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ABSTRACT 

Background: As the mainstay of chemotherapy, cisplatin has been increasingly adopted in 

cervical cancer treatment. However, cisplatin is not sufficient to eradicate all cancer cells, due to 

the existence of cancer stem (-like) cells (CSCs). ALDH is a marker of CSCs, as well as the speed-

limiting enzyme in the cellular metabolism of ATRA. The impacts of cisplatin or/and ATRA on 

ALDH might offer useful information for the treatment of cervical cancer.  

Methods: A 3-dimensional cell culture method was employed to generate spheroid- derived cells 

(SDCs) from three cervical cancer cell lines (HeLa, MRIH186, and SiHa). An Aldefluor kit was 

used for sorting of ALDHbright and ALDHlow cells. Furthermore, the frequency of ALDHbright cells 

was determined by this assay in SDCs after treatment with cisplatin or/and ATRA. The mRNA 

profile of CSC-related markers was concomitantly observed by quantitative real-time PCR. The 

stemness, apoptosis ratio, invasiveness, and motility of cells were assessed by colony formation 

assay, Annexin-V/Propidium iodide assay, invasion assay, and scratching assay, respectively.  

Results: This study confirmed that ALDHbright cells possess enhanced CSC-related properties 

compared to ALDHlow cells, especially in drug resistance. SDCs contained an increased proportion 

of ALDHbright cells compared to traditional monolayer-derived cells (1.85 to 5.12-fold; p <0.05). 

The ALDHbright population of SDCs responded to serial titrated concentration of cisplatin in a bi-

phasic manner. Low-dose cisplatin (lower than 1 μM in HeLa and SiHa, and 3 μM in MRIH186) 

augmented the proportion of ALDHbright cells to 30.32 % in HeLa, to 62.44% in MRIH186, and to 

55.21% in SiHa, which was about 1.83-fold, 1.67-fold, and 2.04-fold of their untreated control (all, 

p <0.05), respectively. An increase of cisplatin concentration led a reduced proportion of 

ALDHbright cells. The ALDHbright population was inhibited by ATRA in a dose-dependent way. 

ATRA overcame the increased ALDHbright population in SDCs derived from HeLa, MRIH186 and 

SiHa. Additionally, ATRA partially counteracted other adverse effects caused by low-dose 

cisplatin, such as the augments in stemness, invasiveness, and cellular motility.  

Conclusions: Consistently, low-dose cisplatin increases the ALDHbright population in SDCs 

derived from cervical cancer cell lines. ATRA presents the ability to reverse the increased 

ALDHbright population and the concomitant CSC-related effects caused by cisplatin. Inhibition of 

ALDH activity by ATRA might be beneficial for cervical cancer treatment by cisplatin.  
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ZUSAMMENFASSUNG 

Hintergrund: Als Hauptstütze der Chemotherapie wurde Cisplatin zunehmend in der Behandlung 

von Gebärmutterhalskrebs eingesetzt. Cisplatin reicht jedoch nicht aus, um alle Krebszellen zu 

vernichten, da es Krebsstammzell (-ähnliche) gibt (CSC). ALDH ist ein Marker für CSCs sowie 

das geschwindigkeitsbegrenzte Enzym im Zellstoffwechsel von ATRA. Die Auswirkungen von 

Cisplatin oder/und ATRA auf ALDH könnten nützliche Informationen für die Behandlung von 

Gebärmutterhalskrebs liefern.  

Methoden: Eine 3-dimensionale Zellkulturmethode wurde eingesetzt, um aus drei zervikalen 

Krebszelllinien (HeLa, MRIH186 und SiHa) sphäroid-abgeleitete Zellen (SDCs) zu erzeugen. Das 

Aldefluor-Kit wurde für die Sortierung von ALDHbright- und ALDHlow-Zellen verwendet. Darüber 

hinaus wurde die Häufigkeit der ALDHbright-Zellen durch diesen Assay in SDCs nach der 

Behandlung mit Cisplatin oder/und ATRA bestimmt. Das mRNA-Profil von CSC-spezifischen 

Markern wurde gleichzeitig durch quantitative real time-PCR untersucht. Der Stammzellcharaktor 

Steifheit, das Apoptose verhalten, die Invasivität und die Motilität der Zellen wurden durch 

Koloniebildungs-assay, Annexin-V/Propidiumiodid-assay, Invasions-assay, und Scratch-assay 

bewertet.  

Ergebnisse: Diese Studie bestätigte, dass ALDHbright-Zellen verbesserte CSC-spezifische 

Eigenschaften aufweisen als ALDHlow-Zellen, insbesondere bei Resistanzen gegen Therapeutika. 

Die SDCs enthielten einen erhöhten Anteil an ALDHbright-Zellen im Vergleich zu herkömmlichen 

‚‚monolayer‘‘-abgeleiteten Zellen (1,85 bis 5,12-fach; p <0,05). Die ALDHbright-Population der 

SDCs reagierte auf die seriell titrierte Konzentration von Cisplatin in zweiphasiger Weise. Niedrig 

dosiertes Cisplatin (niedriger als 1 μM in HeLa, und SiHa und 3 μM in MRIH186) erhöhte den 

Anteil der ALDHbright-Zellen auf 30,32 % in HeLa, 62,44 % in MRIH186 und 55,21 % was in 

SiHa, das etwa 1,83-fach, 1,67-fach und 2,40-fach ihrer unbehandelten Kontrolle war (alle, p 

<0,05). Eine Erhöhung der Cisplatin Konzentration führte zu einem reduzierten Anteil an 

ALDHbright-Zellen. Die ALDHbright Zellpopulation wurde durch ATRA in einer dosisabhängigen 

Weise gehemmt. ATRA Behandlung verringerte die erhöhte ALDHbright-Zellpopulation in SDCs, 

die von HeLa, MRIH186 und SiHa stammten. Darüber hinaus wirkte ATRA teilweise auch 
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anderen Nebenwirkungen entgegen, die durch niedrig dosiertes Cisplatin verursacht wurden, wie 

z.B. die Erhöhung der Stammzelleigenschaften, Invasivität und zellulären Beweglichkeit.  

Schlussfolgerungen: Durchgängig erhöht niedrig dosiertes Cisplatin die ALDHbright-

Zellpopulation in SDCs, die aus Gebärmutterhalskrebs-Zelllinien stammen. ATRA bietet die 

Möglichkeit, die erhöhte ALDHbright-Population und die damit verbundenen CSC-bezogenen 

Effekte, die durch Cisplatin verursacht werden, umzukehren. Die Hemmung der ALDH-Aktivität 

durch ATRA könnte für die Behandlung von Gebärmutterhalskrebs von Vorteil sein.  
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1. Introduction 

Despite many outstanding methods, such as cytological screening and HPV detection, which have 

been dedicated to reducing the disease burden, cervical cancer remains a major cause of mortality 

in women worldwide [1]. The failure of cervical cancer treatment might be due to the existence 

of cancer stem (-like) cells (CSCs) which are cancer initiating, sustaining, and therapy resistant 

(e.g. chemo- and radiotherapy) [2]. Cisplatin is currently used in therapeutic approaches for 

cervical cancer in neoadjuvant, concomitant (chemo-radiotherapy), or adjuvant chemotherapy. 

Given the increasing application of cisplatin in cervical cancer treatment, the response of cervical 

cancer cells and cervical CSCs to cisplatin should be deciphered in more detail. 

Aldehyde dehydrogenase (ALDH) is a group of evolutionarily conserve enzymes, which are 

capable of oxygenizing aldehyde to its corresponding acid. Accumulation of ALDH activity has 

been highlighted by its roles in resistance to chemotherapy and in the enrichment of CSCs [3, 4]. 

ALDH-targeting approaches might represent a promising direction for cancer treatment [5]. All-

trans retinoic acid (ATRA), a downstream product of ALDH, has been reported as a potential 

ALDH inhibitor [1, 3, 6-8]. Moreover, ATRA has been tested in numerous malignancies for its 

anti-cancer effects. Therefore, the present study intends to describe ALDH activity in cervical 

cancer cells and their potential responses to cisplatin or/and ATRA treatment. The background of 

this study can be further introduced by addressing the following questions: (1) what is the 

recurrent understanding of cervical CSCs? ; (2) What is the function of ALDH and ATRA in stem 

cells or in CSCs? ; (3) Why is cisplatin getting increasingly important for cervical cancer 

treatment? ; (4) What is the implication of CSCs for cervical cancer therapy?  

1.1 Introduction to current knowledge on cervical CSCs 

1.1.1 Cervical CSCs and their unique properties 

CSCs share important features with normal tissue stem cells (TSCs), including the capacity of 

self-renewal and asymmetric division [9, 10]. However, it is still controversially discussed 

whether CSCs are the direct descendants of mutated TSCs, or developed from more differentiated 

cells that reacquire stem cell properties during tumorigenesis [9]. Cervical cancer might be an 

exception to this argument. It has been established that human papillomavirus (HPV) is the 



2 

 

etiologic agent for cervical cancer development [11, 12]. According to the strict tissue tropism of 

the HPV life cycle, the basal or reserve cells (i.e. TSCs) in the cervical epithelium were identified 

as the target of HPV infection and the origin of cervical cancer [13]. Although HPV is also the 

etiologic agent of many other tumors derived from different epithelia, HPV preferably induces 

carcinogenesis at the cervix with an approximately 20-fold higher risk than in other tissues [14]. 

The incidental discrepancy has been proven by Herfs et al. to be attributable to some reserve cells 

exhibiting multi-potency as the residual of embryonic cells located in the transformation zone (TZ) 

(Figure 1) [15, 16]. These immature cells possess a self-renewal ability by asymmetric division 

that is a property of stem cells. Therefore, the embryonic reserve cells infected by HPV may 

directly give rise to CSCs [15]. 

 

Figure 1: Illustration of cervical carcinogenesis and cells of of cervical cancer origin. High-

grade cervical intraepithelial neoplasia (CIN) and cervical carcinomas are usually generated 

within a specific cell population that is located in the squamo-columnar junction of the cervix. 

They are typically not generated in the columnar cells in the endo-cervix and squamous cells in 

the ecto-cervix. HPV-related CINs and cervical cancers maintain the genetic profile of the 

junction cells, indicating their cellular hierarchy. Reserve cells located in the TZ infected with 

carcinogenic HPV form pre-malignant neoplastic stem cells that can progress to CSCs, which 

reproduce cervical carcinoma clones. 

1.1.2 Embryonic transcription factors (TFs) are important CSC-related markers 

The similarities shared between TSCs and CSCs include shared gene expression regulation, in 
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particular the encoding transcription factors (TFs) [17]. Previous studies highlighted a group of 

TFs, i.e. Sox2, Oct3/4, and Nanog, which maintain the pluripotency and self-renewal capacity of 

embryonic stem cells [18]. In the embryonic stem cells, reduction of Sox2 expression is linked to 

loss of the pluripotent state [19]. Some early events in carcinogenesis are under the control of 

Sox2 in the cervix. Sox2 regulates the HPV life cycle by the interaction with the target gene 

sequences located in the HPV genome [20, 21]. Over-expression of Sox2 is found in the stem cell-

like cells situated in the TZ, and Sox2 can cooperate with HPV oncoproteins by retarding cellular 

damage which allows viral persistence [21]. Cervical cancer with high Sox2 expression is more 

poorly differentiated, indicating that Sox2 is a marker of undifferentiated cells [17, 22]. Sox2 also 

plays a role as a protector, as it shields cells from apoptosis with the help of Oct3/4 and Nanog 

[23, 24]. Oct3/4 is involved in the E7 oncoprotein pathway, and its expression is negatively related 

to prognosis in cervical cancer [17, 25]. The Nanog level is higher in cervical cancer compared to 

normal cervical epithelium [26]. One possibility is that Nanog is suppressed by p53, which is 

inactivated by E6 in cervical cancer. As a consequence of HPV infection, the stemness of reserve 

cells may be restrained by HPV oncoproteins in the process of cancer development. In fact, these 

TFs are CSC-related biomarkers (CSC-markers) and play a role in maintaining the biological 

behavior of cervical CSCs [2, 17]. 

1.2 The function of ALDH and ATRA in stem cells and in CSCs 

Research focusing on CSC-markers has been expanded from the study of TFs to signaling 

pathways and the functional features shared between embryonic stem cells and CSCs. ALDH is a 

group of evolutionarily conserved enzymes which play important roles in embryonic development 

[27, 28]. The distribution of ALDH subtypes contributes to gradients of Retinoic acids (RA) in 

tissues, which is essential for mammals, especially in the control of embryonic development. The 

natural form in vivo is essentially all-trans RA (ATRA) and negligible levels of 9-cis RA. Among 

numerous subtypes of ALDH enzymes, ALDH1 and ALDH8 mainly play a role in ATRA and 9-

cis retinoic acid biosynthesis, respectively [29, 30]. Lack of vitamin A (retinol) causes vitamin A 

deficiency syndrome, leading finally to a lethal outcome that can be prevented by an ATRA 

replacement. A consistent pattern of ATRA effect on ALDH1 gene expression was seen in 
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embryos, where treatment with ATRA resulted in significant suppression of ALDH1 transcripts 

[6-8, 30]. A well-balanced ALDH/RA signaling pathway is essential for the correct developmental 

program in cells. 

In addition to its roles during the embryonic period, ALDH is also a maker of stem cells in 

adulthood. The Aldefluor assay, which labels cells with high ALDH content, was initially 

designed to isolate hematopoietic stem cells from blood by staining cells with high ALDH 

enzymatic activity [31]. Stem cells identified and isolated by the Aldefluor assay have been 

expanded in regenerative medicine, such as for acceleration of tissue repair [32, 33]. It is proposed 

that the role of ALDH in normal stem cells is in the context of self-protection. This self-protective 

property is shared by CSCs that contain a high-level cytoplasmic ALDH expression. The 

accumulation of ALDH confers chemo-resistance and radio-resistance in CSCs. ALDH endows 

CSCs with chemo-resistance basically by acting as scavenger of cytotoxic reagents [3]. As a radio-

resistance related gene in cervical cancer, the ALDH gene was screened out in 23,040 human 

cDNAs by cDNA microarray analysis [34]. In summary, ALDH exerts a potent role in ATRA 

generation and also has various functions in both TSCs and CSCs [3, 35]. 

In cervical embryonic cells, the vitamin A signaling pathway also maintains the differentiation 

progress [36]. In addition, ATRA participates in the inhibition of telomerase activity and in down-

regulation of HPV oncoproteins [37, 38]. It is notable that patients suffering from cervical cancer 

show reduced serum ATRA concentrations, which makes them more vulnerable to cervical cancer 

development [39]. As such, the ALDH/RA signaling pathway is potentially a modulating factor 

in cervical cancer. Moreover, cervical ALDHbright cells are more resistant to cisplatin treatment 

than the ALDHlow cells [40]. ALDH expression is also responsible for the abilities of tumori-

genicity, migration, and self-renewal ability in cervical CSCs [40]. ALDHbright cells are identified 

with stronger CSC-properties compared to ALDHlow cells in cervical cancer cell lines and primary 

tissues [40]. Thus, high ALDH activity may represent a functional marker for CSCs and 

consequently be a logical target for cervical CSC-targeting therapy. The studies on ALDH in 

cervical cancer are summarized in Table 1.  
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Table 1: Available studies on ALDH in cervical cancer  

Study 

references 

General study purpose Origin (cell lines or primary tissue ) CSCs referred Methods for ALDH detection 

[41] Micro RNA and ALDH1A1 relationship HeLa, SiHa, and other cell lines Yes PCR 

[42] Diagnostic value of ALDH in cervical cancer Human serum NO Spectrofluoro-photometer 

[43] Identify and characterize CSCs population CaSki Yes Western blot 

[44] Observation of a biomarker CaSki Yes Aldefluor assay 

[45] Observation of protein expression CaSki and SiHa Yes Aldefluor assay 

[44] Observation of drug effects C33a and SiHa Yes Aldefluor assay 

[46] ALDH as a prognostic marker Patients’ tissue No IHC 

[47] Characterization of cervical CSCs HeLa, SiHa, and other cell lines Yes Aldefluor assay 

[48] ALDH as a prognostic marker in cervical cancer Patients’ tissue No IHC 

[49] Immunotherapy of CSCs CaSki Yes Aldefluor assay 

[50] Evaluation of a new liposomal formulation HeLa and ME180 Yes Aldefluor assay 

[23] ALDH as a marker of cervical CSCs C33a, SiHa, other cell lines, and patient tissue Yes Aldefluor assay, IHC, Western blot 

[51] The expression of ALDH1 in cervical cancer HeLa, SiHa, other cell lines, and patient tissue Yes Aldefluor assay, IHC, Western blot 

[52] Characterization of cervical CSCs A431, SiHa, and other cell lines Yes Aldefluor assay 

[34] Radiation sensitivity of cervical cancer Patient tissue No cDNA Microarray analysis 

[53] Chemo-sensitivity HeLa No Western blot 
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1.3 Cisplatin is getting increasingly important for cervical cancer treatment 

Due to screening programs, developed countries such as the USA and European countries have 

had a sharp decrease in the incidence of, and mortality from, cervical cancer. However, cervical 

cancer is still the leading cause of cancer-related deaths in women in developing countries [1]. 

