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Abstract
Most conventional methods o f breast cancer screening such as X-ray, Ultrasound (US) and MRI 

have some issues ranging from weaknesses associated with tumour detection or classification to 

high cost or excessive time of image acquisition and reconstruction. Elastography is a non- 

invasive technique to visualize suspicious areas in soft tissues such as the breast, prostate and 

myocardium using tissue stiffness as image contrast mechanism. In this study, a breast 

Elastography system based on US imaging is proposed. This technique is fast, expected to be 

cost effective and more sensitive and specific compared to conventional US imaging. Unlike 

current Elastography techniques that image relative elastic modulus, this technique is capable of 

imaging absolute Young's modulus (YM). In this technique, tissue displacements and surface 

forces used to mechanically stimulate the tissue are acquired and used as input to reconstruct the 

tissue YM distribution. For displacements acquisition, two techniques were used in this research: 

1) a modified optical flow technique, which estimates the displacement o f each node from US 

pre- and post-compression images and 2) Radio Frequency (RF) signal cross-correlation 

technique. In the former, displacements are calculated in 2 dimensions whereas in the latter, 

displacements are calculated in the US axial direction only. For improving the quality of 

elastography images, surface force data was used to calculate the stress distribution throughout 

the organ of interest by using an analytical model and a statistical numerical model. For force 

data acquisition, a system was developed in which load cells are used to measure forces on the 

surface o f the breast. These forces are input into the stress distribution models to estimate the 

tissue stress distribution. By combining the stress field with the strain field calculated from the 

acquired displacements using Hooke's law, the YM can be reconstructed efficiently. To validate 

the proposed technique, numerical and tissue mimicking phantom studies were conducted. For 

the numerical phantom study, a 3D breast-shape phantom was created with synthetic US pre- and 

post-compression images where the results showed the feasibility o f reconstructing the absolute 

value of YM of tumour and background. In the tissue mimicking study, a block shape gelatine- 

agar phantom was constructed with a cylindrical inclusion. Results obtained from this study also 

indicated reasonably accurate reconstruction o f the YM. The quality o f the obtained elasticity 

images shows that image quality is improved by incorporating the adapted stress calculation 

techniques. Furthermore, the proposed elastography system is reasonably fast and can be 

potentially used in real-time clinical applications.
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1. Introduction
1.1. Cancer
Cancer is a group of diseases in which a number o f cells are associated with uncontrolled 

growth, invasion (infecting adjacent tissues), and sometimes metastasis (spreading to 

other organs in the body via blood). These three properties of cancers distinguish them 

from benign tumours, which are self-limited, and do not invade or produce metastasis. 

Most cancers create a tumour but some, like leukemia, do not.

Cancer may occur in people at all ages, even in infant, but the risk for most varieties 

increases with age. According to the Canadian Cancer Society, almost 171000 people 

will be diagnosed with cancer and about 75300 deaths will die o f it in year 2009.

Almost all cancers are caused by abnormalities in cells growth. These abnormalities may 

be caused by carcinogens, such as tobacco smoke, radiation or chemicals. Other types of 

cancers may be caused by irregular replication in DNA, or are inherited, and therefore 

present in all cells since birth. In many diagnostic procedures, first, images are taken of 

the organ to detect any abnormality in the organ. If an abnormality is present, a 

radiologist removes samples o f the suspicious tissue using a procedure called biopsy. 

Some cancer types can be treated and cured. Treatment depends on the specific type, 

location, and stage o f the cancer. Once cancer is diagnosed, it is usually treated with a 

combination o f procedures such as surgery, chemotherapy and radiotherapy. Many 

researches work specifically on treatment methods of a type of cancer. Research has led 

to significant progress in the development of therapies such as brachytherapy where 

radioactive seeds are inserted in cancerous tissues to kill cancerous cells. Effective cancer 

treatment usually requires early diagnosis. Medical imaging techniques ranging from X- 

ray to PET (Positron Emission Tomography) are very effective for diagnosis. For 

example Figure 1-1 shows a cancerous lump in a lung seen on an X-ray image.
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Figure 1-1: Chest X-Ray showing lung cancer in a left lung (courtesy of Canadian Cancer Society)

1.2. Breast Anatomy
The breast is a volume o f fibroglandular and adipose tissues. The adipose tissue is 

extended throughout the breast, which forms its shape. The fibroglandular tissues of the 

breast are responsible for producing milk. Milk is produced in the alveoli, which are 

small clusters o f cells. The produced milk moves down to the nipple via the ducts as 

shown in Figure 1-2.

As depicted in Figure 1-2, the breast is composed of:

• Fibro glandular tissues that are responsible to produce milk

• Nipple

• Ducts that transfer the milk from the aveoli to the nipple

• Areola

• Connective tissue that surrounds the glands and ducts

• Fatty tissues

Arteries carry blood which contains oxygen from the heart to the chest wall and the 

breasts while veins carry de-oxygenated blood back to the heart. The arteries located 

within the breast extend from vessels in the neck and feed the interior parts o f the breast. 

The auxiliary artery feed posterior parts of the breast with blood.
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1

Figure 1-2: female breast diagram- Legend: 1-Chest wall 2-Pectoralis muscles 3-Lobules 4-Nipple 5-
Areola 6-Duct 7-Fatty tissue 8-Skin

1.3. Breast Cancer
Breast cancer is a cancer that starts in the breast due to abnormality in breast tissues. 

There are different types o f breast cancer, with different stages, invasiveness, and genetic 

structure. With treatment, 10-year disease-free survival varies from 10% to 98%. 

Treatment includes surgery, drugs (chemotherapy), radiation and brachytherapy.

Based on statistics presented by the Canadian Cancer Society, breast cancer is the third 

most common type o f cancer occurrence in year 2009 in Canada after lung and prostate 

cancer. It is estimated that 22900 people including both sexes will be diagnosed with 

breast cancer in this year. It is also estimated that almost 5400 people will die as a result 

o f breast cancer.

Breast cancer is more frequent among women rather than men, but survival rates are 

identical for both sexes. Figure 1-3 shows a normal breast on the left and a cancerous 

breast on the right. Usually micro-calcification visible in X-ray mammograms is an 

indication o f malignant area in the breast [47].
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(a) (b)
Figure 1-3: X-ray Mammogram images of normal tissue on the left (a) and cancerous one on the right (b)

1.4. Screening Methods
Some screening methods are used because they have been shown to be helpful in early 

detection o f cancers. These tests are shown to be capable of screening cancer in the 

organ, however, it has not been proven that these tests lead to reduction in rates of death 

caused by the cancer.

Scientists have been developing screening methods that are shown to be helpful in 

reducing the mortality rate. Assessment of such screening methods involve showing 

whether the screening method is capable of detecting cancer (before it produces 

symptoms) leading to reduction in mortality rate. Early detection o f cancer may be 

helpful in order to conduct proper treatments and ultimately cure the cancer. Some of the 

most common methods used in screening cancer will be described in following sections.

1.4.1. MRI (Magnetic Resonance Imaging)
MRI is an imaging technique that uses a magnet, Radio Frequency (RF) coils, and a 

computer to reconstruct the image of areas inside the body. In the medium stage of breast 

cancer, MRI can be used for detection. At very advanced stages o f the cancer, MRI has 

shown to be effective in detecting cancer in comparison with X-ray mammography. Most
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of suspicious areas whether they are cancerous or not can be visualized in MRI images. 

MRI may be used to:

• Study leftover of lesions in the breast after surgery or radiation therapy.

• Study breast lesions that are not visible in x-ray mammography or ultrasound.

• Assessing the growth of tumour over a course o f time.

While it has high sensitivity, MRI suffers from low specificity and being time 

demanding. In other words, suspicious areas can be detected by MRI images with high 

certainty as it is shown in Figure 1-4 but the type o f abnormality cannot be determined 

confidently.

Figure 1-4: Breast MRI image that indicates a suspicious area(courtesy of Canadian Cancer Society)

1.4.2. Mammography
Mammography is an imaging technique that uses low-amplitude X-rays (usually around 

0.7 mSv) to screen the human breast, and is used as a diagnostic as well as a screening 

technique. The main application of mammography is to detect breast cancer at early 

stages, typically through detection of presence of micro-calcifications. It has been shown 

that mammography is capable o f reducing cancer related death rate. Except for breast self 

examination or palpation test in clinics, no other imaging techniques are shown to reduce
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the risk o f cancer mortality. Mammography has a false-negative (missed cancer) rate 

resulting from overlapping of fatty tissue on the micro-calcifications. In such situations, 

MR mammography would be an alternative choice for early cancer detection. Breast 

palpation can also be an effective screening technique provided that the tumour is 

superficial.

To acquire X-ray mammography, the breast is compressed by a mammography machine 

to increase image quality, and to prevent the breast from moving. Two images are taken 

from top and side view.

1.4.3. Diagnostic Sonography
Ultrasound (US) refers to sound waves with a frequency greater than the upper limit 

frequency that can be heard by humans. The lower frequency limit o f ultrasound wave is 

usually taken to be 20 kHz. Medical ultrasound machines generate ultrasound waves sent 

through soft tissues to carry information about the tissue structure. The ultrasound waves 

generated by these machines are produced by piezoelectric components implanted in their 

probe. The reflection o f sound waves is then captured to form ultrasonic images. 

Ultrasound imaging is usually used to acquire images o f fetus in women’s womb. It is 

also used to visualise blood vessels, muscles or tendons as well as abnormalities in 

organs such as the prostate or breast. Because ultrasound imaging is a real-time 

procedure, it is often used for image-guided procedures such as biopsy of masses for 

cytology or lung brachytherapy, etc.

There are several applications for ultrasound imaging. As for our purpose in this project, 

we refer to some o f its applications in breast sonography.

❖  Determining the type of a breast abnormality
The primary application o f ultrasonic procedure in this context is to determine the 

type o f the lump and find whether it is a solid tumour or a liquid filled cyst. Simple 

cysts are normally visible as dark areas in ultrasonic images. Methods such as 

Elastography have been developed based on ultrasound imaging to improve the 

diagnostic aspect o f ultrasound.
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❖  Breast cancer screening
Another application o f ultrasound is to screen the breast for any type of cancer or 

cyst. Cysts are normally shown by dark area as they consist o f liquid which reduces 

the back propagation of the RF waves. Some types o f tumours are hyper echoic which 

are highly bright areas in ultrasound images. However, there are types of lesions with 

back propagation properties that do not differ from normal tissues.

