated with the update of the Python interpreter. We also checked the source code of the issues to further con-

firm if the rule is migration related. Table 1 presents the ID numbers, descriptions, and explanations of these rules.

For every issue it detects, SonarQube assigns an estimate of how much time is required to resolve it based on the SQALE¶¶ method.22

SonarQube analyzes the source code and uses remediation functions to work out remediation costs for each issue type.24 The tool uses two strat-

egies to estimate technical debt for different types of issues: Some types of issues are assigned a constant fixing time (e.g., the issue ‘Docstrings

should be defined’ is assigned five minutes); some other types of issues are assigned a custom fixing time according to their particular characteris-

tics (e.g., ‘Source files should not have any duplicated blocks’).

2.3.3 | Fixed issue detection

When analyzing multiple revisions of a system, SonarQube tracks the issues that are fixed, and therefore, the debt that is repaid. According to the

documentation of SonarQube##, issues flow through a lifecycle, and being assigned the ‘fixed’ status could be due to two cases: (1) Issues have

been corrected (i.e., the issues are actually fixed); (2) or the file is no longer available (removed from the project or renamed). The second case is

problematic for our purpose, as it is doubtful whether the developers actually aimed at fixing the technical debt by deleting or renaming a file.

Thus, we filter out the issues that are marked as fixed due to the disappearance of the file name (e.g., deletions and renames) and remove them by

using the SonarQube API. The same method was used in the Java study of Digkas et al.3

Table 2 shows the number of issues in the analyzed systems once the Minor issues are filtered out. In total, 54 Blocker, 5327 Critical, and

89 772 Major issues have been actually detected in the whole history of 44 systems under study. This aligns with the Java findings, where the

Major issues had the highest percentage of fixes.

2.4 | Data analysis

This study detected more than 288K issues by analyzing over 3.7K weekly commits. If we exclude the minor issues, we are left with a total of

95K issues. Next, these data are analyzed to answer the research questions as follows.

To answer RQ1.1, we calculate the issue fixing rate for each project, that is, the percentage of issues that are fixed in each project, and discuss

their distribution. Because different projects have a different number of fixed issues and lines of code, we investigate the relationship between

SLOC and the number of fixed issues during the evolution as well as the issue-fixing rate.

For RQ1.2, we sum up all the fixed issues grouped by rules without differentiating among projects and calculate the prevalence, that is, the

percentage of issues fixed for each rule from the total number of fixes. Then we sort the prevalence rates of all the rules to get the most fre-

quently fixed issues and classify them according to the aforementioned high-level technical debt categories.

††https://docs.sonarqube.org/latest/user-guide/rules/, visited in January 2020
‡‡Compared with 160 rules detected in the Java study
§§Krippendorff's inspection of the trade-offs between statistical techniques establishes that it is customary to require α ≥ .80. However, where tentative conclusions are still acceptable, α ≥ .67 is

the lowest conceivable limit.34

¶¶https://blog.sonarsource.com/sqale-the-ultimate-quality-model-to-assess-technical-debt
##https://docs.sonarqube.org/latest/user-guide/issues/
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In RQ1.3, we compute the issue-fixing rate for each rule to investigate whether some rules are fixed more often than others. However,

because some rules only appear in a few projects, we introduce the number of projects in which violations of the rule appear as a reference value.

RQ1.4 aims at investigating the effort required to fix the technical debt issues. To answer this research question, we sum up all the effort

required to fix the issues according to the estimates provided by SonarQube. To also verify the relationship between remediation effort and fre-

quency of fixes, we compare the rank of the rules based on effort against the ranks from RQ1.2 and RQ1.3.

To investigate RQ1.5, we calculate and analyze the survival time of each issue. This variable is measured as the number of days between the

introduction of an issue and the moment when it is fixed in the source code.

To answer RQ2, we compare the findings of the aforementioned subquestions with those reported in the Java study. In particular, we

describe the similarities and differences regarding each subquestion.

Finally, to answer RQ3, that is, to explain the observed differences between Python and Java, we focus on the characteristics of the

Python programming language (RQ3.1) and the transition from Python 2 to Python 3 (RQ3.2). For RQ3.1, we mainly investigate the Python-

specific TD and discuss the differences in the TD categories that are caused by Python features. For RQ3.2, we focus on the issues that are

caused by the backward incompatibility between Python 2 and Python 3 and further discuss the possible influence of updating Python ver-

sions for TD evolution.

3 | RESULTS

In this section, we present our findings and answer each research question. We note that RQ1 investigates the evolution of TD remediation in

Python through five subquestions, whereas RQ2 compares the results of RQ1 with those observed in Java by Digkas et al.3 Therefore, in Sec-

tion 3.1, we address both research questions together, and for each subquestion, we first present the findings regarding Python and then compare

with those from the study in Java. Finally, in Section 3.2, we elaborate on the results for RQ3.

TABLE 1 Migration-related issues

ID Description and explanation

12 ‘<>’ should not be used to test inequality

The forms ‘<>’ and ‘!= ’ are equivalent. But in Python 2.7.3, the ‘<>’ form is considered obsolete.

21 The ‘print’ statement should not be used

The ‘print’ statement was removed in Python 3. The built-in function should be used instead.

31 The ‘exec’ statement should not be used

The ‘exec’ statement was removed in Python 3. Instead, the built-in exec() function can be used.

52 Backticks should not be used

Backticks are a deprecated alias for repr(). The syntax was removed in Python 3.0.

276 Access of nonexistent member

Some issues are related to references to ‘socket’ instead of ‘SocketIO.’

281 Syntax error

Some issues are related to references to invalid syntax in except handler with a comma.

360 Undefined name

Some issues are related to references to refactored parts of the module urllib.

394 Undefined variable

Some issues are related to references to Python 2 identifiers, e.g., ‘xrange,’ ‘unicode,’ and ‘basestring.’

432 Mixed tabs/spaces indentation

Indentation is rejected as inconsistent if tabs and spaces are mixed and aTabError is raised in Python 3.

TABLE 2 Number of fixed and open issues for priority type

Fixed issues Open issues Fixing rate

Blocker 15 39 27.78%

Critical 2,189 3,138 41.09%

Major 40,461 49,311 45.07%
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3.1 | Evolution of technical debt remediation in Python and comparison with Java

3.1.1 | Fixing rate variation among projects

Figure 1 presents the issue fixing rate (dark color), that is, the number of closed issues divided by the total number of issues, for every Python pro-

ject. Moreover, the projects are sorted in decreasing order of their fixing rate. More than half of the issues were fixed in the first six projects; how-

ever, the number of issues are quite different among those projects. For example, INCUBATOR-MXNET has the largest number of total issues (almost

30K issues), while less than 200 issues appear in INCUBATOR-SENSSOFT-USERALE-PYQT5. At the opposite spectrum, the fixing rates of eight projects are

less than 5%. These projects have small SLOC (less than 1.4K) and number of total issues (less than 161). The only exception is INCUBATOR-SDAP-EDGE

with 4.9K SLOC and 940 issues and only has two commits during its evolution, which is also the minimum value in our dataset.

From Table A1, we noticed that the projects have a median value of 187 for the number of commits. This seems to indicate that a certain

number of projects are small. To further investigate the relationship between fixing rates and the number of commits and to better compare with

the fixing rates of Java projects, we conducted a separate analysis for projects with small and large number of commits. Figure 2 illustrates box

plots depicting the distribution of fixing rates for small (less than 187) and large (more than 187) number of total commits for all the projects. It is

obvious that projects with small number of commits tend to have more extreme values of fixing rates, and the majority of them have a fixing rate

of less than 5%. However, the fixing rates of larger projects are much higher, and the median value is 27.8%.

Furthermore, we analyzed the SLOC and the absolute number of fixed issues in each project. We observed a similar trend on SLOC and the

number of fixed issues; that is, technical debt is more likely to be repaid in larger projects during their evolution. To verify this observation, we

sought to calculate the correlation coefficient between all four variables. For that, we first used the Kolmogorov–Smirnov test35 to check if the

data of each variable fail to follow the normal distribution. The results showed that only the fixing rate is normally distributed (p value = :33kk).

Following these results, we decided to verify the observation by calculating the Spearman correlation.36 The result between SLOC and the num-

ber of fixed issues showed to be positively strong*** (ρ=0:79). Moreover, we found that the fixing rate has a strong positive correlation with the

number of fixed issues (ρ=0:76) and a medium positive correlation with the number of total issues (ρ=0:42) and SLOC (ρ=0:33).

Comparison. Similarly to the Java study, we observe a near-exponential decrease trend of the fixing rate (see Figure 1), where a small per-

centage of projects (about 10–15%) from both Python and Java samples show rates above 50%. Moreover, both Python and Java samples contain

only two projects that each display fixing rates more than 70%. One possible explanation for these two Python projects is that the majority of

their issues are related to the transition from Python 2 to Python 3 (we elaborate further on this kind of technical debt in Section 3.2.2); whereas

for the two Java projects with the high fixing rates, Digkas et al. suggest that it may be related to a systematic use of SonarQube by their devel-

opers to identify and fixes issues in maintenance activities.

Furthermore, we noticed that the fixing rates for larger Python projects are similar to those in larger Java projects: The median fixing rate for

projects that contain more than 1000 commits is between 20% and 30%.

