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Abstract

Quantitative analyses of soil and sediment samples are often used to complement strati-

graphic interpretations in archaeological and geoscientific research. The outcome of such

analyses often is confined to small parts of the examined profiles as only a limited number of

samples can be extracted and processed. Recent laboratory studies show that such selec-

tively measured soil and sediment characteristics can be spatially extrapolated using spec-

tral image data, resulting in reliable maps of a variety of parameters. However, on-site

usage of this method has not been examined. We therefore explore, whether image data

(RGB data and visible and near infrared hyperspectral data), acquired under regular field-

work conditions during an archaeological excavation, in combination with a sampling strat-

egy that is close to common practice, can be used to produce maps of soil organic matter,

hematite, calcite, several weathering indices and grain size characteristics throughout com-

plex archaeological profiles. We examine two profiles from an archaeological trench in Yeha

(Tigray, Ethiopia). Our findings show a promising performance of RGB data and its deriva-

tive CIELAB as well as hyperspectral data for the prediction of parameters via random forest

regression. By including two individual profiles we are able to assess the accuracy and

reproducibility of our results, and illustrate the advantages and drawbacks of a higher spec-

tral resolution and the necessary additional effort during fieldwork. The produced maps of

the parameters examined allow us to critically reflect on the stratigraphic interpretation and

offer a more objective basis for layer delineation in general. Our study therefore promotes

more transparent and reproducible documentation for often destructive archaeological

fieldwork.

Introduction

In the past decade a growing number of institutions and authors postulate more transparent

and reproducible research approaches [e.g. 1; 2]. In this context, archaeologists began to
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critically reflect on multiple aspects of data generation, analysis and interpretation [e.g. 3; 4].

Keeping in mind the often destructive character of archaeological excavations, transparency

and reproducibility are highly relevant factors for archaeological fieldwork which involves on-

site documentation and interpretation. One major part of this fieldwork is the delineation and

characterisation of stratigraphic layers. While often accompanied by selective quantitative

analyses of the samples extracted, the description and interpretation of the stratigraphic mate-

rial remain in part influenced partly by the subjective perception of the respective researcher at

work [cf. 5]. In the sense of Marwick et al. 2017 [4], stratigraphic interpretation should there-

fore be based on a more open method, reproducible independent of the researcher’s experi-

ence. In the study at hand we present an approach that—in the long run—aims to promote a

transparent, reproducible method of stratigraphic delineation and interpretation that is based

on spectral recordings, i.e. physical information.

The often time-consuming quantitative analyses that traditionally support stratigraphic

interpretation remain restricted to selective data based on the sampled materials and their lab-

oratory analysis. By combining this data with digital image data, recent studies have success-

fully transferred selected soil and sediment properties, as derived from samples, to entire areas

of soil and sediment cores and profiles: Steffens and Buddenbaum 2012 [6] and Hobley et al.

2018 [7], for example, were able to successfully map soil organic carbon (SOC) throughout soil

and sediment profiles by analysing laboratory recorded hyperspectral data. These studies

extend the subject of digital soil mapping (DSM) which until lately has been mainly concerned

with the mapping of soil characteristics based on geodata like aerial or satellite image data [e.g.

8–11]. Accordingly, digital maps of chemical and physical parameters throughout soil and sed-

iment profiles could act as an additional layer of information for archaeological excavations

and the interpretation of the excavated material. However, the studies of Steffens and Budden-

baum 2012 [6] and Hobley et al. 2018 [7] were carried out under controlled laboratory condi-

tions. Transferability of the proposed method into a less controlled environment has been

examined by Zhang and Hartemink 2019 [12] and Haburaj et al. 2020 [13], who show that

RGB imaging and multispectral imaging are also suitable tools to map stratigraphic layers

under fieldwork conditions. Zhang and Hartemink 2019 [12] examined the extrapolation of

SOC content, pH values, grain size composition and weathering indices based on the RGB

image data of a soil profile that was captured on-site. The resulting parameter-maps were

highly accurate, which may be the result of their experimental design: a large number of sam-

ples (n = 90) were analysed for calibration from a small section (1.0 x 0.9 m) of a high-contrast

Alfisol. Building upon these results, our study aims to predict the sediment properties of com-

plex archaeological profiles from RGB and hyperspectral image data that were captured under

fieldwork conditions. Our experimental setup features two archaeological sections (Figs 1 and

2). The sampling strategy used for these sections follows common practice during excavations.

The quality of the parameter-maps thus produced was assessed by comparison with strati-

graphic delineation by archaeological experts (as depicted in Fig 2) as well as multiple statisti-

cal parameters. Our results show a promising performance of the proposed method for an

extended stratigraphic analysis of archaeological excavations.

Study area and archaeological background

The settlement of Yeha is located 35 km to the northeast of Aksum and spreads over the east-

ern footslopes of several volcanic rock mountains [14, 15]. It is surrounded by a number of

smaller periodically discharging channels which unite east of the settlement and subsequently

traverse a fertile plain (Fig 1a). Besides a huge ancient settlement, two prehistoric monumental

buildings are currently known within the area of the modern rural settlement of Yeha: the
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Great Temple in the east and the Grat Be’al Gebri in the north (Fig 1b). Both buildings are

manifestations of a cultural transfer between indigenous societies located in todays northern

Ethiopian highlands and the Sabaean society in South Arabia [16–20] in the first half of the

first millennium BC. While the character of these interactions is still under debate [14, 16–25],

Fig 1. Topographical map of the study area (a) and the archaeological profiles examined (b). Elevation: SRTM data: SRTM data (1 arc-sec.; U.S. Geological

Survey).

https://doi.org/10.1371/journal.pone.0238894.g001

Fig 2. Archaeological profiles EI and EVI. The on-site stratigraphic interpretation is shown as white lines. Sediment samples were extracted at the 16 marked

locations.

https://doi.org/10.1371/journal.pone.0238894.g002

PLOS ONE Coupling spectral imaging and laboratory analyses to map sediment parameters and stratigraphic layers

PLOS ONE | https://doi.org/10.1371/journal.pone.0238894 September 11, 2020 3 / 24

https://doi.org/10.1371/journal.pone.0238894.g001
https://doi.org/10.1371/journal.pone.0238894.g002
https://doi.org/10.1371/journal.pone.0238894


there are obvious similarities in both the architectural and archaeological remains such as the

use of the Sabaean language and South Arabian script, monumental architecture and building

decoration, Sabaean deities and cultic rites, and bronze and other elements of the material cul-

ture. The results of archaeological research in various parts of the modern settlement suggest

that the site was populated at least from the late 2nd millennium BC onwards [26], likely by

sedentary farmers [27]. From the early 1st millennium BC onwards Yeha developed as the cen-

ter of the Ethio-Sabaean community until, according to present knowledge, the mid-1st millen-

nium BCE [19, 20, 26].

The profiles examined in this study were recorded during excavations by the Ethiopian-

German Archaeological Mission to Hawelti, Yeha and surroundings (conducted as a coopera-

tion project between the Sanaa Branch of the Orient Department of the German Archaeolog-

ical Institute [DAI], the Seminar for Oriental Studies of the Friedrich Schiller-University of

Jena, the Authority for Research and Conservation of Cultural Heritage [ARCCH] and the

Tigray Tourism and Culture Bureau [TCTB]) at Yeha in 2018 and 2019. They are located in

the area of the modern settlement of Yeha (Tigray, Ethiopia).