❖  Ultrasound-guided breast biopsy

If  a physician fails to detect breast tissue abnormality using imaging, s/he may choose 

to perform an ultrasound-guided biopsy. Because ultrasound provides real-time 

images, it is often used for image-guided biopsy procedures as well as image-guided 

therapies such as brachytherapy.

1.4.4. Self-Examination
Breast self-examination (BSE) is a simple method of screening abnormalities of the 

breast. It can be an effective tool for early detection o f breast cancer especially if  the 

tumour is superficial. The method involves the woman looking for any possible stiff area 

by palpating her breast or for any deformation of the breast. This is usually repeated in 

several positions, such as while having hands on the hips, and then again with arms held 

overhead. Breast self-examination (BSE) is known to be effective in early detection of 

any suspicious lesions along with mammography. While suitable for lesions located near 

the surface o f the breast, BSE is not reliable with tumours located deeper in the tissue.

1.5. Diagnosis and Treatment Methods
Although screening methods are useful to detect abnormalities in the breast, further 

examinations are required to specify whether the detected lesion is benign or malignant.

1.5.1. Diagnosis
In the clinic, breast cancer is often diagnosed using a three-stage procedure. First, breast 

self-examination is conducted by a physician. Second, the patient is sent to X-ray
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mammography for micro-calcification presence assessment. The final step is to perform a 

biopsy to remove tissue samples for further tests.

Biopsy is a medical examination in which a pathologist removes a sample o f tissue for 

oncology assessments. By removing the samples from living tissue, cancer can be 

diagnosed effectively. There are three types o f biopsy that can be conducted for assessing 

breast cancer:

• Excisional biopsy: in this type of biopsy, the entire lesion or suspicious area is 

removed.

• Core Biopsy or Incisional biopsy: this is a procedure in which a pathologist 

removes samples o f the lesion or suspicious areas to examine under the 

microscope.

• Fine Needle Aspiration: this is a procedure o f removing liquid samples from 

tissues or cysts without preserving the histological architecture o f the tissue 

cells.

1.5.2. Treatments
There are several methods such as surgery, chemotherapy, radiation therapy or other 

methods to treat breast cancer. The choice o f therapy depends on the position o f lesion as 

well as the stage o f the cancer. An ideal treatment method should involve removing the 

cancerous tissue without harming other parts o f the body or the breast itself.

One treatment method is surgery, which has its own drawbacks. Following surgery, 

sometimes a microscopic portion of the cancerous tissue may remain in the breast. This 

may lead to recurrence or metastasis in other parts o f the body, thus rendering the 

treatment ineffective. Radiation can also cause damage to surrounding tissues. The 

effectiveness o f chemotherapy is sometimes limited by toxicity to the body.

1.6. Elastography
It is well known that alternation o f tissue stiffness and presence o f pathology are 

correlated. In other words, pathology may alter tissue stiffness. For example, in the

8



breast, a significant fraction o f breast cancers are detected by the patient using BSE. 

Digital Rectal Exam (DRE) is another tissue palpation method clinically used for 

detecting prostate cancer. Detection by palpation, however, is limited to large tumours or 

small ones that are located near the surface of the organ of interest. If the lump is located 

deep inside the organ, it may not be detected by palpation[23].

Based on the concept o f tissue palpation, a non-invasive technique called Elastography 

has been developed in the 1980s. Elastography has been shown to be capable of imaging 

local elasticity in experiments involving tissue mimicking phantoms, ex vivo and in vivo 

tissue. When a tissue volume is mechanically excited with a quasi-static or harmonic 

compression, the tissue deformation and internal stresses are defined by the boundary 

conditions as well as by the structure and properties o f the tissue. In order to completely 

understand the local elastic properties o f the tissue volume, it is necessary to estimate the 

stresses and measure the resulting tissue displacements in three orthogonal spatial 

directions.

Based on the applied mechanical excitation, there are two types o f elastography methods:

• Quasi-Static Elastography

• Harmonic Elastography

1.6.1. Quasi-Static Elastography
In Quasi-Static Elastography, the mechanical stimulation applied to the soft tissue region 

of interest is either static or has very low frequency (0-5Hz)[26], Displacements data 

induced by the mechanical stimulation are acquired using either US RF signals, MRI 

phase imaging, or other image processing techniques. The computed tissue displacements 

can be used directly to estimate tissue elasticity normally characterized by Young’s 

Modulus (YM). This type o f elastography is suitable for organs, which are easily 

accessible for mechanical stimulation, such as the breast or prostate.
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1.6.2. Harmonic Elastography
In harmonic elastography, the mechanical excitation is a harmonic compression applied 

on the surface o f the tissue and the tissue response is characterized by velocity of induced 

oscillating displacements. While quasi-static elastography is only capable of imaging 

tissue stiffness, harmonic elastography can image both tissue viscosity as well as stiffness 

parameters. These parameters can be reconstructed using the wave equations, which 

govern the waves propagated throughout the tissue volume. These parameters can be used 

for diagnosis purposes.

1.7. Thesis Objectives
As previously discuss, cancer alters tissue stiffness significantly leading to significant 

alteration in the tissue deformation pattern. This alternation can be captured using 

different imaging modalities such as MRI or US. Tissue response in quasi-static 

elastography can be characterized by local displacements using pre- and post

compression images. In MRI tissue displacements are computed using acquired phase 

data while with US they are computed using either visual motion inspection or RF signal 

cross-correlation. These displacements data are then used for reconstructing tissue 

viscoelastic properties in elastography techniques.

Since the 1980s, Elastography techniques have been developed and many methods have 

been proposed to improve the quality of elastography images. Elastography image shows 

tissue elasticity distribution within the region being examined. Many of the developed 

elastography techniques suffer from drawbacks such as being time demanding, having 

low signal-to-noise ratio (SNR), having image artefacts, etc. In this project, a novel 

technique based on US imaging is proposed with the aim of improving the quality of 

reconstructed elastography images.

In this proposed breast elastography technique, US imaging has been chosen as the 

imaging modality since it has some advantages over MRI. US is a real-time imaging 

modality that can be used in applications such as image-guided biopsy and therapy. Also,
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if  successful for developing a cancer detection and diagnosis technique, US based 

elastography would be significantly less expensive and more accessible in clinics.

In the techniques proposed in this thesis, compared to conventional elastography 

methods, additional information is incorporated to develop a real-time technique for 

reconstructing the absolute value o f YM and also to improve the reconstruction accuracy. 

To the best o f our knowledge, many conventional US Elastography (USE) techniques are 

capable o f reconstructing the ratio o f YM of a suspicious area to the YM of surrounding 

tissue only. A force data acquisition system has been designed and constructed to 

measure the forces applied on the surface o f tissue. This data is incorporated into a 

statistical finite element method for computing the stress distribution within the region of 

interest.

Our main objective is to develop a real-time technique that can ultimately be used in 

clinical applications to reduce the number of patients who are referred to biopsy. This can 

be done by developing a technique capable o f detecting and classifying suspicious areas 

in the organ o f interest.
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2. Literature Review
2.1. Theory of Elasticity
Continuum mechanics asserts that although a medium such as soft tissue is comprised of 

a hierarchy of smaller discrete building blocks (e.g. atoms, molecules, proteins, etc.) its 

mechanical behaviour can be characterized accurately by prescribing macroscopic field 

properties to the body. As a result o f undergoing mechanical stimulation, the deformation 

of a continuum is governed by equations o f equilibrium, strain-displacement, and a 

material constitutive law. The force balance equation of a continuum undergoing 

mechanical stimulation is:

where a\j denotes the Cauchy stress tensor, p 0 is the mass density, bt is the body force 

distribution (per unit mass), and Uj are the components of displacement vector u  = (ux, uy, uz). 

The nine components of Cauchy stress tensor cfy are the three normal s tre s s e s^ , <r22, ° 3 3  

and six shear stresses cr12, er21, er13, a31, <r23, cr32 as shown in Figure 2-1.

The mechanical properties o f continua can be written mathematically using the

a ij,i  +  Pobi  — P ouj Eq. 2-1

Figure 2-1: The Cauchy stress tensor

constitutive equation for linear elastic behaviour that describes the stress strain 

relationship o f the material:

Eq. 2-2
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The Cijkm coefficients of Eq. 2-2 (also referred to as the generalized Hook’s Law) describe a 

linear relationship between the stress (crfy) and the strain (£;y) tensors at every point in a body. 

The strain tensor £fy is related to the displacement vector Uj  through following equation:

1
£ij ~ 2 (-Uij uj,i) Eq. 2-3

Because o f symmetries in the stress tensor ) and the assumption that the material is

homogeneous and isotropic, only two independent constants are required to define QyfeTn and Eq. 

2-2 reduces to:

Oij — ^ i j ^ k k  "b 2/zfjj  Eq. 2-4

which is Hook’s law for isotropic linear elastic materials. The 8^  operator is known as 

the Kronecker delta where 8U =  1 and <Sfy = Sji = 0 for # j .  The two independent 

constants A and /z are known as the Lame’s constants. Rearranging Eq. 2-3 and 

expressing it in terms of the strain tensor £i;- produces the following expression:

£ij = £  K1 + v)°ij ~ v5ij(Jkk] Eq. 2-5

where

and

n(3 A + 2p) 
A + fi

Eq. 2-6

A
2 (A + pi)

Eq. 2-7

E and v are known, respectively, as Young’s Modulus and Poisson’s ratio. For isotropic, 

elastic materials, these two parameters fully characterize the mechanical properties of the 

material. The Lame’ constant /z is the shear modulus. For an isotropic, linear elastic 

material, the shear modulus is related to the Young’s Modulus by the equation:

E
2(1 + v) Eq. 2-8

The Young’s Modulus is a measure of the stiffness of a material and it is defined as the 

rate o f change of stress with strain. The Poisson’s ratio is the ratio of the relative
13



transverse strain (normal to the applied load) to the corresponding extension strain in the 

direction o f the applied load. Incompressible materials, such as biological soft tissues, 

have a Poisson’s ratio close to 0.50. The shear modulus is a measure of a material’s 

rigidity.

For linear-elastic materials, the Young’s Modulus is constant over a range of strains. 