Summary. In RQ1.1, we asked how the issue fixing rate varies for different projects. We showed that the fixing rates for different projects

vary greatly, indicating a wide variation in the repayment practices. To partially answer RQ2, we compared these results with those from the Java

study and concluded that despite dissimilar rules, the fixing rate in the studied sample of Python projects shows a similar distribution with the fix-

ing rate observed in Java projects. Moreover, larger projects have a high probability that around 20–30% TD issues will be fixed during their evo-

lution regardless of the programming language.

3.1.2 | Fixing prevalence among different kinds of debt

The chart in Figure 3 presents the distribution of the number of fixed issues for each of the 56 Python rules detected in our project set by

SonarQube. The figure shows a strongly skewed distribution where issues corresponding to about a dozen rules are fixed overwhelmingly more

often. Calculating the Gini index, estimated to be the most appropriate single measure of inequality,38 we obtain a very high value of 0.814, which

indicates a very unequal distribution across the rules. We thus conclude that most of the issues fixed during repayment concern only a small

number of rules.

However, this conclusion depends on the accuracy of SonarQube to detect TD issues that are fixed. To assess SonarQube's limitations, the

first and second authors manually analyzed 1% of the number of total fixed issues (i.e., ≈430) to investigate whether those issues represent tech-

nical debt and whether their evolution is accurately captured. According to the results, the number of fixed issues is unequally distributed across

the rules. Thus, we randomly selected issues by using stratified random sampling,39 which is used to estimate population parameters efficiently

when subpopulations have substantial variability.40 For each rule, we randomly selected a number of issues based on its fixing prevalence and

kkThe Kolmogorov–Smirnov test verifies if values deviate from the normal distribution and thus, a statically significant results means that values are not normally distributed.

***We interpret the correlation coefficient according to Cohen,37 that is, no correlation when 0 ≤ jρj<0.1, small correlation when 0.1 ≤ jρj<0.3, medium correlation when 0.3 ≤ jρj<0.5, and strong

correlation when 0.5 ≤ jρj≤1.
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checked their source code to verify whether they may represent TD according to the definitions of Alves et al30 and Li et al.1 In addition, we

checked if the issue was actually fixed.

The results of our analysis are presented in Table 3. We clarify that the issues of 32 rules were not checked, as their prevalence, stratified to

1%, was near zero (i.e., no issues to select). However, the fixing prevalences of the 24 considered rules account for 98.54% of all fixes in the ana-

lyzed projects. A total of 426 issues have been randomly selected, which were all found to be potential TD issues (i.e., suit the used definitions).

Moreover, only nine issues were not actually fixed.

To further investigate the research question, we examine the fifteen rules that account for over 90% of all fixes in the analyzed ecosystem

(43K). Table 4 presents these 15 rules and the percentage of fixed issues for each, from the total number of fixed issues. As mentioned in

Section 2, we grouped the rules into five higher-level technical debt categories, that is, Code Debt, Defect Debt, Design Debt, Documentation

Debt, and Test Debt. In the following, we discuss the categories of the most fixed types of technical debt at the ecosystem level.

F IGURE 1 Percentage of fixed
issues (black) in each project

F IGURE 2 Distribution of fixing rate for small and large number of
total commits

F IGURE 3 Distribution of fixed
issues for the 56 rules detected in this
study. Every bar represents a rule,
height proportional to the number of
fixed issues
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TABLE 3 Stratified random sampling for 426 issues

Rule Prevalence Issuesa TDb Fixedc

Docstrings should be defined 30.49% 132 100% 100%

Lines should not be too long 14.88% 64 100% 100%

Undefined variable 8.50% 37 100% 100%

Lines should have sufficient coverage by tests 6.26% 27 100% 81.48%

Source files should have a sufficient density of comment lines 5.19% 22 100% 81.82%

Access of nonexistent member 3.37% 15 100% 100%

The ‘print’ statement should not be used 3.16% 14 100% 100%

Cognitive Complexity of functions should not be too high 3.12% 13 100% 100%

Functions, methods, and lambdas should not have too many parameters 2.90% 13 100% 100%

Mixed tabs/spaces indentation 2.86% 12 100% 100%

Undefined name 2.66% 11 100% 100%

Statements should be on separate lines 2.29% 10 100% 100%

‘n’ should only be used as an escape character outside of raw strings 2.11% 9 100% 100%

Sections of code should not be ‘commented out’ 2.03% 9 100% 100%

Function names should comply with a naming convention 1.90% 8 100% 100%

Source files should not have any duplicated blocks 1.72% 7 100% 100%

Syntax error 1.30% 6 100% 100%

Control flow statements should not be nested too deeply 1.24% 5 100% 100%

Functions should not be too complex 0.77% 3 100% 100%

Functions should not contain too many return statements 0.60% 3 100% 100%

Collapsible ‘if’ statements should be merged 0.48% 2 100% 100%

Two branches in a conditional structure should not have exactly the same implementation 0.37% 2 100% 100%

Files should not have too many lines of code 0.19% 1 100% 100%

Nested blocks of code should not be left empty 0.16% 1 100% 100%

Total 98.54% 426

Abbreviation: TD, technical debt.
aThe number of sampled fixed issues.
bThe percentage of sampled issues that may present technical debt.
cThe percentage of TD issues that were actually fixed.

TABLE 4 Fixing prevalence for Top 15 rules

#a Category Severity Rule Prevalence

1 Documentation Major Docstrings should be defined 30.49%

2 Code Major Lines should not be too long 14.88%

3 Defect Major Undefined variable 8.50%

4 Test Major Lines should have sufficient coverage by tests 6.26%

5 Documentation Major Source files should have a sufficient density of comment lines 5.19%

6 Defect Major Access of nonexistent member 3.37%

7 Defect Major The ‘print’ statement should not be used 3.16%

8 Design Critical Cognitive Complexity of functions should not be too high 3.12%

9 Code Major Functions, methods, and lambdas should not have too many parameters 2.90%

10 Defect Major Mixed tabs/spaces indentation 2.86%

11 Defect Major Undefined name 2.66%

12 Code Major Statements should be on separate lines 2.29%

13 Code Major ‘n’ should only be used as an escape character outside of raw strings 2.11%

14 Code Major Sections of code should not be ‘commented out’ 2.03%

15 Code Major Function names should comply with a naming convention 1.90%

aOverall ranking across all the issue rules.

Also among the most fixed issues in the Java study.3
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Rules #1 and #5 refer to Documentation Debt and account for more than one third (35.68%) of all fixed issues. ‘Docstrings should be

defined’ is by far the most fixed problem. These issues are caused by incomplete design specifications and insufficient comments in code. This

paints a positive picture in the sense that the most prevalent repaid debt issues tend to be the code that is initially committed without

comments and eventually fixed by adding comments. In addition, developers invest great effort in fundamental activities that can impact reuse

and maintenance.

Code Debt is also of concern as it accounts for more than 26% of all fixes. Rules #2, #9, #12, #13, #14, and #15 refer to the issues found in

the source code that can affect its maintainability. Moreover, we notice that these rules impact the complexity and readability of the source code.

Among these rule violations, the majority (i.e., 57%) of them are related to long lines, while long parameter lists rank the second highest. The

remaining four rules are all related to code conventions and rank at the bottom of Table 4.

Test Debt receives also some attention as rule #4 accounts for more than 6% of all the fixed issues. Together, Code Debt and Test Debt fixes

suggest that reducing code complexity and boosting maintainability is paramount.

Defect Debt includes known defects that, due to competing priorities and limited resources, should be fixed later, as well as unknown

defects.30,32 Table 4 shows that rules #3, #6, #7, #10, and #11 account for more than one fifth (20.56%) of all the fixed issues. Although it may

seem that the amount of such debt is alarmingly high, in the majority of the cases, this debt concerns a kind of debt particular to Python, for

example, the transition from Python 2 to Python 3. We further discuss this matter in Section 3.2.2.

There is only one rule (#8—‘Cognitive Complexity of functions should not be too high’) appearing in Table 4, which belongs to Design Debt,

and is of critical severity. This indicates that only about 3% of fixed issues are related to Design Debt.

Comparison. First, we notice that the distribution of fixed issues (Figure 3) is similar to that observed in the case of Java. Moreover, the Gini

index value is also close, that is, within 3% of the corresponding Java value.3 In Table 4, the symbol marks the rules that are also found in the

most frequently fixed rules for Java.3 Among the common rules, rule #8 also appears among the 10 most fixed rule violations in the Java study,

where they account for 5.4% of total fixed issues.

However, the similarities end there. The rules related to code convention (i.e., #12 and #14) are fixed at a relatively low frequency in Python,

whereas they are the most frequently fixed for Java projects. Furthermore, in the Java study, four out of the Top 10 most addressed rules are

related to Design Debt, accounting together for more than 21.5% of the total fixed issues. The difference might indicate that Design Debt viola-

tions are more urgent for Java developers. Finally, although rules related to testing and documentation account for approx. 42% of all the issue

fixes in Python, they do not even make theTop 10 in Java. This finding may be justified by the different needs of the Python language, which are

discussed in Section 3.2.1.

Summary. In RQ1.2, we asked what is the fixing prevalence among different kinds of debt, which we answer as follows: A small number of

issues are responsible for most of the fixes; that is, the number of issue fixes is unequally distributed across different rules. To partially answer

RQ2, we compared these results with those from the Java study and concluded that issues related to testing and documentation are fixed much

more often in Python than in Java; in contrast, Design Debt is fixed much more often in Java.