Worldwide, the treatment of cervical cancer is mainly dictated by its FIGO stage [54]. A general 

consensus has been established: for the early stages, either surgery or radiation combined with 

chemotherapy can be used; for later stages, radiation combined with chemotherapy is usually the 

primary treatment; chemotherapy is often an option for advanced and recurrent cervical cancer 

(summarized in Table 2). However, the final decision is not only stage-dependent but also 

dependent on available resources, especially in low-resource regions [1].   

Table 2: Overview of staging and therapeutic options for cervical cancer 

Staging 
Possible therapeutic options (single or combined depending on 

individual patient’s extent of disease) 

Staging  

(in brief) 

FIGO 

Staging 

Radical 

surgery 

Radical 

radiation 

Chemotherapy 

Con- 

current 
NACT Adjuvant Palliative  

Early stages 

Ia √ √      

Ib √ √  √1    

IIa √ √  √1    

Locally- 

advanced 

stages 

IIb √ √ √ √1    

IIIa  √ √     

IIIb  √ √     

IVa  √ √     

Advanced 

stage 
IVb      √2  

Recurrence Recurrence      √2  

√1: No consensus has been achieved, but NACT is commonly used in fertility-sparing cases to 

reduce the risk of cancer recurrence.√2: The palliative strategy is chemotherapy-based, 

individual-dependent, and comprehensive.  

New developments have been expanding the application of cisplatin against cervical cancer in 

terms of neoadjuvant, concurrent, and adjuvant chemotherapy. Radiotherapy alone was 
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historically the standard treatment for locally-advanced cervical cancer. Since 1999, cisplatin-

based concomitant chemo-radiation has taken the place of radiation alone, with an improvement 

of 12% in overall survival [55]. Additionally, it is supposed that neoadjuvant chemotherapy 

(NACT) might offer some advantages such as reduction of tumor size, elimination of micro-

metastasis, and diminishing of tumor expansion [56]. Despite the controversy about a better 

prognosis, the use of NACT followed by radical surgery is a valid option for locally-advanced 

cervical cancer, especially in regions with limited access to radiation therapy [54, 57]. Moreover, 

NACT might be a valuable option for many young patients in need of fertility sparing therapy. 

Cervical cancer is most frequently diagnosed among women aged at 35-44, and almost half of 

cervical cancer patients are of the reproductive age in the USA and in Britain (Figure 2). Notably, 

the incidence of cervical cancer is increasing in young women, which might be as a consequence 

of the screening programs [58, 59]. Fertility preservation must be a consideration for the treatment 

plan in this population. It is estimated that more than 40% of patients who undergo a radical 

hysterectomy are eligible for fertility-sparing surgery [60]. With the goal of maintaining fertility 

options, but without sacrificing oncological outcomes, NACT might be an optional compensation 

to confine the recurrence risk in terms of a less radical procedure [61]. Accordingly, as the most 

effective reagent, cisplatin has been increasingly applied in cervical cancer therapy. Efforts have 

been made for the optimization of cisplatin usage in cervical cancer. However, there are still 

numerous problems requiring further investigation, such as the prognosis after NACT and the 

optimized dose of cisplatin [62]. To answer these questions, experimental work would be 

supplementary to clinical trials.  

 

Figure 2: Potential request for fertility sparing therapy in cervical cancer patients. A) 

Percentage of new cases by age group: cervical cancer, USA, (https://seer.cancer.gov). B) 
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Average number of new cases per 100,000 population, UK, (http://www.cancerresearchuk.org). 

The yellow boxes represent age ranges of women who are of reproductive age and may potentially 

request for fertility sparing therapy. 

1.4 The implication of CSCs for cervical cancer therapy 

1.4.1 CSCs raise a rethinking of chemotherapy strategies 

The current treatment strategy offers satisfactory outcomes in early stage cervical cancer cases, 

but the prognosis of locally advanced cancer remains to be improved. The relapse rate of cervical 

cancer ranges between 11% and 22% in FIGO stages IB – IIA, and between 28% and 64% in 

FIGO stages IIB – IV [63, 64]. Recurrence of cervical cancer often shows strong resistance to 

current therapies and leads to a dismal prognosis. One of the greatest impediments for improving 

the survival rates is the insufficient understanding of the mechanisms by which residual tumor 

cells survive after treatment [65]. Therefore, more attempts are urgently needed to decipher the 

impact of cisplatin on cancer cells to provide a better insight into chemo-resistance. 

Cancers are conventionally assumed to develop in a stochastic model, which describes cancer as 

consisting of biologically homogenous cells with an equal probability to initiate, maintain and 

promote tumor growth [66]. However, the most obvious limitation of this model is in explaining 

the cellular heterogeneity observed in the tumor bulk mass [9]. In the case of cervical cancer, the 

intra-tumor genetic heterogeneity has been seen in multi-facets such as chemo-radiation response, 

lymph node metastasis and pelvic recurrence [56, 67]. In contrast to the stochastic model, the 

heterogeneity can be explained well with a hierarchical model [68, 69]. It hypothesizes that not 

all cells, but only a subpopulation of cells, termed CSCs, have the ability to initiate and drive the 

growth and spread of a tumor. Chemo-resistance is believed to be an essential property of CSCs 

[70]. The residual CSCs, which escape from chemotherapy, cause the recurrence of disease 

(Figure 3 A). Consequently, this prompts a rethinking of the current anti-cancer regime, whereby 

CSCs should be concurrently included in the anti-cancer strategy.   

1.4.2 Detrimental effects of cisplatin treatment should be overcome 

Cisplatin is effective against various types of cancers, but it is generally accepted that cisplatin 

alone is not sufficient to eradicate cancer cells [71, 72]. This can now be explained and confirmed 
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by the identification and isolation of CSCs. A form of drug resistance is termed multiple drug 

resistance (MDR). MDR occurs when cancer cells become insensitive not only to the primary 

cytotoxic drug but also to other pharmaceutic drugs that have not been used during the previous 

course of therapy [3]. Despite a consistent rate of initial responses, cisplatin treatment frequently 

results in the development of MDR, leading to therapeutic failure. For example, one mainstay of 

treatment for ovarian cancer is platinum-based cytotoxic chemotherapy. However, conventional 

therapies and the tumor microenvironment generate a stem cell selective effect on tumor cells by 

killing the sensitive cells, resulting in the enrichment of more resistant CSCs. Recently 

accumulating evidence suggests that cisplatin may serve as an inductive pressure for the stem cell 

state, and consequently make alterations in the cellular phenotype [73, 74]. Consistent with the 

results in ovarian cancer, pretreatment of lung cancer cells in vitro with cisplatin at plasma 

concentrations resulted in an increase of colony formation, contributed to an enhanced expression 

of CSC-biomarkers, and led to resistance to chemotherapeutic agents, suggesting cisplatin 

pretreatment could enrich CSCs in lung cancer tissue [75].  

Treatment with combinations of cytotoxic drugs is prevalent in the clinic. These efforts are 

intended to improve clinical outcome and to avoid severe side effects by synergistic medications 

instead of single high-dose reagents [76]. However, due to the inadequate understanding of CSC-

biology, most of the current combinations are confined to cytotoxic drugs, which are not 

efficacious against CSCs. CSCs frequently evade these treatments due to specific characteristics 

including quiescence, decreased radical oxygen species (ROS), and high levels of chemo-

resistance proteins (ALDH and ATP-binding cassette transporters) [5, 77]. Once treatment has 

ceased, the surviving CSCs can proliferate, producing highly resistant tumor cells, leading to 

disease recurrence and treatment refractory tumors (Figure 3 B). A number of therapies targeting 

CSCs are currently under investigation. ATRA, the product of the ALDH/RA signaling pathway, 

offers a new model for CSC-targeting therapy. Actually, ATRA is among the few drugs known to 

regulate the differentiation of embryonic stem cells [78]. The combination of ATRA with 

chemotherapeutic agents was efficacious in acute promyelocytic leukemia (APL) [79], for which 

it has become a standard of treatment, and is also promising in neuroblastoma [80]. Importantly, 

it is proposed that this kind of combination of cytotoxic drugs and CSC-targeting drugs is a 
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necessary condition for the successful outcome of cancer treatment [81]. 

 

Figure 3: Schematic illustration of the two different models for sustainable-tumor growth and 

cancer therapeutic strategies. A) In the stochastic model, all tumor cells have equal abilities to 

propagate and initiate tumors. The emerging CSC hypothesis dictates the hierarchical model, in 

which asymmetric division results in specific populations of CSCs and bulk cancer cells. B) 

Current cancer treatment strategies involve cytotoxic drugs that primarily target the bulk cancer 

cells. CSCs frequently evade these treatments due to specific resistance characteristics. Once 

treatment has ceased, the residual CSCs can proliferate, producing a more resistant tumor, 

leading to poor clinical outcome. New treatment strategies should combine standard cancer 

treatments with drugs designed specifically to target CSCs. 
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1.4.3 Three-dimensional cell culture methods are more suitable for drug testing than 

conventional monolayer-adherent culture methods 

One of the characteristics of CSCs is their ability to form floating spheroids under anchorage-

independent conditions in serum-free medium, while normal cancer cells undergo anoikis [82]. 

Spheroids are a cluster of cells, which form a three-dimensional (3-D) structure, and represent an 

alternative model for conventional cell assays (a schematic illustration of spheroids is shown in 

Figure 4). Historically, two-dimensional (2-D) monolayer cells cultured on planar substrates were 

a practical option for cell-based screening, and a convenient means for drug testing. However, it 

is evident that these 2-D cultures suffer disadvantages associated with the loss of tissue-specific 

architecture, mechanical and biochemical cues, cell-cell interactions, and cell-matrix interactions, 

thus making them relatively poor models for drug efficacy and toxicity as well as cell biology [79, 

83]. 

 

Figure 4: Schematic comparison of tumor in vivo and tumor spheroid in vitro. Comparison of 

the components between a tumor and spheroid model. Spheroids can develop gradients of oxygen, 

nutrients, metabolites, and soluble signals, thus creating heterogeneous cell populations. 
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Modified from Phung YT et al.[84]. 

Unlike 2-D environments, a spheroid-formation culture allows cells in vitro to grow in all 

directions, more similarly to how they would do in vivo (Figure 4) [84]. For example, spheroids 

can develop gradients of oxygen, nutrients, metabolites, and soluble signals, thus creating 

heterogeneous cell populations. In addition, spheroids have a well-defined geometry and optimal 

physiological cell-cell and cell-matrix interactions. The use of 3-D culture allows greater 

predictability of efficacy and toxicity in humans before drugs move into clinical trials [85]. As an 

example, compared with 2-D culture, colon cancer HCT-116 cells in 3-D culture are more resistant 

to specific anticancer drugs; such chemo-resistance has been observed in vivo as well [86]. 

Moreover, since the gene expression of the spheroids will more closely resemble gene expression 

in vivo, for the purposes of drug toxicology screening it is much more useful to test gene 

expression of in vitro cells grown in 3-D than in 2-D. Therefore, 3-D culture represents a modified 

condition for cancer simulation and it is more acceptable and adaptable as a drug testing assay [87, 

88]. 

1.5 Perspective 

Recent developments such as marker identification and culture technique make it possible to 

investigate the effects of cisplatin on CSCs more closely. The observation of cervical cancer 

cellular responses to cisplatin treatment could offer insights for improving the clinical outcome 

by optimizing the usage of cisplatin in cervical cancer treatment. Given the fact that ALDH is a 

universal CSC-marker as well as a functional key enzyme, ALDH inhibition is a reasonable 

approach for CSC-targeting. Furthermore, ATRA, an essential part of the ALDH/RA signaling 

pathway, will hopefully decrease expression of ALDH, which might be a complement to cisplatin 

treatment.  
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2. Hypothesis and aims of the study 

Cisplatin might cause an up-regulation of ALDH activity in cervical cancer. As a component of 

the ALDH-ATRA signaling pathway, ATRA possibly represses ALDH activity. In order to test 

this hypothesis, the thesis had the following aims: 

  1) to evaluate the difference in CSC-related properties between ALDHbright cells and ALDHlow 

cells in cervical cancer cell lines; 

  2) to compare the difference in CSC-related properties between spheroid-derived cells and 

monolayer-derived cells; 

  3) to characterize the proportion of ALDHbright cells after treatment by serial titrated 

concentration of cisplatin or/and ATRA; 

  4) to investigate the combination of ATRA and cisplatin on specific parameters including cell 

proliferation, apoptotic ratio, cellular motility, and mRNA expression of CSC-markers. 
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3. Materials 

3.1. Laboratory equipment, kits, and other materials used 

The information on laboratory equipment, commercial kits, chemical reagents, and other 

consumable materials is described in Table 3, 4, 5, and 6, respectively.  

Table 3: List of laboratory equipment 

Terms Manufacturers 

Axiovert microscope Carl Zeiss, Jena, Germany 

Autoclave machine V150 Systec, Linden, Germany 

FACS CaliburTM System BD Science, Franklin Lakes, USA 

FACS JazzTM System BD Science, Franklin Lakes, USA 

Biological safety cabinet Nunctm, Wiesbaden, Germany 

BioRad, Chrome 4-BioRad, Munich, Germany 

Freezer, -20°C Bosch, Stuttgart, Germany 

Freezer, -80°C Heraeus, Hanau, Germany 

Freezer, -150°C Sanyo, Osaka, Japan 

Incubator, HERA cell 150 Heraeus, Hanau, Germany 

Lab water purification Systems Milli-

Ro/Milli-Q Plus 

Millipore Corporation, Billerica, USA 

Lamin Air HB 2472 (Laminar flow work 

bench) 

Heraeus Instruments, Hanau, Germany 

Liquid suction system Ditabis, Pforzheim, Germany 

Multicentrifuge Heraeus, Hanau, Germany 

Microwave Bosch, Stuttgart, Germany 

Multipipettor (8×10 μl) Eppendorf, Hamburg, Germany 

Multipipettor (8×100 μl) Eppendorf, Hamburg, Germany 

Microplate photometer, Multifcan TM FC Thermo Scientific, MA, USA 

Nanodrop Peqlab, Erlangen, Germany 

Pipettes (10 μl, 20 μl, 100 μl, 1000 μl) Eppendorf, Hamburg, Germany 
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Refrigerator, 4°C Bosch, Stuttgart, Germany 

Steam sterilizer, varioklavtyp 

300/400/500 EP-Z 

Heraeus Instruments, Hanau, Germany 

Thermocycler Eppendorf, Hamburg, Germany 

Vortex mixer Scientific Industries, N.Y., USA 

Water bath, TW12 Julabo, Seelbach, Germany 

Weight BP-3105 Sartorius, Göttingen, Germany 

Table 4: List of commercial kits 

Terms Manufacturers 

Aldefluor assay Kit Stem Cell Technologies, NC, USA 

Annexin-V/PI apoptosis Kit Rothe, Manheim, Germany 

Cell proliferation kit I (MTT) Sigma-Aldrich, MO, USA 

Corning Bio Coat™ matrigel 

Invasion chambers 

Corning, N.Y., USA 

DNase I kit Sigma-Aldrich, MO, USA 

Power SYBR Green PCR Master Mix Applied biosystems, MA, USA 

Revert Aid First Strand cDNA Synthesis Kit Thermo Scientific, MA, USA 

 

Table 5: List of chemical reagents 

Terms Manufacturers 

Aqua (distilled water) Biochrom, Berlin, Germany 

Agarose Biozym, Oldendorf, Germany 

All-trans retinoic acid (ATRA) Sigma-Aldrich, MO, USA 

BD FACS FlowTM BD Sciences, Franklin Lakes, USA 

Bovine serum albumin (BSA) Sigma, Steinheim, Germany 

Brefeldin A (BFA) BD Sciences, Franklin Lakes, USA 

Chloroform JT Baker, Deventer, Netherlands 

Cisplatin Sigma-Aldrich, MO, USA 
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Countess cell counters Invitrogen, Carlsbad, CA, USA 

Dulbecco's modified Eagle's medium with 

Gluta MAXTM-I (DMEM) 