Within the strain range of 0 to 4%, breast tissue is often approximated as being linear 

elastic (Figure 2-2) with a Young’s Modulus of approximately 3.125kPa (Wellman 

1999 [46]). Over the same range of strains the Young’s Modulus o f breast cancer can be 

as high as 15.625kPa (five times stiffer). Beyond strains of 4% breast tissue begins to 

exhibit non-linear mechanical behaviour typical of biological soft tissues [26],

Figure 2-2: A typical stress-strain curve for soft tissue. Below strains of 4% the slope is relatively 
constant and the tissue can be idealized as linear elastic. Above strains of 4% the slope is not constant 

and the linear elasticity idealization is no longer valid.

Solving Eq. 2-1 to Eq. 2-3 provides the forward solution to the Elastography inverse 

problem. The forward solution is used to calculate the displacements u (x i)  resulting from 

mechanical stimulation o f soft tissue volume with a known Young’s Modulus 

distribution E(x{).

The governing equations are often rearranged before they are solved. This is especially 

true for dynamic problems in elasticity, which retain all the time dependent terms. By 

substituting Eq. 2-4 into Eq. 2-1, and eliminating the strain using Eq. 2-3, the balance

14



equation can be expressed in terms of the displacements using the simplified Navier 

equation o f elasticity:

Eq. 2-9

With the help o f Eq. 2-8, the Navier equation can also be expressed in terms of E and v 

as follows:

Eq. 2-10 is not suitable for compressible materials since it will become unstable as the 

Poisson’s ratio approaches 0.50. Although soft tissues are nearly incompressible, in order 

to ensure a stable solution to Eq. 2-10, the Poisson’s ratio is usually set to 0.495.

2.2. Elastography
Various methods o f elasticity imaging of tissue, referred to as elastography, have been 

developed by a number o f research groups dating back to the eighties [23] [25][30-32]. 

Elastography techniques involve algorithms for reconstructing tissue elastic parameter 

distribution. Depending on the type o f mechanical stimulation, elastography techniques 

are divided into two major groups: quasi-static and harmonic elastography. In quasi-static 

Elastography, mechanical stimulation applied on the surface of the medium is static or at 

a low frequency. In harmonic elastography, the mechanical stimulation is oscillatory with 

higher frequency (>40Hz). In most o f elastography techniques, an inverse solution is 

computed to find the tissue elastic parameter distribution in the organ of interest using the 

tissue displacements resulting from the mechanical stimulation as input. Forward and 

inverse problems involved in typical elastography techniques will be described in the 

following section.

2.2.1. Forward and Inverse Problem
A forward problem is a mathematical model, which predicts the response of a stimulated 

system based on its known structure. For example, if  an electric circuit is composed of 

known electric components with known connections, its output can be predicted for any 

known input. This prediction may involve analytical or numerical models that describe

E E
2(1 — 2v)(l + v) UkM + 2 ^  _|_ ui,kk 4" p0bi — PoUm Eq. 2-10
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the circuit’s response. Figure 2-3 illustrates the forward model of a circuit used to find its 

output voltage.

S///77 A(R,C)

+

Vo ot ?

7777?

Figure 2-3: A forward model of RC circuit

By knowing the internal structure o f the system A(R, C) and input Vin, we are able to 

compute Vout numerically.

In contrast, an inverse problem is a mathematical model or algorithm, which can predict 

the internal structure o f a system by knowing its input and corresponding output. For 

example, if  we know the input o f an electrical system and its corresponding output, we 

may be able to determine the internal structure of the system. Figure 2-4 illustrates an 

inverse model concept to find the internal structure of the system.

Figure 2-4: An inverse model schematic of an RC circuit
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2.2.2. Application in assessing stiffness of biological tissues
Changes in tissue elasticity are generally correlated with the presence of pathology. Many 

breast cancer types are considerably stiffer than normal breast tissues. Other breast 

diseases involve fatty and/or collagenous deposits which increase or decrease tissue 

elasticity. Complicated fluid filled cysts could be invisible in standard ultrasound 

examinations, yet be quite softer than surrounding tissues. In many cases small lesions 

located deep in the breast prevent their detection. Moreover, the lesion may or may not 

have backscatter properties which would make it ultrasonically visible. In the last several 

years, a number o f research groups have developed various techniques for measuring and 

imaging soft tissue stiffness.

In addition to US imaging, other imaging modalities have been used to image tissue 

elasticity. For example MRI based Elastography involves magnetic resonance imaging 

(MRI) used to acquire tissue displacements. Magnetic Resonance Elastography (MRE) 

usually refers to harmonic elastography where MRI is used to measure the wave field 

propagating through the tissue. This technique employs standard MRI scanner with a few 

modifications in addition to a vibrating metal plate placed on the skin for tissue 

stimulation. The simplest form of MRE works by measuring the wavelength distribution 

o f the vibrations sent through the tissues. Pulsing the magnetic field in the MRI scanner 

in tune with the mechanical vibrations freezes the pattern o f waves, permitting the 

wavelength to be measured. The elasticity of the tissue can then be calculated using the 

measured wavelengths and frequency. MRE has been used in various applications such as 

studying skeletal muscles since the stiffness o f a muscle changes during muscle 

contraction. The technique has been also applied to imaging breast cancer and other 

cancer types where pathological masses tend to be harder than the surrounding normal 

tissue [10] [26],

2.2.3. Principal Components of Elastography
As mentioned in section 1.6, in elastography, the tissue region of interest (ROI) is 

stimulated by either mechanical stimulator or in the case of USE, with the US probe. 

During tissue stimulation tissue displacement data, u i{x{) induced by the stimulation is
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acquired for each point within the ROI. In quasi-static elastography equations 2-1, 2-2 

and 2-3 are applied in order to reconstruct Young’s Modulus distribution within the ROI 

corresponding to the measured displacement data u^X i).

If  the stress distribution induced by the mechanical stimulation within the tissue ROI is 

uniform or known, the ratio o f Young’s Modulus of a lesion to surrounding normal 

tissues can be estimated directly from the strain tensor e . The values of strain 

components are computed using spatial derivative o f the displacement data For

example, if  and sjj are strain components at point x f  and x f ,  which represent normal 

and suspicious tissues, respectively, the following relationship can be established 

between the Young’s Modulus o f normal and cancerous tissues using Eq. 2-5:

E°

—  [(1 + v)fj/} -  vSij&jj]

■ [(1 + v)er°. -  vSij^j]
Eq. 2-11

If the stress distribution is uniform throughout the region of interest (i.e. a-j = cr/j ), Eq. 2- 

11 can be rewritten as follow:

En
F°

Eq. 2-12

It means that the ratio o f the Young’s Modulus at two points located in the normal tissue 

and suspicious area is proportional to the reciprocal ratio of strain components at the 

points. In most practical cases this assumption is not valid since we have finite medium 

where stress components have significant spatial variations especially when the medium 

contains inclusion. Therefore, estimating the ratio of Young’s Modulus using Eq. 2-12 is 

not sufficiently accurate.

To accurately estimate Young’s modulus ratio stress non-uniformity has to be taken into 

account. There are several approximate analytical methods for computing stress 

components throughout the ROI’s volume provided that the compressive load on the 

surface o f ROI is known. One of these methods is Boussinesq problem model where the 

geometry is considered to be semi-infinite and the material is assumed to be
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homogeneous. The accuracy of stress computation with this model depends on how well 

the semi-infinite geometry and homogeneity assumption are satisfied by the region of 

interest. Despite that this analytical model is not highly accurate, it can still improve the 

accuracy of the reconstructed Young’ Modulus ratio by substituting the computed 

stresses into Eq. 2-11.

A more accurate approach to elastography uses an inversion algorithm to reconstruct the 

ratio o f Young’s Modulus o f lesion to that of normal tissue. Several groups (Samani et al, 

Bishop et al, Skovorda et al, Kallel et al) have developed techniques to solve the 

elastography problem by inverting discretized Navier equations (Eq. 2-10).

The Navier equation (Eq. 2-10) is used in most inverse elastography methods. If  the 

mechanical stimulation o f the tissue ROI is static or quasi-static, the time dependent term 

will vanish and Eq. 2-10 reduces to:

:uk,ki + : -u-i.kk+Pobi = 0 Eq. 2-13
2 ( l - 2 v ) ( l  + v) *•'“ ‘ 2(1 + v )

Since there are no analytical solutions for Eq. 2-13, this equation must be solved using 

Finite Element method described in section 3.3.2. For a stable solution of Eq. 2-13, a 

Poisson ratio o f v =  0.495 is assigned for all soft tissues in the model. Displacements 

from Eq. 2-13 are computed using FEM. For elastic modulus reconstruction, one possible 

approach involves using a Gauss-Newton algorithm to solve the following least-squared 

error minimization problem:

min\\u™(Ei) — u™\\2 Eq. 2-14

where u f^E ,) is the displacement field computed from the FEM model and u™ is the observed 

displacement field data. This minimization problem can be solved by updating the Young’s 

Modulus o f the finite elements in an iterative process.

2.3. Motion Estimation in US
Motion estimation in US is the procedure of estimating displacement or velocity vectors 

that describe the movement of each pixel in a US image or a sequence o f US images. 

Having the displacements field at each time step in addition to a baseline image makes it
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possible to reconstruct subsequent frames by warping the baseline image. An important 

application o f tissue motion tracking is estimating soft tissue displacements resulting 

from mechanical stimulation. These displacements can be used for elastic modulus 

reconstruction in an elastography imaging framework. There are three main techniques 

for acquiring displacement data in Ultrasonic Elastography systems which are briefly 

described in the following sections.

2.3.1. Cross-Correlation Technique
Tissue displacements or velocities resulting from mechanical stimulation can be 

measured using one dimensional correlation. Correlation based techniques may be 

classified further as depending on internal or external source o f mechanical excitation. 

The external source o f mechanical excitation may be classified as static (quasi-static) or 

harmonic[36][37]. In quasi-static, mechanical stimulation is either static or with low 

frequency whereas in harmonic excitation, mechanical stimulation is applied with higher 

frequency than 40Hz.

This technique is based on finding maximum cross-correlation between two acquired A- 

line beams in pre- and post-compression images. Therefore it is only capable o f obtaining 

displacement data in the axial direction with respect to US probe. Based on Eq. 2-11, the 

normal strain component in the axial direction can be obtained.