Profile description

Both profiles are part of an archaeological trench [26], found in the courtyard in front of the

church compound; the Great Temple of Yeha is situated in the latter (Fig 1b). The examined

areas of the profiles are shown in Fig 2. Profile EVI (western profile) covers several anthropo-

genic layers approximately 8 metres below the modern surface. The examined part of profile

EI (eastern profile) involves several anthropogenic layers and a fine grained light brown hori-

zontal layer which is present in many parts of the excavation but whose character is still under

discussion. A detailed description of the two profiles EI and EVI is given in Table 1.

The two profiles do not overlap spatially and come from different depths of the archaeolog-

ical trench. Additionally they date to different times: EI covers Aksumite and post-Aksumite

times (1st half 1st to 1st half 2nd millennium CE), while EVI dates to the Ethio-Sabaean period

with the lowest layer dating to the late 2nd millennium BC [cf. 26]. These characteristics lead

to notable differences between the two profiles. There are perceptible variations of PO4, Fe2O3,

soil organic matter (SOM) and CaCO3 contents throughout Profile EI (S1 Fig); otherwise EI is

a low contrast profile with gradual change occurring in most of the examined parameters. The

calculated weathering indices applied indicate minor differences between the layers examined

in the present study but capture the overall structure of the stratigraphy (Table 1). Grain size

composition only shows minor variation throughout profile EI. Contrary to this, Profile EVI

shows more distinct differences between its layers (Fig 2, Table 1). Due to the strong variation

of PO4, Fe2O3, SOM and CaCO3 contents as well as weathering indices and grain size compo-

sition, Profile EVI must be regarded as a high contrast profile with multiple layers that differ

significantly in colour and overall brightness (i.e. spectral properties), the most prominent lay-

ers are EVI-B1, EVI-B2 and EVI-D. Detailed results of the sedimentological analyses carried

out for profiles EI and EVI are shown in Table 1 and S1 Fig. Both profiles additionally differ in

their situation within the trench: profile EI is part of a free-standing profile wall that is easily

accessible whereas Profile EVI is situated in a narrow part of the trench where orthogonal pro-

file walls are present directly left and right of the areas examined (Fig 2).

Materials and methods

Our methodological approach includes (i) the laboratory analysis of chemical and mineralogi-

cal components as well as grain size composition of the sediment samples, (ii) the acquisition

of multi- and hyperspectral image data, (iii) random forest regression analyses and predictions

PLOS ONE Coupling spectral imaging and laboratory analyses to map sediment parameters and stratigraphic layers

PLOS ONE | https://doi.org/10.1371/journal.pone.0238894 September 11, 2020 4 / 24

https://doi.org/10.1371/journal.pone.0238894


of the examined sediment parameters with the spectral data received from the images, and (iv)

accuracy assessment of the results. Our experimental design draws on common practice dur-

ing excavations: we examined selected areas of two archaeological sections of similar size (c.

1.4 x 1.0 m, Figs 1 and 2) where we extracted one or two sediment samples from each strati-

graphic layer, resulting in a total number of 16 samples for both profiles together. We thank

the Authority for Research and Conservation of Cultural Heritage (ARCCH) and the Tigray

Culture and Tourism Bureau (TCTB) for permission to take samples and analyse them in Ger-

many. Due to the observed differences between the two profiles analysed, regression analyses

were individually performed for each profile. To ensure transparency of our results, our data is

available in the (S1 and S2 Files) along with scripts for the programming language R.

Laboratory analysis

We analysed 16 sediment samples, extracted from the two profiles EI and EVI. Additionally

one sample of the underlying saprolite was analysed, extracted from the weathered parent

material lying beneath profile EVI. Sampling locations are shown in Fig 2. The samples were

analysed in the laboratory of Physical Geography, Freie Universität Berlin.

The water content of the sediments was determined gravimetrically, calculated according to

Blume et al. 2011 [28] and reported in mass%. The particle size distribution (1mm–0.04μm) of

Table 1. Stratigraphic layers of profiles EI and EVI. Selected sediment properties obtained from the sampled materials (KT: K-Ti-ratio; RX: Ruxton-ratio). Depth of sam-

ples given in cm below the modern surface. See S1 Fig and S1 and S2 Files for the detailed sedimentological record.

Profile EI

Layer sample
no.

sample
depth [cm]

Description SOM
[mass%]

Fe2O3

[mass%]
CaCO3

[mass%]
KT RX

EI-A 7 184 anthropogenic layer; grey-brown silty loam; inclusions of ash, charcoal, bones and

ceramics

4.7 9.3 3.9 37.1 6

EI-B 6 200 anthropogenic layer; grey-brown silty loam; few inclusions; homogeneous 5.1 10.2 4.3 30.4 5.4

EI-C 5 210 anthropogenic layer; compacted brown-grey silty loam; inclusions of charcoal,

stones, bones and ceramics

2.2 8.9 6.2 31.7 5.9

EI-D 4 221 anthropogenic layer; dark grey and brown silty loam with a high content of

charcoal and ash; some bones and ceramics

3.9 10.2 3.6 27.9 6.2

EI-D1 3 228 a concentration of darker and more brown silty loam inside layer D 3.2 11.3 2.6 27.9 6

EI-E 2 240 compacted silty loam yellow-brown sediment with very few inclusions; high loam

content

2.6 12.9 1.6 27.6 5.7

EI-F 1 257 anthropogenic layer; compacted brown-grey silty loam with local clusters of small

stones; high loam content; some bones and ceramics, some charcoal

2.1 13.4 2.1 26.3 5.2

Profile EVI

Layer sample
no.

sample
depth [cm]

Description SOM
[mass%]

Fe2O3

[mass%]
CaCO3

[mass%]
KT RX

EVI-A - - a thick layer of broken stones (supposedly deposited intentionally); separates the

examined section from overlying stratigraphy

- - - - -

EVI-B 13 682 anthropogenic layer; dark brown-grey silty loam; inclusions of charcoal, ash,

bones, ceramics, and burnt clay

1.4 14.1 1.5 13.6 4.2

EVI-B1 15 657 grey to white bands of ash scattered throughout layer B; partly with charcoal 3.5 8 28 12.9 5.6

EVI-B2 14 670 black charcoal layer; partly with burnt clay 7.5 12.3 10.3 13.7 4.7

EVI-C 10 729 anthropogenic layer; compacted brown-grey sandy loam; inclusions of burnt clay,

bones and ceramics

0.9 13.9 2.2 17.9 4.7

EVI-C1 11 734 red-grey homogeneous feature of silty loam 1.3 14.7 2.9 20.2 5.1

EVI-D 9 742 homogeneous feature of grey ash 1.2 8.4 14.5 30.9 4.9

EVI-E 8 757 anthropogenic layer; dark brown-grey loam; inclusions of bones and ceramics 0.2 19.4 5.5 15.8 5.1

https://doi.org/10.1371/journal.pone.0238894.t001
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the sampled material was determined with a laser diffraction particle size analyser (Beckmann-

