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Abstract. Analyzing data from large experimental suites is a daily task
for anyone doing experimental algorithmics. In this paper we report on
several approaches we tried for this seemingly mundane task in a similarity
search setting, reflecting on the many errors and consequent mishaps.

We conclude by proposing a workflow, which can be implemented using
several tools, that allows to analyze experimental data with confidence.
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1 Introduction

One of the peculiar aspects of experimental algorithmics [18] is that the object
of the study (an algorithm and its implementation) is often crafted by the
same people carrying out the analysis. This has the advantage that the insights
obtained from preliminary investigations of early versions of an algorithm can be
used to improve the algorithm itself. In fact, the understanding required for an
implementation may uncover features of the algorithms that would otherwise go
unnoticed [18], giving insights about aspects not easily described by theoretical
models of computation [16]. At the same time, this feedback-based process leads
to the accumulation of obsolete data, referring to old versions of algorithms and
their implementations. Not mixing results from different versions of an algorithm
or implementation is an obvious requirement, which however requires some care
in practice. In fact, a study often involves different algorithms and datasets,
each evolving at a different pace: weeks-old results might be up to date for one
algorithm, and obsolete for another.

As we shall see, the literature is mainly concerned with the design and analysis
of experiments and with reproducibility. In this position paper, instead, we report
on our experience with the day to day tasks that have to be carried out in
between those three tasks, and the approaches we developed to tackle the perils
and frustrations of this often menial work.

We do not advocate for any specific technology. Rather, we propose a workflow
that can be implemented with a variety of tools that can be easily integrated into
existing setups. We demonstrate such a setup with a toy project that concerns
an efficient implementation of a brute-force nearest neighbor search.
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Fig. 1. Overview of the different stages of an experimental study; adapted from [17].

2 Related work

Moret and Shapiro [18] advocate for the importance of complementing the
theoretical analysis of algorithms with their implementation. McGeoch [17] gives
several guidelines on how to design and carry out experimental analyses of
algorithms. The book [3] collects several contributions on the characterization
and analysis of algorithm performance. Earlier, a Dagstuhl seminar was devoted
to the discussion of the experimental evaluation of algorithms [11]. More recently,
a structured approach to experimental analysis was discussed in [4].

In recent years there has been a discussion about the lack of reproducibility
of research findings in several areas, including computer science [9,13]. Much
effort has been devoted to finding a solution to this issue. Several contributions
have been collected in [20] and [14]. Among the tools to support reproducible
research, VisTrails [7] allows to explicitly define reproducible workflows. knitr
and Jupyter take a literate programming approach, allowing experiment’s code,
analysis, and text to be interleaved in a single ”executable” document. To solve
the issues deriving from software dependencies, some tools aim at capturing the
execution environment at runtime [12,10,19], while others such as Docker [5]
and Singularity [15] follow a declarative approach, where the description of the
execution environment is part of the code base.

3 Challenges in large scale experimental evaluation

We define the following challenges of running large-scale experiments:

(C1) Feedback Loops-by-Design. Implementations and tools support the iter-
ative nature of an experimental study.

(C2) Economic Execution. Exactly those experiments that change through code
changes have to be re-run, but nothing else. Moreover, only the changing
parts of the experimental evaluation should be recomputed.



(C3) Versioning. The ability to go back in time and compare old results to more
recent ones, finding regressions or bugs; the workflow is append-only.

(C4) Machine Independence. Code and tools are designed in a way that allow
them to run in a general setting.

(C5) Reproducibility-by-Design. We strive for an automatic workflow that
processes an experimental setup into measurements used for evaluating the
experiment. Results to be included into a publication should not require
manual work to transform these measurements into tables and plots.

Typically, an experimental evaluation spans several weeks, if not months. An
overview of a typical experimental evaluation is given in Figure 1. During this
time, the experiments being run have different meanings: early on during initial
development, experiments are useful to find out the most appropriate parameter
ranges, find bugs, and check assumptions; later on, experiments collect the results
of the study. This is not a process that proceeds linearly from start to finish.
Rather, the analysis of the results might prompt the modification of an algorithm
or dataset, or the introduction of new algorithms and datasets into the study,
followed by a new round of experiments. Together with the algorithms and
the datasets, also the parameterizations and the quantities being measured are
subject to evolution during the lifetime of a project (C1).