Invitrogen, Heidelberg, Germany 

Dimethyl sulphoxide (DMSO) Sigma, Steinheim, Germany 

Ethanol, 70% JT Baker, Deventer, Netherlands 

Ethanol, 96% Sigma, Deisenhofen, Germany 

Epidermal growth factor (EGF) Biochrom, Berlin, Germany 

Fetal bovine serum (FBS) Gibco BRL, Karlsruhe, Germany 

Fibroblast growth factor-basic (bFGF) Biochrom, Berlin, Germany 

Formalin solution 10% (v/v) JT Baker, Deventer, Netherlands 

Giemsa staining solution JT Baker, Deventer, Netherlands 

Isopropanol JT Baker, Deventer, Netherlands 

Methanol JT Baker, Deventer, Netherlands 

Penicillin/Streptomycin (P/S) Biochrom, Berlin, Germany 

Phosphate-buffered saline (PBS)  

without Mg2+/Ca2+ 

Biochrom, Berlin, Germany 

Propidium iodide (PI) Sigma-Aldrich, MO, USA 

Quantum 263 medium PAA, Cöllbe, Germany 

Taxol Sigma-Aldrich, MO, USA 

RNase away Sigma-Aldrich, MO, USA 

Trypan blue Biochrom, Berlin, Germany 

Trypsin/EDTA solution Biochrom, Berlin, Germany 

Trizol reagent Invitrogen, Carlsbad, CA, USA 

 

Table 6: List of consumable materials and others 

Terms Manufacturers 

Cell culture dish (100×20 mm) BD Bioscience, Franklin Lakes, USA 

Cell culture flask (25 cm2, 75 cm2) BD Bioscience, Franklin Lakes, USA 
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Cell culture plates (6-well, 24-well, 96-well) BD Bioscience, Franklin Lakes, USA 

Cell strainer (40 μm) BD Bioscience, Franklin Lakes, USA 

Optical 8-cap strips Applied systems, MA, USA 

Optical 8-tube strips Applied systems, MA, USA 

Pipette tips  

(0.5-10 μl, 10-100 μl, 100-1000 μl) 

Sarstedt, Nümbrecht, Germany 

Polypropylene conical tubes (15 ml, 50 ml) BD Science, Franklin Lakes, USA 

Polypropylene FACS tubes (1 ml, 5 ml) BD Science, Franklin Lakes, USA 

Reaction tubes (0.5 ml, 1 ml, 2 ml) Eppendorf, Hamburg, Germany 

BD FalconTM polypropylene BD Science, Franklin Lakes, USA 

 

3.2 Cervical cancer cell lines 

The information on cell lines is listed in Table 7.  

Table 7: Information on cell lines 

Cell lines HPV status Culture medium 

HeLa HPV18+ DMEM + 10% FCS + 1% P/S or Quantum 263 + 

EGF* + bFGF# + 1%P/S 

MRIH186 HPV16+ DMEM + 10% FCS + 1% P/S or Quantum 263 + 

EGF* + bFGF# + 1%P/S 

SiHa HPV16+ DMEM + 10% FCS + 1% P/S or Quantum 263 + 

EGF* + bFGF# + 1%P/S 

*: the final concentration of EGF is 10 ng/ml; #: the final concentration of bFGF is10 ng/ml.  

 

3.3 Primer sequences 

The sequences of primers used for quantitative real-time PCR are listed in Table 8.  

Table 8: Primer sequences used for quantitative real-time PCR (5’→ 3’) 

Transcripts Forward primer sequences Reverse primer sequences 

ABCG2* ACCTGAAGGCATTTACTGAA TCTTTCCTTGCAGCTAAGAC 
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ALDH1A1* TGTTAGCTGATGCCGACTTG TTCTTAGCCCGCTCAACACT 

ALDH1A2* TGATCCTGCAAACACTGCTC CTGGAGCTGGGTGGTAAGAG 

ALDH1A3* TCTCGACAAAGCCCTGAAGT TATTCGGCCAAAGCGTATTC 

ALDH1B1* CTGGAGCTGGGTGGTAAGAG CTTTCTCCACGGTTCTCTCG 

ALDH1L1* ATCTTTGCTGACTGTGACCT GCACCTCTTCTACCACTCTC 

ALDH1L2* GCCTGGTCTCGTTACCAAAA GCCACTTTCACCTCTTCAGC 

GAP-DH AGAAGGCTGGGGCTCATTTG AGGGGCCATCCACAGTCTTC 

Nanog# AATACCTCAGCCTCCAGCAGATG TGCGTCACACCATTGCTATTCTTC 

Oct3/4# GACAGGGGGAGGGGAGGAGCT

AGG 

CTTCCCTCCAACCAGTTGCCCCAA

AC 

Sox2# CGAGTGGAAACTTTGTCGGA TGTGCAGCGCTCGCAG 

Primer sequences labelled with * were obtained from Nakahata et al. [89]; and with # were from 

Chen et al. [90].  
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4. Methods 

4.1 Monolayer-derived cells (MDCs) and cell line maintenance 

Cell lines, i.e. HeLa (HPV18+), MRIH186 (HPV16+), and SiHa (HPV16+), were initially 

maintained in Dulbecco's modified Eagle's medium (DMEM; Invitrogen, Heidelberg, Germany) 

supplemented with penicillin (100 U/ml), streptomycin (100 µg/ml) (Biochrom, Berlin, Germany) 

and 10% fetal calf serum (FCS; Gibco, Karlsruhe, Germany) (pre-inactivated at 56°C for 30 min) 

at 37°C, 5% CO2, and 95% humidified air atmosphere (culture condition). All experiments were 

conducted when cells were in an exponential growth phase (70%-80% confluence). 

For the passaging of cells, the medium was removed. Cells were washed with 10 ml PBS (adding 

PBS, gently shaking, removing PBS). Subsequently, cells were washed and incubated twice with 

2.5 ml Trypsin/EDTA (TE; Biochrom, Berlin, Germany) (adding TE, gently shaking, 30 sec 

incubation at room temperature, removing TE). Another 3 min incubation was carried out at 37°C 

to detach the cells. When the cells were visibly round shaped under the microscope, the reaction 

was stopped by adding 8 ml of complete culture medium. The cell-containing medium was 

pipetted up and down 20 times to get a single cell suspension. After cell counting, the cells were 

split, for example 1:4, by 2 ml cell solution and 6 ml fresh medium into new dishes.  

For long time storage, cells were frozen and kept at -150°C. After cells were detached and counted, 

the cell suspension was transferred into a falcon tube and centrifuged for 5 min at 1,400 rpm. The 

supernatant was removed and the cell pellet was resuspended in 3-5 ml of pre-cooled freezing 

medium (10% DMSO, 30% FCS, 60% DMEM). Cells were promptly transferred into well-labeled 

cryotubes at ~106 cells/tube on ice. These cryostocks were kept at -150°C after a freezing interval 

at -80°C overnight. For thawing out cells, a cryostock was immersed into 37°C warm clean water, 

and gently shaken and tilted, to defrost cells quickly. These cells were transferred immediately to 

a culture dish with complete culture medium, which was at least 9-fold of the liquid volume in the 

cryotubes. After an overnight attachment step, a medium replacement was carried out to get rid of 

DMSO containing medium.  

4.2 Spheroid formation and spheroid-derived cells (SDCs)  

A glass bottle (100 ml) with a lid was sterilized by autoclaving at 121°C, 15 min. and 0.65 g 
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agarose (Biozym, Oldendorf, Germany) was weighed and transferred into the sterilized glass bottle 

under a clean hood. PBS (65 ml) was added into the bottle and the lid was loosely covered. The 

bottle was subsequently heated for 2 min at 600 w in a microwave. (do not screw the lid tightly, 

otherwise the bottle could explode due to the steam pressure during heating). The hot agarose 

liquid was immediately transferred into a culture container, carefully to avoid bubbles, at 6 ml/dish 

or 1 ml/well of a 6-well plate. To solidify the gel, the liquid containing dishes or plates were placed 

in the hood horizontally for 20 min at room temperature. Agarose coated dishes or plates can be 

stored in an incubator at 95% humidified air atmosphere for one week.  

Parental monolayer cells were grown in culture dishes until there was 70%-80% confluence. After 

cells were detached as described above, the cell suspension was transferred to 15 ml tubes in which 

cells were subsequently washed twice with PBS. Cells were resuspended in Quantum 263 medium 

(PAA, Cöllbe, Germany) supplemented with 10 ng/ml EGF and 10 ng/ml bFGF. To generate 

spheroids, single cells were plated in cell culture dishes coated with 10% agarose at a specific 

density of 2×103 cells/ml. Cells were kept in the incubator at culture condition. Every 3-4 days, 

half of the medium was replaced. The medium was aspirated slowly and filled into tubes with a 

conical bottom. Cell suspensions were left for 10 min to sediment, and the supernatant was 

carefully removed leaving the spheroids. The same volume of fresh medium was added and the 

spheroids were carefully resuspended. This suspension was placed back into the plates for further 

culturing.  

To split the spheroids into the next generations, a sterile 40 µm mesh filter was used for collecting 

the spheroids. The spheroids were centrifuged at 1,500 rpm for 5 min, 2 ml of TE was added and 

the cell suspension was pipetted up and down. After a 5 min incubation at 37°C, the cells were 

washed with PBS, before resuspending them in fresh culture medium. The cell culture was 

continued in 10% agarose coated culture plates at a specific density of 2×103 cells/ml, and kept in 

the incubator at culture condition. For the experiments, 3rd or later generation spheroids were used.  

4.3 Aldefluor assay staining and FACS sorting 

The ALDH enzymatic activity of cells was determined by using the Aldefluor assay kit (Stem Cell 

Technologies, NC, USA). Spheroids were collected using a 40 µm mesh and disaggregated into 

single cells by TE digestion for 5 min followed by up- and down-pipetting 20 times using a 1,000 
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µl pipette tip. Then the single-cell suspension was washed once with Quantum263, and once with 

PBS. Cells were resuspended in 200 µl of Aldefluor assay buffer (1×103 cells/ µl) containing 1 µl 

ALDH substrate (BAAA), and incubated for 30 min at 37°C in the dark. As a negative control, an 

aliquot was treated with 2 µl diethylaminobenzaldehyde (DEAB), a specific ALDH1 inhibitor (as 

shown in Figure 5 A). After additional staining and washing, all subsequent procedures were 

performed on ice to inhibit efflux of the ALDH substrate from cells.  

To test the competitive inhibition of ATRA to BAAA, additional aliquots with different 

concentrations of ATRA (final concentrations: 3 µM, 30 µM, and 300 µM) were prepared before 

BAAA was added. The residual steps of Aldefluor assay staining were carried out as mentioned 

above. 

To test the cellular recovery speed after ATRA competition, aliquots with 30 µM of ATRA were 

incubated for 30 min at 37°C in the dark. Aldefluor assay staining was carried out immediately 

following ATRA removal, or after a 30 min incubation at room temperature following ATRA 

removal. 

The BD FACS CaliburTM system was used for the data acquisition of the ALDH assay. The gating 

strategies were carried out as follows: 1) create a Forward Scatter (FSC) vs. Side Scatter (SSC) 

dot plot; 2) create a region R1 that encompasses the nucleated cells based on scatter; 3) create a 

Fluorescence Channel 1 (FL1) vs. SSC dot plot, gated on R1; 4) On the FL1 vs. SSC plot, adjust 

the FL1 photo-multiplier voltage to let the right edge of cells locate at the middle of screen; 5) for 

data acquisition, switch the analyzer from set-up mode to acquisition mode, collect 20,000 events 

or all the cells in the tube in R1 for each test, and control the sample using the same instrument 

settings (Figure 5 A). These assays were performed three times independently and analyzed by 

using the mean values of data. After data acquisition, Flowjo software (Treestar, OR, USA) was 

employed for subsequent data analysis.  

The cell sorting was performed on a FACS JazzTM System. ALDH-stained cells were resuspended 

in ALDH buffer at 5×106 cells/ml on ice. R1 was created on an FSC vs. SSC dot plot to encompass 

the nucleated cells based on scatter. With the detectors in linear mode, the voltage was adjusted so 

that the cellular debris and dead cells were seen in the lower left corner. Gated on R1, a FL1vs. 

SSC dot plot was created. The sorting gates were established by negative control cells, which were 
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treated with the ALDH inhibitor DEAB. The 10-20% most bright-side cells were sorted out as 

ALDHbright cells, while the 10-20% lowest bright cells on the left side were collected as ALDHlow 

cells (Figure 5 B). During the sorting progress, cells were kept cold by the use of a cooling 

apparatus. The sorted cells were collected in Quantum 263 supplemented with EGF and bFGF for 

further experiments.  

 

Figure 5: Aldefluor assay staining, gating strategy, and sorting strategy. A) Illustration of 

Aldefluor assay staining. B) Gating strategy for Aldefluor assay staining: a) gating the nucleated 

cells; b) setting the threshold of negative control; c) gating out positive cells based on the negative 

control. C) The lowest and most bright cells are sorted out. 
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4.4 MTT assay 

4.4.1 IC50 of different drugs and drug resistance in MDCs 

To observe drug resistance of cells in different conditions, and cell viability, and to calculate the 

IC50 of different drugs, MTT assay (Sigma-Aldrich, MO, USA) was used. Cells were seeded at 

2×103 cells/well in a 96-well plate, and cultured for 24 h prior to the addition of drugs. Cisplatin 

was added into wells at 0.03 μM to 100 μM by 3-fold dilution in triplicates. Alternatively, 

paclitaxel was added into wells at 0.03 nM to 100 nM by 3-fold dilution in triplicates. 

After a 72 h incubation at culture condition, 10 μl of the MTT labeling reagent (final concentration 

0.5 mg/ml) was added to each well. The microplate was further incubated for 4 h. Subsequently, 

100 μl of the solubilization solution was added into each well. The plate was allowed to stand 

overnight at 37°C. Absorbance was measured at 570 nm (reference at 590 nm). Cell viability was 

calculated by 100% × (absorbance of sample – absorbance of blank control) / (absorbance of 

untreated control – absorbance of blank control) for each cell line. For the drug resistance assay, a 

certain concentration of a drug (5 μM cisplatin or 5 nM paclitaxel) was used to treat cells.   

4.4.2 IC50 of different drugs and drug resistance in SDCs 

By placing 100 μL of 2×104 cells/ml in single-cell suspension, 2×103 SDCs were seeded into an 

ultra-low attachment 96-well plate with the respective medium. 50 μL of fresh medium was added 

on the 4th day and 7th day. Cisplatin was added into wells at 0.03 μM to 100 μM by 3-fold dilution 

in triplicates on the 10th day. Alternatively, paclitaxel was added into wells at 0.03 nM to 100 nM 

by 3-fold dilution in triplicates. The next steps of IC50 determination were the same as described 

in the MDCs procedure.  

4.4.3 Checkerboard titration experiments and drug-drug interaction calculation 

96-well checkerboard titration experiments combined with MTT assay were used to evaluate cell 

proliferation, and to optimize the concentrations of two drugs in combination. The seeding 

protocol of cells was same as 4.4.1 and 4.4.2, in each well of 96-well plate. Cisplatin was 3-fold 

serially diluted along the ordinate, while the second drug, ATRA, was 3-fold serially diluted along 

the abscissa (Figure 6). The resulting checkerboard contains gradients of each combination of the 

two drugs. MTT assay was carried out after a 72 h incubation with drug administration at culture 
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condition. The drug-drug integration was further analyzed by calculating the combination index 

(CI) (Calcusyn software, Biosoft, USA; www.combosyn.com). A CI <0.9 represents synergistic 

effects, while 0.9 ≤CI ≤1.1means additive effects, and CI >1.1 antagonistic effects.  

4.5 Annexin-V/Propidium iodide (PI) staining assay 

After trypsinization, 1×105 cells were prepared and pelleted. 100 μL of working solution was 

prepared by adding 2 μL Annexin-V and 2 μL PI into 96 μL incubation buffer (Rothe, Manheim, 

Germany). The cells were resuspended and incubated for 15 min in the dark at room temperature. 

Subsequently, cells were resuspended in 100 μL of FACS buffer after washing with PBS. Based 

on single staining of an Annexin-V tube or PI tube, compensation was performed for every cell 

line to correct for the spectral overlap of different fluorochromes. The gating strategy was: 1) R1 

was created on an FSC vs. SSC dot plot (Figure 7 A); based on R1, a quadruple gate was further 

employed on an FL1 vs. FL3 dot plot. The upper-right (Q2) and lower-right (Q3) population were 

regarded as apoptotic cells (Figure 7 B).  

