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Abstract

Dendrobium bibenzyls and phenanthrenes such as chrysotoxine, cypripedin, gigantol and

moscatilin have been reported to show promising inhibitory effects on lung cancer growth

and metastasis in ex vivo human cell line models, suggesting their potential for clinical appli-

cation in patients with lung cancer. However, it remains to be determined whether these

therapeutic effects can be also seen in primary human cells and/or in vivo. In this study, we

comparatively investigated the immune modulatory effects of bibenzyls and phenanthrenes,

including a novel Dendrobium bibenzyl derivative, in primary human monocytes. All com-

pounds were isolated and purified from a Thai orchid Dendrobium lindleyi Steud, a new

source of therapeutic compounds with promising potential of tissue culture production. We

detected increased frequencies of TNF- and IL-6-expressing monocytes after treatment

with gigantol and cypripedin, whereas chrysotoxine and moscatilin did not alter the ex-

pression of these cytokines in monocytes. Interestingly, the new 4,5-dihydroxy-3,30,40-

trimethoxybibenzyl derivative showed dose-dependent immune modulatory effects in lipo-

polysaccharide (LPS)-treated CD14lo and CD14hi monocytes. Together, our findings show

immune modulatory effects of the new bibenzyl derivative from Dendrobium lindleyi on dif-

ferent monocyte sub-populations. However, therapeutic consequences of these different

monocyte populations on human diseases including cancer remain to be investigated.

Introduction

The Dendrobium plants are vastly distributed in a large area including tropical and subtropical

regions of Asia and North Australia [1]. Because of the extensive geographical distribution,

Dendrobium becomes one of the largest genera in Orchidaceae, composing of approximately
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1500–2000 species [2]. Of these, about 41 species have been used in traditional Chinese medi-

cine [3]. Various groups of secondary metabolites have been reported, for instance, alkaloids,

coumarins, bibenzyls, fluorenones, phenanthrenes, and sesquiterpenoids. Some of these

metabolites exhibit a wide spectrum of pharmacological activities, including antioxidant, anti-

inflammatory, antidiabetic, antitumor, antimicrobial and neuroprotective activities [2, 4]. For

example, purified bibenzyls and phenanthrenes, such as chrysotoxine from D. pulchellum,

cypripedin from D. densiflorum, gigantol from D. draconis and moscatilin from D. brymeria-
num, have been demonstrated to show promising inhibitory effects on human in vitro cell line

models of lung cancer growth and metastasis [5–9]. However, whether these therapeutic effects

can be also seen in primary human cells and/or in vivo remains to be investigated. Neverthe-

less, it is also unclear whether systemic administration of these compounds would influence

phenotypes and/or functions of other cell types such as circulating immune cells in the periph-

eral blood.

The lung is a highly specialized organ that is continuously exposed to numerous pathogens,

pollutants, oxidants, gases, and toxicants from the outside ambient air, which makes it suscep-

tible to varying degrees of oxidative and inflammatory injury. Under some circumstances,

inflammatory responses can result in the release of proinflammatory cytokines and chemo-

kines, which in turn stimulate the influx of polymorphonuclear leukocytes (PMNs) and mono-

cytes into the lung to combat the invading pathogens. However, chronic inflammation-

induced cytokine production of monocytes in the lung may predispose individuals to lung

cancer [10]. Tumor-infiltrating myeloid cells (TIMs), comprising monocytes, macrophages,

dendritic cells and neutrophils, have emerged as key regulators of cancer growth and recur-

rence [11, 12]. The infiltration of monocytes into human specimens of non-small-cell lung

cancer was found to be increased compared with normal lung tissue [12]. Although, it remains

elusive, which monocyte sub-populations recruit into tumors, these infiltrating cells showed

increased expression of chemokines and chemotactic activity in tumor environment [11].