2.3.2. Visual Motion Inspection
Visual inspection o f ultrasound B-mode images has been developed to study soft tissue 

motion characteristics, foetuses movements and growth of lesions. These techniques are 

based on acquiring displacement data using image processing techniques such as optical 

flow. They are capable o f acquiring displacements in both lateral and axial directions. 

Therefore, it is possible to use Eq. 2-11 for estimating the strain components in the image 

plane. Having these strains may improve the accuracy of reconstructed ratio of Young’s 

Modulus.
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2.3.3. Doppler US Velocity Measurements
In harmonic Elastography techniques where the mechanical stimulation applied on the 

surface o f the tissue is vibrational, tissue response is characterize by the velocity of each 

point in the tissue. Lubinski et al used tissue velocity induced by low vibration frequency 

excitation to determine the tissue’s relative compressibility[15]. The basic idea behind 

Doppler US imaging is to exploit Doppler Effect to measure the velocity of the 

propagating wave. In harmonic elastography, Doppler velocity technique has been used 

to measure the wavelength o f ultrasound wave travelling in different type o f tissues.

2.4. Linear Viscoelastic Parameter Reconstruction in Harmonic 

Elastography
Viscoelasticity is the property o f materials that display both viscous and elastic 

characteristics when undergoing deformation. Viscous materials, like honey, resist shear 

flow and strain linearly with time when a stress is applied. Pure elastic material stretches 

instantaneously when undergoing tension and return back to its original shape as quickly 

as before. Viscoelastic materials comprise both of these properties and, as such, exhibit 

strain function which varies with time. Each material to some degree has viscoelastic and 

elastic properties. While undergoing tension, it will display combination o f elastic and 

viscoelastic behaviour. While elasticity is usually the result o f tension or stretching along 

the direction o f applied force or displacement boundary conditions, viscoelasticity is the 

result o f diffusion o f atoms or molecules inside the material.

Viscoelasticity is a molecular rearrangement. When viscoelastic material undergoes 

vibrational excitation, this molecular structure will move. This movement or 

rearrangement is called creep. Linear viscoelasticity models can be established by 

separating the creep response and load response. All linear viscoelastic models can be 

represented by the Volterra equation, which is based on establishing a function between 

stress and strain as follows:
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where Einst creep is the instantaneous elastic modulus for creep and K(t)  is the creep 

function. Linear viscoelasticity is usually applicable only for small deformations. There 

are a number o f measurement devices that can be used in reconstructing viscoelastic 

parameters o f materials. Broadband Viscoelastic Spectroscopy (BVS) and Resonant 

Ultrasound Spectroscopy (RUS) are commonly used to reconstruct viscoelastic parameter 

of the material [7].

2.5. Young’s Modulus Reconstruction in Quasi-Static Elastography
In quasi-static elastography, mechanical stimulation is applied in low frequency fashion. 

Displacements data can be acquired using MR phase encoding or Ultrasonic motion 

estimation techniques. There are several research groups who have worked in the 

elastography field since the 1980s. Their approaches can be classified by the following 

three classes [22],

2.5.1. Strain Imaging
In earlier elastography techniques developed by Ophir et al[23] in the 1980s, 

displacement data was computed using pairs of A-lines acquired form specific points in 

the tissue ROI between pre- and post-compression images. In this case, displacement data 

was only computed in the axial direction. By assuming uniform distribution of stress 

throughout the ROI, one can use Eq. 2-12 to reconstruct the ratio o f Young’s Modulus of 

the tumour to that o f normal tissue.

In this technique, strain images, usually referred to as elastograms, were constructed by 

finding the time shift between the pre- and post-compression images using cross

correlation function for each segment in the ROI. There are several methods of finding 

tissue displacements using cross-correlation, which are well-established in the 

literatures[37][38]. The generation o f elastography imaging based on strain values 

involves computing time shifts using pair-wise cross-correlation between A-lines pairs 

acquired for pre- and post-compression images. A strain image is then created from a

number o f A-line pairs obtained with a specific amount of axial translation of the
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transducer between pairs. In this technique, displacement lateral resolution is specified by 

many parameters such as frequency of emitted waves. One of the A-lines in each A-line 

pair is obtained while the transducer slightly compresses the tissue to have a full contact 

between the transducer and the specimen’s surface. The compressed A-line, which is an 

A-line corresponding to the compressed tissue, is then acquired by compressing the 

specimen using transducer in axial direction as illustrated in Figure 2-5. The compressed
dz  •A-line is shorter than the original A-line by 2 — where dz  is the compression level and c

is the speed o f sound in the tissue. A-lines are obtained from various depths in the tissue 

ROI, and are divided into a number of overlapping segments obtained every one or two 

mm[36].

Figure 2-5: (a) Pre-compression Image (b) Post-compression Image after axially compression

Time scale and image acquisition are relative to the face o f the transducer. As shown in 

Figure 2-5, the compression of an A-line becomes significant as we move towards the 

bottom of the specimen. In general, the time shift o f the compressed A-line relative to the
dz

uncompressed A-line increases from 0 to maximum of 2 —. Sometimes the time shift is

either not observed or appears to be very small in some segments due to tissue 

heterogeneity.

Once time shifts, tx through tN , assigned to each A-line pair are computed the 

corresponding strain distribution is computed by:

23



Eq. 2-16=
ti+1

2dz/c  1
i — 1 to N

where s L is the strain estimation for segment i . The process of computing the strains 

using Eq. 2-16 is then repeated for all A-line pairs. Once the strain values for each 

segment in the FOV are computed, these values are assigned to a grey level in an image 

which varies from 0 to 255. For that purpose, a user can adjust a specific strain range to 

the grey levels in order to improve image contrast[36].

Since stress distribution in this technique is assumed to be uniform throughout the region 

of interest, the accuracy of reconstruction of the elastic Modulus ratio is not high. Strain 

images suffer from lack of accurate localization and extent determination o f pathological 

tissue area. The reason is that in this technique stress concentration may occur in the 

boundary o f stiff tissue area or near fixed boundaries. This issue invalidates the stress 

uniformity assumption and renders the strain image ineffective. Many researchers have 

exploited analytical or computational stress distribution models to overcome this 

shortcoming (Ophir et al, Skavoroda et al, Samani et al).

2.5.2. Unconstrained Reconstruction
In practice the stress distribution is not uniform throughout the region of interest due to 

many reasons including the finite size o f the of the US probe used as tissue actuator. The 

stress is high near the actuator interface and reduces while moving away from the 

actuator. This phenomena is called hardening artefact [23]. Analytical models such as 

Boussinesq theorem can be used to find stress distribution throughout the ROI. This 

model assumes that the actuator size is finite while the tissue medium is homogeneous 

and semi-infinite. Analytical methods are appropriate for homogeneous media but they 

are not accurate for heterogeneous medium where different types of materials with 

different elastic moduli are present. To overcome this issue, reconstruction techniques 

must be formulated as inverse problems.

Skorovoda[30] proposed a method for tissue elasticity reconstruction by assuming that 

the tissue is incompressible linear elastic and isotropic but heterogeneous. Using some 

approximations, they converted the Navier equation to a system of equations. These
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equations contain terms of functions of spatial derivatives o f Young’s modulus, the 

displacement field and the strain tensor. The displacement field as well as the Young’s 

Modulus at points at the boundaries must be known for reconstruction. This method does 

not make any assumption such as elastic modulus piece-wise homogeneity, as such, it is 

referred to as unconstrained reconstruction technique. To limit the problem to 2 

dimensions (2D), it is necessary to assume plane strain or plane stress models to 

reconstruct the tissue’s Young’s modulus with US imaging. In this technique, only the 

axial displacements were acquired And used for elasticity reconstruction [32],

Another method introduced by Sumi et al proposed an inverse problem, which assumes a 

plane stress state. This method leads to a linear system of equations for tissue elasticity 

reconstruction. In practice, several techniques have been developed to estimate 

displacements in the lateral direction using 2D cross-correlation, interpolation of axial 

components [37] or image processing techniques such as optical flow[10]. One of the 

techniques uses a mathematical constraint that describes tissue incompressibility to 

improve the estimation o f lateral displacements from its axial com ponent 15],

2.5.3. Constrained Reconstruction
As the inverse problem associated with unconstrained elastography reconstruction has 

shown to be highly ill-conditioned, some researchers have attempted to reduce the degree 

o f this ill-conditioning by incorporating additional mathematical constraints. For instance, 

Samani et al [26] proposed a method where they assumed that each tissue type is 

homogeneous throughout its volume. This assumption simplifies the reconstruction 

algorithm by reducing the number o f unknowns to be reconstructed. Furthermore, the 

reconstruction is much faster compared to unconstrained reconstruction methods. 

Constrained elastography techniques, like unconstrained techniques, do not use the 

uniform stress distribution assumption. As such, depending on the validity o f the uniform 

elasticity distribution, the accuracy of the Young’s Modulus reconstruction can be high. 

The techniques proposed by et al [26] involves segmenting images acquired by MRI to 

determine the tissue volumes where the elastic modulus distribution can be assumed as
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uniform. The elasticity assigned to each region is then reconstructed iteratively or through 

an optimization process.
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3. Theory and Methods
In this chapter theories used in the proposed methods will be described. First, techniques 

for displacement data acquisition will be introduced, followed by describing the 

theoretical approach used to compute stress distribution throughout a tissue ROI. Finally 

the reconstruction process will be described.

3.1. Optical Flow
The purpose o f optical flow techniques is to estimate motion fields from sequences of 

images based on their spatiotemporal patterns o f their image intensity (Lucas & Kanade 

1981 [16], Horn & Schunck 1981 [8]). Several non-medical and medical applications use 

this technique to estimate motion fields, e.g. scene interpolation or motion tracking in 

biological tissues. To perform these tasks, a sufficiently accurate and dense 2D motion 

field is required. For applications such as consecutive frame construction, the error 

associated with the current method needs to be less than 10% (Barron et al. 1990, Jepson 

& Heeger 1990).

Several methods based on the concept o f optical flow have been proposed [2], One of the 

main shortcomings in optical flow techniques is lack o f a quantitative method for 

evaluating different techniques using a single input with known results. Although there 

are major differences between each method, many of these methods comprise three main 

stages in computing a motion field:

• Pre-filtering with appropriate filters in order to smooth out the intensity value 

function.

