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Abstract
Similarity search problems in high-dimensional data arise in many areas of computer science such as
data bases, image analysis, machine learning, and natural language processing. One of the most
prominent problems is finding the k nearest neighbors of a data point q ∈ Rd in a large set of
data points S ⊂ Rd, under same distance measure such as Euclidean distance. In contrast to lower
dimensional settings, we do not know of worst-case efficient data structures for such search problems
in high-dimensional data, i.e., data structures that are faster than a linear scan through the data
set. However, there is a rich body of (often heuristic) approaches that solve nearest neighbor search
problems much faster than such a scan on many real-world data sets. As a necessity, the term solve
means that these approaches give approximate results that are close to the true k-nearest neighbors.
In this talk, we survey recent approaches to nearest neighbor search and related problems.

The talk consists of three parts: (1) What makes nearest neighbor search difficult? (2) How do
current state-of-the-art algorithms work? (3) What are recent advances regarding similarity search
on GPUs, in distributed settings, or in external memory?
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1 Difficulty of nearest neighbor search (NNS)

In the first part of the talk, we give an overview over the general setting of high-dimensional
NNS. We look at general observations about the difficulty of high-dimensional NNS, a
phenomenon usually referred to as the “concentration of distances” [5]. This for example
happens if we draw data and query points at random from a d-dimensional standard
normal distribution N (0, 1)d; for large d, the distance to the furthest neighbor will be very
close to the distance of the nearest neighbor. Next, we look at the benchmarking tool
http://ann-benchmarks.com [2]. We observe that there exist many different approaches
that solve NNS with almost perfect quality – in terms of the fraction of true nearest neighbors
found on average – with a query time that is several orders of magnitude faster than a linear
scan through the dataset. Before looking at these approaches in detail, we survey approaches
to measure the difficulty of solving a NNS task discussing the work of [3, 10].

2 Current state-of-the-art approaches to NNS

In the second part of the talk, we explore the landscape of NNS implementations. The focus
of the discussion will be on hashing-based approaches using locality-sensitive hashing and
graph-based approaches.
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Approaches using locality-sensitive hashing [12] are excellent candidates for designing
theoretical sound data structures for NNS. In a nutshell, a locality-sensitive hash function
makes it possible to map a data point to a number, such that the smaller the distance
between the points, the more likely it is that they are mapped to the same number. The talk
puts an emphasis on solving k-NNS using a recent adaptive query algorithm on an LSH data
structure proposed in [4], building on the general idea of adaptive query algorithms discussed
in [1]. We review the details of the query algorithm and engineering choices on the way, such
as hash functions pools and sketches as described in [6], and fast distance estimation using
AVX instructions.

In contrast to the theoretical guarantees that can be achieved using LSH approaches, graph-
based approaches give little theoretical guarantees (a notable exception is the analysis in [15]).
Nonetheless, implementations following this approach dominate performance benchmarks.
The idea of a graph-based approach is to consider each data point in the data set as a node in
a graph. An edge (u, v) represents that v is among the nearest neighbors of u. Given a query
point, a greedy search – usually starting with a random start node – is performed to obtain
a candidate set of nearest neighbors. Graph-based approaches have several complications
that need to be addressed. For example, in high-dimensional space we usually find a very
skewed degree distribution which leads to large hubs that make the search slow [19]. Another
problem lies in the random starting node: finding a good neighborhood of nodes requires the
insertion of long-range edges and diversification of node neighborhoods. The talk surveys
recent approaches addressing these issues [13, 16].

As a potential starting point for future engineering work, we further discuss the recent
machine learning approach [7] that considers NNS as a learning problem and proposes to use
a learned index in the style of [14].

3 Similarity search problems on the GPU, in external memory, and in
distributed settings

In the last part of the talk, we survey recent progress on similarity search problems in other
areas. We discuss how graph-based algorithms are made to run efficiently on GPUs [9] and
in external memory [20]. Finally, we discuss recent work in the context of similarity joins,
in which we are given two datasets R, S ⊂ Rd and want to emit all pairs (u, v) ∈ R × S

such that the similarity between u and v is above a given threshold value. This problem is
of particular interest, because a recent survey [8] found that distributed implementations
using MapReduce on a small cluster are usually worse than non-distributed implementations
working on a single core [17]. We will discuss general difficulties of similarity joins and take
a look at a recent near-optimal solutions based on LSH [11, 18].
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