Increased numbers and inflammatory activity of tumor-associated, monocyte-derived macro-

phages were linked to poor prognosis in lung cancer patients [12, 13]. Amelioration of mono-

cyte-induced inflammation and/or infiltration may synergize to inhibit tumor growth and

metastasis, and lead to a better prognosis of patients with lung cancer.

Furthermore, monocytes are crucial for the efficiency of the immune system, since they act

in numerous immunological mechanisms, such as replenishment of resident macrophages,

production of dendritic cell subsets, and acute and chronic inflammatory responses [14,15].

The cellular activity of these cells involves the production of several molecules responsible for

killing of pathogens (H2O2, NO), cellular recruitment (IL-8, CCL2, and CCL3), pro-inflamma-

tory activation (TNF, IL-1β, and IL-6), polarization of adaptive immune response (IL-12), reg-

ulation of inflammation (IL-10 and TGF-β1), and tissue repair (TGF-β1 and bFGF) [16].

Monocyte dysregulation, which is generally indicated by intense production of inflammatory

mediators, has been observed in several inflammatory diseases, including sepsis [17], athero-

sclerosis [18], rheumatoid arthritis (RA) [19], and hepatic fibrosis [20]. High levels of TNF and

IL-6 are associated with worse prognoses in septicemia [21] and progression and worsening of

RA [22].

In this study, we aimed to investigate the immune modulatory activities on circulating

monocytes of four known Dendrobium substances, which have already been shown to exert

therapeutic effects in in vitro models of lung cancer [5–9], as well as one newly identified

bibenzyl Dendrobium compound. All five compounds were isolated, purified and identified

from Dendrobium lindleyi Steud, known in Thai as “Ueang Pueng” [23]. This orchid is widely

distributed in India (Sikkim), China (Guangdong, Hainan, Guangxi, and Guizhou), Hon-

gkong, Bhutan and Southeast Asia (Thailand, Myanmar, Laos, and Vietnam) [3]. To our
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knowledge, chemical constituents and biological activities of compounds isolated from this

orchid have never been investigated before. To assess their immune modulatory activities on

circulating monocytes of the peripheral blood, we established an ex vivo model of primary

human monocytes with low cell attachment, in which we attempted to minimize differentia-

tion of monocyte into macrophage ex vivo. Our results revealed increased frequencies of

TNF- and IL-6-expressing monocytes after treatment with gigantol and cypripedin, whereas

chrysotoxine and moscatilin did not alter the expression of these cytokines in monocytes.

Interestingly, the new 4,5-dihydroxy-3,30,40-trimethoxybibenzyl derivative alleviated lipopoly-

saccharide (LPS)-induced cytokine production of primary human monocytes, suggesting

immune modulatory activity.

Materials and methods

Plant material

The whole plant of D. lindleyi was purchased in September 2009 from Chatuchak market,

Bangkok, Thailand (13˚47’57.1"N, 100˚32’55.2"E). Plant identification was done by one of the

authors (B. Sritularak). A voucher specimen (BS-DL-092552) has been deposited at the

Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sci-

ences, Chulalongkorn University.

Extraction and isolation

Dendrobium lindleyi (1.2 kg) was extracted as previously described [26]. Briefly, the dried whole

plant was grounded extracted with methanol (MeOH) at room temperature (RT). The extract was

then evaporated under reduced pressure. The MeOH residue (97 g) was suspended in water and

partitioned with immiscible organic solvents comprising EtOAc and n-BuOH. The EtOAc extract

(34 g) was fractionated on silica gel column (EtOAc-hexane, gradient) to yield in total of 10 frac-

tions (A-J). Fraction F (3.2 g) was separated by column chromatography over silica gel (EtOAc

-hexane, gradient) to obtain 13 fractions (FI-FXIII). Fraction FVIII (140 mg) was purified on

Sephadex LH-20 column (MeOH) to furnish chrysotoxine (#2) (90 mg), gigantol (#3) (20 mg)

and cypripedin (#4) (25 mg), respectively. Moscatilin (#5) (90 mg) was purified from fraction FX

(340 mg) on Sephadex LH-20 (MeOH). Fraction G (2.6 g) was fractionated by CC ((silica gel,

EtOAc-hexane, gradient) and then by Sephadex LH-20 (MeOH) to afford #1 (47 mg).