• Computing basic parameters such as spatio-temporal derivatives in gradient 

based images.

• Solving proper equations. This often involves additional constraints to the 

basic optical flow equations, which vary from one method to another.

Brightness constancy is the most important principle used in optical flow techniques. 

This principle implies that image brightness corresponding to each point in the object of 

interest does not change as its position changes. In other words, each image
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corresponding to an object represents a redistribution o f the ensemble o f pixel image 

intensities. This principle is described mathematically by the Brightness Constancy 

Equation (BCE). Optical Flow techniques are divided into four groups[2] based on their 

approach to solve the BCE:

• Differential Techniques: involves computation o f optical flow using 

derivatives o f the intensity function of the image or a filtered version of the 

image (using specific filters such as a Gaussian). Some researchers have used 

first order derivative (Horn & Schunck 1981, Nagel 1983) whereas some 

others used higher order derivatives of image intensity function.

• Region-based Matching Techniques: involves finding the best match leads 

to maximizing a similarity measure such as normalized cross-correlation or 

normalized mutual information or minimizing a distance measure such as the 

sum-of-squared differences (SSD).

• Energy-based Methods: in this technique, energy of output o f some specific 

filters is used. This is done in Fourier domain.

• Phase-based Techniques: these techniques are defined in terms of the phase 

behaviour o f band-pass filter outputs.

In this project, we have used a modified version of the Horn & Schunck technique and 

Lucas-Kanade method (differential techniqus) to estimate tissue displacements using pre- 

and post-compression images. The following sections will describe each technique in 

detail.

3.1.1. The 2D Motion Constraint Equation
Assume that a pixel located at (x , y , t) moves by Sx, Sy  after time St  to E(x  + S x ,y  + 

Sy, t  + St) .  Since E(x ,y ,  t)  and E(pc +  S x ,y  + Sy, t  +  St)  are the image intensities of 

the same point, the brightness constancy principle dictates that they are identical, hence:

E{x + 8x,y  + Sy, t + St) = E(x,y, t) Eq. 3-1

This equation is the basic equation in each optical flow technique and is illustrated in 

Figure 3-1. Eq. 3-1 is called the Brightness Constancy Equation. This equation is valid
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when small motions are involved. Therefore, it is possible to use Taylor series expansion 

at (x , y , t)  in Eq. 3-1 to obtain:

dE dE dE
E(x + 5x,v + Sy, t + St) = E{x,y, t) + —-Sx  + —  Sy + —- S t  + H. O.T Eq. 3-2ox dy at

H.O.T is the Higher Order Terms which can be neglected since small motion between 

image frames is involved.

t+ 5t

Figure 3-1: Image intensity at location (x , y , t ) is the same as at location (x  + Sx, y  + Sy, t  + St)

As stated before, E ( x , y , t ) a nd E(x  +  Sx, y  +  Sy, t  +  St)  are image intensities of the 

same point and should be identical. Therefore, from Eq. 3-2 it follows that:

dE dE dE 
—  5x + —  Sy + — S t=  0 
dx dy dt

dE dE dE 
-x-ux + — uv + —  = 0 dx dy y dt

Eq. 3-3

Here u Y =  — and u v =  — are the image velocities in x  and y directions and ^  and
x  S t y  S t b  y  S x ’  dy  d t

are image spatiotemporal derivatives at (x , y, t ) , which can be re-written as follows:

8E SE . 8E
E x ~  8x , E y ~ 8y andEt ~ St 

Therefore Eq. 3-3 can be re-written in the following form:

Eq. 3-4
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or as:

(Ex> Ey) ■ (Ux’Uy) ~ Et Eq. 3-5

VE.u — —Et Eq. 3-6

where VE =  (Ex,Ey)  is the image intensity gradient and u = (ux, uy) is the velocity 

field or optical flow components at pixel located at (x, y) at time t. VE. u  =  —Et is called 

Brightness Constancy Equation, provides one equation for two unknowns (ux ,uy). Eq. 3- 

6 is another representation of Brightness Constancy Equation. This can be represented by 

a line as shown in Figure 3-2. This problem is referred to as the aperture problem, which 

refers to the fact that only the normal component o f the velocity can be computed [3],

T
Figure 3-2: The Brightness Constancy Equation yields a line in u  = (u x, u y) space.

3.1.2. Lucas-Kanade Algorithm
As was mentioned in the previous section, Brightness Constancy Equation, Eq. 3-6, has 

two unknown. To solve the Brightness Constancy Equation, another set o f equations 

which are based on additional constraints are required. Many researchers such as Lucas & 

Kanade, Horn & Schunck, Nagel[21] have introduced additional constraint to Eq. 3-6. 

The additional constraint proposed by Lucas and Kanade [ 16] assumes that there are local 

constant flows in a neighbourhood. Based on this constraint, a non-iterative process was 

proposed by them to compute optical flow.
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Assuming that the flow (ux,u y) is constant in a small window centered at pixel (x ,y )  of 

size m * m with m >  1 which is centered at pixel and numbering pixels within the image 

as 1... n, n  =  m 2, the following set of equations can be formed:

rEXlux + Eyiuy = - E ti
I  E x 2u x  +  E y2u y  -  ~ E t2 E q  2_7

\ E x nu x  +  E y nu y  =  ~ E tn

With this there are more than two equations for the two unknowns (ux, uy), and therefore 

the system is over-determined. Hence, it follows that:

\ E X t * *  1 r - ^ i

E x 2
Ey> 0  =

~ E t 2

■ 4 1__

- 4

which can be re-written as:

Eq. 3-8

Au = - b  Eq. 3-9

To solve the over-determined system of equations, the least square method is used in the 

Lucas-Kanade optical flow algorithm:

ATAu = AT(- b )  or u = (̂ ATA)~1AT(—b) Eq. 3-10

or:

V—l -1 \ 1

'y', EXiEyt ^  Eyt

with the summations going from i = 1 to n.

Eq. 3-11

A weighted least square solution can be used to improve the accuracy of image velocity 

computation as shown in Eq. 3-6 applied to a constant value for u  in each small spatial 

neighbourhood il\

^  W 2(x,y)[VE(x,yl t) .u + Et {x,y, t)]2
x,y e i i

Eq. 3-12
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where W  (x, y ) denotes a window function that has more influence in the neighbourhood 

of the centre than points far from the centre. W  coefficients are usually identical to 

Gaussian coefficients. The least-square solution to Eq. 3-12 is given by:

u = (ATW 2A)~1Ar W 2(- b )  Eq. 3-13

where for n  pixels (for a m  * m neighbourhood, n  =  m 2), (x£) y£) E ft  at a single time t:

A = [7E(x1,y1),...,VE(xn,yn)]
W = diag[W(x1,y1'),...,W(xn,yn)] Eq. 3-14

b = [Et (x1,y1),...,Et (xn,yn)]

The solution to Eq. 3-12 can be solved using a closed form when ATW 2A is a non

singular matrix. ATW 2A is the following 2 * 2  matrix:

ATW 2A X w2% Eq. 3-15

Where the summations are taken over a neighbourhood of pixels located at (x , y ) [1],

3.1.3. Horn-Schunck Technique
If every point in the image space is to move independently from adjacent points, there is a 

slight chance o f recovering velocity field. This is the case when soft tissue deformation is 

involved where the movement o f each point is affected by the movement o f adjacent 

points. One way to impose an additional constraint to ensure motion continuity is 

minimizing the summation of flow gradient [7]:

Eq. 3-16

Another method for introducing an additional constraint can be done by minimizing the

Laplacian o f each velocity component. The Laplacians o f u x and uy are defined as:

V2ux =
d2ux d2ux 
dx2 dy2

and Eq. 3-17

Ideally, both Laplacians must be zero. Horn and Schunck [7] used the square of the

velocity gradient magnitude as a smoothness measure representing an additional
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constraint. This is in contrast with Lucas and Kanade’s [16] algorithm that exploits the 

fact that optical flow is constant within a region in the image[2].

The algorithm that Hom-Schunck introduced leads to minimization of the sum of 

Brightness Constancy Equation errors:

eb = Exux + EyUy + Et Eq. 3-18

while minimizing the summation of spatial gradient of optical flow components as 

follows:

Eq. 3-19

In practice, image intensity values contain errors due to interpolation and noise. As such 

one cannot expect £b to be exactly zero, therefore, using the Lagrange multiplier concept, the 

total error function to be minimized can be written as follow:

e2 = J J ( £b + a2e2) dx dy

It can be shown that minimizing the above leads to:

Eq. 3-20

Exux + ExEyUy = a 2V2ux -  ExEt
E y U y  +  E XE y U X =  a} ^ 2 U y ~  E y E ç

Eq. 3-21

Hom-Schunck suggested approximating Laplacians in Eq. 3-21 as follow: 

V2ux «  k (uXl jk -  uXljk) and V2uy « k (uyijk -  uy . jk) Eq. 3-22

where Ux..k and Uy. . k denote the velocity in x  and y  directions at pixel location (i,j) at the kl]yij.k

frame, respectively. Also Ux.jk and u y ..k denote local average ofu* and uy at pixel location 

(i,j) at the feth frame, the respectively. In other words, Ux.jk and Uy.jk can be written based on 

the following matrix MH:
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Mh =

U

■ 1 1 1 -
12 6 12
1 1

— 0 —

6 6
1 1 1

12 6 12-
=  U Xk

* Mh

=  u y k
* Mh

Eq. 3-23

xk 

™yk
The k factor is considered to be 3 provided that the local averages are computed using Eq. 3-23.