For the analysis to be sound, it is of paramount importance not to mix results
related to different versions of the algorithms and datasets (C3), in particular
when experiments are run on a set of different machines (C4). The simplest
solution would be to re-run the entire experimental suite whenever something
is modified. This usually takes a very long time, and a change might affect
only a small part of the results, making this solution wasteful of time, energy,
computational resources and money if computing resources are rented (C2). A
potential solution might be to divide the experimental suite in smaller components,
each investigating a particular aspect, re-running only those affected by a change.
While this works in the short term, as the experimental study progresses the
subdivision of the experimental suite will evolve with it, leading to the need of
re-arranging the results. On the other hand, manually re-running only parts of
an experimental suite, while reusing results from old runs, requires much care in
order to exclude obsolete results from the analysis, undermining the confidence
in the soundness of the whole analysis. The situation worsens in the rushed final
days preceding a submission: some last minute changes are made, there is no
time to re-run all the experiments, the possibility of erroneously mixing results
is very concrete. Additionally, reviewers will often demand running a new set of
experiments, reporting on some other quality measures, or experimentation using
different computer architectures (C2, C3, C4). Reproducibility-By-Design (C5)
requires that such wishes can be accommodated since the whole process from
starting at an experimental design to a published table or figure is automated.

As for the analysis itself, it is usually executed on a machine different from
the experimental code, using a different programming language (C4). The input
of the analysis is the set of results produced by the experimental suite, which is
usually quite large due to the fact that many parameter combinations need to be



evaluated. While the analysis code may not need the computational resources of
the experimental code, it still needs to execute reasonably fast, in order to be
able to examine the results interactively. This implies that the results produced
by the experiments need to be stored in a convenient format that is at the same
time easily manageable, convenient to transfer, and efficient to access (C2, C4).

4 Case study: Engineering a Linear Scan

As our toy project, we engineer a nearest neighbor search algorithm that just
carries out a linear scan over the dataset3.

Formally, we are given a dataset S ⊂ Rd of n points in a d-dimensional space
with a distance measure dist : Rd × Rd → R, such that given a query q ∈ Rd we
want to return a point p ∈ S that minimizes dist(p′, q) over all p′ ∈ S. Solving
this problem via a linear scan is a straight-forward exercise in an introduction to
programming class: Compare all points p′ ∈ S one by one to q, and keep track of
the point that is closest to q. This results in a running time O(nd) per query.

To make this problem more interesting, we consider engineering choices to
speed up a linear scan under inner product similarity distIP(p, q) =

∑
1≤i≤d xiyi

on unit vectors, similar to Cosine similarity. For the purpose of this project, we
consider (i) input representation, (ii) parallelization, and (iii) saving distance
computations as factors of the experiment.
Input representation. A vector in Rd is traditionally represented as d 64-bit
floating point values (double) or 32-bit floating point (float). Since we guarantee
0 ≤ xi ≤ 1 for normalized vectors, we also consider a 16-bit representations of
the value dxi · 216e/216 (which could of course affect the accuracy of the result.)
Parallelization. Näıvely, the CPU has to carry out d multiplications and d− 1
additions to compute the distance of two vectors. However, we notice that the
structure is inherently parallel because the multiplications are data independent.
This is an ideal setup for using so-called SIMD instructions (single instruction
multiple data). We split up each vector into blocks of size B, and carry out d/B
parallel multiplications, d/B parallel additions to aggregate terms in a register
of size B, and one horizontal sum. Depending on the CPU architecture used in
the experiment, B is usually 128, 256, or—very recently—512 bits.
Saving Distance Computations. Computing the distance between two vectors
is certainly the most expensive operation in our linear scan. Hence, if we could
decide for a data point p′ that it probably is not the nearest neighbor faster
than carrying out a distance computation could increase the performance of our
linear scan. We include experiments with a 64-bit sketch using SimHash with
probabilistic quality guarantees in our experiments (see Appendix B).

We consider this toy project representable for an experimentation task in
a similarity search setting. The different choices of input representation, paral-
lelization, and distance filter methods provide an evolutionary setting in which

3 We would like to thank Michael Vesterli for the many code optimizations that we
are using, that he developed for PUFFINN [2].



Fig. 2. Dimensions for running large-scale experimental evaluations.

we start with a standard linear scan and add features to the code base one by
one. From starting with a measurement of running time, we quickly end up
focusing on the quality of the achieved result when using a low-precision input
representation, or analyzing the effectivity of the sketch by counting distance
computations. The experiment has to be carried out on different machines because
of the hardware dependencies, which might mean to rent cloud instances to carry
out measurements on recent hardware with B = 512 bit AVX512 support.