Analytical procedures

Bruker micro TOF mass spectrometer (ESI-MS) was used for mass spectrometric analysis and

a Milton Roy Spectronic 300 Array spectrophotometer was utilized for UV spectroscopic mea-

surement. NMR spectra were obtained on a Bruker Avance III HD 500 NMR spectrometer or

a Bruker Avance DPX-300 FT-NMR spectrometer. The recording of IR spectra was done by a

Perkin-Elmer FT-IR 1760X spectrophotometer. Column chromatography (CC) was con-

ducted on different stationary phases. These were silica gel 60 (Merck, Kieselgel 60, 70–

320 μm), silica gel 60 (Merck, Kieselgel 60, 230–400 μm), C-18 (Merck, Kieselgel 60 RP-18,

40–63 μm) and Sephadex LH-20 (25–100 μm, GE Healthcare).

Buffy coats and monocyte isolation

Buffy coats from healthy individuals were obtained from the German Red Cross (GRC). Blood

donors gave informed consent to perform blood collection and to use the buffy coats samples

for research. The research purpose was approved by the Ethics Committee of Charité –Univer-

sitätsmedizin Berlin.
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Human peripheral blood mononuclear cells (PBMCs) were isolated and aliquoted at 20 x

106 PBMCs (per mL) were cryopreserved in liquid nitrogen tank until analysis. Frozen PBMCs

of three biologically independent donors were thawed, washed and pooled in MACS buffer

(0.5% BSA in PBS containing 2 mM EDTA). Monocytes were isolated using negative selection,

pan-monocyte Isolation Kit (Miltenyi Biotec, Bergisch Gladbach, Germany) according to man-

ufacturer’s specifications. Briefly, PBMCs were resuspended in 120 μL of MACS buffer. Thirty

micro liters of FcR blocking reagent and 30 μL of biotin-antibody cocktail were added, mixed

thoroughly and incubated at 4˚C. After 5 min incubation, 90 μL of MACS buffer and 60 μL of

anti-biotin micro beads were added and incubated at 4˚C for 10 min. Stained ells were then

washed with MACS buffer and pelleted (4˚C, 300 x g, 8 min). The pellet was then resuspended

in 500 μL of MACS buffer and loaded onto the MACS column. The column was then washed

twice with MACS buffer. The flow-through and washed fraction containing unlabeled mono-

cytes was collected. Cell number and viability were determined by 0.2% trypan blue staining.

Cell culture and stimulation

Isolated monocytes were resuspended in 1 mL of RPMI1640 (Biochrom GmbH, Berlin, Ger-

many) containing 10% heat-inactivated fetal calf serum (FCS) (Sigma-Aldrich, St. Louis,

USA), penicillin (100 U/mL; Biochrom GmbH, Berlin, Germany) and streptomycin (100μg/

mL; Biochrom GmbH, Berlin, Germany). Cell concentration was adjusted to ~ 2 x 106 cells/

mL. About 2 x 105 cells (per well) were transferred into ultra-low-attachment 96-well plate

(Corning, New York, USA). Different concentrations of compounds (Fig 3A) were added to

the cell culture. To inhibit protein transport from Golgi apparatus to the endoplasmic reticu-

lum, monensin (5 μg/mL; BioLegend, San Diego, USA) was also added right after the applica-

tion of Dendrobium compounds. After two hours incubation, cells were stimulated by adding

100 ng/mL of lipopolysaccharide (LPS) (Sigma-Aldrich, St. Louis, USA). Cells were cultured

for 4 more hours or overnight (18 hours). Finally, cells were analysed by flow cytometry. Con-

trol conditions were naïve cells (without treatment of Dendrobium compounds and LPS) and

unstimulated cells that were previously treated with the Dendrobium compounds.