3.1.3 | Fixing rate variation among different kinds of debt

To compute the fixing rate for each rule, we determine the percentage of issues that are fixed from the total amount of issues corresponding to

that rule. To focus on issues that are the most likely to be relevant for software developers, in the remaining analysis for this research question,

we limit our discussion to rules with more than 500 issues in the ecosystem. This results in 20 rules that are presented in Table 5. For each rule,

the table also presents the category of the rule (as already discussed in RQ1.2), the number of issues, the fixing rate, and the number of projects in

which violations of the rule appear.

By analyzing Table 5, we observe that the rule “‘n” should only be used as an escape character outside of raw strings,’ has the highest fixing

rate (68.52%), and appears in 20 systems. However, the median fixing rate in these 20 systems is about 18%; this means that if we exclude few

outlier systems, violations of this rule are not fixed very frequently. Except for this rule, the other five rules related to Code Debt all rank in the

Top 11 and have similar fixing rates, that is, between 45% and 56%.

The fixing rate of the rules related to Defect Debt are found at both ends of the spectrum: Some are at the high end, others at the low

end. Rules #2, #3, and #4 have some of the highest individual fixing rates (more than 56%, and the latter two also appear in the table with the

highest number of fixes overall from RQ1.2). Rules #14, #17, and #20 have some of the lowest rates. Although rules #4 and #20 are commonly

violated by delaying the update to Python 3, the fixing rates are very high and very low, respectively, different. We further discuss the reasons in

Section 3.2.2.

InTable 5, a quarter of the rules refer to Design Debt. All of these rules influence the quality of the source code, mostly by incurring unneces-

sary complexity (marked with bold keywords in the table). Arguably, complexity is a type of debt that is harder to address. Rule #6, that is, ‘Source

files should not have any duplicated blocks,’ has the highest fixing rate among them. One possible reason is the perception that duplicated code

severely complicates the maintenance and evolution of large software systems,41,42 even if emerging empirical evidence does not strongly sup-

port this assumption.43 However, the other four rules are in the bottom half of the table with the lower fixing rates.
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Almost all projects suffer from issues regarding Documentation Debt (40 projects for rule #10 and 44 projects for rule #13) and Test Debt

(44 projects for rule #19). However, Test Debthas a lower fixing rate than Documentation Debt. In fact, Test Debt has the second lowest fixing rate:

There is only one rule for Test Debt (sufficient code coverage), and this seems rather difficult to fix. A possible explanation is offered in the next

research question where achieving sufficient test coverage shows to require the highest (repayment) effort. Finally, all 15 issues with the most

fixes (see Table 4) also appear in Table 5, which means that the issues with the highest fixing rate are also fixed more frequently in the ecosys-

tem as a whole.

Comparison. The threshold of the number of rule violations, that is, more than 500 issues, is the same one that was used in the Java study.3

Similarly to Python, some of the rules related to Defect Debt (e.g., exception handling) also have the lowest fixing rate for Java. Furthermore, rules

related to Design Debt have a low fixing rate in Python, while the Java study similarly reports that a significant part of the rules with the lowest

fixing rate are related to design problems, for example, complexity and duplication. However, unlike Python, none of the rule violations with the

highest fixing rate in Java appears among the most frequently fixed ones.

Summary. In RQ1.3, we asked how the fixing rate varies for different issues, which we answer as follows: Different issues have a wide varia-

tion of fixing rates, even if they belong to the same debt type. However, the issues with the highest fixing rate are fixed more frequently in the

whole ecosystem. To partially answer RQ2, we compared these results with those from the Java study and concluded that the majority of the

rules with the highest fixing rates are language-specific, either for Java or for Python and that many of the Python issues are caused by the back-

ward incompatibility between versions 2 and 3.

3.1.4 | Repayment effort among different issues

To answer this question, we sum up all the effort required to fix the issues, according to the effort estimates provided for each issue by

SonarQube. The total amount of repayment effort due to all the Blocker, Critical, and Major issue fixes is estimated to 11 788 h.

Table 6 shows the 10 rules for which their fixed issues required the most effort for TD repayment. The Effort column represents the percent-

age of remediation effort for each rule, compared with the total effort. Summing up the estimated effort for the 10 rules in the table adds up to

more than 92.56% of the estimated effort spent in debt repayment in the ecosystem. Thus, a minority of rules are responsible for the majority of

repayment effort. Besides effort, the table highlights two other measures: The RT3 column shows the rank of the same issue in Table 5(RQ1.3),

TABLE 5 Fixing rate for rules with at least 500 occurrences

#a Category Rule Projects Issues Rate %b

1 Code ‘n’ should only be used as an escape character outside of raw strings 20 1312 68.52

2 Defect Syntax error 31 972 56.89

3 Defect Undefined variable 32 6385 56.82

4 Defect The ‘print’ statement should not be used 31 2396 56.34

5 Code Sections of code should not be ‘commented out’ 31 1558 55.58

6 Design Source files should not have any duplicated blocks 31 1346 54.38

7 Code Functions, methods, and lambdas should not have too many parameters 26 2278 54.30

8 Code Statements should be on separate lines 14 1806 53.99

9 Code Lines should not be too long 35 12 747 49.80

10 Documentation Source files should have a sufficient density of comment lines 40 4567 48.48

11 Code Function names should comply with a naming convention 28 1770 45.71

12 Design Control flow statements should not be nested too deeply 27 1265 41.98

13 Documentation Docstrings should be defined 44 31 364 41.48

14 Defect Access of nonexistent member 34 3473 41.41

15 Design Cognitive Complexity of functions should not be too high 38 3250 40.89

16 Design Functions should not be too complex 29 812 40.52

17 Defect Undefined name 26 2975 38.15

18 Design Functions should not contain too many return statements 31 706 36.40

19 Test Lines should have sufficient coverage by tests 44 7595 35.17

20 Defect Mixed tabs/spaces indentation 7 3544 34.45

aOverall ranking across all the rules.
bFixing rate.
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and CT2 column shows the change in position with respect toTable 4(RQ1.2). These extra columns allow us to correlate the effort with the preva-

lence and fixing rate for a given rule. The most effort-intensive rule (to fix) corresponds to Testing Debt, which ranks the second lowest in terms

of fixing rate (19) of all the rules with more than 500 occurrences. Also the second (code comments) and the third rules (docstrings) related to

Documentation Debt have high effort inTable 6 (account for 25.32% of the remediation effort) but have relatively low fixing rates, hinting at a pos-

sible inverse relationship between required effort and fixing rate. When we compare the rank of remediation effort of the rules with their fixed

issues count, we find that the majority of rules that required the most effort for technical debt repayment are not among those with the highest

number of fixes. This indicates that developers prefer to fix issues that are easier first.

From Table 6, we notice that test and documentation are the most costly activities in terms of remediation effort. Test Debt (rule #1)

requires the largest effort during evolution: Almost half (46.05%) of all the effort is devoted to it. This issue is introduced in a file when its test

coverage per line is less than a required threshold. The effort that is required to fix such an issue varies significantly, depending on how many lines

of code in a file are inadequately covered by testing.

Moreover, we compared the remediation effort of the top 10 rules with the rank of their fixed issues count (CT2 column) and fixing rates

across all the rules (RT3 column). Among those rules, rule #5 (‘Source files should not have any duplicated blocks’) ranks as the sixth highest fixing

rate in Table 5 and has moved up 11 positions with respect to Table 4 showing the number of fixes. This rule has the largest remediation effort

among all the rules related to Design Debt, and as mentioned before, it also has the highest fixing rate of all the complexity rules which have more

than 500 occurrences.

The only two Design Debt rules among theTop 10 rules with the most remediation effort are #5 and #6; each one of them only accounts for

almost 4% of effort in Python. Furthermore, the percentage of remediation effort for Design Debt is almost twice as much as Code Debt. This

indicates that problems associated with Design Debt, for example, duplication and complexity, require considerable repayment effort and pose

critical concerns.

Code Debt (rules #7 and #10) has a relatively low remediation effort, accounting for only 4.6% of the total remediation effort. Finally, the

table shows that the effort required to resolve the problems associated with Defect Debt (rules #4, #8, and #9) follows a similar order to their

fixing rates (RT3 column).

Comparison. Similarly to our study, Digkas et al3 were also not able to identify a relationship between repayment effort and fixing rate. How-

ever, it is worth mentioning that rule #5 also has the biggest jump when we compare with the ranking of frequently fixed Java issues. Moreover,

in both languages, the percentage of remediation effort for Design Debt tends to be higher than Code Debt. The results regarding Code Debt

show another point of similarity, as rules of this type have low remediation efforts in both languages.

Unlike the findings in Python, the two Design Debt rules cost the highest payback effort in the Java study; that is, they are responsible for

over 11% of total remediation effort, respectively. Moreover, five Design Debt rules appear in the Top 10 Java rules with the highest amount of

effort, accounting for 22.9% of the total remediation effort. In contrast, the effort for Design Debt rules in Python is around 7.8%. The result indi-

cates that developers spend more effort to address Design Debt issues in Java projects.

