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A B S T R A C T

This thesis summarizes a course of investigation of various aspects of non-equilibrium dynamics in isolated quantum
systems which can be controlled to the extent that one can speak of not just realizing but rather simulating a
desired physical effect. The first subject considered concerns a general question of relaxation in a large class of
physical models. It is rigorously proven that equilibration can occur for arbitrary local observables despite the
entire system being perfectly isolated. Various mechanisms responsible for convergence to local equilibrium are
highlighted. These involve in particular the memory loss of non-Gaussian correlations following an interaction
quench, a notion of Gaussian ergodicity and a proof of the emergence of translation invariance of correlations due
to the presence of this symmetry in the Hamiltonian governing the evolution. These results provide the long time
and large system size asymptotics facilitating a thermodynamic limit, but at the same time are relevant for state-of-
the-art quantum simulation experiments with large numbers of ultra-cold atoms: A related effect has been observed
in a one-dimensional phononic quantum field simulator and additionally a method is provided to study relaxation
dynamics of this type in optical lattice quantum simulators. Within the second theme explored in this thesis a novel
quantum read-out method is proposed and applied in continuous field quantum simulators which allowed for the
first time to measure experimentally various thermodynamical properties of one-dimensional quasi-condensates. In
particular, tomographic results concerning thermal properties, non-commuting observables, momentum and time-
resolved occupation numbers of phonons are presented. Finally, ideas for practical benchmarking of the dynamics
of certain closed quantum systems are put forward, based on the concept of a fidelity witness. It is demonstrated
that fidelity, despite being a sensitive measure for large systems, can be efficiently estimated for non-equilibrium
dynamics in coherent quantum simulators implementing paradigmatic models of condensed matter physics. The
method developed has already found an independent application in studies of variational quantum circuits aiming
at achieving so-called quantum chemistry accuracy using the Sycamore quantum processor. The fact that all
three themes of research laid out in this thesis have found an experimental realization hints at a prognosis for
future developments in physics that it will become standard that quantum simulators will realize experimentally
novel theoretical ideas on demand and the time between theoretical insights and experimental observations will be
dramatically shortened.



Z U S A M M E N F A S S U N G

Diese Dissertation fasst eine Reihe von Untersuchungen zu unterschiedlichen Aspekten von Nichtgleichgewichtsdy-
namik in isolierten Quantensystemen zusammen, die in einem Maße präzise kontrolliert werden können, dass man
nicht nur von der Realisierung eines physikalischen Effektes, sondern von seiner Simulation sprechen kann. Das
erste Thema befasst sich mit einer allgemeiner Frage der Relaxationdynamik in einer grosser Klasse von physikalis-
chen Modellen. Es wird in diesem Rahmen rigoros bewiesen, dass eine Equilibrierung von beliebigen lokalen Observ-
ablen auch dann generisch vorliegen kann, wenn das System perfekt isoliert bleibt. Unterschiedliche Mechanismen
werden herausgestellt, die für die Konvergenz zu lokalem Gleichgewicht verantwortlich sind. Dies betrifft insbeson-
dere der Gedächtnisverlust von nicht-Gaußchen Korrelationen nach schnellen Änderungen von Wechselwirkungen,
eine Begrifflichkeit von Gaußscher Ergodizität und der Beweis einer Emergenz von Translationsinvarianz in Situ-
ationen, in denen der Hamiltonoperator eine solche Symmetrie aufweist. Diese Resultate ergeben die Asymptotik
eines Übergangs zu langen Zeiten und großen Systemen, die einen thermodynamischen Limes abbilden. Sie sind aber
gleichermaßen relevant für moderne Quantensimulationsexperimente, wie sie derzeit mit großskaligen Systemen ul-
trakalter Atome durchgeführt werden: Ein artverwandter Effekt wurde in einem eindimensionalen Quantenfeldsim-
ulator beobachtet. Aufbauend auf diesen Ergebnissen werden Methoden bereitgestellt zur Untersuchung der Nicht-
gleichgewichtsdynamik von Systemen ultrakalter Atome in optischen Gittern. Im zweiten Teil der Arbeit wird eine
neuartige Auslesemethode vorgeschlagen und auf Quantensimulatoren kontinuierlicher Quantenfelder angewendet,
die tatsächlich experimentell erprobt wurde, was erstmals erlaubte, verschiedene thermodynamische Eigenschaften
von eindimensionalen Quasikondensaten experimentell zu vermessen. Insbesondere werden tomographische Res-
ultate über thermische Eigenschaften präsentiert, über Erwartungswerte von nichtkommutierenden Observablen
und auch Besetzungen von Phononenmoden, in Impuls und Zeit aufgelöst. Schließlich werden Ideen vorgestellt über
die Zertifikation der Quantendynamik abgeschlossener Quantensysteme, basierende auf der Idee eines sogenannten
Fidelitätszeugen. Es wird gezeigt, dass die Fidelität - eine inhärent fragile Größe für große Quantensysteme - effiz-
ient geschätzt werden kann für die Nichtgleichgewichtsdynamik kohärenter Quantensimulatoren, die paradigmat-
ische Systeme aus der Physik der kondensierten Materie implementieren. Die so entwickelte Methode hat bereits
eine unabhängige Anwendung gefunden in Studien variationeller Quantenschaltkreise, die darauf abzielen, das
Genauigkeitsniveau der Quantenchemie zu erreichen, den Sycamore Quantenprozessor verwendend. Die Tatsache,
dass alle drei in dieser Dissertation präsentierten theoretischen Forschungsrichtungen bereits experimentell realis-
iert werden konnten, deutet darauf hin, dass hier eine Prognose aufgegriffen werden kann, nach der es Standard
wird, dass Quantensimulatoren theoretische Ideen gezielt aufgreifen können und die Zeit zwischen theoretischer
Einsicht und experimenteller Bestätigung dramatisch verkürzt wird.
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1
I N T R O D U C T I O N

The vision of developing a quantum computer with unparalleled computational capabilities [15--17] has lead to
enormous experimental advances allowing for an unprecedented degree of control over quantum dynamics of
various systems [18--21]. In fact, so much progress has been made that achieving fault-tolerant quantum computing,
i.e., implementing quantum algorithms which would not be corrupted by imperfections of quantum gates, seems
to be a matter of continuing the existing efforts [22, 23]. Successfully completing this programme would be a
significant milestone in the development of our civilisation as it would constitute a ‘quantum’ leap in our capabilities
of doing computations. However, this major technological advance necessitates further sophisticated engineering
feats developed in a collective effort. The roadmap to do this seems clear and if the progress is not interrupted by
external issues such as the, ironically, man-made climate warming [24] then the bold idea of quantum computing
should become reality within our lifetime.

This thesis will exemplify some of the possible ways for studying paradigmatic questions in physics by making
use of the exciting innovative tools brought about by recent advances in quantum technologies. In this chapter
an overview of the existing possibilities will be provided. It has the aim to set the scene by introducing the main
quantum simulation platforms in their own right but it is hard to do justice to the wealth of exciting observations
that have been made in the past years of research. Thus, primarily the focus will be on works that will be necessary
for the later chapters, where some of the platforms will make an appearance, so that it will be possible to assess
the publications presented in this cumulative thesis in context of state-of-the-art contributions at the front lines of
contemporary research. It must be stressed that the newly emerging field of quantum simulation is transforming at
a very rapid pace. Therefore only time will tell whether the studies that will be referenced in this chapter as being
representative at the time of writing for the experimental possibilities will prove to become landmark scientific
achievements in a broader perspective but it seems that some of the developments have excellent chances. After
discussing the current state and goals of research on quantum computation and simulation a section follows which
focuses on non-equilibrium dynamics in isolated quantum systems with the goal of presenting the subject using
only a minimal number of formulas. This general description will be further refined in the other chapters which
describe the core publications presented in this cumulative thesis and, of course, the publications themselves will
provide the detailed formulations and evidence for the essential claims.

Currently there are two platforms which are major contenders in the effort towards building a quantum computer.
In setups using trapped ions [18] it has been demonstrated that it is possible to perform quantum gates, i.e.,
elementary building blocks of quantum algorithms, which fail once out of thousands of applications [25]. While
this astonishing feat has not been achieved yet for the specific systems implementing quantum algorithms, e.g.,
for the Innsbruck platform which is one of the pillars of the European flagship of quantum technologies [26],
still trapped ions allow to run sophisticated quantum algorithms [27]. Superconducting qubits offer a completely
different approach and allow for easy scalability of the system. However, the main challenge in the past decades
was to improve their coherence [19]. This in fact has been successful, and did not go unnoticed even in popular
media [28], as one of the leading groups has demonstrated that a quantum device of around 50 qubits can be used to
draw random samples from a probability distribution which is effectively out of reach of any classical device [29].
Somewhat surprisingly, studies of this type despite being funded through private corporate investments do not
demonstrate something of immediate monetary value, but rather a particular insight concerning nature, in the
sense of a fundamental law concerning the physics of computation [15, 30, 31]. Namely, we find that predictions
of quantum mechanics are seen to hold in the regime of extreme computational complexity [32], demonstrating
that some of the limitations of classical computation can be surpassed. This milestone however, is not the end of
the story. Due to the lack of quantum error-correction the currently existing quantum computation platforms have
been termed noisy intermediate-scale quantum (NISQ) devices and there are more exciting physical observations to
come once fault-tolerant systems become available [33].

The search for good applications of quantum computers is a research field in itself [34], and certainly quantum
computers should not be limited to factoring large numbers efficiently. Here, we will be interested in a specific
branch of this avenue of research, namely, we would like to know which aspects of dynamics can we understand for
quantum many-body systems. The term many-body means that we are interested in systems where many particles
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come together and interact in a sophisticated manner. In many instances this gives rise to a collective behavior
and emergent phenomena which are not possible without interactions of a large number of constituents [35]. We
understand a great deal about these thanks to insightful ideas of many physicists [36]. Various emergent phenomena
in quantum many-body systems have been studied in condensed matter systems experimentally and have lead to
many interesting developments. However, there are certain limitations that obstruct progress in understanding
quantum many-body systems better. In generic applications, a theoretical physicist can only make progress by
means of approximations and it is exceedingly difficult to substantiate these rigorously beyond merely physical
intuition. The reason for this is not lack of trying hard: It turns out that often being able to answer specific
questions about quantum many-body systems would automatically allow to solve seemingly unrelated and abstract
computational tasks [37--39] which are unlikely to be solved by a classical algorithm [40]. Various complexity
classes, similar to those characterizing tasks tackled by ordinary classical computers have been developed and
studied, broadly falling under the scope of the field of Hamiltonian complexity [41--43]. The link between quantum
physics and computational complexity theory can be thought of as talking about the elephant in the room: Quantum
many-body systems are computationally hard to simulate and we might not be able to compute quantities of interest
even with aid of largest supercomputers. This motivates quantum simulation which is the idea to use quantum
systems to simulate the dynamics of other quantum systems making use of the fact that oftentimes markedly
different physical systems are described by identical effective models.

The line of research aiming at realizing quantum simulators is somewhat independent from the efforts to
build a fault tolerant quantum computer. Quantum simulators are devices that do not necessarily allow for full
programmability, in particular operating a quantum simulator does not usually involve thinking about quantum
gates or quantum computing circuits. It is also not the focus to develop systematic ways of correcting errors which
is central to the effort of building a quantum computer that operates regardless of its classical environment. The
main aim when devising quantum simulators is to achieve a profound degree of quantum coherence, i.e., bring the
system to conditions where quantum effects are overwhelmingly important, e.g., using strongly coupled atoms that
are well isolated. That is, one wants to make use of constituents that already show strong quantum effects and
interfere with their idle behaviour only to the extent that is necessary to bring about an interesting physical feature
or effect.

Thus a quantum simulator is typically operated by having an understanding of the types of interactions present
in the system and aiming at changing their strength appropriately. This can involve changing the distributions of
couplings in space, e.g., making two continuous one-dimensional systems interact, or suddenly doubling up the
lattice of a discrete system. While these two ideas are clearly not the only ones possible, they will both feature
in this thesis. The former scenario allowed us to study the details of the emergence of Gaussian correlations [12]
and recurrences in isolated systems [3,44], but more generally also allows for devising thermal machines where the
working fluid consists of ultra-cold atoms that necessitate quantum mechanics to model it [14]. The latter scenario
has proven to be an excellent test-bed for studying relaxation dynamics in isolated systems [45] but going beyond
that we have also shown that it allows to read out quantum correlations in the system [13] which is crucial for
observing via quantum simulation the theoretical ideas presented in this thesis [1,2,4]. This particular aspect, namely
that the various superbly controlled quantum systems may be capable of realizing exciting quantum phenomena
but these may turn out to be invisible as the natively available read-out is restricted, is thematic for the frontier of
the currently ongoing research in the field of quantum simulation and the research that is summarized in this thesis
provides possible solutions towards alleviating the read-out bottleneck.

There are various experimental demonstrations of steering a gas of ultra-cold atoms so that the effective dynamics
will resemble the physics of various interesting condensed matter systems. Specifically using ultra-cold atoms
trapped in optical lattices one can aim to understand question about strongly correlated fermions in solid state
materials. This includes equilibrium and non-equilibrium phenomena including among others studies of phase
transitions, many-body localization, or topological effects [20,46--54]. Instead of creating a lattice resembling those
appearing in crystals one can restrict the dimensionality of the system and focus on observing fundamental field-
theoretic aspects of the quantum system [44,55--59]. It is also possible to study transverse Ising models that appear
naturally in arrays of trapped ions or Rydberg atoms which stand out by having a long range of interactions [60--64].

Currently, one of the main topics in cold atomic quantum simulators is to achieve colder temperatures which
could allow us to study the physics of high-temperature superconductors or frustrated quantum magnets [65] or
realize quantum field thermal machines [14]. With these efforts underway, it is particularly appealing that one can
study the physics of the system in the quantum simulator throughout the continuous effort to reduce the single
physical parameter that enhances quantum effects. This should be contrasted with quantum error-correcting codes
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which become advantageous only once a certain threshold of coherence has been reached and only when this is
done it will yield a tremendous gain for realizing exciting physical phenomena via quantum computation [66].

1.1 non-equilibrium dynamics in quantum simulators

Condensed matter systems are often modelled by assuming thermal equilibrium [67--69]. In some quantum
simulators, one can start from a zero-temperature state which is essentially pure [45]. At the same time, the system
is almost perfectly isolated from the laboratory environment which is essential to study experimentally quantum
effects, especially in a many-body system. How then can we be able to perform a quantum simulation at finite
temperatures if the system is closed?

This question is one of the motivating cornerstones for the study of equilibration and thermalization in finite
closed quantum systems and is a central topic of this thesis. The cleanest setting for studying it is motivated
by the availability of experiments with cold gases where one changes the Hamiltonian abruptly, faster than the
relevant time-scales of dynamics in the system. This is called a quantum quench which is theoretically defined by
an instantaneous change of the initial Hamiltonian Ĥ to a new Hamiltonian Ĥ ′. This implies, in particular, that the
energy defined by the quantum expectation value 〈·〉 of the Hamilton operator changes instantaneously

E = 〈Ĥ〉 → E ′ = 〈Ĥ ′〉 .

Of course one should remark that this is only an abstraction which models a very sudden change of parameters in
the system. Nevertheless, in many cases a quench neglecting the finite duration of the change Hamiltonian is a valid
approximation.

After a quench the expectation value of a generic local observable O will typically become time-dependent

O(t) = 〈Ô(t)〉

where Ô(t) = eitĤ ′
Ô(t)e−itĤ ′ denotes the Heisenberg evolution of the observable generated by the post-quench

Hamiltonian. Whenever the time variations of O(t) become significantly larger than the experimental error bars,
we say that one is observing non-equilibrium quantum many-body dynamics.

It goes beyond the scope of this thesis to provide a detailed account of existing studies of quench dynamics in
isolated systems which can be obtained from a number of reviews [70--75]. One of the crucial aspects to discuss is
that a system undergoing non-equilibrium dynamics at long times should at some point thermalize, meaning that
the expectation value of an observable should not vary in time, but rather agree with a value that one would obtain
by assuming the state to be a thermal state given some temperature. This in particular is expected to take place for
systems that feature non-trivial interactions and lack local symmetries and conservation laws [70--75].

However, there are several cases where thermalization may take unusually long to occur, or even may not happen
at all. The presence of a large amount of symmetries can render a system to be integrable, but in this case we do not
expect thermalization but rather convergence to generalized Gibbs ensembles [1, 2, 76--82] which are parametrized
by a number of generalized temperatures. Many-body localized systems [83, 84], in which disorder leads to the
appearance of an extensive number of local constants of motion [5, 84] are one particular example of systems
that are not expected to thermalize. Moreover, even in translation-invariant systems some memory of the initial
state [83, 85, 86] may remain or even non-equilibrium fluctuations may persist over very long times, apparently to
no end [87--90].

We hence are faced with a difficult problem: Most systems are expected to thermalize, but it is very difficult to
know just by inspecting the form of the Hamiltonian whether it will occur for a particular isolated system. It is clear
that dephasing is an important part of the process [91,92], but analytical arguments are difficult to make due to the
generality of the question and the possibility of counter-examples. Whenever available, analytical arguments tend
to be quite instructive because they reveal the mechanisms responsible for a system relaxing. This is in contrast
to studying relaxation using numerical calculations for a fixed model [78, 93--100] which allows us to map out the
possible phenomena but it is difficult to gain insight at to why these occur. One way forward is to attempt proving
rigorously just equilibration without considering the question of thermalization. This distinction consists in showing
observables relaxing to an equilibrium value without making a statement about the equilibrium value [73,101--103].
Thus we see that a result showing equilibration is a weaker statement than proving thermalization, however, the
latter may simply not be occurring following a quench. Thus focusing on equilibration should be seen as a step which
allows to aim for general arguments that do not have to take into account counter-examples constituted by systems
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which equilibrate to non-thermal steady states. Currently, the generality of the arguments makes it difficult to derive
accurate predictions on how fast this process will occur [76,104--110] unless one takes a drastic step of considering
a randomized Hamiltonian in order to avoid considering examples of systems with slow dephasing [111--116].

In this context, many different experiments have been performed where various choices of the observable
have lead to striking observations by means of its non-equilibrium dynamics. A pioneering achievement was
the observation of the Mott-superfluid phase transition in optical lattice quantum simulators [49] by tuning the
interaction which leads to the competition of two orders, one where local occupation numbers of atoms in the
lattice are good quantum numbers, and one where momentum is. This has been followed up by studies of dynamics
of phase transitions [117], transport [118], breakdown of ergodicity due to disorder [50] and more [52--54, 119]. In
analog quantum simulation platforms using trapped ions additionally various effects were observed such as effective
causality breakdown due to long-range interactions, dynamical phase transitions and others [62--64]. Finally, in a
one-dimensional continuous field quantum simulator in which rubidium atoms are controlled on an Atom Chip
prethermalization and observation of non-thermal steady states has been observed [44, 55--59].

It is, therefore, possible to explore experimentally a fundamental question: If initially one observes non-equilibrium
dynamics of certain observables, will the system relax? If so then we will find that for large enough times the vari-
ations of O(t) are contained within the experimental error bars. Then the second question to study is whether the
effectively constant long-time value O agrees with the expectation value of that observable in a thermal ensemble?

In Ref. [56] a striking observation has been made motivated by theoretical studies of various effective models
which the quantum simulator effectively implements. Namely, it has been demonstrated that depending on the
initial state preparation the ‘same’ gas relaxes towards two different steady states. This means that at least one of
them must be non-thermal. A quantum simulation has therefore demonstrated that a closed system evolving under
unitary dynamics governed by a specific Hamiltonian did not thermalize.

Steady states of this type are referred to as generalized Gibbs ensembles and it will be the goal of the first two
chapters of this thesis to provide a mathematically rigorous theoretical prediction for their necessity in certain
quench scenarios. Specifically, in the following chapter Ref. [1] will be presented which shows that any state of
fermions with a finite correlation length Gaussifies under free hopping dynamics on a lattice. By Gaussification we
mean that an initially non-Gaussian state after a quench of many-body interactions becomes Gaussian over time in
the sense that all correlation functions satisfy Wick’s theorem. Gaussification can be viewed as a refined statement
compared to directly aiming to show equilibration. This is because a system that was initially non-Gaussian can
become Gaussian over time but stay out-of-equilibrium. If in addition to Gaussification one shows equilibration of
the covariance matrix of the system then one can conclude that local equilibration has taken place. Making this
distinction turned out to be fruitful as this allowed us to show equilibration for many practically relevant scenarios
and in these cases equilibration occurs according to a power-law in time. This includes in particular scenarios that
can be studied in optical lattice quantum simulation experiments via a quench of a many-body interaction parameter.
At the same time, the result is relevant for understanding the foundations of statistical mechanics because the system
throughout the dynamics of the Gaussification process is perfectly isolated. We derive a precise understanding of a
mechanism for memory loss in large systems without the need for coupling to the environment or ‘random shaking’
of some sort from the outside - we show that the onset of scrambling of the memory of initial conditions occurs via
internal dynamics of the isolated system. On the technical side, this is facilitated by detailed understanding of how
to treat the question at hand despite possible obstacles such as Poincaré recurrences or reversibility of the unitary
dynamics which only seemingly stands in contradiction to memory loss effects. All this is shown to be possible and
additionally it is demonstrated that the rate at which the Gaussification process scrambles the memory of the initial
non-Gaussian condition is functionally tight, matching numerical experiments using tensor network techniques.

In the chapter following the work on Gaussification a subsequent study is presented which largely brings to
completion the program on equilibration following interaction quenches [2]. Here we demonstrate a detailed
understanding of the phenomena at hand deriving a general result showing power-law equilibration time scales for
initial states that are not necessarily translation invariant. This result is primarily rooted on a technical advance that
we establish which allows us to compute dephasing rates without resorting to otherwise common approximations
in field theory. This allows us to treat a wealth of models, that are restricted essentially only by the range of
interactions, for evolution times where other methods would be ineffective. To arrive at our result it was necessary
to understand what are the relevant constants of motion which additionally gives an intuition concerning which
kind of generalized Gibbs ensembles are realized following equilibration after an interaction quench.

The third chapter will be concerned with the experimental platform of Ref. [56] where generalized Gibbs ensembles
have been observed experimentally. This is a shift of the physical setting from fermionic systems hopping on a
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lattice to bosons constrained to a single dimension which are described by a continuous field theory. Additionally,
in contrast to the works on Gaussification where dispersion of wavepackets is crucial this effect does not feature
in the bosonic quasi-condensates considered. This is due to the fact the relevant effective degrees of freedom in
this system are phonons which are the collective excitations of the system and they have an approximately linear
spectrum. The chapter presents the results obtained using a novel tomographic method that we have developed
which allows to time- and momentum- resolve occupation numbers of the phonons in the system [3]. The successful
functioning of the method constitutes a quantitative test of the effective theoretical models of the system developed
in a long tradition of theoretical studies and is a crucial result of this thesis. This constitutes a significant extension
of the read-out capabilities of the continuous field quantum simulation platform at hand and the key feature is
non-equilibrium dynamics which we craft into a tomographic resource enabling state reconstructions.

The last chapter will present a method allowing to make progress on the conceptual question of how to benchmark
and verify non-equilibrium dynamics in powerful quantum simulators given simple experimental observables and
limited repetitions of the experiment [4]. Once more non-equilibrium dynamics is in focus but the task considered
in this chapter stands in contrast to previous chapters as the physical question which is tackled could be viewed as
being more abstract. The presented results fall into an area of research that is very much timely and important for
emerging quantum technologies with the aim to develop methods allowing to make sure that a quantum simulation
or computation was successful, i.e., certify the computation [120]. This is important as ultimately the task tackled by
quantum computing should go beyond what we can compute classically. Certification, however, is challenging as
the systems tackled have to be assumed to be large and not every single observable can be measured in practice. We
show how to approach the problem by means of fidelity witnesses which are experimentally friendly observables
that allow to certify that the operation of a quantum protocol was successful. While the task of certification of
quantum dynamics may seem unusual compared to common questions in physics it is very much relevant for various
systems in nature that we can practically engineer. In fact, the method of fidelity witnesses has been successfully
employed to certify the preparation of Hartree-Fock states on the Sycamore quantum processor [121].

The thesis is summarized by giving a more detailed overview of the subjects presented in the thesis with one
of the conceptual conclusions being that we seem to be witnessing a transformative time in physics due to the
newly emerging quantum technologies. This is exemplified by the fact that it was possible for all three of the main
theoretical ideas presented in this thesis to find an experimental application which is rather unusual for questions
concerning quantum systems that may otherwise need a long time to be devised experimentally. However, this can
well become a standard for the future when programmable quantum devices become more widely available.



2
E Q U I L I B R A T I O N V I A G A U S S I F I C A T I O N I N F E R M I O N I C L A T T I C E S Y S T E M S

In this chapter a rigorous result will be discussed concerning the question of memory loss of the initial conditions
for a system undergoing unitary dynamics. That is to say we would like to understand how in a closed system the
details of the initial configurations or correlations between constituents can become obscured by some mechanism
which we would physically interpret as a scrambling process.

On a higher, conceptual, level it is highly desirable to derive results of this type for closed quantum systems.
Indeed philosophers, and arguably this is the preference of many a physicist, find it quite unsatisfactory to say that
a closed box with a gas thermalizes because the system is coupled to the surrounding environment - as then the
question arises what thermalizes the environment? One could follow such arguments ad infinitum as any part of the
observable universe comes to equilibrium by exchanging entropy with its own observable universe. Such reasoning
does not deliver a deep understanding of why nature seems to realize ubiquitously thermal ensembles. And there
is a need for that inquiry.

Specifically in the context of this thesis, we ask: Can a quantum simulator made of cold atoms thermalize because
of a minute coupling to the auxiliary parts of the laboratory system? Or a solid state material in which the relevant
couplings lead to much faster dynamics than would be caused by the coupling to the environment? It is not plausible
that a weak coupling to the environment would be able to thermalize a system sufficiently fast.

Non-relativistic lattice systems interacting only between local sites exhibit effective causality, known as the Lieb-
Robinson bound [122]. Should the environment be thermalizing the system by a flux of entropy through the
boundary then the bulk of the system will remain non-thermal until it can causally exchange entropy with the
environment. That is not what generically happens. And interestingly enough, we can rigorously prove instances
of systems that come to equilibrium without the need of an environment. What we shall see is that a system can
act as its own bath. Hence, scrambling ensues anywhere in the system in the same way without the need for an
environment to trigger thermalization.

The questions highlighted here have a long standing history of inquiry [123]. The subject has received a flurry of
interest in the recent decade and several in-depth reviews on the subject are available [70--75]. Indeed through
several interesting contributions it has become clear that the effect sketched in plain language above can be
substantiated in various ways for many-body systems.

The crucial contribution that is the starting point of this part of the thesis is the work by Cramer et al. [76]. In
this work, it has been for the first time shown that a very simple yet paradigmatic system can act as its own bath.
Specifically, it was proven for bosonic lattice systems that on-site particle measurements that initially exhibited non-
Gaussian statistics over time become Gaussian. An instance of this behaviour would be to consider the observable
corresponding to the local particle number N̂x at site x and to show that even if initially we have that the moments
do not factorize then this is the case for large times t to an increasingly improving approximation

〈N̂2x〉 6= 〈N̂x〉2
t7−→ 〈N̂2x(t)〉 ≈ 〈N̂x(t)〉2 .

This happens despite the system being perfectly homogeneous and even finite.
Below we will give the specific details but let us already now reveal the answer to the most pending riddle: If

the system is homogeneous and translation invariant, how do we identify which part of it will play the role of
its own bath? For this to happen necessarily some aspect of the protocol ‘measure moments of the local particle
number’ must break the symmetry of the problem. But if the system is everywhere the same this may not be
entirely obvious. The resolution of this lies in the fact that we are interested in local observables. To describe
all moments of the observable it suffices to merely know the reduced density matrix where the observable acts.
Similarly to the study of entanglement of pure states, we find then that considering the quantum equivalent of a
marginal distribution can allow for local entropy increase and hence memory loss has a chance to appear. This
is because we discard the information about the distribution of the rest of the system and its relation to the small
subsystem where the observable acts. In Ref. [76] these elementary ingredients were shown to suffice for a rigorous
derivation of a memory loss effect in a bosonic system. This result for essentially a single mode reduced density
matrix was then improved for arbitrary local subsystems in Ref. [124]. This latter work established a quantum
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central limit theorem for distributions where the variables are weakly correlated but not necessarily independently
and identically distributed hence improving the results of Refs. [125--127] and giving the convergence rate not
discussed in detail in Ref. [128]. Here, we will show how to derive a quantum central limit theorem for fermionic
systems and how to draw conclusions about an equilibration mechanism based on it.

2.1 formulation of the problem

We say that a quantum system described by a density matrix ρ̂ locally equilibrates under a Hamiltonian Ĥ in the
time interval between some relaxation time t0 and some recurrence time tRec if the state at any time t ∈ [t0, tRec] is
practically indistinguishable from the time-averaged state ρ̂(eq) on the level of local observables [71]. Quantitatively,
we fix some small ε > 0 such that for every local observable Â we have

|〈Â〉ρ̂(t) − 〈Â〉ρ̂(eq) | 6 ε (2.1.1)

for all t ∈ [t0, tRec], where 〈Â〉ρ̂ = tr[ρ̂Â] denotes the quantum expectation value of a local observable Â which is
local and has unit operator norm and ρ̂(t) is the initial state evolved unitarily according to the Hamiltonian Ĥ.

In general, we would like to characterize precisely when systems equilibrate in this sense. However, this is
notoriously difficult both on the practical side of attempting to prove such results but also from the perspective of
computational complexity theory as Hamiltonian evolution is BQP-hard and so we would be making an interesting
statement about quantum algorithms and their long-time behavior. For this reason it is interesting to concentrate
first on the case of so-called Gaussian dynamics. These are evolutions whose Hamiltonians are special as they are
a quadratic form in creation and annihilation operators. The ground and thermal states of such Hamilton operators
are called Gaussian.

There are two specific questions we have investigated. The first problem is: Show that there exist Gaussian
dynamics under which non-Gaussian states equilibrate on the level of local observables in finite time intervals. To
find a solution and understanding of this statement one has to navigate around subtle issues. One of them being that
non-Gaussian states in principle necessitate a large amount of parameters to be specified that can be hard to compute
numerically for large systems if, e.g., the state represents a ground state affected by many-body interactions. Thus
one has to tackle the problem without referring to particular properties of the state. Secondly, we aim to show that
for a fixed Hamiltonian a number of states which are possibly non-Gaussian equilibrate. This is necessary to be
able to claim having obtained a deeper understanding of foundations of statistical mechanics in isolated systems as
empirically we expect this framework to become applicable after relaxation largely regardless of initial conditions.
The statement of the second problem we considered is: When is the equilibrium state thermal and what are its
properties otherwise? Quenches to free evolution have an extensive number of constants of motion and it has been
discussed in literature that this can lead to the necessity of considering the equilibrium ensemble to be more general
than thermal ensembles. Thus even if initially non-trivial interactions have been imprinted onto the state by means
of non-Gaussian correlations their memory may be lost over time after the quench to free evolution. However, it
is expected that the conservation laws should in various instances lead to the memory of non-equilibrium initial
conditions and the equilibrium state will not be captured by a single temperature but to accommodate the various
conserved charges one needs to describe it by means of a generalized Gibbs ensemble.

2.2 our results

The paper discussed in this chapter should be viewed in conjunction with the subsequent work presented in the
following chapter together amounting to a remarkably general result. Ref. [1] presented in this chapter shows
how Gaussian dynamics ‘‘Gaussifies’’ a non-Gaussian system, that is, turns a non-Gaussian quantum state into a
Gaussian quantum state. This is true to an arbitrarily good approximation if the evolution time and system size are
large enough. More precisely, we arrived at the following statement.

Theorem 1 (Fermionic generic Gaussification). Consider the initial fermionic state ρ̂(0) with exponential decay of
correlations and a non-interacting translation-invariant post-quench Hamiltonian with dispersion relation E(p) such
that there are no points with E′′(p) = E′′′(p) = 0 for any p. Then there exist a constant relaxation time t0 and a
recurrence time tRec = Θ(L) such that, for all t ∈ [t0, tRec],

|〈Â〉ρ̂(t) − 〈Â〉ρ̂G(t)| 6 Ct
−1/6 (2.2.1)
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where C > 0 and the state ρ̂G(t) is Gaussian with the same covariance matrix as ρ̂(t).

The formulation of this theorem already takes into account additional insights which follow from the publica-
tion [2] presented in the subsequent chapter. In the paper presented here we have proven this result under an
assumption concerning the dynamics and showed that this property is valid, e.g., for the nearest-neighbor hop-
ping of fermions on a ring. The updated formulation already includes the strengthening that essentially any local
translation invariant hopping Hamiltonian on a ring gives rise to Gaussification.

2.3 the implications of the result

The most important physical condition about the initial state is that of a correlation length. This property has
been proven for ground states of gapped Hamiltonians and for high temperature states [129--132]. Hence, the result
essentially implies that any ‘equilibrium’ state, which tend to have a finite correlation length, will Gaussify following
an interaction quench. Other than that we demonstrate that it is not necessary to know more about the initial state.

This is the first hallmark of the general success of the program that is being brought to fruition by the works
presented here and in the next chapter: We do not need to know precisely the quench model or the initial state to
make a general and rigorous statement concerning equilibration. For a non-Gaussian state with a finite correlation
length we prove that translation invariant Gaussian dynamics will render the initial state Gaussian. This implies
equilibration according to a power-law in time for initial non-Gaussian states that are translation invariant. The
work presented in the subsequent chapter further studies non-translation invariant initial conditions and proves
equilibration in many natural instances with a comprehensive understanding of counter-examples.

It should be stressed that we do not need to know the precise values of the couplings of the model only its physical
properties such as translation invariance or the range of hopping. We also do not need to know the precise initial
values of the correlations, only that they satisfy a certain natural clustering property. And still with an analytical
result we can prove equilibration according to a power-law in time. This should be contrasted with numerical studies
where it is only ever possible to check individual cases for fixed values of couplings and initial conditions and hence
it is difficult to give conclusive evidence for the occurrence of equilibration for a class of initial states and quench
models. On a higher level, we hence have shown that an analytical approach, despite being less straightforward in
general can lead to success in this type of general questions.

The most important instance of equilibration that our theorem implies is when the initial state is taken to be
translation invariant in the same way as the non-interacting quench Hamiltonian. In this case the second moments
do not change in time after the quench, as can be seen by considering the problem in momentum space where both
the initial second moments and the couplings of the quench Hamiltonian are simultaneously diagonal. In this case
to obtain an equilibrium state one needs to show that the higher moments over time become Gaussian, and this is
precisely what the statement of our theorem implies. Specifically in this case we have that ρ̂G(t) ≡ ρ̂G(0) because
the second moments do not change in time and hence our bound (2.2.1) becomes

|〈Â〉ρ̂(t) − 〈Â〉ρ̂G(0)| 6 Ct
−1/6

showing that for an arbitrary local observable Â its expectation value will become time independent and the
deviation from the average is suppressed by a power-law envelope in time. Here we also notice the possibility
of memory effects and the necessity of generalized Gibbs ensemble. Indeed, thermal states with respect to the
quench Hamiltonian are a one parameter family giving for each choice of temperature a unique covariance matrix
with a fixed average value of the energy. However, for a local quench Hamiltonian the energy is determined only
by some particular correlation functions while many other correlation functions are not constrained by fixing the
total energy and after starting out-of-equilibrium they may differ from the values expected in a thermal ensemble
even after the relaxation has been completed.

That is to say, we find that thermalization does not always occur despite all local observables equilibrating. This
comes from the fact that non-interacting Hamiltonians have an extensive number of conserved quantities which
are the eigenmode occupation numbers. Given the Hamiltonian spectrum, these have unique values for any given
temperature (the Fermi-Dirac distribution for fermions and for bosons the Bose-Einstein distribution). Whenever the
initial state happens to have a distribution of eigenmodes that is not thermal this feature will be perfectly preserved
in the dynamics. In this case, one is lead to generalize the notion of thermal states to systems with local conservation
laws and consider generalized Gibbs ensembles. Our work shows an equilibration towards such generalized Gibbs
ensembles.
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We have subsequently developed a method that will allow studying this type of dynamics and equilibrium states
in optical lattice quantum simulators [13]. This should allow to observe using optical lattice quantum simulators the
Gaussification effect described in the paper presented in this chapter. Additionally, we have studied a related effect
concerning the dynamical emergence of Gaussian correlations in one-dimensional quantum field simulators [12].
Interestingly, this experimental observation hints towards a more general mechanism of Gaussification. The result
presented in this chapter relies on spatial mixing of correlations: After a quench Gaussification occurs because due
to the finite correlation length the initial correlation agree with a Gaussian state for correlations between distanced
points. Hence the correlations between points much further than the correlation length play the role of a Gaussian
‘bath’ with which the local correlations become mixed over time. In the experiment presented in Ref. [12] we are
dealing with a system of phonons where correlations can range over substantial portions of the system and hence
it is not an instance directly covered by the theory presented in this chapter. However, even in this case we observe
Gaussification and can link it to a different type of a Gaussian bath with the mixing not relying on spatial spreading
of wave-packets but rotation of canonically conjugated quantum fields.

2.4 open problems

Our work makes progress on certain interesting questions. At the same time it opens up new challenges or highlights
the difficulty of long-standing problems such as stability of Gaussian dynamics with respect to interactions. Below,
as will be done in the subsequent chapters too, some examples of interesting problems are listed that seem to remain
unresolved.
Problem 1. Let Ĥ0 be a Hamiltonian leading to Gaussification. What remains of this effect in the thermodynamic

limit after adding a many-body interaction of some small but finite strength which induces scattering of particles?
Specifically, for an initially non-Gaussian state does one find at first a power-law decay of non-Gaussianity which
then reaches a transient behavior and levels off towards a constant non-zero value? Is this constant proportional to
the interaction strength?
Problem 2. (Partially solved [2], see next chapter.) How generic is the effect of Gaussification described above?

Does it appear for a large variety of models?
Problem 3. (Partially solved [2], see next chapter.) Assume that Gaussification occurs. When do second moments

equilibrate and hence the entire state becomes relaxed?
Problem 4. Rigorously prove a tighter dynamical exponent, e.g., that for nearest-neighbour hopping non-interacting

particles on a ring the 4-point correlation functions tend towards the Wick expression according to the envelope
∝ t−1+ε where ε > 0 can be chosen arbitrarily small. The observations about the size of the wave-front from
Ref. [133] may be useful.
Problem 5. Rigorously prove Gaussification for non-translation invariant models. The observation that eigenmode

wave-functions remain in general oscillatory facilitating the use of stationary phase approximation as suggested in
Ref. [133] may be useful.
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In this Letter, we present a result on the nonequilibrium dynamics causing equilibration and
Gaussification of quadratic noninteracting fermionic Hamiltonians. Specifically, based on two basic
assumptions—clustering of correlations in the initial state and the Hamiltonian exhibiting delocalizing
transport—we prove that non-Gaussian initial states become locally indistinguishable from fermionic
Gaussian states after a short and well controlled time. This relaxation dynamics is governed by a power-law
independent of the system size. Our argument is general enough to allow for pure and mixed initial states,
including thermal and ground states of interacting Hamiltonians on large classes of lattices as well as
certain spin systems. The argument gives rise to rigorously proven instances of a convergence to a
generalized Gibbs ensemble. Our results allow us to develop an intuition of equilibration that is expected to
be more generally valid and relates to current experiments of cold atoms in optical lattices.
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Despite the great complexity of quantum many-body
systems out of equilibrium, local expectation values in such
systems show the remarkable tendency to equilibrate to
stationary values that do not depend on the microscopic
details of the initial state, but rather can be described with
few parameters using thermal states or generalized Gibbs
ensembles [1–3]. Such behavior has been successfully
studied in many settings theoretically and experimentally,
most notably in instances of quantum simulations in optical
lattices [2,4,5].
By now, it is clear that, despite the unitary nature of

quantum mechanical evolution, local expectation values
equilibrate due to a dephasing between the eigenstates
[3,6–12]. So far it is, however, unclear why this dephasing
tends to happen so rapidly. In fact, experiments often
observe equilibration after very short times, which are
independent of the system size [5,13], while even the best
theoretical bounds for general initial states of concrete
systems diverge exponentially [2,12]. This discrepancy
poses the challenge of precisely identifying the equilibra-
tion time, which constitutes one of the main open questions
in the field [1–3].
What is more, only little is known about how exactly the

equilibrium expectation values emerge. Because of the
exponentially many constants of motion present in quantum
many-body systems, corresponding to the overlaps with the
eigenvectors of the system, there seems to be no obvious
reason why equilibrium values often only depend on a few
macroscopic properties such as temperature or particle
number. In short: it is unclear how precisely the memory
of the initial conditions is lost during time evolution.
To make progress towards a solution of these two

problems, it is instructive to study the behavior of non-
interacting particles captured by so-called quadratic or free

models. In these models, the time evolution of so-called
Gaussian states,which are fully described by their correlation
matrix, is particularly simple to describe. While studying the
time evolution of such states provides valuable insight into
the spreadingof particles and equilibration, it is unclear if and
under which conditions general non-Gaussian initial states
out of equilibrium end up appearing Gaussian.
In this Letter, we address this question: we show under

which conditions very general non-Gaussian initial states
become locally indistinguishable from Gaussian states with
the same second moments. This mechanism is much rem-
iniscent of actual thermalization, in that an initially complex
setting appears to converge to a high-entropy state that is
defined by astoundingly few parameters only. In this way, we
present a significant step forward in the theory of equilibra-
tion of quantum many-body systems that have been pushed
out of equilibrium. Furthermore, our work suggests that for
quadratic models, Gaussification can be seen as a genuine
mechanism of nonequilibrium dynamics, complementing
and playing a significant role in equilibration.
Our results hold for a remarkably large class of initial

states, gapped interacting models evolving, after a so-called
quench, in time under a quadratic fermionic Hamiltonian
with finite ranged interactions. This family of Hamiltonians
notably includes the case of noninteracting ultracold
fermions realizable in optical lattices. By virtue of the
Jordan-Wigner transformation, our results also apply to
certain spin models. We formulate our results in the form of
a rigorously proven theorem, which at the same time
provides an intuitive explanation of the physics behind
our result. We find Gaussification to be a consequence of
two natural assumptions, namely exponential clustering of
correlations in the initial state and what we call delocalizing
transport.
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Setting.—We begin by precisely stating the physical
setting that we consider. For notational convenience, let L
be a dL-dimensional cubic lattice with V lattice sites. Each
site r ∈ L is associated with a fermionic orbital with
fermionic creation and annihilation operators f†r and fr.
We collect them in a vector c ¼ ðf1; f†1;…; fV; f

†
VÞ. All

results can be generalized to fermions with internal degrees
of freedom on Kagomé, honeycomb, or other geometries.
The Hamiltonian of a quadratic fermionic system is then of
the form

H ¼
X2V
j;k¼1

c†jhj;kck; ð1Þ

with Hermitian coupling matrix h. The time evolution of
annihilation operators in the Heisenberg picture under such
a Hamiltonian is given by

cjðtÞ ≔ eiHtcje−iHt ¼
X2V
k¼1

Wj;kðtÞck ð2Þ

with the propagator WðtÞ ≔ e−2ith.
Next, we introduce the concept of Gaussian states and

Gaussification. Define the correlation matrix γ of a state ρ
as the matrix of its second moments, i.e., γj;k ≔ trðρc†jckÞ.
A convenient characterization of Gaussian states is the
following: they are the states that maximize the von
Neumann entropy given the expectation values collected
in the correlation matrix. For every state ρ, we hence define
its Gaussified version ρG as the Gaussian state with the
correlation matrix of ρ, i.e., trðρGc†jckÞ ¼ trðρc†jckÞ.
Assumptions.—Our main theorem holds for initial states

(including non-Gaussian ones) with a form of decay of
correlations that evolve under quadratic Hamiltonians that
exhibit a form of transport that we define below. We now
make these two conditions precise, starting with the
correlation decay:
Definition 1.—(Exponential clustering of correlations)

We say that a state ρ exhibits exponential clustering of
correlations with length scale ξ > 0 and constant CClust > 0
if, for any two operatorsA,Bwith ∥A∥ ¼ ∥B∥ ¼ 1, we have

jtrðρABÞ − trðAρÞtrðBρÞj
≤ CClustjsuppðAÞjjsuppðBÞje−dðA;BÞ=ξ: ð3Þ

Here dðA;BÞ is taken to be the natural distance on the lattice
between the supports suppðAÞ; suppðBÞ of A andB and ∥ · ∥
denotes the operator norm.
Ground states of interacting gapped local Hamiltonians

[14,15] as well as thermal states of arbitrary nonquadratic
fermionic systems [16] at sufficiently high temperature
have exponential clustering of correlations as defined in
Definition 1. Thus, the initial state could be prepared within
a quench scenario where the Hamiltonian is changed from a
gapped interacting model to a quadratic Hamiltonian which

governs the nonequilibrium dynamics. To reemphasize, by
no means is the initial state assumed to be in any specific
relation to properties of the latter quadratic Hamiltonian.
For our proof of local relaxation towards a Gaussian

state, we further assume that the quadratic Hamiltonian
exhibits transport in the following sense:
Definition 2.—(Delocalizing transport) A quadratic

Hamiltonian with propagatorW on a dL-dimensional cubic
lattice of volume V exhibits delocalizing transport with
constants CTrans > 0, αTrans > dL=4 and recurrence time
tRec > 0 if, for all t ∈ ð0; tRec�, we have that

∀j; k∶ jWj;kðtÞj ≤ CTrans maxft−αTrans ; V−αTransg: ð4Þ

The intuition behind this definition is that an initially
localized fermionic operator will spread over a large area,
such that its component on a single localized operator is
dynamically suppressed. In particular, such a suppression
with αTrans ¼ dL=3 can be proven for quadratic hopping
Hamiltonians (see the Supplemental Material [17] and also
Fig. 1) and the critical Ising model. In finite dimensional
systems, any nontrivial bound of the form (4) is eventually
violated due to the recurrent nature of their dynamics.
For quadratic hopping Hamiltonians, it can be shown that
the recurrence time grows at least like V6=7dL with the
system size.
Main result.—Our main result can be stated as follows:
Theorem 1.—(Gaussification in finite time) Consider a

family of systems on cubic lattices of increasing volume V.