Flow cytometry

Monocytes were incubated for 10 min in FcR-blocking buffer (1:100; Miltenyi Biotec, Bergisch

Gladbach, Germany) at 4˚C, to block unspecific binding of antibodies to Fc-receptors. Next,

cells were incubated with conjugated antibodies detecting extracellular epitopes (i.e. CD3-

PE-Cy7 / SK7 / BioLegend; CD335-PE / 9E2 / BioLegend; CD16-APC-Cy7 / 3G8 / BioLegend;

CD11c-APC / 3.9 / BioLegend; HLA-DR-pacific blue / L243 / BioLegend and CD14-FITC /

RMO52 / Beckman) diluted in staining buffer (0.5% BSA in PBS containing 2 mM EDTA) for

20 min at 4˚C. Cells were then washed with 1 mL of staining buffer, and further incubated in

200 μL of intracellular fixation/permeation buffer (eBioscience, California, USA) for 30 min at

4˚C. After washing with 1 mL of permeation buffer (eBioscience, California, USA), 50 μL of

antibody cocktail detecting intracellular proteins (i.e. TNF-brilliant violet / Mab11 / BioLe-

gend; IL-6-PE-Cy7 / MQ2-13A5 / BioLegend; CCL2-PE / 5D3-F7 / BioLegend and CD68-

PerCP-Cy5.5 / Y1/82A / BioLegend) was added and further incubated for 30 min at 4˚C. Cells

were then washed with staining buffer and pelleted at 300 x g, 4˚C for 10 min. Stained cells

were finally resuspended in staining buffer. Cell viability was determined using Propidium

Iodide (25 μg/mL; Thermo Fisher Scientific, Massachusetts, USA). Protein expression was

detected on a 3-laser BD FACSCanto II machine (BD Biosciences, New Jersey, USA) with soft-

ware BD DIVA version 8.1. FlowJo software version 10.1 (Ashland, OR, USA) was used to

determine the phenotype on the basis of fluorescence intensity.
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Statistical analysis

Acquired FACS data were extracted in the Flow Cytometry Standard (�.fcs) format. Cell popu-

lations were gated in FlowJo (Becton, Dickinson and Company, New Jersey, USA). Frequency

of cells positive for a given signal was extracted into GraphPad Prism 8 (GraphPad Software

Inc., California, USA) and statistically analyzed by a one-way ANOVA or a multiple t-test (as

indicated), with a confidence interval of 95% (α = 0.05).

Results

Establishment of low-attachment primary human monocyte cultures for

functional analysis

It has been demonstrated that ex vivo culture of human monocytes using classical polypropyl-

ene cell culture plates resulted in phenotypic and functional changes, such as an increased

granularity and reduced transendothelial diapedesis function [24]. Therefore, we newly estab-

lished an ex vivo culture system using an ultra-low attachment multiple well-plate (Fig 1A).

First, we used peripheral blood mononuclear cells (PBMCs) to optimize the culture system

(Fig 1A and 1B). We observed a better preservation of the cell composition in the culture sys-

tem using RPMI-1640 medium compared with reduced serum medium OptiMEM (Fig 1C

and 1D).

Next, we tested the LPS-induced inflammatory responses of monocytes under these culture

conditions. We isolated monocytes (both CD14lo and CD14hi monocytes) from PBMCs using

magnetic activated cell sorting (MACS) (Figs 1A and 2A). Isolated monocytes were then cul-

tured in the established low-attachment culture system in the presence of 100 ng/mL LPS or

PBS (control) for 6 hours. Compared to control, the cell composition of the monocyte popula-

tion was changed after LPS stimulation. Namely, a strong reduction of CD14+CD16+ mono-

cytes and a moderately decreased frequency of CD14hi monocytes were found (Fig 2B). As

expected, increased expression of TNF was detected in all three monocyte populations after

LPS stimulation, with the highest response in CD14hi inflammatory monocytes (Fig 2C and

2D). Furthermore, we found increased expression of IL-6 in CD14hi and CD14lo monocytes

after LPS stimulation, whereas MCP-1 (or CCL2) and CD68 were unchanged under these con-

ditions (Fig 2E and 2F).