Coulter LS13 320): the prepared samples were put into a liquid sample divider and two sub-

samples were measured with three independent runs each. The six measurements per sample

were averaged to obtain the sample’s grain size distribution [29]. Particle sizes are defined

according to Ad-hoc Arbeitsgruppe Boden 2005 [30] and reported in vol%. Analysis of ele-

ment contents was conducted with (i) a Thermo Scientific Niton XL3t portable energy-disper-

sive X-ray fluorescence spectrometer (p-ED-XRF) and (ii) a PerkinElmer Optima 2100 DV

inductively coupled plasma optical emission spectrometer (ICP-OES) after aqua regia diges-

tion. For later statistical analyses element concentrations of Si, K, Mg and Ca measured by p-

ED-XRF were used, while Na, Fe, Al, Ti and PO4 concentrations were used as provided by

ICP-OES data (S1 File). Several certified reference materials (CRM) were applied for quality

control: NCS DC 73325 (soil), NCS DC 73387 (soil), NCS DC 73389 (soil), LKSD-2 (lake sedi-

ment), LGC6156 (harbour sediment) and LGC6180 (flue ash). Carbon contents of the samples

were examined for total carbon content (TC mass%) by burning at 1000˚C in an oxygen flow

(LECO TruspecCHN + S-Add-On) and inorganic carbon content (TIC mass%) by the evolu-

tion of CO2 during acid (H3 PO4) treatment and the subsequent quantification of the evolved

CO2 in 20 ml 0.05 N NaOH solution by conductivity (Woesthoff Carmhograph C-16); total

organic carbon content (TOC, reported as SOM in mass%) was calculated by subtracting TIC

from TC. Calcite (CaCO3) contents were calculated from the measured TIC values. Mineral

composition of the samples was examined with a Rigaku MiniFlex 600 X-ray powder diffrac-

tometer (XRD) with a copper kα tube. Mineral presence was examined semi-quantitatively

using the software Philips X’Pert HighScore (v. 1.0b).

An ASD FieldSpec II spectroradiometer was used in the laboratory to capture visible (VIS)

and near-infrared (NIR) reflectance of the sediment samples extracted from the profiles (350

nm–2500 nm, 1 nm steps). Samples were measured before and after homogenisation. Each

sample was illuminated by two halogen lamps. Variation of the results was minimised by cap-

turing a white reference every 15 minutes. Each spectrum was averaged from 50 single mea-

surements to compensate for uneven sediment texture. The captured spectra were smoothed

using a Savitzky-Golay filter of second polynomial order with a width of 21 values [31, 32].

The processed spectral data was used as a reference for the hyperspectral image data acquired

during fieldwork.

Weathering indices

We used the results of the chemical sediment analyses to calculate multiple weathering indices

(Table 2) applying ratios of certain elements or minerals to highlight differences between strat-

igraphic layers. Recently Zhang and Hartemink [12, 33] showed that certain weathering indi-

ces have proven useful for the delineation of high contrast soil horizons based on image data:

they observed good performance of Ca-Ti-ratio [CTR; 34], the Ruxton-ratio [RX; 35] and the

Sesquioxide-ratio [SQ; 35]. We also calculated these indices to test if their results can be

Table 2. Weathering indices used throughout the study. The weathering index after Parker (1970) was calculated

using the atomic proportion, defined as the atomic percentage divided by atomic weight.

Weathering Indices Formula Literature

Ruxton Ratio (RX) Si2 O3 / Al2 O3 Ruxton 1968

Sesquioxide Ratio (SQ) Si2 O3 / (Al2 O3 + Fe2O3) Ruxton 1968

Calcium/Titanium Ratio (CTR) CaO / TiO2 e.g. Betard 2012

Potassium/Titanium Ratio (KT) K / Ti e.g. Davies et al. 2015

Parker’s Index (PI) [(Na�/0.35) + (Mg�/0.9) + (K�/0.25) + (Ca�/0.7)] x 100 Parker 1970

https://doi.org/10.1371/journal.pone.0238894.t002
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transferred to complex archaeological profiles. Additionally we examined the K-Ti-ratio (KT)

due to the high difference in ionic potential of both factors [cf. 36, 37]. Furthermore we

included Parker’s index [PI; 38] as a widely accepted standard [e.g. 39, 40]. Calculations of all

indices include the molar mass of the respective elements.

Image acquisition

Image acquisition differs slightly from the setup described by Haburaj et al. 2019 [5]. Digital

RGB photographs of the sections were taken using a 24.3 MP mirrorless camera with a 2.8/30

mm lens (Sony ILCE-6000, Sigma 30mm F2.8 DN Art). Hyperspectral imaging was conducted

using a Cubert X2 S258 snapshot camera with a Schneider-Kreuznach Cinegon 1.8/16 mm

lens. Technical specifications of the camera systems are given in Table 3.

The images were captured using halogen lighting (500W) to obtain uniform lighting. In

total 13 hyperspectral images were recorded for profile EI and 12 hyperspectral images for pro-

file EVI. Every single image was processed with a separate white reference measurement,

allowing us to increase quality of the spectral data by including spatial variations in the lighting

conditions. Additionally, each profile was captured by a single RGB image taken with the Sony

ILCE-6000 camera. Black and white reference targets were used for orthorectification of RGB

and hyperspectral images and the creation of overlapping data for each profile.

Hyperspectral images were recorded in 16-bit TIF-format using the proprietary software

Cubert Utils Touch. The 8-bit images of the Sony ILCE-6000 RGB camera were also converted

to TIF-format. For further processing, the pixel values of both cameras were normalised to the

range [0, 1] via feature-scaling and the respective colour depth.

Since the hyperspectral images showed strong vignetting, the corners of all recordings were

removed by cropping, resulting in a spatial resolution of 428 x 254 pixels. The images were

stitched manually in QGIS (v3.4), using thin plate spline (TPS) transformation and nearest

neighbour (NN) resampling and including the rectified RGB images as spatial reference. His-

togram matching (R package RStoolbox, [41]) was used to eliminate the remaining differences

between single images. Images were then merged using GDAL (v2.4.1).

The VIS-NIR spectral data recorded with the ASD spectroradiometer for each sediment

sample was used as a reference for the correction of the hyperspectral image data. A direct

comparison of the two spectral datasets revealed that additional steps were necessary to elimi-

nate noise in the image data (Fig 3). The merged hyperspectral image data was spatially filtered

using a 5x5 median filter. The image bands from 560 to 670 nm (n = 12) show high noise con-

tent since in this spectral range the measured spectrum is a composite from two overlapping

sensors of the camera system (VIS sensor and NIR sensor). This range was masked and inter-

polated using piecewise cubic hermite interpolating polynomial interpolation (R package sig-

nal, [42]). The spectra were then smoothed with a Savitzky-Golay filter of second polynomial

order with a width of 11 values (Savitzky and Golay 1964). The image bands representing 450,

460, 470, 840 and 850 nm were excluded from the data due to their high noise content, leading

to a final spectral range of 480–830 nm in 10 nm steps. Image cells containing missing values

were interpolated using a 9x9 median filter.