FIG. 1. The right panel shows a numerical study of the
spreading of the support of a fermionic annihilation operator
described in Eq. (2) under the evolution of the quadratic hopping
Hamiltonian H ¼ −

P
jðf†jfjþ1 þ f†jþ1fjÞ on a one-dimensional

chain of 150 sites with periodic boundary conditions. The support
expands ballistically, creating the Lieb-Robinson cone. The left
panel shows the suppression of different elements of the
propagator in time. The plot at the top shows the evolution of
the maximum taken over the full lattice maxkjW75;kðtÞj, where in
the lower plot the maximum inside the inner region of the
Lieb-Robinson cone (between the red dashed lines) is plotted.
The maximum taken over the full lattice is reached for k in the
wave front (indicated by the blue curve in the right panel) and
the suppression goes as t−1=3, while in the bulk of the cone, the
suppression is proportional to t−1=2. The suppression stabilizes,
once the wave fronts collide.
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Let the initial states exhibit exponential clustering of
correlations, and let the Hamiltonians be quadratic finite
range and have delocalizing transport with the correspond-
ing constants ξ; CClust; CTrans; αTrans independent of V. Then
for any local operator A on a fixed finite region and any
0 < ν < 4 αTrans − dL, there is a V independent constant
CTotal such that for any t ≤ minðtRec; VÞ

jtr½AðtÞρ� − tr½AðtÞρG�j ≤ CTotalt−4αTransþdLþν: ð5Þ
Consequently, if the recurrence time tRec increases
unboundedly as some function of V, then, given an error
ϵ > 0, there exists a relaxation time tRelax > 0 independent
of the system size such that for all times t ∈ ½tRelax; tRec� it
holds that jtr½AðtÞρ� − tr½AðtÞρG�j ≤ ϵ.
The theorem states that for all times in the interval

½tRelax; tRec� the expectation value of any local observable in
the time evolved state ρðtÞ will agree up to an error ϵ with
the expectation value in the Gaussian state ρGðtÞ, which
has the same second moments as ρðtÞ. With this, we find
that the expectation values of all local observables can be
approximated by a decomposition according to Wick’s
theorem and that it will be impossible to distinguish the true
state ρ from the fermionic Gaussian state ρG by any local
measurement on a fixed finite local region S. Note that
since tRelax is independent of the system size, but tRec
increases with its volume, for any arbitrarily small ϵ, there
always exists a system size such that tRec > tRelax, and the
interval where the theorem applies grows as a function of
the system size.
We compare our general, rigorous, analytical result with

a numerical simulation in Fig. 2 that shows an exper-
imentally detectable signature of the Gaussification of a
density-density correlator. The comparison reveals that our
bound correctly reproduces the physical behavior in the
sense that the true Gaussification dynamics follows a
power-law. What is not correctly reproduced is the expo-
nent of that power law, but we understand where the
discrepancy between the observed t−1 decay and the t−1=3þν

(for arbitrarily small ν) bound for αTrans ¼ 1=3 originates
from: the reason is that the provable decay with αTrans ¼
1=3 for the considered model roots in the slow decay of the
matrix elements of the propagator at the wave front of the
Lieb-Robinson cone. The elements in the bulk of the Lieb-
Robinson cone can numerically be found to be suppressed
as t−1=2 leading to an effective αTrans ¼ 1=2 for the vast
majority of matrix elements (see Fig. 1). Assuming this
effective αTrans ¼ 1=2 in Theorem 1 leads to a suppression
with t−1.
The key steps in the proof, are based on three main

physical ingredients: finite speed of propagation in lattice
systems, homogeneous suppression of matrix elements of
the propagator due to delocalizing transport, and exponen-
tial clustering of correlations in the initial state. The full
proof with all details of the involved combinatorics can be
found in the Supplemental Material [17].

Proof.—We expand the local operator A supported in a
fixed finite region S in the basis of fermionic operators. To
that end, let ~S ≔ fsrg for r ∈ ½2jSj� ≔ f1;…; 2jSjg be the
set of indices of all elements of the vector c with support
in S, then

AðtÞ ¼
X1

b1;…;b2jSj¼0

ab1;…;b2jSjcs1ðtÞb1…cs2jSj ðtÞb2jSj : ð6Þ

Without loss of generality, we assume ∥A∥ ¼ 1, such that
jab1;…;b2m j ≤ 1. Thus,

jtr½AρðtÞ� − tr½AρGðtÞ�j

≤ 22jSjmax
J⊂ ~S

����
X

ðkjÞj∈J∈½2V�×jJj
tr

�Y
j∈J

Wj;kjðtÞckjðρ − ρGÞ
�����:

ð7Þ
Here and in the following, all products are meant to be
performed in increasing order.
We assumed that the Hamiltonian has finite range

interactions; i.e., there exists a fixed length l0, such that
hj;k ¼ 0 whenever dðj; kÞ > l0, where dðj; kÞ ≔ dðcj; ckÞ.
Such models satisfy Lieb-Robinson bounds [22], which in
our setting can be stated as follows:

FIG. 2. Numerical study of the evolution of a nearest-neighbor
density-density correlator for system sizes V ¼ 32, 64, 128 under
the quadratic hopping Hamiltonian H ¼ −

P
V
j ðf†jfjþ1þ

f†jþ1fjÞ. The initial states are the ground states of the interacting
spinless Fermi-Hubbard model HFH ¼ H þU

P
V
j njnjþ1 þP

jωjnj with U ¼ 2, and weak on site disorder wj drawn
independently from a Gaussian distribution with variance 1=4.
For consistency, we have initially drawn 128 random numbers wj

and used the first V of them for different system sizes. All
calculations were performed with periodic boundary conditions
at half filling. The difference between the expectation values in
the state ρ and its Gaussified version ρG of the density-density
correlator between sites 27 and 28 as a function of time is
suppressed approximately like t−1, as indicated by the black line.
At late times, due to the finite size of the system, recurrences
occur, leading to an increase of the difference. Increasing the
system size only shifts the recurrence time tRec but leaves the
decay behavior unchanged. The visible oscillations depend on
details of the model and initial state. The time evolution was
performed by using Eq. (2).
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Lemma.—(Lieb-Robinson bound for quadratic systems
[23]) For any quadratic fermionic Hamiltonians H with
finite range interactions there exist constants CLR; μ; v > 0
independent of the system size, such that its propagator W
fulfills the bound

jWj;kðtÞj ≤ CLReμ½vjtj−dðj;kÞ�: ð8Þ

The Lieb-Robinson bound tells us that cjðtÞ and ckðtÞ
essentially still have disjoint support as long as t is small
enough such that vjtj ≪ dðj; kÞ. We can hence restrict the
sum in Eq. (7) to those kj whose mins∈ ~Sdðkj; sÞ is smaller
than ðvþ 2vϵÞjtj for some fixed vϵ > 0. The total con-
tribution of the neglected terms can be bounded explicitly
and, importantly, is independent of V and exponentially
suppressed in jvϵtj.
For each of the remaining summands in Eq. (7), it is now

important to keep track of the distribution of the indices kj
inside the cone. For this purpose, we define the Δ partition
PΔ of a subindex set J ⊂ ~S and sequence of indices ðkjÞj∈J
as the unique decomposition of J into subsets (patches) p in
the following way: the patches are constructed such that for
any two subindices within any given patch p there is a
connecting chain of elements from that patch in the sense
that the distance between two consecutive ckj with j ∈ p
along that chain is not greater than Δ and the distance
between any two ckj ; ck0j with j, j

0 from different patches is

larger than Δ. For each patch p in the Δ partition of a given
summand in Eq. (7), we define a corresponding operator

P̂
ðkjÞj∈p
p ≔

Y
j∈p

Wj;kjðtÞckj : ð9Þ

We can then reorder the factors in Eq. (7) to write the
product as a product over these operators. The exponential
clustering of correlations (Definition 1) in the initial state
allows us to factor the patches if we scale Δ suitably with
jtj. Concretely, for σ ∈ fρ; ρGg, the expectation values
appearing in Eq. (7), which we denote by h·iσ, can be
approximated as follows:

�Y
p∈PΔ

P̂
ðkjÞj∈p
p

�
σ

≈
Y
p∈PΔ

hP̂ðkjÞj∈p
p iσ: ð10Þ

The error thereby introduced is exponentially suppressed
with the ratio of patch distance to correlation length Δ=ξ.
It remains to bound the contribution from the factorized

patches that are completely inside the Lieb-Robinson cone.
Note that the right-hand side of Eq. (10) is nonzero only if
all the patches are of even size, as ρ and ρG have an even
particle number parity. Moreover, as the second moments
of ρ and ρG are equal, the difference of the right-hand side
for σ ¼ ρ and σ ¼ ρG vanishes whenever all patches have
size 2. Hence, only partitions that contain at least one patch

of size at least 4 contribute. The delocalizing transport of
the Hamiltonian implies that the contribution from such
larger patches however is dynamically suppressed.
Whenever jpj ≥ 4, it holds that

jhP̂ðkjÞj∈p
p iσj ≤ C4

Transt
−4αTrans ð11Þ

as long as t is small enough given V. The influence of
possible patches of size 2 in the same decompositionmakes it
necessary to bound the overall contribution with an involved
recursive and combinatorial argument. However, effectively
the dynamical suppression in Eq. (11) allows us to derive a
bound that increases with the patch size Δ, as the number of
possible patch-configurations grows with Δ, but is algebrai-
cally suppressed in time t. Choosing Δ ¼ maxð1; tν=4dLÞ for
some 0 < ν < 4αTrans − dL, we obtain an at least algebraic
suppression with t of all terms and thereby of the difference
jtr(AðtÞρ) − tr(AðtÞρG)j. □

Physical implications and applications.—The
Gaussification result presented above also has profound
implications for the study of equilibration of quantum
many-body systems. Whenever the second moments equili-
brate, which is often observed [5,24–29], our results imply
that the full reduced density matrix becomes stationary. The
numerical study presented in Fig. 2 shows that the power
law appearing in Theorem 1 is not an artifact of our proof
strategy but reflects the underlying physics, that can
moreover be observed in experiments. The quadratic
models considered here constitute a “theoretical labora-
tory”, in which the mechanisms of Gaussification and
equilibration can be very precisely and quantitatively
characterized, and all specifics of the processes laid out.
This does not mean that the physics we address is very
specific to quadratic Hamiltonians: we expect the funda-
mental mechanisms underlying the result—local relaxation
due to transport and initial clustering of correlations—to
be, the reason for relaxation in a wide classes of interacting
models [30] and also classical ones [31]. The intuition,
reminiscent of a quantum central limit theorem [32], that
incommensurate influences of further and further separated
regions lead to mixing and relaxation is then expected to
still be valid. It is also important to stress that our main
theorem equally applies to mixed initial states, such as
thermal states, which are relevant in present day experi-
ments with ultracold fermions [33–36].
Returning to the specifics of quadratic Hamiltonians, the

result derived here can be interpreted in yet another way:
it is reminiscent of the initial state converging towards
a generalized Gibbs ensemble (GGE) [10,26,37] in the
sense that the initial state becomes close to a Gaussian
state, which is the maximum entropy state given the
second moments. Different from a real GGE, the observ-
ables fIαg held fixed while maximizing entropy can be
time dependent, i.e., ρGðtÞ ¼ expðPαλαIαðtÞÞ=Z. Here,
fλαg are appropriately chosen Lagrange multipliers, Z the
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partition function, and fIαðtÞg the number operators of the
eigenmodes of γ. However, in the case of equilibrating
second moments, all relevant Iα become time independent
such that our theorem constitutes a proof of a convergence
to a proper GGE in these cases. The same holds true for
integrable spin models that can be mapped to the type of
fermionic models considered here, complementing insights
on bosonic systems [6,38].
Conclusion and outlook.—In this Letter, we have estab-

lished an understanding of how systems quenched to non-
interacting fermionic Hamiltonians locally converge to
Gaussian states. Out of equilibrium dynamics is identified
as having the tendency to bring systems locally in maximum
entropy states given the second moments. This holds even if
the initial state was far from being a Gaussian state, e.g., a
ground state of a strongly interactingmodel. This is achieved
based on just two natural assumptions: a form of delocalizing
transport in the model and exponential clustering of corre-
lations in the initial state. Otherwise, the initial state can be
completely general. It is the hope that the present work will
serve as a stepping stone to gain further insights into the
relaxation dynamics of more complex quantum many-body
systems and the consequences of the suppression of transport
in, for example, localizing systems.
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I. MAJORANA OPERATORS AND TIME EVOLUTION IN QUADRATIC FERMIONIC SYSTEMS

In this appendix, we formulate the Majorana operator description that allows to conveniently derive the operator governing
transport in the system. We introduce the Majorana operators as

m2j−1 := (f†j + fj)/
√

2, (1)

m2j := i (f†j − fj)/
√

2, (2)

which are collected in a vector m = (m1, . . . ,m2V ) [1]. The vector c of creation and annihilation operators used in the main
text and m are related by the unitary transformation

Ω :=
1√
2

V⊕

j=1

(
1 1
−i i

)
, (3)

as m = Ω c. The Majorana operators are Hermitian and satisfy the anti-commutation relations {mj ,mk} = δj,k for j, k ∈
[2V ] := {1, . . . , 2V }. The algebra generated by those operators constitutes a Clifford algebra. Linear transformations of the
form

m′j =

2V∑

j,k=1

Oj,kmk, O ∈ SO(2V ) (4)

transform a vector of legitimate Majorana operators to a new such vector.
The most general form of a Hamiltonian considered in this work can be written in terms of the Majorana operators as follows

H = i
2V∑

j,k=1

mj Kj,kmk , (5)

where K = −KT is real and anti-symmetric. It is straightforward to relate such Hamiltonians to the ones expressed in the form
of the main text. The kernel K can be obtained form h via K = −i ΩhΩ†.

Time evolution can be captured conveniently in the Majorana operator formulation. Using the Baker-Campbell-Hausdorff
formula, that K is anti-symmetric, and the algebraic structure of the Majorana fermions, one arrives at the following expression
for their time evolution in the Heisenberg picture

mj(t) := eiHtmje
−iHt =

2V∑

k=1

(e2tK)j,kmk =

2V∑

k=1

Lj,k(t)mk, (6)

where L(t) := e2tK . Now notice that as the propagator defined in the main text is related to L(t) via

W (t) = Ω† L(t) Ω (7)

and hence

cj(t) =
2V∑

k=1

Wj,k(t) ck (8)



2

as claimed in the main text.
Further, we introduce some general notation which we will use in the following. For any given operator A that is supported

on a region S we had defined the set S̃ = {s1, · · · , s2|S|} with s1 < s2 < . . . < s2|S| the set of the indices of fermionic basis
operators in S. We can expand A as

A =

1∑

b1,...,b2|S|=0

a({sr : br = 1}) cb1s1 . . . c
b2|S|
s2|S| , (9)

with a({sr : br = 1}) = ab1,...,b2|S| . The sum in Eq. (9) goes over all possible configurations of fermionic basis operators on
the region S. We can hence group the summands according to the subset J of indices from S̃ for which a given term actually
contains a fermionic basis operator and write it as a sum

A =
∑

J⊂S̃
a(J)AJ , (10)

with

AJ :=
∏

j∈J
cj . (11)

Here, and whenever such expressions appear in the following, we take the product over j ∈ J in the ordered dictated by the
ordering of the lattice sites. The time evolution of A is then given by A(t) =

∑
J⊂S̃ a(J)AJ(t) with

AJ(t) =
∑

(kj)j∈J∈[2V ]×|J|

(∏

j∈J
Wj,kj (t) ckj

)
. (12)

II. TRANSPORT

In this appendix we show that two prototypical example systems exhibit delocalizing transport as defined in Definition 2 in
the main text: the fermionisation of the Ising model with appropriate initial states and the fermionic nearest neighbor hopping
model. Our proofs closely follow along the lines of the investigation of the transport properties of the propagator presented in
Ref. [2].

A. Spreading in the Ising model

We start by considering the 1D Ising model and show that it exhibits delocalizing transport at criticality. Its Hamiltonian for
V sites is

HIS = −
V∑

j=1

XjXj+1 − g
V∑

j=1

Zj , (13)

where Xj , Zj are the Pauli matrices supported on site j and g is a real parameter. We adopt periodic boundary conditions.
Invoking the Jordan-Wigner transformation [3], this spin system can be mapped to fermions, using the substitutions

Zj 7→ fjf
†
j − f†j fj = 1− 2nj , (14)

Sj =
1

2
(Xj − iYj) 7→

∏

l<j

(1− 2nl)fj , (15)

S†j =
1

2
(Xj + iYj) 7→

∏

l<j

(1− 2nl)f
†
j , (16)
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where Sj is the spin annihilation operator associated with site j and nj = f†j fj the usual fermionic number operator. After this
transformation, the Ising Hamiltonian takes the form

HIS = −
V−1∑

j=1

(f†j + fj)(1− 2nj)(f
†
j+1 + fj+1)−

V−1∏

j=1

(1− 2nj)(f
†
V + fV )(f†1 + f1)− g

V∑

j=1

(1− 2nj) (17)

= −
V−1∑

j=1

(f†j − fj)(f†j+1 + fj+1) +
V∏

j=1

(1− 2nj)(f
†
V − fV )(f†1 + f1)− g

V∑

j=1

(1− 2nj).

Using the Majorana operators introduced in Appendix I, we can rewrite the Hamiltonian as

HIS =
V−1∑

j=1

i(m2jm2j+1 −m2j+1m2j)− i
V∏

j=1

(1− 2nj)(m2Vm1 −m1m2V )− ig
V∑

j=1

(m2jm2j−1 −m2j−1m2j). (18)

As Theorem 1 would not be applicable otherwise, we restrict the discussion here to initial spin-states ρ which are mapped by
the Jordan Wigner transformation to proper fermionic states respecting the parity super-selection rule. In that case, the parity
operator

∏V
j=1(1− 2nj) will take a fixed value σ = ±1, depending on the parity of ρ. That is, depending on the parity sector of

the state labeled by σ, HIS is of the form

Hσ = i
2V∑

j,k=1

mjK
σ
j,kmk (19)

with

Kσ =




0 g σ
−g 0 1
−1 0 g
−g 0 1
−1 0

−σ . . .



. (20)

In the following we consider the special case g = 1, corresponding to the critical Ising model.

Lemma 1 (Delocalizing transport in the critical Ising model). For the one-dimensional fermionic model given in Eqs. (19) and
(20) corresponding to the critical Ising model, there is a constant CTrans > 0 such that for all t ∈ (0, tRec], with tRec = V 6/7

the recurrence time, it holds that

|Wσ
j,k(t)| ≤ CTranst

−1/3 ∀j, k. (21)

Proof. We diagonalize with Kσ using a modified discrete Fourier transform

Uσk,x =
1√
2V

eiπkx/2V eiπ(1+σ)(x+k)/4V (22)

in order to obtain its spectrum

λσk = 2 sin(π[k + (1 + σ)/4]/V ). (23)

We then find for the propagator (see Eq. (6))

Lσj,l(t) = (e2tKσ

)j,l =
1

2V

2V∑

k=1

eiπ[k+(1+σ)/4](l−j)/V f(π[k + (1 + σ)/4]/V ), (24)

with f(φ) = e2it sin(φ). The Fourier transform of f(φ) is given by f(φ) =
∑∞
n=−∞ fne−inφ with the modes fn = Jn(2t) where

Jn denotes the Bessel function of first kind. By partial integration we can upper bound the absolute value of the Fourier modes
of f by

|fn| =
1

2πn2

∣∣∣∣∣∣

2π∫

0

einφ d2

dφ2
e2it sin(φ)dφ

∣∣∣∣∣∣
≤ 4
|t|+ |t|2
n2

. (25)
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Inserting the Fourier decomposition of f into Eq. (24) yields

Lσj,l(t) =
1

2V

∞∑

n=−∞

2V∑

k=1

eiπ[k+(1+σ)/4](l−j−n)/V fn =
∞∑

p=−∞
(−σ)pfl−j+2pV . (26)

By the periodicity of the model, i.e. Lj,l(t) = −σLj−2V,l(t) = −σLj,l−2V (t), we are save to assume w.l.o.g. |j − l| ≤ V .
Using the upper bound in Eq. (25) and upper bounding the resulting converging series for |j − l| ≤ V yields

|Lσj,l(t)− Jl−j(2t)| ≤
8(|t|+ |t|2)

4V 2

∞∑

p=1

1

[(l − j)/2V + p]2
≤ π2 |t|+ |t|2

V 2
. (27)

With the general upper bound on the Bessel function of first kind Jn(x) ≤ x−1/3 we conclude that for L > 1

|Lσj,k(t)| ≤ 11 t−1/3 ∀j, k (28)

for t ∈ (0, tRec] with tRec = V 6/7. Due to the block structure of Ω in Eq.(7) it then follows directly that

|Wσ
j,k(t)| ≤ 22 t−1/3 ∀j, k. (29)

B. Transport in fermionic nearest neighbor hopping models in square lattices

We now turn to fermionic hopping models, i.e., systems whose Hamiltonian is a linear combination of terms of the form f†j fk.
Instead of the general quadratic form in the form of the main text, the Hamiltonian can then be written as

H =
V∑

j,k=1

f†jMj,kfk, (30)

with M a real and symmetric matrix, i.e., M = MT . The time evolution of fermionic annihilation operators in the Heisenberg
picture is then given by

fj(t) = eiHt fj e−iHt =
V∑

k=1

Nj,k(t) fk, (31)

where N(t) := e−iMt. To connect this to the notation used in the main text, note that with P the permutation matrix that acts as

(f1, f
†
1 , . . . , fV , f

†
V ) = P (f1, . . . , fV , f

†
1 , . . . , f

†
V ). (32)

The Hamiltonian from Eq. (30) can be written in the form of the main text by adding an appropriate constant and setting

h =
1

2
P (M ⊕−M)P †. (33)

N(t) is then related to W (t), via

W (t) = P (N(t)⊕N(t)†)P †. (34)

We now consider the particularly important case of nearest neighbor hopping on a square lattice of spacial dimension dL with
V sites, periodic boundary conditions and hopping strength one. For convenience, we restrict the discussion to V 1/dL even.
Writing the Hamiltonian as in (30), the coupling matrix M of this model can be decomposed into a sum over the dL different
spatial directions as follows

M =

dL−1∑

k=0

1
⊗k ⊗M (1) ⊗ 1⊗(dL−k−1), (35)
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with

M (1) := −




0 1 1
1 0 1

1 0 1
1 0

1
. . .



∈ RV

1/dL×V 1/dL
. (36)

For such models we can bound the spreading as follows:

Lemma 2 (Delocalizing transport in fermionic hopping models). For the fermionic nearest neighbor hopping model on a square
lattice of spacial dimension dL and V sites with V 1/dL even and periodic boundary conditions there is a constant CTrans > 0,
independent of the volume V , such that for all t ∈ (0, tRec], with tRec = V 6/7dL the recurrence time, it holds that

∀j, k |Wj,k(t)| ≤ CTrans t
−dL/3. (37)

Proof. From the structure of the Hamiltonian it follows that N(t) = (e−iM(1)t)⊗dL . For V 1/dL even we obtain that

−iKσ(t) = Q†M (1)(t)Q (38)

with Q = diag(1, i,−1,−i, 1, . . .) where σ = −1 if V 1/dL/2 is even and σ = 1 otherwise. From the proof of Lemma 1 we then
obtain for all 0 < t < tRec = 2V 6/7dL

∀j, k |Nj,k(t)| ≤ 2dL/311dLt−dL/3. (39)

This bound is inherited by W as N and W are related by a permutation of rows and columns.

III. FERMIONIC GAUSSIAN STATES AND CLUSTERING OF CORRELATIONS

In this appendix, we provide some background on fermionic Gaussian states. We first demonstrate that they are the maximum
entropy states given their correlation matrix. Moreover, we show that whenever a state has exponential clustering of correlations,
then its Gaussified version also shows an exponential correlation decay.

A. Gaussian states as maximum entropy states

In this subsection, we show that fermionic Gaussian states are the maximum entropy states given the second moments of
fermionic operators. This in particular highlights that the state to which we show apparent local convergence has the character-
istic feature of generalized Gibbs ensembles (GGE) that it is the maximum entropy state given the expectation value of a set of
observables, being the second moments here.

Lemma 3 (Gaussian states as maximum entropy states). For a given correlation matrix γ ∈ C2V×2V ,

ρG = arg max
ρ

{S(ρ) : γ(ρ) = γ} , (40)

where the maximization is performed over all quantum states ρ and γ(ρ) denotes the correlation matrix of a state ρ.

Proof. This statement follows immediately from the positivity of the quantum relative entropy. For an arbitrary state ρ and the
Gaussian state ρG with the same correlation matrix, we have

0 ≤ S(ρ‖ρG) = −S(ρ)− tr(ρ log(ρG)). (41)

Since ρG is a Gaussian state, it can be written as ρG = eH for a suitable Hermitian operator H that is quadratic in the fermionic
basis operators, which means that

tr(ρ log(ρG)) = tr(ρG log(ρG)) = −S(ρG), (42)

from which the assertion follows.
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B. Clustering of correlations of Gaussified states

In this subsection we show that, given a state ρ that exhibits exponential clustering of correlation as defined in Definition 1, its
Gaussified version ρG inherits the exponential clustering of correlations with a changed scaling of the pre-factor with the support
of the considered operators. We prove this statement by means of Wick’s theorem, which connects higher to second moments
for general Gaussian states. Precisely, Wick’s theorem can be stated as follows.

Lemma 4 (Wick’s theorem [4]). A Gaussian state ρG fulfills

tr[
n∏

k=1

cikρG] = Pf(γc[i1, . . . , in]) , (43)

where

γc[i1, . . . , in]a,b =





tr(ciacibρG) for a < b,

− tr(cibciaρG) for b < a,

0 else.
(44)

Given a state with exponential clustering of correlations also its Gaussified version will show clustering of correlations in
following sense:

Lemma 5 (Weak clustering of correlations for Gaussified states). Let ρ be a state that exhibits exponential clustering of corre-
lations according to Definition 1 with constants CClust, ξ > 0, then for all operators A,B with ‖A‖ = ‖B‖ = 1 its Gaussified
version ρG satisfies

| tr(ρGAB)− tr(AρG) tr(B ρG)| ≤ CClust 4| supp(A)|+| supp(B)|(| supp(A)|+ | supp(B)|)| supp(A)|+| supp(B)|e− d(A,B)/ξ.
(45)

Proof. Note that we can assume without loss generality CCluste
− d(A,B)/ξ ≤ 1 as otherwise the trivial bound | tr(ρGAB) −

tr(AρG) tr(B ρG)| ≤ 2 concludes the proof.
We decompose a general operator supported on supp(A) and supp(B) as in Eq. (10) into the fermionic operator-basis

A =
∑

K⊂supp(A)

a(K)
∏

k∈K
ck (46)

and

B =
∑

J⊂supp(B)

b(J)
∏

j∈J
cj (47)

correspondingly. From ‖A‖ = 1 = ‖B‖ it follows that |a(K)| ≤ 1 and |b(J)| ≤ 1 for all J andK. Using the triangle inequality,
we can therefore write

| tr(ρGAB)− tr(AρG) tr(B ρG)| ≤ 2| supp(A)∪supp(B)| max
K⊂supp(A),
J⊂supp(B)

∣∣∣∣∣∣
tr(ρG

∏

k∈K
ck
∏

j∈J
cj)− tr(

∏

k∈K
ck ρG) tr(

∏

j∈J
cj ρG)

∣∣∣∣∣∣
.

(48)
Let J ′ and K ′ be the sets for which the maximum is attained. Wick’s theorem then allows us to write the expectation values in
terms of second moments

| tr(ρGAB)− tr(AρG) tr(B ρG)| ≤ 2| supp(A)∪supp(B)||Pf γc[(k)k∈K′ , (j)j∈J′ ]− Pf γc[(k)k∈K′ ] Pf γc[(j)j∈J′ ]|. (49)

From the definition of γc in Eq. (44) it follows that γc[(k)k∈K′ , (j)j∈J′ ] decomposes into blocks as follows

γc[(k)k∈K′ , (j)j∈J′ ] = γc[(k)k∈K′ ]⊕ γc[(j)j∈J′ ] +

(
0 E
−ET 0

)
. (50)

As E contains only second moments of which one operator is supported on supp(A) and the other on supp(B) we obtain from
the exponential clustering of correlations of ρ that |Ea,b| ≤ CCluste

− d(A,B)/ξ. Expanding therefore the Pfaffians in Eq. (49)
yields that each term either appears in both terms of the difference and cancels out or that it contains at least one element of E
as a factor. Counting the number of terms in the expansion of the Pfaffians gives that the sum contains

(2[| supp(A)|+ | supp(B)|]− 1)!! ≤ 2| supp(A)|+| supp(B)|(| supp(A)|+ | supp(B)|)| supp(A)|+| supp(B)| (51)

many terms which yields the final bound stated in the Lemma.
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IV. DETAILS OF THE PROOF OF THEOREM 1

In this appendix we provide all the details of the proof of our main result Theorem 1. We proceed as follows: In Section IV A
we bound the error introduced by truncating to the Lieb-Robinson cone. In Section IV B we introduce the necessary concepts
and notation to then in Section IV C bound the error made by factorizing expectation values into a products of local contributions
from different patches. In Section IV D we use the properties of delocalizing transport to show a bound on the remaining non-
Gaussian contributions to the expectation value. Finally, in Section IV E, we assemble all the parts of the proof and state a more
technical version of the main theorem.

A. Truncating to the Lieb-Robinson cone

We decompose a general operator supported in the region S according to Eq. (10). Without loss of generality we can assume
that A is normalized, i.e., ‖A‖ ≤ 1, which implies |a(J)| ≤ 1 and so in the following we concentrate on the individual terms of
the form given in Eq. (12). We will demonstrate that sums over time evolved fermionic operators in Eq. (12) can be truncated to
an enlarged Lieb-Robinson cone up to an error that decays exponentially with time. Rather than summing over all possible index
positions kj ∈ [2V ] it is then sufficient to only sum over positions inside this enlarged Lieb-Robinson cone. We will require the
following auxiliary lemma:

Lemma 6 (Norm bound on restricted sums of fermionic operators). Let I ⊂ [2V ] and W ∈ U(2V ) be unitary. Then for all
j ∈ [2V ]

∥∥∥∥
∑

kj∈I
Wj,kjckj

∥∥∥∥ ≤ 1 . (52)

Proof. The proof can be carried out with straightforward norm estimates and using the normalisation of the two-point correlator
γ. We begin with

∥∥∥∥∥∥
∑

kj∈I
Wj,kjckj

∥∥∥∥∥∥
= sup

|ψ〉
‖|ψ〉‖=1

〈ψ|
∑

rj∈I
W j,rjc

†
rj

∑

kj∈I
Wj,kjckj |ψ〉 = sup

|ψ〉
‖|ψ〉‖=1

∑

rj∈I

∑

kj∈I
W j,rj 〈ψ| c†rjckj |ψ〉Wj,kj . (53)

We now rewrite this as a matrix multiplication on the index space
∥∥∥∥∥∥
∑

kj∈I
Wj,kjckj

∥∥∥∥∥∥
≤ sup

γ
〈j|WPIγPIW

T |j〉 , (54)

where |j〉 is a vector on the index space, PI denotes the projector onto the interval I and γ denotes fermionic correlation matrices.
A straightforward norm estimate and using that ‖γ‖ ≤ 1, as every fermionic mode can be occupied by at most one particle, gives

∥∥∥∥∥∥
∑

kj∈I
Wj,kjckj

∥∥∥∥∥∥
≤ ‖W‖ ‖PI‖ ‖γ‖ ‖PI‖ ‖WT ‖ ≤ 1 , (55)

which concludes the proof.

As introduced in the main text, we then denote by d(A,B) the shortest distance between the supports supp(A), supp(B) of
two operators A and B. For k1, k2 ∈ [2V ] we then define the distance d(k1, k2) := d(ck1

, ck2
). Note that d defines only a

pseudometric on [2V ] as for k1, k2 ∈ [2V ] with ck1
= fs and ck2

= f†s we have k1 6= k2 but d(k1, k2) = 0.
Given a pseudometric, we define a ball around a set as follows.

Definition 1 (Ball around set). Given l > 0, a set M with pseudometric d and J ⊂M , we define the l-ball Bl(J) ⊂M around
J by

Bl(J) = {s ∈M : min
j∈J

d(j, s) ≤ l}. (56)

With this, we define an enlarged Lieb-Robinson cone around a set of indices J with radius (v + 2vε)|t| for some vε > 0 and
bound the error made by restricting sums of the form given in Eq. (12) to this widened Lieb-Robinson cone:
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Lemma 7 (Error made in restricting to widened Lieb-Robinson cone). Given a dL-dimensional cubic lattice system with a
quadratic Hamiltonian H that satisfies a Lieb-Robinson bound of the form given in Lemma 2 of the main text with parameters
CLR, µ, v > 0. Let vε > 0 and define for any set J ⊂ [2V ] the widened cone C(t) := B(v+2vε)|t|(J), then there exists a constant
C̃LR(dL), such that

∥∥∥∥
∑

(kj)j∈J /∈C(t)×|J|

∏

j∈J
Wj,kj (t) ckj

∥∥∥∥ ≤ C̃LR(dL)|J |2e−µvε|t| . (57)

Proof. We begin by splitting the sum according to whether the first index is inside the cone or not. All other indices are free if
kj1 is outside the cone, while at least one other index is outside the cone if kj1 lies in it. Using Lemma 6, we obtain

∥∥∥∥
∑

(kj)j∈J /∈C(t)×|J|

∏

j∈J
Wj,kj (t) ckj

∥∥∥∥ ≤
∥∥∥∥
∑

kj1 /∈C(t)
Wj1,kj1

(t) ckj1

∥∥∥∥
∥∥∥∥

∏

j∈J\{j1}
cj(t)

∥∥∥∥

+

∥∥∥∥
∑

kj1∈C(t)
Wj1,kj1

(t) ckj1

∥∥∥∥
∥∥∥∥

∑

(kj)j∈J\{j1} /∈C(t)×|J|−1

∏

j∈J\{j1}
Wj,kj (t) ckj

∥∥∥∥

≤
∥∥∥∥
∑

kj1 /∈C(t)
Wj1,kj1

(t) ckj1

∥∥∥∥+

∥∥∥∥
∑

(kj)j∈J\{j1} /∈C(t)×|J|−1

∏

j∈J\{j1}
Wj,kj (t) ckj

∥∥∥∥ . (58)

The first term in the above equation now, due to Lemma 2 of the main text , satisfies
∥∥∥∥
∑

kj1 /∈C(t)
Wj1,kj1

(t) ckj1

∥∥∥∥ ≤ CLR

V∑

l=(v+2vε) |t|
|Bl+1(J)\Bl(J)| eµ (v |t|−l)

≤ 2dL+1 dL |J |CLR eµ v |t|
∞∑

l=(v+2vε) |t|
ldL−1 e−µ l , (59)

where we have used that the number |Bl+1(J)\Bl(J)| of points in the surface of a cone with radius l around J in a cubic lattice
is bounded by 4 dL |J | (2l)dL−1. Shifting the limits of the sum then yields

∥∥∥∥
∑

kj1 /∈C(t)
Wj1,kj1

(t) ckj1

∥∥∥∥ ≤ e−µ vε |t| |J | 2dL+1 dL CLR

∞∑

l=0

(l + (v + 2vε)|t|)dL−1
e−µ (l+vε|t|) . (60)

We now define the time independent constant

C̃LR(dL) := sup
t∈R+

2dL+1 dL CLR

∞∑

l=0

(l + (v + 2vε)|t|)dL−1
e−µ (l+vε|t|) (61)

which can be written in terms so of the Hurwitz-Lerch-Phi function Φ (also known as Lerch transcendent)

C̃LR(dL) := sup
t∈R+

2dL+1 dL CLR Φ(e−µ, 1− dL, (v + 2vε)|t|)e−µvε|t| . (62)

Inserting the estimate into Eq. (58) and iteratively using the resulting inequality |J |-times gives the result as stated.
As argued above, the constant is directly related to the Hurwitz-Lerch-Phi function and can easily be explicitly evaluated for

physical dimensions dL = 1, 2, 3. In one dimension, the constant takes the form

C̃LR(1) = 4CLR
1

1− e−µ
. (63)

B. Partitions: Tracking indices on the lattice

Using the result of Lemma 7 we can restrict the time evolution in Eq. (12) to the Lieb-Robinson cone at the cost of an
exponentially suppressed error term. In this section we therefore look at

ALRJ (t) :=
∑

(kj)j∈J∈C(t)×|J|

(∏

j∈J
Wj,kj (t) ckj

)
, (64)
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k1 k7 k2 k5

cluster

exclusion region I

∆

k3 k6

pair

k4 k8

pair

Figure 1. Illustration of a ∆-partition of a given index configuration with ∆ = 3 and J = {1, . . . , 8}. To the above configuration of the
indices k1, . . . k8 we associate the ∆-partition {{1, 2, 5, 7}, {3, 6}, {4, 8}} such that a patch of size four (a cluster) and two patches of size
two (pairs) are formed. Around each patch exists an buffer region (shaded nodes) which separates different patches. For a given ∆-partition
P we obtain all possible index configurations in KM

P by placing the patches iteratively. A placed patch will hereby create an exclusion region
consisting of the patch itself and the buffer region around it in which no further patch can be placed.

the restriction of a term of the form Eq. (12) to the widened Lieb-Robinson cone C(t) = B(v+2vε)|t|(J). By grouping summands
according to how close the respective indices kj are on the lattice we will rewrite ALRJ (t) as a sum over partitions of the sub-
index set J . This will later allow us to factorize certain expectation values using the exponential decay of correlations in the
initial state.

We start by introducing some notation. Given a finite non-empty set J , a partition P of J is a set of non-empty subsets
(patches) of J , whose union is J , i.e., P :=

⋃
p∈P p = J . We denote by πm(P ) := {p ∈ P : |p| = m} the subset of all patches

in a partition with a given size m and by π>m(P ) = {p ∈ P : |p| > m} that of all patches with size larger than m. We refer
to patches of size two as pairs and patches of size at least four as clusters. Partitions will be called even, if all patches in it have
an even size. We further denote by P(J) = {P : P partition of J} the set of all partitions of J , and by Pm(J) and P>m(J) the
sets of all partitions into patches of size exactly equal to, or larger than m, respectively. Given two partitions P,Q of the set J
we say that Q is a coarsening of P and write Q > P if ∀p ∈ P ∃q ∈ Q : p ⊂ q and P 6= Q.

Next we introduce the notion of a ∆-partition of the sub-index set J . To each configuration of indices (kj)j∈J , we assign a
unique partition P of the subindices j such that all indices (kj)j∈p with subindices that lie within one set p of the partition are
connected by a path of steps with maximal length ∆ and all indices kj corresponding to subindices in two different sets of the
partition lie more than a distance ∆ apart.

Definition 2 (∆-partition). Given a distance ∆ > 0, a finite set J ⊂ N, a finite set M equipped with a pseudometric d, and a
sequence of elements (kj)j∈J ∈M×|J|. We define the ∆-partition P∆(J, (kj)j∈J) to be the unique partition of J which fulfills
(1) Each set in the partition is path connected by hops of length at most ∆ in the sense that

∀p ∈ P∆(J, (kj)j∈J) : ∀x, y ∈ p∃z1, . . . , zN ∈ p : x = z1, y = zN ∧ ∀i ∈ [N − 1] : d(kzi , kzi+1
) ≤ ∆. (65)

(2) The different patches in the partition are separated by a distance larger than ∆ in the sense that

∀p 6= q ∈ P∆(J, (kj)j∈J) : ∀x ∈ p, y ∈ q : d(kx, ky) > ∆. (66)

In addition, we define a compact notation for index configurations distributed over the lattice such that their ∆-partition agrees
with a given partition P .

Definition 3 (Index sets respecting ∆-partitions). Given a distance ∆ > 0, the set [2V ] of all sites on the lattice equipped with
a pseudometric d, a sub-index set M ⊂ [2V ], and a partition P ∈ P(J). We denote the set of sequences contained in M whose
∆ partitions is equal to P by

KMP := {(kj)j∈P ∈M×|P | : P∆(P , (kj)j∈P ) = P}. (67)

The notation introduced above allows us to rewrite the sum over the indices (kj)j∈J in Eq. (64) inside the cone by sorting
them according to their associated ∆-partition.

ALRJ (t) =
∑

(kj)j∈J∈C(t)×|J|

(∏

j∈J
Wj,kj (t) ckj

)
=

∑

P∈P(J)

∑

(kj)j∈J∈KC(t)P

∏

j∈J
Wj,kj (t) ckj

=
∑

P∈P(J)

sign(P )
∑

(kj)j∈J∈KC(t)P

∏

p∈P
P̂ (kj)j∈p
p , (68)

where for each p ∈ P we have introduced a patch operator P̂ (kj)j∈p
p , defined by

P̂ (kj)j∈p
p =

∏

j∈p
Wj,kj (t)ckj . (69)

The sign(P ) denotes the sign picked up from reordering the fermionic basis operators into the corresponding patches, where
keeping the relative order of the operators inside each patch fix.
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C. Factorizing expectation values

In the last section, we have developed the formalism to group indices on the lattice according to their distribution on the
lattice and introduced the patch operators P̂ (kj)j∈p

p . We now use the exponential clustering of correlations in the initial state to
show that expectation values of products of such patch operators can be factorized into a product of expectation values of the
individual patch operators up to a small error.

Lemma 8 (Factorizing expectation values in states with exponential clustering of correlations). Let ρ be a state that exhibits
exponential clustering of correlations as defined in Definition 1 with system size independent parameters CClust, ξ > 0. Let
J ⊂ [2V ] and P ∈ P(J) be a partition of J . Then for any distance ∆ > 0 it holds that

∑

(kj)j∈J∈KC(t)P

∣∣∣∣∣∣

〈∏

p∈P
P̂ (kj)j∈p
p

〉

ρ

−
∏

p∈P
〈P̂ (kj)j∈p
p 〉ρ

∣∣∣∣∣∣
≤ |J |3 CClust |C(t)||J|e−∆/ξ . (70)

Proof. We begin by factorizing out the contribution from the first patch p1 ∈ P . Using Lemma 6 and the exponential clustering
of the initial state, we find for a given (kj)j∈J ∈ KC(t)P

∣∣∣∣∣∣

〈∏

p∈P
P̂ (kj)j∈p
p

〉

ρ

− 〈P̂ (kj)j∈p1
p1 〉ρ

〈 ∏

p∈P\{p1}
P̂ (kj)j∈p
p

〉

ρ

∣∣∣∣∣∣
≤ |p1| |P \ p1|CClust e−∆/ξ . (71)

Using the trivial bound |p1| |P \ p1| ≤ |J |2, iterating the step above |P | ≤ |J | times and using that |KC(t)P | ≤ |C(t)||J| yields the
result as stated.

From Lemma 5 follows that the same theorem applies to the Gaussified version of a state exhibiting clustering of correlations
if we allow CClust to scale with the size of the support according to CClust → CClust4

|J||J ||J|.

D. Suppression of non-Gaussian contributions

In the last two sections we have bounded the error made in approximating expectation values of terms of the from given in
Eq. (12) by certain sums of products of expectation values of patch operators. This allows us to bound the difference between
the left and right hand side of

tr[A(t) ρ)− tr(A(t) ρG] ≈
∑

J⊂S̃
a(J)

∑

P∈P(J)

sign(P )
∑

(kj)j∈J∈KC(t)P


∏

p∈P
〈P̂ (kj)j∈p
p 〉ρ −

∏

p∈P
〈P̂ (kj)j∈p
p 〉ρG


 . (72)

It is obvious that to the right hand side only partitions P in which all patches p are of even size can contribute, as ρ and ρG have
an even particle number parity. Moreover, as the second moments of ρ and ρG are equal by definition, the difference between
the products also vanishes whenever all patches have size exactly 2. Hence, every contributing term contains at least one patch
of size at least 4. In the remainder of this section we now bound the contribution of such partitions to the right hand side of the
above equation. The combinatorial nature of the problem makes this a tedious endeavor. The final result is summarized in the
following lemma, which is the last result that we need before we can assemble all the parts of the proof in Section IV E.