Dendrobium compound isolation, purification and identification

Phytochemical investigation from the whole plant of Dendrobium lindleyi (Fig 3A) revealed

the isolation of a novel bibenzyl (Fig 3A, #1), along with four known compounds, which

include chrysotoxine (Fig 3A, #2) [5, 6], gigantol (Fig 3A, #3) [8, 25–28], cypripedin (Fig 3A,

#4) [7,29,30] and moscatilin (Fig 3A, #5) [9,27,31,32]. The structure of a new compound was

elucidated through analysis of its spectroscopic data.

Compound #1 was obtained as a brown amorphous solid; UV (MeOH) λmax (log ε) 220

(4.09), 229 (4.08), 285 (3.76) nm; IR (film) νmax: 3428, 2924, 1724, 1629, 1605, 1515, 1453,

1263, 1093, 1027 cm-1; 1H NMR (500 MHz, CDCl3) and 13C NMR (125 MHz, CDCl3) spectral

data, see Fig 3B; HR-ESI-MS: m/z 327.1212 [M+Na]+ (calcd. for C17H20O5Na, 327.1208). The

positive HR-ESI-MS showed an [M+Na]+ ion at m/z 327.1212 (calcd. for C17H20O5Na,

327.1208), suggesting the molecular formula C17H20O5. The absorption bands of the IR spec-

trum were defined as hydroxyl (3428 cm-1), aromatic ring (2924, 1605 cm-1) and methylene

(1453 cm-1) groups. The UV absorptions at 220, 229 and 285 nm were indicative of a bibenzyl

nucleus [33]. This was confirmed by the presence of two pairs of methylene protons at δ 2.81

(H2-α) and 2.84 (H2-α0) ppm, which correlated to the carbon atoms at δ 38.0 (C-α) and 37.6
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(C-α0) ppm, respectively. The 1H NMR spectrum (Fig 3B) also displayed five aromatic protons

at δ 6.26–6.81 ppm and three methoxyl groups at δ 3.85 (3H, s, MeO-3), 3.87 (3H, s, MeO-30)

and 3.88 (3H, s, MeO-40). On ring A, the 1H NMR spectrum showed signals for two doublets

at δ 6.26 (J = 2.0 Hz, H-2) and 6.48 (J = 2.0 Hz, H-6), which correlated to C-α in the HMBC

spectrum. The first methoxyl group (δ 3.85) was located at C-3 based on its NOESY correlation

with H-2. The 1H NMR ABM coupling system of ring B appeared at δ 6.69 (1H, d, J = 2.0 Hz,

H-20), 6.73 (1H, dd, J = 8.0, 2.0 Hz, H-60) and 6.81 (1H, d, J = 8.0 Hz, H-50). The HMBC corre-

lations of C-α0 with H-20 and H-60 and the NOESY cross-peak of two methoxy groups at δ 3.87

and δ 3.88 with H-20 and H-50, respectively, placed the second methoxyl group at C-30 (δ
148.7) and the third methoxyl group at C-40 (δ 147.2). Based on above spectral data, compound

#1 was identified as 4,5-dihydroxy-3,30,40-trimethoxybibenzyl.

Evaluation of immune modulatory effects of Dendrobium compounds

To assess immune modulatory effects of all five Dendrobium compounds, we cultured MACS-

isolated primary human monocytes under our established culture conditions (Figs 1 and 2),

including an inhibitor of intracellular protein transport–monensin, in the presence of Dendro-
bium compounds, which were 4,5-dihydroxy-3,30,40-trimethoxybibenzyl (#1), chrysotoxine

(#2), gigantol (#3), cypripedin (#4) and moscatilin (#5). Since these five compounds were

diluted in dimethyl sulfoxide (DMSO), the same concentration of DMSO was added to the

control culture without any compounds. We tested three known therapeutic concentrations