Using the approximation to the Laplacians introduced in Eq. 3-22, Eq. 3-21 can be rewritten as 

follows:

(a2 -I- Ex)ux + ExEyUy = a 2ux — ExEt 
{a2 + Ey)uy -I- ExEyux = a 2üy — EyEt

Eq. 3-24

The determinant of the coefficients matrix equals a 2(a2 + Ex + Ey). Solving for ux and uy 

leads to:

( a 2 + E2 4- Ey) (ux Ux) — Ex(Exux + Eyuy 4- Et) ^  3 25
( a 2 + E2 + E$)(lly -  Uy) = -Ey{ExÜx + EyÜy + Ef) ^

Now there are two sets of equation to be solved. Horn and Schunck [7] suggested iterative 

techniques such as Gauss-Seidel to solve Eq. 3-28 by which a new set of velocity estimates 

(ux +1 ,Uy+1>) can be computed from the estimated derivatives and the average of the 

previous velocity estimate ([ux ,Uy ). The superscript n  denotes the number of iterations:

un+l
x

Un+l
y

Ex(.ExUx "I" EyUy + Et) 
a2 + E\ + E2 

Ey(Exux 4- EyUy + Et) 
a2 + £ 2 + E2

Eq. 3-26

For approximating the intensity derivatives (Ex,Ey,Et), the following convolution kernels have 

been used. This was originally proposed by Hom-Schunck and is based on finite difference

calculus [14]:

Mt
4  Li iJ

Eq. 3-27

Therefore, using these kernels in Eq. 3-27 intensity derivatives are computed as follows:
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Eq. 3-28
EX = MX * (E(Jk) + E(k + 1))
Ey = My * (£(/c) + E(k + 1))
Et = Mt * 0E(k + 1) -  E<ik))

The original method proposed by Hom-Schunck [7] has some errors due to the fact that finite 

difference techniques are used to approximate spatiotemporal derivatives of image intensity. To 

reduce these errors, in this research the method was implemented with spatiotemporal pre

smoothing in conjunction with Sobel kernels to approximate the derivatives. Furthermore, images 

were pre-filtered using a Gaussian filter with a standard deviation of 1.5 pixels in space and 1.5 

frames in time (1.5 pixels-frames) [18]. Also, a median filter was used to increase the signal-to- 

noise ratio as suggested in [39].

3.2. Hierarchical Framework for Optical Flow
Original methods proposed for optical flow are not capable of measuring large 

displacements as large as 10 pixels movement per frame. The reason for this lack of 

ability to estimate large motions is due to the fact that Taylor series expansion was used 

to form the Motion Constraint Equation Eq. 3-6. There, it was assumed that 8x, Sy  and 

St  are small enough to allow using Taylor expansion. To address this shortcoming, 

Barron et al [3] proposed a hierarchical framework for computing optical flow involving 

relatively large motions gauged with pixel units.

The hierarchical framework of optical flow can be divided into four steps:

• Gaussian pyramid construction

• Image velocity (optical flow) calculation

• Image warping

• Coarse to fíne refinements

This process must be repeated until the bottom of the pyramid is reached.

3.2.1. Gaussian Pyramid
To perform hierarchical framework of optical flow a multi-level representation of image 

is used. For this purpose, each image is blurred and down sampled to construct a coarser 

level o f image. This blurring and down sampling slows the motion measured by pixel

unit. Figure 3-3 illustrates the Gaussian pyramid representation.
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Gaussian pyramid of imago H Gaussian pyramid of imago f

Figure 3-3: Gaussian pyramid representation of two images

Level 0 image is the baseline image. Level 1 image can be then constructed using level 0 

image by blurring it using a Gaussian filter (with standard deviation of 1) and down 

sampling by factor 2 in dimensions. Level i is built from Level i — 1 in a similar manner 

by further blurring and sub-sampling.

3.2.2. Image Velocity Calculation
The second step in hierarchical framework is to compute image velocity at each level, 

which can be carried out using a three-step process:

• Pre-smoothing the images to reduce noise and smooth out intensity 

distribution.

• Computing of intensity derivatives.

• Solving proper equations (based on the method).

Methods used in this project were described in sections 3.1.2 and 3.1.3.

3.2.3. Image Warping
The third step in the hierarchical technique framework is image warping based on 

velocity vectors calculated in the previous step. The image velocity parametric model 

(Hom-Schunck) introduced in the previous section is sufficiently accurate for small 

motions; however, for cases involving large motions, images have to be warped 

iteratively throughout the hierarchical process. Image warping is performed by using a
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computed flow field as the initial velocities at each pixel (x , y) in the sequence. For pixel 

location (x , y ), i and j  are the integer values corresponding to x and y, respectively. The 

following equation has been used for interpolating the intensity values to reconstruct the 

image intensity at location(x,y).

E(x,y) = ( l  — uy )(  1 -  ux)E1 + uxE2 + uy( l  -  ux)E4 + uxE3 Eq. 3-29

where Ex, E2, E3 and E4 are image intensities in pixels adjacent to the pixel located at

(*,;')•

3.2.4. Coarse to Fine Refinement
The final step in hierarchical framework of optical flow is coarse to fine refinements, 

which involves the following steps:

• Computing velocities at root level

• Projecting each computed velocity (after doubling it)

• Warping image to remove the effect of velocities in upper Levels.

This process is continued until the top o f pyramid is reached where Level 0 images are 

located.

3.3. RF Data Cross-Correlation Techniques for Motion Estimation
As mentioned earlier, strain can be estimated from ultrasonic wave form using cross

correlation. As a result o f applying compression to the tissue, a time shift is observed. 

The wave form shifts by a small amount, which can be determined by correlation. 

Displacement values are then computed using estimated time shifts provided that the 

velocity o f sound within the tissue is approximately constant.

The peak o f cross-correlation function corresponds to the required time shift. Figure 3- 

4(a) depicts an A-line pair while Figure 3-4(b) illustrates normalized cross-correlation 

between two signals.
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Figure 3-4: (a) An A-line pair (b) Cross-correlation between two A-lines

Several methods to estimate the peak of cross-correlation functions have been proposed. 

There are basically two main techniques. One is to fit, for example, a parabola or a 

cosine, etc. to the actual digitized samples. While this technique works well and it is easy 

to implement it produces large biases. Another technique involves filtering the spectrum 

using a boxcar-type filter, which is the same as performing convolution in the time 

domain with a sine function. This process creates many new samples in between the 

original samples (up-sampling), which allows approximating the peak location very 

accurately. Having found the peak, one can compute the displacement by incorporating 

the average velocity o f ultrasonic wave in soft tissues, which is accepted to be 1540 

m/s [17].

The properties o f Time Domain Cross-correlation (TDE) are well established in the 

literature [37] and it is easy to implement. TDE cannot be used in real-time applications 

where real-time estimation o f motion field is necessary since TDE is computationally 

demanding. The reason for being computational demanding is that searching over a large 

area makes the algorithm slow [38]. Another drawback of the original TDE is that it may 

produce false-peaks that introduce errors in time shift estimations. Zahriri et al [38] 

proposed a technique based on the original TDE algorithm which exploits the fact that in 

an RE frame, adjacent points in a window correspond to tissue regions that are close to 

each other. Their method is similar to TDE but it incorporates information about 

displacements o f adjacent points to have a rough prediction of displacements of the 

desired points and, hence it reduces the searching interval [37],
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In this project, a Sonix RP ultrasound machine (Ultrasonix Medical Corporation, BC, 

Canada) has been used which is capable of computing real-time strain images in 

adjustable windows between each two consecutive frames using modified TDE algorithm 

proposed by Zahriri et al [38], These computed strain values are the axial strains relative 

to the US probe. Figure 3-5 illustrates a strain image of a phantom, which was obtained 

by the Sonix RP machine.

Figure 3-5: Strain image acquired by Sonix RP machine

3.4. Stress Distribution Calculation Methods
As mentioned earlier, Eq. 2-11 has been used for reconstructing the ratio of Young’s

modulus o f the normal tissue to that o f the suspicious area. Stress distribution in the

heterogeneous medium may be assumed as uniform. With such assumption, the ratio is

simply calculated using Eq. 2-12, which is the reciprocal o f the ratio of strain values in

each point. However, as noted earlier, the stress uniformity is not accurate since stress

concentration may occur near the boundary o f stiffer areas. Hence, the needs for

incorporating accurate stress distribution information in the reconstruction process.
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Several analytical and numerical methods for stress distribution have been introduced 

based on the theory o f elasticity. Some of these methods will be described in following 

sections.

3.4.1. Analytical Models
When two bodies with different mechanical properties are in contact, stress will be 

produced in both bodies. Stress components were first computed using mathematical 

models proposed by Hertz in 1881 [42]. One of the useful tests used to find material 

properties is the indentation test, which is used extensively in mechanical engineering 

applications. This has motivated researchers to formulate this test using mathematical 

models for decades. One of the models of computing stress components resulting from 

indentation was proposed by Boussinesq in 1885[42], Boussinesq proposed a solution for 

a point load applied on the surface of a semi-infinite medium. For any arbitrary load 

distribution, the superposition principle can be applied to find resultant stress 

components.

The stresses within a solid loaded by a point contact were calculated by Boussinesq and 

are given in polar coordinates in following equations:

Or = 2n
(1 -  2v)

ae = - ( l - 2v)
1

----~ +r

r 2( r2 + z 2)2 

z

3 r 2z

(r2 + z2)2 

z

r 2( r2 + z 2)2  ( r2 + z2)2 Eq. 3-30
3 P z3
ry 5
Z7r ( r2 + z 2)2 

3 P rz2
Trz ~ ~ 2n 3Z7r ( r2 + z 2)2

Except at the origin, the surface stresses crz, r yz, t z x  =  0. Figure 3-6 illustrates the point 

load applied to a semi-infinite medium.
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Figure 3-6: point load applied to a semi-infinite medium

In the Boussinesq solution, the material is assumed to be homogeneous and semi-infinite. 

This is not a valid assumption when the region of interest, e.g. tissue, has a finite size and 

includes a suspicious area. In this case, the material in heterogeneous and stresses 

computed using Eq. 3-30 is no longer valid. To address this issue, in this research initially 

a solution based on micromechanics theorem was incorporated to improve the Young’s 

modulus reconstruction accuracy. Micromechanics theory is a theory based on continuum 

mechanics which deals with computation of stress and strain field in materials that 

contain inclusions. Biological tissues with cancerous tumours can be considered as 

homogeneous elastic materials containing a harder/softer inclusion [13]. In this research, 

it was assumed that both the tumour and normal tissues are isotropic with different 

Young’s moduli. Moreover, when a force is applied by a US probe, a distribution of point 

load on the surface o f the tissue will be formed. As mentioned earlier, the superposition 

principle is used here to find stresses resulting from the probe’s distributed load.