4.6 Colony formation assay 

Cellular stemness was observed by colony formation assay. The initial cell density was 100 

cells/ml in DMEM medium, supplemented with 10% FBS. The cell suspension was added into a 

6-well plate at 2.5 ml/well. Cells were maintained in complete medium for 2 weeks. On the 14th 

day, cells were fixed with cold methanol 100% for 20 min, then dried and stained with Giemsa (JT 

Baker, Deventer, Netherlands) solution for 20 min. After washing with distilled water and air 

drying, colonies were counted manually. Colonies that contained >50 cells or were >0.1 mm were 

counted with an ocular micrometer. The clone formation efficiency (CFE) was calculated 

according to the following formula: CFE =number of colonies/number of seeded cells ×100%.  

4.7 Spheroid formation assay 

Additionally, a spheroid formation assay was also used to assess the cellular stemness. A single 

cell suspension was adjusted to 200 per ml in Quantum 263 supplemented with 10 ng/ml EGF and 

10 ng/ml bFGF. The cell suspension was added into a 6-well plate at 2.5 ml/well. Fresh medium 

was changed every 3-4 days. After 2 weeks culture, the spheroid formation efficiency (SFE) was 

calculated. The spheroid-containing medium was gently stirred by pipetting up and down using a 
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200 μL tip. After a 5 min settle-down, spheroids >0.1 mm were counted under an ocular 

micrometer. SFE was calculated according to the following formula: SFE =number of 

spheroids/number of seeded cells ×100%.  

 

Figure 6: A) Illustration of checkerboard test. 1A-1H: positive control compromises wells in which 

cells were treated with PBS; negative control represents wells in which cells were treated with the 

lethal concentrations of drugs. 2A-12H: different combinations of cisplatin and ATRA 

concentrations; cisplatin is 3-fold serially diluted horizontally, and ATRA is 3-fold serially diluted 

vertically. B) Example of CI readout. CI <0.9 stands for synergistic effects (point 2, with value of 

0.32 as an example), while 0.9 ≤CI ≤1.1 stands for additive (for example point 1, with a value of 

0.92), and CI >1.1 stands for antagonism. 

 

Figure 7: Gating strategy for Annexin-V/PI staining. A) Gating the nucleated cells. B) For 

analysis, a quadruple plot is further employed on an FL1 vs. FL3 dot plot. The percentage of cells 

was determined in the four quadrants: live cells (Annexin-V−/PI−, lower-left quadrant), early 
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apoptotic cells (Annexin-V+/PI−, lower-right quadrant), late apoptotic cells (Annexin-V+/PI+, 

upper-right quadrant), and necrotic cells (Annexin-V−/PI+, upper-left quadrant). Both early 

apoptotic cells and late apoptotic cells were regarded as cells undergoing apoptosis. 

4.8 Wound healing assay 

Cells were seeded at 1.5×105 cells/well into the prepared 24-well plate to create a confluent 

monolayer. The plate was incubated overnight at culture condition, allowing cells to adhere and 

spread on the substrate completely. A "wound" was created by scratching the cell monolayer in a 

straight line with a 200 μL tip. The debris was removed by washing the cells once with 1 ml of the 

growth medium, and then 1 ml of medium was replaced. To obtain the same field during the image 

acquisition, markings were created under the well to be used as reference points close to the scratch. 

The dish was placed under a phase-contrast microscope, and the reference mark was outside the 

capture image field, but within the eyepiece field of view. The image of the scratch was acquired 

every 12 h, until the scratching field was completely filled by migrated cells. The images acquired 

for each sample were further analyzed quantitatively using software (Adobe Photoshop version 5, 

CA, USA). For each image, the distance between one side of the scratch and the other side was 

measured at intervals (μm).  

4.9 Invasion assay 

Warm culture medium was added to the interior of the inserts and the bottom of Matrigel Invasion 

chambers (Corning, NY, USA), and allowed to rehydrate overnight. After rehydration, the medium 

was carefully removed without disturbing the layer of Matrigel on the membrane. A cell 

suspension was prepared in culture medium containing 5×104 cells/ml for 24-well chambers. 750 

μL of DMEM, containing 10% FCS serving as chemo-attractant, was added to the wells of the 

plate. Sterile forceps were used to transfer the chambers into wells. Immediately, 0.5 ml of cell 

suspension was added to the 24-well chambers, which were subsequently incubated for 24 h. After 

incubation, the non-invading cells were removed from the upper surface of the membrane by gentle 

scrubbing, and the cells on the lower surface were stained with Giemsa (JT Baker, Deventer, 

Netherlands). Cell counting was facilitated using a photomicroscope at 100× magnification.  
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4.10 RNA isolation  

For the monolayer: the medium was removed from the culture dish; 1 ml of Trizol (Invitrogen, 

Carlsbad, USA) reagent was added directly to the cells in the culture dish per 10 cm2 of culture 

dish surface area; the cells were lysed directly in the culture dish by pipetting up and down several 

times. The lysate was transferred into a new 2 ml Eppendorf tube. 

For the spheroids: the spheroids were harvested by filtration through a 40 µm mesh. Then the cells 

were centrifuged at 1,500 rpm for 5 min. Then the cells were washed with PBS twice. The 

supernatant was discarded and 1 ml of Trizol per 106 cells was added. The cells were lysed by 

pipetting up and down several times before being transferred into a new 2 ml Eppendorf tube. 

Chloroform (0.2 ml per 1 ml of Trizol reagent) was added. The tube was capped securely and 

shaken vigorously by hand for 15 sec. After 15 min incubation, the tube was centrifuged at 13,000 

rpm for 15 min at 4°C. The aqueous phase of the sample was carefully transferred into a new tube. 

Per 1 ml used for homogenization, 0.5 ml of 100% isopropanol was added, incubated on ice for 

15 min, and then centrifuged at 13,000 rpm for 10 min at 4°C. The supernatant from the tube was 

discarded, leaving only the RNA pellet. The pellet was washed with 1 ml of 75% ethanol, vortexed 

briefly, and then centrifuged at 7500 rpm for 5 min at 4°C. After the supernatant was removed, the 

RNA pellet was air dried for 5-10 min. The concentration and quality of RNA was determined by 

a Nanodrop (Peqlab, Erlangen, Germany). Only RNA samples, which had an A280/A260 ratio 

between 1.8 and 2.0, were used for subsequent experiments.  

To avoid genomic DNA contamination, the extracted RNA underwent a DNA removal procedure 

by a DNase kit (Sigma-Aldrich, MO, USA). The listed components were mixed in a PCR-grade 

tube in the indicated order: 8 µL RNA solution, 1 µL Reaction Buffer, and 1 µL DNase I 

(amplification grade, 1 unit/ml). Then the components were mixed gently by finger snipping and 

centrifuged briefly. After 20 min incubation at room temperature, 1 µL Stop Solution was added 

to bind calcium and magnesium ions, and to inactivate the DNase I. To denature both the DNase I 

and the RNA, the tube was heated at 70°C for 10 min, chilled on ice, and the RNA solution was 

collected by a brief centrifugation. The DNase-treated RNA was used for cDNA synthesis or kept 

at -80°C for long time storage.  
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4.11 Reverse transcription  

Total RNA (1 µg) was converted to cDNA by RT-PCR using a High Capacity RNA-to-cDNA Kit 

(Thermo Scientific, MA, USA). The following components were combined in a tube on ice: 1 μg 

of DNAse-treated template RNA, 1 μl Oligo (dT) 18 primer, 10 μl nuclease free water, 4 μl of 5× 

Reaction Mix, 1 μl of RNase Inhibitor (20 U/µL), 2 μl dNTP solution, and 1 μl of Revert Aid RT 

(200 U/µL). The tube was capped and gently vortexed for mixing. Then the tube was centrifuged 

briefly to collect the contents. The reaction was incubated using a Thermal cycler (Eppendorf, 

Hamburg, Germany) at 42°C for 60 min and the reaction terminated at 70°C for 15 min. The 

obtained cDNA solution was held at 4°C until use. For long-term storage, the cDNA solution was 

stored at -20°C.  

4.12 Quantitative real-time PCR 

Quantitative real-time PCR was performed using the Power SYBR Green mix (Applied biosystems, 

MA, USA) and run on a real time PCR machine (4-BioRad, Munich, Germany). The following 

components were combined in a tube on ice: 25 μl of Express SYBR Green ERTM qPCR Super 

Mix Universal, 0.4 μl of 10 μM specific forward primer, 0.4 μl of 10 μM specific reverse primer, 

1 μl of cDNA solution, and 23.2 μl of PCR-grade water. PCR conditions were as follows: 95°C 

for 10 min, 40 cycles of 95°C for 15 sec, and 60°C for 1 min. Reactions were carried out in 

triplicate with RT controls, GAP-DH was used as a reference gene, and data were analyzed using 

the delta – delta Ct method. 

4.13 Statistical Analysis 

Statistical paragraphs and analyses were performed using Graphpad Prism 5.01 software (La Jolla, 

CA, USA). The Student’s t-test was used to determine the statistical significance of differences of 

2 group comparisons. To examine differences among 3 groups, an ANOVA analysis was performed. 

The results are presented as the mean value and standard deviation (± SD). P values of <0.05 were 

regarded as statistically significant. 
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5. Results 

5.1 ALDHbright and ALDHlow cells possess different profiles to each other in chemo-resistance, 

colony formation ability, and RNA expression of CSC-markers  

ALDH has been reported to label out CSCs in cervical cancer as a universal CSC-marker [40]. By 

Aldefluor assay, ALDHbright cells and ALDHlow cells can be sorted. The differences in the CSC-

related profile of these two sorted populations were investigated for chemo-resistance, colony 

formation ability, and RNA expression of CSC-markers (TFs and ALDH isotypes).  

5.1.1 ALDHbright cells are more chemo-resistant than ALDHlow cells 

In order to investigate the chemo-resistance, cisplatin and paclitaxel, the two most commonly used 

chemotherapy reagents were tested. Sorted cells were cultured for 72 h with different cisplatin 

concentrations (0.03-100 μM, 3-fold dilution) or paclitaxel concentrations (0.03-100 nM, 3-fold 

dilution). Cell viability was determined by MTT, and IC50 was calculated by Graphpad 5.01 

(Figure 8). 

The IC50 of cisplatin was 1.46 ± 0.58 μM, 2.79 ± 0.92 μM, and 7.05 ± 1.80 μM in ALDHlow cells 

of HeLa, MRIH186, and SiHa, respectively (Figure 8 B). In each cell line, ALDHbright cells were 

more resistant to cisplatin than ALDHlow cells. The IC50 of HeLa ALDHbright cells was 7.29 ± 1.20 

μM, about 3.99-fold higher than that in ALDHlow cells. The IC50 was 9.92 ± 0.88 μM in MRIH186 

ALDHbright cells and 15.16 ± 1.73 μM in SiHa ALDHbright cells (Figure 8 B). Additionally, cell 

viability was measured after 72 h treatment with 5 μM cisplatin. The cell viability was at 77.98 ± 

5.01%, 81.45 ± 2.90%, and 86.03 ± 5.54% in HeLa, MRIH186, and SiHa ALDHbright cells, 

respectively; however, the viable proportion was reduced to 16.47 ± 3.56%, 25.80 ± 4.42%, and 

52.76 ± 6.93% in the corresponding ALDHlow cells, which was significantly lower than in 

ALDHbright cells (p <0.05; Figure 8 C). Similarly, in their response to cisplatin treatment, 

ALDHbright cells also exhibited increased paclitaxel resistance compared to ALDHlow cells in these 

cell lines (Figure 8 D). The IC50 of HeLa, MRIH186, and SiHa ALDHlow cells was 1.45 ± 0.41 

nM, 3.19 ± 1.90 nM, and 2.76 ± 1.51 nM, respectively. The ALDHbright cells had an IC50 of 3.20 ± 

1.08 nM, 10.12 ± 2.43 nM and 7.92 ± 0.32 nM, which represents an increment about 1.20-fold, 

2.17-fold, and 1.87-fold, respectively (Figure 8 E). The cellular viability of ALDHbright cells were 



30 

 

about 2.15-fold, 2.49-fold and 1.28-fold higher than that of ALDHlow cells after 5 nM paclitaxel 

treatment in HeLa, MRIH186, and SiHa cells, respectively (Figure 8 F).  

 

Figure 8: Chemo-resistance in ALDHbright cells and ALDHlow cells sorted from cervical cancer 
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cell lines. A) The response of ALDHbright and ALDHlow cells to cisplatin (0.03-100 μM, 3-fold 

dilution) determined by a MTT assay. Dashed lines indicate the 50% viability of cells. B) The IC50 

to cisplatin is calculated from the data of a MTT assay. C) Quantification of cellular viability after 

5 μM cisplatin treatment in ALDHbright and ALDHlow cells. D) The response of ALDHbright and 

ALDHlow cells to paclitaxel (0.03-100 nM, 3-fold dilution) determined by MTT assay. Dashed lines 

describe the 50% viability of cells. E) The IC50 to paclitaxel is calculated from the data of a MTT 

assay. F) Quantification of cellular viability after 5 nM paclitaxel treatment in ALDHbright and 

ALDHlow cells. Error Bars: mean values ± SD of three replicates. *: p <0.05.  

5.1.2 ALDHbright cells are more clonogenic than ALDHlow cells 

Colony formation assay represents a measure of stemness. In HeLa cells, the clone numbers 

formed by ALDHbright cells were 5.48 times higher than those formed by ALDHlow cells (p <0.05). 

This colony formation efficiency of ALDHbright cells was also 5.53-fold higher than the ALDHbright 

cells of MRIH186 (p <0.05). The ALDHbright cells of SiHa had a 3.29-fold (p <0.05) greater 

capacity to form clones than ALDHlow cells (Figure 9). Of note, the size of the colonies was 

different with a consistently larger diameter in ALDHbright cells in all three cell lines.  

 

Figure 9: Colony formation ability of ALDHbright cells and ALDHlow cells sorted from cervical 

cancer cell lines. A) Representative photos of the colony formation assay. Dark blue dots represent 

the colonies. B) Quantification of colony formation efficiency in ALDHbright cells compared to 

ALDHlow cells. Error bars: mean values ± SD of three replicates. *: p <0.05. 

5.1.3 Characterization of mRNA expression of ALDH isotypes and other CSC-markers in 



32 

 

ALDHbright cells and ALDHlow cells 

Considering the various isotypes of the ALDH supergene family, it is intriguing to know which 

isotype is expressed in a given cell line and responsible for Aldefluor assay results. This question 

can be further answered by mRNA expression measurement. mRNA of important CSC-markers, 

such as ABCG2 and TFs, was also included in the analysis.    

As shown in Figure 10, the ALDH1A3 mRNA showed the biggest difference in expression 

between ALDHbright and ALDHlow cells, being 6.27-fold higher in the ALDHbright cell population 

than the ALDHlow cell population in HeLa, 2.82-fold higher in MRIH186, and 3.55-fold higher in 

SiHa. Slight differences were found in other isotypes. Expression of ABCG2 mRNA showed a 

difference between ALDHbright and ALDHlow cell populations with 2.31- and 2.47-fold in HeLa 

and SiHa. The mRNA levels of TFs were generally increased in the ALDHbright when compared to 

ALDHlow. However, the increase was variable and cell line dependent. For example, Oct3/4 

mRNA was 0.97-, 4.25-, and 2.56-fold in HeLa, MRIH186, and SiHa, respectively. mRNA of 

Sox2 had a 1.23-, 2.07-, and 3.21-fold increase, while Nanog had an 1.14-, 0.82-, and 2.14-fold 

change between ALDHlow and ALDHbright cells in HeLa, MRIH186, and SiHa, respectively.  

 

Figure 10: Quantitative real-time PCR analysis of mRNA expression of CSC-markers. The fold 
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change (ALDHbright cells sorted from cervical cancer cell lines/the corresponding ALDHlow cells) 

is given (delta – delta Ct method). The CSC-markers are generally up-regulated in ALDHbright 

cells in the cervical cancer cell lines. A) HeLa; B) MRIH186; C) SiHa. Error bars: mean values 

± SD of three replicates. *: p <0.05. 

5.2 SDCs display different biological properties compared to MDCs 

In the first part of the study, it was confirmed that ALDH works as a CSC-marker in cervical 

cancer cell lines. According to the literature and our previous results [47, 87, 88], spheroid culture 

is not only a way to obtain more ALDHbright cells, but also a more suitable method to mimic the 

condition in vivo than monolayer culture. Therefore, spheroid culture represents a more suitable 

and advanced way for drug administration research. The following experiments were done in order 

to show the difference between SDCs and MDCs in CSC-properties such as colony formation 

ability, chemo-resistance, and mRNA expression of CSC-markers.  