Furthermore, Test Debt and Documentation Debt account for almost half of all the effort in Python projects. However, none of the rules

related toTest Debt and Documentation Debt appear in the corresponding list for Java projects.

TABLE 6 Remediation effort distribution: Ten issues are responsible for more than 90% of the remediation effort

#a Category Rule RT3b Effortc CT2d

1 Test Lines should have sufficient coverage by tests 19 46.05% "3
2 Documentation Source files should have a sufficient density of comment lines 10 16.11% "3
3 Documentation Docstrings should be defined 13 9.20% #2
4 Defect Undefined variable 3 5.13% #1
5 Design Source files should not have any duplicated blocks 6 3.98% "11
6 Design Cognitive Complexity of functions should not be too high 15 3.82% "2
7 Code Functions, methods, and lambdas should not have too many parameters 7 3.50% "2
8 Defect Access of nonexistent member 14 2.03% #2
9 Defect Undefined name 17 1.60% "2
10 Code Function names should comply with a naming convention 11 1.14% "5

a Overall ranking across all the rules.
b Rank of the same issue inTable 5 (fixing rate per individual rule).
c Remediation effort percentage
d Change relative to the ranking of the same issue inTable 4 (fixing prevalence for rules).

Also found in the Java study of Digkas et al.3
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Summary. In RQ1.4, we asked how the repayment effort is distributed among different issues. To that end, we showed that a minority of rules

are responsible for the majority of the repayment effort and that the variation in the remediation effort seems to be influenced by characteristics

of the programming languages, as we observed different trends for some kinds of debt. To partially answer RQ2, we compared these results with

those from the Java study and found that Design Debt requires more remediation effort than Code Debt in both languages.

3.1.5 | Survival time of issues

To answer this question, we analyzed the survival time of the 43K fixed issues found in this study. Figure 4 shows the survival time organized

in bins of 30 days; it highlights that from the technical debt that does get fixed, a large amount is fixed in a short time. In particular, a third

(34%, ≈15K/43K) of the issues are fixed within 1month (30 days). Moreover, a majority (60%, ≈26K/43K) of the issues are fixed within 2

months (60 days), and an additional 27% (totaling 87%) are fixed within the first year; only a minority of issues (approx. 13%) last for a longer

than a year. We also observe that the longest time it took to fix an issue in the current dataset was almost 8 years.

Further, we focus on the survival time of the 20 rules with at least 500 occurrences reported (see Table 5 in RQ1.3), including 15 rules with

the most fixed issues (seeTable 4 in RQ1.2), which are responsible for more than 98.3% of the effort required for payback. Because different pro-

jects have been developed at different paces, some of them have lived for a long time, and TD issues are removed at any time during this evolu-

tion. Therefore, the different paces may also affect the survival time of fixed issues in different projects; to mitigate this potential bias, we

calculated the median survival time of each rule in each project.

Figure 5 shows box plots depicting the distribution of the survival median values in years (x-axis) for these 20 rules in different projects. The

box plots are sorted according to Table 5, that is, from high to low fixing rate (top to bottom), and are color coded according to their TD category.

To simplify the figure, we hide the outliers of these box plots.

We observe that the majority of rules (13 out of 20) have a median survival time of 50 days or even less: Their survival time is shorter than

the median survival time of all issues. Only one rule (i.e., ‘Statements should be on separate lines’) tends to survive around 1 year (median value).

Moreover, eight out of the Top 10 rules with the largest remediation effort seem to have a shorter survival time (≈30 days); however, there is no

obvious relationship between fixing rate and survival time of each rule.

Furthermore, rules from the same TD category tend to have a similar survivability distribution; for example, the median survival time of

Documentation Debt rules is about 30 days, while Design Debt has a median survival time of 2 months. Also, Test Debt has a relatively short and

concentrated survival time compared with other debt types, whereas the majority of rules related to Defect Debt have a longer lifetime. However,

violations to the six Code Debt rules have rather diverse median survival times. Issues related to long lines (‘Statements should be on separate

lines’ and ‘Lines should not be too long’) are usually the ones with the longest survivability.

F IGURE 5 Distribution of median
survival time for 20 rules with the
highest fixing rates (according to
RQ1.3)

F IGURE 4 Survival time histogram of 43K
fixed issues with bins of 30 days
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Comparison. In both languages, the data indicate that the majority of the debt that is fixed is fixed relatively soon after its introduction.

Moreover, a minority of issues can live in the system for a very long time (the longest lived issues for Python survive for 8 years, while for

Java, it is 10 years).

However, technical debt seems to be repaid faster in Python than in Java. In Python, approx. 34% of the issues are fixed within 30 days and

87% within 1 year, whereas for Java, the numbers are 20% and 50%, respectively. The longest survival time of issues for Python (almost 8 years)

is less than Java (10 years). We further discuss that difference in Section 3.2.1.

Summary. In RQ1.5, we asked after how much time technical debt is paid back. To that end, we showed that a majority of the debt that is

fixed is fixed relatively soon after its introduction. To partially answer RQ2, we compared these results with those from the Java study and

learned that (a) only a minority of issues can live in the system for a very long time (8 years the longest-lived issues for Python and 10 years for

Java), (b) the rules from the same TD category have a similar survivability distribution, and (c) technical debt seems to be repaid faster in Python

than in Java.

3.2 | Learning from the differences between Python and Java

3.2.1 | Python features

Python is known for its dynamic typing system, making it popular for flexibility, expressiveness, and succinctness and less maintainable and

secure.44 Altogether, the misuse of dynamic features could lead to coding issues that are often fixed by adding tests (Test Debt remediation) or

exception handling (Defect Debt remediation).15 Thus, remediation of Test Debt (i.e., ‘Lines should have sufficient coverage by tests’) and Defect

Debt tend to appear much more frequently in Python.

Examining Test Debt closer, it is a widely spread phenomenon: Test Debt appears in all the 44 Python projects. The results of RQ1.3 (see Sec-

tion 3.1.3) and RQ1.4 (see Section 3.1.4) reveal that althoughTest Debt has the second lowest fixing rate; it requires the largest effort. Moreover,

it only has been fixed in one third (15 out of 44) of the Python projects during their evolution. To further investigate Test Debt, we focused on

these 15 projects and found that they have larger sizes (45K SLOC in average) and higher longevity (around 4 years, with 3.5K commits in aver-

age). This confirms that Python code that is large and long-lived forces developers to increase test coverage over time.45

Furthermore, it is noticeable that issues related toTest Debt are not only being regularly fixed in projects with long survival time, but they are

also fixed relatively quickly. This indicates that in order to improve software maintainability, developers should be conscious of fixing issues

related to Test Debt earlier in larger and long-term maintenance projects. This confirms literature findings that Test Debt has a strong negative

influence on software maintenance46-48 and high test coverage may increase software quality.49,50 Considering the Python features, we showed

in Section 3.1that projects with deeply nested control flow statements (i.e., Design Debt) and exception handling statements (i.e., Defect Debt)

tend to be significantly less likely to be covered by tests.45

Finally, our results also showed that technical debt tends to be repaid faster in Python, even looking across the same rules. In addition, the

longest survival time of issues among the Python projects (8 years) is shorter than among Java projects (10 years). One possible reason may be

that the first Python project from the ASF was developed in 2006. Java appeared earlier than Python, and thus, the development time of Java

projects is generally much longer than that of Python projects in the Apache ecosystem. Thus, long-lived projects are more likely to have issues

with longer survival time. Another potential reason could be that, although Python is harder to maintain, its dynamic typing system also allows for

smaller changes, which may facilitate maintenance activities.

3.2.2 | Transition from Python 2 to Python 3

According to the results of RQ1.1, there is a wide variation in the fixing rate for the projects in the dataset. We observe that both Java and Python

projects contain two projects with very high fixing rates, but the reasons are different. In Python, the two projects that display the highest fixing

rates (more than 78% of the issues were fixed during their evolution) are as follows: INCUBATOR-SENSSOFT-USERALE-PYQT5 provides comprehensive user

event tracking for web pages and INCUBATOR-SENSSOFT-DISTILL is an analytics framework for handling and analyzing user data†††.

In these projects, the majority of the issues (60% and 52%, respectively) are violations of the rule ‘Mixed tabs/spaces indentation,’ and these

issues are all fixed during their evolution. That rule is related to the transition from Python 2 to Python 3 because tabs and spaces for indentation

are not allowed to be mixed in the latter. In the case of Java, Digkas et al3 found that development teams use SonarQube to manage and maintain

the two projects with the highest fixing rates in the Java study. This is not the case for Python: We checked the repository and commit messages

for all the Python projects and could not find any evidence of using SonarQube to manageTD.