Our code is provided at https://github.com/Cecca/running-experiments.
For the scope of this paper, we consider the support code that takes care of
handling the setup as the main contribution. For the interested reader, the
evaluation of the toy project is given in Appendix C.

5 Approaches to experimental evaluation

We now describe a workflow we developed to address the challenges outlined
in the previous sections, demonstrating it with our case study. We split up the
discussion into different dimensions of running a successful experimental study.
These dimensions are summarized in Figure 2. In the following, each dimension
will be introduced with general guidelines and a discussion of our actual solution.

5.1 Manage the datasets and workloads efficiently

• Dataset download and preprocessing should be automated as much as possible,
ideally with a single script responsible to manage all the datasets. This makes
reproducibility easier, allows to share preprocessing steps between similar
datasets, makes it easy to relocate the experiments on a different machine,
and makes all the decisions about datasets explicit. Furthermore, it enables
the community to change the datasets to observe how these changes are
reflected in the experiments.

• It must be possible to create all datasets locally, but the preprocessed datasets
should also be shared, for instance using plain http or a service such as S3.
This makes it easier for collaborators, reviewers, and the community to re-run
the experiments without incurring the set-up cost of the datasets.

• Datasets should be annotated with meta-data necessary in the evaluation,
such as workloads and the related ground truth answers.

https://github.com/Cecca/running-experiments


• To ease debugging, a small dataset of random data that can be created in a
few seconds should also be included. This dataset can be run via Continuous
Integration (CI), and results on it can be stored to enable regression testing.

In our code, the main C++ code calls a Python script (datasets.py) that takes
care of preprocessing datasets in a well-defined manner. It checks for the existence
of a shared dataset (of the same version) and computes it locally if such a dataset
is not available. It supports that creation of tiny random datasets that allows to
run all parts of the workflow on actual data. The query set that is latter used for
experimentation is created in this process as well, and data is stored as an HDF5

file for efficient processing in many different programming languages.

5.2 Manage the experimental configurations clearly

• Never run experiments from the command line. Direct command line execution
should be limited to testing.

• Experiments should be described in one or more files. This makes it easier to
reproduce the entire experimental suite. There are several options, which we
both demonstrate in the associated code:
◦ Files in a declarative language such as YAML listing all the combinations

of parameters to be tested. These files are then interpreted by a script that
spawns the appropriately configured experimental code. This approach
has the advantage of being declarative, and the disadvantage of requiring
some additional software.

◦ Shell scripts that directly invoke the experimental code using the appro-
priate parameters. This is a more procedural approach, which however
has the advantage of requiring very little setup.

• All the aforementioned experimental files should be tracked with version
control along with the code. Before running the experiments, any pending
changes should be committed.

• There should be a mechanism allowing to skip already-run configurations.
This allows both to save time (C2) without having to continuously edit the
configuration files to remove the configurations that do not need to be run.

We provide the example files that we used in Appendix A. While a direct
experimental file written in Bash is straight-forward, the YAML structure gives
a much more structured overview. The YAML file is run through an additional
Python script that invokes the main implementation with the correct parameters.
Using versioning and the result database (Subsection 5.5) the code can decide
whether an algorithm has to be rerun.

5.3 Infrastructure management

Any implementation will likely depend on many different environmental set-
tings, such as the correct versions of libraries/compiler/OS. To allow a machine
independent workflow, we suggest to:



• Provide a containerized development environment4.
• Consider different container formats for running experiments [1].
• Use continuous integration to test all parts of the workflow.

Our code provides a Dockerfile that installs a well-defined Linux environment
and sets up the correct compilers and libraries. Each component is run from the
local system via a dockerrun script that will run the intended process within
the container.

5.4 Version everything

To address challenges (C2) and (C3), version control systems might not be
sufficient, since source code revisions lack both a semantic meaning and a total
order. Furthermore, different components of a project might evolve independently,
thus needing independent versioning to address challenge (C2). Therefore, we
suggest to keep track of the versions of individual components of the project,
including datasets, algorithms, and database schemas, alongside the versioning
provided by the version control system.

In our code, each dataset and database schema provides their own version
number. Additionally, components of the implementation such as input repre-
sentation type or SIMD definitions are versioned. This allows us to map each
parameter set for the linear scan to a unique identifier. As an example, during
continuous integration we found a bug that only affected the AVX2 inner product
computation with floating point numbers. An update of the version number of
this part of the code led to a re-run of all parameter configurations that used
that particular combination. Each measurement obtained is versioned with its
git identifier, the algorithm version in question, and the dataset version.