Lemma 9 (Bounding contributions from partitions that contain large patches). Let ρ be a state exhibiting exponential clustering
of correlations as defined in Definition 1 with system size independent parameters CClust, ξ > 0 and ρG its Gaussified version.
Let ∆ ≥ 1, J ⊂ [2V ], and P ∈ P(J) be an even partition that contains a patch of size at least four (cluster), and m := |π2(P )|
many patches of size two (pairs). Given that the time evolution of the system is governed by a Hamiltonian showing delocalizing
transport as defined in Definition 2 with parameters CTrans, αTrans, for all t ∈ (0,min(tRec, V )] and σ ∈ {ρ, ρG} it holds that

RP (J,m, t) :=

∣∣∣∣∣∣∣

∑

(kj)j∈J∈KC(t)P

∏

p∈P
〈P̂ (kj)j∈p
p 〉σ

∣∣∣∣∣∣∣
(73)

≤ (|C(t)|1/4CTranst
−αTrans22dL |J |dL∆dL)|J|−2m

×


(1 + CClust|C(t)|2e−∆/ξ) + 22dL|J||J |(dL+1)|J|+1

|J|/2∑

r=0

(|C(t)|1/4CTranst
−αTrans∆dL)2r+4



m

.
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Proof. In order to prove the above bound we separate the partition into a part containing only pairs and one containing the rest

P = π2(P ) ∪ π>2(P ) . (74)

For every given fixed position of the indices corresponding to clusters in π>2(P ), the indices corresponding to the pairs are
restricted to the set K := C(t) \ B∆({kj}j∈π>2(P )

), as all patches are separated by a distance larger than ∆. Thus, we can write

RP (J,m, t) =

∣∣∣∣∣∣∣∣∣∣

∑

(kj)j∈π>2(P )
∈KC(t)

π>2(P )





 ∏

p∈π>2(P )

〈P̂ (kj)j∈p
p 〉σ


 ∑

(kj)j∈π2(P )
∈KKπ2(P ),

K:=C(t)\B∆({kj}j∈π>2(P )
)

∏

p∈π2(P )

〈P̂ (kj)j∈p
p 〉σ




∣∣∣∣∣∣∣∣∣∣

. (75)

The homogeneous suppression due to delocalizing transport for t ∈ (0,min(tRec, V )] and |π>2(P )| = |J | − 2m imply

∥∥∥∥∥∥
∏

p∈π>2(P )

P̂ (kj)j∈p
p

∥∥∥∥∥∥
≤ (CTranst

−αTrans)|J|−2m . (76)

Using this and the triangle inequality for the first sum in Eq. (75) we arrive at

RP (J,m, t) ≤ (CTranst
−αTrans)|J|−2m

∑

(kj)j∈π>2(P )
∈KC(t)

π>2(P )

∣∣∣∣∣∣∣∣∣∣

∑

(kj)j∈π2(P )
∈KKπ2(P ),

K=C(t)\B∆({kj}j∈π>2(P )
)

∏

p∈π2(P )

〈P̂ (kj)j∈p
p 〉σ

∣∣∣∣∣∣∣∣∣∣

. (77)

At this point, the inner sum still depends on the position of the clusters, as they create an exclusion region for the pairs (see
Fig. 1). Taking the supremum over such exclusion regions decouples the sum. Then bounding the possible number of positions
of the |J | − 2m indices in the |π>2(P )| clusters by

|KC(t)π>2(P )| ≤ |C(t)||π>2P |(22dL |J |dL∆dL)|J|−2m , (78)

gives

RP (J,m, t) ≤ |C(t)||π>2(P )|(CTranst
−αTrans22dL |J |dL∆dL)|J|−2m max

I⊂C(t)

∣∣∣∣∣∣∣

∑

(kj)j∈π2(P )
∈KC(t)\I

π2(P )

∏

p∈π2(P )

〈P̂ (kj)j∈p
p 〉σ

∣∣∣∣∣∣∣
(79)

≤ (|C(t)|1/4CTranst
−αTrans22dL |J |dL∆dL)|J|−2m max

M⊂J:|M |=2m
max
I⊂C(t),
P∈P2(M)

∣∣∣∣∣∣∣

∑

(kj)j∈M∈KC(t)\IP

∏

p∈P
〈P̂ (kj)j∈p
p 〉σ

∣∣∣∣∣∣∣
. (80)

We now define

f(m, t) := max
M⊂J:|M |=2m

max
I⊂C(t),
P∈P2(M)

∣∣∣∣∣∣∣

∑

(kj)j∈M∈KC(t)\IP

∏

p∈P
〈P̂ (kj)j∈p
p 〉σ

∣∣∣∣∣∣∣
(81)

and apply an recursive argument to achieve a bound of the form

f(m, t) ≤ C(m, t) . (82)
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a. Start of recursion: For the case of one pair (m = 1), by using Lemma 6, we can bound the appearing maximum as
follows

f(1, t) = max
M⊂J:|M |=2

max
I⊂C(t)

∣∣∣∣∣∣∣

∑

(kj)j∈M∈KC(t)\I{M}

〈P̂ (kj)j∈M
M 〉σ

∣∣∣∣∣∣∣
= max
M⊂J:|M |=2

max
I⊂C(t)

∣∣∣∣∣∣∣∣∣∣∣

∑

kl1 ,kl2∈C(t)\I,
{l1,l2}=M :

d(kl1 ,kl2 )≤∆

〈P̂ (kj)j∈M
M 〉σ

∣∣∣∣∣∣∣∣∣∣∣

(83)

≤ max
M⊂J:|M |=2

max
I⊂C(t)




∣∣∣∣∣∣∣∣

∑

kl1 ,kl2∈C(t)\I,
{l1,l2}=M

〈P̂ (kj)j∈M
M 〉σ

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣

∑

kl1 ,kl2∈C(t)\I,
{l1,l2}=M :

d(kl1 ,kl2 )>∆

〈P̂ (kj)j∈M
M 〉σ

∣∣∣∣∣∣∣∣∣∣∣




≤ max
M⊂J:|M |=2

max
I⊂C(t)

(1 + |C(t)|2CCluste
−∆/ξ) (84)

=1 + |C(t)|2CCluste
−∆/ξ . (85)

With this, we can move to setting up the recursion.

b. Setting up the recursion: To obtain a recursion formula for an upper bound C(m, t) on f(m, t) we now relax the
condition that different pairs may not occupy close-by lattice regions. If we drop this constraint, the only remaining constraint
is that paired indices kl and kl′ lie close to each other, i.e. d(kl, kl′) ≤ ∆. For any set M ⊂ J with |M | = 2m, set I ⊂ C(t),
P ∈ P2(M) Eq. (85) yields directly

∣∣∣∣∣∣∣

∏

p∈P

∑

(kj)j∈p∈KC(t)\I{p}

〈P̂ (kj)j∈p
p 〉σ

∣∣∣∣∣∣∣
≤ (1 + CClust|C(t)|2e−∆/ξ)m. (86)

This leaves us with controlling the difference between the constrained and unconstrained pairs and yields

f(m, t) ≤
(

1 + |C(t)|2CCluste
−∆/ξ

)m
+ max
M⊂J:|M |=2m

max
I⊂C(t),
P∈P2(M)

g(M,P, I), (87)

g(M,P, I) :=

∣∣∣∣∣∣∣

∑

(kj)j∈M∈KC(t)\IP

∏

p∈P
〈P̂ (kj)j∈p
p 〉σ −

∏

p∈P

∑

(kj)j∈p∈KC(t)\I{p}

〈P̂ (kj)j∈p
p 〉σ

∣∣∣∣∣∣∣
. (88)

In order to get the error under control, we need the notion of a coarsening of a partition defined above [5]. The key insight here
is that the above difference between constrained and unconstrained pairs can be captured by considering all possible coarsening
of the partition P

g(M,P, I) =

∣∣∣∣∣∣∣∣∣∣

∑

Q∈P(M):
Q>P

∑

(kj)j∈M∈KC(t)\IQ :

∀{l,l′}∈P :d(kl,kl′ )≤∆

∏

p∈P
〈P̂ (kj)j∈p
p 〉σ

∣∣∣∣∣∣∣∣∣∣

≤
m−2∑

w=0

∑

Q∈P(M):
Q>P,|π2(Q)|=w

∣∣∣∣∣∣∣∣∣∣

∑

(kj)j∈M∈KC(t)\IQ :

∀{l,l′}∈P :d(kl,kl′ )≤∆

∏

p∈P
〈P̂ (kj)j∈p
p 〉σ

∣∣∣∣∣∣∣∣∣∣

,

(89)

where we have applied the triangle inequality and sorted the coarsenings by the numbers of pairs w they have. This is almost
the original expression RP (J,m, t) which this lemma is trying to bound, with the exception that there is still a signature left of
the fact that the clusters were created by joining pairs, such that consecutive indices have to be at most distance ∆ apart in the
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cluster. Following the same steps as above, one can show that

g(M,P, I) ≤
m−2∑

w=0

∑

Q∈P(M):
Q>P,|π2(Q)|=w

∣∣∣∣∣∣∣∣∣∣

∑

(kj)j∈M∈KC(t)\IQ :

∀{l,l′}∈P :d(kl,kl′ )≤∆

∏

p∈P
〈P̂ (kj)j∈p
p 〉σ

∣∣∣∣∣∣∣∣∣∣

≤
m−2∑

w=0

∑

Q∈P(M):
Q>P,|π2(Q)|=w

(CTranst
−αTrans)2m−2w

∑

(kj)j∈π>2(P )
∈KC(t)

π>2(P )

∀{l,l′}∈P :d(kl,kl′ )≤∆

∣∣∣∣∣∣∣∣∣∣

∑

(kj)j∈π2(P )
∈KKπ2(P ),

K=C(t)\B∆({kj}j∈π>2(P )
)

∏

p∈π2(P )

〈P̂ (kj)j∈p
p 〉σ




≤
m−2∑

w=0

(2m)2m(|C(t)|1/4CTranst
−αTrans22dL |J |dL∆dL)2m−2wf(w, t) , (90)

where we used that for a finite set M , we can upper bound the number of partitions of this set by |P(M)| ≤ |M ||M |. Thus we
obtain for the function f(m, t) the following upper bound

f(m, t) ≤
(

1 + |C(t)|2CCluste
−∆/ξ

)m
+
m−2∑

w=0

|J ||J|(|C(t)|1/4CTranst
−αTrans22dL |J |dL∆dL)2m−2wf(w, t) (91)

≤
(

1 + |C(t)|2CCluste
−∆/ξ

)m
+ 22dL|J||J |(dL+1)|J|

m−2∑

w=0

(|C(t)|1/4CTranst
−αTrans∆dL)2m−2wf(w, t)

≤
(

1 + |C(t)|2CCluste
−∆/ξ

)m
+ 22dL|J||J |(dL+1)|J|

|J|/2∑

r=0

(|C(t)|1/4CTranst
−αTrans∆dL)2r+4

m−2∑

w=0

f(w, t)

≤ αm + δ
m−1∑

w=0

C(w, t) =: C(m, t) ,

where we overestimated by introducing the sum over r and adding the m − 1 term to the second sum and have introduced the
abbreviations

α = (1 + CClust|C(t)|2e−∆/ξ), (92)

δ = 22dL|J||J |(dL+1)|J|
|J|/2∑

r=0

(|C(t)|1/4CTranst
−αTrans∆dL)2r+4 . (93)

By now setting

C(0, t) := f(0, t) = 1, (94)
C(1, t) := α+ δ ≥ α ≥ f(1, t), (95)

∀m ≥ 1 : C(m, t) = αm + δ
m−1∑

w=0

C(w, t), (96)

we have a recursively defined upper bound C(m, t) on f(m, t).
c. Solving the recursion: To resolve the recursion, we first show that

αC(m, t) ≤ C(m+ 1, t) , (97)

by relying on an induction. To begin with, we have

αC(0, t) = α ≤ α+ δ = C(1, t) . (98)
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For the induction step, we use

αC(m, t) = αm+1 + δ
m−1∑

w=0

αC(w, t) (99)

≤ αm+1 + δ

m−1∑

w=0

C(w + 1, t) (100)

≤ αm+1 + δ
m∑

w=0

C(w, t) = C(m+ 1, t) , (101)

where we used the induction when moving from the first to the second line by relying on the fact that the sum only goes until
w = m−1 and we added δC(0, t) > 0 in the last line. From this, we immediately know thatC(m, t) is monotonically increasing
as a function of m, since α ≥ 1. This implies

C(m, t) ≤ αC(m, t) ≤ C(m+ 1, t) . (102)

This allows us to resolve the recursion by iteratively using this estimate as follows

C(m, t) = αm + δ
m−1∑

w=0

C(w, t) (103)

≤ αm + (m− 1)δC(m− 1, t)

≤
m∑

j=0

αm−jδj
m!

(m− j)!

≤
m∑

j=0

αm−jδj
m!

(m− j)!
|J |j
j!

= (α+ |J |δ)m.

For f(m, t), we hence obtain

f(m, t) ≤ (α+ |J |δ)m (104)

=


(1 + CClust|C(t)|2e−∆/ξ) + |J |22dL|J||J |(dL+1)|J|

|J|/2∑

r=0

(|C(t)|1/4CTranst
−αTrans∆dL)2r+4



m

and for the original quantity considered in this lemma, this yields

RP (J,m, t) ≤ (|C(t)|1/4CTranst
−αTrans22dL |J |dL∆dL)|J|−2m (105)

×


(1 + CClust|C(t)|2e−∆/ξ) + |J |22dL|J||J |(dL+1)|J|

|J|/2∑

r=0

(|C(t)|1/4CTranst
−αTrans∆dL)2r+4



m

,

which concludes the proof.

E. Overview of the proof of Theorem 1

Collecting all the results of the preceding sub-sections, we can now proof the following result, which directly implies theorem
1 in the main text.

Theorem (Gaussification in finite time). Let CClust, ξ, CTrans > 0. Consider a family of systems on dL-dimensional cubic
lattices of increasing volume V and let S be some fixed finite region of sites and αTrans > dL/4. Let the corresponding initial
states exhibit exponential clustering of correlations with constant CClust and correlation length ξ. Let the Hamiltonians of these
systems be quadratic finite range and let them exhibit delocalizing transport with constants CTrans and αTrans and a recurrence
time tRec increasing unboundedly as some function of the volume V . Then for any ε > 0 there exists a relaxation time tRelax > 0
independent of the system size such that for all t ∈ [tRelax, tRec] it holds that ‖ρS(t)− ρSG(t)‖1 ≤ ε.
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Proof. To begin with we rewrite the one-norm as

‖ρS(t)− ρSG(t)‖1 = sup
A∈AS

tr (A(t)(ρ− ρG)) , (106)

and expand the operator A in the basis of fermionic operators

A(t) =

1∑

b1,...,b2|S|=0

ab1,··· ,b2|S| cs1(t)b1 . . . cs2|S|(t)
b2|S| . (107)

Normalization of the operator ‖A‖ = 1 implies that all of the 22|S| coefficients satisfy |ab1,··· ,b2m | ≤ 1, thus

‖ρS(t)− ρSG(t)‖1 ≤ 22|S|max
J⊂S̃

∣∣∣∣tr
(∏

j∈J
cj(t) (ρ− ρG)

)∣∣∣∣ (108)

≤ 22|S|max
J⊂S̃

∣∣∣∣
∑

(kj)j∈J∈[2V ]×|J|

tr

(∏

j∈J
Wj,kj (t) ckj (ρ− ρG)

)∣∣∣∣ .

Using the Lieb-Robinson bound stated in Lemma 7, we can restrict the sum in the right hand side of the previous inequality to
the Lieb-Robinson cone C(t). This leads to an error term that is exponentially suppressed in time t and we obtain

‖ρS(t)− ρSG(t)‖1 ≤ 22|S|max
J⊂S̃

(∣∣∣∣
∑

(kj)j∈J∈[C(t)]×|J|
tr

(∏

j∈J
Wj,kj (t) ckj (ρ− ρG)

)∣∣∣∣+ 2C̃LR(dL)|J |2e−µvε|t|
)
. (109)

We now reorder the terms in the sum according to how the indices kj are distributed on the lattice. To that end, in Section IV B,
we have introduced the concept of a ∆-partition. We turn the sum into a sum over all possible partitions P(J) and then, for each
partition P ∈ P(J), sum over all possible ways KC(t)P to distributed the indices over the lattice whose ∆-partition coincides
with that given partition P . Partitions consist of patches and we collect the factors Wj,kj (t) ckj from the product over j ∈ J into

patch operators P̂ (kj)j∈p
p for each patch p, as defined in Eq. (69). Together with the triangle inequality this yields

‖ρS(t)− ρSG(t)‖1 ≤ 22|S|max
J⊂S̃

( ∑

P∈P(J)

∣∣∣∣
∑

(kj)j∈J∈KC(t)P

(
〈
∏

p∈P
P̂ (kj)j∈p
p 〉ρ − 〈

∏

p∈P
P̂ (kj)j∈p
p 〉ρG

)∣∣∣∣+ 2C̃LR(dL)|J |2e−µvε|t|
)
.

(110)
Lemma 8 allows us to factor the expectation values with respect to ρ and using Lemma 5 its Gaussified version ρG into products
of expectation values of the individual patch operators. This leads to an additional error term that grows polynomially with the
size of the cone, but is exponentially suppressed in the minimal patch distance ∆, so that we get

‖ρS(t)− ρSG(t)‖1 ≤ 22|S|max
J⊂S̃

( ∑

P∈P(J)

∣∣∣∣
∑

(kj)j∈J∈KC(t)P

(∏

p∈P
〈P̂ (kj)j∈p
p 〉ρ −

∏

p∈P
〈P̂ (kj)j∈p
p 〉ρG

)∣∣∣∣

+ (1 + 22|J||J ||J|)|J ||J|+3CClust|C(t)||J|e−∆/ξ + 2C̃LR(dL)|J |2e−µvε|t|
)
.

(111)

It is now apparent that partitions that contain at least one patch of odd size do not contribute to the sum as then the corresponding
patch operator does not fulfill the parity super-selection rule. Likewise, partitions that contain only patches of size two do not
contribute, as the expectation values of their patch operators are the same in ρ and ρG. It remains to bound the contribution
from the remaining partitions. For these we cannot use cancellations between the parts coming from ρ and those coming from
ρG, but instead bound them in absolute value. All these partitions contain at least one cluster of size at least four, which
allows us to bound the corresponding term from the homogeneous suppression of the elements of the propagator implied by the
delocalizing transport (see Definition 2). Doing this explicitly is tedious because of the interplay of contributions from the larger
patches and those of size two, and the involved combinatorics of how the smaller patches can be distributed on the lattice. All
this is done by first ordering contributions according to the number m of patches of size two they contain and then applying
Lemma 9, which internally uses a recursive argument. It yields an upper bound on the absolute value of sums of the form∑

(kj)j∈J∈KC(t)P

∏
p∈P
〈P̂ (kj)j∈p
p 〉ρ that grows with ∆ but is algebraically suppressed with time t. Assuming ∆ ≥ 1 this yields for
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t ≤ min(tRec, V ) the following bound

‖ρS(t)− ρSG(t)‖1 ≤ 22|S|
[
22|S|+1|S|2|S|

|S|∑

m=0

(23dL |S|dL |C(t)|1/4CTranst
−αTrans∆dL)2m+4

(
1 + CClust|C(t)|2e−∆/ξ

+ 22(3dL+1)|S|+1|S|2|S|(dL+1)+1

|S|∑

r=0

(|C(t)|1/4CTranst
−αTrans∆dL)2r+4

)|S|

+ 8C̃LR(dL)|S|2e−µvε|t| + 28|S|+4|S|4|S|+3CClust|C(t)|2|S|e−∆/ξ

]
.

(112)

Recalling that |C(t)| ≤ 2|S|[2(v + 2vε)t + 1]dL and setting vε = v one realizes that by letting ∆ grow in a suitable way
with t, all terms are at least algebraically suppressed in t. More precisely, this happens for all ∆ = max(1, tν/4dL) with
0 < ν < 4αTrans− dL. For large enough times the bound is then dominated by a power-law originating from the m = 0 term of
the first sum. Eq. (112) in particular implies that there exists a constantCTotal that depends on ν, |S|, and the physical parameters
of the Hamiltonian and initial state, but that is independent of the size of the total system, such that for all t ≤ min(tRec, V )

‖ρS(t)− ρSG(t)‖1 ≤ CTotal t
−4αTrans+dL+ν . (113)

Moreover, for every ε there exists a critical system size from which on the bound above becomes smaller than that ε for a suitable
relaxation time tRelax ≤ min(tRec, V ). The saturation of the delocalizing transport once t is equal to V implies a minimal value
that bound can achieve for any given V . This sets the minimal system size for which tRelax < tRec.
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3
E Q U I L I B R A T I O N T O W A R D S G E N E R A L I Z E D G I B B S E N S E M B L E S I N
N O N - I N T E R A C T I N G T H E O R I E S

The previous chapter presented a step towards establishing a general derivation of equilibration in closed quantum
systems. However, it also left certain questions unresolved which we will address here, at the same time showing
how their answer amounts to essentially the completion of the research programme on equilibration dynamics
following an interaction quench.

We will show that short-range translation invariant non-interacting Hamiltonians on a ring lead to coherent
mixing that features the delocalizing transport property which we have previously identified to be the cornerstone
of the Gaussification mechanism. In fact, for these models this property can be viewed as facilitating a notion of
ergodicity matching the classical definition. Roughly, in a classical gas one would speak of ergodicity if the particles
explore the whole available phase space which may be constrained, e.g., by the conserved energy shell. One way
to interpret our result is that we achieve precisely that. The notion of phase space in quantum systems can take
up various meanings depending on the context and it is beyond the scope of this work to facilitate a notion of
ergodicity that matches all diverse settings that one would view as being ‘ergodic’ [134]. However for Gaussian
systems, which are the focus of this chapter by virtue of the Gaussification theorem presented in the previous
chapter, it is possible to have an intuition of what a notion of ergodicity should entail. First of all for Gaussian
systems we should focus on second moments and the coupling matrix parametrizing the quadratic Hamiltonian in
question. It is sometimes preferred to refer to working with Gaussian systems as single particle problems which
stresses that the unitary evolution on the entire state is specified by the Green functions that would describe a
single particle in the system and in the presence of more particles in the system there is only coherent mixing of the
individual evolutions of particles not conditioned on the dynamics of the other particles. Hence, it seems instructive
to focus on the properties of a single particle Green function that hint towards a notion of ergodicity. As the paper
describes, for a lattice system the entries of single particle Green functions provably decay as a power law in time
everywhere in space. That means that particles have to necessarily spread in space over time, i.e., even if in the
beginning the particle was localized at a single lattice site over time then due to the coherent quantum evolution
the particle behaves more as a dispersing wave packet than a well-defined particle localized in space and for long
times one cannot tell where the particle was in the beginning once the wave-packet spreads across the entire system.
When this happens we can conclude that the particle has explored its whole available space uniformly and as all
the particles do the same we see that the system is an example of an ergodic system where all particles become
uniformly distributed in the system over time.

On the technical side we prove rigorously that such spreading of wave-packets occurs for short-range translation
invariant models on a lattice. Here the lattice appears to play an interesting role ensuring that even if some parts of
the dispersion relation are approximately linear then there necessarily must also be parts which are non-linear. It
is this latter part of the spectrum that is shown to lead to the dispersion of wave-packets. While this property
is usually argued by the so-called stationary phase approximation we have employed techniques developed in
analytical number theory that may be of interest in their own right as our bound allowed us to tackle evolution
times that cannot be directly studied by asymptotic expansions. This is because the stationary phase approximation
is usually employed by relating the lattice problem to integrals but at late times the oscillations become too rapid
and the error committed by linking to integral expressions does not seem to admit a simple bound. In contrast by
working exclusively in the lattice we were in a position to derive a result valid for extensively long times.

Secondly, we will discuss in great detail how non-translation invariant initial conditions come to equilibrate
under translation-invariant Hamiltonians. This leads to a comprehensive understanding of counter-examples to
equilibration, essentially due to the absence of spectral non-linearities and hence slow dephasing. Here, we uncover
that viewing the covariance matrix in momentum space is crucial and show that in this formulation it is possible
to identify which states will equilibrate rapidly. Specifically, we want that the long wave-length components of the
current or density distributions in the system are not populated. Initial correlations at all other wave-lengths are
not constrained by our assumptions and will dephase towards a steady-state so there is a lot of freedom of freely
choosing the initial configurations only to find by means of our theorem that the system will equilibrate. Such
independence of initial conditions is a hallmark feature of statistical mechanics.
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Finally, we also contribute interesting insights to the general question concerning the question with conserved
charges are relevant for parametrizing a generalized Gibbs ensemble? Clearly any projector |Ek 〉 〈Ek | onto a many-
body eigenstate of the quench Hamiltonian is a conserved quantity. As there are exponentially many in the system
size and they are non-local, such charges should be discarded by some physical argument. Moreover, even in
the context of Gaussian systems, there are many non-local conserved quantities. For example for a translation
invariant Hamiltonian the number operators of the momentum eigenmodes are not local and are made up of a sum
over terms ranging over the whole system. We give evidence that it is enough to consider conserved quantities
expressed in terms of local terms, whose range cannot substantially exceed the finite correlation length in the
initial system. This in particular renders the generalized Gibbs ensembles, that we prove to be the equilibrium
ensembles, to be only a slight generalization of ordinary Gibbs ensembles: They are again parametrized by local
generalized thermodynamical potentials and there is only a small (intensive) number of them. If one wishes to
not be conservative about the notion of thermal ensembles, e.g., positing that the state be thermal with respect
to the Hamiltonian governing the dynamics, then the equilibrium ensembles that we uncover could be viewed
as thermal. Indeed, historically in order to accommodate systems exchanging particle numbers grand canonical
ensembles parametrized by the chemical potential in addition to the temperature have been considered. Our work
shows the necessity of bringing such generalizations one step further due to precisely quantifiable memory effects.
However, the number of new thermodynamical potentials is intensive so this step is in a way a natural adjustment
of the thermodynamical description rather than a complete overhaul. Thus rather than viewing the generalized
Gibbs ensembles to be exotic one could also conceivably view the equilibrium ensembles that we characterize as
constituting a thermodynamical framework for the system after relaxation. In that sense we once more come to
realize how marvelously flexible the thermodynamic framework turns out to be.

The work presented has reached a certain breadth and it is essentially possible to give a conclusive answer to
specific questions of equilibration in the setting at hand. We find that it is not necessary to know the specific
values of the initial correlations or of the couplings in the model and as long as our general physical assumptions
are fulfilled we can rigorously bound the extent of fluctuations away from equilibrium proving that they are small
and decay towards zero in time. At the same time, precisely the observations that allow us to characterize when
equilibration does or does not occur allow to pose new exciting directions of future research about the dynamics of
systems that are on the verge of not equilibrating.

3.1 formulation of the problem

Following up on the work presented in the previous chapter our challenge was: Prove Gaussification and equilibra-
tion after an interaction quench based on physical properties only. Again one needs to be cautious about possible
pitfalls when tackling this problem. Firstly, when relying on physical properties such as finite correlation length of
the initial state or translation invariance of the quench Hamiltonian one does not work with a particular system but
in a way tackles a whole class of models and initial configurations in a single analytical argument. Hence, while it is
instructive to consider numerical examples one has to be careful to appropriately generalize the effects observed in
calculations and formulate them as conjectures that then can be proven analytically. As the paper will demonstrate
there are various counter-examples to equilibration even if Gaussification occurs. Intuitively, if the system is ini-
tialized with a distribution of particles involving eigen-modes with large wave-lengths, for example a half-occupied
container, then equilibration will be obstructed by large-scale oscillations which persist as the dispersion of the rel-
evant modes is negligible and there is no many-body scattering that would rearrange the mode occupation numbers.
Given such observations one is faced with the challenge to formulate general properties that form a sufficient set
of assumptions implying equilibration but at the same time the assumptions should not be constraining to set of
instances that one can handle. Secondly, after ruling out configurations that are resilient to equilibration the aim
is to provide an argument independent of the precise pattern of the initial correlations so that one can speak of the
emergence of statistical mechanics at large and not for some particular initial configurations.

3.2 our results

Previous works have allowed to suspect that quite a general result is possible concerning the setting of an
interaction quench. Specifically, we have identified the following general physical specification of systems for
which equilibration can be proven.
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Take a system of non-interacting fermions on a line described by a translation invariant (with periodic boundary
conditions) short-ranged Hamiltonian. Assume that the couplings are generic such that there are no points with
coinciding roots of the derivatives E′′(p) = E′′′(p) = 0 of the dispersion relation E. Initialize the system in a state
with finite correlation length and non-resilient second moments (defined precisely in the paper in relation to linear
parts of the spectrum). Then local equilibration occurs according to the following statement.

Theorem 2 (Emergence of statistical mechanics). There exist a constant relaxation time t0 and a recurrence time
tRec proportional to the system size such that for all times t ∈ [t0, tRec] the system locally equilibrates to a Gaussian
generalized Gibbs ensemble ρ̂(eq), with

|〈Â〉ρ̂(t) − 〈Â〉ρ̂(eq) | 6 Ct−γ

for some C,γ > 0 independent of the system size.

This means that we can set ε = Ct−γ0 in Eq. (2.1.1) for t0 6 t 6 tRec and hence the result shows equilibration to
a generalized Gibbs ensemble.

3.3 the implications of the result

The equilibrium ensemble ρ̂(eq) is a generalized Gibbs ensemble. Moreover, it is parametrized by an intensive num-
ber of generalized temperatures that scales with the correlation length ξ of the initial state and the thermodynamical
potentials involved are exclusively local. These are two defining features of statistical mechanics and indeed are
present in our equilibrium ensemble.

The novel feature beyond known non-interacting results [1, 76, 81, 135--139] is that for the first time we show
equilibration over a reasonable time in a closed quantum system to occur generically within a class of models and
initial states. Such ubiquitous validity is one of the defining features of statistical mechanics. Roughly speaking, in
our case it occurs as a result of translation-invariance of the dynamics, even if the initial state is non-Gaussian and
is not translation invariant, as long as it does not have unnatural initial correlations. Note that our argument does
without the knowledge of the actual values of the couplings or specific initial configurations of the particles as long
as these satisfy our general assumptions. This generality is a crucial feature of statistical mechanics and is to a large
degree responsible for its success.

While strong results are possible even in the general interacting case [103, 104, 107, 109, 140--142], deriving a
rigorous bound on the equilibration time of the type ε = O(t−γ) has been elusive so far even in the non-interacting
case. By our result equilibration occurs via dynamics generated by non-interacting Hamiltonians according to a
power-law in time.

In the main text, we give results for non-interacting fermions even though the same statements hold for non-
interacting bosons with a little technical fine-print due to the local Hilbert space being unbounded, and one needs
additional assumptions on the correlations as in Ref. [124].

In the paper we present an interesting scenario employing a super-lattice quench which is a possible way for
a clear observation of a generalized Gibbs ensemble in an optical lattice experiment. For this, one should start
with a thermal system in one-dimension with temperature low enough such that neighboring sites have a distinct
correlation. Next, one should double-up the lattice via a quench and let the system evolve according to the nearest-
neighbor hopping Hamiltonian in the new lattice. Our prediction is that a steady state will be reached where the
nearest-neighbor currents will be missing but there will be other off-diagonal currents which will amount to about
half the magnitude of the correlations between nearest-neighbor sites in the lattice prior to the quench. Such a
state will be non-thermal because these have dominant nearest-neighbor correlations and we show that they will
be missing. The same scenario can be considered when starting from a thermal state in presence of interactions.
Ref. [13] presents a new tomographic method for reconstructing off-diagonal current correlations in optical lattices
and hence provides a method for observing this effect in an optical lattice quantum simulator.

Finally, it turned out to be necessary to demand that the second-moments be non-resilient in order to prove our
results. Engineering the violation of this property allows to construct cases where equilibration takes a long time to
occur. The simplest example of a state without this property occurs when particles occupy half of the system and
the other half is empty.
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3.4 open problems

Problem 1. If Gaussification remains intact for a certain time even in the presence of interactions, to what extent
does the state equilibrate?
Problem 2. We observed numerically that the steady states of initial thermal states of the Anderson insulator

Hamiltonian often do not require non-trivial generalized Gibbs ensembles. Do most thermal Anderson insulators
thermalize after quenching to the kinetic energy?
Problem 3. We proposed a way to realize the generalized Gibbs ensemble in an optical lattice quantum simulation

experiment. How fast will the state thermalize in the presence of interactions?
Problem 4. Do resilient initial states eventually thermalize, e.g., on average due to a large effective dimension?
Problem 5. The analysis in the appendix shows that non-translation invariant steady states are in principle possible

for initial states without a correlation length as a result of the band inversion symmetry ωk = ωL−k where L is
the number of sites. Can this effect be ruled out from occurring in physical systems or is it sufficiently robust to be
observable?
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Abstract

Even after almost a century, the foundations of quantum statistical mechanics are still not
completely understood. In this work, we provide a precise account on these foundations
for a class of systems of paradigmatic importance that appear frequently as mean-field
models in condensed matter physics, namely non-interacting lattice models of fermions
(with straightforward extension to bosons). We demonstrate that already the translation
invariance of the Hamiltonian governing the dynamics and a finite correlation length of
the possibly non-Gaussian initial state provide sufficient structure to make mathemat-
ically precise statements about the equilibration of the system towards a generalized
Gibbs ensemble, even for highly non-translation invariant initial states far from ground
states of non-interacting models. Whenever these are given, the system will equilibrate
rapidly according to a power-law in time as long as there are no long-wavelength disloca-
tions in the initial second moments that would render the system resilient to relaxation.
Our proof technique is rooted in the machinery of Kusmin-Landau bounds. Subsequently,
we numerically illustrate our analytical findings by discussing quench scenarios with an
initial state corresponding to an Anderson insulator observing power-law equilibration.
We discuss the implications of the results for the understanding of current quantum sim-
ulators, both in how one can understand the behaviour of equilibration in time, as well as
concerning perspectives for realizing distinct instances of generalized Gibbs ensembles
in optical lattice-based architectures.
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1 Introduction

Over more than a century, it has become clear that the methods of statistical mechanics work
incredibly well in a vast range of physical situations. But, to this day, a complete understanding
of why this is the case remains elusive. Based on both experimental and theoretical work, a
good deal of progress has already been made [1–6]. Nevertheless, the key objective, finding
a set of physical assumptions from which we can demonstrate that quantum systems reach
thermal equilibrium, has yet to be achieved. And there are exceptional cases where this simply
does not occur, which typically involve the existence of locally conserved quantities.

Figure 1: Thermalization and equilibration are often studied in a dynamical quench
scenario, where a parameter in the Hamiltonian is suddenly quenched to zero, which
knocks the system out of equilibrium (1). The subsequent process of (generalized)
thermalization has two components. First, the system must relax to a steady state
(2a) with respect to meaningful quantities. Exceptions to this are typically charac-
terized by oscillations, as in (2b). Second, if equilibration occurs, the equilibrium
state must be thermal (exemplified here by the Fermi-Dirac distribution in (3a)), or
correspond to a generalized Gibbs ensemble (3b) in case further constants of motion
are relevant.

The process whereby a system locally relaxes to a thermal state or a generalized Gibbs
ensemble (which we call generalized thermalization) can be broken down into two compo-
nents (see Fig. 1). The first is simply that it equilibrates, meaning the system spends most
of the time locally close to some time-independent steady state. This should be true at least
for large classes of important observables, e.g., local observables. A crucial aspect (sometimes
overlooked) is that the equilibration time for this must be realistic: in experiments, we can
observe physical systems relaxing over reasonable times only, which is something that needs
to be appreciated. The second component in the case of thermalization is that the equilibrium
steady state has no detailed memory of the initial state (beyond, e.g., temperature or chemical
potential), namely it is a thermal state.

It has become clear, however, that some specific classes of physical systems do not equi-
librate [7–10], at least over the times one can assess in the laboratory. Furthermore, some
systems equilibrate but not to a thermal state, instead retaining some memory of the initial
state [11–13]. A major distinction arises in this context between non-integrable systems, which
indeed are expected to equilibrate to a thermal state, and integrable systems, which are ex-
pected not to fully thermalize, but to equilibrate to generalized Gibbs ensembles [14–20].
Many-body localized systems [11,21], in which disorder and interactions interplay in a subtle

3
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manner, can be seen as being reminiscent of the latter systems, as instances of quantum sys-
tems which also do not thermalize. In both cases, local (or quasi-local) conserved quantities
play a major role. Whenever initial states with inequivalent values of these conserved quan-
tities are experimentally accessible, the resulting steady states will retain a memory of these
differences that can be measured. A rigorous dynamical derivation of generalized thermal-
ization must therefore overcome several difficulties arising from these observations: we must
identify what properties most physical systems have that lead them to thermalize or relax to
a generalized Gibbs ensemble.

There are several different theoretical approaches to this challenging long-standing prob-
lem. One is to focus on what can be proven for abstract quantum systems with as few as-
sumptions as possible [4,22–24]. In this case, powerful results have been found, though often
without reproducing the relevant equilibration times [25–28]. Another approach is to use
randomness to attack the problem [29–34]. Suggestions for the mechanism underlying the
relatively fast process of equilibration in the general setting have been offered [35,36], but a
consensus together with more concrete estimates for equilibration times have yet to emerge.

A second approach is to build the analysis on specific physical settings (e.g., the Bose-
Hubbard model in the free superfluid regime). But even here there is a dearth of results
justifying why the observed times are so short in comparison to the general bounds. Some
exceptions in specific cases are, amongst others, presented in Refs. [14,37,38]. In particular,
studying quenches has been particularly rewarding [39]. In this context, numerical studies
often provide useful insights [1–4,40–48].

In this work, we first analyse quenches of lattice fermions (and – less explicitly – bosons)
to non-interacing Hamiltonians. Our first main result is that they locally equilibrate quickly.
Two tools we employ are the Kusmin-Landau bound [49] and fermionic Gaussification from
Ref. [50]. The latter showed that non-interacting fermions on a lattice locally Gaussify, mean-
ing the state becomes locally indistinguishable from a Gaussian state for relatively long times.
However, this Gaussian state may be time dependent. Not only do we show that one of the
assumptions of Ref. [50] is unnecessary for Gaussification, but we also show that the Gaussian
state that the system approaches will be time independent. This is a proof of equilibration over
realistic times for these models, and it also proves that the equilibrium state can be described
by a generalized Gibbs ensemble (GGE).

In fact, our work can be seen as a comprehensive rigorous proof of a convergence to gen-
eralized Gibbs ensembles, bringing the program initiated in Refs. [14, 19, 51, 52] to an end,
by widely generalizing the previous results, while keeping the discussion fully rigorous. We
then turn to discussing the question of whether one does indeed need the extra degrees of
freedom of a GGE (as opposed to simply a thermal state). We show numerically that initial
states corresponding to thermal states of an Anderson insulator equilibrate after quenching
the on-site disorder to a thermal state (or grand canonical state), except in cases with highly
correlated noise. In this latter case, the equilibrium state must be described by a GGE. It is
easy to see that if one has strongly inhomogeneous initial conditions, the equilibration times
can be of the order of the system size, see, e.g., Ref. [38]. Finally, we consider some possi-
bilities for realizing distinct instances of generalized Gibbs ensembles in optical lattices and
systematically studying their stability in the presence of interactions.

4
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2 Sufficient conditions for local equilibration to a generalized Gibbs
ensemble

2.1 Notions of equilibration

A quantum system locally equilibrates if, for all times t between some relaxation time t0 and
some recurrence time tR, the state at time t is practically indistinguishable from the time-
averaged state %̂(eq) with respect to local observables [4]. In other words, the extent of non-
equilibrium fluctuations is bounded by some small ε > 0 such that for every local observable
Â we have

|〈Â〉%̂(t) − 〈Â〉%̂(eq) | ≤ ε (1)

for all t ∈ [t0, tR], where 〈Â〉%̂ = tr[%̂Â]. Clearly, whenever a system equilibrates, the equilib-
rium state must be the infinite time average

%̂(eq) = lim
T→∞

1
T

∫ T

0

dt %̂(t) . (2)

While it is highly plausible that systems equilibrate, it is significantly more challenging to
identify the equilibration time t0 > 0. When equilibration does indeed occur, a most natural
question is how to precisely characterize this equilibrium state. Statistical physics is built upon
the assumption that systems equilibrate to a thermal state. The thermal (or Gibbs) state of a
quantum system with Hamiltonian Ĥ is defined to be

%̂(β ,µ) =
e−β(Ĥ−µN̂)

tr[e−β(Ĥ−µN̂)]
, (3)

where β > 0 is the inverse temperature, which fixes the value of the expected energy, µ is
the chemical potential, which determines the expected particle number, and N̂ is the parti-
cle number operator. We say that a system with initial state %̂ thermalizes locally if during
the evolution generated by Ĥ it equilibrates in the sense defined above and if %̂(eq) is locally
indistinguishable from the thermal state of Ĥ (for some value of β and µ). For the case of non-
interacting, quasi-free models, thermal states of quadratic Hamiltonians are called Gaussian
or quasi-free and are the target equilibrium ensemble upon quenches to quasi-free dynamics.

2.2 Statement of the main result

Our main result is the following. Take a system of non-interacting fermions on a line described
by a translation invariant (with periodic boundary conditions) short-ranged Hamiltonian. As-
sume that the couplings are generic such that there are no points with coinciding roots of the
derivatives E′′(p) = E′′′(p) = 0 of the dispersion relation E. Initialize the system in a state
with finite correlation length and non-resilient second moments (defined presently). Then
local equilibration occurs according to the following statement.

Theorem 1 (Emergence of statistical mechanics). There exist a constant relaxation time t0 and
a recurrence time tR proportional to the system size such that for all times t ∈ [t0, tR] the system
locally equilibrates to a Gaussian generalized Gibbs ensemble, with

|〈Â〉%̂(t) − 〈Â〉%̂(eq) | ≤ C t−γ (4)

for some C ,γ > 0 independent of the system size. That is, we can set ε = C t−γ0 in Eq. (1) for
t0 ≤ t ≤ tR.

5
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The equilibrium ensemble %̂(eq) is a generalized Gibbs ensemble. Moreover, it is parametrized
by an intensive number of generalized temperatures that scales with the correlation length ξ
of the initial state and the thermodynamical potentials involved are exclusively local. These
are two defining features of statistical mechanics and indeed are present in our equilibrium
ensemble. We argue this by invoking the Jaynes’ principle of looking for the maximum entropy
state given expectation values of quantities of interest. In our case, these are the tunnelling
currents Îz (defined in detail below) which are quadratic operators, e.g., Î0 is the mean on-site
particle density and Î1 corresponds to the nearest-neighbour tunnelling. Since the equilibrium
ensemble is Gaussian we can also use the property that characterizes these states, namely
that they are the maximum entropy states given fixed second moments [50]. Hence fixing the
values 〈 Îz〉 is a way of specifying a Gaussian state. Say that ε = C t−1/6

0 is our desired exper-
imental resolution, and deviations from equilibrium should not be larger than this number.
Then within that precision we neglect all the currents with range significantly above the cor-
relation length z > zξ ≈ ξ ln(ε−1) and aim at reproducing in the equilibrium ensemble %̂(eq)

the values of the relevant conserved quantities obtained from the initial state

Iz = 〈 Îz〉%̂(0) = 〈 Îz〉%̂(eq) (5)

for z ≤ zξ. This condition is met by setting the state to be parametrized as

%̂(eq) = Z−1e−
∑zξ

z=0 λz Îz , (6)

where Z > 0 ensures normalization and λz are Lagrange multipliers. Note that for fixed
ε > 0, e.g., determined by the experimental resolution of the apparatus, only an intensive
number of generalized temperatures λz significantly contributes to the parametrization of this
ensemble. It remains to argue that for z ≥ zξ all correlation functions are smaller than the
desired resolution ε. By the result in Ref. [53], any one-dimensional thermal state of the type
(6) has exponentially decaying correlations with a correlation length bounded by some ξA.
Hence indeed we recover asymptotically 〈 Îz〉%̂(eq)

G
∼ CCluste

−z/ξA � ε. Here we can identify

the chemical potential as µ = λ0 and oftentimes β = λ1, e.g., in the case of the nearest-
neighbour hopping quench Hamiltonian. If we find that

∑zξ
z=0λz Îz = β Ĥ + µN̂ where Ĥ is

exactly the quench Hamiltonian and N̂ the particle number of operator then we would say that
the equilibrium ensemble is thermal. Whenever this is not the case then one concludes that
relaxation towards a generalized Gibbs ensemble (GGE) has taken place.

2.3 Discussion of the main result

The novel feature beyond known non-interacting results [14,19,42,50–52,54–57] is that for
the first time we show equilibration over a reasonable time in a closed quantum system to
occur generically within a class of models and initial states. Such ubiquitous validity is one
of the defining features of statistical mechanics. Roughly speaking, in our case it occurs as a
result of translation-invariance of the dynamics, even if the initial state is non-Gaussian and is
not translation invariant, as long as it does not have unnatural initial correlations. Note that
our argument does without the knowledge of the actual values of the couplings or specific
initial configurations of the particles as long as these satisfy our general assumptions. This
generality is a crucial feature of statistical mechanics and is to a large degree responsible for
its success.

Throughout the work, it will be our goal to give intuition that grounds the proof of this
result. Let us begin by explaining how equilibration can fail or is physically implausible if any of
the ingredients of Theorem 1 is relaxed and therefore other assumptions become necessary. By
our result equilibration occurs via dynamics generated by non-interacting Hamiltonians: while
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strong results are possible even in the general interacting case [24,25,28,38,58–60], deriving
a rigorous bound on the equilibration time of the type ε = O(t−γ) has been elusive so far. In
fact, it may be impossible on grounds of quantum computational complexity [61–64] because
equilibrated time-evolution is concomitant to converging results of a quantum algorithm and
often the runtime should be longer than polynomial [65].

In the main text, we will present the results for non-interacting fermions even though
same statements hold for non-interacting bosons with a little technical fine-print due to the lo-
cal Hilbert space being unbounded, and one needs additional assumptions on the correlations
in Ref. [51]. Concerning geometry, we consider a ring configuration, mostly for the clarity
of the argument while of course thermodynamics should not change by the choice of bound-
ary conditions. However, in higher dimensions additional complications could occur as the
group velocity, i.e., the derivative of the dispersion relation could vanish along curves instead
of separated points [66], but certainly our techniques should generalize when supplemented
with additional assumptions that exclude such technical issues. One of the core physical as-
sumptions enabling sufficient scrambling of the initial conditions is translation invariance of
the Hamiltonian. Relaxing it, one can find that particles do not propagate and without mixing
ergodicity breaks down and with it relaxation. As a prime example, the Anderson insulator
model [67] is a non-translation invariant Hamiltonian where equilibration is obstructed due
to localization.

Long-ranged non-interacting models can actually violate causality [68,69]. That is to say,
if equilibration occurs, then one would need to develop an entirely new intuition for its mech-
anisms. Here, we assume a short-ranged local Hamiltonian which is already enough to ensure
effective causality by means of the Lieb-Robinson bound [70–74]. By additional technical cal-
culation, it should be possible to extend the results to couplings that asymptotically decay
exponentially. Note that we consider a closed system described by a static Hamiltonian. If we
relax the condition on exponentially decaying correlations then one can consider as the initial
state a state evolved backwards to extensively long times which suddenly would acquire “out of
nowhere” non-equilibrium dynamics while the system should be expected to be equilibrated.

Finally, it has turned out to be necessary to demand that second-moments of the fermionic
state be non-resilient. The simplest example of a state without this property occurs when
particles occupy half of the system and the other half is empty. Then for any short-ranged
Hamiltonian by the Lieb-Robinson bound it will take extensive times for the particles to even
explore the system and equilibration to occur. This property will be precisely stated below
in the form of a definition after the necessary notation has been introduced. Summarizing
this discussion, trying to establish equilibration one can encounter numerous obstructions,
some of them are fundamental difficulties and some are rather technical. In this work we
identify precise conditions, mostly concerning locality of couplings and correlations, which
are physically very natural and general, and at the same time are sufficient to establish local
equilibration with time-scales for a closed quantum system.

3 Class of physical systems considered

3.1 Non-interacting fermionic models

We denote fermionic annihilation operators by f̂x and will discuss bosons in the appendix.
The annihilation operators obey the canonical anti-commutation relations
{ f̂x , f̂ †

y } = f̂x f̂ †
y + f̂ †

y f̂x = δx ,y . Note that any fermionic initial state satisfies the parity super-
selection rule [75,76], meaning physical states can never involve a superposition of even and
odd numbers of fermions. More precisely, we assume that the density operator %̂ commutes
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with (−1)N̂ , where N̂ =
∑L

x=1 N̂x is the total number operator with N̂x = f̂ †
x f̂x .