†††https://senssoft.incubator.apache.org/system/
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As shown in RQ1.2, five rules related to Defect Debt account for more than one fifth of all the fixed issues. Among them, rules #7 and #10

occur with the update of the Python interpreter (from Python 2 to Python 3). In Python 3, the ‘print’ statement requires parentheses, and mixing

the use of tabs and spaces for indentation is no longer allowed. Furthermore, some issues that are mapped in rules #3, #6, and #11 are also caused

by the update of the Python interpreter. For these rules, we randomly selected 300 fixed issues for each rule and checked them manually. Regard-

ing rule #3 (‘Undefined variable’), over 70% of the fixed issues are related to references to Python 2 identifiers (e.g., ‘xrange,’‘unicode,’ and

‘basestring’). For rules #6 (‘Access of nonexistent member’) and #11 (‘Undefined name’), only about 6% of the issues were related to naming or

syntax affected by the different versions of the Python interpreter, for example, references to ‘socket’ instead of ‘SocketIO’ and to ref-

actored parts of the module urllib. Among them, the first two authors had disagreements only on the issues related to rule #3. However, there

was a high level of inter-rater agreement between two authors when we calculated Krippendorff's alpha (α= :82).34 Altogether, we estimate that a

majority of the fixed Defect Debt(≈60%) is related to incompatibilities between Python 2 and Python 3. That is a plausible explanation of why

the fixed issues related to Defect Debt account for a higher percentage of the total fixed issues in Python compared to Java (≈15%). Moreover,

unlike the effect of updating the Python interpreter, the majority of Defect Debt issues in Java projects are related to exception handling.

Although multiple Python-specific issues are related to postponing the ion to Python 3, the rule violations have a wide distribution: Some rules

have a high fixing rate while others a low fixing rate (discussed in RQ1.3). This is partially in contrast to the Java study, where the majority of Java-

specific rule violations tend to have a quite high fixing rate. To study this further, for rules #2 and #3 (‘Syntax error’ and ‘Undefined Variable’) in

Table 5, we randomly sampled 300 fixed issues and manually inspected them. We found out that most of the issues are associated with the use of

older versions of the Python interpreter (e.g., invalid syntax in except handler with a comma or the use of Python 2 specific identifiers such as bas-

estring). As we did before, we also estimated the inter-rater agreement for rules #2 and #3 by calculating Krippendorff's alpha,33 and the values

are .78 and .85, respectively. We thus estimate that almost half of the Defect Debt (47%) is related to postponing the update to the latest Python

interpreter and has a high fixing rate (over 56%). In contrast, rule #20 is also commonly violated by delaying the update to Python 3; however, it has

the lowest fixing rate inTable 5. Issues pertaining to this rule appear 3544 times in only seven projects. Although six projects have higher fixing rates

(over 50%) and three of those have totally fixed all these issues, one project (TASHI) has a rate of 16% and contains more than 69% of all issues (2463

out of 3544). Such observations suggest that some applications within the Apache ecosystem have still not migrated from Python 2.

It is worth noting that Test Debt (i.e., insufficient test coverage) accounts for almost half of the remediation effort (approx. 46%) for Python.

Because there is a great difference between Python 2 and Python 3, developers should make sure that the test suite is thorough before migrating

to Python 3. Furthermore, migrating the tests before the rest of the code facilitates the identification of defects and contributes to a smoother

transition. Moreover, migrating the test suites tend to be simpler than migrating code; thus, it could also provide an idea of how easy it can be to

migrate projects to Python 3.51 Thus, issues related to insufficient test coverage tend to be more important in Python projects, especially for pro-

jects with a long history, because they are more likely to have migration problems with different Python versions.

4 | DISCUSSION

In the previous section, we reported on the evolution of TD remediation in Python and pointed out the similarities and differences compared with

Java. Although the sets of SonarQube rules for the two languages do not completely overlap, we identified a number of similarities. In both lan-

guages, projects are likely to have around 20–30% of their TD issues fixed, with a small number of issues accounting for most of the fixes. More-

over, the majority of the rules with the highest fixing rates are related to language-specific rules. In addition, a minority of rules account for the

majority of the remediation effort, and Design Debt requires more effort than Code Debt. Furthermore, for the technical debt issues that do get

repaid, the majority is fixed relatively soon after they are introduced. However, a minority of the issues that get fixed stay in the system for a very

long time in both languages (until they are eventually fixed).

We also found some differences, that is, results that are unique to either Python or Java: The potential reasons for the high fixing rates tend

to be different between Python and Java projects; Test Debt and Documentation Debt are fixed much more often and also require more effort in

Python, while Design Debt is fixed much more often in Java; the high fixing rates for some Python rules are caused by the changes between major

versions of the Python interpreter. Furthermore, we presented possible explanations for the observed differences based on particular features of

the Python language and the migration from Python 2 to Python 3. This discussion was at the level of TD categories (e.g., Code Debt and Design

Debt). However, the differences in the number of rules among the categories may influence the comparison; for example, Test Debt only has one

rule in the Python results.

One possible way to compare at the level of rules is to look at the rules that are common between the two languages. To that end, we ana-

lyzed the 15 rules that are common to both Python and Java. Thus, in Section 4.1, we focus on these 15 common rules, revisit the research ques-

tions RQ1.2, RQ1.3, and RQ1.4, and discuss them. We do not revisit RQ1.5 as we could not derive the related information from the Java study.

Finally, in Section 4.2, we focus on the implications of this work for both developers and researchers.

$https://senssoft.incubator.apache.org/system/
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4.1 | Common rules in both languages

Table 7 shows the comparison between the findings for Python and Java for the 15 common rules, regarding the prevalence of fixed issues

(RQ1.2), the fixing rate (RQ1.3), the effort required to fix the issues (RQ1.4), and the percentage of projects in which violations of the rule appear.

Fixing rates of the common rules have been calculated in RQ1.3; thus, we used those values here. However, for the comparison in RQ1.2 and

RQ1.4, the results we had concerned the fixing prevalence and remediation effort for all the rules; thus, we calculated the distribution of the

number of fixed issues and remediation effort among the 15 common rules. Moreover, the ‘Aggregated’ row on Table 7 shows the results from

combining the 15 rules; that is, those 15 common rules account for 11.89% of all fixed issues in Python and 34.53% in Java.

For RQ1.2, it is interesting that the five most prevalent fixed issues are the same in both Python and Java: the Top 5 rules in Table 7. More-

over, the number of issue fixes related to these five rules accounts for almost 90% of common issue fixes in both Python (87.35%) and Java

(89.18%). Considering all of the most prevalent issues in both languages, we note that those five rules appear in the Top 10 Java rules with the

most fixing prevalence, and three of them appear in Python. Furthermore, among the common rules, issues related to ‘Cognitive Complexity of

functions should not be too high’ appear in the largest number of Java and Python projects (esp. in the case of Java this rule is found in all projects

as shown in the last column of Table 7). This highlights that complexity is a major source of concern in both languages.

Regarding RQ1.3, there is a wide variation of fixing rates in Table 7. The rule ‘Variables should not be self-assigned’ seems to be a special case

with a fixing rate of 100% in Java projects. However, there are only 30 issues related to that rule, so it appears to be an outlier. Excluding that

extreme value, fixing rates of the rest of the common rules have similar variation intervals in Python and Java, that is, from 19% to 56%.

For RQ1.4, we note that the three most costly activities (i.e., rules #1, #2, and #5) are the same in both languages and even appear in the same

order. These three rules require the majority of remediation effort, that is, more than 80% of the total effort estimates for the common rules.

Among them, the violations of the rule ‘Source files should not have any duplicated blocks’ require the most estimated effort in both Java and

TABLE 7 Comparison of 15 common rules for Python and Java

RQ1.2: P %c RQ1.3: F %d RQ1.4: R %e Projects%f

#a Cb Rule Python Java Python Java Python Java Python Java

1 S Cognitive Complexity of functions should not be too

high

26.19 15.76 40.89 42.34 36.46 32.30 86.36 100

2 C Statements should be on separate lines 19.21 22.77 53.99 40.59 1.32 1.96 31.82 91.23

3 C Sections of code should not be ‘commented out’ 17.06 22.56 55.58 41.44 5.85 9.69 70.45 100

4 S Source files should not have any duplicated blocks 14.42 11.05 54.38 19.47 38.01 34.00 70.45 100

5 S Control flow statements should not be nested too

deeply

10.46 17.04 41.98 31.01 7.17 14.63 61.36 100

6 S Collapsible ‘if’ statements should be merged 4.04 2.56 41.75 36.69 1.38 1.10 68.18 100

7 S Two branches in a conditional structure should not

have exactly the same implementation

3.07 0.27 48.75 48.00 2.11 0.23 47.73 70.18

8 S Files should not have too many lines of code 1.64 0.61 31.44 25.53 6.73 3.14 36.36 98.25

9 C Nested blocks of code should not be left empty 1.32 4.50 37.22 38.24 0.45 1.93 36.36 96.49

10 C Methods and field names should not differ only by

capitalization

0.30 0.89 34.88 40.42 0.20 0.76 20.45 87.72

11 C Redundant pairs of parentheses should be removed 0.26 0.21 44.83 32.49 0.02 0.02 15.91 56.14

12 C A field should not duplicate the name of its containing

class

0.16 0.20 28.57 23.19 0.11 0.17 25.00 89.47

13 D Track uses of ‘FIXME’ tags 0.91 1.16 26.59 44.92 0.00 0.00 22.72 68.42

14 C Identical expressions should not be used on both sides

of a binary operator

0.12 0.28 19.35 55.51 0.02 0.05 20.45 56.14

15 F Variables should not be self-assigned 0.85 0.02 55.13 100 0.17 0.00 22.72 7.02

Aggregated 11.89 34.53 10.47 34.64

aRanking across the common rules.
bCategory (C, Code Debt; S, Design Debt; D, Documentation Debt; F, Defect Debt).
cPrevalence percentage.
dFixing rate.
eRemediation effort.
fThe percentage of projects in which the rule appears.
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Python, accounting for 34% and 38%, respectively, of the total remediation effort. Furthermore, ‘Cognitive Complexity of functions should not be

too high’ accounts for the second largest amount of repayment effort (about 32% and 36%, respectively) for projects of both languages. In addi-

tion, the fixing rates for this rule are also very similar (approx. 40%).