5.5 Manage the experimental results thoughtfully

As for the management of experimental results, structured text file formats like
CSV address challenge (C4), but are expensive to parse and require to be fully
loaded in main memory prior to the analysis, even when only a subset is needed.
Moreover, it is hard to evolve the structure of these files together with the project.

• Use a database to store the results: it presents data conveniently indexed
and removes the need for expensive parsing.

• Using schema migrations the database can evolve along with the rest of the
project (C3), as demonstrated in our case study’s code.

• For simple projects, an embeddable database like SQLite addresses challenge
(C4): the results are stored in a single file which can be easily moved between
machines, and many languages used for the analysis (like Python and R)
provide facilities to access it, as shown in our code. For larger projects,
where experimental code is executed on different machines, a database with
a client-server architecture (such as PostgreSQL) might be more suitable.

4 Recently, such environments are included in programming IDE such as https://

code.visualstudio.com/docs/remote/containers

https://code.visualstudio.com/docs/remote/containers
https://code.visualstudio.com/docs/remote/containers


• The experimental code can query the database to detect whether an experi-
ment has already been run with the current version (C2).

• Track the provenance [6] of each result, by storing alongside the parameters
also the configuration file (and its version) that generated the result (C5).

• By means of database views we can enforce that the analysis code has access
only to the most recent results related to each algorithm/dataset (C3): our
code demonstrates how to embed a query in the database so to present only
the results related to the most recent version of algorithms and datasets.
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environment :
data se t : [ ’ glove -100 - a n g u l a r ’ ]
seed : 4 1 3 2
f o r c e : Fa l se

experiments :
- name: b a s e l i n e

s to rage : [ ’ f l o a t _ a l i g n e d ’ ]
method: [ ’ s i m p l e ’ , ’ avx2 ’ , ’ a v x 5 1 2 ’ ]

- name: i 1 6 a l i g n m e n t
s to rage : [ ’ i 1 6 _ a l i g n e d ’ ]
method: [ ’ s i m p l e ’ , ’ avx2 ’ , ’ a v x 5 1 2 ’ ]

- name: s k e t c h e s
s to rage : [ ’ f l o a t _ a l i g n e d ’ , ’ i 1 6 _ a l i g n e d ’ ]
method: [ ’ s i m p l e ’ , ’ avx2 ’ , ’ a v x 5 1 2 ’ ]
ske t che s : True
r e c a l l : [ 0 . 0 0 1 , 0 . 1 , 0 . 2 , 0 . 5 , 0 . 7 , 0 . 9 , 0 . 9 9 ]

Fig. 3. An example YAML file for running all experiments.

A Experimental Example: Bash vs. YAML

Figure 3 and Figure 4 present the same experimental setup file to produce the
results we report on in Appendix C. We find the YAML configuration much
more readable and easier to edit. However, it requires an additional program
run yaml.py that translates the YAML file into the correct system calls to the
executable. Those calls are directly present in the bash file.

B Review: Linear scan using 1-bit sketches via SimHash

Charikar described in [8] the well-known SimHash scheme that maps a unit
vector x ∈ Rd to {0, 1}. It works by choosing a random d-dimensional normal
vector a ∼ N (0, 1)d and mapping x to the indicator variable [ax ≥ 0]. For two
unit vectors x, y, the probability of mapping to the same bit is 1− arccos(xy)/π.

Assume we choose 64 independent SimHash functions to produce a 64-
bit sketch. The number of differences between two vectors x and y is dis-
tributed as Bin(64, arccos(xy)/π) and it is easy to derive thresholds τ for a
failure probability δ > 0 such that with probability at least 1 − δ, the num-
ber of differences between x and y is at most τ . (In the simplest case, we
can just use standard Chernoff bounds that say that one such choice for τ is
64arccos(xy)/π +

√
192 ln(1/δ)arccos(xy)/π.)

To find a nearest neighbor of a given point q with probability at least 1− δ,
we carry out a linear scan by first checking the 64-bit sketch of the current data
point p and the query point, and only if we cannot rule out that p could be
the nearest neighbor of q, we carry out the actual distance computation. The
threshold τ is set based on the inner product of the current closest nearest point



FN=$(basename $0)

SEED =4132

DATASET=glove -100- angular

./demo --dataset $DATASET --storage float_aligned --

experiment -file $FN --seed $SEED # produce baseline

./demo --dataset $DATASET --storage i16_aligned --method

simple --experiment -file $FN --seed $SEED

./demo --dataset $DATASET --storage i16_aligned --method

avx2 --experiment -file $FN --seed $SEED

for recall in 0.001 0.1 0.2 0.5 0.7 0.9 0.99; do

for alignment in i16_aligned float_aligned; do

for method in simple avx2; do

./demo --dataset $DATASET --filter --storage

i16_aligned --recall $recall --method

$method --experiment -file $FN --seed $SEED

done

done

done

Fig. 4. An example bash file for running all experiments.

and the query point as above. Initially, we set τ =∞. We remark that this allows
us to control the expected recall, since a failure probability of δ translates to an
expected recall of 1− δ.