Table 3. Technical specifications of the camera systems used throughout this study.

spatial resolution spectral resolution colour depth

Sony A6000 5696 x 4272 px RGB in 3 bands 8 bit

Cubert X2 S258 512 x 272 px 450(480)—850(830) nm in 41 (36) bands 16 bit

https://doi.org/10.1371/journal.pone.0238894.t003

PLOS ONE Coupling spectral imaging and laboratory analyses to map sediment parameters and stratigraphic layers

PLOS ONE | https://doi.org/10.1371/journal.pone.0238894 September 11, 2020 7 / 24

https://doi.org/10.1371/journal.pone.0238894.t003
https://doi.org/10.1371/journal.pone.0238894


A PTFE coated white reference was used for all hyperspectral recordings. The spectrum of

the white reference was additionally captured using an ASD FieldSpec Handheld 2 spectrora-

diometer (325–1075 nm, 1 nm steps). The spectrum was adjusted to the spectral resolution of

the hyperspectral camera and all camera recordings were divided by that spectrum to ensure

accurate measurements.

To create a uniform spatial resolution as a basis for image analyses, the RGB data was

downsampled to match the resolution of the hyperspectral data. New pixel values were gener-

ated by applying a mean filter. The black and white reference targets were masked manually

and remaining strong shadows were masked using threshold values for the image bands CIE

b� and 830 nm. This allowed us to exclude this data from the subsequent image analyses.

Mapping of sediment properties

Random forest regression analysis was used for the spatial mapping of sediment properties

using the results of the laboratory analyses and the image data.

Various studies suggest the transformation of spectral data prior to processing [13, 43–46].

We therefore created the following datasets as input for the regression analyses: (i) the RGB

data, (ii) the CIELAB data derived from the RGB data, and (iii) the pre-processed hyperspec-

tral data (480–830 nm, 10 nm steps).

Training areas for the prediction of sediment characteristics were indicated by polygons

marking the sampling areas. Regression models (x,y) were trained using the spectral informa-

tion from pixels (= pixel values covered by polygons) as predictors (x) and the respective sedi-

mentological data (obtained from the laboratory analyses) as response values (y). In total we

sampled c. 0.56% of the pixels of profile EI and c. 0.28% of the pixels of profile EVI. This led to

a total of 3,581 hyperspectral and 3,455 RGB and CIELAB pixels for the seven samples of pro-

file EI; correspondingly 2,054 hyperspectral and 1,395 RGB and CIELAB pixels for the nine

samples of profile EVI were available.

Regression models were trained for profiles EI and EVI separately based on the textural,

chemical and spectral characteristics of the respective sediment samples using a random forest

algorithm after Breiman 2001 [47], (R package randomForest, [48]). Regression analyses were

applied to SOM, Fe2O3, CaCO3, the weathering indices SQ, RX, PI, KT and CTR, as well as the

classified grain size (clay, silt and sand) as dependent variables and the spectral data as inde-

pendent variables.

Fig 3. Spectral data before (a) and after (b) denoising. The signal was limited to the wavelength range of 480–830 nm and the bands between 560 and 670 nm

were interpolated. The plot shows ten randomly selected spectra.

https://doi.org/10.1371/journal.pone.0238894.g003
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We used all sampled pixels as training data and performed a leave-p-out cross-validation

with p = 0.3 over 50 iterations (R package rfUtilities [49]). This allowed us to verify the out-of-

bag errors of the random forest regressions and to report mean and standard deviation of

the root mean square error (RMSE), mean bias error (MBE) and pseudo R2 values (1 −MSE/

Var(y)) from the cross-validation of each model [48]. These values were used for quality assess-

ment of the results along with the on-site delineation of the profiles conducted by archaeolog-

ical experts. The regression models were used for prediction with the image data and the R

package raster [50].

Results

The deposits exposed in profiles EI and EIV correspond to a silty to sandy loose sediment,

brownish to greyish in colour and with quartz and feldspar as the predominating mineral com-

ponents. Individual stratigraphic features are characterised by compaction material, ash inclu-

sions or varying amounts of clay (Table 1, Fig 2, S1 Fig). In addition, XRD data emphasises

that most samples are characterised by distinct hematite (Fe2O3) contents (S1 File); as Fe-bear-

ing minerals other than hematite are circumstantial along the two sediment profiles, for the

ongoing analysis the measured Fe contents are recognised as hematite components. The

underlying saprolite has developed from the parent granitic bedrock and shows low carbon

contents (TC: 1.55 mass%; TIC: 1.11 mass%; TOC: 0.44 mass%). Low carbonate contents all

along the profiles correspond to relatively low calcium concentration, which is due to the pre-

dominance of granites in the drainage basin. Peaks of carbonate (> 10 mass%) only occur in

the stratigraphic features EVI-B1, EVI-B2 and EVI-C1 in profile EVI. PO4 concentrations

along both profiles are low—slightly increased only in layers EI-A, EI-C, EI-D and EI-D1 in

profile EI and showing a singular peak in layer EVI-D in profile EVI (c. 3-4.5 vol%).

The initially described differences between the two profiles are also visible in their sedimen-

tological record: minor changes of the examined parameters are visible throughout profile EI

(Table 1), where layer EI-C shows the most distinct differences to its overlying and underlying

layers in PO4, SOM and CaCO3 contents. Most other changes along profile EI are gradual. In

contrast, in profile EVI we observed more pronounced differences between the individual lay-

ers in water content, SOM, PO4, Fe2O3, CaCO3 contents and the calculated weathering indices.

We trained random forest regression models between the spectral data acquired for the

sampling points from the acquired image data and the examined sediment parameters (SOM,

Fe2O3, CaCO3, the weathering indices SQ, RX, PI, KT, CTR, classified grain size). Thereby, we

were able to predict maps of these parameters which cover profiles EI and EVI. Evaluation of

the trained models was carried out by leave-p-out cross-validation (Table 4). Only prediction

maps with an R2 value greater than 0.8, low values of RMSE and standard deviation and a

good correlation of the prediction results with the on-site stratigraphic interpretation are eval-

uated as significant and therefore depicted in Figs 4–7. To ensure transparency, all produced

models and maps are available in the S1 File.

Profile EI

We produced maps of multiple sediment parameters throughout profile EI by applying statisti-

cal models based on RGB and hyperspectral data. The RGB data of profile EI produced good

results when predicting SOM (Figs 4 and 6a, Table 4; R2: 0.9). Similar results were obtained

applying the RGB derived CIELAB data (Fig 6b; R2: 0.93). Both sets of image data managed to

roughly capture the main differences between the most prominent layers of profile EI: the

increase in SOM content of layers EI-A, EI-B and EI-D. The RGB derived CIELAB data addi-

tionally captured the differences in silt and sand concentration throughout profile EI,
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especially visible in layer EI-E (Fig 6l and 6n). Cross-validation results for these parameters are

robust with high R2 and low RMSE values as well as low standard deviations (Table 4). These

values are significantly lower for the remaining sediment parameters of profile EI. Prediction

results of weathering indices, Fe2O3, CaCO3 and clay, as calculated from RGB data and RGB

derived CIELAB data of profile EI are therefore not reliable (Table 4).

The hyperspectral image data of profile EI generally produced more accurate results for

all of the predicted parameters when compared to the results obtained by applying the RGB

data and the RGB derived CIELAB data. In general, we observed a good congruence between

calculated and on-site delineated maps by visual comparison. Additionally, regression models

calculated using the hyperspectral data of profile EI and textural and chemical sediment

Table 4. Cross-validation results of the regression analyses using RGB, CIELAB and hyperspectral data. Mean and standard deviation of the root mean square error

(RMSE), mean bias error (MBE) and pseudo R2 values (1 −MSE/Var(y)) obtained from leave-p-out cross-validation are reported. The training data consisted of seven sed-

iment samples for profile EI and nine sediment samples for profile EVI. Significant models are marked in bold.