A non-interacting fermionic model conserving particle number is characterized by a quadratic
Hamiltonian of the form

Ĥ(h) =
L∑

x ,y=1

hx ,y f̂ †
x f̂ y , (7)

where h= h† ∈ CL×L is the coupling matrix for a finite system size L. By a linear transformation
of the fermionic operators preserving the anti-commutation relations, any such Hamiltonian
can be brought into diagonal form. Whenever the system is translation invariant then h is
circulant, and so h can be diagonalized by a discrete Fourier transform. Throughout, we make
the assumption that h ∈ RL×L is real, translation invariant and has range R, that is Jz := h1,1+z
vanishes for z > R and hence we consider the hopping models of the form

Ĥ(h) = J0 +
R∑

z=1

Jz

L∑
x=1

f̂ †
x f̂x+z + h.c. . (8)

By this, we can define the dispersion relation E : R→ R as

E(p) = J0 + 2
R∑

z=1

Jz cos(pz) (9)

and evaluating at pk = 2πk/L we can write the eigenvalues of h as ωk = E(pk) for any
finite system size L > 2R. Here E(p) is analytic and its derivative can be used to express the
dispersion gaps, e.g., ωk+1 −ωk = E′(p̃k)2π/L for some p̃k ∈ [pk, pk+1] by the mean value
theorem. It will be useful to define Jmax =maxz=1,...,R |Jz|. The Heisenberg evolution of mode
operators reads

f̂x(t) = ei t Ĥ(h) f̂x e−i t Ĥ(h) =
L∑

y=1

G∗x ,y(t) f̂ y , (10)

where G∗(t) = e−i th is the propagator given by

Gx ,y(t) =
1
L

L∑
k=1

eiωk t+2πik(x−y)/L (11)

in the translation invariant case, see Appendix A. The covariance matrix is defined as the col-
lection of second moments of a state %̂, given by

Γx ,y = 〈 f̂ †
x f̂ y〉%̂ . (12)

Observe that physically only the operator Γ̂x ,y = f̂ †
x f̂ y is not Hermitian and hence not an

observable. However, its real and imaginary parts defined as 2Re[Γ̂x ,y] = f̂ †
x f̂ y + f̂ †

y f̂x and

2Im[Γ̂x ,y] = −i( f̂ †
x f̂ y − f̂ †

y f̂x) are physical observables. Hence, their expectation values can be
measured individually in a physical system and then one obtains

Γx ,y =
1
2
〈 f̂ †

x f̂ y + f̂ †
y f̂x〉%̂ +

i
2
〈−i( f̂ †

x f̂ y − f̂ †
y f̂x)〉%̂ . (13)

Note that we consider states with no pairing correlations: 〈 f̂ †
x f̂ †

y + h.c〉= 0. Our methods can
be generalized to that case as well [77,78], but this complicates the presentation. Using (10)
we see that the covariance matrix at time t is

Γ (t) = G(t)ΓG(t)† . (14)

8
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Of particular relevance for us will be fermionic Gaussian states, which are completely specified
by their second moments and Wick’s theorem for higher-order correlation functions [77].

To prove many of our results later, we will require that the initial state has exponential
decay of correlations, meaning there exist positive constants CClust,ξ > 0 such that correlations
decay like

|〈ÂB̂〉%̂ − 〈Â〉%̂〈B̂〉%̂| ≤ s(Â)s(B̂)CCluste
−d/ξ , (15)

where Â and B̂ are observables acting non-trivially only on lattice regions separated by a dis-
tance d with sizes s(Â) and s(B̂) respectively. For simplicity, we have chosen ‖Â‖ = ‖B̂‖ = 1,
where ‖ · ‖ is the operator norm.

3.2 Constants of motion

What are the relevant constants of motion for translation invariant dynamics? The most obvi-
ous candidate consists of momentum occupation numbers

n̂k =
1
L

L∑
x ,y=1

e2πik(y−x)/L f̂ †
x f̂ y . (16)

Another set of conserved quantities are the current operators

Îz(η) =
1
L

L∑
x=1

eiη f̂ †
x f̂x+z + h.c. , (17)

where η can in sometimes be interpreted as coming from a magnetic field via Peierls
substitution. These are indeed conserved quantities, which follows because they are lin-
ear combinations of the momentum occupation numbers. The following two extreme
cases are important Îz(η = 0) = (2/L)

∑L
k=1 cos(2πkz/L)n̂k, cf. e.g. [79] and for

Îz(η = π/2) = −(2/L)
∑L

k=1 sin(2πkz/L)n̂k. For the latter type of currents to be present it
is necessary that the covariance matrix as defined above is not real.

The current operators allow us to judge how many conserved quantities are really necessary
to describe the steady state with finite experimental resolution ε. Due to the exponential decay
of correlations Eq. (15), we have |〈 Îz〉| ≤ CCluste

−z/ξ, and so |〈 Îz〉| ≤ ε for z ≥ ξ ln(CClust/ε).
So there are only z ∼ ξ non-negligible values of 〈 Îz〉 which constitute the only relevant local
conserved quantities. Thus, whenever equilibration occurs, then the equilibrium ensembles
of any set of non-local momentum occupation numbers {〈n̂k〉} with the same current content
will agree.

For initial states %̂(0) with short range correlations we prove in the appendix, assuming
minimal degeneracy of the dispersion relation ωk, that the steady-state obtained from the
infinite-time average Γ (∞)x ,y is translation invariant up to a small parameter

���Γ (∞)x ,y − Γ (eq)
x ,y

���≤ CI L−1 , (18)

where CI is independent of the system size. We can define the equilibrium values by a real-
space average

Γ (eq)
x ,y =

1
L

L∑
z=1

Γx+z,y+z . (19)

We then can find the Peierls angle by setting ηz = arg[Γ (eq)
1,z ]. By this, we find that our target

equilibrium ensemble has matrix elements which agree with the initial expectation value of
the conserved operator

I|x−y| = Γ (eq)
x ,y = cos(η|x−y|)〈 Î|x−y|(0)〉%̂(0) + i sin(η|x−y|)〈 Î|x−y|(π/2)〉%̂(0) . (20)

9
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Here and throughout whenever x , y are positions on the chain then |x − y| is meant in the
sense of the distance on the ring geometry. Note that due to the average the equilibrium
covariance matrix and hence also %̂(eq)

G will be translation invariant which implies that the
current operators can be evaluated by a strictly local measurement. For example if the initial
covariance matrix is real then η= 0 and we have

I|x−y| = 〈 Î|x−y|〉%̂(eq)
G
= 〈 f̂ †

x f̂ y〉%̂(eq)
G
+ h.c. , (21)

where x , y can be chosen arbitrarily as long as their separation is d = |x − y|.

4 Power-law equilibration

4.1 Strategy of the argument

Our goal in this section is to bound how quickly time-evolved second moments t 7→ Γx ,y(t)
relax towards the time-averaged value. The culmination of this is a bound of the form

���Γx ,y(t)− Γ (eq)
x ,y

���≤ CΓ t−γ , (22)

where CΓ ,γ > 0 are constants independent of the system size. Let us begin by defining the
decomposition of the covariance matrix Γ into its currents Γ (d) with entries

Γ (d)x ,y = Γx ,yδx ,y+d , (23)

where we use the convention δa,b+L = δa,b. Intuitively, one can find Γ (d) by picking out
bands from Γ parallel to the diagonal and we will show that each band equilibrates indi-
vidually to the conserved current value Id using that the evolution is linear in the bands
Γ (t) =

∑bL/2c
d=−b(L+1)/2c+1 Γ

(d)(t). Now we expand Γ (d) via the discrete Fourier transform

Γz+d,z =
L∑

n=1

X (d)n e2πinz/L . (24)

Here X (d)n are defined implicitly by the inverse discrete Fourier transform and the most impor-
tant one is

X (d)n=L =
1
L

L∑
x=1

Γx ,x+d = Γ
(eq)
x ,y , (25)

which is the equilibrium value. After a technical calculation we obtain

Γ (d)x ,y(t) =
L∑

n=1

X (d)n e2πin(x−d)/L fn(t) , (26)

with

fn(t) =
1
L

L∑
k=1

ei(ω(k+n)−ωk)t+2πis(x−y−d)/L . (27)

This step is of crucial importance. We have separated out a dynamical function fn which, when
it decays, does so independent of the initial state – or colloquially speaking, it scrambles the
initial state. To prove our result, we show in Appendix C that fn dephases in time

| fn(t)| ≤ C#

�nπ
L

�
t−γ , (28)

10
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with some constant γ > 1/(6R+ 6). Here, one should note that C#(nπ/L) will be constant
in time but could depend on the system size. Indeed for n ≈ 1 we will have C#(nπ/L) ∼ L2.
However, we will see that this is not an artefact of the technique that we use to obtain the
bound (28) – points n with constant larger than some threshold C#(nπ/L) > Cth are resilient
points where fn dephases slowly and will be discussed in detail below. In the end C# has a
simple form and it does not scale in the system size for very many natural initial configurations.

In order to derive the bound from Eq. (28), we will study the phase function
Φt,α : [0,2π)→ R defined as

Φt,α(p) = Dp− 4t
R∑

z=1

Jz sin(zα) sin(zp+ zα) . (29)

Choosing D = 2π(x − y + d)/L and α= πn/L we have

fn(t) =
1
L

L∑
k=1

eiΦt,α(2πk/L) . (30)

This relation (30) is called an exponential sum and its dephasing is instrumental for the state
to dephase itself. In order to bound it, we make use of the Kusmin-Landau technique [49]. This
powerful machinery allows to arrive at quantitative bounds as opposed to intuitive estimates
obtained from stationary phase approximations [80,81]. The crux of this method is, however,
similar – dephasing is determined by the gaps ofω or specifically by the first derivative of Φ. By
analyzing the dispersion relation E, we find a lower bound to the gaps by appropriate Taylor
expansions. The bound is then determined by the values of the derivatives of Φ at points that
one could view as stationary points. We define

S(1)α = {p ∈ [0, 2π] s.t. Φ′t,α(p) = 0} , (31)

and correspondingly

S(2)α = {p ∈ [0, 2π] s.t. Φ′′t,α(p) = 0} (32)

for the second derivative. Due to the finite range R of the Hamiltonian, there are at most 2R+2
stationary points, which we prove in the appendix. While in the appendix we prove a more
general statement, here we discuss the generic case only where we assume that there are no
points such that Φ′′t,α(p) = Φ

′′′
t,α(p) = 0. Hence, for any first order root r ∈ S(1) we either have

Φ′′t,α(r) 6= 0 or Φ′′′t,α(r) 6= 0. For the Taylor expansion we want to take the value of the minimal
derivative that does not vanish at r so we take κr = 1 if Φ′′t,α(r) 6= 0 and otherwise we set
κr = 2. In Appendix C we show a more general statement, but in the generic case we simply
have

γ= 1/3 (33)

and

C#(α) = 6(2R+ 1)max{1,8R4Jmax/M
2
α} , (34)

where we define the minimal derivative value used for lower bounding dephasing through a
Taylor expansion

Mα =
1
t

min
§

min
r∈S(1)

���Φ(κr+1)
t,α (r)

��� , min
r∈S(2)

���Φ′′′t,α(r)
���
2ª

. (35)

11
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Note that this constant is time independent hence the time scaling is governed by the smallest
next order derivative which does not vanish at a stationary point.

Hence, as proved in Appendix C, we obtain a bound on the dephasing of the form (28),
which is a huge simplification as the bound is now encoded in the minimal value of derivatives
at stationary points which is a sparse set. As an example, let us study Mα of Ĥ(h) with only
one non-trivial coupling value J1 6= 0. Then we have the simplification

Φ′t,α(p) = D− 2tJ1 sin(α) cos(p+α) . (36)

Then we find that S(1) has at most 2 roots and we should evaluate the value of the second
derivative at these points

Φ′′t,α(p) = 2tJ1 sin(α) sin(p+α) . (37)

Now, we notice that for n ≈ 0 we have α = nπ/L ≈ 0 which means that Mα ∼ α ∼ L−1 and
hence C# ∼ L2 becomes size dependent. In this case C# can be independent of the system size
only if n is a significant fraction of L. However, inspecting (27) for α= nπ/L ≈ 0 we find that
it will in fact not dephase for the same reason that our bound yields a large C#(α) constant as
we have

fn(t)≈
1
L

L∑
k=1

e2πik(x−y+d)/L (38)

for times t � L. Therefore we would need times t scaling in the system size for dephasing to
even set in – this is an effect that we call resilience.

4.2 Definition of non-resilient second moments

Choosing the initial state such that Γ has substantial X (d)n around a resilient point will render
the covariance matrix resilient against equilibration. This should be expected and has been dis-
cussed in the literature [2] with the simplest example being a system with a linear dispersion
relation. By Eq. (9) we see that generically we will find regions in momentum space where the
dispersion relation is indeed approximately linear and populating the initial state with quasi-
particles from these regions will obstruct dephasing. More generally, resilience to equilibration
can be characterized within the framework of resource theories [82]. Here, we have enough
structure to be able to phrase a sufficient condition for correlations to be non-resilient using
the above intuition.

Definition 2 (Non-resilient second moments). For a threshold constant Cth > 0 independent of
the system size L we call points in

R= {α ∈ (0,π) s.t. C#(α)≥ Cth} (39)

resilient. If for all d there exist constants CRS, CNRS > 0 independent of the system size such that
the distribution X has little weight at resilient points

∑
nπ
L ∈R

��X (d)n

��≤ CRS L−1 (40)

and is bounded outside
∑

nπ
L /∈R

��X (d)n

��≤ CNRS , (41)

then we say that the correlations Γ are non-resilient second moments at the level Cth.

12
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The crucial mathematical feature of this definition that is needed to ensure equilibration is
the system size independence of the constants such that constants derived in further bounds
are also system size independent. Notice that in the definition of R we exclude α = π which
corresponds to Γ (eq)

x ,x+d = Id = X (d)n=L which is a constant of motion. In the following we will

bound the deviation from equilibrium |Γx ,y(t)− Γ (eq)
x ,y | and hence this definition can be thought

of as defining initial conditions that are non-resilient to equilibration towards translation in-
variant steady states.

4.3 Equilibration of non-resilient second moments

We can easily see that with this definition, we can give a bound as to how fast individual
currents (26) relax as long using the bound (28) where now we have the promise that C# ≤ Cth.
Indeed, at the resilient points we can use a trivial upper bound | fn(t)| ≤ 1, to obtain

���Γ (d)x ,y(t)− Idδx ,y+d

���≤ CRS L−1 + CNRSCth t−γ (42)

≤ C (d)Γ t−γ , (43)

where in the second line we used t ≤ tR = Θ(L). By the decay of correlations only currents
with range of the order of the correlation length dξ(t) = ξ ln(tγ) will be relevant. In the
appendix we show using the unitarity of the propagator that

bL/2c∑
d=dξ(t)

���Γ (d)x ,y(t)
���≤ CClust

1+ e−1/ξ
t−γ , (44)

and hence one easily arrives at a bound for fluctuations of the covariance matrix entries away
from equilibrium

���Γx ,y(t)− Γ (eq)
x ,y

���≤
bL/2c∑

d=−b(L+1)/2c+1

���Γ (d)x ,y(t)− Idδx ,y+d

��� (45)

≤ CΓ t−γ̃,

where CΓ is obtained by appropriately collecting the system size independent constants and
γ̃ ≈ γ is chosen such that ln(tγ)t−γ ≤ t−γ̃ for all times of interest t0 ≤ t ≤ tR. The following
proposition encapsulating these ideas is proven in full detail in Appendix E.

Proposition 3 (Equilibration of second moments). Consider a fermionic system with initially
exponentially decaying correlations and non-resilient second moments Γ . Then there exist a con-
stant relaxation time t0 and a recurrence time tR = Θ(L) such that, for all t ∈ [t0, tR],

���Γx ,y(t)− Γ (eq)
x ,y

���≤ CΓ t−γ , (46)

where CΓ ,γ > 0 are constants.

As we will see, this general bound must have γ ≤ 1/2 by giving a specific example with a
tight relaxation scaling via the Bessel function asymptotics. On the other hand, we have that
the exponent is lower bounded due to γ≥ 1/(6R)− ε for any ε > 0, as explained in Appendix
E.

13



SciPost Phys. 7, 038 (2019)

4.4 Examples of non-resilient second moments

As the simplest example of non-resilient second moments, consider the covariance matrix Γ (0,1)

of the charge-density wave corresponding to the Fock state vector |0, 1, 0, 1, . . .〉 which will
equilibrate under the nearest-neighbour model. More generally, if there is no shift symmetry
of the dispersion relation any P-periodic configuration of currents will be non-resilient for in-
tensive P not scaling in the system size, see Appendix F. This continues to hold true even in
the presence of sparse defect sites at random points. This is the most important case and cap-
tures the intuition about what physically one should expect to be necessary for equilibration,
namely that the mass distribution (and concomitantly currents) are already distributed over
the system, albeit with possibly intensive random configurations at microscopic scales.

On the other hand, a P-periodic state with extensive P will be resilient and not relax to-
wards a translation invariant steady state according to a power-law. Specifically, second mo-
ments of the form Γx ,x = 1 for x ≤ L/2 and all other entries vanishing are resilient. Intuitively
this is a block of particles over an extensive part of the system and is resilient because by the
Lieb-Robinson bound one would need to wait to extensively long times for the current to be-
come evenly distributed. Such a covariance matrix would violate our definition of non-resilient
second moments already on the level of X (d)n , see Appendix F. Let us finally remark that the
definition of non-resilient second moments has a linear structure and mixtures of different
P-periodic covariance matrices Γ (P) are again non-resilient, as long as the weights decay fast
enough, i.e.,

Γ (Mixt) =
∑

P

aPΓ
(P) (47)

can be non-resilient for various weights aP .
If we would like to quantify the resilience in the generic case, we may neglect physical

constraints on the covariance matrix and choose Γ (rnd)
x ,y ∈ [a, b] uniform at random. In this

case, we will indeed find non-resilience on average E[X (d)n ] = (a + b)δn,L/2. However, the
fluctuations are rather large as we find Var[X (d)n ] = (a− b)2/(12L), so drawing a random
selection from the uniform distribution will often yield a significant number of the L-many
harmonics to be of the order (X (d)n )

2 ∼ Var[X (rnd,d)
n ] ∼ L−1 which is too large and could lead

to resilience. Yet, constructing a mixture of such matrices can smoothen the distribution and so
for Γ =

∑K
k=1 Γ

(rnd:k)/K , we should find X (d)n ≈ E[X (d)n ] up to fluctuations decaying K−1/2, i.e.,
one can get closer to the average behaviour which is non-resilient. Observe, that by Eq. (27)
dephasing could also occur if the Fourier weights X (d)n are larger than what we allow for in
Definition 2 if they fluctuate uniformly on the scale where fn(t) does not change strongly.
Later, in order to discuss equilibration of a random selection of second moments, which are
physically admissible and have a finite correlation length, we will discuss thermal states of the
Anderson insulator – numerically we indeed find equilibration in that case too.

Finally, note that our definition of non-resilient second moments characterizes initial states
that equilibrate to translation invariant steady states. However, it is important to note that
non-translation invariant steady states can also occur – due to possible shift symmetries of the
dispersion relation such that we have ωk =ωk+n for all k = 1, . . . , L. The simplest example is
to notice that ωk =ωk+L/2 for the next-nearest-neighbour model so then fL/2(t) = const. In
this case, our definition of non-resilient second moments excludes any Γ which has significant
X (d)n for n ≈ L/2 via the condition on the C#(nπ/L) ≤ Cth constant. These are very special
cases, see Fig. 2 and we have chosen to study equilibration exclusively towards translation
invariant steady states. Notably, the nearest-neighbour model has no shift symmetry hence
only states with long-range dislocations, or a population of long-wavelength quasiparticles are
being excluded by the definition of non-resilience.
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Figure 2: Covariance matrix of a charge-density wave Γ (0,1) which corresponds to
the Fock state vector |0, 1,0, 1, . . .〉 has varying equilibration behaviour depending
on the locality of the Hamiltonian and the system size parity. For the next-nearest-
neighbour model the system in this special initial state splits up into two independent
sub-lattices and is in an exact steady state whenever the system size L is even. How-
ever, for odd L the symmetry of the density distribution is incommensurate with
the system size and there is necessarily a defect of the type |. . . , 0, 1, 0, 0, 1, . . .〉 or
|. . . , 1, 0, 1, 1, 0, 1, . . .〉 around which the charge-density wave pattern starts becom-
ing homogeneous. Note, that away from the defect point the charge-density wave
looks locally like a steady state of the Hamiltonian and one can prove by the LR
bounds that the middle region will remain unaffected for extensively long times. The
left plot shows Γ (0,1)(t = 1.5) after a quench to the next-nearest-neighbour model
(the inset throughout shows the sub-block of the first 10 sites). On the other hand,
if we quench to the nearest-neighbour model then there is no transient symmetry
present and the charge-density wave is completely non-resilient and homogeneously
tends towards equilibrium as seen in the right plot for the same initial state.

4.5 P-periodic initial density distributions and nearest neighbour hopping

A specifically instructive case is to study the situation in which the initial state is such that
the covariance matrix is diagonal with a P-periodic structure, and the system is quenched to
evolve via the nearest neighbour hopping model. This means that the density distribution
repeats every P sites in that Γx ,x = Γx+P,x+P for all x . It is one of the strengths of our result
that we need not care about the structure within the block because any such distribution for
an intensive P is non-resilient. The steady state will be translation invariant and diagonal with
the second moments given by Γ (eq)

x ,y = δx ,y/F where 1/F is the filling ratio. For example, if the
initial covariance matrix was Γ (1,0) = diag(1,0, 1,0, . . .), then we have half-filling 1/F = 1/2
and for Γ (1,0,0) = diag(1,0, 0,1, 0,0 . . .) we get 1/F = 1/3. When considering the evolution
under a nearest-neighbour fermionic hopping Hamiltonian, and such initial conditions, we
find that the propagator follows a law O(t−1/2) in time, as laid out in Appendix A.3, dictated
by the asymptotics of Bessel functions of the first kind. This decay is inherited by the actual
correlation decay, in that for any P-periodic initial condition, one finds that

|Γx ,y(t)− Γ (eq)
x ,y |= O(t−1/2) (48)

for all x , y . It is also interesting to note that the resulting steady states can be seen as an
infinite temperature Gibbs state at a specific chemical potential which imposes the value of the
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total particle number. Specifically, one finds for the equilibrium covariance matrices

Γ (eq)
x ,y =

1
1+ e−µ

δx ,y , (49)

from which one can obtain the value of the chemical potential in explicit form µ= − ln(F −1)
for any x , y due to translation invariance.

5 Quasi-free ergodicity

5.1 Notions of ergodicity

One of the key questions of statistical mechanics is what precise properties of the Hamiltonian
governing the dynamics can be held responsible for the emergence of aspects of quantum sta-
tistical mechanics. In classical mechanics it results from sufficient transport properties which
is evident already in Boltzmann’s H-Theorem. In the quantum regime for free systems, a no-
tion with similar operational meaning can also be identified, namely that propagators decay
quickly, which holds with surprising generality and can be interpreted as a lower bound to
particle transport.

Theorem 4 (Free fermionic ergodicity). Let t 7→ G(t) be the propagator for a non-interacting
translation invariant fermionic Hamiltonian Ĥ(h) which is off-diagonal on the one-dimensional
real-space lattice. Then for all times t between a relaxation time t0 = O(1) up until a recurrence
time tR = Θ(L) the propagator obeys

|Gx ,y(t)| ≤ C t−γ , (50)

where C ,γ > 0 are constants. We can take γ = 1/3, provided there are no points p such that
E′′(p) = E′′′(p) = 0 which is true for generic models.

We can interpret Theorem 4 as proving free-particle ergodicity for these models. This no-
tion of ergodicity is motivated by the classical notion of ergodicity, which states that an ergodic
system essentially explores the whole available phase space, and it does so homogeneously.
In free systems, we have to respect the linear constraint in the relation (10) at all times and
given that, the suppression (50) allows to show that the particles must spread over the lat-
tice. Indeed unitarity of the propagator

∑L
y=1 |Gx ,y(t)|2 = 1 implies that a particle initially

at site x must occupy at least O(t2γ) sites. If for most sites the bound is not tight, then the
particle must have spread to an even larger region. Indeed, whenever the spatial separation
d = x − y is far away from a ballistic wavefront, typically found in free translation invariant
systems, then our proof can be used to obtain γ = 1/2 which would imply that the particle
spreads homogeneously over a region of size O(t). Note that our bound is independent of d
and hence γ = 1/3 is necessary and reflects the scaling at the wavefront [50]. Conversely,
in localized systems such as Anderson insulators, particles cannot spread freely and typically
|Gx ,y(t)| ≤ Ce−|x−y|/`0 which together with the unitarity of the propagator can be used to

show that
∑y+`0

x=y−`0
|Gx ,y(t)| > O(1) for all times, i.e., particles cannot spread by more than

the localization length `0. The proof of Theorem 4 is given in Appendix D and is again based
on Kusmin-Landau inequality [49]. It could be also of general interest as a method for deriving
error-bars for stationary phase arguments in field theory. Note that one can explicitly calculate
the relaxation time and the recurrence time, t0 and tR, using only the dispersion relation.
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5.2 Gaussification is generic

Combining the above results with insights from Ref. [50] lead to a remarkably strong result.
Ref. [50] presented results on how non-interacting fermionic quantum systems that show delo-
calizing transport would “Gaussify”, that is, turn to a quantum state that is Gaussian to an arbi-
trarily good approximation in time. However, Theorem 4 shows precisely this: Non-interacting
one-dimensional models generically exhibit delocalizing transport. We hence arrive at a state-
ment of a rigorous convergence to a generalized Gibbs ensemble with enormous generality.
When stating this Gaussification theorem, we define the state %̂G(t) to be a Gaussian state
with the same covariance matrix as %̂(t).

Theorem 5 (Fermionic generic Gaussification). Consider the initial fermionic state %̂(0) with
exponential decay of correlations and a non-interacting translation-invariant post-quench Hamil-
tonian with dispersion relation E(p) such that there are no points with E′′(p) = E′′′(p) = 0 for
any p. Then there exist a constant relaxation time t0 and a recurrence time tR = Θ(L) such that,
for all t ∈ [t0, tR],

|〈Â〉%̂(t) − 〈Â〉%̂G(t)| ≤ C t−1/6 , (51)

where C > 0.

6 Proving Theorem 1

In this section we collect all our findings that lead to the statement of Theorem 1. Within the
setting described above the two crucial ingredients are an initial state featuring exponentially
decaying correlations and the quench Hamiltonian being translation invariant. By Theorem 5,
we have that at a sufficiently large time any local correlation function can be approximated by
the value obtained from the Gaussified state. That is, it suffices to take the second moments Γ of
the initial state %̂(0), evolve them according to the quench Hamiltonian and evaluate 〈Â〉%̂(t) by
appropriately employing Wick’s theorem for Γ (t). We hence find equilibration 〈Â〉%̂(t) ≈ const
if Γ (t) ≈ const is time independent. This is already the case if we perform the quench start-
ing from a translation-invariant non-Gaussian state because then the covariance matrix Γ is
also translation invariant and so Γ (t) = Γ (0) because ∂tΓ (t) = i[h, Γ (t)] = 0. For such cases
Gaussification is sufficient for equilibration [50]. However, thanks to Proposition 3 we obtain
a much more general statement. Namely, any non-resilient covariance matrix will equilibrate.
This result applies to very natural initial conditions that can dramatically deviate from a ho-
mogenous configuration. The relaxation takes the form of a power law O(t−1/6) determined
by the Gaussification times. This, however, is an artifact of our rigorous uniform bounds –
one should expect the calculation for a special configuration from Refs. [42,54] to be generic
O(t−1/2). A proof of such a behaviour being the standard time-scale may be possible but
would involve a significantly more detailed treatment of the wavefront which is responsible
for our scalings not being tight as compared to the behaviour in the bulk of the Lieb-Robinson
cone [50].

7 Numerical results

7.1 Quenches of the Anderson insulator to an ergodic translation invariant
Hamiltonian

As a numerical illustration, in this section, we discuss the situation arising from starting in the
thermal state of a disordered Anderson insulator, initially not translation invariant, followed
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Figure 3: We have sampled a thermal state of the Anderson insulator Γ (Quench) for sys-
tem sizes L = 1000,7000 at β = 1 and w= 5 as an example of a strongly disordered
initial condition. We find that after switching off the on-site disorder the ensuing
non-equilibrium evolution under the nearest-neighbour hopping model leads to re-
laxation towards the infinite-time average Γ (∞) which is indeed quantified in the
functional form by a power-law in time ‖Γ (Quench) − Γ (∞)‖max ∼ t−α. The green line
is a guide to the eye scaling as ∼ t−1/3. At some point, the power-law relaxation
must level off either due to finite system size, with the ultimate small parameter
being ε∼ t−αR ∼ L−α, or due to the specific quasiparticle content X (d).

by a quench to a perfectly translation invariant ergodic hopping Hamiltonian. Needless to say,
the equilibrium states emerging are once again generalized Gibbs ensembles and Gaussian
states: It is interesting to note, however, that they resemble fully thermal states with high
probability to a rather good approximation.

To be specific, as a starting point we choose an initial covariance matrix which is not trans-
lation invariant and has a finite correlation length. A natural way of assigning such initial
conditions is to consider a Gibbs state of the Anderson insulator with Hamiltonian

Ĥξ =
L∑

x=1

�
f̂ †
x+1 f̂x + f̂ †

x f̂x+1 + ξx f̂ †
x f̂x

�
, (52)

where the noise is uniformly distributed in the interval ξx ∈ [−w, w] for w > 0. We study
the quench consisting in switching off the disorder, i.e., setting ξx = 0 for all x . Following a
numerical calculation, the quenched state Γ (Quench)(t) = Γ (β ,Anderson)(t) can be seen to become
largely homogeneous for sufficiently long duration of the evolution, see Fig 3. As a measure
of equilibration, we make use of the max norm distance

‖Γ (1) − Γ (2)‖max =max
x ,y

���Γ (1)x ,y − Γ (2)x ,y

��� (53)

between two covariance matrices Γ (1), Γ (2). Whenever ‖Γ (1)− Γ (2)‖max is small, a large fidelity
between the two states is implied [83, 84]. Fig. 3 provides further substance to the above
established rigorous insights, in that a significant part of the equilibration is indeed governed
by a power-law by comparing Γ (Quench)(t) to the infinite time average Γ (∞). To further elab-
orate on this setting, we discuss the features of the equilibrium state, see Fig. 4. We begin by

18



SciPost Phys. 7, 038 (2019)

25 50 75 100
Lattice site x

20

40

60

80

100

L
at

ti
ce

si
te
y

Γ(β,Anderson)

−0.2

0.0

0.2

0.4

0.6

0.8

5 10

5

10

25 50 75 100
Lattice site x

20

40

60

80

100

L
at

ti
ce

si
te
y

Γ(Quench)

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

5 10

5

10

25 50 75 100
Lattice site x

20

40

60

80

100

L
at

ti
ce

si
te
y

|Γ(Quench)
x,y − Γ

(β,µ,fit)
x,y |

0.02

0.04

0.06

0.08

0.10

0.12

5 10

5

10

25 50 75 100
Lattice site x

20

40

60

80

100

L
at

ti
ce

si
te
y

|Γ(∞)
x,y − Γ

(β,µ,fit)
x,y |

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

5 10

5

10

Figure 4: A system initially in a thermal state of an Anderson insulator Γ (β ,Anderson)

with β = 1 and w= 5 (top-left) can be quenched to translation invariant evolution by
switching off the on-site disorder which results in approximate translation invariance
Γ (Quench) = Γ (β ,Anderson)(t = L/4) (top-right). This can be quantified with a compari-
son to the thermal state of nearest-neighbour hopping Γ (β ,µ,fit) obtained from fitting
over the temperature β and chemical potential µ (bottom-left). While deviations are
seen the inverse system size L−1 = 10−2 is not a stringent small parameter. However
if equilibration occurs for larger systems, then it will be towards the infinite time
average Γ (∞) which looks thermal at already small system sizes (bottom-right) and
this property is retained when going towards the thermodynamical limit.

investigating the difference between the quenched state Γ (Quench)(t) and a fit to a thermal co-
variance matrix Γ (β ,µ,fit) of the quench Hamiltonian obtained from fitting over the temperature
β and chemical potential µ. We find that the discrepancy is already diminished for L = 100
and |Γ (Quench)

x ,y (t)− Γ (∞)x ,y | is homogeneously distributed. For the infinite time average we have

‖Γ (∞) − Γ (β ,µ,fit)‖max ≈ 10−3 as the distance to the Gibbs state. The upshot of the findings is
that due to a concentration of measure effect, the resulting generalized Gibbs ensembles are
with high probability close to an actual Gibbs state, with stray fluctuations being detected. We
discuss further details of this argument in Appendix F.5.
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7.2 Realizing generalized Gibbs ensembles in optical lattices

Ultra-cold atoms trapped in optical lattices [85] have proven to be an excellent platform for
studying relaxation phenomena [86,87] in instances of quantum simulators [88–90], because
the system is well isolated from the environment during the evolution and one can prepare
with high-level of control states that have very visible non-equilibrium dynamics after the
quench. Here we hint that with the present techniques that have been used in various settings
one can prepare two different initial states that will equilibrate to two different steady states
which are easily distinguishable – despite the Hamiltonian governing the dynamics being the
same in both cases. This is expected to be possible at least for intermediate times in instances
of prethermalization, before interaction effects will lead to a genuine full thermalization. The
first steady state would be one obtained from simply letting the gas equilibrate on the lattice.
For the second type of the steady state, we would prepare the initial state in the same way and
perform the quench by suddenly doubling the lattice by adding in-between sites, exploiting
optical super-lattices, similar to the situation described in Ref. [86]. In that situation the initial
covariance matrix will feature a checker-board pattern with only the odd sites being occupied
and currents being non-zero only between odd sites, see Fig. 5. Note that the specific details
of how the doubling is performed are not important as long as the initial state preparation will
feature a charge-density wave pattern – however it is absolutely crucial for our example that
the charge-density wave is also present in the current structure. The quench then consists in
allowing for tunneling between all sites. By our analytical result, the density pattern which is a
P = 2-periodic block structure will equilibrate to a uniform distribution at each site. The same,
again, will occur for each current individually. Usually, the nearest-site tunnelling current will
be the strongest so if we had I1 = 〈 Î1〉 before the doubling then the current will equilibrate to
I1/2 after the doubling of the lattice. However, the surprise value lies in the fact that this will
be the next-nearest-neighbour current I ′2 in the new lattice, and in the steady state the final
nearest-neighbour current should not be present I ′1 ≈ 0. That is, after the quench, one will
observe that there are only currents in the system in multiples of two sites, cf. Fig. 5. This
is a non-trivial observation, because the sites that have been un-occupied immediately after
the doubling will become occupied and there will be currents flowing out of them to the next-
nearest sites, i.e., the neighbouring initially un-occupied sites. In contrast, in the steady state
there will be no tunnelling between the nearest-neighbour sites which is unintuitive as the
Hamiltonian is nearest-neighbour showcasing peculiar memory effects that can be obtained
with quenches to quasi-free evolution. Realizing such a setup in gases where interactions
can be controlled by a Feshbach resonance would also allow to study how nearest-neighbour
currents can be generated by many-body scattering, an effect not present in a non-interacting
Hamiltonian [91–94].

8 Discussion and outlook

In this work, we have established a widely applicable and very general situation in which
the convergence to generalized Gibbs ensembes can be proven. Specifically, we have shown
in large generality that for large classes of natural initial conditions, local expectation values
of systems relaxing under unitary dynamics generated by non-interacting Hamiltonians take
the values of translation invariant genaralized Gibbs ensembles. The emerging steady state
is parametrized by thermodynamical potentials whose number is intensive, namely of the or-
der of the initial correlation length in units of the lattice spacing. Our assumption is that
the quadratic Hamiltonian is translation invariant which leads to homogeneous spreading of
particles on the lattice, a generic effect which we describe as a possible notion of ergodicity
for quasi-free quantum systems. We have given numerical examples illustrating our rigorous
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Figure 5: A system initially in a thermal state of the nearest-neighbour hopping
Hamiltonian (left) on a sub-lattice can be quenched to translation invariant evo-
lution which results in approximate translation invariance as one relaxes towards
the steady state in finite time. The special initial condition results in the absence of
nearest-neighbour currents on the whole lattice in the infinite time average (right).
The best fit to a thermal state is given by an infinite temperature state with the corre-
sponding filling ratio and strongly deviates from the steady state Γ (∞). This is despite
the density distribution becoming homogenous because the state deviates from the
thermal ensemble by the absence of the nearest-neighbour current I ′1 and the pres-
ence of the next-nearest neighbour tunnelling I ′2. Note that there are particles and
currents present on the initially unoccupied sub-lattice too. This showcases a general
approach to creating initial conditions that demand a description in terms of a GGE
by exploiting the existence of memory in terms of conserved local currents.

statements and explain how to observe non-trivial generalized Gibbs ensembles in, e.g., an
optical lattice experiment.

Specifically, we saw that locally the memory of initial, possibly non-Gaussian, correlations
is lost via the process of Gaussification, which relies only on finite correlation length in the
initial state. Hence, even if the initial state preparation involves intricate interactions, a quench
to quasi-free evolution will lead to a loss of memory of these initial strong correlations, and
the state will obey Wick’s theorem up to an error decaying algebraically in time. Such states
(i.e., Gaussian) are determined only by their covariance matrix which we show to equilibrate.
A necessary condition for this was that the initial current and density distributions did not
have large-scale structure (which may still equilibrate, but only after a time of the order of the
system size [38]). Thus, we derived a rapid polynomial time-scale for equilibration (which
is independent of the system size). More precisely, the deviation from equilibrium of any
normalized local correlation function is bounded by ε= O(t−γ), and the scaling is functionally
tight, which we showed numerically.

The goal of our work was to show that it is possible to make rigorous statements concerning
the dynamical emergence of statistical mechanics in mean-field models. For this reason we had
to leave several aspects of the subject unanswered. Within our setting we have not discussed
in detail the possibility of the infinite-time dephasing leading to steady states which are non-
translation invariance due to degeneracy of the dispersion relation, and the proof of Lemma 11
in the appendix hints at that. It would also be interesting to understand in more detail if

21



SciPost Phys. 7, 038 (2019)

Gaussification is possible for Green’s functions which have only very weak quasi-free ergodicity,
i.e., |Gx ,y(t)|= O(t−γ) for γ < 1/4 for a significant number of entries x , y . If the argument in
Ref. [50] is optimal then one should observe for γ < 1/4 a temporal persistence of deviations
from Wick’s theorem for quenches of non-Gaussian states.

Concerning the question of adding small interactions one would expect the GGE examples
that we have given to eventually thermalize. Understanding the dynamical stability of the
GGE description is important for applications, e.g., work extraction protocols [95] but also is
instrumental for our conceptual understanding of the emergence of thermalization. Above,
we have hinted at an open problem of characterizing the structure of dephased states as being
thermal in light of computational complexity and that an interesting approach would be to
first make progress concerning high-temperature quenches.

Note added

Upon completion of this manuscript, a preprint presenting closely related results appeared [96].
Our work puts significantly more emphasis on including rigorous error bounds, whereas Ref.
[96] stresses more the physical intuition underlying the phenomena observed. The methods
are also somewhat different (though related in spirit), as Ref. [96] uses stationary phase ap-
proximations, while we employ the machinery of Kusmin-Landau bounds.
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A Quasi-free propagators generated by non-interacting Hamilto-
nians

A.1 Bosonic and fermionic lattice models

In this section we will derive the propagator representation from the main text. All statements
concern quasi-free Hamiltonians conserving the total particle number.

Fermions. A fermionic annihilation operator acting on mode x is denoted by f̂x . These
operators obey the canonical anti-commutation relations { f̂x , f̂ †

y } = f̂x f̂ †
y + f̂ †

y f̂x = δx ,y and

{ f̂x , f̂ y} = { f̂ †
x , f̂ †

y } = 0}. Quasifree fermionic Hamiltonians conserving the particle number
are of the form

Ĥ(h) =
L∑

x ,y

hx ,y f̂ †
x f̂ y , (54)

where h= h† ∈ CL×L is the coupling matrix for a finite system size L.
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Lemma 6 (Fermionic propagator). We have

f̂x(t) = ei t Ĥ(h) f̂x e−i t Ĥ(h) =
L∑

y=1

G∗x ,y(t) f̂ y , (55)

where propagator is given by G∗(t) = e−i th.

Proof. We begin by noticing that f̂x(t) is differentiable and take a time-derivative obtaining

∂t f̂x(t) = iĤ(h) f̂x(t)− i f̂x(t)Ĥ(h) (56)

= i[Ĥ(h), f̂x(t)] , (57)

which is the Heisenberg equation of motion. We further notice that

∂t f̂x(t) = i ei t Ĥ(h) [Ĥ(h), f̂x ] e−i t Ĥ(h) , (58)

which means that we need to evaluate the commutator at t = 0. Next, we calculate the
commutator

[ f̂ †
y f̂z , f̂x ] = f̂ †

y [ f̂z , f̂x ] + [ f̂ †
y , f̂x ] f̂z (59)

= 2 f̂ †
y f̂z f̂x + 2 f̂ †

y f̂x f̂z −δx ,y f̂z (60)

= −δx ,y f̂z , (61)

which gives by linearity

[Ĥ(h), f̂x] = −
L∑

y,z=1

hy,zδx ,y f̂z (62)

= −
L∑

z=1

hx ,z f̂z . (63)

This allows us to write the above Heisenberg equation of motion explicitly as

∂t f̂x(t) = −i
L∑

y=1

hx ,y f̂ y . (64)

This is a system of L linearly coupled ordinary differential equations and is solved by

f̂x(t) =
L∑

y=1

G∗x ,y(t) f̂ y , (65)

where G∗(t) = e−i th ∈ U(L). Indeed, this becomes apparent if one considers a vector
f̂ = ( f̂1, . . . , f̂L)> then we get in vector notation

∂t f̂ (t) = −ih f̂ (t) ⇔ f̂ (t) = e−i th f̂ = G∗(t) f̂ . (66)
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Bosons. Bosonic operators b̂ obey the canonical commutation relations
[b̂x , b̂†

y] = b̂x b̂†
y − b̂†

y b̂x = δx ,y and [b̂x , b̂y] = [b̂†
x , b̂†

y] = 0. Quasifree bosonic Hamiltoni-
ans conserving the particle number are of the form

Ĥ(h) =
L∑

x ,y

hx ,y b̂†
x b̂y , (67)

where h= h† ∈ CL×L is again the coupling matrix for a finite system size L.

Lemma 7 (Bosonic propagator). We have

b̂x(t) = ei t Ĥ(h) b̂x e−i t Ĥ(h) =
L∑

y=1

G∗x ,y(t)b̂y , (68)

where the propagator is given by G∗(t) = e−i th.

Proof. Again, the Heisenberg equation of motion is

∂t b̂x(t) = i[Ĥ(h), b̂x(t)] (69)

and it suffices to evaluate the commutator at t = 0. We have

[b̂†
y b̂z , b̂x] = [b̂

†
y , b̂x]b̂z (70)

= −δx ,y b̂z , (71)

which gives by linearity

∂t b̂x(t) = −i
L∑

y=1

hx ,y b̂y . (72)

This is again a system of L linearly coupled ordinary differential equations with the solution

b̂x(t) =
L∑

y=1

G∗x ,y(t)b̂y , (73)

where G = e−i th ∈ U(L). Here, we have used the general correspondence

∂t b̂(t) = −ih b̂(t) ⇔ b̂(t) = e−i th b̂ (74)

for the vector b̂ = (b̂1, . . . , b̂L)>.

Translation invariance. Let us consider

Ĥ(h) =
L∑

x ,y

hx ,y â†
x ây , (75)

where â stands either for f̂ in the case of fermions or b̂ for bosons and h = h† ∈ CL×L is the
coupling matrix for a finite system size L. The above two paragraphs have shown that

âx(t) = ei t Ĥ(h)âx e−i t Ĥ(h) =
L∑

y=1

G∗x ,y(t)ây . (76)

In this paragraph we will be interested in translation invariant Hamiltonians.
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Lemma 8 (Translation invariant propagator). Let h be real translation invariant couplings with
hopping amplitudes Jk. The propagator is given by

G∗x ,y(t) =
1
L

L∑
k=1

e−iωk t+2πik(x−y)/L , (77)

where ωk = J0 + 2
∑bL/2c

z=1 Jz cos(2πkz/L).

Proof. A translation invariant model has couplings which satisfy hx ,y = hx+z,y+z with peri-
odic boundary conditions. Below we recall that such matrices are called circulant and are
diagonalized by a discrete Fourier transform. Hence we can write

hx ,y =
1
L

L∑
k=1

ωke2πik(x−y)/L , (78)

with ωk as above which is obtained by an explicit calculation using Fourier modes. Using the
formula G(t) = e−i th, we hence get

G∗x ,y(t) =
1
L

L∑
k=1

e−iωk t+2πik(x−y)/L (79)

for the propagator.

A.2 Circulant matrices

In this section we gather some basic facts about circulant matrices, leading up to the character-
ization that these are exactly the matrices diagonalizable by a discrete Fourier transformation.
Additionally we describe simple formulas for the spectrum in the general case and for periodic
boundary conditions. We begin by giving a precise definition of a circulant matrix.

Definition 9 (Circulant matrix). A matrix h ∈ CL×L is called circulant if

hx ,y = hx+z,y+z (80)

for any x , y, z = 1, . . . , L 1 and we use modulo-L indices i.e. hx+L,· = hx ,· and h·,y+L = h·,y .

The name comes from the fact that in a circulant matrix the k-th row is a circulant shift
of the first row by k− 1 steps to the right. That, is if (J0, J1, . . . , JL−1) is the first row then the
second is (JL−1, J0, . . . , JL−2), the third (JL−2, JL−1, J0, . . . , JL−3) and altogether




J0 J1 J2 . . . JL−1
JL−1 J0 J1 . . . JL−2

. . .
J2 . . . JL−1 J0 J1
J1 . . . JL−2 JL−1 J0




. (81)

We see that it is enough to know the vector of (hopping) amplitudes Jz = h1,1+z for
z = 1, . . . , L − 1 to describe the whole matrix h. A translation invariant Hamiltonian H(h)
has a couplings matrix which is circulant but also Hermitian. This means that JL−1 = J∗1 ,
JL−2 = J∗2 and in general JL−z = J∗z . In that case J0, J1, . . . , JbL/2c are necessary to parametrize
the matrix.

1z could have smaller range but it doesn’t harm
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Lemma 10 (Circulant matrices and discrete Fourier transforms). A matrix h is circulant if and
only if it is diagonalized by a discrete Fourier transform. For k = 1, . . . , L the eigenvectors are

ψk =
1p
L

�
φk,φ2

k , . . . ,φL−1
k , 1

�>
, (82)

where φk = e2πik/L and the corresponding eigenvalue read

λk(h) = J0 +
L−1∑
z=1

Jze2πizk/L . (83)

An important case is when the Hamiltonian couplings are real in addition to being circulant
matrices and then we have

λk(h= h> = h∗) = J0 +
bL/2c∑
z=1

2Jz cos(2πzk/L) . (84)

In the most general translation invariant case, which is relevant for the case of conserved
quantities if the initial covariance matrix was not purely real, we have

λk(h= h†) = J0 + 2
bL/2c∑
z=1

ℜ[Jze2πizk/L] . (85)

Here we have used translation invariance which in general reads Jz = J∗L−z . As an example
consider

Îz=1(η= π/2) =
1
L

L∑
x=1

(i f̂ †
x f̂x+1 − i f̂ †

x+1 f̂x) , (86)

for which we have λk = 2ℜ[Jz=1e2πizk/L] = (2/L)ℜ[ie2πizk/L] = −(2/L) sin(2πzk/L).