C Evaluation of our Engineered Linear Scan

Experimental setup. All experiments are carried out on a single core of a
compute node equipped with 2 Intel Xeon Gold 6136 CPU @ 3.00GHz with
24 cores each and 192 GiB of RAM running in a shared HPC cluster. We
report on results for the Glove.27B.twitter dataset (https://nlp.stanford.edu/
projects/glove/) containing around 1.2 million 100-dimensional data points.
We chose 100 data points at random as query points and removed them from the
dataset.

Of course, evaluating a linear scan does not depend on many characteristics
of the dataset except the number of vectors and the number of dimensions of
each vector. However, working with low precision floats and using the sketches
from above depend very much on the distance distribution of the query to the
points in the dataset.

Parameters. We consider both 16-bit and 32-bit input representations, and inner
product computation with a naive loop, an avx2 optimized loop, and an avx512
optimized loop. We use the SimHash 64-bit sketch described in Appendix B with
recall guarantees r ∈ {0.001, 0.1, 0.2, 0.5, 0.7, 0.9, 0.99}.

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/


Fig. 5. Comparison of different linear scan approaches.

Evaluation. The plot in Figure 5 relates different input representations and
inner product computations for a linear scan without sketches to each other.
A standard linear scan on the dataset results in a throughput of around 10
queries per second. It can be sped up to 35 queries per second using the 16-bit
representation and avx2 instructions. In general, a näıve scan is slower in the
16-bit representation because there are internal conversions needed to carry out
the multiplication. If we use vectorized instructions, there is a huge gain from
using the 16-bit instead of the 32-bit representation. Somehow interestingly, using
256 bits registers is faster than using the newer AVX 512 registers. This is true
for both input representations, but with different penalties between the two.

In Figure 6(top), we fix a 16-bit representation and avx2-optimized inner
product computation. We relate different recall guarantees to the performance
and neglect the actual quality of the resulting answers. As we can see, there
is big increase in throughput possible by the use of these sketches. We achieve
around 50 queries per second for recall guarantee of 0.99, 100 queries per second
for 0.7, and close to 350 queries per second for a recall quality of 0.001 (i.e., no
guarantee).

Finally, Figure 6(bottom) relates throughput to the actual achieved recall for
both input representation and simple inner product and avx2-optimized inner
product. First, we note that the 16-bit representation indeed shows a small
quality loss: The average recall is only 0.98, which in our setting means that two
true nearest neighbors were lost due to precision losses. In general, updating the
sketch threshold (see Appendix B) via a Chernoff bound is far too pessimistic:
Even a guarantee of 0.001 results in actual quality guarantees of 0.66 to 0.83.5

This suggests an even larger speed-up being possible when evaluating the cdf
of the binomial distribution. With regard to throughput, we can serve up to
300 queries per second while still maintaining a quality above 0.8. The 16-bit
representation is a bit faster than its 32-bit counterpart in the high recall range,

5 We note that the τ threshold from Appendix B actually guarantees a recall of at
least 50% because it is never smaller than the expectation.



Fig. 6. top: Throughput impact of sketches; bottom: Queries-per-Second/Recall trade-
off.

but these differences shrink with lower recall guarantees (probably due to the
fact that many points are filtered out by the sketches). Comparing our results to
standard benchmarks such as ann-benchmarks, obtaining 300 queries per second
for recall of 0.8 is as fast as other well-engineered index approach such as annoy,
see http://ann-benchmarks.com/glove-100-angular_10_angular.html.

Workflow discussion. The run of experiments and the analysis of results is
so general that we run the whole analysis on a tiny random dataset each time
code is committed to the main branch, see for example the artifacts at https://
github.com/Cecca/running-experiments/actions/runs/140873083 with its
configuration at https://bit.ly/2ChUYvy.

http://ann-benchmarks.com/glove-100-angular_10_angular.html
https://github.com/Cecca/running-experiments/actions/runs/140873083
https://github.com/Cecca/running-experiments/actions/runs/140873083
https://bit.ly/2ChUYvy
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