5.2.1 Cervical cancer cell lines are able to form spheroids 

The three cell lines HeLa, MRIH186, and SiHa were grown in suspension at a specific density of 

2×104 cells/ml in Quantum 263 medium with 10 ng/ml EGF and 10 ng/ml bFGF for 7-14 days. All 

three cell lines exhibited an ability for spheroid formation. This typically started at 3-5 days after 

plating suspension cultures and the spheroid size became progressively larger. After 7-10 days, 

the number of the spheroids continued to increase and the cell clusters became more compact 

(Figure 11).  

When the spheroids were transferred back to regular tissue culture flasks for 2-D monolayer cell 

culture, the spheroids adhered to the flask and cells migrated out from the spheroid and formed a 

confluent monolayer. Spheroids maintained in long-term culture up to the 10th generation of 3-D 

spheroid passage still showed this self-renewing ability, which generated adhesively growing 

cervical cancer cells. The older generation of spheroids were tighter than early generations. 

Additionally, the spheroid formation capacity of ALDHbright was also greater than ALDHlow cells. 

This capacity was enhanced up to 7.24-fold in HeLa, 10.83-fold in MRIH186, and 3.61-fold in 

SiHa (all, p <0.05; Figure 12).  
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Figure 11: Time course of spheroid formation in cell lines HeLa, MRIH186, and SiHa. The 

magnification is 200×. 

 

Figure 12: Spheroid formation abilities of ALDHbright cells and ALDHlow cells sorted from 

cervical cancer cell lines. A) Representative photos of the spheroid formation assay. The 

magnification is 50×. B) Quantification of spheroid formation efficiency in ALDHbright cells 

compared to ALDHlow cells. Error bars: mean values ± SD of three replicates. *: p <0.05. 

5.2.2 Higher stemness is found in SDCs than in MDCs 

Colony formation efficiency (CFE) and spheroid formation efficiency (SFE) were employed to 



35 

 

characterize the stemness (renewal ability) of cervical cancer cells. In HeLa cells, the clone 

numbers formed by SDCs were about 1.29-fold of MDCs; however, this slight differences was not 

statistically significant. The CFE was 1.35-fold higher in SDCs than MDCs derived from 

MRIH186 (p <0.05). In SiHa, the CFE of SDCs was also significantly stronger than by MDCs 

with a 2.13-fold increase (p <0.05). The ability of spheroid formation was also observed in the 

MDCs and SDCs of each cell lines (Figure 14). When the same number of cells were seeded on 

an agarose-coated plate, the SDCs formed more, and tighter spheroids than MDCs. In SDCs of 

MRIH186, this ability was 2.43-fold more than MDCs; SDCs displayed a 1.35-fold higher SFE 

than MDCs in SiHa (both, p <0.05).  

 

Figure 13: Colony formation ability of SDCs and MDCs in different cervical cancer cell lines. 

A) Representative photos of the colony formation assay. Dark blue dots represent the colonies 

formed by cells. B) Quantification of colony formation efficiency in SDCs compared to the 

corresponding MDCs. Error bars: mean values ± SD of three replicates. *: p <0.05. 

Figure 14: Spheroid formation ability of SDCs and MDCs in different cervical cancer cell lines. 
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A) Representative photos of the spheroid formation assay. The magnification is 50×. B) 

Quantification of spheroid formation efficiency in SDCs compared to the corresponding MDCs. 

Error bars: mean values ± SD of three replicates. *: p <0.05.  

5.2.3 A higher ALDHbright cell proportion is found in SDCs than in MDCs  

The enzymatic activity of ALDH was measured in the SDCs of cervical cancer cell lines and their 

matched MDCs by Aldefluor assay. As a control, cells incubated with Aldefluor substrate (BAAA) 

together with the specific ALDH inhibitor (DEAB) were used to establish the background 

fluorescence, and to define the cut-off between the ALDHbright and ALDHlow population. All 

cervical cancer cell line-derived SDCs showed an increase in the proportion of ALDHbright cells 

compared to their parental MDCs. In SDCs of HeLa, MRIH186, and SiHa, the ALDHbright cells 

were 11.70 ± 2.41%, 42.70 ±1.24%, and 28.52 ± 3.21%, which were about 5.12-fold, 1.89-fold, 

and 1.85-fold of their corresponding parental MDCs, respectively (all, p <0.05; Figure 15).  

 

Figure 15: The proportion of ALDHbright cells in SDCs vs. parental MDCs. A) Aldefluor assay 

staining in MDCs and SDCs from each cell line. DEAB is used to define the cut-off between the 

ALDHbright and ALDHlow populations. Subsequently, the proportion of ALDHbright cells can be read 

out in the polygonal gate. B) The proportion of ALDHbright cell is significantly higher in SDCs than 

in the parental MDCs. Error bars: mean values ± SD of three replicates; *: p <0.05. 
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5.2.4 SDCs are more resistant to cisplatin than MDCs 

As a critical hallmark for CSCs, chemo-resistance was also tested. SDCs and their parental MDCs 

were cultured for 72 h with serially diluted cisplatin concentration (Figure 16 A). The IC50 of 

cisplatin was 2.42 ± 1.23 μM, 3.95 ± 1.52 μM, and 8.10 ± 2.16 μM in MDCs of HeLa, MRIH186, 

and SiHa, respectively (Figure 16 B). In all cell lines, the SDCs were more resistant to cisplatin 

than the corresponding MDCs. The IC50 of HeLa SDCs was 4.87 ± 0.53 μM, about 2.21-fold of 

corresponding MDCs. The IC50 in MRIH186 and SiHa SDCs was 9.85 ± 1.04 μM and 14.54 ± 

0.97 μM. In addition to IC50 determination, cell viability was also measured after 72 h of treatment 

with 5 μM cisplatin. There were still 45.99 ± 2.42%, 65.98 ± 3.93% and 87.19 ± 3.42% of cells 

viable in HeLa, MRIH186, and SiHa SDCs respectively. However, the viable population was 

reduced to 16.27 ± 1.57%, 43.88 ± 1.96%, and 71.22 ± 2.57% (Figure 16 C) in corresponding 

MDCs, respectively, which was significantly lower than in corresponding SDCs (all, p <0.05).  

 

Figure 16: Chemo-resistance to cisplatin in SDCs derived from cervical cancer cell lines vs. in 

the corresponding MDCs. A) Cell viability measured by MTT assay after cisplatin treatment (0.1-
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100 μM, 3-fold dilution) in cervical SDCs and MDCs. Dashed lines indicate the 50% viability of 

cells. B) The IC50, calculated from MTT assay data, is higher in SDCs than in MDCs. C) The 

cellular viability measured by MTT assay after treatment with 5 μM cisplatin in SDCs and in 

MDCs. Error bars: mean values ± SD of three replicates. *: p <0.05.  

Similar to the response to cisplatin treatment, SDCs also exhibited increased resistance to 

paclitaxel than the corresponding MDCs of MRIH186 and SiHa. (Figure 17). The IC50 of 

MRIH186 and SiHa MDCs was 3.42 ± 0.90 nM and 3.96 ± 0.33 nM, respectively. The IC50 of 

MRIH186 and SiHa SDCs was 7.58 ± 1.26 nM and 7.43 ± 1.83 nM, with an increase of about 

2.21-fold and 1.87-fold, respectively (Figure 17 B).  

 

Figure 17: Chemo-resistance to paclitaxel in SDCs derived from cervical cancer cell lines vs. in 

the corresponding MDCs. A) Cell viability measured by MTT assay after paclitaxel treatment 

(0.03-100 nM, 3-fold dilution) in cervical SDCs and MDCs. Dashed lines describe the 50% 

viability of cells. B) The IC50, calculated from MTT assay data, is lower in MDCs than in SDCs. 
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C) The cellular viability measured by MTT assay after treatment with 5 nM paclitaxel in SDCs 

and in MDCs. Error bars: mean values ± SD of three replicates. *: p <0.05.  

However, the IC50 was 2.14 ± 0.26 nM in HeLa SDCs, which was slightly lower than in HeLa 

MDCs which had 2.43 ± 0.87 nM, but not significantly different. The cellular viability of SDCs 

was 10.24 ± 6.12%, 70.21 ± 10.77%, and 59.03 ± 7.66% after 5 nM paclitaxel treatment, while 

this data was 11.34 ± 7.23%, 42.34 ± 7.89%, and 47.27 ± 5.32% in parental MDCs derived from 

HeLa, MRIH186, and SiHa cells, respectively (Figure 17 C).  

5.2.5 Characterization of CSC-related mRNA expression in MDCs and in SDCs 

As described previously for ALDH sorted cells (see 5.1.3), the isolated mRNA from SDCs and 

MDCs was also tested by real time PCR for the same markers. There were various differences in 

the mRNA expression between MDCs and corresponding SDCs. Overall, most of the CSC-

markers showed an increased expression in SDCs versus MDCs. However, only a few of them 

showed a meaningful or statistically significant difference. The overall data of mRNA expression 

is shown in Figure 18.  

Figure 18: Quantitative Real-time PCR analysis on mRNA expression in SDCs derived from 

cervical cancer cell lines vs. in the corresponding MDCs. mRNA isolated from SDCs and MDCs 
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was quantified for expression of the CSC-markers. The ratio of mRNA expression (SDCs/MDCs) 

is shown (delta – delta Ct method). A) HeLa; B) MRIH186; C) SiHa. Error bars: mean values ± 

SD of three replicates. *: p <0.05. 

In HeLa, Sox2 mRNA expression was 2.06-fold higher in SDCs than in MDCs (Figure 18 A). In 

MRIH186, ALDH1A1, ALDH1A3, Oct3/4 and Sox2 mRNA expression was 3.13-fold, 3.94-fold, 

2.42-fold, and 3.62-fold higher in SDCs than in MDCs, respectively (Figure 18 B). In SiHa, the 

mRNA of ALDH1A3 expression was a 2.58-fold increase in SDCs compared to MDCs (Figure 18 

C). To summerize, SDCs contain a higher ALDHbright population and display higher CSC-related 

properties than MDCs. Considering the differences between SDCs and MDCs, the following 

experiments were based on SDCs. 

5.3 Different responses of ALDH activity to cisplatin treatment and ATRA treatment 

Cisplatin induces multiple drug resistance (MDR) in many cancers despite its initial therapeutic 

effects. Its poor effect on CSCs might be an explanation for this dilemma. ALDH is helpful to 

reveal the response of CSCs as a CSC-marker in cervical cancer cell lines. Additionally, the effects 

of ATRA, a potential ALDH inhibitor which might target CSCs, were also observed.  

5.3.1 The proportion of ALDHbright cells changes in a bi-phasic manner by cisplatin treatment  

In HeLa, MRIH186, and the SiHa cell line, the proportion of ALDHbright cells in SDCs consistently 

responded in a bi-phasic manner to serial cisplatin concentrations (Figure 19). When the cells were 

treated with low-dose cisplatin (the threshold was lower than 1 μM in HeLa and SiHa, and was 

lower than 3 μM in MRIH186), the proportion of ALDHbright cells gradually increased. For 

example, the ALDHbright cell frequency reached its climax at 55.21% by treatment with 1 μM 

cisplatin. This is an increase of 1.83-fold compared to the untreated SDCs from SiHa cells. 

Conversely, concentrations higher than 1 μM led to a reduced ALDHbright cell frequency in a dose-

dependent manner (Figure 19 A).  

Similar results were also found in HeLa and MRIH186 (Figure 19 B). In HeLa, the proportion of 

ALDHbright cells reached 30.32% (2.04-fold more than the untreated cells) at the concentration of 

1 μM cisplatin. In MRIH186, 3 μM cisplatin increased the proportion of ALDHbright cells to 62.44% 

(1.67-fold of the untreated cells). In addition to the altered proportion of ALDHbright cells, the mean 
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fluorescence intensity (MFI) of ALDH was also changed by cisplatin treatment in a bi-phasic way. 

Overlay-histogram analysis showed that 1 μM cisplatin increased ALDH intensity (the right shift 

of MFI) in SDCs, while 10 μM reduced the ALDH intensity (the left shift of MFI) in SDCs of 

HeLa, MRIH186, and SiHa cell lines (Figure 19 C and Table 9).  

Based on the bi-phasic response of the proportion of ALDHbright cells, the EC50 of up-regulation 

and down-regulation were determined in each of the cell lines. The EC50 of up-regulation was 0.28 

± 0.11 μM, 0.82 ± 0.30 μM, and 0.27 ± 0.15 μM for HeLa SDCs, MRIH186 SDCs, and SiHa SDCs, 

respectively. The EC50 of down-regulation was 12.57 ± 4.21 μM, 15.12 ± 3.17 μM, and 12.19 ± 

4.28 μM for HeLa SDCs, MRIH186 SDCs, and SiHa SDCs, respectively. These values of EC50 

were calculated for use in the following studies.  

 

Figure 19: Response of ALDHbright cell frequency by Aldefluor assay staining after titrated 

cisplatin treatment in SDCs derived from cervical cancer cell lines. A) Example of bi-phasic 

alteration in ALDHbright cell frequency in SiHa SDCs. Cells were treated with different 

concentrations of cisplatin (top plot: 0 μM; middle plot: 1 μM; bottom plot: 10 μM); gating 

strategy is shown in detail in section 4.3. B) Bi-phasic response of ALDHbright cell frequency is 

observed after treatment with serial cisplatin concentrations (0.1-30 μM, 3-fold dilution) in the 
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SDCs of each cell line investigated. The proportion of ALDHbright cells is read out by Aldefluor 

assay. Error bars: mean values ± SD of three replicates. C) Example of bi-phasic alteration in 

ALDH MFI (mean fluorescence intensity) in SDCs. Treatment with 1 μM cisplatin results in a 

right-shift of the MFI, while 10 μM cisplatin results in a left shift of the MFI in cervical SDCs. 

Data was obtained by Aldefluor assay using the overlay-histogram model.  

5.3.2 ATRA reduces the proportion of ALDHbright cells in SDCs in a dose-dependent manner 

Differently to the cisplatin treatment, the proportion of ALDHbright cells in SDCs was inhibited 

consistently by ATRA treatment in a dose-dependent manner (Figure 20). For instance, in the 

SDCs of SiHa, the ALDHbright cell proportion was reduced from 30.88 ± 3.82 % to 22.29 ± 3.23% 

by a treatment with 10 μM ATRA, with a significant left shift of MFI simultaneously (Figure 20 

A and B). 1 μM of ATRA did not up-regulate the ALDHbright cells proportion; a slight reduction 

of ALDHbright cell proportion was found instead. ATRA treatment led to a 4.20% reduction in 

ALDHbright cell proportion at 1 μM and 15.55% reduction at 10 μM in MRIH186. The MFI of 

ALDH intensity was dose-dependent in terms of left shift as well. This dose-dependent inhibition 

of ALDH activity was also found in SDCs derived from SiHa (Figure 20 A). Treatment with 1 μM 

ATRA led to a 4.56% reduction in ALDHbright cell proportion and 8.59% reduction at 10 μM in 

SiHa. The MFI of ALDH intensity was also dose-dependent in terms of left shift (Table 9 and 

Figure 20 C). Taking in account the consistent inhibition of ALDHbright cells proportion, the EC50 

of ALDH inhibition by ATRA was determined for each cell line. The EC50 was 15.05 ± 5.13 μM, 

18.22 ± 4.89 μM, and 18.94 ± 3.02 μM for SDCs derived from HeLa, MRIH186, and SiHa, 

respectively.  

Table 9: The changes in MFI after cisplatin treatment or ATRA treatment by Aldefluor assay 

 Mean fluorescence intensity (MFI) 

control 1 μM cisplatin 10 μM cisplatin  1 μΜ ATRA 10 μM ATRA 

HeLa 46.38 ± 1.05 56.23 ± 1.37  44.13 ± 3.43 40.46 ± 1.29 34.69 ± 0.87 

MRIH186 65.43 ± 1.75 82.47 ± 11.90  66.92 ± 2.86 61.23 ± 2.54 55.60 ± 14.03 

SiHa 79.08 ± 1.92 113.34 ± 7.14  52.17 ± 11.05 77.02 ± 2.62 72.81 ± 5.94 

Error bars: mean values ± SD of three replicates 
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Figure 20: Response of ALDHbright cells by Aldefluor assay staining after titrated ATRA 

treatment in SDCs derived from cervical cancer cell lines. A) Example of the proportion of 

ALDHbright cell reduction in SiHa SDCs. Cells were treated with different concentrations of ATRA 

(top plot: 0 μM; middle plot: 1 μM; bottom plot: 10 μM); gating strategy is shown in detail in 

section 4.3. B) The proportion of ALDHbright cells is reduced in a dose-dependent way after 

treatment with serial ATRA concentrations (0.1-30 μM, 3-fold dilution) in SDCs of each cell line. 