In reality, the size o f the probe is considerably smaller than the tissue size. This justifies 

assuming a linear load distribution on the surface underneath the probe as shown in 

Figure 3-7. Fi and F2 in this figure indicate forces measured by two load cells attached to 

the US probe as described in Chapter 4.
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Figure 3-7: Linear distribution of load applied by a US probe to a tissue mimicking phantom

Based on a micromechanics theory, Eshelby[13] developed a system of equations to 

investigate strain distribution in material. Lui and Sun [13] developed an analytical model 

based on Eshelby’s method to investigate the influence o f tumour embedded in a normal 

tissue on strain distribution. According to this model, if the position, the size o f tumour 

and its elastic property are known, the strain field can be computed for the whole tissue 

(e.g. breast) using the micromechanics theory. Total strain distribution in the tissue model 

can be determined by the following equation:

e(x) = e ° (x )+ £“ (*) Eq. 3-31

where £°(x) is the homogenous strain field due to far-field stress cr° on the matrix 

without the inclusion and s d(x)  is the strain filed due to presence o f tumour. Figure 3-8 

illustrates the domain including the lesion area:

0o

Figure 3-8: Domain with inclusion undergoing pressure a Q
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For a specific lesion centered i n x 1 and incompressible tissue matrix (v =  0.5) , ed(x) 

can be calculated using the following equations:

(-B(jx -  xJ-.e0, x e D - n  
x  g n

Eq. 3-32

Assume that £e{xt ) is the local strain at position x 1 . Now with a homogeneous inclusion 

added with its centre located a txx, the new field as a result of this inclusion, £d(x),  can 

be estimated from the infinite domain solution o f Eq. 3-35 as follows:

x e d — n  
x e n Eq. 3-33{ -B(x  -  xx): £*(*!),

-Q:se(x i),

Accordingly, the total strain distribution in the tissue with inclusion should be summed as 

follows:

_  f£e(x) -  B(x -  
W  U e( x ) - Q : e e(Xll

x  g d - n  
x 6 n Eq. 3-34

where B and Q are four-rank coefficient tensors that can be determined using the 

following equations:

® a /? y r(*  A l)  — , n  P 8 ( -2  + 3p2)nanpnYns
2{K + 1)

+ 2(1 -  2p2)(SaYnpnr + ĉtT̂ P̂ y P̂ynaTl? “f” ^ T7la7ly) 

+ 4(1 -  2p2)ôapnYnT + 2 ( l  -  2p2 -  ^  j  ôYXnanp

+  ^ p 2 -  1  +  —  j  SapôYX +  p 2(5aY5pT + 5 a T <5pr ) j  

( K -  1)
Qcc/3yt ~ 2K(K + 1)

[8ap8YX + K(8aY8px + 5aT5^y)]

Eq. 3-35

E1
where K, the modulus contrast, is the ratio K =  — . In this project, strain values

computed from displacement data acquired by optical flow was used as £d(x) . 

Furthermore, the stress components were calculated using Eq. 3-35 and K =  1 was 

incorporated. Finally, to calculate K, the following equation was used to calculate £°(x), 

followed by substitution in Eq. 3-32.
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Eq. 3-37

or ~  v(ae + oz) 
£r = -------- E---------

Og -  V(<jr  +  Oz )
£e = ----------V------------

3.4.2. Finite Element Method
Another method for computing stress distribution is Finite Element Method (FEM).FEM 

is a numerical technique for finding approximate solutions of partial differential 

equations (PDE) as well as o f integral equations. In elasticity analysis, FE model converts 

partial differential equation to a system of linear equations that can be solved 

numerically. When solving a deformable body problem using FEM, the body is first 

discretized into a group of homogeneous elements which has a number of nodes 

(depending on elements type) where the displacements will be defined. This 

discretization process is referred to as FE meshing and the resulting discretized domain is 

called an FE mesh. Figure 3-9 shows mesh generated using a schematic diagram of a 

numerical breast phantom. The displacements within each element are computed using 

interpolation o f nodal displacements.

Figure 3-9: FE mesh for a numerical breast phantom

Using an approximation, the governing equations o f elastic deformation are converted to 

a small set o f linear equations for each element called element stiffness matrix. These
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equations presented in matrix form are then assembled into a global stiffness matrix K. 

The global stiffness matrix is related to the displacements as follows:

K u - f  Eq. 3-38

where u  is the unknown displacement vector and /  is the force vector. The unknown 

displacement vector u  contains all the nodal displacements the finite elements and f  is 

the force acting on each node. One can solve for u  after applying the boundary conditions 

to Eq. 3-38 for known nodal forces and inverting the global stiffness matrix K. Many 

commercial software packages such as ABAQUS (Dassault Systèmes Simulia Corp.) are 

available for performing this analysis. The accuracy of the FE analysis depends on 

several factors such as the type o f the chosen elements, their quality and density. 

Strategies for generating FE meshes are discussed in Appendix A.

Having solved Eq. 3-41 for unknown u, strain values can be computed, and by having 

estimation o f Young’s modulus of each element, stresses can be calculated easily. FEM is 

known to be computationally expensive. Depending on the number of elements in the 

discretized domain, it requires massive amount of calculation to compute the 

displacements. Elastography techniques based on FEM involve iterative processes to 

update the value o f Young’ Modulus by minimizing specific measures such as least 

squares errors between actual reaction forces [27] or normalized mutual information [20], 

etc. Although FEM is known to be accurate in elastic analysis, it is not suitable for real

time applications because it is computation time demanding. As an alternative technique 

that is suitable for real-time applications, a statistical FE method developed in our 

laboratory was used.

3.4.3. Statistical Model
As stated in the previous section, although FE analysis is known to be accurate enough, it 

suffers from being computationally time demanding. The time required for solving a 

system of linear equations is proportional to the number o f elements in the discretized 

domain as well as complexity o f contact boundary conditions. Hence, conventional FEM 

cannot be exploited in real-time applications such as US elastography. To address this
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issue, a novel technique has been developed in our research group by Khalaji et al (ref) 

where they incorporated pre-processed data obtained from FE analysis of a large number 

o f similar objects in a statistical shape model framework.

The basic idea behind the statistical shape models is that there is a high degree of 

similarity between specific organs such as the prostate or breast. Therefore, each shape of 

an organ can be expressed mathematically in terms of the mean shape o f the organ set 

(for N shapes) and eigenvectors representing the organ’s shape modes. The following 

equation shows how a new shape of an organ that belongs to a particular class of organs 

(e.g. breast) can be expressed:

x  = x  + Pb Eq. 3-39

where P = (p1;p2- is the matrix o f the first t  eigenvectors calculated using

Principal Component Analysis (PCA), b =  (b1( b2, ..., bt)T is a weights vector and x, the 

mean shape, is calculated using the following equation:

N

* = l i ' Z Xi Eq- 3' 40i=l
where Xi is defined a set of discrete points representing the shape’s outline as follows:

Xi = (xi0.yi0'Xll,y il, ... ,x ik,y ik..... * in -i,y in-i)r  Eq. 3-41

In the proposed technique, the same concept is used to find the FE analysis results. The 

basic idea is that for the same class o f objects and the same boundary conditions and 

loading, only the geometry of organ of interest is sufficient to predict the FE model 

results. Similar to Eq. 3-42, the FE results, e.g stress field, can be expressed as follows:

a  = a  + Qc Eq. 3-42

where a  is the mean stress field obtained from FE analysis of all training shape data 

undergoing a specific loading and boundary conditions. Also Q = —-Rs) is the

matrix o f the first s  eigenvectors of the stress field covariance matrix and c = 

(c1(c2, ...,cs) r is a weights vector. To be able to calculate the stress field of a similar 

organ not included in the data set, a pre-processing training step is required. This step 

involves finding x, P, b and a, Q, c for each shape in the training data set. Once they have
46



been computed, a Multilayer Feed Forward Neural Network (FF-NN) is trained to 

establish a relationship between vectors b and c. For a new shape which may not be in 

the training data set, first vector b  is calculated using Eq. 3-42, which then fed into the 

trained Neural Network to obtain c. The latter is used to find a  using Eq. 3-42.

The original method proposed by Khalaji et al[ 12] involved predicting the nodal 

displacements when an organ undergoes specific amount o f displacement loading on the 

boundary. Based on the theory of elasticity, it was realized that Statistical Finite Element 

Method (SFEM) can be exploited to predict the stress distribution in each shape of the 

training data set. The basic idea behind this approach is that when the amount o f loading 

on the surface o f a homogeneous tissue and the tissue geometry itself are known, the 

stress field can be predicted irrespective o f the tissue’s Young’s modulus. In other words, 

the stress fields remain consistent for different tissue Young’s modulus values. Figure 3- 

10 illustrates the fact that two different media with consistent geometry and the force 

boundary conditions but with different Young’s Modula, the alx stresses are identical in 

both cases.

(a) (b)

Figure 3-10 : <rl t  stress for tissue with YM of (a) 5kPa (b) 15kPa

For modeling US elastography loading, two main modes o f force loading applied on the 

surface have been assumed. For any arbitrary combination o f FI  and F2, shown in Figure 

3-7, one can predict the stress distribution using linear combination of these two main 

modes. The first main mode involves applying a uniformly distributed load equals to lgr
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on the surface o f the FE model and computing corresponding stress field as shown in 

Figure 3-11(a). The second main mode involves applying a ramp distributed load, 

increase linearly for, 0 to lgr, on the surface o f the FE model and calculating 

corresponding stress field as shown in Figure 3-11(b). Therefore, two different NNs 

associated with each main mode were trained. The first NN computes the stress field 

resulting from uniform loading while the second calculates the stress field induced by the 

ramp loading. 300 FE models with random breast like geometry with different randomly 

generated Young’s modulus values o f background and tumour (within specific range) 

were generated. Each one of these models underwent uniform and ramp loadings. 

Furthermore, the tumour location as well as its geometry was varied while generating the 

training data set.

(a) (b)
Figure 3-11 : (a) Uniform loading (b) Ramp Loading applied on a block shape phantom

For measured values o f F I  andF2,  stress field can be computed using the following 

equation according to the superposition principle:

a  = FI * aul 4- (F2 -  FI) * ori Eq. 3-43

where Gu[ and Gri represent the stress fields computed from uniform loading mode and ramp 

loading modes, respectively. Note that in all of the FE analysis conducted in the phantom studies 

of this research, the plane strain model was used where out of plane strains are equal to 0. This 

assumption helps simplifying the strain tensor calculations since out of plane displacements 

cannot be estimated using 2D pre- and post-compression images.
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For a new FE model associated with a new shape of the organ of interest, the geometry of 

suspicious area as well as loading on the boundary of the organ and the ratio of Young’s modulus 

of normal tissue to that of the suspicious lesion is fed into the NNs to compute the corresponding 

stress field.