The high fixing rates and remediation effort of common issues related to complexity (i.e., rules #1–#5) indicate that those issues are given pri-

ority despite requiring significant effort to fix; this is likely because developers understand their impact on software maintenance and try to fix

them to avoid paying high technical debt interest. Moreover, three of these rules (i.e., rules #1, #4, and #5) are related to Design Debt. In fact,

except for two rules (#2 and#3) that belong to Code Debt, six of the top eight rules with the highest percentage of fixed issues are related to

Design Debt. The majority of them also have the highest percentage of remediation effort and appear in most projects. Again, we conjecture that

issues related to Design Debt are more commonly addressed by software developers because they tend to cause a lot of extra maintenance effort;

despite their high remediation effort, fixing them saves effort in the long term. Consequently, we advise practitioners to prioritize the remediation

of these Design Debt issues in both Python and Java. The longer these issues stay in the system, the higher the technical debt interest to be paid.

In addition, almost all of the common rules (i.e., 13 out of 15) are related to Design Debt and Code Debt, which indicates that developers

might concentrate on similar issues related to code comprehension, maintenance, and complexity regardless of the programming language.

Although half of the rules in the Python study (28 out of 56) belong to Defect Debt, a large number of them constitute Python-specific technical

debt; the two studies have only one Defect Debt rule in common. This indicates that, among all technical debt types, Code Debt and Design Debt

are more independent of programming languages and have a deeper impact. We see this as an important point for technical debt tool vendors

that offer support for multiple languages: Code Debt and Design Debt rules should be assigned higher weights, and the commonalities in these

rules across languages should be exploited. Furthermore, development teams that work with two or more languages can have common thresholds

or quality gates for Design and Code Debt issues across all languages.

Furthermore, issues with a similar remediation effort might be treated very differently, depending on the programming language. For example,

although the remediation effort for the rule violation ‘Source files should not have any duplicated blocks’ is quite similar for both languages, the

fixing rates of that rule in Python and Java vary greatly, approx. 54% and 19%, respectively. Moreover, the average number of issues of this type

per file is similar in both languages (approx. 0.24). We investigated this rule further and found that, for the Python projects, the average effort per

issue is doubled when compared with the Java projects. SonarQube estimates the effort to fix this issue based on the size of the duplicated block,

which means that duplicated blocks in Python are likely to be approx. twice the size of duplicated locks in Java and, therefore, may receive more

attention from developers.

Another interesting rule is the one with the second most remediation effort, that is, ‘Cognitive Complexity of functions should not be too

high.’ We analyzed the issues of this rule further and noticed that despite the similarities in repayment effort and fixing rates of that rule in two

languages: (a) Python has considerably more issues per files than Java (approx. 0.59 and 0.24, respectively); whereas (b) Java has marginally more

complex methods (based on the repayment effort per issue). This sheds light on the programming style associated with the two languages. For

example, methods in Java classes can be inherently more complex, while Python offers a variety of idioms (e.g., list comprehension) that alleviates

cognitive complexity. Moreover, Python modules are often implemented in a more imperative style (as opposed to object-oriented), which may,

for example, result in fewer accessor methods.

4.2 | Implications

The previous sections elaborated on both generalized and language-dependent results. Because both of them have implications for developers

and researchers, we discuss these implications first for language-dependent and subsequently for generalized findings.

4.2.1 | Lessons learnt from the differences

On the basis of the findings that are different between Python and Java projects, we highlight that most of the rules with the highest fixing rates

and highest spent remediation effort are language-dependent. This limits the external validity of empirical studies (like this one) to the language

studied. Researchers should consider this threat to validity and if possible replicate studies among languages and compare results. In fact, finding

differences among languages can guide the calibration of technical debt tools towards the individual features of each language, instead of simply

having different rules for different languages.

Test Debt and Documentation Debt are fixed much more often and repaid very fast in Python projects. Practitioners can consider this

information to prioritize their maintenance activities: They can check whether these issues are also fixed quickly in their project; if they are

not, practitioners can reflect whether they have a good reason not to fix them. Moreover, researchers can focus on improving the detec-

tion of issues related to other debt types, for example, Defect Debt and Code Debt, and try to understand why these are not prioritized

by practitioners.
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AlthoughTest Debt is highly spread in Python projects, it is also likely to be resolved within the first year. This information can be used as an

early warning of long-lived debt, as any Test Debt surviving for longer than a year will potentially survive for a much longer period.

A large proportion of debt (esp. Defect Debt) is associated with the migration between Python 2 and Python 3. This should urge researchers

to pay close attention to debt emerging from programming language updates (e.g., from changes in syntax or added idioms) and improve related

TD detectors and analyzers in time. For example, these tools can warn developers of such migration issues and promote improved best practices

early enough to mitigate further risky debt such as from the discontinuation of an entire major version.

Although the dynamic features of Python may be associated with greater maintenance efforts, they can also lead to a more cautious develop-

ment style, for example, with a stronger debt repayment culture. On the one hand, this indicates a potential maturity of the Python community in

adopting the observed debt repayment practices. On the other hand, it should draw the attention of researchers to further investigate the tight

relationship between the features (and associated culture) of a programming language and TD repayment practices.

4.2.2 | Lessons learnt from the similarities

On the basis of the general findings that are the same or similar for both languages, we highlight that fixing rates for the majority of projects are

not high, but that is not necessarily alarming; projects may thrive despite the presence of technical debt. Practitioners should look more at the

trends (is the debt increasing or decreasing in the long term?) rather than absolute numbers (not all debt has to be repaid) and only set realistic

goals for repayment, for exmple, targeting issues that incur high technical debt interest.

Issues that are easier to fix also have a higher fixing rate—developers seem to be dealing with the ‘low-hanging fruits.’ This unfortunately cor-

responds to a minority of all rules. Researchers should focus on tool support for the more complex types of debt (with low fixing rates), as they

tend to survive much longer incurring developers to pay significant amounts of interest. Any approach that can support developers in fixing these

‘expensive’ issues more cost-effectively would be of added value.

Because issue fixes related to complexity account for almost 90% of common issues and cost around 90% of the remediation effort, devel-

opers should pay more attention to fixing them by giving them high priority among all issues. In addition, TD management tools should emphasize

these issues and to some extent prompt developers to deal with them with high priority.

There seems to be an inverse relation between repayment effort and fixing rates, but that was not clearly established. Researchers could look

into confirming this relation or even better establishing causality between the two concepts. This would have wide implications for technical debt

tools, as they would need to strongly encourage the remediation of debt with high repayment effort. Development organizations can also take

this into account by encouraging debt repayment of costly issues as part of the organizational culture.

The majority of issues that do get fixed are fixed rather quickly after being introduced. In contrast, a minority of issues can live for a long time.

This has two important implications. First, practitioners can bear this in mind: If they postpone fixing an issue, it will likely survive long enough to

incur significant technical debt interest. Second, researchers should explore the reasons behind the long survival of certain issues. Do developers

assign them a low priority because they do not consider them important enough or because the remediation effort is too high? Furthermore,

researchers can build on this information to calibrate the priority weights and early warnings for such issues in tools. For example, issues that are

not incurring high technical debt interest may be assigned lower priorities.

5 | THREATS TO VALIDITY

We discuss the threats to construct and external validity, reliability, and confounding factors. We note that internal validity is not relevant to our

study, because we did not seek to establish causal relations.

5.1 | Construct validity

This type of threat pertains to the connection between the research questions and the objects of study (i.e., do we measure what we intend to

measure?). In this regard, the result of this study relies on SonarQube to detect TD issues that are fixed and the amount of TD that is paid back.

Although the tool is widespread in both industry and academia, our interpretation of TD is limited to the tool's capabilities. Different strategies could

be used in different tools to detect TD, which might lead to other possible definitions of technical debt rules and, consequently, potential TD issues

that are fixed during the evolution. To assess SonarQube's limitations, the first and second authors randomly selected 426 issues (i.e., 1% of the num-

ber of total fixed issues) by using stratified random sampling. Then, we manually checked whether those issues represent technical debt and whether

their evolution is accurately captured. The results show that all of them represent technical debt, and almost 98% of them were actually fixed.

Furthermore, when we analyze the evolution of projects, we choose the change history on a weekly basis, and thus, the introduction and

removal time might have a maximum error of 1 week. Therefore, this could lead to a range of errors in calculating the survival time of fixed issues.
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Moreover, projects may be developed at different paces, which may also affect the survival time of fixed issues in different projects. Overall, these

two threats only affect the result of RQ1.5, that is, the survival time of different fixed issues. To mitigate these threats, at least to some extent, we

compare the median survival time of the issues between different rules.

5.2 | External validity

This type of threat concerns the generalizability of our findings. Although we analyzed all the Python systems in the Apache ecosystem, which

represent a considerable corpus of evolving Python systems, we cannot claim that these results can fully represent the entire population of non-

trivial Python projects.