The proportion of ALDHbright cells is read out via Aldefluor assay. Error bars: mean values ± SD 

of three replicates. C) Example of consistent reduction (left shift) in ALDH MFI (mean 

fluorescence intensity) in SDCs. Data was obtained via Aldefluor assay in the overlay-histogram 

model. 

5.3.3 ATRA inhibits ALDH function competitively, but this competitive effect reverses 

promptly after ATRA washout 

The classical model that explains the kinetic behavior of enzyme reactions is the Michaelis-

Menton model [91, 92]. This model is based on the assumption that the substrate binds to the 

enzyme to form an intermediate complex. The complex subsequently dissociates to the enzyme in 

its original form and the final product. Reaction rates are measured under the condition that the 
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product is continuously removed. In reality, this is not always the case. In the present study, ATRA, 

the investigated reagent, but also a product of the ALDH enzyme, could not be removed before 

the cells were collected. Therefore, ATRA is able to bind ALDH enzyme as a competitor to BAAA 

in the Aldefluor assay. To clarify the competitive relationship, different concentrations of ATRA 

(3 μM, 30 μM, and 300 μM) were added to the reaction buffer before BAAA was added. ATRA 

decreased the proportion of ALDHbright cells gradually in a dose-dependent way (Figure 21). 3 μM 

ATRA displayed a slight inhibitory effect to the proportion of ALDHbright cells. 30 μM ATRA 

decreased ALDHbright population from 9.89% to 2.67% in HeLa, from 38.90% to 7.12% in 

MRIH186, and from 30.22% to 12.9% in SiHa. 300 μM ATRA reduced the proportion of 

ALDHbright cells to lower than 1%.  

 

Figure 21: The competitive effect of ATRA to BAAA in the Aldefluor assay. 3 μM, 30 μM, or 

300 μM of ATRA were added into tubes before BAAA was added. A) HeLa; B) MRIH186; C) SiHa. 

Error bars: mean values ± SD of three replicates.   

The binding of ATRA and ALDH might be weak due to the irreversible process of ATRA 

generation. Considering the fact that Aldefluor assay staining is carried out after cell collection, 

this procedure (including medium washout and the time consumed for cell collection) might 

influence the final read-out of the Aldefluor assay. The proportion of ALDHbright cells recovered 

to the control level immediately after ATRA washout in the SDCs of MRIH186 (Figure 22 B). In 

the SDCs of HeLa and SiHa, the ALDHbright population after ATRA washout were lower than 

control, but the proportion restored completely after 30 min incubation at room temperature, which 

is a simulation of the time necessary for the cell collection (Figure 22 A and C). These experiments 

indicate that ATRA has a competitive ability to BAAA in the Aldefluor assay. However, this 

competitive ability is reversible. ATRA removal recovers the function of ALDH promptly. The 
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washing out and cell collection procedure before Aldefluor assay staining is sufficient to remove 

the competitive effect of ATRA to BAAA.  

 

Figure 22: Recovery of the ALDHbright population after ATRA washout in Aldefluor assay. Cells 

were incubated with 30 μM ATRA for 30 min at 37° to let ATRA bind to ALDH. Aldefluor assay 

staining was carried out immediately following ATRA washout, or after 30 min incubation at room 

temperature following ATRA washout. A) HeLa; B) MRIH186; C) SiHa. Error bars: mean values 

± SD of three replicates.  

5.3.4 The proportion of ALDHbright cells increased by low-dose treatment with cisplatin can 

be overcome by ATRA co-treatment 

In order to counteract the up-regulation of ALDHbright population resulting from low-dose cisplatin, 

the combined treatment of ATRA and cisplatin was carried out. According to the EC50 in ALDH 

down-regulation, 12 μM, 18 μM, and 18 μM ATRA was used for the combination of ATRA and 

cisplatin in HeLa, MRIH86, and SiHa, respectively. After the combination with ATRA, the up-

regulation of the ALDHbright cells proportion was gradually overcome (Figure 23 C). In SDCs 

derived from HeLa, the peak of up-regulation was entirely overcome by administration of ATRA. 

The up-regulation peak was considerably reduced by co-treatment with ATRA in SDCs derived 

from MRIH186 and from SiHa. ATRA antagonized the increase of ALDHbright cell proportion 

from 30.32 ± 3.89 % to 8.26 ± 2.99 % at 1 μM cisplatin, and decreased the proportion from 10.21 

± 3.27 % to 5.51 ± 3.29 % at 10 μM cisplatin in HeLa. In MRIH186, ATRA antagonized the 

increase of the ALDHbright population from 60.26 ± 6.29 % to 24.21 ± 6.14% induced by 1 μM 

cisplatin treatment, and decreased the proportion from 40.51 ± 3.17 % to 16.12 ± 2.23 % with 10 

μM cisplatin. In SiHa, ATRA antagonized the ALDHbright proportion from 55.21 ± 4.14 % to 25.37 
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± 5.61 % with 1 μM cisplatin, and decreased the portion from 24.12 ± 6.23 % to 17.89 ± 4.89 % 

with 10 μM cisplatin (Figure 23 A and C). The intensified MFI was also released by ATRA 

treatment (Figure 23 B). 

 

Figure 23: ATRA overcomes the increased ALDHbright population caused by low-dose cisplatin 

in SDCs derived from cervical cancer cell lines. A) Example of increased proportion of ALDHbright 

cells reduced by ATRA in SiHa SDCs. Data obtained by Aldefluor assay. B) Example where ATRA 

treatment reverses the increased ALDH intensity after low-dose cisplatin treatment in SiHa SDCs. 

Data obtained by Aldefluor assay presented as histogram. C) ATRA counteracts the increased 

ALDHbright population resulting from low-dose cisplatin in SDCs; ALDHbright cell proportion is 
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read out by Aldefluor assay. Error bars: mean values ± SD of three replicates. 

5.4 ATRA partially overcomes the detrimental effects caused by cisplatin treatment 

ATRA has the ability to overcome the increased proportion of ALDHbright cells caused by low-

dose treatment with cisplatin. The co-effects of ATRA and cisplatin were further investigated in 

the following aspects including: cell proliferation, apoptosis, stemness (CFE and SFE), 

invasiveness, and motility. The mRNA expression of the CSC markers was also measured.  

According to the values calculated in section 5.3, treatment by drug concentrations of EC50 values 

of up-regulation or down-regulation in ALDHbright cells proportion were used in the following 

experiments. In brief, the EC50 value of the up-regulation by cisplatin was assigned as "cisplatin-

low"; the EC50 value of the down-regulation by cisplatin was assigned as "cisplatin-high"; and the 

EC50 value of the down-regulation by ATRA was assigned as "ATRA". 

5.4.1 ATRA enhances the inhibition of cervical cancer proliferation by cisplatin 

Calculation of combination index (CI) is a method to evaluate the cooperative-effects of drugs by 

MTT assays. Addition of ATRA enhanced the inhibition of cell proliferation with both cisplatin-

low and cisplatin-high treatments (Table 10). When ATRA was combined with cisplatin-low, the 

CI was 0.93, 0.92, and 1.06, which suggested an additive effect of both drugs in SDCs. The CI 

value was 0.98 in MRIH186 for the combination treatment of ATRA and cisplatin-high. ATRA 

and cisplatin-high synergistically inhibited cell growth in HeLa cells with a CI value of 0.66 and 

in SiHa of 0.78. 

Table 10: Combination index for the co-administration of ATRA and cisplatin 

 HeLa MRIH186 SiHa 

ATRA ATRA ATRA 

Cisplatin-low 0.93 0.92 1.06 

Cisplatin-high 0.66 0.98 0.78 

CI values less than 0.9 suggest synergism; 0.9 ≤CI values ≤1.1 suggest additive effects; CI values 

more than 1.1 suggest antagonism. 

5.4.2 ATRA promotes apoptosis induction by cisplatin  

As an anticancer agent, cisplatin functions by the induction of apoptosis. The proportion of 
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apoptotic cells was accessed by Annexin-V/PI staining assay by flow cytometer. In the control 

group, SDCs from all cell lines had less than 10% apoptotic cells. As shown in Figure 24, the 

apoptotic proportion in SiHa SDCs was 11.19 ± 1.69% after cisplatin-low treatment, and 50.23 ± 

5.62% after cisplatin-high treatment. In MRIH186 SDCs, the apoptotic proportion was 15.84 ± 

3.71% and 40.11 ± 5.09% with cisplatin-low and cisplatin-high treatment, respectively. The ratio 

of the apoptotic cells in HeLa SDCs was 13.12 ± 3.15% and 42.51 ± 3.94% for cisplatin-low and 

cisplatin-high treatment, respectively. Moreover, ATRA alone also led to cellular apoptosis. The 

apoptotic proportion after ATRA treatment was 22.29 ± 0.92%, 21.32% ± 3.21%, and 22.23 ± 

2.09% in SDCs of HeLa, MRIH186, and SiHa, respectively. The apoptotic ratio in HeLa SDCs 

was increased to 27.17 ± 2.01% or 55.89 ± 5.23% by the combination treatment of ATRA with 

cisplatin-low or with cisplatin-high. Similarly, the corresponding data in MRIH186 SDCs was 

25.11 ± 1.80% or 45.02± 3.55%, and in SiHa SDCs was 25.28 ± 1.98% or 57.21 ± 4.23%. The 

apoptotic proportion in the three cell lines after treatment with the combination of ATRA, and 

cisplatin-low was significantly higher than with cisplatin-low alone (p <0.05; Figure 24 B).   

 

Figure 24: Flow cytometric apoptosis assay by Annexin-V/PI staining in SDCs derived from 
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cervical cancer cell lines. A) The populations of SiHa SDCs were determined in the four quadrants: 

live cells (Annexin-V−/PI−, lower-left quadrant), early apoptotic cells (Annexin-V+/PI−, lower-

right quadrant), late apoptotic cells (Annexin-V+/PI+, upper-right quadrant), and necrotic cells 

(Annexin-V−/PI+, upper-left quadrant). Both lower-right and upper-right quadrant were counted 

as apoptotic proportion. B) Quantification of apoptotic proportion in cervical SDCs after 

treatment with cisplatin-low, cisplatin-high, ATRA and their combination. Error bars: mean 

values ± SD of three replicates. *: p <0.05. 

5.4.3 ATRA decreases the stemness enhanced by cisplatin-low treatment 

Cisplatin-high treatment diminished the CFE of SDCs-derived cells. ATRA also inhibited the CFE. 

Conversely, cisplatin-low incited this stemness-related ability in cervical SDCs. In SiHa, the CFE 

was 42.70 ± 3.04% after cisplatin-low treatment, which is a 12.37% increase over the control. The 

combination of ATRA and cisplatin-low reversed this efficiency to 25.04 ± 2.94%. Similar results 

were also found in SDCs of HeLa and MRIH186 (Figure 25).  

 

Figure 25: Colony formation ability in SDCs derived from cervical cancer cell lines after 
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cisplatin-low, cisplatin-high, ATRA treatment, and their combinations. A) Representative clones 

formed by SiHa SDCs; dark blue dots represent the colonies. B) Quantitation of colony formation 

efficiency (CFE). Three replicates were counted. Mean values ± SD were plotted. *: p <0.05. 

SFE was also inhibited significantly by treatment with a cisplatin-high dose or ATRA alone. 

Cisplatin-low incited and enhanced this ability in cervical SDCs. For example, the SFE was 8.70 

± 2.73% in SiHa, and cisplatin-low enhanced this efficiency to 17.33 ± 3.52%. When ATRA was 

combined with cisplatin-low, SFE was reduced to 8.25 ± 2.12% (Figure 26 A and B). Comparable 

effects were also observed in HeLa and MRIH186 (Figure 26 B). 

 

Figure 26: Spheroid formation ability in SDCs derived from cervical cancer cell lines after 

cisplatin-low, cisplatin-high, ATRA treatment, and their combinations. A) Representative 

spheroids formed by SiHa SDCs; the magnification is 50×. B) Quantitation of spheroid formation 

efficiency (SFE). Three replicates were counted. Mean values ± SD were plotted. *: p <0.05. 

5.4.4 ATRA restricts cell invasiveness  

As shown in Figure 27 A and B, the trans-well migrated cell number was 99.67 ± 11.59 cells/field 
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in the control group of SiHa SDCs. A comparable number of cells was found in the cisplatin-low 

group with 95.33 ± 24.13 cells/field. However, treatment with cisplatin-high or ATRA alone 

reduced this number to 13.33 ± 24.13 cells/field or 32.00 ± 7.55 cells/field, respectively. 

Combination of ATRA and cisplatin-low reduced the trans-well migrated cell number to 21.33 ± 

12.34 cells/field, while co-administration of ATRA and cisplatin-high decreased the number to 

2.33 ± 2.25 cells/field. These results suggested that both cisplatin-high and ATRA treatment 

impaired the cellular invasiveness. The combination of cisplatin and ATRA enhanced this 

inhibition. A similar tendency was also found in SDCs of HeLa and MRIH186, and the detailed 

data is shown in Figure 27 B. 

 

Figure 27: Invasiveness of SDCs derived from cervical cancer cell lines after cisplatin-low, 

cisplatin-high, ATRA treatment, and their combinations. A) Representative photos of cell 

invasion assay in SiHa SDCs. The magnification is 100×. B) Quantitation of cell invasiveness. 

Three replicates were measured. Mean values ± SD were plotted. *: p <0.05. 

5.4.5 The enhanced motility caused by cisplatin-low is reduced by ATRA treatment 

The scratching assay was employed to observe the cellular motility. From Figure 28 A and B, it 
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was shown that the cellular moving motility in the control group of SiHa SDCs was 15.12 ± 0.95 

μm/h, while the cell motility was increased to 32.60 ± 2.71μm/h after cisplatin-low treatment and 

it was reduced to 15.75 ± 2.58 μm/h or 12.78 ± 3.40 μm/h after cisplatin-high or ATRA treatment. 

Interestingly, the combination treatment of cisplatin-low and ATRA reduced the motility to 15.56 

± 1.19 μm/h and the combination treatment of cisplatin-high and ATRA lowered the motility to 

3.90 ± 1.03 μm/h. 

 

Figure 28: Cellular motility of SDCs derived from cervical cancer cell lines after cisplatin-low, 

cisplatin-high, ATRA treatment, and their combinations. A): Representative photos of scratching 

assay in SiHa SDCs; the magnification is 50×. B) Quantitation of cell motility. Three replicates 

were measured. Mean values ± SD were plotted. *: p <0.05. 

In HeLa SDCs, the cell motility was 20.04 ± 1.63 μm/h, and it was increased to 31.64 ± 7.06 μm/h 

or 4.28 ± 0.78 μm/h after cisplatin-low or cisplatin-high treatment, while ATRA reduced the cell 

motility to 10.11 ± 1.65 μm/h. When the ATRA was combined with cisplatin-low, the cell motility 
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was reduced to 9.28 ± 2.64 μm/h. After the treatment with ATRA and cisplatin-high, the cell 

motility was reduced to 1.25± 0.87 μm/h. In MRIH186 SDCs, the moving motility of the cells in 

the control group was 16.42 ± 1.21 μm/h. The motility was 17.6 ± 1.77 μm/h, 5.61 ± 4.58 μm/h, 

and 13.29 ± 4.29 μm/h under the treatment with cisplatin-low, cisplatin-high, and ATRA, 

respectively. However, the combination of ATRA with cisplatin-low or cisplatin-high reduced the 

cell motility to 11.24 ± 4.11 μm/h or 3.61 ± 1.23 μm/h, respectively. The details and statistical 

significance are shown in Figure 28.  

5.4.6 Characterization of CSC-related mRNA expression after cisplatin or/and ATRA 

treatment 

The mRNA expression of the CSC-markers was variably changed by the different combination of 

drugs in the three cell lines. The ALDH1A3 and ALDH1A1 were generally up-regulated by 

cisplatin treatment and down-regulated by ATRA treatment. The ALDH1A1 was increased (1.81 

to 5.39-fold) by cisplatin, and decreased (1.21 to 3.33-fold) by ATRA. The ALDH1A3 was 

increased (1.42 to 6.38-fold) by cisplatin, and decreased (1.05 to 3.05-fold) by ATRA. ALDH1A2, 

ALDH1B1, ALDH1L1, and ALDH1L2 were stably expressed after the different treatments in all 

cell lines, and only negligible variation was detected. 

The mRNA of ABCG2 was able to be induced by cisplatin treatment (2.56 to 10.25-fold increase). 