Profile EI (n = 7) Profile EVI (n = 9)

R2 R2(sd) RMSE RMSE (sd) MBE MBE (sd) R2 R2(sd) RMSE RMSE (sd) MBE MBE (sd)
SOM RGB 0.9 0.003 0.366 0.012 0.001 0.012 0.961 0.004 0.384 0.079 -0.018 0.021

CIELAB 0.932 0.002 0.301 0.01 -0.001 0.011 0.987 0.002 0.214 0.065 -0.005 0.014

480–830 nm 0.883 0.005 0.385 0.021 0.004 0.015 0.933 0.006 0.503 0.069 0.006 0.023

Fe2O3 RGB 0.446 0.015 1.188 0.03 0.004 0.044 0.942 0.006 0.837 0.089 -0.002 0.057

CIELAB 0.599 0.013 1.016 0.032 0.002 0.039 0.974 0.003 0.556 0.092 -0.001 0.034

480–830 nm 0.886 0.003 0.54 0.022 -0.007 0.02 0.925 0.003 0.972 0.067 -0.016 0.05

CaCO3 RGB 0.324 0.016 1.265 0.03 -0.008 0.047 0.972 0.003 1.016 0.185 -0.032 0.057

CIELAB 0.507 0.015 1.079 0.032 -0.003 0.038 0.989 0.002 0.678 0.195 -0.026 0.043

480–830 nm 0.822 0.006 0.649 0.027 0.004 0.026 0.965 0.003 1.113 0.132 -0.009 0.047

RX RGB 0.53 0.011 0.21 0.004 0 0.008 0.945 0.004 0.106 0.011 -0.001 0.007

CIELAB 0.663 0.009 0.176 0.005 0 0.007 0.978 0.002 0.065 0.011 0.001 0.004

480–830 nm 0.828 0.004 0.124 0.004 0.001 0.005 0.875 0.01 0.162 0.017 -0.004 0.008

SQ RGB 0.457 0.014 0.18 0.005 -0.001 0.008 0.973 0.003 0.058 0.006 -0.002 0.004

CIELAB 0.602 0.012 0.151 0.005 0 0.006 0.988 0.001 0.038 0.006 0 0.002

480–830 nm 0.897 0.003 0.076 0.003 0.001 0.003 0.97 0.001 0.059 0.004 0 0.003

CTR RGB 0.318 0.015 12.619 0.298 -0.126 0.499 0.98 0.004 5.127 1.69 -0.128 0.297

CIELAB 0.502 0.011 10.716 0.242 -0.015 0.45 0.99 0.003 4.437 1.189 -0.033 0.319

480–830 nm 0.847 0.005 5.938 0.25 0.066 0.239 0.99 0.001 3.777 0.778 -0.058 0.177

KT RGB 0.605 0.011 2.17 0.047 -0.027 0.066 0.961 0.004 1.147 0.202 0.045 0.071

CIELAB 0.726 0.008 1.809 0.045 0.006 0.066 0.985 0.003 0.68 0.217 -0.015 0.045

480–830 nm 0.861 0.004 1.266 0.052 0.021 0.047 0.951 0.004 1.246 0.209 -0.008 0.046

PI RGB 0.478 0.013 6.9 0.141 -0.035 0.271 0.987 0.002 2.782 0.364 -0.102 0.196

CIELAB 0.62 0.013 5.878 0.164 0.016 0.217 0.994 0.001 2.089 0.51 -0.092 0.126

480–830 nm 0.876 0.003 3.335 0.156 0.007 0.115 0.99 0.001 2.574 0.435 -0.044 0.145

clay RGB 0.542 0.014 1.033 0.034 0.004 0.04 0.837 0.017 1.911 0.2 -0.041 0.122

CIELAB 0.661 0.012 0.897 0.035 -0.006 0.034 0.929 0.008 1.271 0.265 -0.041 0.071

480–830 nm 0.901 0.003 0.48 0.023 -0.003 0.018 0.959 0.003 0.955 0.089 -0.012 0.043

silt RGB 0.787 0.008 1.893 0.058 -0.014 0.057 0.934 0.004 3.216 0.337 -0.096 0.182

CIELAB 0.862 0.006 1.502 0.063 0.011 0.055 0.976 0.001 2.018 0.294 -0.05 0.128

480–830 nm 0.834 0.006 1.665 0.09 0.014 0.061 0.898 0.005 4.009 0.337 -0.038 0.175

sand RGB 0.765 0.008 2.21 0.06 0.02 0.082 0.904 0.007 4.597 0.395 0.079 0.262

CIELAB 0.838 0.006 1.834 0.072 -0.005 0.076 0.965 0.003 2.742 0.444 0.084 0.21

480–830 nm 0.81 0.006 1.961 0.095 0.018 0.072 0.901 0.004 4.682 0.344 0.07 0.278

https://doi.org/10.1371/journal.pone.0238894.t004
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characters as independent variables produced R2 values between 0.81 and 0.9 (n = 7) and low

error values (Table 4). These statistical results document the reliability of the parameter maps

produced by these models and underline their good agreement with the on-site delineation.

The most reliable models generated from the hyperspectral data of profile EI were derived for

SOM contents, hematite (Fe2O3) contents, the SQ weathering index and clay contents (Fig 6c,

6d, 6g and 6k). Applying these statistical models based on the hyperspectal image data, layers

EI-E and EI-F were successfully separated from the rest of the profile regarding their Fe2O3

and CaCO3 contents, grain size composition and weathering indices (Fig 6). Additionally, lay-

ers EI-D and EI-D1 were reliably outlined by applying models of the weathering index RX,

SOM content and grain size composition based on hyperspectal image data. The predicted

map of SOM successfully captures the high values present throughout layers EI-A and EI-B

(Fig 6c, S1 Fig). These two layers also show a low sand content in the sedimentological record

(S1 Fig) and the parameter maps (Fig 6o).

Profile EVI

The random forest regression models and the resulting prediction maps produced using the

RGB image data of profile EVI show good results for SOM, Fe2O3 and CaCO3 contents, as well

as for the weathering indices SQ, CTR, KT and PI (Figs 5 and 7, Table 4). Increased Fe2O3 con-

tents for layers EVI-C1 and EVI-E are clearly visible in the map based on the RGB data (Fig

7d). The black charcoal layer in EVI-B2 is clearly captured by the prediction map of SOM

derived from the RGB data (Fig 7a). Prediction maps for profile EVI based on regression

models calculated for the RGB derivative CIELAB are similar to those produced by RGB data

Fig 4. Results from regression analyses of profile EI. Actual (measured) and predicted values of the sediment properties examined. The ideal performance is

shown by the red line (y = x). Only models with a cross-validated R2 greater than 0.8 and a high correlation between the respective prediction map and the

stratigraphic delineation are shown.

https://doi.org/10.1371/journal.pone.0238894.g004
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(Fig 7). Also the R2 values for both datasets are very similar for the mentioned parameters

(Table 4; R2 > 0.94, n = 9). For both RGB and CIELAB data, statistical models for all weather-

ing indices except RX outline layers EVI-B1, EVI-B2 and EVI-D (Fig 7h–7p). Mapping results

based on modelling grain size composition (sand, silt, clay) are less pronounced than observed

Fig 5. Results from regression analyses of profile EVI. Actual (measured) and predicted values of the sediment properties examined. The ideal performance is

shown by the red line (y = x). Only models with a cross-validated R2 greater than 0.8 and a high correlation between the respective prediction map and the

stratigraphic delineation are shown.

https://doi.org/10.1371/journal.pone.0238894.g005
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for profile EI; statistical models involving grain size composition and the RGB data and RGB

derived CIELAB data of profile EVI are not significant (Table 4). In contrast, the R2 values of

modelled grain size composition based on the hyperspectral image data are greater than 0.8.