Proof. To show the first direction, we will show that ψ†
k′(hψk) = λk(h)δk′,k. We have

ψ†
k′(hψk) = L−1

L∑
x ,y=1

hx ,y e
2πi

L (k y−k′x) (87)

= L−1
L∑

x ,z=1

hx ,x+ze
2πi

L (k−k′)x e
2πi

L kz (88)

= L−1
L∑

z=1

h1,1+ze
2πi

L kz
L∑

x=1

e
2πi

L (k−k′)x (89)

=
L∑

z=1

h1,1+ze
2πi

L kzδk,k′ , (90)

which is by definition of λk(h) what we were looking for. For the converse direction, we must
show that a rotation by the discrete Fourier transform matrix of a spectrum λ yields a circulant
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matrix. We do this by checking the defining property

h̃x ,y =
� L∑

k=1

λkψkψ
†
k

�
x ,y

(91)

= L−1
L∑

k=1

λke2πik(x−y)/L (92)

= L−1
L∑

k=1

λke2πik(x+z−y−z)/L (93)

= h̃x+z,y+z . (94)

Thus, the matrix h̃ is circulant.

A.3 Bessel function asymptotics

A particularly insightful situation is the special case of a nearest-neighbour fermionic hopping
Hamiltonian, setting J0 = 0 and J1 = 1. In this situation, we simply obtain

ωk = 2 cos(2πk/L) , (95)

and hence

G∗x ,y(t) =
1
L

L∑
k=1

e−2i cos(2πk/L)t+2πik(x−y)/L (96)

for the propagator. In the limit of large L, this can be seen as a Riemann sum approximation
[54] to the integral

G̃∗x ,y(t) =
1

2π

∫ 2π

0

dφ e−2i cos(φ)t eiφ(x−y) = i x−yJx−y(−2t) , (97)

where Jl : R→ R is the Bessel function of the first kind. The error in this approximation can
be bounded from above as

|G∗x ,y(t)− i x−yJx−y(−2t)| ≤ π|x − y − 2t|
L

. (98)

These Bessel functions satisfy
|Jx−y(−2t)|= O(t−1/2) (99)

for all x , y . That is to say, in this situation, one gets an equilibration following a O(t−1/2) be-
haviour. This feature of the propagator is actually inherited by the actual correlation decay. In
fact, a stronger statement can be made: O(t−1/2) is not only an upper bound for |Jx−y(−2t)|,
but there cannot be a tighter uniform bound in the form of a power law. The asymptotics of
Bessel functions [97] can be captured as

Jx−y(τ) =
�

2
πτ

�1/2

cos
�
τ− (x − y)π

2
− π

4

�
+O(|τ|−1) , (100)

for τ > 0, showing that no tighter uniform power law bound can exist.
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B Steady states and local conservation laws via circulant matrices

Now we prove that dephasing under Hamiltonians that are only minimally degenerate leads
to steady states with Γ (eq)

x ,y ≈ 〈 Î|x−y|〉 where as in the main text we take the index arithmetic to
be modulo L.

Lemma 11 (Steady state covariance matrices as approximately circulant matrices). Consider
a state with covariance matrix Γ and exponentially decaying correlations. For any Ĥ(h) with
dispersion relation satisfying ωk = ωk′ only for k = k′, or k = L − k′ where k′ > k the steady
state is approximately a circulant matrix with entries

|Γ (eq)
x ,y − 〈 Î|x−y|〉|= O(L−1) . (101)

In particular, this holds true for the nearest-neighbour hopping model with dispersion re-
lation ωk = cos(2πk/L).

Proof. Let us consider the action of the dephasing map on the initial covariance matrix
Γ (eq) = limT→∞

1
T

∫ T
0 Γ (t) for two sites x , y which reads

Γ (eq)
x ,y = lim

T→∞
1
T

∫ T

0

Γx ,y(t) (102)

= lim
T→∞

1
T

∫ T

0

L∑
x ′,y ′=1

Gx ,x ′(t)Γx ′,y ′G
∗
y ′,y(t) (103)

= L−2
L∑

x ′,y ′=1

Γx ′,y ′

L∑
k,k′=1

�
lim

T→∞
1
T

∫ T

0

e(−iωk t+iωk′ )t

�
e

2πi
L (k(x−x ′)−k′(y−y ′)) (104)

= L−2
L∑

x ′,y ′=1

Γx ′,y ′

L∑
k,k′=1

δωk ,ωk′ e
2πi

L (k(x−x ′)−k′(y−y ′)) . (105)

Next, we will use the assumption concerning the minimal degeneracy of the dispersion relation
which gives

Γ (eq)
x ,y =L−2

L∑
x ′,y ′=1

Γx ′,y ′

L∑
k,k′=1

δk,k′e
2πi

L (k(x−x ′)−k′(y−y ′)) (106)

+ L−2
L∑

x ′,y ′=1

Γx ′,y ′

L∑
k,k′=1

δk,L−k′(1−δk,k′)e
2πi

L (k(x−x ′)−k′(y−y ′)) . (107)

We notice that the condition k = k′ gives

δx−y,x ′−y ′ = L−1
L∑

k=1

e
2πi

L k(x−x ′−y+y ′) . (108)

The other condition k = L−k′ also leads to simplification but one needs to be careful to observe
that for L even we may obtain k = L−k′ and k = k′ = L/2 and such terms are already included
in the previous sum. Additionally, k′ = L gives no solution to k = L − k′ and so together we
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have

Γ (eq)
x ,y =L−1

L∑
x ′,y ′=1

Γx ′,y ′δx−y,x ′−y ′ (109)

+ L−2
L∑

x ′,y ′=1

Γx ′,y ′

L−1∑
k,k′=1

δk,L−k′e
2πi

L (k(x−x ′)−k′(y−y ′)) (110)

− L−2
L∑

x ′,y ′=1

Γx ′,y ′

L−1∑
k,k′=1

δk,L−k′δk,k′e
2πi

L (k(x−x ′)−k′(y−y ′)) . (111)

Here we identify the first line to give a current expectation value 〈 Î|x−y|〉. The inner sum in
second line gives Lδx+y−x ′−y ′ − 1 and the third is either 0 or can be bounded from above

����Γ (eq)
x ,y − 〈 Î|x−y|〉

����≤ L−1
L∑

x ′,y ′=1

|Γx ′,y ′ |δx+y−x ′−y ′ + 2L−2
L∑

x ′,y ′=1

|Γx ′,y ′ | . (112)

Finally, we make use of the exponential decay of correlations |Γx ,x+z| ≤ CCluste
−z/ξ, obtaining

L−2
L∑

x ′,y ′=1

|Γx ′,y ′ | ≤ L−2
L∑

z=0

L∑
x=1

|Γx ,x+z| ≤ L−1CClust

∞∑
z=0

e−z/ξ (113)

≤ CClust

1− e1/ξ
L−1 . (114)

Employing a similar bound for the first term we obtain
����Γ (eq)

x ,y − 〈 Î|x−y|〉
����≤ CI L−1 . (115)

Lemma 12 (Relevant currents). Consider a state with covariance matrix Γ and exponentially
decaying correlations parametrized by the correlation length ξ > 0. Then for any time t we have

|Γ (d)x ,y(t)| ≤ CCluste
−d/ξ . (116)

Proof. After a technical calculation using the definition of Γ (d) we find

���Γ (d)x ,y(t)
���=

�����
L∑

z,w=1

Gx ,w(t)Γz+d,z δw,z+d G∗y,z(t)

����� (117)

≤ max
z=1,...,L

��Γz,z+d

��
� L∑

w=1

��G(t)x ,w

��2
�1/2� L∑

z=1

��Gy,z(t)
��2
�1/2

(118)

= max
z=1,...,L

��Γz,z+d

�� (119)

≤ CCluste
−d/ξ. (120)

The second line follows from the inequality

| 〈v |A |w〉 | ≤ ‖A‖
Æ
〈v|v〉

Æ
〈w|w〉 , (121)

where we are thinking of Γz,z+d δw,z+d as a matrix, with operator norm given by maxz

��Γz,z+d

��.
The third line follows because G(t) is a unitary matrix, so its rows and columns are orthonor-
mal vectors. In the last line, we have used the definition of exponentially decaying correla-
tions.
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C Bound on oscillatory sums of sequences with compact Fourier
representation

We would like to prove a general bound on oscillatory sums of the type appearing in the main
text where the phase sequence can be decomposed in a Fourier series with bounded number
of harmonics. Specifically, we define a smooth phase function Φt : [0, 2π]→ R of the form

Φt(p) = dp+ t
R∑

z=1

Jz cos(zp+αz) , (122)

where t, d, J1, . . . , JR,α1, . . .αR ∈ R with J 6= 0. It will be convenient to define

Φ(p) =
R∑

z=1

Jz cos(zp+αz) , (123)

which plays, e.g., the role of a dispersion relation and we have Φ(κ)t = tΦ(κ) for all higher-order
derivatives κ > 1. If we additionally define pk = 2πk/L, then the sequence of interest will be

ϕk = Φt(pk) , (124)

for k = 1, . . . , L, where L as in the main text stands for the system size. Note that our results
become non-trivial for L ≥ t0 where t0 is the relaxation time which dependents only on Jz .
Physically, it is always given that L is asymptotically large giving a uniform small parameter,
so for system sizes of interest our requirements should be fulfilled. Mathematically all our
statements remain correct by defining [t0, tR] = ; if t0 ≥ tR but it should be stressed that
when L is large enough we obtain a very non-trivial bound with t0 < tR.

Before we state our main theorem of this section, let us make the following definitions.
We will use the Kusmin-Landau bound and the role of stationary points will be taken by the
roots of Φ′t denoted by

S(1) = {p ∈ [0, 2π] s.t. Φ′t(p) = 0} (125)

and the extremal points of the group velocity Φ′t

S(2) = {p ∈ [0, 2π] s.t. Φ′′t (p) = 0} . (126)

The former set of points are exactly the points of vanishing group velocity while for the latter
the band curvature vanishes. Let us make additionally the following definition useful for Taylor
expansions around roots r ∈ S = S(1) ∪S(2). In general for r ∈ S we define

κr ≥ 1 (127)

to be the minimal integer such that for r ∈ S(a) where a = 1,2 the (κr + a)’th derivative does
not vanish |Φ(κr+a)

t (r)| 6= 0. Additionally,

κ0 =max
r∈S

κr (128)

will set the scaling of the final bound in the following theorem.

Theorem 13 (Dephasing bound). There exist a constant relaxation time t0 and a recurrence
time tR = Θ(L) such that, for all t ∈ [t0, tR] we obtain the bound

1
L

�����
L∑

k=1

eiϕk

�����≤ C# t−γ , (129)
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where

C# = 6(2R+ 1)max

(
1, min

r∈S(2)

��Φ(κr+2)(r)
��

2C (3)max κr !
, max

r∈S(2)
8 (κr !)2 C (3)max��Φ(κr+2)(r)

��2 , max
r∈S(1)

4κr !��Φ(κr+1)(r)
��

)
(130)

and γ = 1/(3κ0) > 1/(6R) are constants. We can take γ = 1/3, provided there are no repeated
roots Φ′′t (p) = Φ

′′′
t (p) = 0 which holds true in the generic case.

This theorem will for example allow us to bound

|Gx ,y(t)|=
1
L

�����
L∑

k=1

eiωk t+2πikd/L

�����≤ C# t−α (131)

or

| fn(t)|=
1
L

�����
L∑

s=1

ei(ω(s+n)−ωs)t+2πis(x−y−d)/L

�����≤ C#(
nπ
L )t

−α , (132)

as a function of time and with constants expressed in the analytic properties of Φt . The fol-
lowing lemma attributed to Kusmin and Landau [49] will be our key tool.

Lemma 14 (Kusmin-Landau bound). Suppose (ϕn)n∈{1,...,N} are real numbers and suppose the
gaps δn = (ϕn+1 − ϕn) for n ∈ {1, . . . , N − 1} are (i) increasing δn ≥ δn−1 and (ii) each gap
satisfies δn ∈ [λ, 2π−λ] with λ > 0. Then we have

�����
N∑

n=1

eiϕn

�����≤ cot(λ/4)≤ 2π
λ

, (133)

where the second inequality follows from cos(x)≤ 1 and sin(x)≥ 2x/π for x ∈ [0,π/2].

To apply Lemma 14, we need to understand the discrete Kusmin gaps defined by

δk = ϕk+1 −ϕk , (134)

and show that they are separated from 0 and 2π by some λ > 0 on a constant number of
intervals where they are also monotonous. Because ϕk = Φt(pk) we can use the mean value
theorem obtaining

δk =
2π
L
Φ′t(p̃k) (135)

for some p̃k ∈ [pk, pk+1] and 2π/L is the size of the interval to which we apply the theorem.
We denote the summation domain by

D = {1,2, . . . , L} (136)

and collect the corresponding p̃k points in

I = {p̃k : k = 1, . . . , L − 1} . (137)

Observe, that by the mean-value relation (135) the Kusmin gaps are monotonous on some
Ir ⊂ I if Φ′t is monotonous on I r = conv(Ir). By using the mapping k 7→ p̃k, we can define
intervals in D associated to any subset Ir ⊆ I defining Dr = {k ∈ D s.t. p̃k ∈ Ir}. We want
to divide D into intervals where δ are monotonous. After an elementary application of the
triangle inequality, to each such region we want to apply the Kusmin-Landau bound. It is
important to notice that their number is bounded above by the maximal coupling range R
according to the following lemma.
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Lemma 15 (Roots). The function Ω : [0, 2π]→ C defined by

Ω(p) = a0 +
R∑

z=1

(azeipz + bze−ipz) , (138)

where a j , b j ∈ C has at most 2R roots as long as a 6= 0 or b 6= 0.

Proof. Define a complex polynomial Y : C→ C by Y (u) = a0uR+
∑R

z=1 azuz+R+
∑R

z=1 bzuR−z)
and observe that it is not identically zero and has degree at most 2R and hence at most 2R
roots. Further, note that when restricted to the unit circle S1 in the complex plane we have
Y (eip) = eiRpΩ(p) for any p ∈ [0,2π]. From this we see that whenever Ω(p) = 0 for some
p ∈ [0, 2π] then u= eip is a root of Y because the multiplicative prefactor eip does not remove
any roots. Thus the number of roots of Ω cannot exceed the number of roots of Y which is
upper bounded by 2R.

Corollary 16 (Number of roots of phase functions). The phase function Φt and all its derivatives
Φ′t , Φ

′′
t etc. have at most 2R roots.

As we can easily check without loss of generality we can assume that Φ′t(0) = Φ
′
t(2π) = 0

and hence the interior between consecutive extremal points in S = S(1) ∪S(2) defines at most
4R+2 intervals where Φ′t(p) and Φ′′t (p) have a fixed sign. Specifically, we define these intervals
as the points in I that lie between two consecutive roots from S and denote them by Ir ⊂ I
and note that r ranges from 1 to some R0 ≤ 4R+ 2. If, e.g., Φt(p) = cos(p), then R = 1 and
we have R0 = 4 regions. We now establish condition i) of the Kusmin-Landau Lemma which
concerns monotonicity.

Lemma 17 (Monotonicity). Let r < r2 be two consecutive points belonging to S. Then the
Kusmin-Landau gaps δk are monotonous for all points k corresponding to the interval
Ir = I ∩ [r, r2].

Proof. Between r and r2 the first derivative of the phase function Φ′t must be non-zero or oth-
erwise there would be an intermediate root which is not possible as r and r2 are consecutive.
There is also no intermediate root of the second derivative Φ′′t so it must have a fixed sign on
the interior of the interval hence the derivative Φ′t is either weakly increasing or decreasing
and so the Kusmin-Landau gaps δk must be monotonous.

It will be useful to observe that any κr can be bounded by the range R.

Lemma 18 (Bounds from the range). We have κ0 ≤ 2R.

Proof. Consider again the non-zero polynomial Y associated to Φ′t or Φ′′t as described above.
Then Y has degree at most deg(Y ) ≤ 2R and because J 6= 0 we have that Φt 6= const and so
Y 6= 0. Now, if we had that Y (z0) = Y ′(z0) = . . . = Y (2R)(z0) = 0 then, for any z by Taylor
expansion, we would find

Y (z) =
2R∑

n=0

Y (n)(z0)
n!

(z − z0)
n = 0 . (139)

Thus, for Y (eip) 6= 0 to be true at some point eip then Y (n)(z0) 6= 0 must be true for some
n≤ 2R.
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With this definition we can further set the constants

t0 :=max

¨
1, max

r∈S(2)

����
1

κr + 1
Φ(κr+3)(r)
Φ(κr+2)(r)

����
3κr

,

max
r∈S(1)

�����
1

κr + 1
C (κr+2)

max

Φ(κr+1)(r)

�����
3κr

,

�
C0 + 1

minq,r∈S |q− r|

�2R+2
)

(140)

and

tR =
L

4 max{C (1)max, C1}
. (141)

This quantity is finite and independent of L by the above remark and definition of κr , and
because the numerator can be upper bounded by

C (κ)max =
R∑

z=1

zκ|Jz| ≤ Rκ+1 max
z
|Jz| . (142)

Furthermore, we define the time-independent constant

C0 = min
r∈S(2)

��Φ(κr+2)(r)
��

2C (3)maxkr !
. (143)

We will now show that, after removing a small amount of points close to the border from each
of the intervals Ir , for the remaining points the Kusmin gaps will be lower and upper bounded.
More precisely we define the two scalings that we shall use

pt = C0 t−1/3 and qt = t−1/(3κr ) . (144)

Proof of Theorem 13. Let us use the elementary observation that

1
L

�����
L∑

k=1

eiϕk

�����=
1
L

�����
L∑

k=1

eiϕk+a

����� (145)

for any a together with the fact that our phase function is always periodic up to a constant

Φt(p− r) = Φt(p)− dr . (146)

Observing that in the absolute value of the total sum any constant term in Φt drops out, we
may assume that Φ′t(0) = 0 without loss of generality. Then using that the cosine functions
are 2π periodic we also find that Φ′t(2π) = 0. With this step we reduced the total sum to a
sum over the intervals Ir where the boundary points are appropriate roots.

Consider r ∈ S and the corresponding interval Ir . Without loss of generality we may
assume that Φ′t(r) < Φ

′
t(r2) and hence our task is to lower bound the Kusmin gaps around r.

(If on Ir the gaps are negative then we can simply lower bound Φ′(−)t = −Φ′t , while in the case
Φ′t(r)> Φ

′
t(r2) we would have to lower bound the Kusmin gaps around r2 which can be done

the same way). By the monotonicity lemma, this assumption implies Φ′′t > 0 on Ir .
Step 1: Restrict Ir to Ir ∩S c

t where

S c
t = [0, 2π)\{q ∈ [0, 2π) s.t. |r − q| ≤ pt + qt for all r ∈ S} , (147)
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such that δk ≥ λ for

λ=
2πC1

L
t1/3 (148)

and

C1 =
1
4 min

¨
min

r∈S(1)

��Φ(κr+1)(r)
��

κr !
, min

r∈S(2)

��Φ(κr+2)(r)
��

κr !
C0

«
. (149)

Step 1, case 1: r ∈ S(1).
In this step, we expand around r, to obtain

Φ′t(r + qt) =
Φ
(κr+1)
t (r)
κr !

qκr
t +

Φ
(κr+2)
t (q̃)
(κr + 1)!

qκr+1
t , (150)

where the Lagrange error term in the first line is evaluated at some q̃ ∈ [r, r + qt]. We will
show that for t ≥ t0 we have

Φ
(κr+1)
t (r)≥ Φ

(κr+2)
t (q̃)
κr + 1

qt , (151)

which implies

Φ′t(r + qt)≥
1
2

Φ
(κr+1)
t (r)
κr !

qκr
t . (152)

We have that Φ′t(p) > 0 so by Eq. (150) we infer using (151) that Φ(κr+1)
t (r) > 0 and hence

we have a non-trivial lower bound of the form

Φ′t(r + qt)≥ λr =
1
2

Φ
(κr+1)
t (r)
κr !

t−1/3 =
1
2
Φ(κr+1)(r)
κr !

t2/3 (153)

and observe that 2πλr/L ≥ λ. It thus remains to show (151) which follows easily noticing
that we can make qt sufficiently small using t ≥ t0. This condition is implied by finding that

Φ(κr+1)(r)≥ C (κr+2)
max

κr + 1
t−1/(3κr ) , (154)

which is equivalent to

t ≥
�

1
κr + 1

C (κr+2)
max

Φ(κr+1)(r)

�3κr

. (155)

This can be shown to be true by invoking the definition of t0.
Step 1, case 2: r ∈ S(2).

Expanding around r + qt we obtain

Φ′t(r + qt + pt) = Φ
′
t(r + qt) +Φ

′′
t (r + qt)pt +

1
2Φ
′′′
t (q̃)p

2
t , (156)

where the Lagrange error term in the first line is evaluated at some q̃ ∈ [r + qt , r + qt + pt].
Note that we choose qt and pt small enough such that there is no repeated roots at this step.
Because Φ′t(r + qt)≥ 0

Φ′t(r + qt + pt)≥ Φ′t(r + pt + qt)−Φ′t(r + qt) (157)

≥ Φ′′t (r + qt)pt +
1
2Φ
′′′
t (q̃)p

2
t . (158)
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We will show below that

Φ′′t (r + qt)≥ Φ′′′t (q̃)pt , (159)

which directly implies

Φ′t(r + qt + pt)≥ 1
2Φ
′′
t (r + qt)pt . (160)

We next continue to expand Φ′′t (r + qt) around r using the Taylor expansion

Φ′′t (r + qt) =
Φ
(κr+2)
t (r)
κr !

qκr
t +

1
2

Φ
(κr+3)
t (q̃)
(κr + 1)!

qκr+1
t , (161)

where the last term is the Lagrange error term, so q̃ ∈ [r, r+qt] and κr ≥ 1 was defined above.

We check that qt is sufficiently small such that
���Φ(κr+2)

t (r)
���≥

����
Φ
(κr+3)
t (r)
κr+1 qt

����. Indeed, using t ≥ t0

leads to

q−1
t = t1/(3κr ) ≥ t1/(3κr )

0 ≥ 1
κr + 1

�����
Φ
(κr+3)
t (r)

Φ
(κr+2)
t (r)

����� , (162)

which after a simple rearrangement leads to that observation. This in turn implies that

Φ′′t (r + qt)≥
1
2

Φ
(κr+2)
t (r)
κr !

qκr
t . (163)

Note that this is a non-trivial bound as due to the monotonicity on Ir we have Φ′′t > 0 and so

Φ
(κr+2)
t (r) cannot be negative because the other term on the right hand side of (161) would

be too small to make the whole right hand side positive. We are now in the position to check
that condition (159) is satisfied which is implied by showing

1
2
Φ(κr+2)(r)
κr !

qκr
t ≥ C (3)maxpt , (164)

1
2
Φ(κr+2)(r)
κr !

t−1/3 ≥ C (3)maxC0 t−1/3 , (165)

which is equivalent to

C0 ≤
Φ(κr+2)(r)

2κr !C
(3)
max

, (166)

again using Φ(κr+2)
t (r)≥ 0 we find that this is true by comparing to the definition (143). With

this result we obtain the lower bound (160) and explicitly inserting the time dependence arrive
at

Φ′t(r + qt + pt)≥ λr =
1

4κr !
Φ
(κr+2)
t (r)C0 t−2/3 =

1
4κr !

Φ(κr+2)(r)C0 t1/3 , (167)

where again we find 2πλr/L ≥ λ, as desired.
Step 1 summary: Using (135) we obtain the following uniform bound lower bound δk ≥ λ

for k ∈ Ir ∩S c
t and any r ∈ S.

Step 2: Upper bound |δk| ≤ 2π−λ. We show this by the bound

|δk| ≤
2π
L

max
p∈[0,2π)

��Φ′t(p)
��≤ 2π

L
(tC (1)max + |d|) . (168)
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Note that we can always take |d| ≤ L/2. To see this, suppose that, e.g., L > d = x − y > L/2.
Then we can replace x by x ′ = x + L, which does not affect the propagator, but now we have
|x ′ − y| ≤ L/2. A similar trick works if x − y < −L/2. So we can upper bound 2π|d|/L by π,
and we

|δk| ≤
2πtC (1)max

L
+π . (169)

Next, we make use of Eq. (141) to see that

2πtC (1)max

L
+λ≤ 2πtC (1)max

L
+

2π
L

C1 t ≤ π , (170)

which implies

|δk| ≤ 2π−λ . (171)

Hence for each Ir we can apply the Kusmin bound for times t0 ≤ t ≤ tR.
Step 3: Use the Kusmin-Landau lemma and obtain the final bound.

Summing up the discarded contribution and taking into account the bound on the number of
the monotonous intervals we obtain the bound

1
L

�����
L∑

k=1

eiϕk

�����≤ (4R+ 2)
h pt + qt

π
+ C−1

1 t−1/3
i
≤ C# t−1/(3κ0) , (172)

where we have used that there are at most 4R+2 Kusmin-Landau intervals that we restrict each
at the edges by fewer than L2(pt+qt)/π points and where the last term is the Kusmin-Landau
bound. Inspecting the definition of C1 we find that

C−1
1 = 4max

§
max
r∈S(1)

κr !��Φ(κr+1)(r)
�� , 2C (3)max max

r∈S(2)
(κr !)2��Φ(κr+2)(r)

��
2ª

. (173)

Here, we have put the absolute values such that the bound in this form remains valid for
monotonously growing and decreasing intervals. Hence, the constant C# reads

C# := 6(2R+ 1)max

(
1, min

r∈S(2)

��Φ(κr+2)(r)
��

2C (3)max κr !
, max

r∈S(2)
8 (κr !)2 C (3)max��Φ(κr+2)(r)

��2 , max
r∈S(1)

4κr !��Φ(κr+1)(r)
��

)
. (174)

Generic case. Let us finally remark on the generic case assuming there are no points
for which Φ′′(p) = Φ′′′(p) = 0. For r ∈ S(1) we can set κr = 1 whenver Φ′′(r) 6= 0. If
Φ′(r) = Φ′′(r) = 0 then in the generic case we will have Φ′′′(r) 6= 0 which would yield κr = 2
but then our bound would be dominated by qt = t−1/6 which we can improve. Instead ex-
panding in qt we expand in wt = t−1/3 obtaining the equation

Φ′t(r +wt) =
Φ′′′t (r)

2
w2

t +
Φ
(3)
t (q̃)
6

w3
t . (175)

As only the expansion length has changed we would find along the same arguments the lower
bound

Φ′t(r +wt)≥ λr =
Φ′′′t (r)

4
w2

t =
Φ′′′t (r)

4
t1/3 . (176)

Therefore we are removing ∼ t−1/3 points and λ−1 ∼ t−1/3 also so the terms contributed from
this case will have the scaling ∼ t−1/3. For r ∈ S(2) we set κr = 1 and directly get the lower
bound (148) also with the scaling ∼ t−1/3.
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In the main text, we have stated that C# can in fact to be taken in a simpler form in the
generic case where we have no points such that Φ′′t (r) = Φ

′′′
t (r) = 0. This means that C0 ≤ 1.

If κr = 1 then nothing changes in our expansions. For r ∈ S(1) also κr = 2 is possible. In this
case, inspecting Eq. (175) we find that find that Φ′′′t (r)/4 is the contribution to the C1 constant
instead of Φ′′t (r)/2. This means that altogether we can define

M =
1
4

min
§

min
r∈S(1)

��Φ(κr+1)(r)
�� , min

r∈S(2)
��Φ(3)(r)

��2
ª

, (177)

which leads us to the simplified constant

C# = 6(2R+ 1)max

¨
1,

8C (3)max

M2

«
. (178)

Finally, it is worth mentioning that one can go beyond this setting by breaking up the gaps
into those in the window [λ, 2π − λ] and those in the window [2π + λ, 4π − λ]. Then we
can apply the Kusmin bound to terms in each window separately. One can shift the gaps in
[2π + λ, 4π − λ] by making the substitution an 7→ an − 2πn, which leads to δn 7→ δn − 2π.
Because we have only shifted an by multiples of 2π, this does not affect the exponential sum.
After this shift, δn are in the interval [λ, 2π− λ], and we can apply the Kusmin bound. This
way, we would get bounds on equilibration valid for times after tR. One could continue this
process further with windows [2nπ+ λ, 2(n+ 1)π− λ] for n ∈ N, as long as the number of
windows is small compared to L. It would be interesting to see if this patch-working of the
Kusmin-Landau method for long times breaks down at the Poincare recurrence time which is
much longer than the finite size revival time.

D Quasi-free ergodicity

For clarity we restate the theorem from the main text.

Theorem 19 (Free fermionic ergodicity). Let t 7→ G(t) be the propagator for a non-interacting
translation invariant fermionic Hamiltonian Ĥ(h) which is off-diagonal on the one-dimensional
real-space lattice. Then for all times t between a relaxation time t0 = O(1) up until a recurrence
time tR = Θ(L) the propagator obeys

|Gx ,y(t)| ≤ C t−γ, (179)

where C ,γ > 0 are constants. We can take γ = 1/3, provided there are no points p such that
E′′(p) = E′′′(p) = 0 which is true for generic models.

Proof of theorem: Quasi-free ergodicity. As was explained in the main text we need to formu-
late a phase function such that it evaluates to the phases of the propagator. This is achieved
by

Φt(p) = dp+ t
R∑

z=1

Jz cos(zp) + J0 , (180)

which evaluates to

ϕk = Φt(pk) = tωk + 2πdk/L (181)

for p = 2π/L and d = x − y . By Theorem 13, we hence find the bound with C# given
in Eq. (174) being system size independent as the couplings are fixed. The relaxation and
recurrence times t0 and tR are given implicitly by the constraints in the proof of Theorem 13.
The generic behaviour of the exponent γ = 1/(3κ0) is obtained for κ0 = 1 which is attained
at the wavefront of the nearest-neighbour hopping model [50].
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E Equilibration of the covariance matrix

In this section we will bound the deviations of the time evolved second moments Γ (t) from
the equlibrium covariance matrix Γ (eq) defined in Eq. (19) by a uniform real-space average of
the local current densities.

Proposition 20 (Equilibration of second moments). Consider a fermionic system with initially
exponentially decaying correlations and non-resilient second moments Γ . Then there exist a con-
stant relaxation time t0 and a recurrence time tR = Θ(L) such that, for all t ∈ [t0, tR],

���Γx ,y(t)− Γ (eq)
x ,y

���≤ CΓ t−γ, (182)

where CΓ ,γ > 0 are constants.

Proof. Our goal is to bound how quickly Γx ,y(t), where Γ (t) = G(t)ΓG(t)†, relaxes towards
the equilibrium values. First notice that these equal a real-space average where the value
depends only on the separation d = min{|x − y|, |x − y + L|, |x − y − L|}. Let us define the
decomposition of Γ into its currents, that is Γ =

∑bL/2c
d=−b(L+1)/2c+1 Γ

(d) with entries

Γ (d)x ,y = Γx ,yδx ,y+d , (183)

where we use the convention δa,b+L = δa,b. The evolution is linear, so

Γ (t) =
bL/2c∑

d=−b(L−1)/2c+1

Γ (d)(t) , (184)

where we define

Γ (d)x ,y(t) :=
�
G(t)Γ (d)G(t)†

�
x ,y =

L∑
z,w

Gx ,w(t)Γ
(d)
w,z G∗y,z(t) (185)

=
L∑

z,w=1

Gx ,w(t)Γw,zδw,z+d G∗y,z(t) (186)

=
L∑

z=1

Gx ,z+d(t)Γz+d,zG∗y,z(t) . (187)

Our target equilibrium ensemble has matrix elements given by

Γ (eq)
x ,y =

bL/2c∑
d=−b(L+1)/2c+1

Idδx ,y+d , (188)

where specifically the value equilibrium values read

Id =
1
L

∑
x

Γx ,x+d . (189)

If the initial covariance matrix is real then this is exactly the d-th current in the initial state.
Otherwise, one has to consider also the ‘complex’ currents as discussed above. With these
definitions, we obtain the bound

���Γx ,y(t)− Γ (eq)
x ,y

���≤
bL/2c∑

d=−b(L+1)/2c+1

���Γ (d)x ,y(t)− Idδx ,y+d

��� (190)
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by using the triangle inequality. After these steps organizing the notation, we will present a first
non-trivial bound showing that in the above sum only the currents with d ≤ dξ(t) contribute
significantly. This is natural because of the exponentially decaying correlations so denoting
the correlation length as ξ it suffices to use Lemma 12 with

dξ(t) = ξ ln(t1/(3κ0)) , (191)

where κ0 is a positive constant which is indpendent of the system size and will be defined
below. Then the currents d > dξ(t)will negligibly contribute to ‖Γ (t)−Γ (eq)‖max for sufficiently
large t > t0. So we consider d ≤ dξ(t). Now we expand Γ (d) via the discrete Fourier transform

Γz+d,z =
L∑

n=1

X (d)n e2πinz/L . (192)

Then we have that

Γ (d)x ,y(t) =
L∑

z=1

Gx ,z+d(t)G
∗
y,z(t)Γz+d,z =

L∑
n=1

X (d)n

L∑
z=1

Gx ,z+d(t)G
∗
y,z(t)e

2πinz/L . (193)

Recall the definition of the propagator

Gx ,y(t) =
1
L

L∑
k=1

exp(iωk t + 2πik(x − y)/L) , (194)

by which we get

Γ (d)x ,y(t) =
1
L2

L∑
n=1

X (d)n

L∑
r,s=1

L∑
z=1

eiωr t+2πir(x−z−d)/Le−iωs t−2πis(y−z)/Le2πinz/L (195)

=
1
L2

L∑
n=1

X (d)n

L∑
r,s=1

ei(ωr−ωs)t+2πi(r x−s y−rd)/L
L∑

z=1

e2πiz(−r+s+n)/L . (196)

Next, we use
L∑

z=1

e2πiz(−r+s+n)/L = L
∑
µ∈Z
δ−r+s+n,µL , (197)

applying it to the sum over r while summing over s, n. Then we find that −r + s+ n= µL has
solutions with either µ = 0 or µ = 1 but not at the same time because of the variable range
r, s, n ∈ [L]. Indeed, we always have 2 ≤ s + n ≤ 2L and so we have the unique solutions
r = s+ n for s+ n≤ L and r = s+ n− L for s+ n≥ L. Thus, using ωk+µL =ωk which follows
by inspecting the definition in Eq. (84) we get

Γ (d)x ,y(t) =
1
L

L∑
n=1

X (d)n e2πin(x−d)/L
L∑

s=1

ei(ω(s+n)−ωs)t+2πis(x−y−d)/L (198)

=
L∑

n=1

X (d)n e2πin(x−d)/L fn(t) . (199)

In the last line, we have defined

fn(t) :=
1
L

L∑
s=1

ei(ω(s+n)−ωs)t+2πis(x−y−d)/L . (200)
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The equilibrium currents will be uniform so we need to bound

���Γ (d)x ,y(t)− Idδx ,y+d

���=
�����
L−1∑
n=1

X (d)n e2πinz/L fn(t)

����� , (201)

because

Id = X (d)L . (202)

As we have observed in the main text, we have

ω(k+n) −ωk =
R∑

z=1

Kz sin
�

2πzk
L
+
πnz

L

�
, (203)

with Kz = −4Jz sin (πzn/L). In order to use the dephasing bound from theorem 13, we define

Φt(p) = −4t
R∑

z=1

Jz sin(αz) sin (zp+ zα) + p(x − y − d) (204)

and by evaluating with α= πn/L and pk = 2πk/L, we have

ϕk = Φt(pk) = (ω(k+n) −ωk)t + 2πik(x − y − d)/L . (205)

We hence obtain the bound

| fn(t)| ≤ C#(α)t
−1/(3κ0) , (206)

where now C# depends on the derivatives of (204) evaluated at roots and we indicate the
dependance on α as for α ≈ 0 the constant would not be system size independent. As long
as Kz have no stray dependence on L these values are constant numbers in the system size so
we can scale up the system size and get a non-trivial bound. All this is secured by using the
assumption of non-resilient correlations which leads to

���Γ (d)x ,y(t)− Idδx ,y+d

���=
L−1∑
n=1

nπ/L∈R

��X (d)n

��+
L−1∑
n=1

nπ/L /∈R

��X (d)n

�� | fn(t)| (207)

≤ CRS L−1 + CNRSCth t−1/(3κ0) (208)

≤ (CRS + CNRSCth)t
−1/(3κ0) , (209)

where we have used L−1 ≤ t−1/(3κ0), which holds true for t ≤ tR = Θ(L). We now finalize the
total bound by

���Γx ,y(t)− Γ (eq)
x ,y

���≤ 2dξ(t) max
|d|≤dξ(t)

���Γ (d)x ,y(t)− Γ (eq)
x ,y

���+ CClust

1+ e−1/ξ
t−1/3κ0 (210)

≤ 1
2 CΓ ln(t1/(3κ0))t−1/(3κ0) +

CClust

1+ e−1/ξ
t−1/3κ0 , (211)

where we have defined

CΓ :=max
§

4ξ(CRS + CNRSCth),
2CClust

1+ e−1/ξ

ª
. (212)

Observe that κ0 ≤ 2R. Thus, for sufficiently large t we have for some ε > 0 the final bound

‖Γ (t)− Γ (eq)‖max =max
x ,y

���Γx ,y(t)− Γ (eq)
x ,y

���≤ CΓ t−1/(3κ0)+ε . (213)
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F Examples of non-resilient second moments

F.1 m-step periodic states

Suppose Γz+d,z is m-step periodic, with `= L/m ∈ N, so that Γz+d+m,z+m = Γz+d,z . We get

X (d)n = L−1
L−1∑
z=0

Γz+d,ze−2πinz/L (214)

= L−1
m−1∑
u=0

L/m−1∑
v=0

Γu+vm+d,u+vme−2πin(u+vm)/L (215)

=

�
1
m

m−1∑
u=0

Γu+d,ue−2πinu/L

� 
m
L

L/m−1∑
v=0

e−2πinvm/L

!
(216)

=

�
1
m

m−1∑
u=0

Γu+d,u e−2πinuL

��m−1∑
α=0

δn,α`

�
. (217)

So all X (d)n are vanishing, except those with with n= α`, where α ∈ {0, . . . , m− 1}.

F.2 Random dislocations

Suppose Γ (d) can be decomposed as Γ (d) = Γ (d,NR) + Γ (d,SR) where Γ (d,NR) is non-resilient and
Γ (d,NR) has sparse support. Then Γ (d) is again non-resilient. This follows trivially as for the
sparse part the Fourier transform is bounded by the inverse system size

|X (d)n | ≤ L−1
L−1∑
z=0

|Γ (d,SR)
z+d,z | ≤

S
L

, (218)

where S = O(1) is the number of the sparse entries in Γ (d,SR).

F.3 Uniformly random currents

Take Γz+d,z ∈ [a, b] to be uniformly and independently distributed. Then Γ (d) is non-resilient.
Indeed, we find that on average, we have

E[X (d)n ] =
1
L

L∑
z=1

E[Γz+d,z]e
−2πinz/L (219)

=
a+ b

2
L−1

L−1∑
z=0

e−2πinz/L (220)

=
a+ b

2
δn,L . (221)

We furthermore calculate the second moment using

E[Γ 2
x ,y] =

a2 + ab+ b2

3
(222)
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to get

E[|X (d)n |2] =
1
L2

L∑
z,s=1

E[Γz+d,zΓs+d,s]e
−2πin(s−z)/L (223)

=
1
L2

L∑
z,s=1
z 6=s

E[Γz+d,zΓs+d,s]e
−2πin(s−z)/L +

1
L2

L∑
z=1

E[Γ 2
z+d,z] (224)

=
a2 + 2ab+ b2

4L2

 
L∑

z,s=1

e−2πin(s+z)/L − L

!
+

a2 + ab+ b2

3L
(225)

= E[X (d)n ]
2 +
(a− b)2

12L
, (226)

and hence the variance reads

Var[X (d)n ] =
(a− b)2

12L
. (227)

By Chebyshev’s inequality

P
���X (d)n −E[X (d)n ]

��≥ K
�≤ Var[X (d)n ]

K2
, (228)

we obtain that
��X (d)n −E[X (d)n ]

��≤ K L−1/2 , (229)

with probability greater than 1− (CK)−2.

F.4 Resilient example: P = L/2 - periodic block calculation

Say L is even and we have a state with

〈 f̂ †
x f̂x〉=

¨
1, x < L/2

0, x ≥ L/2 .
(230)

Then all currents with d 6= 0 vanish and we should calculate the Fourier transform of the
diagonal of the covariance matrix namely

X (d)n =
L/2−1∑
k=1

e2πink/L =

¨
1−eiπn

1−eiπ = 1, n is odd

0, n is even .
(231)

Therefore there is no chance that we can get a non-trivial bound of the form

���Γx ,y(t)− Γ (eq)
x ,y

���≤
L∑

n=1

��X (d)n

�� | fn(t)| , (232)

because it will scale with the system size as ∼ LCth t−γ/2 due to the number of non-trivial
harmonics.
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F.5 Details of quenches from disordered to translation invariant models

In this section, we provide more details on the discussion of the simularity of averaged gen-
eralized Gibbs ensembles with thermal ensembles. In this context, it is useful to discuss the
exact quench state Γ (Quench)(t) and the infinite-time average Γ (∞) on the level of quasiparti-
cle occupation numbers in momentum space. For the quenched state these stay constant for
all times due to unitarity and we have checked that typically there are initially fluctuations
around the idealized Fermi-Dirac distribution but a Fermi edge can be observed. However,
in order to obtain the infinite time average we apply a dephasing channel which as it is not
unitary does change the occupation numbers despite conserving the relevant local currents.
In that case we have noticed a much smoother quasiparticle number distribution, resembling
much closer the thermal Fermi-Dirac distribution. Additionally we noticed that for the same
model with the noise uniformly distributed in [0, w] the resulting equilibrium state is not ther-
mal, but additionally considering a chemical potential leads to agreement. These observations
suggest that the equilibration process that we have discussed analytically leads to a thermal
steady state for the particular selection of initial states discussed here which are thermal states
of a Hamiltonian with the same tunnelling range as the quench Hamiltonian. It appears to
be an interesting question whether we can in general expect GGEs which are simply thermal
steady-states in the natural case occurring in many physical instances where the kinetic energy
is an inherent property of the system over which we have little control and we prepare thermal
initial states by controlling only the on-site potential by external forces.

A peculiarity stemming from quasi-free integrability is that it is enough to have access
to only one translation invariant quench Hamiltonian to prepare thermal states of any other
translation invariant model just by assigning the initial correlation content. In particular being
able to tune the correlation length is a crucial ingredient, but the initial correlations need not
be translation invariant or even Gaussian, as we have discussed above. Thanks to the Gaus-
sification result, one can also use many-body interactions to tune close to a phase transition
in order to increase the correlation length even if the state obtained will be non-Gaussian.
Indeed we have a proof of equilibration to a Gaussian state but now the steady state may
acquire an unusually large correlation length for a thermal state of the quench Hamiltonian.
This “one to rule them all” result shows that the properties of the equilibrated state may be
unrelated to the range of the dynamics, which is slightly at odds with the usual approach to
inferring microscopic properties of various materials. It would be interesting to see whether
experiments measuring only conductivity or other linear response properties could be adver-
sarily tricked to indicate always different dynamical models by getting different states as input
while the true Hamiltonian is always merely the nearest neighbour model. Such interactive ex-
periments may be possible with existing quantum simulation technologies [85]. On the other
hand if precise microscopic measurements are limited, then observing just the fundamental
qualitative properties such as the formation of the Fermi edge which determines solid state
properties should be a generic feature independent of the memory effect due to integrability.
As there is only few trailblazing works concerning what happens to a GGE in the presence of
weak interactions [91–94], it would be exciting to study this systematically in optical lattices
experimentally.
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[30] F. G. S. L. Brandão, P. Ćwikliński, M. Horodecki, P. Horodecki, J. K. Korbicz and M. Mozrzy-
mas, Convergence to equilibrium under a random Hamiltonian, Phys. Rev. E 86, 031101
(2012), doi:10.1103/PhysRevE.86.031101.

[31] M. Cramer, Thermalization under randomized local Hamiltonians, New J. Phys. 14,
053051 (2012), doi:10.1088/1367-2630/14/5/053051.
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4
Q U A N T U M R E A D - O U T F O R C O L D A T O M I C Q U A N T U M S I M U L A T O R S

The sophistication of the state-of-the-art quantum simulators is immense. However, this may go unnoticed as they
allow to observe a wealth of physical effects which are emergent and so can in principle be studied without a detailed
knowledge of the experimental implementation. Therefore, before we will discuss the specific insights they have to
offer let us shortly discuss how quantum simulation experiments with cold atoms come about.

Achieving a large amount of quantum coherence is highly non-trivial and a result of efforts and insights that came
over many years. By using merely our daily experience it is hard to asses the challenges one must face for typical
atomic lengths and velocities so in order to put the setting into perspective one can ask: How hard would it be to stop
a sandstorm, catch in midair thousands of tiny rocketing bullets and eventually condense them into a fluid state?
This could well be a scene from an action movie, however this is essentially what the experimental group of Jörg
Schmiedmayer at TU Vienna is doing (repeating every few seconds when taking data) in their quantum simulation
studies of ultra-cold atoms [143, 144].

They remove the influence of the surrounding laboratory air by operating at high vacuum. By running an electric
current through a rubidium crystal they obtain single atom vapors that escape the solid state by having a huge kinetic
energy and shoot like bullets through the vacuum chamber. In a setup the size of a large coffee machine the rubidium
atoms travel initially with the speed of hundreds of meters per second but are held still within a centimeter-sized
trap using laser and Doppler cooling. Then the magneto-optically trapped gas cools down even more and undergoes
Bose-Einstein condensation. After moving to yet another trap, essentially levitating against the gravity forces, the
gas is brought close to the so-called Atom Chip. Here a thin golden wire thanks to excellent thermal conductance
transmits more current than would be enough to quench a superconductor of the same diameter. The magnetic
field induced by this enormous current is powerful enough to allow to squeeze a three dimensional droplet of a
Bose-Einstein condensate so strongly that the gas effectively becomes one-dimensional. This happens when all the
atoms are in the ground state of the transverse trapping field, i.e., are transversally as localized as the Heisenberg
uncertainty principle allows and effectively the only available direction of propagation is the longitudinal motion.
Thanks to these extreme forces and control capabilities we get access to a one-dimensional quantum many-body
system and can study its physics and dynamics.

This short description of the setup is useful to keep in mind how sophisticated the experimental system is which
otherwise could go unnoticed when dealing with data. As discussed in detail in the appendix of the presented paper
the output of measurements are phase profiles of the ultra-cold one-dimensional Bose gas. They are obtained by
performing matter-wave interferometry of two adjacent gases and are extracted from the spatial distribution of the
atoms [145, 146]. The outcomes of such measurements can be linked through theoretical modelling to correspond
to the projective measurement of the quantum phase operator at different positions along of the quasi-condensates.
From these single-shot outcomes full counting statistics of the interacting Bose gas can be studied and by forming
appropriate statistical estimators correlation functions become accessible. This has allowed for a number of diverse
physical observations [44,55--57,147,148] in a setting which just half a century earlier was restricted to exclusively
the theoretical domain [149].