[5–9], which were 5, 10 and 20 μM. After 2 hours of incubation, we stimulated monocytes by

adding 100 ng/mL LPS and incubated for four more hours. We observed an increased fre-

quency of TNF-expressing cells in gigantol (#3)- and cypripedin (#4)-treated monocytes with-

out LPS stimulation, suggesting immune modulatory effects of these compounds on monocyte

responses ex vivo (Fig 4A and 4B). After LPS stimulation, we detected increased frequencies of

TNF- and IL-6-expressing monocytes, which were most pronounced in CD14hi inflammatory

monocytes (Fig 4A and 4B), which is in line with the results shown in Fig 2. Although we

observed decreased frequencies of LPS-induced TNF- and IL-6-expressing cells in monocytes

treated with 4,5-dihydroxy-3,30,40-trimethoxybibenzyl (#1), chrysotoxine (#2) and moscatilin

(#5), only the compound #1 showed promising dose-dependent positive effects (Fig 4A–4D).

Therefore, we selected the compound #1 for a further evaluation. We tested whether the

immune modulatory effects of Dendrobium compounds on monocytes persisted also after

long-term exposure to LPS. To do so, the isolated monocytes were first incubated in the pres-

ence of the compound #1 for two hours followed by overnight LPS-stimulation in a presence

of monensin (5 μg/mL). We observed decreased expression of CD14 of the overnight cultured

monocytes, and an increased abundance of TNF- and IL-6-expressing CD11clo monocytes

(Fig 5A), especially in the CD14hiHLA-DR+ sub-population. Overnight exposure of monocytes

to compound #1 resulted in changes in the monocyte composition, indicating as an increased

abundance of CD14loHLA-DR- and CD14loHLA-DR+ cells and a decreased abundance of

CD14hiHLA-DR+ cells (Fig 5B). These changes were found at a highest degree in monocytes

treated with 20 μM of #1. Furthermore, these observed changes were more pronounced in

LPS-stimulated monocytes (Fig 5B, +LPS). Similar to the short-term incubation (Fig 4),

CD14hi monocytes were the main source of TNF- and IL-6-expressing cells (Fig 5A, 5C & 5D).

Fig 1. Low-attached in vitro cultured model of human monocytes. (A) Schematic representation of experimental procedure. (B) Dot plots

demonstrate flow cytometric gating strategy used to obtain monocytes (G7, G8 and G9) for all samples. (C) Bar graphs show cell numbers in

different culture conditions at different time points in vitro. (D) Bar graphs show different cell composition of PBMCs that were cultured in

OptiMEM or RPMI medium conditions at 2 and 4 hours in vitro. Multiple t-test, corrected for multiple comparisons using Holm-Sidak

method, �P< 0.05, ��P< 0.01.

https://doi.org/10.1371/journal.pone.0238509.g001
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Overnight incubation with 20 μM of the compound #1 alone induced TNF expression in

CD14loHLA-DR+ and CD14loHLA-DR- cells (Fig 5C), while under LPS-stimulation it was

downmodulating the LPS-induced TNF-expression (Fig 5C). In comparison to the control

cells (without the compound #1), a treatment with 10 μM of #1 could decreased LPS-induced

TNF expression in all monocyte subsets (Fig 5C). The treatments with either 5 or 20 μM of #1

could only decreased the LPS-induced TNF expression in CD14hiHLA-DR+ monocytes (Fig

5C). Without LPS-stimulation, the compound #1 induced IL-6 expression in both CD14lo and

CD14hiHLA-DR+ monocytes, but not in CD14loHLA-DR- cells (Fig 5D). Interestingly, the 5

and 10 μM of the compound #1 strongly induced IL-6 expression in all monocyte subsets

under LPS stimulation conditions, whereas the 20 μM concentration did not affect the expres-

sion of IL-6 in all three subsets (Fig 5D). The findings demonstrate a dose-dependent activat-

ing and/or immune modulatory effects of the compound #1, which are observed to be

different in different monocyte sub-populations.