However, the resulting prediction maps for profile EVI do not match with the on-site strati-

graphic interpretation (S2 File).

Prediction maps generated by applying statistical models which involve the datasets from

the hyperspectral images of profile EVI show a strong variance of the data inside the profile

from left to right, indicating a systematic error; this shift was not captured by the on-site

Fig 6. Predicted sediment properties of Profile EI. Only models with a cross-validated R2 greater than 0.8 and a high correlation between the respective

prediction map and the on-site stratigraphic delineation (white lines) are shown.

https://doi.org/10.1371/journal.pone.0238894.g006
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stratigraphic interpretation (Figs 2 and 7). Models resulting from random forest regression

analyses of the datasets from hyperspectral images and the different sedimentological parame-

ters generally show significant R2 values (> 0.87, n = 9, Table 4). In contrast, parameter maps

produced by applying these statistical models to the hyperspectral image data only agree in

part with the maps derived from the respective statistical models based on the RGB data and

the RGB and its derivatives: while for the maps derived from the application of the statistical

models based on RGB data and RGB derived CIELAB data the layers outlined highly corre-

spond with the on-site delineated stratigraphy, this does not pertain to the maps generated by

the application of statistical models based on hyperspectral image data. For example, this

applies to the SOM contents as shown in Fig 7c: SOM concentrations are generally low and

layers EVI-B1 and EVI-B2 are outlined correctly with peaking SOM contents; in addition,

noise in the data does not allow a reliable delineation of layers EVI-C1 and EVI-E. Apart from

this SOM map of limited quality, a map of acceptable quality based on the hyperspectral data

of profile EVI could only be produced for the weathering index PI (Figs 5p and 7p). All other

statistical models of the hyperspectral data of profile EVI and the remaining parameters pro-

duced good statistical significances (Table 4) but the derived parameter maps did not hold any

significant information.

Discussion

Prediction results

General. Modelling layer delineation for profiles EI and EVI generally shows a good perfor-

mance of models based on RGB image data for predicting soil organic matter (SOM). Layer

Fig 7. Predicted sediment properties of Profile EVI. Only models with a cross-validated R2 greater than 0.8 and a high correlation between the respective

prediction map and the on-site stratigraphic delineation (white lines) are shown.

https://doi.org/10.1371/journal.pone.0238894.g007
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delineation by applying models based on the RGB derived CIELAB data leads to more homo-

geneous prediction maps of SOM contents (Figs 6a, 6b, 7a and 7b), which is consistent with

the findings of Zhang and Hartemink 2019 [12]. The good performance of the statistical mod-

els based on hyperspectral data of profile EI is consistent with the laboratory studies of, for

example, Steffens and Buddenbaum 2012, Schreiner et al 2012, Hobley et al. 2018, Heil et al.

2020 [6, 7, 51, 52] and on-site studies like Zhang and Hartemink 2019 [12]. Applying the

hyperspectral data allowed us to develop statistical models which are reliably able to map the

predicted layers based on the sediment properties for profile EI. In contrast, spectral noise and

disturbances of the hyperspectral data of profile EVI generated relatively unreliable results for

various sediment characteristics and thus did not delineate stratigraphic layers convincingly.

SOM. The good results for predicting SOM from all the used image data are accounted for

by the fact that the visual reflectance of soils and sediments (i.e. brightness) is highly related to

SOM content [cf. 53]. The observed increase in mapping quality of SOM when using the

hyperspectral image data of profile EI as independent variable in the statistical models shows

the potential of a higher spectral resolution throughout the visible part of the electromagnetic

spectrum. Likewise the results are certainly influenced by the range of the hyperspectral sensor:

the equidistant measurement of the area between 600 and 830 nm clearly adds important

information compared to the RGB data measured with a sensor that shows rather limited capa-

bilities beyond 650 nm [cf. 5]. However, the absolute difference between the mapping results

of SOM from RGB and hyperspectral data as visible in Figs 6 and 7 is relatively low, thus stress-

ing the potential of RGB imaging for the mapping of selected parameters, as suggested by e.g.

Zhang and Hartemink 2019 [12].

Fe2O3. The iron oxide hematite shows specific spectral features between 510 and 620 nm

[53, 54] and absorption bands at 450, 680 and 700 nm are also related to hematite [45, 53]. The

hyperspectral sensor used directly measures these wavelengths while the RGB data just covers

them in one summarising red image band; in consequence, application of the hyperspectal

data leads to a good performance of the statistical model when mapping Fe2O3 in profile EI.

However, as the results of profile EVI reveal, RGB and RGB based CIELAB image data can

clearly be used to map hematite content throughout a profile, as long as the contents are high

enough. Several authors prove a direct relation between iron oxide contents and redness of

soils and sediments, e.g. through the colour coordinates a� and b� [55–57], which also explains

the good performance of the random forest regression models based on RGB and RGB based

CIELAB image data of profile EVI.

Grain size. We produced good results when mapping grain size throughout profile EI by

applying statistical models based on the CIELAB and hyperspectral image data. The perfor-

mance of CIELAB data was acceptable, but using hyperspectal data clearly led to more reliable

maps (Fig 6). We see these results as indicating the potential of an extended spectral range

when mapping grain size, as we were able to compensate for the lower number of samples in

comparison to Zhang and Hartemink 2019 [12] by extending our spectral range to 480–830

nm. Data presented by Post and Noble 1993 [58] and later Stenberg et al. 2010 [54] indicates

that the reliability of characterising textural elements based on statistical models increases

when sensors covering NIR are included since many reflectance features related to grain size

only occur beyond 1000 nm. Most studies dealing with the prediction of grain size through

spectral data do indeed cover the VIS-NIR area up to 2500 nm or even use mid infrared data

(MIR; 2,500–25,000 nm) [cf. 44].

Weathering indices. Weathering index mapping based on statistical models worked out

nicely in many cases and proved helpful for assessing similarities and differences between lay-

ers (see below). Statistical models based on RGB and CIELAB image data were observed by

Zhang and Hartemink 2019 [12] to perform well in predicting the indices SQ, RX and CTR;
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this could be reproduced in part with our experimental design (Figs 6 and 7, Table 4). The

mapping results of the Sesquioxide ratio based on the RGB and CIELAB image data were espe-

cially helpful for delimiting layers EVI-C1 and EVI-E in profile EVI (Fig 7). Derived from the

statistical models based on the hyperspectral image data, the prediction map of the weathering

index after Parker 1970 [38] showed a slight advantage over the weathering index CTR

(derived from the same datasets) for mapping layers EI-B and EI-E / EI-F in profile EI (Fig 6).