Furthermore, the set of rules considered in this study is not exhaustive and does not portray the complete set of TD related issues that may

affect Python source code. Some of them are language-specific, and some might even have different implementations for different versions of

the tool itself. From this point of view, the comparison with Java is limited. To partially address this, we investigate the results of common rules

that appear in both Python and Java projects in Section 4.1independently.

Because the version of SonarQube used for this study (SonarQube 7.0) is newer than the one used in the Java study (SonarQube 6.4), we

compared the sets of rules to better understand the impact of different versions of the tool in analyzing TD evolution. As a result, we only found

two new common rules in the last version; that is, ‘Lines should have sufficient coverage by tests,’ and ‘Identical expressions should not be used

on both sides of a binary operator.’ The former has a great impact on our result as we discussed in Section 3.2.1. However, the latter has a negligi-

ble effect because it only has six fixed issues, accounting for 0.01% of the total fixed issues that have been detected in our study. Finally, we note

that many of the technical debt issues are language independent (e.g., method complexity and code duplication).

5.3 | Reliability

To address reliability threats, at least three researchers were involved in both data collection and analysis. Moreover, samples of analysis output

at the different steps were manually inspected for irregularities and alignment with the proposed study design. Finally, most steps were auto-

mated by scripts, which are publicly available together with the collected dataset.

Moreover, the mapping of the 56 SonarQube rules into the five TD categories was performed independently by two researchers, with a third

researcher helping to resolve conflicts (see Section 2.3.2). However, it is possible that different researchers might map these rules to different

categories.

5.4 | Confounding factors

Confounding factors are variables that may affect the dependent variables without the knowledge of the researchers. In our study, the main limi-

tations that we expect in this regard pertain to the differences between Java and Python. Despite our attention to details while replicating the

study of Digkas et al,3 some aspects that could not be controlled may affect the comparability of the results.

The most prominent factors are related to the characteristics of the projects. Although all (Java and Python) projects are part of the Apache

foundation, the domain of the projects is not uniform among the languages. For example, NUTCH is a Web crawler relying on Apache Hadoop data

structures, which has the highest fixing rate among Java projects. However, there is no Web crawler in the selected Python projects. Furthermore,

although language features can affect the complexity of the project, and thus comprise valid comparisons, the complexity of the source code can

also be influenced by the type of project and developers' experience, which may also not be uniform among Java and Python projects.

6 | ASSOCIATED DATASET AND REPLICATION

Due to the limitations of multiversion analysis with SonarQube, collecting the data required for this analysis can take a long time. In our case,

importing the 3643 analyzed versions of the 44 systems data took more than 2months of work on an Intel Core i7-5500U personal computer

with 8GB of RAM.

To support the replication of this study, we created an online repository‡‡‡ with instructions and scripts to collect the same data that we used

in the study. The repository helps with setting up the necessary environment, that is, tools and configuration: It provides a Vagrant script to boot-

strap a virtual machine and automate most of the environment setup. The environment includes SonarQube, with a PostgreSQL database, and

‡‡‡https://github.com/jieshanshan/TD-Apache-Python
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Jupyter§§§, which is used to support the data collection. The provided Jupyter notebook guides the procedure all the way from acquisition of the

Git repositories, through extracting the weekly snapshots, to submitting them to SonarQube for analysis.

For researchers that prefer to avoid the effort of replicating our data collection but might want to perform other kinds of analysis on the data,

we publish besides the scripts for data collection also their result: a data dump of the detailed information for the 95 K TD issues analyzed in this

paper.¶¶¶ The detailed information includes ID number, description, severity, status and effort of each issue, together with the project that con-

tains it, the hash values, and dates of the commits that the issue is introduced and removed.

7 | RELATED WORK

The design and results of our work are more closely comparable with two studies by Digkas et al.3,7 The first study7 examines the number of TD

issues in 66 Java projects of the Apache Software Foundation over a period of 5 years and also use SonarQube to investigate how TD evolved

and what types of issues are involved. The results show that on the one hand, there is a significant increase trend on size, number of issues, and

on the complexity metrics of the project, while on the other hand, the normalized TD decreases as project evolves. The follow-up study3 investi-

gates the amount of TD that is paid back and the issues that are fixed.3 An in-depth comparison with this work is presented in the results of RQ2

and further discussed in Section 4.1.

Although we used SonarQube like Digkas et al,3,7 there are other means to detect TD that have been used in other studies. For

example, Marinescu8 proposed and evaluated a framework to detect TD via metrics-based detection rules for seven object-oriented design

flaws. Their case study shows how the framework can detect debt symptoms and past refactoring actions. However, they only focused on

Design Debt, and their findings are based on two Eclipse projects. Unlike them, we investigate five debt types (including Design Debt) in

44 Apache Python projects. Aligning to our results, the authors also noticed that issues related to code complexity have a significant impact

on the software maintenance.

More recently, Bavota et al32 detected technical debt by analyzing code comments for self-admitted technical debt instead of analyzing the

source code itself. In this context, they found that self-admitted technical debt is diffused in the mined open-source projects. Although our study

analyzed TD in source code, we also found that TD issues are diffused during the evolution of Python projects.

We detected 56 different TD issues in our study, which belong to five TD categories. However, to the best of our knowledge, most of the

previous studies involved only a few types of TD. For example, Olbrich et al52 analyzed historical data over several years of two projects to inves-

tigate two code smells (i.e., Code Debt), namely, God Class and Shotgun Surgery. The results show that they can identify different phases in the

evolution of code smells during system development. While we considered 14 rules related to Code Debt in our study, these two code smells are

not included. However, similar to our results, their findings also indicate files affected by Code Debt (in their study, by smells) as noticeable main-

tenance challenges.

Another large scale empirical study was presented by Palomba et al,53 which focused on investigating the diffuseness of 13 code smells and

their impact on maintenance properties. Their findings show that the most diffused smells are related to size and complexity. This observation is

in line with our finding that the majority of fixed issues and effort estimates pertain to issues related to complexity. However, unlike them, we

detected additional TD categories other than Code Debt and focused on the remediation.

Our investigation of Python was partially motivated by the goal of investigating another prominent programming language besides the highly

analyzed Java. A handful of other studies also aimed to do the same. For example, Sharma et al9 mined 19 design smells and 11 implementation

smells in 1988 C# repositories to investigate fundamental characteristics of code smells. Some of those smells were also found in our study, for

example, duplicate code and long method. They found that open-source C# programs have a high average smell density and that some smells occur

more frequently. Comparing with our results, we found that TD issues are also widespread in Python projects, as well as that some issues are

more prevalent.

8 | CONCLUSIONS AND FUTURE WORK

In this paper, we presented the results of a case study of the multiyear evolution of technical debt remediation in 44 Python projects from the

Apache Ecosystem, focusing on the effort required for technical debt repayment and the issues that are fixed. The analysis we performed shows

that most of the repayment effort goes into improving testing, adding documentation, reducing complexity, and removing duplication. We also

made a comparison between the results of this study and the one on Java reported by Digkas et al,3 presenting similarities and differences

between the two languages.

§§§https://jupyter.org/
¶¶¶https://github.com/jieshanshan/TD-Apache-Python/blob/master/Original_Data.csv
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Several of the findings are aligned with the study on the Java part of the ecosystem. First, a minority of rules account for the majority of

issues fixed and the spent effort, and this suggests that addressing those kinds of debt in the future might be important for research and practice.

In addition, almost 90% of fixed issues and 80% of effort estimated to be invested in fixing pertain to rules related to Design Debt, for example,

complexity; those issues are of common concern to all software developers and maintainers. Furthermore, the majority of the rules with the

highest fixing rate (up to 60%) are language-specific issues. Finally, a minority of issues can live for a long time, and the issues from the same TD

category have a similar survival time.

Some aspects of TD repayment in the Apache ecosystem are particular to Python projects: (a) More than half of the Python technical debt

that gets fixed is short term, that is, being repaid in less than 2months, which is much faster than the previous study on Java has indicated;

(b) documentation-related debt seems more prominent in Python than in Java; and (c) despite Test Debt appearing in all projects, it has only been

fixed in one third of Python projects, and those have a long history. Despite these indications, we also highlight that biases such as project-

dependent variables (complexity, domain, etc.) may affect the comparison between program languages.

The results of our study have several implications for practitioners, particularly developers. First, our study highlights the importance of stra-

tegically managing debt rather than repaying it all. We have shown that in one of the most successful collections of open-source software pro-

jects, not all debt is repaid, and there seems to be a preference in the way some types are prioritized over others. Indeed, TD issues related to

code complexity seem to receive high fixing priority in the Apache ecosystem. Furthermore, test coverage may require more attention during soft-

ware maintenance because it tends to require more effort to be fixed; however, on the basis of our observations, developers seem more con-

scious of testing issues in long-lived projects.

Finally, our results indicate that the majority of the issues are fixed in a relatively short time. Therefore, we believe that quality-minded devel-

opers reading this study will verify whether the issues in their Python projects are also as quickly addressed; noticeable delays in this regard may

indicate the accumulation of substantial TD.

The findings reported in this paper shed light on several aspects of technical debt in Python projects. However, because this has been an

exploratory study, it naturally leads to many questions that are still not answered. In particular, we believe that the following observations and

hypotheses stemming from this study are worthy of further investigation.