The gradient of the phase operator can be physically interpreted as a velocity operator. In a typical setting
there is no overall velocity (tunelling) between the two one-dimensional gases interfered together. Hence, the
local expectation value of the phase gradient operator typically is trivial. However, the second moments reveal
information about the kinetic energy in the system. The modelling of the experiment is based on the physical
reasoning that an ultra-cold one-dimensional gas behaves as a hydrodynamic system and upon small disturbances
it hosts wave-like excitations. The second moment of the phase is related to the kinetic energy of these wave-
packets. However, there is another contribution to the energy of the system which captures the physical intuition
that a substantial wave-packet is created by a higher energy input than is required for a smaller wave-packet. This
energy is related to density fluctuations of the gas which are canonically conjugate to the phase. Specifically the
local second moments of the density fluctuation operator must be assessed.

With just the interferometric data this second contribution to the overall energy cannot be accessed directly. The
paper presented here resolves this issue by theoretically and practically establishing a tomographic read-out method
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allowing to recover information about density fluctuations based on out-of-equilibrium dynamics of the phase. This
in turn enables the study of new challenging physical questions that were so far out of reach.

The results presented were obtained in collaboration with the experimental group of Jörg Schmiedmayer at TU
Vienna who experimentally control to a high degree Bose-Einstein condensates. The theoretical description of the
system is set up using bosonic fields, ϕ̂(z) and δρ̂(z), which represent phonons and will be referred to as phase and
density fluctuation fields respectively. They are the only degrees of freedom relevant at the temperatures considered
and have a bosonic character [ϕ̂(z), δρ̂(z ′)] = iδ(z− z ′) where z, z ′ are two positions along of the one-dimensional
gas.

The effective Hamiltonian of the system is quadratic and reads

Ĥ =

∫L
0

dz
[

 h2nGP

4m
(∂zϕ̂)

2 + gδρ̂2
]

,

where L is the length of the system,  h is the reduced Planck constant, nGP is the mean density of the gas which
can be obtained theoretically by calculating the ground-state of the Gross-Pitaevskii equation,m is the mass of the
atoms and g is the interaction strength related to the s-wave scattering of the atoms. As alluded to above we have
two terms, one related to the velocities of the wave-packets ν̂ = ∂zϕ̂ and one to how much density fluctuations
they typically carry δρ̂. This Hamiltonian is the effective model of many one-dimensional systems belonging to the
class of Tomonaga-Luttinger liquids, for example electrons in a nano-wire [150, 151].

The eigenmodes of such a Hamiltonian can be found by performing an appropriate Bogoliubov transformation
and generically will transform the Hamiltonian into a form comprised of independent Harmonic oscillators

Ĥ =
∑
k>0

 hωk(φ̂
2
k + ρ̂

2
k) + gρ̂

2
0 .

Here ω is the spectrum which should be expected to be discrete due to trapping. The eigenmodes are non-local in
terms of the real-space fields and e.g. in the homogeneous case we have for k > 0

φ̂k =
√
2L

∫L
0

dz cos(2πk/L)ϕ̂(z) and ρ̂k =
√
2L

∫L
0

dz cos(2πk/L)δρ̂(z) .

Finally, ρ̂0 denotes the overall density fluctuation canonically conjugate to the phase zero-mode which is removed
from the data as opposed to the k > 0 modes.

The crucial insight allowing us to set up the reconstruction method is that the density and phase fluctuation
fields are quadratures after transforming to momentum space, mathematically identical to the study of photons in
quantum optics. The experimental setup considered allows natively to only measure the moments of the phase
fluctuations. In order to assess the energy of the system, or access more refined information about the correlations
present in the system, one must perform tomography. See Fig. 4.1 for an overview of the approach allowing to
resolve the task formulated in the following subsection.

4.1 formulation of the problem

The experiment gives access to the measurement of the second moments of the referenced relative phase fluctuations
[44, 57, 144--146] between two adjacent gases

Φ(z, z ′, t) = 〈(ϕ̂(z, t) − ϕ̂(z0, t))(ϕ̂(z ′, t) − ϕ̂(z0, t))〉 .

What are the second moments Q(z, z ′, t) = 〈δρ̂(z)δρ̂(z ′)〉 of the relative density fluctuations in the system?
In the same system a series of experimental observations has been made. What further insights are possible

experimentally?

4.2 our result

By means of a tomographic reconstruction we have indirectly measured the density fluctuations. This has been done
in momentum space, but using a specific form of the presumed eigenmode single-particle wave-functions and hence
information about correlations is available in real space. This allows to reconstruct correlations between modes but
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p̂

x̂

〈x̂2(0)〉 = ?

〈p̂2(0)〉

〈p̂2(t)〉

Figure 4.1: Tomography for continuous field quantum simulators. In many instances, only one type
of measurement is possible while the expectation value of a canonically conjugated observable is inaccessible.
Nevertheless, one can attempt an indirect measurement making use of harmonic evolution. The figure illustrates
the phase space of a bosonic mode with canonically commuting bosonic observables [x̂, p̂] = i h. Using a pulse
of harmonic evolution generated by the Hamiltonian Ĥ = 1

2
 hω(x̂2 + p̂2) one finds that the fluctuations of the p̂

quadrature include information about the fluctuations of x̂ by means of the formula 〈p̂2(t)〉 = cos2(ωt)〈p̂2(0)〉+
sin2(ωt)〈x̂2(0)〉. In our case the tomography must be performed simultaneously for many modes with different
momentum k based on phase information in real space which reveals information about the density fluctuations.
Note that in the experiment the phase space distributions will be elliptical due to squeezing but will not be displaced
from the origin which was added for the sake of clarity in this illustrative sketch.

also the expectation values of the phononic quasiparticle occupation numbers nk(t) = 1
2 〈φ̂2k(t) + ρ̂2k(t)〉− 1

2 can
be studied. This information is momentum- and time-resolved and opens a new window into the physics in the
quantum simulator which is a capability unparalleled in materials sharing the same effective description.

4.3 the implications of the result

The method allows to study various physical effects related to dynamics of correlation functions. The paper
demonstrates that inquiries into coherent recurrences of dynamics in the system become possible adding to the
understanding of the details of this effect. The method opens a pathway towards studying phononic quasiparticle
decay dynamics in a momentum and time resolved fashion. The publication shows results in a case when
quasipacticle occupation numbers should be constants of motion effectively verifying the theoretical model in
an experiment. Realizing an experimental setting where the quasiparticle occupation numbers would undergo a
visible rearrangement would be an exciting prospect, e.g., one could study Beliavin damping for which theoretical
calculations are notoriously hard.

One possibility of realizing such a physical effect, which may be explored in the future, is to tomographically
investigate states influenced by the sine-Gordon interactions. The idea is that one would like to study non-equilibrium
dynamics in the presence of a tunnel coupling giving rise to non-Gaussian correlations. At any desired point in time,
one could perform a quench of the tunnel coupling rendering the system effectively non-interacting and perform
tomography. For varying starting times the occupation numbers of phonons can be expected to be different as they
cease to be conserved under sine-Gordon interactions.

The method presented gives access to non-commuting observables and future entanglement studies become
possible. Entanglement of Gaussian states is well researched due to the importance of the subject in quantum
optics. In principle, the entanglement detection methods from that field can directly be applied to the reconstructed
state. However one must take extra care in this particular study as one aims at reconstructing a very refined
information: Are the correlations in the system quantum or classical? To answer this question one must make
sure that the finite experimental resolution does not modify the data which is the input to the tomography in such a
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way that introduces additional correlations. That is to say, the tomographic method presented here must be studied
together with details of the experimental measurement protocol in order to avoid out false-positives, i.e., a situation
where tomography indicates entanglement but only due to resolution artifacts and the system is in reality not be
entangled. However, this technical issue is the only obstacle to applying the method presented here for monitoring
entanglement dynamics.

In addition to monitoring various features of correlations the tomography method presented here allows to meas-
ure energy and entropy dynamics which makes possible future studies of quantum thermodynamical operations.
Specifically, as we can perform the complete callorimetry in the system by phonon counting we could measure
phononic heat flow rates. At any given time the entropy of the system with covariance matrix Γ is upper bounded
by the entropy of the Gaussian state with the same covariance matrix. Hence an upper bound on entropy produc-
tion can be estimated by quasiparticle tomography and will be a good approximation to the entropy in the system
whenever higher order connected correlation functions are negligible.

The latter can be directly measured and were the subject of our subsequent studies of the dynamical emergence
of Gaussian correlations [12] and the tomographic method presented was employed during the proceeding of our
investigations. The code developed to implement numerical reconstructions was the base for subsequent studies
of quantum field thermal machines [14] where this type of tomography is also expected to be an important way of
inquiry into the operation of the system.

4.4 open problems

Problem 1. Investigate further the stability of the method in the presence of statistical and systematic noise. Can
systematic noise appear under the specific measurement resolution model relevant to the experimental setup?
Problem 2. The reconstructions for data taken in the presence of a ‘harmonic’ trap seem to be less reliable than

for the ‘box’ trap. Is this issue theoretical or experimental (e.g. longitudinal breathing of the mean gas density)?
Problem 3. Implement the reconstruction method as presented here but based on in-situ data of density fluctu-

ations, as proposed in Ref. [14].
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Quantum simulators offer entirely new perspectives of
assessing the intriguing physics of quantum many-body
systems in and out of equilibrium. They are experimental

setups allowing to probe properties of complex quantum systems
under unprecedented levels of control1–3, beyond the possibilities
of classical simulations. Among other platforms, experiments
with ultra-cold atoms involving large particle numbers or even
continuous quantum fields have been particularly insightful4–14.

And yet, key questions remain open for a highly unexpected
reason: the read-out of state-of-the-art quantum simulators is
limited. In one-dimensional (1D) superfluids, for example, one
can probe the dynamics of equilibration4 occurring in the pre-
sence of an effective light-cone5 and leading to generalized Gibbs
ensembles6. The excellent experimental control over that system
allowed to observe coherent recurrences in the dynamics of a
system of thousands of atoms8. However, in that particular setup,
further quantifying the recent observations is currently obstructed
because only phase quadratures but not canonically conjugate
density fluctuations can be measured. On the contrary, if both
quadratures could be measured, and hence if genuine quantum
read-out was possible, then studies of intricate questions on the
role of interactions, or entanglement dynamics after a quench,
could become possible.

This situation is by no means an exception: In fact, in any
quantum simulation platform, read-out prescriptions are always
restricted in one way or another, which constitutes a crucial
bottleneck towards studying intricate physical questions. For cold
atoms in optical lattices, akin to the development which will be
laid out in this work, innovations such as the quantum gas
microscope15–17 directly opened up the path towards studying
exciting physical phenomena9–14. Sophisticated read-out methods
are therefore highly desirable and key to a platform.

In this work, we show that quenching a single global parameter
in the system can enable a genuine quantum read-out and even
allow for state reconstructions. We hence open a new ‘window’
into a quantum simulator for which so far—as is common in
quantum simulation—only incoherent, or ‘classical’, read-out was
natively possible.

Tomography of many-body systems is typically limited due to
the number of necessary observables and complexity of control.
However, often for large systems, the observed dynamics can be
described by an effective free field theory capturing the dynamics
by means of modes which are long-lived, i.e., not over-damped.
We shall demonstrate that observing their dynamics can already
suffice to perform reconstructions of the relevant correlation
functions for many-body systems. The basic principle is that non-
equilibrium evolution can mix ‘quadratures’ (non-commuting
operators describing the dynamics of a mode) in such a way that
consistency of observed correlations implies constraints regarding
the unobserved ones. We will show that they can be quantitatively
reconstructed.

Specifically, in this work, we set out to introduce a novel
method of tomographic read-out for quantum simulators, by
combining known quantum dynamics and available measure-
ments to obtain more information. Related ideas of exploiting
known random or deterministic unitary dynamics to get access to
otherwise inaccessible types of measurements have been theore-
tically explored18–23. However, closest in spirit are tomographic
methods in quantum optics where a harmonic rotation in phase
space allows to measure two canonically conjugated quadratures
by a detector sensitive to only one of them, and hence perform a
‘quantum measurement’.

Here, we consider this basic idea in a genuine multi-mode
setting and demonstrate a practical application of the method to
1D superfluids. We acquire data at different times for many
modes at the same time and make use of semi-definite

programming techniques for achieving reconstructions insus-
ceptible to noise. After introducing our new recovery method, we
explore the physics of 1D superfluids studying the properties of
quench dynamics and its initial conditions. We use the quantum
read-out information concerning both density and phase fluc-
tuations in momentum space to fit the temperature and the global
tunnel coupling parameter of the initial state preparation. Con-
cerning out-of-equilibrium dynamics, we are able to predict
recurrences by relying solely on data taken at times away from the
recurrence occurrence, demonstrating that the system is coherent
throughout the evolution. Finally, we monitor dynamics of
phonon occupation numbers constraining their growth over an
extensive observation time giving further experimental evidence
for the validity of the effective model. The successful functioning
of our method demonstrates an excellent agreement of the
experiment with the theory of elementary excitations of 1D
superfluid24,25. Our approach is based on very general and ubi-
quitous ingredients, hence the framework that we establish can be
expected to be in a natural way applicable to various quantum
simulators.

Results
The system considered. In order to apply our read-out method in
practice, we will consider the setting of two adjacent 1D Bose
gases realized with ultra-cold atoms. Their low-energy relative
fluctuations in phase and density, φ̂ and δρ̂, are described by the
effective Hamiltonian8,25

Ĥ ¼
Z R1D

�R1D

dz
_2nGPðzÞ

4m
∂zφ̂ðzÞð Þ2 þ gðzÞδρ̂ðzÞ2

�

þ _2

4mnGPðzÞ
∂zδρ̂ðzÞð Þ2

�
;

ð1Þ

with m being the atomic mass and nGP the average density profile
defined by the ground state of a 1D Gross-Pitaevskii (GP)
equation. The Hamiltonian describes phonons which are the
elementary density-phase excitations, satisfying bosonic com-
mutation relations ½δρ̂ðzÞ; φ̂ðz0Þ� ¼ iδðz � z0Þ. The corresponding
operators are defined within the atomic cloud whose spatial
extension R1D is given by the support of nGP. Experimentally,
one can engineer the density profile nGP through the trapping
potential. This determines the density–density interaction
strength, which is functionally dependent on the density profile,
gðzÞ ¼ g½nGPðzÞ�8,26 (see Supplementary Note 1). For typical
experimental parameters, the last term in Eq. (1) has less
importance than the first two27, which together make up the
Luttinger model. In the Supplementary Note 1, we describe a
general numerical scheme for obtaining approximate eigenfunc-
tions of Ĥ for any nGP of interest. For a constant density profile,
this model gives a linear spectrum and oscillatory eigenfunctions
—which is qualitatively also the case for Eq. (1) even with small
GP profile inhomogeneities.

As the excitations are confined within the finite atomic cloud,
their spectrum fωk; k ¼ 1; 2; ¼g is discrete28. We denote
eigenmode operators of phase and density fluctuations by ϕ̂k
and δρ̂k, respectively, and use their corresponding wave functions
f ρk; f

ϕ
k 2 C2ð½�R1D;R1D�Þ to decompose the real-space fields as

φ̂ðzÞ ¼
X1
k¼0

f ϕkðzÞϕ̂k; δρ̂ðzÞ ¼
X1
k¼0

f ρkðzÞδρ̂k: ð2Þ

Note that here we have ½δρ̂k; ϕ̂k0 � ¼ iδk;k0 where δk;k0 is the
Kronecker symbol in contrast to the Dirac delta in the commu-
tation relations of the real-space fields above. Written in terms of
the eigenmode degrees of freedom ϕ̂k and δρ̂k, the Hamiltonian
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becomes diagonal

Ĥ ¼ 1
2

X1
k¼1

_ωkðδρ̂2k þ ϕ̂2kÞ þ g0ρ̂
2
0 : ð3Þ

Here ρ̂0 does not contribute to the visible dynamics because it is
conjugate to the global phase which carries no energy and is
removed from the data. We shall refer to the eigenmode operators
as quadratures as they constitute a discrete set of bosonic
observables, which harmonically rotate and do not mix between
different modes as can be directly seen from their time evolution
within the Heisenberg-picture

ϕ̂kðtÞ ¼ cosðωktÞϕ̂k � sinðωktÞδρ̂k : ð4Þ
In the method presented below, we will make use of approximate
eigenmodes obtained from the eigenfunctions of a spatial
discretization of the considered model which, for simplicity, we
will continue to denote by ϕ̂k; δρ̂k and f ρk; f

ϕ
k—see the Supplemen-

tary Note 1 for a more detailed discussion. Let us stress that by the
time evolution in Eq. (4) density fluctuations, which are not
accessible by direct measurements, are dynamically mixed into the
observed phase sector which is the foundation to our reconstruction
approach.

Quadrature tomography. In this section, we turn to describing
the reconstruction procedure, exploiting the known and effi-
ciently tractable Hamiltonian dynamics on the one hand and
ideas of reconstruction and signal processing on the other. This
gives rise to a practical and versatile method of reconstructing
correlation functions of a type inaccessible to direct measure-
ment. The atom chip experiment29 which we are considering
here, measures referenced correlation functions of the relative
phase through matter-wave interferometry7,8,22,30–32

Φðz; z0; tÞ ¼ hðφ̂ðz; tÞ � φ̂ðz0; tÞÞðφ̂ðz0; tÞ � φ̂ðz0; tÞÞi : ð5Þ
Here we chose to reference the phase with respect to the middle
of the system z0 ¼ 0 μm, which removes from the data the global
phase canonically conjugate to ρ̂0.

We aim to reconstruct the second moments of the initial state

of the quadratures r̂ ¼ ðϕ̂1; ¼ ; ϕ̂N ; δρ̂1; ¼ ; δρ̂N ÞT of the N
lowest lying eigenmodes of Ĥ satisfying bosonic commutation

relations ½̂rk; r̂k0 � ¼ iΩk;k0 with Ω ¼ 0
�1N

1N
0

� �
. For this, we define

the covariance matrix of the initial state as the collection of
second moments

Vj;k ¼
1
2
hfr̂j; r̂kgi ¼

1
2
hr̂jr̂k þ r̂kr̂ji : ð6Þ

It is important to note that a matrix V constitutes a collection of
physically admissible second moments if and only if the matrix
QðVÞ ¼ V þ 1

2 iΩk 0 is positive-semidefinite, i.e., has non-
negative eigenvalues. This condition reflects the Heisenberg
uncertainty principle of canonically conjugated observables33. It
will be convenient to use the notation

V ¼ Vϕϕ Vϕρ

Vρϕ Vρρ

 !
: ð7Þ

Note that here we include the interest in both type of correlations,
not only those related to phase fluctuations. Altogether, V allows to
provide a Gaussian description of the full unknown state of the
system whose validity can be verified by measuring vanishing
higher-order connected correlation functions7. In this work, we will
consider initial states that are approximately Gaussian and under
this assumption determining V yields a full state reconstruction. For
non-Gaussian initial states, the method presented in the following

can still reconstruct the second moments V , but will not provide
specific information on the higher moments.

Using the decomposition into eigenmodes in Eq. (2), we obtain
for the observable second moments defined in Eq. (5)

Φðz; z0; tÞ ¼
XN
j;k¼1

f j;kz;z0V
ϕϕ
j;k ðtÞ; ð8Þ

where f j;kz;z0 ¼ ðf ϕj ðzÞ � f ϕj ðz0ÞÞðf ϕkðz0Þ � f ϕk ðz0ÞÞ. Note that we
have introduced the cut-off N in the summation over the
eigenmodes, anticipating that higher energy modes will have a
negligible contribution in the measured signal either because they
carry too much energy to or due to finite real-space resolution in
the experiment.

Next, we exploit that the time evolution of the Hamiltonian in
Eq. (3) does not mix quadrature operators of different
eigenmodes as stated in Eq. (4) which gives

VðtÞ ¼ GtVG
T
t for Gt ¼

Ct �St
St Ct

� �
; ð9Þ

where Ct ¼ diag ðcosðωktÞ; k ¼ 1; ¼ ;NÞ and St ¼
diagðsinðωktÞ; k ¼ 1; ¼ ;NÞ.

As summarized in Fig. 1, we now have all ingredients needed
for quantum read-out. Specifically, based on the relations (8) and
(9), we can recover the density correlations through a least-
squares recovery problem. For this, we collect all measured values
of Φðz; z0; tiÞ at different points z and z0 and times ti in a vector b.
Furthermore, we define a linear map Að~VÞ which, given some
trial covariance matrix ~V , outputs the values of Φðz; z0; tiÞ sorted
as in b via Eq. (8). The time-evolution is implemented using Eq.
(9) such that only the covariance matrix of the initial state is used
to fit the observed data. If W denotes a weighting matrix, then
WðAð~VÞ � bÞ is the vector of the weighted least-squares residues.
The covariance matrix optimally fitting the data is then given by
the solution to the following optimization problem

Θ ¼ min
~V

k WAð~VÞ �Wbk2;

subject to Qð~VÞ ¼ ~V þ 1
2
iΩk 0:

ð10Þ

The first line implements the minimization of the length k�k2 of
the vector of weighted least-squares residues and the condition in
the second line ensures that V is a physical covariance matrix. The

Fig. 1 Recovery procedure. How can we measure correlation functions of
the elementary excitations in superfluids? We first note that the
Hamiltonian in the system Ĥ (1) is decoupled on the level of momentum
space operators fϕ̂k; δρ̂kg involving multiple modes rotating at different
frequencies (3). Measurements of real-space continuum fields fφ̂ðz; tÞg
yield the referenced two-point correlation functions Φðz; z0; tÞ defined in Eq.
(5). In this work, by means of sophisticated post-processing using tools
from signal processing, we are able to recover from real-space data taken at
equidistant measurement times the full covariance matrix V (6) of the non-
local eigenmodes of the Hamiltonian. This approach is general and can be
applied to any other system in which quenches to non-interacting multi-
mode Hamiltonians are available.
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optimal solution to this convex quadratic problem with a semi-
definite constraint yields the covariance matrix V of the initial state
with a minimal value of Θ. The optimization can be performed
efficiently and reliably numerically with standard methods for semi-
definite programming. We use the package cvx34, see the
Supplementary Note 2 for more details on the implementation.
The most basic idea of an algorithm solving (10) is to repeatedly
take a steepest-descent step towards minimizing the least-squares
residue and impose QðVÞk0. Standard convex optimization
packages like cvx solve such a problem in a more sophisticated
way ensuring numerical accuracy and converge in a matter of
seconds. In the implementation, we chose a diagonal weighting
matrix W with entries σ½Φðz; z0; tiÞ��1, where σ½Φðz; z0; tiÞ�
denotes the standard deviation of each measured value. This
weighting allows to put more emphasis on more precise values and
yields with this a more reliable scheme as we find that Φðz; z0; tÞ
grows typically for increasing spatial separations jz � z0j but
Φðz; z0; tÞ=σ½Φðz; z0; tÞ� � const.

Note that the above idea and in fact the whole framework of
quantum read-out formulated here is independent of the
dimensionality of the Hamiltonian and can be applied, e.g., in
two dimensions. There is also no restriction to continuum
systems so lattice models can be treated similarly.

Experimental data analysis. Let us consider the state preparation
procedure used in the recent experiment8 where recurrent dynamics
has been observed. Given an estimate of the average number of
atoms per gas NAvg ’ 3400 and the shape of the experimental box-
like potential, we can numerically obtain the average density profile

nGPðzÞ from the GP equation. This specifies the Hamiltonian Ĥ (1)
with R1D ’ 25 μm. Hence, we have the full information necessary
to compute the eigenmode wave functions needed for the recon-
struction procedure in Eq. (8). The number of relevant wave func-
tions N � 10 can be upper bounded by considering the finite
resolution of the interference images. In our case, the phase fluc-
tuations Φðz; z0; tÞ defined in Eq. (5) can be measured at points z; z0
spaced by the pixel size of the camera δ � 2 μm32. In addition,
other effects including diffraction limit the resolution. The measured
values can be related to theoretical continuum predictions by
implementing a real-space cut-off via a Gaussian convolution with
standard-deviation σ � 3:5 μm (see Supplementary Note 2).

Initially the two adjacent gases whose relative phase fluctua-
tions we are studying are strongly coupled. Hence, the state
preparation is to a good approximation governed by

ĤIni ¼ Ĥ þ J
Z R1D

�R1D

dz nGPðzÞφ̂ðzÞ2; ð11Þ

where the tunnel coupling term of strength J is pulling the relative
phase field to zero (i.e., hcosðφ̂Þi ’ 1). The initial state can be
expected to be a low-temperature thermal state of ĤIni. Following
that preparation, the system is quenched by suddenly turning
off the tunnel coupling. Experimentally, this is realized by
separating the two gases over a time of 2 ms until J drops to
zero. The middle of this ramp defines the initial time t ¼ 0 ms
and the subsequent evolution under the Hamiltonian Ĥ (1) is
measured in steps Δt ¼ 2:5 ms.

Based on the data from this initial dynamics, we can reconstruct
the initial state at t ¼ 0 ms . In Fig. 2a, we plot the reconstructed

a

b

c

Fig. 2 Initial state reconstruction. Reconstruction of the full initial state right after decoupling at t ¼ 0 ms based on the phase correlations measured
during the dephasing dynamics immediately after the quench (t= 1, 3.5, 6, 8.5, 11 and 13.5 ms). a Comparison of the measured phase correlations
ΦDataðz; z0; tÞ to the reconstructed ones ΦRec. The time slice presented in the foreground corresponds to t ¼ 1 ms . We find that the reconstruction yields
good agreement with the data, evidenced by the respective weighted difference to the data ΔΦ ¼ jΦData � ΦRecj=σ½ΦData� (right). b Reconstructed
covariance matrix V of the initial state at t ¼ 0 for the eigenmodes j; k ¼ 1; ¼ ; 10. From left to right, the reconstructed phase–phase Vϕϕ, density–density
Vρρ and phase–density correlations Vϕρ are plotted. The correlations Vϕϕ and Vρρ are close to diagonal in the numerically obtained wave functions fϕk ,
indicating that the eigenmodes of the system are well captured. For an initial thermal state of the Hamiltonian (11), the cross-correlations should vanish
Vϕρ � 0, here we find a small contribution. Note that the influence of higher-energy modes is suppressed by the limited spatial resolution in the experiment
(see Supplementary Note 2). c Comparison of the diagonal elements of Vϕϕ (blue bullets) and Vρρ (red bullets) at t ¼ 0 with the predictions for a thermal
state of the pre-quench Hamiltonian given in (11) (solid lines). The error bars correspond to the 80% confidence intervals obtained from a bootstrap
analysis35. The thermal predictions are corrected for the suppression due to the finite imaging resolution, see Supplementary Note 2 and ref. 32. We find
the correlations of the first five modes to agree well with a thermal state at T ¼ 52 nK and J ¼ 2π ´ 1:1 Hz obtained by a combined least-squares fit of
hϕ̂2k i and hδρ̂2k i. The strong suppression of the higher mode signals by the imaging renders a meaningful comparison impossible.
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phase correlations, showing good agreement with the measured
values signifying the consistency of our method. The corresponding
covariance matrix of the full initial state is shown in Fig. 2b. Most
importantly, note that we are indeed able to infer density
fluctuations of the form hδρ̂jδρ̂ki. Using the mode transformation
from Eq. (2), this information from the eigenmode-space can be
also translated to real-space. However, many physical properties of
the initial state can be directly extracted from the eigenmode
correlations. We firstly observe that the blocks Vϕϕ and Vρρ are
close to being diagonal. Hence, we find that the collective modes of
the system are well captured by the numerically obtained wave
functions f ϕk . This supports the expectation that the initial state is
thermal with respect to the pre-quench Hamiltonian (11). As the
eigenmode wave functions are not strongly affected by the quench
for the chosen trap geometry (see Supplementary Note 3), if the
system was thermal with respect to the initial Hamiltonian, the
reconstructed state should remain diagonal even when expressed in
terms of the wave functions of the quench Hamiltonian.

On the other hand, we remark that allowing for off-diagonal
correlations and cross correlations in V is necessary for an
accurate reconstruction as otherwise the comparison in Fig. 2a is
significantly worse. One reason for their presence can be small
deviations between the assumed eigenmodes and the true
eigenmodes of the system, e.g., due to pre- or post-quench
trapping potential imperfections not included in the GP profile.
Another reason could be that the initial state is genuinely out of
thermal equilibrium, which would be interesting from the
quantum information perspective in the context of the resource
theory of coherence36,37.

Independent of these subtleties, our read-out method allows
us to study how the energy is distributed in the system based on
the measured out-of-equilibrium phase fluctuations. We now

have access to the phonon occupation numbers given by nk ¼
1
2 hϕ̂

2
k þ δρ̂2ki � 1

2 and can study energy expectation values hĤi ¼PN
k¼1ωknk with Ĥ given in Eq. (1). More specifically, we can

check from the observed data if the energy is distributed among
the modes in a thermal way. The gas is prepared in a double
well trap with large tunnel coupling and we expect the prepared
state to be thermal with respect to the Hamiltonian (11). Based
on Fig. 2b, we find that the reconstructed initial state shows
significant suppression of the phase fluctuations which are an
order of magnitude smaller than the density fluctuations. This
is consistent with the initial energetic penalty on phase
fluctuations. In Fig. 2c, we show the quantitative comparison

of the reconstructed second moments hϕ̂2ki and hδρ̂2ki compared
to the thermal theory with the Hamiltonian (11). Due to the
finite imaging resolution, we are only able to resolve the lowest-
lying eigenmodes. We find that their second moments agree
with a thermal distribution of the coupled Hamiltonian (11).
On the other hand, we also observed that the reconstructed
initial state does not agree with the experimental state
before the start of the decoupling ramp, as it leads to weaker
phase locking than what was measured. This hints at
the finite decoupling ramp having a significant influence
on the correlations observed in the quench dynamics despite
the tunnel coupling decreasing exponentially in the height of
the barrier that is being ramped-up. The reconstruction hence
extracts an effective initial state of the dynamics. If the physics
of the initial Hamiltonian is of particular interest, then this
effect might be diminished by performing a faster quench to the
free system. On the other hand, let us remark that the physics of
quenches of this type is key to the observation of generalized
Gibbs ensembles in the considered setup6. In general, it is
difficult to model the complete process of state preparation

theoretically as it involves a strongly correlated phase of the
sine-Gordon model out of equilibrium7 and our method could
offer new experimental insights.

Recurrent dynamics. With the reconstruction of the full state of
the system, also its evolution beyond the interval of input times
can be calculated. Propagating the covariance matrix V forward
or backward in time via (9) allows us to pre- and redict the
system’s dynamics. In ref. 8, this dynamics was visualized and
quantified through the correlator

Cðjz � z0j; tÞ ¼ cos φ̂ðz; tÞ � φ̂ðz0; tÞð Þh i : ð12Þ

The phase-locked initial state corresponds to C � 1 independent
of the longitudinal separation �z ¼ jz � z0j. In Fig. 3a, we show
Cð�z; tÞ obtained from the experimental data. Due to a linear
dispersion relation and an equally spaced spectrum, the involved
modes start to rephase after the inital dephasing dynamics leading
to partial recurrences of the initial state8. Figure 3b–d shows how
this rephasing dynamics can be predicted from the reconstructed
states. For the reconstruction based on the initial dephasing
dynamics, for example, we obtain a good qualitative prediction of
the recurrences (red interval). Quantitative agreement is lost over
time due to interaction effects between the modes. These inter-
actions are mediated by higher-order terms beyond the effective
model assumed in (1) and can therefore not be captured25.
Nevertheless, the reconstruction method is robust enough such
that we can obtain an accurate short-time prediction even using
data that are seemingly fully dephased, i.e., where Cð�z; tÞ is nearly
indistinguishable from the correlations of a thermal state of the
quench Hamiltonian Ĥ (blue interval). However, in some cases
(green interval), we find that statistical fluctuations can lead to
large error bars, an effect reproduced by numerical simulations
(see Supplementary Note 3). Note also that the last two intervals
were intentionally chosen to be short, including only seemingly
dephased data between the recurrences. They cover I ¼ 5 input
times, during which the slowest eigenmode performs only about a
quarter of a rotation. Therefore, the influence of the finite sta-
tistical sample size is more severe in these reconstructions.

Phonon occupation dynamics. Besides providing new insights
into the state preparation, access to the full covariance matrix can
enable entirely new ways of exploring the effects of interactions. The
effective model given in (1) is obtained in a perturbative expansion
of the Lieb-Liniger Hamiltonian up to second order25. For long
evolution times, however, the dynamics can also be affected by the
neglected terms that, e.g., can give rise to effects such as Beliaev-
Landau damping25. It is challenging to obtain the rates of such
processes by numerical calculations as interacting bosonic dynamics
are notoriously difficult to treat and various approximations are
necessary38–41. Therefore, it would be interesting to use the atom
chip experiments to measure the damping rates and compare with
theoretical predictions to validate different methods.

Here we show how the recovery method described above can
be used to investigate these higher-order processes. To that end,
we perform the recovery procedure for different input intervals of
length I ¼ 8, with varying starting points. For each interval, we
obtain an estimate of the central moments of phase and density

fluctuations, hϕ̂2kðtÞi and hδρ̂2kðtÞi, and calculate the phonon

occupation numbers nkðtÞ ¼ 1
2 hϕ̂

2
kðtÞ þ δρ̂2kðtÞi � 1

2. Scanning the
starting point of the input interval through the measurement
times allows us to investigate the dynamics of these observables,
as shown in Fig. 4. The interval length is chosen long enough such
that the slowest eigenmode picks up enough dynamical phase to
ensure a stable reconstruction. At the same time, it is chosen
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short enough such that interactions between the modes do not
influence the reconstruction.

The occupation numbers nk are constants of motion of Ĥ. In
Fig. 4a, we show their reconstructed dynamics for the five lowest
eigenmodes. We find that overall the occupation numbers do not
vary strongly and stay almost constant. This is expected as
perturbations to the quench Hamiltonian should be negligible,
and in any case they are irrelevant in the sense of the
renormalization group. Note, however, that for different mea-
surements with other system sizes, we find indications of a trend

of slowly increasing mode occupations (see Supplementary
Note 4). While the dynamics of occupation numbers is constant,
Fig. 4b shows how at the same time the individual modes rotate
between phase and density fluctuations. We find that this
dynamics is clearly damped. This hints that the source of the
recurrence damping observed in Fig. 3a and ref. 8 is a loss of the

initial quadrature ‘squeezing’ hϕ̂2kð0Þi=hδρ̂2kð0Þi � 1 within each
mode k rather than changes in their occupations.

Our method makes it possible to extract mode-resolved
damping rates of the collective excitations: In the future, using

a b

Fig. 4 Phonon occupation dynamics. a Phonon occupation numbers nkðtÞ of the first five modes k ¼ 1; ¼ ; 5 as a function of time t. Each point is based on a
reconstruction with an input interval ft; tþ Δt; ¼ ; tþ 7Δtg of length I ¼ 8, illustrated by the black box in the upper left corner. For the ideal mean-field model,
nk should be a constant of motion. b Time-resolved central moments of the phase and density fluctuations in momentum space hϕ̂2k ðtÞi and hδρ̂2k ðtÞi for the
first three modes k ¼ 1; 2; 3. We observe a gradual decay of the oscillation amplitude reflecting the apparent irreversible equilibration present in the system.
The error bars indicate the 80% confidence intervals obtained from a bootstrap analysis35. The lines connecting the data points are a guide to the eye.

Fig. 3 Dynamical predictions. aMeasured phase correlations Cð�z; tÞ shown together with a cut at �zc ¼ 27:25 μm. Using this experimental dataset, we have
performed reconstructions based on input data from a given time window (indicated by red, green and blue intervals) and we calculated the phase
correlation functions Cð�z; tÞ capturing the full spatio-temporal dynamics by evolving the reconstructed states to times beyond the input intervals. b The full
spatio-temporal dynamics based on input data indicated by the red interval together with the cut at �zc, which shows the quantitative comparison to the
measured data. The red-coloured curve corresponds to the propagation of the reconstructed state based on initial times. c Similarly, we show the full
spatio-temporal dynamics and a cut at �zc obtained from the reconstructed state based on seemingly dephased data after the quench (green interval).
d Likewise, based on the times between the first and second recurrences (blue interval), we are able to obtain a reliable reconstruction. While the
dynamical prediction based on the initial dephasing dynamics works well, the reconstructions based on data taken in between the recurrences is limited by
the finite sample size (green interval)—an effect reproduced by numerical simulations (see Supplementary Note 3). Note that the quantitative discrepancy
at times far away from input intervals is due to terms of higher order not captured by the effective theory of Eq. (1). The shaded area around the curves, as
well as the error bars of the data, indicate 80% confidence intervals obtained from a bootstrap analysis35.
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smaller time steps Δt and possibly non-equidistant measurement
times should allow to study also higher modes and test theoretical
predictions concerning the dynamics under perturbations to the
non-interacting effective model.

Discussion
We have formulated and demonstrated the functioning of a new
quantum read-out method for quantum simulators where we
reconstruct the second moments of pairs of conjugated obser-
vables by measuring at different times only one of them. The
developed scheme allows us to reliably reconstruct the covariance
matrix of non-local low-energy excitations of a 1D superfluid
based on experimental data from an atom chip experiment which
makes phase measurements but does not directly access density
fluctuations.

We found several interesting insights into the physics of the
system. Firstly, the strong energetic penalty on phase fluctuations
present during the state preparation is reflected in the recon-
structed correlations as there are significantly less phase than
density fluctuations. The reconstructed state is almost diagonal,
which underlines that the eigenmodes before and after the
quench are closely related and on a higher level demonstrates that
the effective theory captures the relevant degrees of freedom of
the system. A fit to a thermal model for the initial state allowed us
to estimate the temparature and the effective tunnel coupling in
the state preparation. In the considered setting, recurrences of the
system have been recently observed8, which are due to an
approximately linear spectrum of the phonons. We have
demonstrated that our method can take input data from times
when the system is seemingly dephased in order to predict
recurrences by evolving the reconstructed covariance matrix in
time, strongly underlining the predictive power of the obtained
recovery scheme. Finally, we have studied the occupation num-
bers of the eigenmodes over time and obtained strong constraints
on the rate of their growth. We have reconstructed the con-
tribution of phase and density fluctuations over time and found
that their oscillations are damped. We expect that a quantitative
experimental assessment of possible reasons of the deviations
from the non-interacting effective model will become possible by
following the lines of this work.

Our work paves the way towards new intriguing experiments
by giving access to quadrature operators which can be used as the
basic ingredients for many quantum information processing
protocols42–44. The method presented offers a novel window into
quantum simulators, allowing to assess initial states, notions of
entanglement and various other quantities previous read-out
schemes did not allow for. It is our hope that our new quantum
read-out method will enable exciting insights into the physics of
ultra-cold superfluids, but also due to its generality that it will
become a versatile tool used in state-of-the art quantum tech-
nologies allowing to fully use the power of the existing quantum
simulation platforms45.

Note added. After the completion of the manuscript, we became
aware of similar developments in the discrete setting of optical
lattices with applications to topological band insulators22,23,46—it
would be interesting to also include there our ideas of using semi-
definite constraints ensuring that the reconstructed covariance
matrix is physical and the recovery stable.

Data availability
Data are available upon reasonable request.

Code availability
Code is available upon reasonable request.
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Supplementary Information: Quantum read-out for cold atomic quantum simulators

SUPPLEMENTARY NOTE 1: CALCULATING THE EIGENMODES

In this section we describe in detail how we obtain the eigenmodes of the quench Hamiltonian which can be viewed as a CFT 
in curved space-time background whenever the GP profile is not homogeneous. In this case, a discretization of fields allows 
to approximate the low-lying eigenmodes of the continuum Hamiltonian by the eigenmodes of a Hamiltonian involving a finite 
number of degrees of freedom which are the average fields in a given discretization cell. We then show how to diagonalize 
the coarse-grained Hamiltonian numerically taking into account that the quench Hamiltonian has a zero-mode. Finally, we 
describe how to use the numerically obtained wavefunctions for finitely many modes as an approximation to the corresponding 
eigenmodes in the continuum limit.

The Hamiltonian describing the quench dynamics is functionally parametrized by the GP profile nGP. Due to transverse 
broadening of the wave functions [1] the density-density interaction is functionally dependent on the GP profile and reads

g(z) = ~ω⊥as(2 + 3asnGP(z))/(1 + 2asnGP(z))3/2 (1)

where ω⊥ is the radial trapping frequency and as is the scattering length [2]. Hence, by knowing the GP profile, we know
the Hamiltonian and so we can find the eigenmodes. Here we show how to do this even if the GP profile is not homogeneous
nGP 6= const

A. Discretization of fields

We want to find approximations to the wave functions and eigenmodes discussed above by discretizing the interval
[−R1D, R1D] into N pixels, each of size 2R1D/N . Fixing N , for l = 1, . . . , N + 1 the coordinates of the discretization lattice
read zl = −R1D + 2R1D

l−1
N and we define discretization pixels which are the closed intervals pl = [zl, zl+1] for l = 1, . . . , N .

We then introduce the discretized operators as the integration of the field operators via

ϕ̂
(N)
l =

1

∆z

∫

pl

dz ϕ̂(z), (2)

δ%̂
(N)
l =

1

∆z

∫

pl

dz δ%̂(z), (3)

with ∆z := |pl| = 2R1D/N . Following Refs. [3, 4], these discretized operators yields a vector of canonical coordinates

Q̂ = (ϕ̂
(N)
1 , . . . ϕ̂

(N)
N , δ%̂

(N)
1 . . . δ%̂

(N)
N )T , (4)

satisfying the bosonic canonical commutation relations [Q̂j , Q̂k] = iΩj,k/∆z where Ω =
(

0 11N
−11N 0

)
. as can be verified easily.

Observe that the right-hand side will yield a Dirac delta in the continuum limit N → ∞. The discretization of the effective
model will be a quadratic operator in the discretized modes ϕ̂(N)

l and δ%̂(N)
l which can be efficiently diagonalized using single

particle transformations only as we want to explain below in the next section.

B. Decoupling of the effective model using symplectic transformations

Using the general notation of quadratures Q̂, we consider quadratic Hamiltonians of the form

ĤN = 1
2 Q̂

THQ̂ = 1
2

2N∑

j,k=1

Hj,kQ̂jQ̂k, (5)



2

where H = H> ∈ R2N×2N are the couplings We will assume that H is positive semi-definite, i.e., H � 0 and that there is
no coupling between the phases and densities in the effective model and all Hamiltonians considered in this work will have this
property. In this case the couplings H will be block diagonal and we will use the decomposition

H =

(
Hφ 0
0 Hρ

)
= Hφ ⊕Hρ . (6)

To discretize the integral we define the geometric mean ηl = (nGP(zl)nGP(zl+1))1/2 for l = 1 . . . , N which gives

Ĥ ≈ ∆z
N−1∑

l=1

~2ηl
4m

(
ϕ̂
(N)
l − ϕ̂(N)

l+1

∆z

)2

+ ∆z
N∑

l=1

g(zl)δ%̂
(N)
l

2 + ∆z
N−1∑

l=1

~2

4mηl

(
δ%̂

(N)
l − δ%̂(N)

l+1

∆z

)2

(7)

= ∆z

N−1∑

l=1


~

2ηl
4m

(
Q̂l − Q̂l+1

∆z

)2

+ ∆z

N∑

l=1

g(zl)Q̂
2
l+N + ∆z

N−1∑

l=1


 ~2

4mηl

(
Q̂l+N − Q̂l+1+N

∆z

)2

 (8)

:= ĤN . (9)

From this we read off

Hφ =
~2

2m∆z




η1 −η1
−η1 η1 + η2 −η2

. . .
−ηN−2 ηN−2 + ηN−1 −ηN−1

−ηN−1 ηN−1



, (10)

Hρ = 2∆z




g(z1)
g(z2)

. . .
g(zN )


+

~2

2m∆z




η−11 −η−11

−η−11 η−11 + η−12 −η−12

. . .
−η−1N−2 η−1N−2 + η−1N−1 −η−1N−1

−η−1N−1 η−1N−1



. (11)

Depending on the detail of the simulation g(z) ≈ g(0) can be taken constant or Hρ may include the pressure term as discussed
above with a similar discretization scheme. With this notation, we obtain

ĤN = 1
2 x̂
>(Hφ ⊕Hρ)x̂ ≈ Ĥ . (12)

Starting from a set of canonical coordinates Q̂ then r̂ = SQ̂ for S ∈ R2N×2N will again denote a vector of canonically
commuting operators if S is symplectic, i.e., it fulfills

S ΩST = Ω (13)

which can be seen by explicitly checking that r̂ again fulfills [r̂j , r̂k] = iΩj,k/∆z.
In view of diagonalizing the Hamiltonians of interest, it is important to note that matrices of the form S = Q ⊕ Q for any

orthogonal Q ∈ O(N) as well as S = A ⊕ A−1 for any invertible A ∈ GL(N,R) that is symmetric, i.e., AT = A are
both symplectic matrices and that the inverse as well as the product of symplectic matrices are again symplectic. We can then
diagonalize Hamiltonians of the form as given in Eq. (5) under the assumption that Hρ is invertible. This property allows us to
define a symplectic matrix

S1 =

(
(Hρ)

1/2 0
0 (Hρ)

−1/2

)
(14)

such that

ST1 HS1 = ((HT
ρ )1/2Hφ(Hρ)

1/2)⊕ 11N . (15)

The matrix of the phase couplings in the new coordinates reads H̃φ = (HT
ρ )1/2Hφ(Hρ)

1/2 and is again real and symmetric such
that it can be diagonalized by an orthogonal transformation Q ∈ O(N) with H̃φ = QΣQT . Here, Σ is diagonal and we assume
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that all zero eigenvalues are sorted to the first N0 ≥ 0 positions, i.e., Σ = 0N0
⊕ Σ̃ with Σ̃ � 0 diagonal and we define the

eigenfrequencies ω via Σ̃1/2 = diag(ωN0+1, . . . , ωN ). With the diagonal matrix Σφ = 11N0
⊕ Σ̃ and the transformation

S2 =

(
Qφ 0
0 Qφ

)(
Σ
−1/4
φ 0

0 Σ
1/4
φ

)
(16)

we obtain

ST2 S
T
1 HS1S2 = (0N0

⊕ Σ̃1/2)⊕ (11N0
⊕ Σ̃1/2) . (17)

That is, in the canonical coordinates (φ̂
(N)
1 , . . . φ̂

(N)
N , δρ̂

(N)
1 . . . δρ̂

(N)
N )T = r̂ =

√
∆z(S1S2)−1Q̂ we have that the Hamiltonian

in Eq. (5) takes the form

ĤN = 1
2

N0∑

j=1

(
δρ̂

(N)
j

)2
+ 1

2

N∑

j=N0+1

ωj(
(
δρ̂

(N)
j

)2
+
(
φ̂
(N)
j

)2
), (18)

such that φ̂(N)
j ≈ φ̂j and δρ̂(N)

j ≈ δρ̂j as Ĥ ≈ ĤN . We will therefore not distinguish between φ̂(N)
j and φ̂j and δρ̂(N)

j and δρ̂j
outside of this section.