As the reliable prediction maps of PI and CTR are very similar in both examined profiles (Figs

6 and 7), we suggest the usage of CTR over PI since less laboratory analyses are necessary to

calculate the CTR index (Table 2). Mapping results of the index KT (K-Ti-ratio) vary from

those of other indices (Figs 6 and 7) and are likely related to grain size (as is also visible in

Fig 6), as K and Ti concentration was shown to be correlated with clay, sand and silt fractions

[e.g. 59].

Consequences of and for the stratigraphic profiles examined

Several of the examined sediment parameters were helpful to delineate stratigraphic layers and

thus provide supportive information for the on-site stratigraphic description. In profile EI, the

boundary between layers EI-E and EI-F (as documented during fieldwork) is not visible in the

generated prediction maps, which are assessed as reliable (Fig 6); however, the sedimentologi-

cal record (Table 1, S1 Fig) also only points out slight differences between both layers. Likewise

the increased stone contents and the anthropogenic remains in layer EI-F (Table 1) are not

detectable with the experimental setup used. Stone inclusions (and layer delineation based on

flakes of charcoal, bones or burnt clay) in general are a crucial drawback of the proposed

method, as parameter mapping results depend on the sampled materials. Circumvention of

this problem would require an increased number of samples, a higher spatial resolution

(smaller pixel size) and an additional layer of documentation in the form of image texture or

similar parameters [cf. 5]. However, based in the fines of layers EI-E and EI-F (Profile EI),

both strata are delineated nicely from the rest of the profile in the parameter maps (Fig 6). Lay-

ers EI-A and EI-B (Profile EI) are mainly distinguished from each other by their differing den-

sity of inclusions (Table 1), again causing a relatively weak delineation between the two strata

based on the application of statistical models applying RGB, its derivative CIELAB or hyper-

spectral data as independent variables (Fig 6). The on-site description of layer EI-B as ‘more

homogeneous’ (Table 1) compared to layer EI-A, however, is underlined by a horizontal patch

of homogeneous material visible in the mapping results of Fe2O3, CaCO3 and PI, as derived

from the hyperspectral image data by statistical modelling (Fig 6). The generally high contrast

between layers EI-A and EI-B regarding weathering indices (Fig 6) supports the on-site

description of the two layers as individual strata.

In Profile EVI, the examined sediment properties also provide supportive information for

the on-site stratigraphic description. The parameter maps produced by applying the reliable

statistical models show similarities between layers EVI-C1 and EVI-E (S1 Fig, Fig 7). Increased

Fe2O3 contents and similar values of the SQ weathering index are visible for both layers in the

respective parameter maps (Fig 7) and the increased iron content explains the red-brown col-

our of the two layers EVI-E and EVI-C1 (cf. [60], Table 1). The on-site description of layers

EVI-D and EVI-B1 as similar material (bright ash layers) is not visible in our results. Rather,

we observed clear differences between the two layers: the parameter maps of the weathering

index KT produced by applying the statistical models including the RGB and CIELAB image

data, indicate a significantly different weathering grade of layers EVI-D and EVI-B1 (Fig 7).

This is also visible in the calculated KT and RX values in the sedimentological record of profile

EVI (S1 Fig). Additionally the two layers clearly differ in PO4 concentration (S1 Fig). Layer
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EVI-B1 can clearly be described as a bright ash layer connected with anthropogenic activities.

In contrast, we interpret layer EVI-D as a thin layer covering layers EVI-E and EVI-C1 and

most likely related to a reshaping of the surface or construction work. Remains of this process

are also visible on the opposite side of the trench at the same depth [26]. The lowermost

anthropogenic layer (layer EVI-E) varies greatly in thickness and locally shows a gradual tran-

sition into the underlying saprolite [cf. 26, 61].

Reproducibility

Evaluating our results, clear discrepancies are visible between profiles EI and EVI regarding

the performance of the RGB, RGB derived CIELAB and hyperspectral data. For profile EI,

using statistical models which are based on the hyperspectral data led to a general increase of

the quality of the prediction results when compared to the results achieved by the RGB and the

derived CIELAB data (Figs 4 and 6, Table 4). In contrast, using the hyperspectral data of profile

EVI in most cases led to more inaccurate parameter maps than the maps produced on the

basis of the RGB and the derived CIELAB data. Together with the irregular cross-validation

results of the hyperspectral data of profile EVI (Table 4), we interpret this as resulting from the

observed variations, noise and disturbances in the hyperspectral image data of profile EVI, pre-

sumably caused by light that was irregularly reflected by the adjacent profile walls between the

recordings of the 12 hyperspectral images of profile EVI.

The two profiles additionally differ significantly in their overall characters: profile EI is a

low contrast profile and EVI is a high contrast profile. Pronounced differences in lightness and

redness are only visible in profile EVI (Fig 2). These characteristics result from a high variation

of SOM contents (lightness) and Fe2O3 contents (redness) throughout the profile. As lightness

and redness heavily influence the spectral reflectance in the visual part of the electromagnetic

spectrum, the statistical models based on the RGB data show a better performance for profile

EVI than for the low contrast profile EI (Figs 6 and 7).

Prediction results of both profiles are influenced by our sampling strategy, which we limited

to less than ten sediment samples per profile. The digitised training areas for the regression

analyses were focused on the direct surroundings of the samples and thus only covered a small

percentage of the total image pixels (< 0.6%). This low number of sediment samples leads to a

shorter processing time, and thus lower costs, compared to other studies [e.g. 7, 12]. Generally,

the gradual and rather low variation of the parameters examined throughout profile EI was

captured successfully despite the low amount of samples (n = 7). Profile EVI, however, shows a

more complex stratigraphy that probably would have required a more detailed sampling strat-

egy to be able to outline its stratigraphic character: (i) singular lenses of very dark and very

bright material, (ii) gradual variation in vertical and horizontal directions, and (iii) many

anthropogenic layers which show differing contents of bones, charcoal, ceramics and burnt

clay. These characteristics may lead to a disproportional representation of some of the exam-

ined sediment properties in the samples and thus in the parameter maps derived from the sta-

tistical models based on these samples. Nonetheless, we see the main reason for the poor

performance of the hyperspectral data of EVI in the lighting situation during image acquisi-

tion: the adjacent walls of the trench are situated directly left and right of the captured part of

profile EVI. Similar to the shadow cast by adjacent trench walls as described by Haburaj et al.

2019 [13], the walls in profile EVI most likely reflected and scattered the artificial light differ-

ently between single measurements due to changing lamp positions and caused the observed

distortions in the hyperspectral image data of profile EVI.

Our results clearly show that a low number of samples can be sufficient to successfully map

parameters like the concentrations of organic matter or iron oxide. Nevertheless, the samples
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need to be representative for the profile examined. Complex anthropogenic layers featuring

high amounts of flakes of brick, charcoal, bones or mortar can be reliably delineated with a

very high spatial resolution of the image data and the sampling strategy. Apart from the con-

trast of the examined profile or planum, the spatial scale and structure should be kept in mind.

Similar problems and thoughts have already been discussed in the field of remote sensing:

additionally to the sizes and spatial relationships of the objects in the recorded scene (as sug-

gested by [62]),the spectral relationships of these objects should be considered when assessing

the required scale of a scene.