ATRA treatment also up-regulated the ABCG2 mRNA expression (1.56 to 1.90-fold). The 

combination of ATRA could not reverse the cisplatin-induced increase of ABCG2 expression. 

Either cisplatin-low or cisplatin-high led to the up-regulation of Sox2 expression (1.92 to 6.21-

fold). The highest effects were found in SiHa, being 6.21-fold higher than control after cisplatin-

high treatment. ATRA treatment was able to restrict this up-regulation. The expression of Oct3/4 

was increased in MRIH186 after cisplatin treatment (2.16-fold); however, no significant change 

was observed in Hela and SiHa. The response of Nanog expression to the different treatments 

varied in less than 2-fold and not significantly in the different cell lines. ATRA alone had slight 

effects on mRNA expression. The addition of ATRA had little effect on the up-regulation of Sox2 

that was increased by cisplatin treatment. The overall data of mRNA expression is listed in Figure 

29. 
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Figure 29: Real-time PCR analysis on mRNA expression in cervical SDCs after cisplatin or/and 

ATRA treatment. mRNA isolated from drug-treated cells was quantified for expression of the 

CSC-markers. The ratio of mRNA expression (each treatment group/control group) is shown (delta 

– delta Ct method). A) HeLa; B) MRIH186; C) SiHa. Error bars: mean values ± SD of duplicates.  
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6. Discussion and conclusions 

This study focused on the response of the proportion of ALDHbright cells in SDCs after cisplatin 

or/and ATRA treatment. Technically, the current study adopted spheroid culture, a sort of 3-D 

culture method, and carried out the further experiments using spheroid-derived cells. The data in 

the first part confirms that the high ALDH activity is a marker to distinguish cells with CSC-

properties from non-CSCs. The subsequent investigation discovered that cisplatin treatment led to 

a biphasic response of the ALDHbright population. Low-dose cisplatin treatment, which is in a 

serum-available range, resulted in several detrimental effects, although applied concentration of 

cisplatin also led to apoptosis of cervical cancer cells. This result might be an explanation for the 

findings in clinical trials that some patients cannot benefit from NACT. ATRA reduces the 

proportion of ALDHbright cells in a dose-dependent manner and releases partial cisplatin-related 

detrimental effects. These findings highlight the importance of cisplatin treatment optimization 

and suggest that ALDH-targeting might be meaningful for cervical cancer treatment. 

6.1 High ALDH activity is associated with CSC-properties 

In the presence of nicotinamide adenine dinucleotide phosphate (NADP) or nicotinamide adenine 

dinucleotide (NAD), ALDH plays its basic roles in the oxidation of intracellular aldehydes to 

carboxylic acids [93] (Figure 30 A). Earlier methods used to determine ALDH expression were 

based on detecting enzyme activity or immunoblotting of enzymes in cell lysates [7]. The 

Aldefluor assay uses the catalytic process from colorless BAAA to fluorescent BAA- [94] (Figure 

30 B). Given that the functional assay can be carried out on the vital cells, this kit makes it possible 

for the selection of labeled cells for the subsequent experiments. In light of this valuable progress, 

a lot of research focusing on ALDHbright cells has since revealed the crucial significance of this 

sub-population of cells, which possess CSC-properties such as protection from toxic drugs, self-

renewal ability, and stemness-like characteristics [95, 96].  

The deadly property of CSCs is chemo-resistance, which has garnered the most attention clinically 

[97]. The presented results confirm that ALDHbright cells that have enhanced CSC-properties are 

more resistant to both cisplatin and paclitaxel than ALDHlow cells, regarded as tumor bulk cells. 

The IC50 to cisplatin is significantly higher in ALDHbright cells than in ALDHlow cells. In other 
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words, the viability of ALDHbright cells is greater than of ALDHlow cells after drug treatment with 

equal concentrations (Figure 8). This matches previous studies in cervical cancer and other 

malignancies. In addition to cisplatin and paclitaxel, there is an extended list of chemo-reagents 

that includes: cyclophosphamide, temozolomide, irinotecan, epirubicin, and doxorubicin [35, 97]. 

Given the reported functions of ALDH enzymes, it is not surprising that ALDHs are regarded as 

detoxification enzymes that protect cells against various endogenous and exogenous hazards [3]. 

Interestingly, ALDH might neutralize toxic drugs by only binding to them. Dead enzymes are gene 

products (proteins) that lack key residues required for catalytic activity. It has been reported that 

isotypes of ALDH, such as ALDH1A1, work as a dead enzyme in certain conditions [98]. 

Moreover, ALDH performs multi-functions including ester hydrolysis, serving as ultraviolet light 

absorption, and hydroxyl radical scavenging [99]. On the basis of these disruptions, ALDH plays 

the roles of a guardian in protecting cells. 

 

Figure 30: Illustration of the nomenclature system for ALDH genes and schematic principle of 

Aldefluor assay. A) ALDH oxidizes aldehydes to the corresponding carboxylic acid. B) For 

naming each gene, the root symbol ALDH is followed by the Arabic numeral representing 

the family, and when needed, a letter which designates the subfamily. The Arabic numeral which 

follows the letter denotes the individual gene within the subfamily. C) Cells uptake BAAA by 
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passive diffusion and then convert it into negatively-charged BAA-. BAA- is retained inside cells, 

causing the subset of ALDHbright cells to become highly fluorescent. As a negative control, DEAB, 

a specific ALDH1 inhibitor, is used to define the threshold of ALDHbright cells. The figure is 

adapted from an information sheet on the Aldefluor assay (www.stemcell.com). 

ALDHbright cells form significantly more tumor clones in an adherent condition and more tumor 

spheroids in a floating condition than ALDHlow cells [40, 43, 95]. The greater CFE and SFE 

suggest that ALDH is a marker for higher self-renewal ability in addition to drug resistance (Figure 

9 and 12). By using the same kit, Liu et al. reported the ALDHbright cells could form a tumor 

xenograft but ALDHlow cells could not [40]. They concluded that these ALDHbright cervical cancer 

cells possessed the ability to self-renew and had enhanced tumorigenicity. Our data are in line with 

this hypothesis. Importantly, numerous studies have suggested that high cellular ALDH activity is 

indicative of the presence of CSCs [95]. The mRNA profile of stemness-related TFs also supports 

this concept. In SiHa cells, the investigated TFs, Oct3/4, Sox2, and Nanog, are generally increased 

in ALDHbirght cells compared to ALDHlow cells. These markers are found in an increased status in 

MRIH186, consistently. However, only Sox2 is found increased in HeLa. This might be ascribed 

to the loss of Oct3/4 and Nanog in the HeLa cell line, which has been repeatedly reported in other 

studies [43, 100]. Sox2 is associated with early events of carcinogenesis in cervical epithelial cells 

[20]. Both in vitro and in vivo studies have shown that cervical cancer cells with over-expressed 

Sox2 exhibited increased radio-resistance, and tumorigenicity [23, 24]. ABCG2, another guardian 

of CSCs in many cell lines, is also increased in ALDHbright compared to ALDHlow cells. High 

expression levels of ABCG2 and ALDH enzymes in CSCs suggests that these molecules might 

cooperate in the development of drug resistance in cancers [3]. By confirming that the ALDHbright 

cells harbor important CSC-properties such as chemo-resistance, enhanced self-renewal ability, 

and increased stemness-related markers, our data reinforce the hypothesis that ALDH is a CSC-

marker in cervical cancer.  

Aldefluor assay offers a great advantage for closely observing ALDHbright subset cells; however, 

it is still a matter for deeper investigation owing to the numerous members of the ALDH supergene 

family. More than 160 ALDH cDNAs or genes have been isolated, and 19 isotypes of ALDH have 
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been termed, based primarily on evolutionary differences and amino acid homology [94, 101]. A 

standardized gene nomenclature system was established in 1998 (www.aldh.org; Figure 30 B). 

Some reports identified ALDH1A1 as the main enzyme supporting the discovered function, 

especially in stemness-related properties [102]. Additionally, other studies have found enzymatic 

participation of ALDH1A3, and ALDH1L2 in different types of tumor [93]. These multiple ALDH 

isoforms may contribute not only to the readout of Aldefluor assay but also to cellular functions 

in a tissue-specific role. Thus, it is controversial which isotype supports the readout of Aldefluor 

assay. To determine the ALDH isotypes measured by this assay, characterization of mRNA pattern 

is a reasonable method for identification. Considering numerous reports that DEAB of the enzyme 

inhibitor of the ALDH1 family, and the importance of ALDH1-signaling pathway, the expression 

of isotypes belonging to the ALDH1 family was investigated [89]. The initial result highlights 

ALDH1A1 and ALDH1A3 for their differential expression between ALDHbright and ALDHlow 

cells. The variation in these two subtypes matches the alternation reflected by Aldefluor assay. 

Other isotypes are stably expressed between different ALDH statuses. Furthermore, the expression 

of ALDH1A1 and ALDH1A3 are also changed in the same way with ALDH activity after cisplatin 

and ATRA treatment. The expression of other isotypes was negligibly altered by cisplatin 

treatment. These data indicate that ALDH1A1 and ALDH1A3, two RA-producing ALDH isotypes, 

are possibly the predominant ALDH1 isotypes detected by Aldefluor assay in cervical cancer cells.  

The Table 11 is an overview of ALDH1 isotypes. ALDH1A2 is the first ALDH isotype expressed 

during embryogenesis. ALDH1A1 and ALDH1A3 have a more limited role during development. 

In these isotypes, ALDH1A3 is the most catalytically efficient enzyme, and ALDH1A1 is the least 

potent of the three enzymes. Among RA-producing ALDH isotypes, ALDH1A1 and ALDH1A3 

(but not ALDH1A2) are the most common isotypes related to a poor prognosis in a diverse range 

of malignant tumors [96]. This might be attributed to its aforementioned CSC-properties. In 

addition to the accumulation of ALDH1A1 or ALDH1A3 in cancer with poor clinical outcome, 

there have been a few reports about the increase of other isotypes such as ALDH1B1/L2,which 

are also found in some cancers [103, 104]. This might be attributable to the fact that the dominant 

isotype is cell- or tissue-dependent [99, 105, 106]. Therefore, the isotype of ALDH should be 

clarified more clearly and be the focus of further study. 
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Table 11. Overview of ALDH1 family 

Family isotypes 
NAD or NADP+ 

dependent [93] 

Sub-cellular 

distribution 
Preferential Substrate Tissue Distribution 

Chromosomal 

Localization 

[102] 

 

 

 

 

 

 

 

ALDH1 

 

 

 

 

 

 

 

ALDH1 

A1 
NAD dependent Cytosol Retinal 

Brain, breast, lens, liver, lung, 

kidney, ovary, pancreas, 

prostate, red blood cells, 

skeletal muscle, stomach, testis, 

9q21,13  

ALDH1 

A2 
NAD dependent Cytosol Retinal Kidney, liver, testis, 15q21.3  

ALDH1 

A3 

NAD / NADP+ 

dependent 
Cytosol Retinal 

Breast, kidney, lung, salivary 

glands, skeletal muscle, stomach 
15q21.3  

ALDH1 

B1 
NAD dependent Mitochondria 

Acetaldehyde, lipid 

peroxidation-derived 

aldehydes 

Brain, heart, liver, kidney, lung, 

placenta, prostate, skeletal 

muscle, testis 

9q11.1  

ALDH1 

L1 

NADP+ 

dependent 
Cytosol 

10-Formyltetra- 

hydro folate 
Liver, skeletal muscle, kidney 3q21.3  

 
ALDH1 

L2 

NADP+ 

dependent 
Mitochondria 

10-Formyltetra- 

hydro folate 
Pancreas, heart, and brain[107] 12q23.3  

ALDH8A1 is another RA-producing ALDH isotype. It is responsible for the production of 9-cis retinoic acid which is negligible in vivo. This Table 

is adapted from the data reviewed by Ma et al. in [94]. 
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However, it is interesting that ALDH1A2 is rarely reported as a tumor promoter, but rather as a 

tumor suppressor instead. Since retinoids are ubiquitous molecules that influence nearly every cell 

type, a delicate homeostasis of the ALDH/RA signaling pathway is of importance in controlling 

the right developmental program in cells [27]. An aberrant ALDH/RA signaling pathway was 

observed was in two different ways: down-regulation of the normal isotype (ALDH1A2) and up-

regulation of the abnormal type (ALDH1A1/A3) [108-110]. Considering the function of ATRA 

and the overlap of enzymatic activity, there might be an interesting assumption to explain this 

phenomenon. A disordered ALDH/RA axis might be a compensation for the vital ATRA signal, 

by an aberrant isotype (ALDH1A1/A3) signaling replacing the impaired right isotype (ALDH1A2) 

signaling.  

6.2 Low-dose cisplatin leads to detrimental effects in cervical cancer 

Apoptosis induction by cisplatin is the principal mechanism for its cellular toxicity [111]. The 

DNA adduction is formed during the proliferation process and subsequently causes the DNA 

strand breaks in proliferating cells [111, 112]. In the present study, cisplatin treatment leads to a 

dose-dependent effect of apoptosis. Moreover, MTT assay data also indicate cisplatin inhibits the 

proliferation of cancer cells significantly (Figure 8). These results fit the common sense view that 

cisplatin is an efficacious anti-cancer drug under the current criteria. However, several problems 

have also been raised in this study. Besides the inhibition of proliferation and induction of 

apoptosis in cancer cells, the ALDHbright subpopulation of cells was another indicator for read-out 

during drug administration. Inconsistent to the dose-dependent effect in apoptosis, the ALDH 

response shows dual-phase to serial concentrations of cisplatin. The low-dose of cisplatin (the 

threshold is lower than 1 μM in HeLa and SiHa, and lower than 3 μM in MRIH186; Figure 19 B) 

causes an increase of the ALDHbright cells, and a higher concentration reverses this up-regulation 

gradually. A high-dose cisplatin treatment kills cells drastically and reduces the colony formation 

ability vigorously.  

It has been reported that a short-term treatment by chemotherapy in ovarian cancer cells would 

lead to an enrichment of CSCs [113]. As the most commonly used drug, unfortunately, cisplatin 

is among the most effective reagents to induce MDR and enrichment of CSCs. It is speculated that 

a low-dose of cisplatin causes selection pressure on cells, and creates a preferential 
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microenvironment for CSCs [74]. This might happen in cervical cancer as well. Besides the 

inhibition of proliferation and induction of apoptosis, low-dose cisplatin leads to a series of 

unfavorable activities in the present study. Stemness markers such as Sox2 are increased after 

treatment with both low- and high-dose cisplatin. The increased RNA expression of ALDH and 

ABCG2 supports this assumption. As a marker of CSCs, the frequency of ALDHbright cells is 

increased after cisplatin treatment. One explanation is the enrichment of CSCs by the killing of 

drug-sensitive cells. The potential change of the different cellular populations is schematically 

illustrated in Figure 31. It is worth to noticing the emergence of ALDHextra-bright cells (the cells 

locate beyond the right side of original ALDHbright cells, which means these cells have stronger 

ALDH activity than original ALDHbright cells) which is negligible or even non-detectable before 

treatment. Some reports indicated that cisplatin might induce CSC formation by the alteration in 

cellular profile (i.e. on genetic level), in addition to enriching the CSC population by killing of 

non-CSC [74, 114]. More attention and effort should be put into elaborate these relationships.  

 

Figure 31: Possible explanation for the increased proportion of ALDHbright cells in the Aldefluor 

assay. A) Control; B) The possible cases for alternation in proportion of ALDHbright cells after 

treatment with low-dose cisplatin. a: ALDHlow cells are killed more efficiently by cisplatin, but 
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ALDHbright cells are killed less due to resistance; b: more ALDHlow cells are killed by cisplatin 

than ALDHbright cells; c: emergence of new ALDHbright cells after cisplatin treatment; d: emergence 

of ALDHextra-bright cells after cisplatin treatment. C) The increased ALDHbright population might be 

the result of multiple models shown in (B). 

Further investigation revealed that the low-dose cisplatin has an increased colony formation ability, 

which is in contrast to the expected cisplatin effects. In the scratching assay, the low-dose treated 

cells move faster having spreading activity. The increased mRNA expression of ALDH family 

genes and ABCG2 imply that a slight cisplatin treatment might initiate the self-protection system 

of cancer cells, such as the increased expression of detoxification protein and pump-proteins. The 

up-regulation in mRNA of ALDH and ABCG2 also suggests that the residual cells might exhibit 

augmented drug resistance to anticancer reagents. These results are helpful for optimizing the use 

of cisplatin as a medication by avoiding low-dose cisplatin application for curative purposes. The 

serum concentration of cisplatin during clinical treatment is variable. The maximum peak ranked 

between 1.63 to 3.60 μg/ml (about 5.38 to 11.98 μM); however, free platinum, which is the active 

form of cisplatin, varied from 0.06 to 1.23 μg/ml (about 0.20 to 4.10 μM) according to the different 

schedules and routes of drug delivery [115]. These serum-available concentrations are in the range 

for not only apoptosis induction, but also the emergence of adverse effects. This broad deviation 

in the serum concentration might be an explanation for the dilemma that NACT before definitive 

radio therapy was not beneficial or even detrimental [62]. Therefore, insufficient cisplatin, which 

might result in a detrimental effect, is not recommended in spite of the apoptosis induced. 