C. Discrete approximations

With this, we can read off the discrete approximation to the wave functions fφk and fρk relating φ̂(N) and ϕ̂(N) or
correspondingly δρ̂(N) δ%̂(N) as the rows of S = S1S2 which is of block structure, i.e.,S = Sφ ⊕ Sρ. Specifically we find

fφk (zk) ≈
√

∆z
−1
Sφj+N0,k

(19)

and

fρk (zk) ≈
√

∆z
−1
Sρj+N0,k

. (20)

Note that when relating φ̂(N) and ϕ̂(N) or δρ̂(N) and δ%̂(N) we included a factor
√

∆z. The inclusion of this factor allows to
change the commutation relations from [δ%̂

(N)
j , ϕ̂

(N)
k ] = iδj,k/∆z → iδ(zj− zk) to [δρ̂

(N)
j , φ̂

(N)
k ] = iδj,k → iδj,k as one would

expect from the discrete canonical eigenmodes of the system. Let us furthermore observe that the relation to the real-space
correlators are given by

〈ϕ̂(zj)ϕ̂(zk)〉 ≈ 〈ϕ̂(N)
j ϕ̂

(N)
k 〉 = ∆z−1

N∑

j′,k′=1

S−1j,j′S
−1
j,j′〈φ̂

(N)
j′ φ̂

(N)
k′ 〉, (21)

where we exploited that S has a block-diagonal structure and the inverse scaling in the discretization step ∆z should be noted.

SUPPLEMENTARY NOTE 2: DETAILED FORMULATION OF THE RECOVERY PROCEDURE

In this section, we describe the data analysis and formulate the reconstruction procedure with additional details. As described
in Refs. [1, 5, 6] through matter-wave interferometry phase profiles ϕ of the superfluid can be measured. After the two superfluids
were coupled with tunneling strength J ≈ 3.5 Hz for sufficiently long times, the separation potential is increased rapidly in about
1 ms. The end of the ramp defines the initial time t0 = 0 ms for the quench evolution that follows. The gas can then be held
for a specific time t which defines the time during which the system evolves under the quench Hamiltonian in Eq. (1). Here we
focus on the referenced second moments obtained from the profiles, for which the corresponding physical observable is

Φ(z, z′, t) = 〈[ϕ̂(z, t)− ϕ̂(z0, t)][ϕ̂(z′, t)− ϕ̂(z0, t)]〉 , (22)

where z0 denotes a fixed reference point in the system.
For each hold time t about nSample ≈ 200 phase profiles were obtained, this number is limited by the stability of the setup, but

can be increased if fewer hold times are considered in total. Supplementary Figure 2 shows an example of two of many phase
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Supplementary Figure 1. a) We show the Gross-Pitaevskii profile nGP reflecting the setting of the experiment where the box trapping potential
is finite and is superposed with an additional weak harmonic potential both of these features lead to nGP not being perfectly homogeneous.
The dotted rectangle indicates a region of width 50 µm such that at the edges the profile amounts to 5% of the peak density. The dashed-dotted
region corresponds to the window where data is typically taken – here the profile is relatively homogeneous. b) We plot low-lying eigenmode
functions taking the values fφj (zk) ≈

√
∆z
−1
Sφj,k which show oscillatory behavior similar to the analytical solution to the Luttinger liquid

model that can be obtained for the homogeneous profile.
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Supplementary Figure 2. a) We plot an example of two arbitrarily chosen referenced phase profiles ϕ(i) and ϕ(j) obtained in the experiment
referenced to the center of the considered portion of the cloud. b) We show an example of the measured values of Φ̃(za, zb, t) extracted from
nSample ≈ 200 profiles. The referenced second moments vanish trivially if za or zb equals the reference point and increase with increasing
distance to z0.

profiles used in the analysis. In the data analysis, data from Np = 19 central pixels is used which corresponds to about 60% of
the cloud as each pixel has size ` = 1.95 µm, so the total size observed is about 37 µm. The positions of the pixels are

za = (a− 10)` (23)

and the reference point is chosen as z0 = 0 µm, i.e., in the middle of the cloud. We consider referenced second moments here,
as by this we are able to consistently remove any offset phase between two different measured profiles. In practice we subtract
at each pixel a the central phase profile value ϕ(i)(z0). The experimental estimate for Eq. (22) is then

Φest(za, zb, t) =
1

nSample

nSample∑

i=1

(
ϕ(i)(za)− ϕ(i)(z0)

)(
ϕ(i)(zb)− ϕ(i)(z0)

)
. (24)

In terms of the eigenmodes this reads

Φ(za, zb, t) =
1

2

N∑

j,k=1

(fφj (za)− fφj (z0))(fφk (zb)− fφk (z0)) 〈{φ̂j(t), φ̂k(t)}〉 :=
N∑

j,k=1

fa,bj,k V
φφ
j,k (t) . (25)
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Using the expressions for the time evolution, we get

Φ(za, zb, t) =
N∑

j,k=1

fa,bj,k
(
cos(Ejt) cos(Ekt)V

φφ
j,k + sin(Ejt) sin(Ekt)V

ρρ
j,k

)

−
N∑

j,k=1

(fa,bj,k + fa,bk,j ) cos(Ejt) sin(Ekt)V
φρ
j,k .

(26)

It must be noted that the measured value at a pixel za does not exactly reflect the value of the field ϕ̂(za) but rather a
convolution of the field with a Gaussian function, i.e., it probes the value averaged over a patch of specific characteristic length.
More precisely, the experiment allows us only access to measurements of

˜̂ϕ(za) =

∫ R1D

−R1D
dz′ e−

(z′−za)2

2σ2 ϕ̂(z′)
∫ R1D

−R1D
dz′ e−

(z′−za)2

2σ2

(27)

and we define the correspondingly convoluted wave function

f̃φj (za) =

∫ R1D

−R1D
dz′e−

(z′−za)2

2σ2 fφj (z′)
∫ R1D

−R1D
dz′e−

(z′−za)2

2σ2

. (28)

For the considered experimental setup we find the estimation σ ≈ 3 µm. In order to include the convolution in the reconstruction
it then suffices to use the convoluted wave functions and set

Φ̃(za, zb, t) =
1

2

N∑

j,k=1

(f̃φj (za)− f̃φj (z0))(f̃φk (zb)− f̃φk (z0)) 〈{φ̂j(t), φ̂k(t)}〉 :=
N∑

j,k=1

˜
fa,bj,k V

φφ
j,k (t) . (29)

D. Recovery procedure

In the implementation, we vectorize the covariance matrix V such that each block is a vector, i.e., vφφ = vec(V φφ) etc. and
define v = vφφ⊕ vφρ⊕ vρρ ∈ R3N 2

and use the notation v = vec(V ). Formula (26) shows that for each input (za, zb, t) we can
find a vector w ∈ R3N 2

such that Φ(za, zb, t) = wT v. For a fixed time tik we then collect the from the measured data extracted
second moments Φest(za, zb, ti) in a vector bk ∈ RN

2
p and construct the corresponding vectors w and collect them as rows in a

matrix Ak ∈ RN
2
p×3N 2

. Doing this for all n times ti1 , . . . , tin which are used for the reconstruction as input, we then stack all
bk and Ak into a large vector b matrix A correspondingly, i.e.,

A =



A1

...
An


 , b =



b1
...
bn


 . (30)

We furthermore define at each time step a diagonal matrix W ∈ RN
2
p×N2

p which contains the inverse statistical errors of the
experimental measurement of the second moments W (k)

(a,b),(a,b) = 1/σest(Φ(za, zb, tk)) and collect all W (k) in on large block-
diagonal matrix W in order to define a more uniform target function for the optimization. With this definition we aim at
minimizing the vector Hilbert Schmidt-norm

Θ = ‖WA vec(V )−Wb‖2 (31)

subject to the semi-definite constraint

V + 1
2 iΩ � 0 , (32)

where in the main text we have introduced the notationA(V ) = A vec(V ). The numerical reconstruction has been implemented
with use of the cvx package. The standard theory of semi-definite programming shows that there is always a unique solution
vOpt to this optimization problem. Unfolding the vectorization yields the reconstructed covariance matrix VOpt.
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As a final remark, it is interesting to note that positivity constraints (imposing that the density operator is positive semi-definite)
similar to the Heisenberg constraint (reflecting the Heisenberg uncertainty principle as a semi-definite constraint) characterizing
bosonic covariance matrices can significantly increase stability of least squares reconstructions [7]. In fact, wide classes of
recoveries with a positivity constraint [7] can be interpreted as compressed sensing schemes [8]. In this context, is important to
stress that the semi-definite constraint V + 1

2 iΩ � 0 readily implies that V > 0, so that V is strictly positive, so that the constraint
of Ref. [7] is readily enforced. Hence, it is interesting to see that much of the intuition on the positive cone for density operators
carries over to the Heisenberg cone for covariance matrices. Further explorations of seeing our scheme as a compressed sensing
scheme will be left to future work.

SUPPLEMENTARY NOTE 3: SIMULATION OF THE RECONSTRUCTION PROCEDURE

Various aspects of the reconstruction can be modeled by considering a thermal state of the effective Hamiltonian of the
strongly coupled condensates as discussed in the main text. Thermal correlations in the discretized model can be obtained either
by considering the exact formulas from Refs. [9, 10] or by classical phase approximation [11]. In the following we consider the
latter and study the effects of finite sample size and finite measurement resolution. We denote the real-space phase fluctuation
functions by

(Γφφ)a,b = 〈ϕ̂(za)ϕ̂(zb)〉 (33)

and in classical field approximation we can calculate these via Γφφ ≈ (Hφ(J 6= 0))−1/kBT [11]. Together with the correlations
for density fluctuations, we can propagate these under the quench Hamiltonian. Supplementary Figure 3 shows the correlations
Γφφ and additionally the effect of the referencing which removes the running phase, of the convolution which comes from the
measurement resolution and finally discretization due to a finite amount of pixels.
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Supplementary Figure 3. Phase correlations in real-space: a) direct values, b) convoluted correlations, c) convoluted and referenced
correlations (pixel positions indicated by white dots) and finally d) the convoluted referenced observable evaluated at pixel positions.

E. Influence of finite sample size

At each time the phase correlations can be used as a positive matrix parametrizing a (classical) Gaussian distribution from
which single-shot random profiles can be sampled. After convolution these can be seen to correspond to the direct observable of
the interferometry which is useful to assess the systematic imperfections of our procedure. Here we study two possible aspects.
By resampling with nSample = 200 and nSample = 2000 we study the sensitivity of our reconstructions to statistical fluctuations
in the experiment. Secondly, we study the real-space correlations and the convolution of these to see how finite measurement
resolution impacts the information that can be obtained from our procedure.

We have simulated the ĤN for N = 400 and J/~ = 2π × 3.5 Hz obtaining the correlation functions of the thermal state at
T = 40 nK. Using the phase-phase correlation functions at different times we have resampled the profiles. After referencing
the profiles the resampled phase-phase correlation functions were obtained. We then perform a recovery at the times indicated
in Supplementary Figure 4 which shows that finite sample size of about 200 experimental runs for each time constrains the
possibility of recovering the phase locking in its full extent.

F. Influence of finite measurement resolution

The measured phase fluctuations at a given pixel are in fact a convolution which spreads into the neighboring pixels too.
Its primary effect is introducing a frequency cutoff, as the higher modes oscillate quickly and are averaged out. The secondary
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Supplementary Figure 4. We present the results of 100 reconstructions obtained based on 200 phase profiles sampled from the thermal state
of the state preparation Hamiltonian with a phase coupling J/~ = 2π × 3.5 Hz and T = 40 nK. a) We show the averaged correlator C
as was done in the main text (the input window corresponds to the input region a) in Fig. 3 in the main text). We find that the height of the
reconstructed revivals based on estimators with sample size nSample = 200 is significantly lower than for the exact correlations obtained as an
ensemble average from the thermal state. b) We present a cut at z = 27.25 µm for the thermal state (in red) and the reconstructions from the
resampled data (blue points) where the error-bars indicate the standard deviation of the 100 reconstructions. This uncertainty analysis shows
than based on a single sample of nSample = 200 profiles available experimentally the heights of the reconstructed revivals may fluctuate
strongly. The large standard deviation for points at the revival indicate that both large and small revival heights can be obtained depending on
random fluctuations of the sampled phase profiles.
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Supplementary Figure 5. A simulation of the reconstruction as above with increased sample size nSample = 2000 for which the estimators
of the two-point correlation functions based on the sampled phase profiles should be close to the true values. We find that our method can
very reliably reconstruct the state a), including revival heights b) with error bars indicating standard deviation of 100 realizations, and hence
identify the finite sample size in the experiment nSample = 200 as the main source of inaccuracy of our reconstructions.

effect is introducing non-universal additional artifacts into the correlations that come from the convolution and are a feature of the
measurement setup. We consider the thermal real-space covariance matrix. It is diagonal in the eigenmodes of the initial strongly
coupled Hamiltonian, see Supplementary Figure 6a. The convolution introduces however new correlations that are not present
in the state and are an artifact of the coarse-graining, Supplementary Figure 6b. If we consider the post-quench Hamiltonian, the
modes change slightly due to the non-homegenous GP profile and the covariance matrix is slightly off-diagonal in these modes
Supplementary Figure 6c. After the convolution again a cut-off is introduced, but also additional stray artifacts, Supplementary
Figure 6d.

Thus, the convolution will introduce in an uncontrolled way additional artifacts at different times and hence the measured
real-space second moments of phases will have a discrepancy incorporated by the finite measurement resolution. This explains
why in the data analysis, and the resampling simulation above, a perfect reconstruction is impossible. We conclude that the
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Supplementary Figure 6. Real space correlations after rotating into the eigenmode space. a) We plot the rotation of the real space covariance
matrix Γφφj,k = 〈ϕ̂(zj)ϕ̂(zk)〉 defined at discretization pixels rotated into the eigenmode space SφInit of the initial Hamiltonian. On all plots
we show the lowest-lying eigenmodes and do not show the zero-energy mode considering only the eigenmodes relevant in the experiment. b)
We plot the Gaussian convolution of Γφφ denoted by Γ̃φφ which takes into account the finite measurement resolution in the eigenmode space
of the initial Hamiltonian. Observe, that in both cases we obtain diagonal matrices, but the convolution introduces a cut-off for resolving the
occupation of the higher modes. c-d) We show the same comparison of Γφφ and Γ̃φφ but now rotated with the eigenmodes SφQuench of the
quench Hamiltonian. Observe, that the eigenmode occupations are rearranged due to a different mode transformation (nGP 6= const) and
minor coherences are introduced by the convolution.

sample size is a smaller limitation than the finite experimental resolution.

SUPPLEMENTARY NOTE 4: EXTENDED DATA

Here we give further results on additional experimental scans that were performed in the study of revivals in Ref. [1]. In total
we consider 5 systems (one of them already presented in the main text) with varying system size and particle number — the
corresponding values are listed in Supplementary Table I.

Scan System size L = 2R1D Average particle number per well NAvg
Well

1 49 µm 3147.5
2 60 µm 3813.6
3 38 µm 2293.5
4 43 µm 2625.7
5 54 µm 3513.3

Supplementary Table I. Table of the experimental scans performed characterized by the system size specified via the external trap and the
average particle number per well. The fluctuations of the particle number is about δNAvg

Well ≈ 50 independent of the system size. These two
parameters together with the harmonic longitudinal ωl = 2π × 7 Hz and radial ω⊥ = 2π × 1400 Hz trapping frequencies allows to calculate
the Gross-Pitaevskii profile nGP and hence parametrize the effective model. The first scan is the one presented in the main text.

In Supplementary Figure 7 we show the reconstructed covariance matrices of the initial state as described in the main text
for all 5 experimental scans listed in Supplementary Table I. Consistently with the result presented in the main text, we find
that the reconstructed covariance matrices are close to being diagonal with significant squeezing suppressing phase fluctuations
and enhancing density fluctuations. Furthermore, in Supplementary Figure 8 we show the covariance matrix obtained for the
first scan considering wave functions convoluted with a Gaussian distribution (28). Here we find similar Vj,k to the covariance
matrix shown in the main text for low lying modes but it is noticeable that the higher modes are populated with no clear decay
tendency. This can be explained by overfitting noise as the convolution of wave functions for large k vanishes fφk (z) ≈ 0.
Indeed, examining (31) we find that the optimizer is not sensitive to changes of Vj,k with j, k above the effective cut-off, or in
other words the least squares recovery becomes numerically ill-conditioned. We did not observe any significant improvement in
quantitatively predicting the revivals using convoluted modes.

Secondly, we investigate in Supplementary Figures 9 and 10 the correlator C defined in the main text based on data obtained
in scans 2 to 5. We show the values extracted from the experimental measurement as well as the results obtained from three
reconstructions with different input intervals. The results are consistent with the ones presented and discussed in the main text.
The experimental data shows a slow dephasing and weakening of the initial phase locking. The reconstructions are able to
recover and predict the signal well if the reconstruction interval includes a recurrence. Reconstructions from dephased data
(reconstruction regions a) and c) ) are able to qualitatively describe the system but fail to predict quantitatively for instance the
strength of the recurrence.
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Supplementary Figure 7. We show as in Fig. 2 in the main text the blocks of the covariance matrix of the initial state reconstructed with
N = 10 modes for all experimental scans. The system sizes and particle number per well are as given in Table I.
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Supplementary Figure 8. We show as above the reconstructed covariance matrix of the initial state of the first scan, but now using convoluted
eigenfunctions. As modes with increasing energy display more and more oscillations, the convoluted modes with higher energy become
smaller in amplitude once the convolution starts to average over a full oscillation. This renders the least squares less stable and higher modes
can have large occupation numbers without changing the real-space correlations because the mode functions are suppressed by the convolution.
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Supplementary Figure 9. Analogous to Fig. 3 from the main text, we show the correlator C calculated from the experimental data and based on
three reconstructions with varying input windows (indicated with dashed boxes) for scan number 2 of the largest system size and number 3 of
the smallest system size. For the scan number 2 we have moved input window a) to an earlier time which results in very accurate reconstruction
of the revival which would not be the case after moving the input window to a later time by one unit ∆t. Note, however, that the extrapolation
works well which indicates that our method given enough input can yield very good results even with relatively small values of the dynamical
phase. For the scan number 3 we can reconstruct reliably in the regions between the revivals. Note that in both cases input window c) does not
yield strong reconstructed revivals but they are timed well and also in the experimental data the second revivals are not pronounced.
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Supplementary Figure 10. As above for scan number 4 with second largest system size and number 5 with second smallest system size.
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Supplementary Figure 11. Analogous to Fig. 4 in the main text we plot the occupation numbers for scans number 2-5 with parameters given
in Table I and bootstrap error-bars by resampling the phase profiles nBootstrap = 500 times. Note that the fluctuations of the reconstructed
occupation of the first modes increase with increasing system sizes which shows that it is important that all the modes acquire enough dynamical
phase. Note that often the jumps in the occupation numbers coincide with the input intervals being placed in regions between the revivals where
the reconstruction is difficult because of enhanced phase fluctuations due to the in-rotated density fluctuations. We have checked that taking a
larger number of input times I does smoothen the occupation numbers but then the size of the input window is large enough so that interaction
effects may start playing a role and the value of the occupation numbers need not be accurate.
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5
F I D E L I T Y W I T N E S S E S F O R F E R M I O N I C Q U A N T U M S I M U L A T I O N S

New developments in quantum technologies are being reported at a very fast rate and coherent quantum systems
of an increasing number of constituents are becoming available. This experimental advance, however, is bringing
about a new theoretical challenge, namely if quantum coherence is extending over many qubits then to describe their
state we need an enormous amount of parameters. Nevertheless, while developing large systems with pronounced
quantum effects we are in need of methods allowing us to check which state is realized in an experiment and this
necessitates new ideas and approaches to circumvent the curse of dimensionality of quantum states.

For a small system the method of choice is full quantum state tomography. This is in practice limited to about
a dozen qubits due to the large Hilbert space dimension and number of independent observables that must be
measured. Due to this problem post-tomographic tools are being developed. The gold standard of such approaches
is randomized benchmarking which allows to do diagnostics of the experimental state on the level of certain non-
trivial observables such as entanglement entropies [120]. In certain cases direct fidelity estimation [152] is essentially
optimal, allowing to for example assess the preparation of certain entangled states with the number of measurements
independent of the number of qubits. One other very promising advance is the development of the so-called matrix-
product state tomography [153]. Here the idea is that a certain family of variational wave-functions requiring a
polynomial number of parameters is very well-suited to capturing low-energy states of gapped one-dimensional
systems. In Ref. [153] based on experimental measurements a matrix-product state was reconstructed allowing to
capture larger systems than can be tackled by means of standard tomography. This development suggests that
devising variational tomographic methods is the way forward to treat coherent many-body systems.

This chapter presents a method answering the question of how to assess the preparation of weakly interacting
fermions that may be very entangled obstructing a matrix-product state tomography approach. Such states could
appear in future quantum simulation studies of superconductivity involving the formation of Cooper pairs and the
presented method would apply for these variational states.

5.1 formulation of the problem

Let |ψt 〉 ∈ H be a pure target state vector that we would like to prepare and let us denote by ρ̂p the state that the,
possibly imperfect, experimental procedure prepares in the laboratory. We would like to verify that the preparation
has high fidelity without resorting to full state tomography which is inefficient in the number of constituents.

Specifically, the task is to certify that the fidelity between the uncharacterized preparation state and the target
state vector

F = 〈ψt | ρ̂p |ψt 〉

is larger than the objective quantified by some threshold value Fth. Moreover, we ask for an efficient way of
verifying that F > Fth using polynomially many state preparations even though the Hilbert space dimension grows
exponentially fast with the number of qubits. Passing this test implies that the experimental preparation is closer
to the target than some εth which depends on Fth only.

As a remark, let us point out that in principle a similar certification task could be defined for a mixed target state
ρ̂t in which case the fidelity reads

F = tr
[
(
√
ρ̂t ρ̂

†
p

√
ρ̂t)
1/2
]2

and again if it exceeds a threshold value, it bounds the single-shot distinguishability between the target and
preparation states at a desired accuracy. However, as will be alluded to in the open problems section, devising
efficient certification protocols is more challenging - this will become apparent by the discussion of our results in
the next section demonstrating in an intuitive way that the purity of the target state is crucially helpful.
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5.2 our results

In our studies, we arrived at two ideas offering a way to make progress. Firstly, which will be subject of the next
subsection, we conceptualize the possible approaches to the certification task by means of the notion of fidelity
witnesses. Secondly, we apply it in the case of non-equilibrium dynamics for the transverse field Ising model which
is the standard test-bed model used to benchmark state-of-the-art quantum simulators.

5.2.1 Fidelity witnesses

Paralleling the developments that appeared in effort to study entanglement in experiments by means of entangle-
ment witnesses [154] we propose to consider experimentally friendly observables that allow to draw conclusions
about the fidelity of a certain state.

Definition 3 (Fidelity witnesses). An observable Ŵ is a fidelity witness for ρ̂t if, for FW(ρ̂p) := tr[Ŵ ρ̂p], it holds
that

i) FW(ρ̂p) = 1 if, and only if, ρ̂p = ρ̂t, and
ii) FW(ρ̂p) 6 F for all states ρ̂p.

The term ‘‘witness’’ refers to the property that, for any fixed threshold FT, finding FW(ρ̂p) > FT witnesses that
F > FT; but if FW(ρ̂p) < FT is found, then nothing can be said about F in relation to the threshold value FT.
As illustrated in Fig. 5.1, fidelity witnesses explicitly realise the extremality-based intuition of ‘‘corralling valid
states against the boundary’’. The situation is reminiscent of entanglement witnesses, which detect some entangled
states and discard all non-entangled ones. Specific fidelity witnesses have been built for ground states of local
Hamiltonians [153, 155] and Gaussian as well as non-Gaussian output states of bosonic linear-optical circuits [156].
In the supplementary material of the presented paper we present (possibly non-efficient) fidelity witnesses of
arbitrary target states with no assumption other than being pure. A special case of such generic construction is
the following (efficient) witnesses for the free-fermionic setting.

Ŵ -- Fidelity witness

Reject
(false)Reject (correct) Accept (correct) a ρ̂t -- Target state

Figure 5.1: Certifying the membership to the set of high-fidelity preparations. The set of quantum states is
convex and pure states lie on its boundary. Observables act as hyperplanes slicing this set and they separate the
states into two classes which are those giving rise to expectation value seither smaller or larger than a prescribed
value. A well chosen observable can be used to select a particular target state which is singled out by giving rise to
an extremal expectation value of that observable. In the illustration, the citrus-colored areas depict the states that
have a sufficiently high fidelity to the target state ρ̂t. Some of these states will be detected by a fidelity witness Ŵ
but some will be falsely rejected, i.e., the witness may fail to certify that a state preparation has high fidelity. States
having very low fidelity depicted by the blue-colored area will be always rejected and hence the fidelity witness test
will never lead to a false claim that the fidelity is high when it is not.

5.2.2 Experimentally relevant fidelity witnesses

For pure fermionic Gaussian states we have a simple formula to evaluate the fidelity witness but it is necessary to
first introduce some essential definitions and notation. It is valid for the most general family of fermionic Gaussian
states which includes not only so-called Slater determinants but also entangled BCS states. This family is sometimes
referred to as generalized Gaussian or generalized Hartree-Fock states but using the formulation of the problem
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using Majorana operators, as is done in the presented paper, it appears to be natural to simply call them Gaussian
states.

The crucial insight that we obtained is a generalization of an ubiquitous observation, namely, that the second
moments of Majorana operators (defined in detail in the presented paper) specify completely Gaussian states. For
example, higher order correlation functions can be obtained from the covariance matrix using the Wick’s expansion.
In general to determine whether a given state is Gaussian one would have to verify that all of the exponentially many
correlation functions satisfy Wick’s theorem. Nevertheless, for pure Gaussian states, it turns out to be sufficient to
find that their second moments are in fact very special and single out the entire state uniquely. This, in turn, implies
the following efficiently measurable value of the fidelity witness

FW(ρ̂p) = 1+
1

4
tr
[(
M(ρ̂p) −M(ρ̂t)

)t
M(ρ̂t)

]
, (5.2.1)

where the covariance matrix M(ρ̂p) of the preparation state has to be measured experimentally by estimating
polynomially many expectation values of relatively simple physical observables and the covariance matrix M(ρt)
of the target state can be assumed to be known as the specification of the target state.

This result is relevant to benchmarking of spin-1/2 chains realized by means of quantum simulation using qubits.
Let us denote by Xi, Yi, and Zi the Pauli matrices acting at site i of a spin chain. The following Hamiltonian
describes the experimentally-relevant spin chain model [157--161]

ĤTFIM = −

L−1∑
j=1

(Jxj Xj Xj+1 + J
y
j Yj Yj+1) −

L∑
j=1

Bj Zj .

Here Jxj , Jyj and Bj are respectively qubit interactions and transverse-field strengths and L is the length of the
spin chain. If we set Jy ≡ 0 and other couplings to be independent of position then we obtain the transverse
field Ising model. If all couplings are non-zero and position independent then we call the model the XY model. This
Hamiltonian can be diagonalized using the Jordan-Wigner transformation which allows to map the one-dimensional
interacting spin system to non-interacting fermions. In the case that the couplings depend on position, then we say
the model represents a disordered spin chain which then typically gives rise to Anderson localization. Since all these
models map to a quadratic Hamiltonian for all parameter regimes, we can efficiently certify quantum simulations
of adiabatic ground state preparations or non-equilibrium dynamics following sudden quenches.

5.3 the implications of the results

The main merit of the conceptual part of our results is that it unifies other existing ideas for verifying quantum
simulations by means of the notion of witnessing the fidelity. This makes touch with the earlier long-standing pro-
gramme of witnessing entanglement. Viewing both cases in hindsight of the conceptual innovation of introducing
the approach of witnesses we find a general feature namely that often in quantum technologies we have some de-
sired quantum objective that has a simple physical meaning and yet it is hard to verify the membership to the class
of successful preparations. For entanglement, we would like to establish interesting and resourceful correlations
which then can be used to implement powerful protocols. However, in general this is hopeless according to our
current knowledge of complexity theory as it has been proven that deciding whether a bipartite quantum state is
entangled is an NP-hard task [162]. Nevertheless, with use of entanglement witnesses we can successfully verify
the entanglement in simple cases.

Entanglement witnesses have the feature that if the target type of entanglement to be verified is in a specific
way simple, e.g., Gaussian, then it can be detected efficiently in the number of modes (the promise of a Gaussian
state promotes a general witness to a proper test [163]). Fidelity witnesses exhibit similar features. Indeed, fidelity
is inherently difficult to measure, which can be concluded even without natural hardness results but merely by
physical intuition that small local imperfections could be amplified by measuring an appropriate global observable
The discussion in the supplementary material of the presented paper constructs such an example using a state
representing a system with weak symmetry-breaking. This simple observation is further substantiated by the effect
known in quantum many-body physics called the ‘orthogonality catastrophe’ which posits that generic eigenstates
of large systems are very sensitive and a slightly perturbed state can easily become orthogonal to an unperturbed
state [164--166]. However, fidelity between two pure states measures precisely this overlap and may hence be
susceptible to suffering from the orthogonality catastrophe.
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Despite these issues, thanks to continued experimental efforts, quantum technologies are becoming increasingly
better and it becomes necessary to benchmark systems that are beyond reach of full state tomography. Fidelity
witnesses offer an attractive answer for performing pragmatic tests verifying coherence of the emerging and
continuously improving quantum simulation platforms. This framework includes the previously known methods
and ideas, most prominent of which are based on measuring a small expectation value of an appropriate Hamilton
operator which selects the target state uniquely. This special Hamiltonian is typically referred to as parent and gives
rise to a fidelity witness.

The specific results concerning Gaussian states give rise to an excellent witness applicable to a range of quantum
simulation experiments. This can be directly applied in platforms such as trapped ions, Rydberg arrays, and
superconducting qubits. For all these systems interesting non-equilibrium dynamics for dozens of qubits have
been reported and our method gives a directly applicable way of measuring the overlap to certain, possible time-
dependent, fermionic Gaussian states. The measurements necessary are available in these quantum simulators as
they are the same as observables measured in quantum state tomography but their number is significantly smaller.
One example, for the possible application is the study performed using the Sycamore quantum processor where
fidelity witnesses have been employed to study the preparation of Gaussian studies with the aim of reaching the
accuracy necessary for non-trivial computations for quantum chemistry [121].

Notice, that our fermionic Gaussian fidelity witnesses could in principle be also used when the quantum simulator
dynamics deviates from Gaussianity. An interesting question to study is how the fidelity towards Gaussian states
decays during dynamics influenced by the presence of weak interactions. Even small perturbations to unitary
dynamics under quadratic Hamiltonians give generically rise to universal gate sets and we do not know when weak
interactions lead to evolutions corresponding to truly BQP-hard instances of unitary dynamics, i.e., circuits that
allow to simulate quantum computers. On the other hand, it is still the hope that a quantum analogue of the classical
KAM theorem holds [167] hence one would like to expect, on physical grounds, that very weak perturbations lead
to dynamics that are close enough to Gaussianity to the extent that the system can still be classically simulable.
Currently, the only way to study this question rigorously is essentially via time-dependent perturbation theory
which only allows to treat interaction potentials that vanish in the thermodynamic limit. It would be interesting to
see if fidelity witnesses could be used in a quantum simulator to show that overlaps to Gaussian states under weakly
non-Gaussian dynamics are more persistent than perturbative arguments suggest.

Finally, let us discuss how the formula implies that non-Gaussian states have non-zero Gaussian entropy which
is an application independent of the original goal of certifying quantum simulations. The formula (5.2.1) gives the
value of a fidelity witness with a pure Gaussian target state and is based exclusively on second moments. Pure
Gaussian states have covariance matrices that are orthogonal, i.e., satisfy MMt = id [168]. Formula (5.2.1) implies
the converse, namely, that if a state ρ̂p has an orthogonal covariance matrix M then it must be Gaussian. Indeed
there exists a pure Gaussian state |ψt 〉 with the same second moments as ρ̂p and by Eq. (5.2.1) we find that the
fidelity between ρ̂p and |ψt 〉 has the maximum value and so these two states must be the same. We hence find that
non-Gaussian states must have covariance matrices corresponding to mixed Gaussian states.

5.4 open problems

Problem 1. Parent Hamiltonians have been used as fidelity witnesses before we defined this notion and the
constructions given in the presented paper can in principle also be rephrased in this way. Are parent Hamiltonians
the only fidelity witnesses?
Problem 2. Do there exist non-trivial fidelity witnesses for mixed target states?
Problem 3. What is the precise worst-case computational hardness of estimating the fidelity of a quantum state?
Problem 4. Is it possible to design conditional witnesses, i.e., observables that witness fidelity only given a promise

of some physical property, which give tighter bounds than the unconditional witnesses?
Problem 5. Consider a target state which is uniquely selected as the ground state of a gapped local Hamiltonian.

Can we construct a practical fidelity witness out of this information without knowing the ground state energy and
the spectral gap? Computing the former is QMA-hard while the latter is undecidable but known constructions that
work for other computationally hard problems rely on apriori knowledge of these parameters [155].
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The experimental interest and developments in quantum spin-1=2 chains has increased uninterruptedly
over the past decade. In many instances, the target quantum simulation belongs to the broader class of
noninteracting fermionic models, constituting an important benchmark. In spite of this class being
analytically efficiently tractable, no direct certification tool has yet been reported for it. In fact, in
experiments, certification has almost exclusively relied on notions of quantum state tomography scaling
very unfavorably with the system size. Here, we develop experimentally friendly fidelity witnesses for all
pure fermionic Gaussian target states. Their expectation value yields a tight lower bound to the fidelity and
can be measured efficiently. We derive witnesses in full generality in the Majorana-fermion representation
and apply them to experimentally relevant spin-1=2 chains. Among others, we show how to efficiently
certify strongly out-of-equilibrium dynamics in critical Ising chains. At the heart of the measurement
scheme is a variant of importance sampling specially tailored to overlaps between covariance matrices. The
method is shown to be robust against finite experimental-state infidelities.
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Quantum simulators are specific-purpose quantum devi-
ces that are able to efficiently simulate phenomena of
interest thought to be not directly accessible otherwise [1].
Already at scales of tens of particles they have the potential
to outperform today’s most powerful supercomputers and
help us explain unclear physical effects, as well as give
boosts in crucial technological areas [2]. In addition, they
constitute an intermediate milestone towards the ultimate
goal of realizing large-scale universal quantum computers.
This has fueled impressive experimental advances in
multiple quantum technologies [3–9]. A type of quantum
many-body systems to which experimental simulations
have devoted considerable efforts over the past decade is
given by one-dimensional lattices of interacting spin-1=2
particles, or spin-1=2 chains, for short. In particular, even
though they fall into the regime of efficient classical
simulatability, the well-known transverse-field (TF) Ising
and XY models have become important basic test beds for
the most advanced experimental simulations, e.g., with ion-
trap [10–13], superconducting-circuit [14], Rydberg-atom
[15], and circuit quantum electrodynamics [16] platforms,
including digitalized simulations [12,14,16].
At least two facts justify the significant interest in these

specific models. The first one is that they display a vast
physical richness: For instance, the TF Ising model—which
is, actually, a subclass of the TF XY model—features a
quantum phase transition [17–20] as well as topologically

and spectrally interesting effects [21–25], and is relevant
for quantum speed-ups in certain optimization problems
[26]. The second one is that, for nearest-neighbor inter-
actions, they can be analytically solved, e.g., by mapping
them into systems of free, i.e., noninteracting, fermions
[17]. This allows for in-depth theoretical studies of their
dynamics [27–32]. From a broader perspective, these
models belong to a more general class of exactly solvable
systems known as noninteracting quantum systems, also
referred to as fermionic linear optics [33–39]. This class is
the fermionic counterpart of the Gaussian formalism for
bosons [40,41], which plays a major role in quantum
information and quantum optics. It includes, e.g., tight-
binding models important in condensed-matter physics,
certain interacting bosonic chains that can be fermionized
[42–44], and spin-1=2 systems in two-dimensional lattices,
such as the celebrated Kitaev’s honeycomb model [37],
which exhibits non-Abelian excitations.
Unfortunately, the exact analytical solution of a model

does not imply that one can efficiently certify the correctness
of an uncharacterized experimental simulation of it.
Furthermore, even if the computational complexity of the
target simulation is low, the number of measurements
required for its certification can be exponentially high in
the lattice size without the adequate certification method.
This is the case, e.g., for full state tomography (FST).
Characterization tools not relying on FSTexist [45–54], each
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one efficient on a different subclass of simulations. However,
none of these can efficiently handle fermionic linear optics.
In fact, almost all [10–12,14,16] the abovementioned experi-
ments relied on FST. The simulation of Ref. [13], in contrast,
was certified with matrix-product state tomography [48].
This is a powerful method that covers a broad class of chains
but tolerates little long-range entanglement, so that nontrivial
evolutions are in practice tractable only over short times
[13,48]. Indeed, generic spin chains out of the equilibrium
[55], or even very natural, static free-fermionic states
[56,57], involve large amounts of entanglement along the
lattice. Today, a major roadblock for further experimental
progress in spin-chain simulations (and in many-body
quantum technologies in general) is their certification.
Here, we develop efficient fidelity witnesses for all pure

fermionic Gaussian target states. These are experimentally
friendly observables whose expectation value (on an
arbitrary experimental state) yields a tight lower bound
to the fidelity with the target. Hence, they allow for
unconditional certification, i.e., without any a priori
knowledge of the experimental setup or imperfections.
We derive the witnesses in full generality in the Majorana-
fermion representation, and then apply them to experimen-
tally relevant spin-1=2 chains as examples. Among others,
we show how to efficiently certify any sudden quench (i.e.,
strongly out-of-equilibrium dynamics) in a critical TF Ising
chain with nearest-neighbor interactions. The measurement
scheme relies on importance sampling tailored to overlaps
between covariance matrices, which is potentially interest-
ing on its own. As a result, the number of measurements
required for the certification only has a modest scaling with
the lattice size, i.e., a small sample complexity, for which
we present upper bounds. Moreover, the method is robust
against finite experimental-state infidelities, in the sense of
there always existing a closed ball of valid states that are
correctly accepted by the certification test. Finally, we
provide also a totally general construction, not restricted to
fermions or Gaussian states, of (possibly nonefficient)
fidelity witnesses for arbitrary pure target states, which
may also be useful in other scenarios.
Preliminaries.—Consider a system of L spinless fer-

mionic atoms, from now on referred to as fermionic
modes. By f†j and fj we denote the creation and annihi-
lation operators, respectively, where j ¼ 1; 2;…; L. They
satisfy the canonical anticommutation relations ffj; f†kg ¼
fjf

†
k þ f†kfj ¼ δj;k and ffj; fkg ¼ ff†j ; f†kg ¼ 0, with δj;k

the Kronecker symbol. Let us next introduce the self-
adjoint Majorana mode operators,

m2j−1 ≔ fj þ f†j ; m2j ≔ −iðfj − f†jÞ; ð1Þ

with anticommutation relations fmj;mkg ¼ 2δj;k. We say
that the fermionic system is free, Gaussian, or linear optical
[33–39] if it is governed by a quadratic Hamiltonian,

H ¼ i
4

X2L
j;k¼1

Aj;kmjmk; ð2Þ

where A ¼ −A⊤ ∈ R2L×2L is called the coupling matrix.
The term “free” or “noninteracting” stems from the fact

that H is unitarily equivalent to a Hamiltonian of L
fermions not featuring any off-diagonal couplings. In the
bosonic realm, this is the defining property of Gaussian
systems [40,41], which justifies the term Gaussian. In turn,
what is linear about fermionic linear optics is the time
evolution of the mode operators in the Heisenberg picture,

mjðtÞ ≔ U†ðtÞmjUðtÞ ¼
X2L
k¼1

Qj;kðtÞmk; ð3Þ

where UðtÞ ≔ e−iHt, for t ∈ R, is a fermionic Gaussian
unitary andQðtÞ≔etA∈SOð2LÞ its representation in mode
space [58]; see Appendix A of Supplemental Material for a
simple derivation [59].
Finally, it is useful to introduce, for any state ϱ (Gaussian

or not), the real antisymmetric covariance matrix MðϱÞ
with elements

Mj;kðϱÞ ≔
i
2
trð½mj;mk�ϱÞ: ð4Þ

This matrix contains the expectation values of the single-
mode densities hnji ≔ hf†jfji as well as the two-mode

currents hf†jfk þ H:c:i and pairing terms hf†jf†k þ H:c:i.
Fidelity witnesses.—We consider throughout a (known)

pure target state ϱt and an arbitrary, unknown experimental
preparation ϱp. Their closeness is measured by their
fidelity,

F ≔ Fðϱt; ϱpÞ ≔ tr½ð ffiffiffiffi
ϱt

p
ϱ†p

ffiffiffiffi
ϱt

p Þ1=2�2 ¼ tr½ϱtϱp�; ð5Þ

where the last equality holds because ϱt is pure. With this,
the pivotal notion of our work can be defined as follows.
Definition 1 [Fidelity witnesses].—An observable W is

a fidelity witness for ϱt if, for FWðϱpÞ ≔ tr½Wϱp�, it
holds that (i) FWðϱpÞ ¼ 1 if, and only if, ϱp ¼ ϱt, and
(ii) FWðϱpÞ ≤ F for all states ϱp.
The term “witness” refers to the property that, for any

fixed threshold FT , finding FWðϱpÞ ≥ FT witnesses that
F ≥ FT , but if FWðϱpÞ < FT is found, then nothing can be
said about F (see Fig. 1). This is the least information about
ϱp needed to certify its fidelity with ϱt. The situation is
reminiscent of entanglement witnesses [62], which detect
some entangled states and discard all nonentangled ones.
The difference is that fidelity witnesses explicitly realize
the extremality-based intuition of “corralling valid states
against the boundary.” Specific witnesses have been built
for ground states of local Hamiltonians [48,54,63] and
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Gaussian as well as non-Gaussian output states of bosonic
linear-optical circuits [52]. In Appendix B of Supplemental
Material we present (possibly nonefficient) fidelity wit-
nesses of arbitrary target states with no assumption other
than being pure [59]. A special case of such generic
construction is the following (efficient) witnesses for the
free-fermionic setting.
Any L-mode pure fermionic Gaussian target state ϱt can

be written as

ϱt ≔ jψ tihψ tj with jψ ti ≔ Ujωi; ð6Þ
for a fermionic Gaussian unitary U, as defined below
Eq. (3), where ω ≔ ðω1;…;ωLÞ is an L-bit string. The ket
jωi represents the Fock-basis state vector with ωj ∈ f0; 1g
excitations in mode j, i.e., njjωi ¼ ωjjωi, for j ¼ 1;…; L,
and nj ≔ f†jfj. It is also convenient to introduce

nðωÞ ≔
P

L
j¼1 ½ð1 − ωjÞnj þ ωjð1 − njÞ�, the total fer-

mion-number operator in the locally flipped basis in which
ω is the null string, i.e., nðωÞjωi ¼ 0. In other words, jψ ti
represents the so-called Fermi-sea state and the eigenstates
of nðωÞ its excitations. In Appendix B [59], we show that the
observable

W ¼ Uð1 − nðωÞÞU† ð7Þ

is a fidelity witness for ϱt. Expression (7) is the fermionic
analogue of the bosonic Gausssian-state witnesses of

Ref. [52], with a crucial difference: While for bosons only
the Fock-basis state vector j0i is Gaussian, for fermions all
2L Fock-basis vectors jνi are Gaussian as they satisfy
Wick’s theorem [36]. In fact, for mixed states, all single-
mode states are Gaussian, in sharp contrast to the
bosonic case.
Measurement scheme.—Taking the expectation value of

Eq. (7) with state ϱp yields (see Appendix C [59])

FWðϱpÞ ¼ 1þ 1

4
tr½(MðϱpÞ −MðϱtÞ)⊤MðϱtÞ�; ð8Þ

where MðϱpÞ and MðϱtÞ are the covariance matrices of
ϱt and ϱp, respectively. This expression holds also for
bosonic Gaussian witnesses [52] and turns out to be very
useful for the measurement of FWðϱpÞ. We call Ω ≔
fðj; kÞ∶Mj;kðϱtÞ ≠ 0; for 1 ≤ j < k ≤ 2Lg the set of
nonzero entries of MðϱtÞ. Then Eqs. (4) and (8) imply
that if one measures on ϱp all jΩj ≤ 2L2 þ L observables
imjmk with indices in Ω, then one can estimate FWðϱpÞ.
However, this is not the most efficient procedure (see
Appendixes D and E [59]).
A more efficient approach is to exploit importance

sampling techniques, where a subset of the jΩj observables
is randomly selected for measurement according to its
importance for W. These techniques have been applied in
Hilbert space to the estimation of state overlaps, where they
yield efficient schemes only for a specific type of target
states [49,50]. Here we apply them in mode space to
efficiently estimate overlaps between fully general covari-
ance matrices. The starting point is to identify a random
variable X and an importance distribution P ≔ fPμgμ, with
X taking the value Xμ with probability Pμ, such that
tr½MðϱpÞ⊤MðϱtÞ� is expressed as the mean value of X, i.e.,

E½X� ¼
X
μ

PμXμ ¼ tr½MðϱpÞ⊤MðϱtÞ�: ð9Þ

Then, if one can experimentally sample X from P, E½X�
can be approximated by the finite-sample average
X� ≔

PN
m¼1 XμðmÞ=N , where XμðmÞ is the value of X at

the mth experimental run and N is the total sample size
(number of runs). Next, we present a choice of X and P
particularly suited to estimate FWðϱpÞ.
To this end, let us first define m̂ðβÞ

j;k as the projector onto
the eigenstate of the observable imjmk with eigenvalue
β ¼ �1, for ðj; kÞ ∈ Ω. Then, identifying μ with the triple
ðβ; j; kÞ and using the short-hand notation

jMðϱtÞj ≔
X

ðj;kÞ∈Ω
jMj;kðϱtÞj ≤ 2L2; ð10Þ

we choose

FIG. 1. Geometrical representation of a fidelity witness. A pure
target state ϱt lies at the boundary of state space. For any fixed
fidelity threshold FT , the valid experimental states are defined by
F ≥ FT (green). The states with F < FT are invalid (red). A
fidelity witness W defines a hyperplane (straight line), to the left
of which only valid states are found and to the right of which both
valid as well as invalid ones are found. The certification test
consists of accepting all states on the left and rejecting all those
on the right. Hence, a significant subset of valid states is
sacrificed, as in weak-membership problems. However, in return,
the experimental estimation is considerably more efficient than in
schemes attempting to separate the valid from the invalid states
(strong-membership problems).