As the CIELAB image data used throughout the presented study is derived from the

acquired RGB image data, it should be kept in mind that the parameter maps of the two data-

sets are highly correlated (e.g. Pearson correlation coefficient of 0.92 with p< 0.05 between

SOM values predicted from RGB and CIELAB data, see S2 File). Transformation of the RGB

data to the CIELAB colour space, however, has some benefits: the parameter maps based on

the CIELAB data frequently showed less noise (Figs 6 and 7). Results of the cross-validations

also indicate a slightly better performance of the statistical models based on the CIELAB data

when compared to the models directly based on the RGB data (Table 1). These findings are

consistent with multiple studies which suggest that the CIELAB colour space shows clear bene-

fits for quantitative analyses (e.g. [43, 57]).

In the presented study we produced significantly better mapping results when training

regression models for profiles EI and EVI individually. When applying the random forest

regression analysis to the merged image data and sedimentological data of both profiles, much

detail was removed from the resulting prediction maps (Fig 8). We assume that the high

Fig 8. Predicted weathering index values (RX = Ruxton Ratio) of Profile EI. Prediction results from the regression models trained with (a) the hyperspectral

image data of profile EI and (b) the combined hyperspectral image data of profiles EI and EVI. When analysing the profiles individually, significantly more detail is

preserved (a).

https://doi.org/10.1371/journal.pone.0238894.g008
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contrast of profile EVI caused by just a few sediment properties resulted in these observed dif-

ferences in modelling performance.

Accuracy

Overall accuracy of the parameter maps derived from the statistical models was assessed (i) by

visual comparison to the on-site stratigraphic interpretation (Fig 2), (ii) comparison of the

mapping results to the laboratory results describing stratigraphic layers (Table 1, S1 Fig) and

(iii) by performing leave-p-out cross-validation (CV), resulting in RMSE, MBE and pseudo R2

values for each statistical model (Table 4). CV results of profile EI mostly agree with the quality

of the mapping results of the parameters examined. They therefore help to quantify differences

in the performance of the statistical models based on the image datasets used and likewise

strengthen the significance of our results in general. Since our sampling strategy only allowed

for the definition of highly local training and testing data, the CV results are influenced by spa-

tial autocorrelation [63]. This becomes visible especially in profile EVI, where R2 values are

generally too high (Table 4). The selective character of the training data of the statistical mod-

els in combination with the distorted image data leads to an overfitting of the random forest

model and thus produces the observed CV results. This is visible for multiple parameters in

profile EVI: the high R2 values for grain size, for example, disagree with the actual parameter

maps, which are partly very inaccurate (S3 file). Another example is the disproportionally high

R2 value of 0.99 for the prediction of many parameters via the hyperspectral image data of pro-

file EVI (Table 4). Possible solutions for this problem include tuning of the random forest

model [64] or the usage of a spectral sensor that produces cleaner spectra and allows one to

use a more specific or an extended feature space for training the statistical models used for pre-

diction [e.g. 44]. Additionally our approach only included 0.56% (EI) and 0.28% (EVI) of the

image pixels as training data. Increasing this number may lead to more reliable prediction

results [65]. Taking into account the reliable results for profile EI and the acceptable results

produced using the RGB or RGB derived CIELAB data for profile EVI, we suggest that the

poorer performance of the proposed method for profile EVI originates in the distorted hyper-

spectral image data. For many of the parameters examined we were able to produce good pre-

diction results comparable with those of past studies conducted under controlled conditions in

the laboratory (e.g. [7]) or with a significantly higher number of samples (e.g. [12]). The

expressiveness of the pseudo R2 values used throughout the present study remains limited, but,

in combination with the on-site layer delineation, the values led to a more traceable strati-

graphic interpretation of the profiles examined.

Conclusions

This study documents that the supervised regression of sediment parameters and—RGB and

hyperspectral—image data provides valuable support for on-site sediment profile delineation

and characterisation by an expert (here: archaeologist). The expert knowledge applied during

on-site delineation of a sediment profile allows an integral analysis including the detailed

description of certain macroscopic aspects such as texture, colour or compactness. Supervised

regression involving image data is exclusively based on the physical spectral signal and requires

the generation and application of several statistical models, mostly one per parameter contem-

plated. However, by applying these models, various chemical and textural sediment character-

istics can be delineated across a profile and thus add information to the expert’s delineation

and interpretation of layers.

We demonstrate that the extrapolation of sediment properties of sampled material via

image data can be transferred from the laboratory to archaeological fieldwork conditions. We
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were able to create reliable maps of multiple sediment parameters (SOM, Fe2O3, CaCO3,

weathering, grain size) by applying statistical models for each parameter. The low number of

samples furthermore renders our approach very limited in its destructiveness, which is crucial

when researching anthropogenic heritage.

As the results imply, several characteristics of the proposed method must be considered: (i)

the fieldwork situation needs to be carefully controlled, (ii) artificial light is highly recommended,

and (iii) the spatial resolution of the image data and the sampled materials has to be adjusted

according to the size, scale and complexity of the respective profile or planum examined. Bearing

this in mind, our results suggest that spectral sensors in general, and particularly more advanced

spectral sensors covering the NIR and MIR region in more detail [66], are suitable for the map-

ping of multiple sediment properties, commonly examined selectively during excavations. Our

study illustrates the potential held by digital imaging as applied as a standard feature during most

excavations nowadays. Treating digital images as physical measurements clearly offers a quick

and low-cost way to increase the traceability of stratigraphic delineation and interpretations.

Future studies could also apply the proposed method to archaeological plana, possibly

recorded by a multi- or hyperspectral sensor mounted on an unmanned aerial vehicle. How-

ever, as spectral information should serve to support profile delineation and not substitute it,

we suggest a combined application of expert knowledge and spectral data.

Supporting information

S1 Fig. Sedimentological record of profiles EI (top) and EVI (bottom). Water content of the

sampled material was determined gravimetrically. Soil organic matter was calculated from

quantitative measurements of total carbon (LECO TruspecCHN) and total inorganic carbon

(Woesthoff Carmhograph C-16). Particle size distribution was measured using a laser diffrac-

tion particle size analyser (Beckmann-Coulter LS13 320). Element contents were measured

using a portable energy-dispersive X-ray fluorescence spectrometer (Thermo Scientific Niton

XL3t) and a inductively coupled plasma optical emission spectrometer (PerkinElmer Optima

2100 DV). Mineral composition was measured using an X-ray powder diffractometer (Rigaku

MiniFlex 600). Weathering indices Ca-Ti-ratio (CTR), Ruxton-ratio (RX), Sesquioxide-ratio

(SQ), K-Ti-ratio (KT) and Parker’s Index (PI) were calculated. The methodology is described

in more detail in theMaterials and methods section.

(PNG)

S1 File. Detailed sedimentological data along with plots showing measurement results

from ICP-OES and p-ED-XRF as well as XRD plots. Files available at: https://doi.org/10.

5281/zenodo.3906210.

(ZIP)

S2 File. R-Scripts for the regression analyses performed throughout the presented study

along with the data and the produced plots. Files available at: https://doi.org/10.5281/

zenodo.3906216.

(TXT)

S3 File.

(TXT)
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Project administration: Brigitta Schütt.
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