Discussion

In this study, we demonstrated the use of low-attached culture model of primary human

monocytes as a tool to study immune modulatory effects of purified natural products (the Den-
drobium compounds). We showed the immune modulatory potential of a novel Dendrobium
compound: 4,5-dihydroxy-3,30,40-trimethoxybibenzyl, which appeared to be dose-dependent

and different between monocyte subsets. In addition, we have tested those known compounds

including chrysotoxine (#2), gigantol (#3), cypripedin (#4) and moscatilin (#5), which were

proposed as potential candidates for the development of cancer therapy. However, these com-

pounds appeared to have either less immune modulatory activity or even more inflammatory

effect on primary monocytes, compared with the compound #1. Our findings suggest an

importance and/or feasibility of using ex vivo studied models of different primary human

(immune) cells to estimate the therapeutic potential and/or any potential adverse effects of

purified natural products, which will further facilitate the adjustment of developmental poten-

tial of each isolated compound in diseases.

In the low-attached monocyte culture model used in this study, we found stronger

responses to TLR4 agonist LPS of CD14hi monocytes, compared to CD14lo monocytes, on the

basis of the expression of inflammatory cytokines especially TNF and IL-6. Our results are in

line with the study by Cros et al. in which CD14dim was demonstrated to respond poorly to

agonists of TLR1, TLR2 and TLR4 [34]. The inflammatory cytokine TNF has been shown to

be involved in many biological processes including fever, apoptosis, and infection-induced

cachexia [16], as well as in inflammation-associated diseases, for example rheumatoid arthritis

[35], acquired generalized lipodystrophy and combined Crohn’s disease [36], Crohn’s disease

[37], and type 2 diabetes [38]. Moreover, chemokine such as TNF can also induce activate

inflammatory responses, and are implicated in the regulation of tumor development and

growth via regulation of tumor-associated angiogenesis, by activation of host immunological

Fig 2. LPS-induced cytokine production of cultured monocytes. (A) Dot plots demonstrate flow cytometric gating strategy used to obtain monocytes (G4, G5 and

G6) for all samples. (B) Bar graphs show changes in monocyte composition after LPS stimulation, compared with naïve monocytes. Multiple t-test, corrected for

multiple comparisons using Holm-Sidak method, �P< 0.05, ��P< 0.01, ���P< 0.001, ����P< 0.0001. (C) Histograms demonstrate fluorescent intensity representing

LPS-induced TNF expression in different monocyte subsets, compared to naïve monocytes (unstimulated, PBS-treated). (D) Bar graphs show quantitative analysis of

fluorescent intensity representing LPS-induced TNF expression in different monocyte subsets, compared to naïve monocytes (unstimulated, PBS-treated). Each dot

represents an independent measurement. One-way ANOVA, corrected for multiple comparisons using Tukey Test, �P< 0.05, ��P< 0.01, ���P< 0.001,
����P< 0.0001. (E) Histograms demonstrate fluorescent intensity representing LPS-induced cytokine expression of CD14hi monocytes (red line), compared to naïve

CD14hi monocytes (unstimulated, PBS-treated; dashed line). (F) Bar graphs show quantitative analysis of fluorescent intensity representing LPS-induced cytokine

expression in different monocyte subsets, compared to naïve monocytes (unstimulated, PBS-treated). One-way ANOVA, corrected for multiple comparisons using

Tukey Test, �P< 0.05, ��P< 0.01, ���P< 0.001, ����P< 0.0001.

https://doi.org/10.1371/journal.pone.0238509.g002
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Fig 3. Isolated compounds from Dendrobium lindleyi. (A) Chemical structures of five compounds isolated and purified from Dendrobium lindleyi. (B)

Chemical structure characterization of 4,5-dihydroxy-3,30,40-trimethoxybibenzyl using 1H NMR and 13C NMR.