PHYSICAL REVIEW LETTERS 120, 190501 (2018)

190501-3



Xβ;j;k ≔ 2jMðϱtÞjβsgn½Mj;kðϱtÞ� ð11Þ

and

Pβ;j;k ≔
tr½m̂ðβÞ

j;kϱp�jMj;kðϱtÞj
jMðϱtÞj

: ð12Þ

This choice satisfies Eq. (9), as explicitly shown in
Appendix D [59]. In the experiment, in turn, for each
run one chooses ðj; kÞ according to Pj;k ≔ jMj;kðϱtÞj=
jMðϱtÞj and measures imjmk on ϱp, which outputs β with

probability Pβjj;k≔ tr½m̂ðβÞ
j;kϱp�. Substituting the obtained

ðj; kÞ and β in Eq. (11), one samples Xβ;j;k with probability
Pβ;j;k, as desired. As for the experimental accessibility of
the observables, for the relevant case of spin-1=2 chains,
each imjmk corresponds to a product of Pauli matrices, as
discussed below.
This single-shot importance sampling approach does not

necessarily yield a good estimate of each individual entry
of MðϱpÞ, as unlikely observables according to Pj;k are
measured seldomly. The method is specially tailored to
directly obtain FWðϱpÞ. In fact, the resulting estimate X�

yields an excellent approximation of tr½MðϱpÞ⊤MðϱtÞ� (in a
formal sense given by Theorem 2 below), with which the
right-hand side of Eq. (8) can be immediately evaluated.
This gives our final finite-sample estimate F�

WðϱpÞ
of FWðϱpÞ.
Sample complexity.—Let N ϵ;δðWÞ be the minimum

number (over all estimation strategies) of single measure-
ments required to estimate FWðϱpÞ, up to maximal stat-
istical error ϵ and with maximal failure probability δ, i.e.,
such that

PðjFWðϱpÞ − F�
WðϱpÞj ≤ ϵÞ ≥ 1 − δ; ð13Þ

for all ϱp. Then the scaling ofN ϵ;δðWÞ with L is called the
sample complexity [51,52,64] of estimating FWðϱpÞ. In
Appendix D we compute the number of single measure-
ments required with the measurement scheme described
above [59], which sets the following upper bound on
N ϵ;δðWÞ.
Theorem 2 [Sample complexity of FW].—Let ϵ > 0,

δ ∈ ð0; 1Þ, ϱt given by Eq. (6), and W by Eq. (7). Then,

N ϵ;δðWÞ ≤
�
lnð2=δÞjMðϱtÞj2

2ϵ2

�
: ð14Þ

Equation (10) implies that the right-hand side of Eq. (14)
is never larger than d2 lnð2=δÞL4=ϵ2e. The scaling is thus
polynomial in L for all ϱt, which means that the scheme is
efficient in the lattice size. Furthermore, for the physically
relevant case of ϱt being the unique ground state of a local
gapped Hamiltonian, the correlations trð½mj;mk�ϱtÞ decay

exponentially with jj − kj [65]. Then, jMðϱtÞj ∼ L logðLÞ,
which leads to N ϵ;δðWÞ ≤ O(L2 log2ðLÞ).
Finally, in Appendix E, we study also a measurement

scheme without importance sampling (where all jΩj
observables are measured) but exploiting the fact that all
commuting observables with indices in Ω can be measured
simultaneously in each measurement run [59]. This gives
the boundN ϵ;δðWÞ ≤ O(2 lnð2jΩj=δÞL4=ϵ2), which, since
jΩj ≤ 2L2 þ L, scales logarithmically worse in L than in
Eq. (14). We suspect that the bound in Eq. (14) is close to
being tight.
Spin-1=2 chains.—We denote a local spin operator

acting at site k by σαk ¼ 1⊗ðk−1Þ
2 ⊗ σα ⊗ 1⊗ðL−kÞ

2 , where
σα for α ¼ x, y, z are the Pauli matrices and 12 is the single-
qubit identity. Via the Jordan-Wigner transformation [66,67]

m2k−1 ¼
�Y

j<k

σzj

�
σxk; m2k ¼

�Y
j<k

σzj

�
σyk; ð15Þ

the Hamiltonian in Eq. (2) is equivalent [17] to the
experimentally relevant [10–16] spin-1=2 Hamiltonian

Hspin ¼ −
XL−1
k¼1

�
Jxkσ

x
jσ

x
kþ1 þ Jykσ

y
kσ

y
kþ1

�
−
XL
k¼1

Bkσ
z
k; ð16Þ

where Jxk; J
y
k ∈ R and Bk ∈ R are, respectively, constant

coupling and transverse-field strengths. Since these chains
are equivalent to free-fermionic systems for all parameter
regimes, certifying simulations of, e.g., both adiabatic
ground state preparations and sudden quenches amounts
to certifying pure fermionic Gaussian states, as described
above. Finally, note that Eqs. (15) map each imjmk to a
product of Pauli matrices, as anticipated in the measurement
scheme above.
Sudden quenches in critical Ising chains.—The 1D near-

est-neighbor TF Ising Hamiltonian is given by Eq. (16) with
Jxk¼J, Jy ¼ 0, and Bk ¼ B, for all k ¼ 1;…; L, where
J; B > 0. In a typical quench, the initial ground state
jψð0Þi ≔ j↑i⊗L at a noncritical regime J ¼ 0 < B, where
j↑i is an eigenvector of σz, is evolved under the critical
regime J ¼ B, so as to generate a strong out-of-equilibrium
evolution. These quenches are particularly challenging to
certify [13,48] because the time-evolved state vector jψðtÞi
rapidly acquires large amounts of entanglement. Let us
consider the simulation of such a quench by a digital
quantum simulator, which approximates the continuous-
time evolution with a Trotter-Suzuki pulse sequence
UðtÞ¼e−itðHBþHJÞ≈UT ≔ ðe−iΔtHBe−iΔtHJÞT , where t ¼
TΔt and HB and HJ are the Ising Hamiltonians for J ¼ 0
and B ¼ 0, respectively. The target covariance matrix is then
MðϱtÞ ¼ QðtÞMðj↑ih↑j⊗LÞQðtÞ⊤, where QðtÞ ¼ etAðJ;BÞ,
with AðJ; BÞ the coupling matrix of HB þHJ, is the mode
representation of the target time propagator UðtÞ and
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Mðj↑ih↑j⊗LÞ ≔ ⊕L
j¼1

�
0 −1
1 0

�
: ð17Þ

In turn, the preparation’s covariance matrix is given
by MðϱpÞ ¼ QTMðj↑ih↑j⊗LÞQ⊤

T , where QT ¼ ðeΔtAðJÞ
eΔtAðBÞÞT , with AðJÞ [AðBÞ] the coupling matrix of HB
[HJ], corresponds to the discrete-time experimental evolution
UT . See Fig. 2 for numerical results and Appendix A of
Supplemental Material [59] for details.
Discussion.—We have shown how to certify experimen-

tal states of dimension 22L with at most OðL4Þ measure-
ments, with no assumption whatsoever on the experimental
imperfections, for all pure fermionic Gaussian target states.
Moreover, for targets given by ground states of gapped
free-fermionic Hamiltonians, the number of experimental

repetitions reduces to O(L2 log2ðLÞ). In addition, in
Appendix F we prove that there always exists a closed
ball of valid states that are correctly accepted by the
certification test, so that the test is robust against finite
experimental deviations [59].
Our results are directly relevant to recent experiments

with spin chains [7,10–16,68] as well as potential imple-
mentations of Kitaev’s honeycomb model [69,70]. For
instance, concerning the certification of sudden quenches
as in Ref. [13], our technique is not limited by the generated
long-range entanglement and therefore applies to long-time
dynamics, for nearest-neighbor interactions. In turn, as for
certifying adiabatic passages of the type of Ref. [15], again
for nearest-neighbor interactions, our technique may be
useful even for evolutions stopping close to criticality.
Additionally, in real-life digital simulations [12,14,16],
apart from the Trotterization errors, also heating and noise
will of course be present. The fidelity witnesses offer an
excellent tool for experimentally quantifying, in an in-
expensive way, the detrimental effects of such imperfec-
tions on the simulation’s performance.
Free-fermionic models are classically tractable, but the

importance of their quantum simulations comes from the
fact that they constitute a test bed for experimental many-
body quantum technologies, with certified simulations of
classically intractable models as the ultimate goal. In this
respect, the direct certification tools developed here may
help bridge the gap between the experimental certification
of proof-of-principle simulations and classically intrac-
table ones.
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APPENDIX

In this appendix, we present the technicalities of the cal-
culations mentioned in the main text and additionally provide
some further details about our methods. The first section re-
calls generally known facts concerning fermionic linear op-
tics. The next three sections concern fidelity witnesses. The
next two are on sample complexities for evaluating the Gaus-
sian fidelity witness with an estimate. In the last section we
provide details on robustness properties of the fidelity witness
and the corresponding certification test.

A. Methods of fermionic linear optics

This section gives more details on results of fermionic lin-
ear optics used in the main text. The first subsection A 1 dis-
cusses unitary evolution in this formalism. The second sub-
section A 2 contains details on the Jordan-Wigner transfor-
mation, covariance matrices of spin product states and which
spin operators need to be measured to measure the fermionic
covariance matrix. Finally we shortly comment on the numer-
ical simulations in subsection A 3.

1. Gaussian dynamics

The Heisenberg evolution of Majorana operators is given as
follows.

Lemma 3 (Free fermion propagator). Let

H(A) =
i

4

2L∑

j,k=1

Aj,kmjmk (18)

be a free, quadratic fermionic Hamiltonian withA = −A> ∈
R2L×2L. Then

mj(t) := eitH(A)mje
−itH(A) =

2L∑

k=1

Qj,k(t)mk (19)

whereQ(t) = etA ∈ SO(2L).

Note that the propagator is manifestly real and there is no
explicit imaginary unit in the exponent because A is already
anti-hermitian.

Proof. We begin by noticing that t 7→ mj(t) is differentiable
and take a time-derivative obtaining

∂tmj(t) = iH(A)mj(t)−mj(t)H(A) (20)
= i[H(A),mj(t)]

which is the Heisenberg equation of motion. We further notice
that

∂tmj(t) = i eitH(A)[H(A),mj ] e−itH(A) (21)

which means that we need to evaluate the commutator at t =
0. Next we calculate the commutator

[mlmk,mj ] = 2mlδk,j − 2mkδl,j (22)

which leads to

[H(A),mj ] =
i

4

2L∑

l,k=1

Al,k[mlmk,mj ]

=
i

2

2L∑

l,k=1

(Al,kmlδk,j −Al,kmkδl,j)

=
i

2

2L∑

k=1

(Ak,jmk −Aj,kmk)

= −i

2L∑

k=1

Aj,kmk.

(23)

This equation allows us to write the above Heisenberg equa-
tion of motion explicitly as

∂tmj(t) =

2L∑

k=1

Aj,kmk. (24)

This linear system of 2L ordinary differential equations is
solved by

mj(t) =

2L∑

k=1

Qj,k(t)mk, (25)

where Q = etA ∈ SO(2L). Indeed, this fact be-
comes apparent as follows. If one considers a vector m =
(m1, . . . ,m2L)> then we obtain in vector notation

∂tm(t) = Am(t) ⇔ m(t) = etAm. (26)
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Given this lemma we easily obtain the equation of motion
of the covariance matrix with entries

M(%(t))j,k =
i

2
tr
(
[mj ,mk]%(t)

)

=
i

2
tr
(
[mj(t),mk(t)]%

)

=

2L∑

j′,k′=1

Qj,j′(t)Qk,k′(t)M(%(0))j′,k′ .

(27)

Hence, in matrix notation, we obtain

M(%(t)) = (Q(t)M(%(0))Q(t)>)j,k. (28)

2. Exploiting the Jordan-Wigner transformation

This subsection shows how to use the Jordan-Wigner trans-
formation to translate between spins and fermions. We first
identify covariance matrices of simple states.

Lemma 4 (Vacuum covariance matrix). In the notation
σz |↑ 〉 = |↑ 〉 we have

M
(
|↑ 〉〈↑ |⊗L

)
:= ⊕Lj=1

(
0 −1
1 0

)
. (29)

In general if |ω 〉 is a computational basis vector with ω ∈
{0, 1}×L (identifying |0 〉 = |↑ 〉 and |1 〉 = |↓ 〉) we have

M
(
|ω 〉〈ω |

)
:= ⊕Lj=1

(
0 −(−1)ωk

(−1)ωk 0

)
. (30)

Proof. The first statement follows directly from the second for
ωk = 0 for all k. To show the latter, we first observe that
σzk = −im2k−1m2k. Indeed using

σaσb = δa,b12 + i
∑

c=x,y,z

εa,b,cσ
c (31)

we obtain

−im2k−1m2k = −i
(∏

k′<k

σzk′
)
σxk
( ∏

k′′<k

σzk′′
)
σyk (32)

= −iσxkσ
y
k = σzk. (33)

Next, we observe that 〈σxk〉ω = 〈σyk〉ω = 0 and 〈σzk〉ω =
(−1)ωk . So, the only non-vanishing elements are

M2k−1,2k = −M2k,2k−1 = i 〈m2k−1m2k〉ω
= −〈σzk〉ω = −(−1)ωk . (34)

In an experiment based on qubits the fermionic covariance
matrix can be measured by making the Pauli measurements
corresponding to the observables in the following lemma.

Lemma 5 (Fermion spin correlation dictionary). For j < k
can identify the following terms.

• Odd-odd:

m2j−1m2k−1 = −iσyj
( ∏

j<k′<k

σzk′
)
σxk (35)

• Odd-even:

m2j−1m2k = −iσyj
( ∏

j<k′<k

σzk′
)
σyk (36)

• Even-odd:

m2jm2k−1 = iσxj
( ∏

j<k′<k

σzk′
)
σxk (37)

• Even-even:

m2jm2k = iσxj
( ∏

j<k′<k

σzk′
)
σyk . (38)

Proof. By straightforward calculation,

m2j−1m2k−1 =
(∏

j′<j

σzj′
)
σxj
(∏

k′<k

σzk′
)
σxk (39)

= σxj σ
z
j

( ∏

j<k′<k

σzk′
)
σxk (40)

= −iσyj
( ∏

j<k′<k

σzk′
)
σxk . (41)

The remaining relations follow similarly and by again using
the relations (32).

Considering the reversed direction of this dictionary, we
find that the product of two spin operators is a product of again
two Majorana operators only when the spins are neighboring
in the Jordan-Wigner transformation from which we obtain
the following corollary.

Corollary 6 (XY models). The HamiltonianHspin from main
text maps to a quadratic fermionic Hamiltonian H(A) under
the Jordan-Wigner transformation.

The translation invariant case is physically the most rele-
vant case for which the following result first appeared in Ref.
[1] and we state it to make explicit which couplings we have
used in our simulations.

Lemma 7 (Transverse field Ising model). The Hamiltonian of
the transverse field Ising model

HTFIM = −J
L−1∑

k=1

σxkσ
x
k+1 −B

L∑

k=1

σzk (42)

maps to free fermions under the Jordan-Wigner transforma-
tion and the couplings matrix read

A(J,B) = 2




0 B
−B 0 J

−J 0 B
−B 0 J

−J 0
. . .



. (43)
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Note that for compactness we write in the main text
A(J) := A(J, 0) andA(B) := A(0, B).

Proof. By the above dictionary lemma we have σxkσ
x
k+1 =

−im2km2k+1 and σzk = −im2k−1m2k. This gives

HTFIM = i
L−1∑

k=1

Jm2km2k+1 + i
L∑

k=1

Bm2k−1m2k (44)

which can be put to the standard form

H(A) =
i

4

2L∑

j,k

Aj,kmjmk (45)

by defining the matrixA as in the lemma statement.

3. Comments on numerical aspects

The numerical code used to obtain Fig. 2 in main text is
available online [2]. We use Wick’s formula [3] to calculate
|〈∏n

k=1 σ
z
k〉| = Pf(M1...2n), where Pf denotes the Pfaffian

which can be calculated using the package PFAPACK [4].

B. Proof that Eq. (7) yields a fidelity witness and general
witness construction

Here we first provide an expression for a fidelity witness of
any arbitrary, totally generic pure target state, not restricted to
the Gaussian fermionic setting.

Proposition 8 (General witness construction). Let %t be any
pure target state, 0 < ∆ = λ1 ≤ . . . ≤ λN , and P1,
P2, . . ., and PN positive-semidefinite operators such that
%t +

∑N
l=1 Pl = 1 and tr(%tPl) = 0 for all l = 1, . . . , N .

Then,

W := 1−∆−1
N∑

l=1

λlPl (46)

is a fidelity witness for %t.

The fact that the observable W in Eq. (7) defines a fi-
delity witness for the free-fermionic target state in Eq. (6)
follows from Proposition 8 taking N = 2L − 1, identi-
fying l with an L-bit string ν 6= ω, and taking λν =∑L
j=1 [(1− ωj)νj + ωj(1− νj)] and Pν = U |ν 〉 〈ν |U†.

Proof of Proposition 8. We start with Property i) in Defi-
nition 1. Let %p be such that tr[W%p] = 1. Then
∆−1

∑N
k=1 λltr[Pk%p] = 0. As all terms are non-negative,

we have tr[Pk%p] = 0. From this, we get

1 = tr[%p1] = tr[%p%t] +
N∑

k=1

tr[Pk%p] = tr[%p%t], (47)

which means, since %t is pure, that %p = %t. The converse
direction starting from %p = %t follows from tr[%tPk] = 0.
We now prove the validity of Property ii) in Def. 1. For any
state vector |ψ 〉 we have

N∑

k=1

λl〈ψ|Pk|ψ〉 ≥ ∆
N∑

k=1

〈ψ|Pk|ψ〉 (48)

= ∆(1− 〈ψ|%t|ψ〉). (49)

This means that

〈ψ|%t|ψ〉 ≥ 〈ψ|W|ψ〉 (50)

which one may write %t � W = 1−∆−1
∑N
k=1 λlPl, where

� denotes semidefinite ordering. This relation can be used in
order to lower bound the fidelity. If we write the preparation
state in its eigenbasis %p =

∑
k pk|k〉〈k| � 0, then we find

the following

tr[(%t −W)%p] =
∑

k

pk〈k|%t −W|k〉 ≥ 0 . (51)

Thus we arrive at

F = tr[%t%p] ≥ tr[W%p] . (52)

C. Proof of Eq. (8): Fidelity-witness in terms of covariance
matrices

Before the proof, let us first provide useful facts from
fermionic linear optics theory. The covariance matrix of any
Fock state vector |ω 〉 is given, introducing the short-hand no-
tationMω := M( |ω 〉〈ω |) by

Mω =

L⊕

k=1

(1− 2wk)

(
0 −1
1 0

)
. (53)

This is readily seen from the fact that

i [m2k−1,m2k]/2 = (fk + f†k)(fk − f†k) = 2nk − 1 (54)

which gives

M2k−1,2k = i 〈ω |m2k−1m2k |ω 〉 = 2wk − 1 = −M2k,2k−1

(55)

and that all other covariance matrix entries are zero. Put dif-
ferently, fermionic Fock states are of the most simple product
form. In order to introduce coherences in the system one can
rotate the state by a Gaussian unitary U with mode action Q
which then yields

M(U |ω 〉〈ω |U†) = QMωQ
>. (56)
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Proof of Eq. (8). In order to evaluate the witness we notice
that the numbering operator of mode k is

nk =
1

2
+

i

4
[m2k−1,m2k] (57)

and

1− nk =
1

2
− i

4
[m2k−1,m2k]. (58)

This allows us to write the projector n(ω) as

n(ω) =

L∑

j=1

[
1/2 +

i

4
(1− 2ωj)[m2k−1,m2k])

]
. (59)

We therefore have

tr(%pW) = 1− L

2
− i

4

L∑

k=1

(1− 2wk)tr
(
U†%pU

[
m2k−1,m2k

])

(60)

= 1− L

2
− 1

2

L∑

k=1

(1− 2wk)M(U†%pU)2k−1,2k,

(61)

where the definition of the covariance matrix (4) has been
used. As

M̃ := M(U†%pU) = Q>M(%p)Q (62)

is anti-symmetric, we can write M̃2k−1,2k as

M̃2k−1,2k =
1

2
tr
[(

0 M̃2k−1,2k

M̃2k,2k−1 0

)(
0 −1
1 0

)]
.

(63)
We further notice that (54) allows us to write

L∑

k=1

(1− 2wk)M̃2k−1,2k =
1

2
tr[M̃Mω]. (64)

From the definition ofM(%t) = QMωQ
>, we finally obtain

tr(%pW) = 1− L

2
− 1

4
tr[M(%p)M(%t)] (65)

= 1 +
1

4
tr
[
(M(%p)−M(%t))

>M(%t)
]
. (66)

D. Proof of Theorem 3 (sample complexity of FW )

In this section, we compute the number of experimen-
tal runs required to get a finite-sample estimate F ∗W(%p) of
FW(%p) satisfying Eq. (13) with the measurement scheme
with single-shot importance sampling described in the main
text. This sets the upper bound onNε,δ(W) in Eq. (14), prov-
ing Theorem 2.

Proof of Theorem 2. We begin by noting that one can directly
evaluate FW(%p) from the value of

X := tr
[
M(%p)>M(%t)

]
= 4(FW +

L

2
− 1). (67)

Indeed, if |X ∗ −X| ≤ 4ε, then |F ∗W(%p)− FW(%p)| ≤ ε. We
define conditional probability

Pβ|j,k := tr
[
m̂

(β)
j,k %p

]
(68)

and the sampling distribution

Pj,k =
|Mj,k(%t)|
|M(%t)|

(69)

for (j, k) ∈ Ω with |M(%t)| =
∑

(j,k)∈Ω |Mj,k(%t)| ≤ 2L2.
By Bayes’ theorem, we have that Pβ,j,k = Pβ|j,kPj,k is a
well-defined probability distribution. Additionally, we define
the importance sampling variable

Xβ,j,k := 2|M(%t)|β sgn
[
Mj,k(%t)

]
(70)

which is distributed over Pβ,j,k. With these definitions we
check that the average of X gives X ,

E[X] =
∑

(j,k)∈Ω,β=±1

Xβ,j,kPβ,j,k (71)

= 2
∑

(j,k)∈Ω

sgn
[
Mj,k(%t)

]
|Mj,k(%t)|

∑

β=±1

βtr[m̂
(β)
j,k %

(p)]

(72)

= tr
[
M(%p)>M(%t)

]
. (73)

We now use Hoeffding’s inequality to see that this results in a
(ε, δ)-evaluation promise. We have

P

[
|X − 1

N
N∑

m=1

Xµ(m)| > 4ε

]
≤ 2 exp

(
− 2N ε2
|M(%t)|2

)
.

(74)

We impose the RHS to be upper bounded by δ, so we obtain

Nε,δ(W) =

⌈
ln(2/δ)|M(%t)|2

2ε2

⌉
, (75)

which is the sample complexity, i.e., yielding the inequal-
ity (14).

E. Sample complexity for entrywise evaluation

Here, we compute the number of experimental runs re-
quired to get a finite-sample estimate F ∗W(%p) of FW(%p) sat-
isfying Eq. (13) with a measurement scheme that does not
exploit importance sampling, i.e., where all |Ω| observables
are deterministically measured, but that exploits the fact that
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commuting observables with indices in Ω can be measured si-
multaneously in each run. As we show, the resulting bound is
less tight than the one in Eq. (14). More precisely, we con-
sider a procedure where all |Ω| observables are measured the
same number of times

η = ε−2L3 ln(2|Ω|/δ) (76)

and we obtain the sample complexity Nε,δ(W) = 4Lη.
We denote the estimator of M by M∗. The fact that the

covariance matrix entries are bounded and lie in the interval
−1 < Mµ < 1 allows us to use Hoeffding’s inequality. Tak-
ing b = ln(2|Ω|/δ) and making a union bound we find

P
[
∀µ ∈ Ω :

∣∣Mµ −M∗µ
∣∣ ≤

√
2b/η

]
= (77)

1− P
[
∃µ ∈ Ω :

∣∣Mµ −M∗µ
∣∣ ≥

√
2b/η

]
≥ (78)

1− |Ω|max
µ∈Ω

P
[∣∣Mµ −M∗µ

∣∣ ≥
√

2b/η
]
≥ 1− 2|Ω|e−b,

(79)

where we have used that P[A ∪ B] ≤ P[A] + P[B] for any
probability measure P. We check that 2|Ω|e−b = δ and addi-
tionally

√
2b/η =

√
2ε2L−3 =

√
2L−3/2ε (80)

and therefore we have

P
[
2−1/2L3/2 ‖M −M∗‖max ≤ ε

]
≥ 1− δ. (81)

Eq. (13) follows thanks to the following Lemma which tells us
that one can efficiently estimate the fidelity lower bound from
estimates of the covariance matrix of %p with small errors.

Lemma 9 (Stability). The fidelity lower boundFW(%p) is Lip-
schitz continuous with Lipschitz constant L3/2/

√
2 with re-

spect to the max-norm, i.e., for any two covariance matrices
M and M∗ we have for the respective values of the fidelity
witnesses

|FW(%p)− F ∗W(%p)| ≤ 2−1/2L3/2 ‖M −M∗‖max . (82)

In the following proof, we denote the trace-norm by ‖ · ‖1,
the Schatten 2-norm (or Frobenius norm) by ‖ · ‖2, and the
spectral norm by ‖ · ‖∞.

Proof of Lemma 9. Let

J L = ⊕Lk=1

(
0 1
−1 0

)
. (83)

It is enough to show that the linear map M 7→
tr[QMQ>J L] is Lipschitz continuous at the origin with
Lipschitz constant (2L)3/2.

By Hölders inequality we have
∣∣tr[QMQ>J L]

∣∣ =
∣∣tr[MQ>J LQ]

∣∣ (84)

≤ ‖M‖1
∥∥∥Q>J LQ

∥∥∥
∞

= ‖M‖1 , (85)

where we have used that ‖ · ‖∞ unitarily invariant and that
‖J L‖∞ = 1 in the last step. It remains to show that ‖M‖1 ≤
2L. But for any 2L× 2L matrixM it holds that

‖M‖1 ≤
√

2L ‖M‖2 ≤
√

2L2L ‖M‖max , (86)

where we have used (i) a general norm inequality for the
Schatten 1- and 2-norm, (ii) that the Schatten 2-norm is the
same as the vector 2-norm of the vectorized matrix, (iii) a
general norm inequality for the vector 2-norm and the vec-
tor∞-norm, and (iv) that the vector∞-norm of a vectorized
matrix is the max-norm of the matrix. Note that the bound
(87) is tight for general matrices, as can be seen by choosing
M as the discrete Fourier transform matrix on C2L. Inserting
Eq. (87) into (86) completes the proof.

Finally, in order to derive the sample complexity, we need
to partition the set [2L] × [2L] such that the corresponding
elements of the covariance matrix commute. We do it by con-
sidering bands parallel to the diagonal of the covariance ma-
trix. Let us consider the non-trivial elements closest to the
diagonal µ = (i, i+ 1). We bi-partition this band into indices
starting with an even or an odd number. By construction, all
associated covariance matrix observables will commute. As
there are in total 2L − 1 such off-diagonals, the total number
of i.i.d. state preparations is bounded by

Nε,δ(W) = 4Lη =
4L4 ln(2|Ω|/δ)

ε2
. (87)

Since |Ω| ≤ 2L2 + L, this scaling is logarithmically worse in
L than in Eq. (14).

F. Robustness of the certification test

Ref. [5] established a framework of certification where the
notion of robust quantum state certification has been defined.
In particular, in such a certification test, one desires to accept
states above a threshold fidelity FT and requires to reject states
below FT. But a realistic certification test cannot resolve fi-
delities F very close to FT and thus one needs to allow for
a fidelity region that remains undetermined. This idea leads
to a robust certification test [5, 6], where one allows for a fi-
delity gap ∆ < 1 − FT. A robust test is guaranteed to accept
a preparation %p if F ≥ FT + ∆, to reject it if F < FT, and
possibly accept it in the intermediate region. These conditions
for the test concern the exact fidelity and need to be translated
to a statement concerning the estimate of the witness F ∗W(%p).
We will show that for all preparations %p in a certain class of
states S⊥(∆, ε) it suffices to compare the estimator F ∗W(%p)
to the number FT + ε. In other words, such test is robust

i) if %p is such that F < FT then in the same time the wit-
ness will testify this i.e. F ∗W(%p) < FT + ε. This means
that whenever the test has to reject a preparation, then it
will.

ii) if F ≥ FT + ∆ then we have F ∗W(%p) ≥ FT + ε. That
is, whenever the fidelity is larger then the threshold fi-
delity enlarged by the fidelity gap, then the preparation is
accepted by the test.
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Note, that if F ∈ [FT, FT + ∆], then the certification test
might accept or reject the preparation. Specifically, the class
S⊥(∆, ε) characterizes the set of preparations %p where the
witness behaves as a weak oracle separating F ≤ FT from
F ≥ FT +∆. We now construct this class. With a given target
state U |ω 〉 and its corresponding fidelity witness in mind, we
define a mismatch parameter of some preparation state %p to
be

n⊥(%p) := tr[n̂(ω)U†%pU ] ≥ 0 . (88)

Let us note that the preparation %p can be decomposed with
the Hilbert-Schmidt inner product into the target state %t and a
orthogonal contribution %⊥ := %⊥(%t, %p), that is %p = F%t +
(1−F )%⊥ for 0 ≤ F = tr[%p%t] ≤ 1 and tr[%t%⊥] = 0. Using
linearity of our witness for this decomposition yields

FW(%p) = F + (1− F )(1− tr[Un̂(ω)U†%⊥])

= 1− (1− F )n⊥(%⊥) . (89)

Therefore the mismatch content has the properties n⊥(%t) =
0 and n⊥(%p) = (1 − F )n⊥(%⊥). For a given maximum
estimation error 0 < ε < (1 − FT)/2, fidelity gap ∆ > 2ε
and fidelity threshold FT < 1 we define the mismatch content
threshold

n⊥,T(∆, ε) :=
1− FT − 2ε

1− FT −∆
. (90)

This allows us to consider the following subset of all states S

S⊥(∆, ε)(∆, ε) = {% ∈ S|n⊥(%) ≤ n⊥,T(∆, ε)} . (91)

It is a convex set containing mixtures of states with possibly
very large mismatch content n⊥,T and which includes the tar-
get state %t in its interior. The following theorem states that
our fidelity witness leads to a robust certification test.

Theorem 10 (Robust certification of pure Gaussian states).
Let FT < 1 be a threshold fidelity, δ > 0 a maximal failure
probability , 0 < ε < (1− FT)/2 a maximal estimation error
and 2ε < ∆ < 1−FT a fidelity gap. Let %t be a pure Gaussian
state and %p a preparation state. Let F ∗W(%p) be the estimator
of the fidelity witness from Theorem 2. The test accepting the
preparation if F ∗W(%p) ≥ FT + ε and rejecting if F ∗W(%p) <
FT + ε yields a robust certification of %t if %p ∈ S⊥(∆, ε).
For states with high enough fidelity F > 1− L−2 the witness
yields a non-trivial lower bound FW(%p) ≥ 0.

Proof. The rejection Property i) follows by observing that ac-
cording to Theorem 2 we have with probability at least 1 − δ
that

|F ∗W(%p)− FW(%p)| ≤ ε (92)

from which it follows that

F ∗W(%p)− ε ≤ FW(%p) . (93)

Next we use that the fidelity witness is a lower bound to the
fidelity F and that in case i) we have F < FT to get the chain

F ∗W(%p)− ε ≤ FW(%p) ≤ F < FT . (94)

Therefore, if F < FT then F ∗W(%p) < FT + ε. In this step we
did not need to assume anything on the preparation %p.

Secondly, we show that the test has the acceptance Prop-
erty ii) as well. We now use F ≥ FT + ∆ and assume that
n⊥(%p) ≤ n⊥,T to obtain from Eq. (90)

FW(%p) = 1− (1− F )n⊥
≥ 1− n⊥,T + Fn⊥,T
≥ 1− n⊥,T + (FT + ∆)n⊥,T, (95)

which with the definition of the mismatch content (91) be-
comes

FW(%p) ≥ 1− (1− FT −∆)n⊥,T (96)
≥ 1− (1− FT − 2ε)

≥ FT + 2ε.

Therefore, we find with probability at least 1−δ the inequality
for the estimator of the fidelity witness

F ∗W(%p) ≥ FW(%p)− ε ≥ FT + ε . (97)

These two steps show that the test is robust for % ∈ S⊥(∆, ε).
Finally let us assumeFT ≥ 1−L−2. We need to show that if

F ≥ FT + ∆ then F ∗W(%p) ≥ FT + ε. By Fuchs-van der Graaf
inequality we have D(%p, %t) ≤

√
1− F ≤ √1− FT = L−1.

From this bound it follows that

η =
L∑

k=1

[
(1− wk)tr[nkU

†%pU ] + wktr[(1− nk)U†%pU ]
]

(98)

≤
L∑

k=1

L−1 = 1. (99)

From this bound, we find

FW(%p) = 1− η ≥ 0 . (100)

Note that the witness is exact FW(%p) = F for prepa-
ration state vectors supported on the Hilbert space subspace
Span({U |∅ 〉, Uf†1 |∅ 〉, . . . , Uf†L |∅ 〉}). Finally, Eq. (90) al-
lows to intuitively understand when exactly the witness fails
to be an oracle, which we illustrate with one last example.

Example: symmetry breaking

Consider a scenario, where the system has initially a Z2

symmetry between the vacuum |∅ 〉 and the fully occupied
state vector

∣∣1
〉
, and then at some point spontaneous sym-

metry breaking occurs such that the system must choose
one of the two states. If the preparation is given by %p =
U
[
(1− λ) |∅ 〉〈∅ |+ λ|1〉〈1|

]
U† then the mismatch is a very

good way of quantifying the fidelity of symmetry breaking,
namely n⊥(%p) = λ〈1|N̂ |1〉 = λL is a good order parame-
ter. The mismatch is low for λ � 1/L which occurs for high
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values of our witness and it therefore allows to show that the
system chose the vacuum in the Z2 symmetry breaking. Note,
that the mismatch parameter will be high for many-particle
GHZ states, but those are expected to be unstable and will not
occur for no reason e.g. due to incoherent noise. In particu-

lar, low mismatch is also a natural assumption when certifying
a digital simulation of the transverse field Ising Hamiltonian.
As a final corollary to this example, note that for an L-mode
system we have ‖n(ω)‖ = L and therefore for all states % in a
ball defined by ‖%− %t‖1 ≤ 1/L we will find FW(%p) ≥ 0.
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S U M M A R Y

This thesis is very thematic to the vibrant age of emerging quantum technologies. Indeed, it demonstrates on first
hand examples how novel experimental advances motivate various avenues of theoretical research. For physicists,
the possibility of working with systems with pronounced quantum effects is particularly exciting. Accordingly, at
all times of the theoretical research presented here there were specific quantum systems that we had in mind and
we could always rely on the availability of complex and insightful experiments to guide, i.e., both stimulate and
discipline, the ideas explored. We encountered cold atoms which can be trapped in various geometries, e.g., in an
optical lattice, where the gas is restricted to a discrete set of available positions, or on an Atom Chip where the
particles are free to roam in a continuous one-dimensional container. For these two cold atoms platforms we have
seen diverse examples where paradigmatic scenarios pertaining to quantum many-body systems have been explored.
Besides numerous beautiful realizations of key physical effects, that were discussed to set our work in context of
a larger research program, we have seen that highly controlled experiments with cold atoms can tackle questions
regarding the emergence of statistical mechanics [1, 2, 12, 13], or a quantitative experimental investigation [3] of
aspects of one-dimensional systems that have been studied with methods of quantum field theory almost half a
century ago and only now have entered the experimental domain.

In fact, even more is true concerning the experiments with cold atoms that we have discussed. At the moment we
are still used to the important paradigm in physics ‘predict and test’ which in practice involves various theoretical
arguments, approximations or measurements yielding oftentimes only indirect evidence for the questions at hand.
This approach has been unquestionably successful in the past and can be largely expected to capture our scientific
undergoings also in the future. However, already now, at the current development stage of quantum technologies, it
appears to be fruitful to think of a newly emerging paradigm, namely ‘simulate and read out’. This stresses the fact
that a given highly controlled quantum system can reveal to us some properties of a system at first glance appearing
to be completely different. We do have a growing body of evidence that this is technologically feasible and to sketch
the long-term goals of the community it may suffice to give as fruit for thought a single example, which of course is
not the only possibility: At the time of writing it is not unrealistic to believe that quantum simulation experiments
with cold atoms will one day allow us to obtain conclusive results concerning specific aspects of high-temperature
superconducting materials.

How can a gas of atoms reveal information about a specific solid-state material? The precise implementation
details will have to be worked out in upcoming studies but on a higher level we have the answer and it lies in the
idea of quantum simulation. Indeed we have seen in this thesis that cold atoms experiments are highly flexible, to
the extent that we can even envision building quantum field thermal machines in these platforms [14]. Thus, if we
establish precise ways to control the interaction parameters of an ultra-cold atomic gas such that the physics of
the system will match the effective description of some desirable material, we will be able to simulate that physical
system by a quantum simulation experiment. Once this is done, we have to ascertain the correctness of the result.
This, surprisingly, turns out to be a particularly uncharted endeavor, possibly due to the fact that only recently
did we become able to build up and control quantum aspects of synthetic systems. Thus if in the past there was a
lack of easily available quantum systems, then there was no demand for developing quantum read-out techniques,
i.e., methods of measuring non-commuting observables. The recent technological developments have rendered this
issue a crucial bottle-neck and the results presented in this thesis provide possible ways of making progress on this
matter [3, 4, 11, 13].

Quantum simulation experiments with ultra-cold atoms have served as the main motivation for the investigations
presented in the first two chapters where foundational questions about quantum mechanics and statistical mechanics
were considered [1,2]. We have discussed that quantum simulators can realize exotic states where, e.g., steady states
of thermodynamically large systems are non-thermal and have seen how to describe and rigorously derive this effect
by proving time-scales for convergence to generalized Gibbs ensembles. Hence, these chapters give a first-hand
account of what may become in the future the standard means of inquiry into the ongoings in complex quantum
many-body systems, prominently featuring the guidance coming from quantum simulation experiments [12].

In the third chapter we have shown how to efficiently look into quantum simulators in a way that allows us
to draw physical conclusions. That is to say, we were able to show how to improve the considered quantum
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simulation platform thanks to an overall understanding of the physics of the system. Specifically, we developed
a novel toolbox of tomographic analysis which allows to perform quantum state tomography of weakly interacting
continuous fields [3]. This is particularly appealing, as thanks to the collaboration with a leading experimental
group we were able to study quantitative physics of a one-dimensional quantum many-body system and in essence
have verified experimentally the effective model of the ultra-cold gas which has been proposed about half a century
ago by pioneering quantum field theorists.

Besides being able to study paradigmatic quantum systems in a very clear fashion it is also important to search for
possibilities of improving future quantum simulators in ways that anticipate future challenges and yet are not too
far fetched from being realised. In the last chapter we have shown that the fidelity of preparing weakly interacting
systems of fermions in quantum simulators can be estimated efficiently, even in cases where the system features the
formation of Cooper pairs. Fidelity witnessing [4] seems to be an excellent way forward to benchmark the coherence
of large quantum systems where the target Hamiltonian is far from the basic interactions of the constituents.
Arguably our method is one of the most practical ways of demonstrating the correct functioning of a dynamical
quantum simulation, and so indirectly also the presence of quantum coherence and entanglement, on platforms
devised in a bottom-up approach where the constituents on their own would not have pronounced quantum effects.
One example is the Sycamore quantum processor where superconducting qubits have to be coupled by appropriately
controlled operations which then allows to obtain interesting quantum states and fidelity witnesses allowed to
successfully reveal the correct functioning of such quantum algorithms in an independent experiment [121].

All three themes of research laid out in this thesis are already accompanied by an experimental realization
which illustrates how accessible exciting experiments on quantum systems have become. This would not have
been possible without the prior work of the experimentalists building up towards devising quantum simulators and
we were already now in a position to profit from the various possibilities of performing controllable experiments.
This hints at a prognosis for future developments in physics: We should anticipate that quantum simulators will
realize experimentally novel theoretical ideas by simulating an effect rather than hard-coding it into a given physical
setup. Such programmable functionalities will allow to use a single well-controlled system for studying a wealth of
physical questions and the time between a theoretical insight and the experimental observation will be dramatically
shortened by quantum simulators in the future.
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C L I M A T E F O O T P R I N T E S T I M A T E S

Given the current climate change crisis that has arisen from human activities it is urgently needed to assess
transparently various branches in the overall economy, this also includes scientific research. While an urgent call
of action has been voiced by the Intergovernmental Panel on Climate Change (IPCC) [24] improvements regarding
our overall impact on the climate seems to be rather slow. This is to the extent that even in science the methodology
for assessing the climate footprint is unclear and we only now begin to start developing possible ways of doing
that [169].

My footprint had three dominating factors. The most important are i) travels and flying in particular and ii)
numerical computations on a cluster. Additionally iii) there are the daily activities such as commuting to work,
running computers and laptops, video calls. The daily routines can be estimated similarly as for other inhabitants of
a given city. Three projects out of 14 publications over the course of 5 years demanded heavy cluster usage and the
largest use was Ref. [5] with whooping 576000 of kernel hours. As mentioned, there is no standard methodology of
keeping track of the footprint and so the kernel hours of Ref. [11] have to be estimated to be somewhere between
the use documented in Refs. [9] and [5] as these publications involved similar types of calculation. Thus the amount
of emitted CO2 can be estimated to about 1484+5000?+9274 kg CO2 which is comparable to one year footprint of
one person living in Germany. A similar figure can be obtained for my travels which over the course of 5 years
amount again to the yearly footprint of a person living in Germany. It seems to be standard to frequently travel for
research visits or workshops and the course of PhD studies seems to be an example of that. Below I list the different
destinations and means of transport giving the CO2 estimates obtained from the atmosfair calculator. The flights
connected to the research presented in this thesis were: Berlin (B) ↔ Gothenburg (288 kg), 1.5 × Vienna (387 kg),
2× Barcelona (1700 kg), Granada (1281 kg), Toronto (3853 kg).Additionally, these were the train travels inland B↔
2× Dresden, 2× Hannover, 2× Heidelberg, Mainz, Erlangen, Regensburg, Bielefeld, Bonn and international B↔ 3 ×
Vienna (3 × 258 kg), Copenhagen (212 kg), Aarhus (287 kg), Obergurgl (307 kg) and additionally it proved useful to
connect travels B→ Katowice→ Vienna→ B (258 kg), B→ Vienna→ Ljubljana→ B (453 kg), B→ Split→ Vienna
→ B (700 kg), B→ Vienna→ Florence→ B (611 kg) where the stroked out numbers are the estimates for flights.

Most of the international train travels could have been flights and I attribute this substitution solely to raised
awareness concerning flights thus showing that information campaigns can be effective.

It should be noted that only recently it became possible to offset research travels via university funding and
there is no standard way for doing this which constitutes a systemic obstacle for implementing some measures
of accounting for carbon impact of science related travels. Additionally, a wider implementation of SAP-type
systems to do accounting at universities, where the administration organization tends to be rather outdated and
not digitalized, would allow to much more systematically gather travel data to assess the climate impact of science
related travels.

In theoretical physics peers tend to be working at distanced institutes because we often tackle rather unusual
subjects and for developing scientific insights staying connected is a key essential aspect of the work we do. As
evidenced by the recent events, there seems to be a major shift toward video conferencing due to the pandemic. It
can be expected that a number of future conference and workshop-type events will be held online and institutions
such as universities, ministries of science and funding agencies should provide incentives for creating more online
events. For 2 out 14 of my publications it was possible to predominantly work via video conferencing which could
include all project participants and allowed for programming together via screen sharing over the Internet without
the need for joint visits in person. Again institutions should encourage such innovative ways of working on projects
with the ultimate goal that research visits become largely reserved for meetings with peers dedicated to exchanging
ideas via personal communication and scientific discussions which is the only indispensable aspect of research that
cannot be done online as effectively.



A C K N O W L E D G M E N T S

I would like to thank my supervisor Jens Eisert that I had a chance during my studies to be part of the impressive
research environment which he has created. It has been extremely inspiring to learn first hand to stay always
positive and committed to tackling relevant research subjects. This experience has been for me absolutely unique
and I’m grateful for how it enriched me in so many ways, something that will remain invaluable for me for the rest
of my life. Many, many thanks Jens!

I also extended my warmest thanks to the many colleagues and collaborators for their continuous generosity in
sharing their insights and knowledge. It seems to me that first hand seeing the power of collaborative research
is the most important thing I have learnt so far, even more than solving the harmonic oscillator! My gratitude
goes towards: Abdul Afzal, Leandro Aolita, Paul Appel, Ben Balz, Laura Baez, Andi Bauer, Jörg Behrmann, Juani
Bermejo-Vega, Krzysiek Bielas, Paul Boes, Winton Brown, Federica Cataldini, Roberto di Candia, Terry Farrelly,
Wojtek Flieger, Mathis Friesdorf, Janusz Gluza, Christian Gogolin, Marcel Goihl, David Gosset, Lucas Hackl, Jonas
Haferkamp, Frederik Hahn, Dominik Hangleiter, Marcus Huber, Alex Jahn, Si-Cong Ji, Markus Kesselring, Michael
Keyl, Martin Kliesch, Christian Krumnow, Ivan Kukuljan, Richard Küng, Sophia Lachs, Jaqueline Lekscha, Igor
Mazets, Nelly Ng, Papalex Nietner, Yasser Omar, Fernando Pastawski, Sebastian Päckel, Marco Pezzutto, Jeremi
Piotrowski, Philipp Preiss, Mariusz Przybycień, Bernhard Rauer, Tord Riemann, Carlos Riofrío, Ingo Roth, João
Sabino, Sidhant Saraogi, Jörg Schmiedmayer, Martin Schwarz, Thomas Schweigler, Kanu Sinha, Spyros Sotiriadis,
Adrian Steffens, Ryan Sweke, Amin Tajik, Nick Tarantino, Giuseppe Vitagliano, Yuri van Nieuwkerk, Albert Werner,
Carolin Wille, Henrik Wilming, Jacek Wosiek, Zoltán Zimborás.


	1 Introduction
	1.1 Non-equilibrium dynamics in quantum simulators

	2 Equilibration via Gaussification in fermionic lattice systems
	2.1 Formulation of the problem
	2.2 Our results
	2.3 The implications of the result
	2.4 Open problems

	3 Equilibration towards generalized Gibbs ensembles in non-interacting theories
	3.1 Formulation of the problem
	3.2 Our results
	3.3 The implications of the result
	3.4 Open problems

	4 Quantum read-out for cold atomic quantum simulators
	4.1 Formulation of the problem
	4.2 Our result
	4.3 The implications of the result
	4.4 Open problems

	5 Fidelity witnesses for fermionic quantum simulations
	5.1 Formulation of the problem
	5.2 Our results
	5.2.1 Fidelity witnesses
	5.2.2 Experimentally relevant fidelity witnesses

	5.3 The implications of the results
	5.4 Open problems

	6 Summary
	Climate footprint estimates
	Acknowledgments