Currently, the effects of chemotherapeutics are evaluated concerning how a drug induces tumor 

remission or to decrease tumor size. While this judgment of success is intuitive, and numerous 

reagents judged by these criteria are adopted in effective chemotherapeutic regimens, the dilemma 

is becoming increasingly evident that eliminating the bulk of cancer may efficiently lead a 

selection for resistant cells [114, 116]. As a consequence, alteration of the evaluation criteria is a 

reasonable consequence of a concept update coinciding with the understanding of CSCs. A more 

efficient way to eradicate cancer might be the combination of different mechanisms including 

cytotoxic drugs and CSC-targeting drugs [81]. 

The first case of CSCs was found in leukemia [117], and subsequently, the existence of CSCs in 
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various cancer was proved, including glioblastoma, lung cancer, gastric cancer, ovarian cancer, 

and cervical cancer [118]. The use of ATRA in APL has achieved promising results [119], and the 

application of ATRA in other kinds of leukemia such as acute myeloid leukemia also got a positive 

response [120]. The abnormality in the retinoic signaling pathway plays a causative role in the 

carcinogenesis, therefore it becomes the primary target of cancer therapy in APL. By the 

combination of ATRA (targeting CSCs) and cytotoxic drugs (killing normal cancer cells), this 

strategy saves over 90% patients with a curative effect in APL. There are many causative factors 

and reasons for cancer development. A high expression of ALDH is the hallmark of CSCs, and 

plays critical roles in the maintenance and protection of CSCs. Consequently, ALDH is a logical 

target of cancer therapy. The usage of ATRA is supposed to be based on the effects of targeting 

stem cells, which can be labeled out by ALDH staining [121-125]. Therefore, the use of ATRA 

targeting CSCs might be a critical complimentary part for a curative outcome. The importance of 

the combination of differently roled drugs has been noted for a successful treatment. By 

summarizing the behavior of CSCs and normal cancer cells, a statistical model indicates that the 

combination of these two strategies can substantially reduce the population sizes and densities of 

all types of cancer cells [81]. Otherwise, the benefit of these agents can easily be missed. These 

findings emphasize the feasibility and importance of combing the treatment of ATRA and 

cytotoxic drugs. 

 

Figure 32: Schematic illustration for treatment effects after low-dose cisplatin or ATRA on 
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ALDHbright cells. Low-dose cisplatin increases the proportion of ALDHbright cells, which is 

associated with enhanced drug resistance, enhanced renewal ability (stemness), and motility. 

ATRA decreases the ALDHbright population and counteracts the adverse effects associated with 

ALDHbright cells.  

6.3 ATRA reduces the proportion of ALDHbright cells and partly overcomes refractory effects 

caused by low-dose cisplatin 

In section 5.3.2, ATRA has the effect of reducing the ALDHbright population without the dual-

phase at low-concentration. Both the frequency and intensity of ALDHbright cells are reduced by 

ATRA, consistent to the increased concentration of ATRA (Figure 20). Given the fact that ATRA 

is the product of ALDH, ATRA might work as an enzymatic inhibitor of ALDH in a competitive 

inhibition manner. However, the enzymatic activity of ALDH recover promptly after ATRA wash-

out which is an standard procedure of Aldefluor assay staining. These results (Section 5.3.3) 

indicate enzymatically competitive inhibition is not the main mechanism for the reduction of the 

ALDHbright population. Considering the decreased mRNA expression of ALDH isotypes after 

ATRA treatment, ATRA might suppress the ALDH expression at gene level. According to 

retrieved literature, very little extra data concerns the effects ATRA has on ALDH expression. By 

detection of ALDH activity in cell lysis, Moreb et al. discovered that ATRA treatment inhibited 

the ALDH function in lung cancer cells [7]. The consequent result by western blotting indicated 

the functional repression might be due to a reduced expression of the total ALDH protein. 

Additionally, they found a reduced expression of ALDH protein can increase the toxicity of 

cyclophosphamide after ATRA treatment. An innate loop of ALDH-RA signaling offers a 

potential molecular mechanism for the ALDH inhibition by ATRA [6, 8] (Figure 33 and 34). When 

there are low intracellular RA concentrations, retinoic acid receptors (RARs) and 

CCAAT/enhancer-binding protein b (C/EBPb) activate the ALDH1 promoter, thereby increasing 

the ALDH1 activity to increase retinoic acid concentration. As RA levels increase, C/EBPb mRNA 

increases, which also increases GADD (growth arrest- and DNA damage-inducible gene 153) 

mRNA. A complex of GADD and C/EBPb then forms to decrease the DNA binding activity of 

C/EBPb to the CCAAT box of the ALDH1 promoter, thereby inhibiting ALDH1 expression. In 

addition to the transcriptional mechanism, Moreb et al. also emphasized the roles of 
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posttranslational regulation in lung cancer [7]. However, some inconsistent reports were also found. 

For example, 1 μM ATRA was reported to up-regulate the mRNA of ALDH1A3, but not 

ALDH1A1 and ALDH1A2 in primary keratinocytes [126]. These variations might be caused by 

the differences between the cell lines used in these studies. On the other hand, this diversity 

emphasizes the importance of determining the right isotype dominating the ALDH function in 

different tissue.  

The proliferation and apoptosis response to ATRA were additionally observed in cervical cancer. 

Cervical cancer cells are not sensitive to ATRA when the concentration is lower than 10 μM. 

ATRA inhibits cellular growth in concentrations above 10 μM in a dose-dependent manner. With 

the increase of growth inhibition, the proportion of apoptotic cells is increased. Previous studies 

also reported that the ATRA-induced apoptosis effects cervical cells. However, the concentration 

of ATRA was lower than that applied in the current study. This can be potentially explained by 

the difference in culture conditions as their data were acquired in MDCs where cells are more 

sensitive to drugs than in SDCs. Anna et al. further explored the mechanism inducing apoptosis; 

they found that CD95 was presumably the vital element mediating the apoptosis [127]. Another 

report suggested that the inhibition of telomerase activity and arrest of cells at G0/G1 phase might 

be the key steps through which ATRA inhibits the proliferation of cervical cancer cells [37]. 

The combination of ATRA and cisplatin can work in an additive or synergistic fashion (Table 10). 

ATRA also induces the apoptosis in cervical SDCs. Importantly, ATRA is able to reverse the 

increased population of ALDHbright cells caused by low-dose cisplatin treatment. Other detrimental 

effects such as the enhanced stemness and motility can be overcome by the combination with 

ATRA treatment (shown in Results 5.4.1 - 4). The mRNA expression of CSC-markers can be 

partially reduced by ATRA. Despite that cisplatin-induced Sox2 is not reversed, ATRA treatment 

reduces mRNA expression of the CSC-markers. However, ATRA increases mRNA expression of 

ABCG2 in all three cell lines. This suggests that ATRA is not sufficient to inhibit the ABC family 

function. Additional drugs for corresponding signaling pathway might be helpful to fulfill this aim. 

Indeed, an addition of demethylases significantly increased the anti-cancer effects of ATRA [128]. 

Hence, the multi-combination of different functional drugs might be a promising way for better 

outcomes. A new treatment protocol of 9 repurposed drugs (i.e. CUSP9) for recurrent glioblastoma 
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appears to be safe with good tolerability. The preliminary results are an important milestone in 

brain tumor research [129, 130]. As such, a cocktail strategy like "CUSP9" in neuroblastoma [131], 

possibly is possibly a reasonable way to solve the dilemma caused by cisplatin.  

 

Figure 33: Potential mechanism of feedback-regulation on the aldh gene. Upper panel: at low 

ATRA (endogenous) concentrations, RARs and C/EBPb transactivate the aldh promoter. Lower 

panel: when the ATRA concentration increases (for example extrinsic resources), RAR activates 

the C/EBPb promoter increasing the C/EBPb abundance, resulting in an increase of the GADD 

amount and the formation of GADD-C/EBPb heterodimers which block the transcription of the 

aldh gene. Modified from Guillermo Elizondo et al. [8]. 

6.4 3-D spheroid culture is an improved cellular assay for drug testing compared to 2-D 

monolayer culture 

The present study confirms that the ALDHbright population is increased in SDCs vs. MDCs. Plenty 

of studies have acknowledged that spheroid culture is a way to enrich CSCs, by the hypothesis that 
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bulk cancer cells will undergo anoikis in the floating condition [82]. In addition to the increase of 

the ALDHbright population, the renewal ability is also enhanced in SDCs vs. MDCs. The higher 

SEF in SDCs than in MDCs might be owing to the selection effects of suitable cells in 3-D 

condition. It is noticeable that SDCs are a more natural mimic of the real situation in vivo than 

MDCs [84]. In colony formation assay, the enhanced CFE is not as strong as in SFE, and this 

might be due to the culture condition.  

In accordance with the up-regulated ALDHbright population in SDCs, cisplatin and paclitaxel, the 

two most commonly used drugs, were employed to test the pharmaceutical sensitivity of SDCs 

and MDCs. On average, SDCs showed doubled resistance to cisplatin compared to MDCs in 

cervical cancer cell lines. Consistently with the cisplatin data, SDCs displayed reduced sensitivity 

to paclitaxel compared to MDCs. These effects can be further supported by the evidence from 

other cancers. A number of studies have indicated that cells cultured in 3-D models were more 

resistant to anticancer drugs than 2-D models. For instance, ovarian cancer cell survival and 

proliferation after paclitaxel treatment was reduced by about 50% in 3-D spheroids, while the same 

treatment led to an 80% reduced cell viability in the 2-D monolayer [132, 133]. These differences 

might be attributed to the enrichment of the ALDHbright cells, which are more resistant than 

ALDHlow cells. However, other diversities between SDCs and MDCs may also be important 

factors, such as the organization and morphology in the shape of cells, different nutritional 

distribution, spatial interaction between cells, and cellular protein or receptor expression.  

These heterogeneities contribute not only to the formation of drug gradients, but also other facets 

which are indispensable for the effects of drugs. For instance, a mathematical model suggested 

that cancer bulk was governed by a "quorum sensing" control mechanism, in which CSCs 

proliferated or differentiated according to the feedback they received from neighboring cell 

populations [81]. Thus, cellular interaction plays very important roles in a cancer growth model 

and the response to drugs. Besides the alternation of the ALDHbright population, which stands for 

a change of cytoplamatic protein, various cancer cell lines grown in 2-D and 3-D culture often 

differ in membrane receptors. For example, the expression levels of the epidermal growth factor 

receptor (EGFR) and the downstream kinases in vivo were more similar to cells grown in 3-D, and 

distinct from 2-D [134, 135]. This altered EGFR expression is critical for the effects of anti-EGFR 
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therapy, which represents a promising new approach for treating cancers [136].   

Historically, chemo-sensitivity testing was expected to guide the selection of cytotoxic drugs in 

the clinic. Unfortunately, the data achieved from traditional 2-D cell culture models failed to 

predict the effects of chemo-reagents in vivo. The innate difference of 2-D culture and the in vivo 

environment might be the reason for the failure. SDCs show different biological properties 

compared to MDCs and compensate critical disadvantages of MDCs. Notably, cellular responses 

to drug treatments have been shown to be more similar in 3-D cultures to what occurs in vivo 

compared to 2-D cultures. Considering the drawbacks of 2-D, the advantages of 3-D (summarized 

in Table 12), and the fact that MDCs show a difference with SDCs, SDCs were used for the drug-

test assay instead of conventional MDCs in the current study. 

6.5 Limitations of the study and future perspectives 

The presented data reveal that low-dose cisplatin could increase the proportion of ALDHbright cells 

which can be reversed by ATRA treatment, highlighting the importance of cisplatin treatment 

optimization, and suggesting that ALDH-targeting might be meaningful for cervical cancer 

treatment. However, several problems are not well elucidated and require further investigation. 

The study indicates that the ALDH1A1 and ALDH1A3 might be the predominating isotypes 

detected by Aldefluor assay. This result calls for further confirmation at the protein level. The 

cross-talking of different isotypes is commonly reported in the ALDH supergene family. Therefore, 

a systematic characterization of ALDH isotype expression and their function is necessary to be 

elaborated. Additionally, ATRA can counteract the increase of proportion of ALDHbright cells and 

some of concomitant detrimental effects caused by low-dose cisplatin treatment. However, the 

mechanism for the reduction of ALDHbright population by ATRA is still not well elaborated (a 

potential mechanism is proposed in Figure 34). It would be helpful to understand the function of 

ATRA by elucidating the mechanism by which it reduces ALDHbright population. In the light of 

effects concomitant with inhibition of ALDH after ATRA treatment, a stronger ALDH inhibitor 

might work better to overcome the unfavorable effects of cisplatin. A combination strategy, i.e. 

combination of CSC-targeting drugs and anti-non CSC drugs, could be tried to solve the 

detrimental effects occurred during chemotherapy. 
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Table 12. Overview of the different properties between 3-D derived cells and 2-D derived cells  

Cellular properties 3-D 2-D Reference 

Morphology Spheroid/aggregate structures Sheet-like flat and stretched cells in monolayer [137] 

Cell cycle 
Spheroids contain proliferating, quiescent, 

hypoxic and necrotic cells 

More cells are likely to be at the same stage of cell 

cycle due to being equally exposed to medium 
[133] 

Proliferation 

May proliferate at a slower rate compared to 2-D 

cultured cells depending on cell type and/or type 

of 3-D model system 

Often proliferate at a faster rate [138] 

Gene expression 

Cells often exhibit gene/protein expression 

profiles more similar to those of in vivo tissue 

origins 

Often display differential gene and protein 

expression levels compared to in vivo models 
[94] 

Exposure to 

medium/drugs 

Nutrients and growth factors or drugs may not be 

able to fully penetrate the spheroid, reaching cells 

near the core 

Cells often succumb to treatment and drugs 

appear to be very effective 
[139] 

Cellular Matrix Complex Simple [133] 

Drug sensitivity 

Cells are often more resistant to treatment 

compared to those in a 2-D culture system, often 

being better predictors of in vivo drug responses 

Cells often succumb to treatment and drugs 

appear to be very effective 
[140] 

Time consuming High (more than one week) Low (Less than one week) [90] 

Financial consuming Relative high Relatively low [133] 

Requirement for 

nutrition 
Specific stimulation Standard manufactured [90] 

The bold text represents issues which have also been observed in the current study.
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Figure 34: Schematic illustration of the ALDH-RA signaling pathway. Mammals obtain retinol 

(vitamin A) from food. Once inside the cell, vitamin A can be metabolized by several different 

enzymes; however, only ALDH irreversibly converts retinal to retinoic acid in the help of NAD(P) 

in cytoplasm. When RA (i.e. ATRA) enters nucleus, RA starts its signaling cascade by binding to 

RARs which further bind to RARE locating on DNA. At low RA concentrations, RARs and C/EBPb 

trans-activate the aldh gene promoter. When RA levels increase (for example extrinsic resources), 

RARs activate the C/EBPb promoter increasing the C/EBPb abundance resulting in an increase 

of the GADD amount. The formation of GADD-C/EBPb heterodimers blocks the transcription of 

the aldh gene. Therefore, increased retinoic acid may give a negative feedback to ALDH 

expression. Abbreviations (from the top-left to bottom-right): ADH: alcohol dehydrogenase; RDH: 

retinol dehydrogenase; NAD(P): nicotinamide adenine dinucleotide (phosphate); RA: Retinoic 

acid; RARs: Retinoic acid receptors; RARE: Retinoic acid receptor elements; CEBPb: 

CCAAT/enhancer-binding protein b; GADD: Growth arrest and DNA damage-inducible gene ).  
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6.6 Conclusions 

Low-dose cisplatin increases the proportion of ALDHbright cells in cervical cancer cell lines and 

enhances the CSC-properties in cervical cancer SDCs. According to this finding, low-dose 

cisplatin treatment should be avoided. ATRA, by its role in the reduction of ALDH activity, might 

be a candidate to target CSCs. More importantly, this study indicates that ALDH-targeting therapy 

might be a potential way to complement current cisplatin-based cytotoxic chemotherapy.   
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