The differences between the two languages presented and discussed in Section 3 hint at the possibility that the language properties

and/or the culture that emerges in the ecosystem might have an impact on the debt repayment practices. However, more research

must be done to better understand the impact of the studied types of debt and whether delaying remediation is optimal or there could be

better strategies.

The magnitude of the study limited its scope, which only considered the source code. Thus, we did not investigate the motivations of devel-

opers. A follow-up study with the ecosystem developers would be imperative to complement the observations in this paper and shed light on the

actual intentions and strategies of the various communities. For example, it would be useful to survey developers to see whether they recognize

the fast repayment of test and documentation debt that we observed as intentional strategies. Moreover, it would be enlightening to find out

whether the rationale for prioritization is related to the programming language.

Furthermore, we plan to also analyze industrial ecosystems because no work has been done in that direction. We also plan to compare the

way complementary operationalizations of technical debt fare against the SonarQube one. In addition, we plan to provide an online application

that allows any Python project to compare their own technical debt with the projects in the Apache ecosystem.

Finally, it still remains to be seen whether this article is the best way of presenting the data in this study to practitioners or a better way exists

that would help them to compare, evaluate, and improve their TD management strategy. We would like to investigate whether a web application

that would allow developers to compare their debt remediation statistics with the Apache systems would be a good starting point for discussions

and actionable insight.
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APPENDIX A

TABLE A1 Project statistics

Project name Commits SLOC Classes Age (days) Contributors Fixed issues Open issues Fixing rate

Airavata-django-portal 743 41 192 614 663 5 1277 3225 28.37%

Airflow 6074 89 773 1044 1528 742 1387 3935 26.06%

Allura 9271 77 042 1194 3345 45 3730 4833 43.56%

Bloodhound 1238 74 658 1068 2230 9 855 5244 14.02%

Cassandra-dtest 5148 61 333 487 2619 68 3337 3957 45.75%

Chemistry-cmislib 117 5020 86 2601 3 187 215 46.52%

Cloudstack-docs-rn 197 111 0 1653 15 1 26 3.70%

Cloudstack-documentation 59 45 1 119 16 0 2 0

Cloudstack-ec2stack 341 4456 21 575 5 253 127 66.58%

Cloudstack-gcestack 332 3102 37 1789 4 116 309 27.29%

Comdev-reporter 34 1341 3 0 1 0 161 0

Couchdb-documentation 964 944 22 2179 105 17 63 21.25%

Fluo-muchos 261 983 4 1416 7 37 41 47.44%

Incubator-ariatosca 190 35 603 557 634 11 557 2467 18.42%

Incubator-milagro-mfa-server 25 4598 84 532 7 14 401 3.37%

Incubator-mxnet 9381 95 883 743 1302 677 22 142 7434 74.87%

Incubator-pagespeed-drp 40 611 10 2597 4 1 33 2.94%

Incubator-retired-cotton 56 4125 74 223 2 5 251 1.95%

Incubator-retired-wave-docs 10 183 0 994 3 0 10 0

Incubator-sdap-edge 2 4900 94 19 1 0 940 0

Incubator-sdap-nexus 73 17 056 173 388 5 89 2281 3.76%

Incubator-sdap-nexusprotp 13 48 0 350 1 0 10 0

Incubator-sdap-ningesterpy 28 1623 45 300 3 8 155 4.91%

(Continues)
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TABLE A2 Issue rules

ID Description Type Severity Category Issues
Rate
%

3 __init__ should not return a value Bug BL Code 1 0

7 Methods and field names should not differ only by capitalization CS BL Code 43 34.88

12 ‘<>’ should not be used to test inequality CS MA Defect 2 100

13 Jump statements should not be followed by other statements Bug MA Code 47 76.60

14 Docstrings should be defined CS MA Document 31 364 41.48

15 Identical expressions should not be used on both sides of a binary operator Bug MA Code 31 19.35

16 Sections of code should not be “commented out” CS MA Code 1558 55.58

20 Functions should not be too complex CS CR Design 812 40.51

21 The ‘print’ statement should not be used CS MA Defect 2396 56.34

23 ‘n’ should only be used as an escape character outside of raw strings Bug MA Code 1312 68.52

24 Control flow statements should not be nested too deeply CS CR Design 1265 41.98

25 Redundant pairs of parentheses should be removed CS MA Code 29 44.82

26 Two branches in a conditional structure should not have exactly the same

implementation

CS MA Design 320 48.75

29 Cognitive Complexity of functions should not be too high CS CR Design 3250 40.89

31 The ‘exec’ statement should not be used Bug BL Defect 5 0

36 A field should not duplicate the name of its containing class CS MA Code 28 28.57

38 Statements should be on separate lines CS MA Code 1806 53.99

TABLE A1 (Continued)

Project name Commits SLOC Classes Age (days) Contributors Fixed issues Open issues Fixing rate

Incubator-senssoft-distill 98 913 12 622 5 274 73 78.96%

Incubator-senssoft-userale-pyqt5 40 612 10 525 1 142 40 78.02%

Incubator-spot 654 7602 38 1009 20 993 729 57.67%

Incubator-superset 3922 16 279 90 1205 344 39 487 7.41%

Incubator-warble-node 29 753 7 18 1 0 75 0

Infrastructure-puppet 10 942 12 112 122 1624 60 524 1289 28.90%

Kibble 586 8103 8 386 4 71 354 16.71%

Kibble-scanners 152 3940 12 362 1 8 386 2.03%

Libcloud 6287 126 083 1394 1156 264 3692 5132 41.84%

Openwhisk-composer-python 83 1655 50 219 5 217 244 47.07%

Openwhisk-deploy-mesos 2 1373 4 249 2 0 93 0

Openwhisk-package-kafka 202 1157 9 786 11 77 123 38.50%

Openwhisk-utilities 48 364 0 515 7 2 9 18.18%

Predictionio-sdk-python 122 1487 22 1604 9 119 93 56.13%

Qpid-dispatch 2160 29 628 447 1874 17 863 1,437 37.52%

Qpid-interop-test 184 4660 59 1156 2 217 220 49.66%

Qpid-python 1004 19 285 385 4232 23 352 1482 19.19%

Steve 384 2662 6 377 4 85 276 23.55%

Tashi 449 12 311 90 1582 3 926 3639 20.29%

Trafficserver-qa 109 1083 36 724 3 51 108 32.08%

Usergrid-python 2 600 15 0 1 0 79 0

Median 187 4032 38 1092 5

Average 1410 17 667 209 1381 57

(Continues)
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TABLE A2 (Continued)

ID Description Type Severity Category Issues

Rate

%

40 Functions should not contain too many return statements CS MA Design 706 36.40

41 Collapsible ‘if’ statements should be merged CS MA Design 491 41.75

42 Function names should comply with a naming convention CS MA Code 1770 45.71

45 Nested blocks of code should not be left empty CS MA Code 180 37.22

46 Functions, methods, and lambdas should not have too many parameters CS MA Code 2278 54.30

47 Files should not have too many lines of code CS MA Design 264 31.44

49 Variables should not be self-assigned Bug MA Defect 78 55.13

50 Lines should not be too long CS MA Code 12 747 49.80

51 Python parser failure CS MA Defect 19 78.95

52 Backticks should not be used Bug BL Defect 5 0

54 Track uses of ‘FIXME’ tags CS MA Document 173 26.59

56 Lines should have sufficient coverage by tests CS MA Test 7595 35.17

57 Source files should have a sufficient density of comment lines CS MA Document 4567 48.48

58 Source files should not have any duplicated blocks CS MA Design 1346 54.38

273 Bad option value CS MA Defect 22 59.09

274 Calling of not callable CS MA Defect 82 79.27

276 Access of nonexistent member CS MA Defect 3473 41.41

281 Syntax error CS MA Defect 972 56.89

299 Too many arguments for logging format string CS MA Defect 12 25.00

328 Redefined function/class/method CS MA Defect 106 57.55

355 Method has no argument CS MA Defect 39 43.59

360 Undefined name CS MA Defect 2975 38.15

363 Method should have ‘self’ as first argument CS MA Defect 105 30.48

364 Format string ends in middle of conversion specifier CS MA Defect 2 0

368 Not enough arguments for format string CS MA Defect 8 12.50

369 Too many arguments for format string CS MA Defect 38 57.89

389 Access to member before its definition CS MA Defect 49 61.22

390 Method hidden by attribute of super class CS MA Design 23 34.78

393 Using variable before assignment CS MA Defect 5 40.00

394 Undefined variable CS MA Defect 6385 56.82

403 Too few arguments CS MA Defect 198 19.70

411 Bad first argument given to super CS MA Defect 31 38.71

414 Passing unexpected keyword argument in function call CS MA Defect 91 56.04

418 Too many positional arguments for function call CS MA Defect 128 28.12

424 NotImplemented raised—should raise NotImplementedError CS MA Defect 45 82.22

432 Mixed tabs/spaces indentation CS MA Defect 3544 34.45

438 Assigning to function call which does not return CS MA Code 3 66.67

439 Raising only allowed for classes, instances, or strings CS MA Defect 328 2.13

440 Bad except clauses order CS MA Design 1 100

aID number of the rules.
bCategory (Code = Code Debt; Design = Design Debt; Defect = Defect Debt; Document = Documentation Debt; Test = Test Debt).

Also appeared in the Java study.3
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