https://doi.org/10.1371/journal.pone.0238509.g003
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responses or by direct inhibition of tumor cell proliferation [39]. It has been also shown that

suppressing the increased expression of inflammation-related factors such as TNF is consid-

ered to potentially suppress the migration of macrophages into tumor tissues and regulate

inflammatory changes in the tumor environments, respectively [40]. In this study, we detected

Dendrobium compound-induced TNF expression in monocytes treated with 20 μM of gigantol

(#3) or cypripedin (#4), suggesting potentially inflammatory effects of these compounds at

high concentration. Whereas 4,5-dihydroxy-3,30,40-trimethoxybibenzyl (#1), chrysotoxine

(#2) and moscatilin (#5) did not show obvious inflammatory effects on monocytes in vitro,

only the novel compound #1 has shown promising immune modulatory effects in a dose-

dependent manner. However, in a long-term LPS-stimulation, only the 10 μM of the com-

pound #1 could downmodulate the LPS-induced TNF expression in all monocyte subsets,

whereas the concentration of 20 μM induced TNF expression of unstimulated cells, suggesting

dose- and treatment-duration-dependent immune modulatory effects and/or inflammatory

effects of this compound.

Interleukin-6 (IL-6) is a cytokine with pleiotropic function, which are involved in host

defense. In acute infection and/or tissue injury, monocytes/macrophages promptly produce

IL-6 and contribute to removal of infectious agents and regeneration of damaged tissue

through activation of immune, hematological, and acute-phase responses [41]. However, a

dysregulation of IL-6 production and/or persistently increased IL-6 expression plays a patho-

logical role in the development of various inflammatory diseases and cancers, thus IL-6 is a

double-edged sword for the host [41]. Thus, the proper IL-6 expression is very important for

host defense. In this study, although we did observe the reduction of the LPS-induced IL-6

production in monocytes, that were short-term treated with the compound #1, we found

strongly increased production of IL-6 in long-term treated monocytes (Fig 5). However, since

we detected a decrease in LPS-induced TNF-expression under the same conditions, an

increased IL-6 expression observed in this study may refer to increased monocyte activity

against LPS-induced inflammation.

Conclusions

In summary, we demonstrate herein immune modulatory effects of the new compound

4,5-dihydroxy-3,30,40-trimethoxybibenzyl on different monocyte subsets ex vivo, which can

potentially be developed as in vivo immune modulatory drug in a broad spectrum of inflam-

mation-driven diseases besides lung carcinomas. However, since Dendrobium lindleyi is widely

distributed, using this orchid for drug development may have a risk of habitat destruction,

over-collection and commercially trade due to low natural regeneration rates. Moreover, Den-
drobium plants are listed on Appendix II (D. cruentum is the only species listed on Appendix

I) of Convention on International Trade in Endangered Species of Wild Fauna and Flora [42],

which monitors, regulates or bans the trade to ensure species survival [43]. Therefore, in paral-

lel to drug development, an establishment and improvement of methodologies/techniques for

seedling propagation and artificial cultivation technology such as tissue culture and artificial-

sheltered cultivation [44–47] are required to ensure sustainable development and future

marketing.

Fig 4. Immune modulatory effect of isolated compounds from Dendrobium lindleyi on LPS-stimulated human monocytes. Immune

modulatory effect of all five Dendrobium compounds on LPS-induced TNF (A,C) and IL-6 (B,D) expression of monocytes in vitro were

evaluated. (A-B) Bar graphs show the mean frequency (%) of CD14lo and CD14hi monocytes, which express TNF and IL-6, compared to naïve

monocytes (no LPS). This is an explorative screening experiment, in which each condition (or each concentration) was analyzed in duplicate,

thus no variation was shown. (C-D) The X-Y graphs show the correlation between the frequency (%) of TNF- or IL-6-expressing CD14hi or

CD14lo monocytes and the concentration of all five Dendrobium compounds (#1 - #5).

https://doi.org/10.1371/journal.pone.0238509.g004
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