3.5. Young’s Modulus Reconstruction
Once the stress field is computed with either analytical or numerical models, the 

measured strain field can be used to reconstruct Young’s modulus using Hooke’s law as 

follows:

EXi =
a X X i -  V  <7-yyi

En  =

cXXi
°y y i ~  VGxxi

Cyy.

E X i +  E Vi

Eq. 3-44

-•reconi

Where i denotes element number, Ex. and Ey . are the Young’s modulus values obtained

from the measured strains in x  and y  directions, respectively, and Erecon. is their average 

value, which is a more accurate estimate of the element’s Young’s modulus.

In this research, two different approaches were used for reconstructing tissue Young’s 

modulus where different methods for computing the strain and stress fields were applied. 

These approaches will be described in detail in the following sections.

3.5.1. First Approach
In the first approach, optical flow was used to estimate the strain distribution from pre- 

and post-compression US images. To reconstruct Young’s modulus in a tissue mimicking 

phantom, two different methods using optical flow were employed. One method involved 

using Boussinesq theory in conjunction with Hooke’s law to determine Young’s modulus 

values. This method assumes that Young’s modulus values o f both the normal and 

tumour tissues are unknown. A major drawback in this method is that it does not take into 

account the presence o f the inclusion in its stress estimation. The other method involved 

using the micromechanics theory discussed in Section 3.4.1 to address the stress

calculation issue in the former method. The formalism of this technique leads to an
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optimization problem as will be described later. For both techniques, it was assumed that 

the domain, as illustrated in Figure 19-3, is infinite in comparison with the applied forces 

on the surface. While Young’s modulus value of the normal tissue was assumed to be 

unknown in the first method, in the second method the normal tissue’s Young’s modulus 

was assumed to be known based on values reported in the literature (Samani et al [3]). 

f (x)  was estimated using the optical flow techniques described in previous sections. As 

stated before, the second method involves calculating the stress field using Boussinesq 

theory. This was done by inputting a Young’s modulus value of 3.25 kPa corresponding 

to normal breast tissue in the analytical model. With these stresses, the strain field of the 

homogeneous material (Ee(x ) ) was calculated. By combining Eq. 3-34 to 3-38 and 

substituting the calculated values o f Ee(x ) and the e ( x )  estimated from the optical flow 

techniques, a system of nonlinear equations with K as the unknown parameter was 

obtained. To determine K, a Golden Section Search (GSS) optimization was used. The 

summary o f the procedure used to estimate K is given in the flowchart depicted in Figure 

3-12.

Figure 3-12 : Flowchart of updating K

In this approach the absolute Young’s modulus values o f normal tissue and lesion have 

been reconstructed.

3.5.2. Second Approach
In this approach RF signal cross correlation technique and SFEM were employed to 

estimate the strain and stress field, respectively. While the optical flow technique is
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capable o f estimating displacements in axial and lateral directions, it suffers from lack of 

sufficient accuracy. As stated earlier, strain tensors are obtained by differentiating the 

estimated displacement values. It is known that differentiation amplifies errors due to 

displacement errors associated with the optical flow technique. Therefore, as alternative, 

axial strains were obtained using RF signal cross-correlation techniques. The Sonix RP 

US machine has incorporated a cross correlation technique to provide strain values with 

adjustable windows for the ROI. While motion estimation using cross-correlation 

techniques provide axial displacements only, they are known to be the most accurate 

techniques for motion estimation in US elastography applications. Figure 3-13(a) 

illustrates a strain image obtained using the Sonix RP machine. For stress field 

estimation, the tissue geometry including the suspicious area needs to be fed into a NN as 

described earlier. To obtain the lesion geometry in the tissue mimicking phantom study, 

strain image was used. Having the tissue strain image, a Discrete Dynamic Contour 

(DDC) segmentation technique[41] was used to automatically segment and estimate the 

geometry o f the suspicious area. In the DDC process, first a rough outline of the 

suspicious area (shown by lower intensity values) was manually drawn. DDC, thus, 

iteratively modifies this outline until it converges to area good quality outline as shown in 

Figure 3-13.

(a) (b)
Figure 3-13 : (a) Strain image provided by Sonix RP machine (b) Segmented to find the boundary of

the suspicious area
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Once the geometry o f suspicious area is found, stress distribution calculation is calculated 

using SFEM. Since the ratio o f Young’s Modulus o f the lesion to that of the normal 

tissue is unknown, an initial guess o f this ratio was computed using Eq. 2-12. An iterative 

process was then carried out to update the ratio of Young’s Modulus as shown in Figure 

3-14. In each iteration, a new value for the ratio is computed and then fed into the NN for 

updating the stress field.

Figure 3-14 : Flowchart of iterative process of elastography reconstruction

As can be noticed, the proposed algorithm benefits from the availability o f a good 

estimate o f the normal tissue’s Young’s modulus. Based on FE analysis, it can be shown 

that if  the tumour is located deep and far enough from the loading boundary, the stress in 

elements located right underneath the loading boundary is almost the same irrespective of 

whether the tissue is homogeneous or heterogeneous. Note that as was stated in section 

3.4.3, if  the force loading on the surface of specimen and its geometry are known, 

regardless o f the homogeneous tissue’s Young’s modulus value, the stress fields are 

identical. Therefore, actual strain values obtained from strain imaging and the stress 

distribution in homogeneous material were used to reconstruct the Young’s Modulus of 

the normal tissue using Eq. 3-44. It is guaranteed that the value o f the Young’s Modulus 

computed using Eq. 3-44 is a good estimate o f the normal tissue’s Young’s Modulus 

value (based on theory o f elasticity).
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4. Experimental Methods
In this chapter methods used in this research’s tissue mimicking phantom studies will be 

described. This chapter comprises the construction of gelatine phantom, description of the 

force data acquisition system used in the proposed elastography system and an 

indentation apparatus used for independent measurement of tissue elasticity.

4.1. Gelatine Phantom Construction
To validate the proposed methods and elastography system, a tissue mimicking phantom 

was constructed using gelatin and agar. Gelatin is known to exhibit elastic 

behaviour [17]. In order to do so, gelatin is dissolved in heated water with proper amount. 

In the experiments conducted in this research, bovine skin gelatin type B, 225 bloom 

(Sigma-Aldrich, Inc.) was used.

A mould was used to construct a block shape phantom with dimensions: 16mm height, 

64mm width and 64mm length. The phantom consisted o f two different types of tissues 

to mimic normal and tumour areas. The tumour had a cylindrical shape and contained a 

mixture o f gelatin, water and agar. Agar (Sigma-Aldrich, Inc.) was used to increase the 

stiffness o f the tumour in comparison to the normal tissue mimicking gelatin. 

Furthermore, glycerol was used, which regulates the sound speed in both normal and 

tumour areas to be consistent with the speed of 1540m/s [17]. Also, Sigmacel was added 

to introduce backscattering effect to the tissues. Different amounts o f sigmacel were used 

in the gelatine and agar to slightly vary the backscattering effect in order to have proper 

US image contrast. Table 4-1 shows the amount o f different materials that was used to 

construct the tissue mimicking phantom depicted in Figure 4-1.

Table 4-1: Amounts of different materials used for different parts of gelatine phantom

Water(cc) Gelatine(gr) Agar(gr) Glycerol(ml) Sigmacel(gr)

Normal 500 10 10 40 7.5

Tumour 500 10 15 40 6
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Figure 4-1: Tissue mimicking phantom with different stiff inclusion

Young’s Moduli o f the background and inclusion corresponding to normal and tumour 

areas were measured independently. This was done by using indentation tests performed 

on cylindrical samples obtained from the same gelatine and agar patches. The indentation 

system used for this purpose is an electromechanical system developed by Samani et 

al[28]. Figure 4-2 shows cylindrical samples o f each region made for the indentation 

tests.

Figure 4-2: Gelatin and agar samples constructed for indentation process

4.2. Force Data Acquisition System and Experimental Setup
In section 3.4, various methods used in this project for stress distribution calculation were 

described. In each method it was assumed that force distribution on the tissue surface is

available. Once measured, these force values can be substituted in Eq. 3-33 or fed into a
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NN to compute the stress field. In section 3.4.3, it was stated that if  the specimen’s size is 

significantly larger than the US probe, which serves as tissue actuator in this project or if 

the boundary o f the tissue is planar, linear force distribution o f contact force is a 

reasonable assumption. This distribution can be characterized by two forces near the end 

of the US probe as shown in Figure 7-3. To measure these forces, a force data acquisition 

system was designed, which comprises two load cells attached to each side of the US 

probe. Figure 4-3 depicts the design of a mechanical attachment o f the force data 

acquisition system.

Figure 4-3: Mechanical part of the data acquisition system

The mechanical attachment of the system comprises a housing attached to US probe, 

which holds the load cells to the sides of the probe tightly. The plungers shown in the 

figure transmit the applied forces from via contact to the load cells. The plungers’ 

asymmetric shape seen in the figure was designed to fit them into the housing and to
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prevent rotation. A plate was used to prevent the plungers from falling off when the probe 

is in an upside down position.

The load cells used in the force data acquisition system are model LCKD-lKg (Omega 

Engineering, Inc). Figure 4-4 shows one of the load cells used in the system.

Figure 4-4: Load Cell LCKD-lKg

Table 4-2 describes the characterization of each load cell when excited with 5.000 Vdc.

Table 4-2: Load cell characterizations

Sensitivity 5.6156 mVdc

Input Resistance 379.70 Ohms

Output Resistance 355.70 Ohms

Once force is applied to a load cell, it generates an output voltage proportional to the 

tension of its strain gauges resulting from the force. This voltage has to be measured and 

converted to its corresponding force value. For data sampling, a half/full bridge analog 

input device, NI 9237 (National Instruments Corporation) was used to sample the 

generated voltage over time. The NI 9237 device is capable o f measuring up to four 

bridge-based sensors simultaneously and provides high-speed and broad-bandwidth 

sampling rate. RJ50 adaptor (National Instruments Corporation) was used to connect each 

load cell to one channel o f the NI 9237 device. Figure 4-5 shows the force data 

acquisition system of the experimental setups.

56



(C)

Figure 4-5: (a) Sonix RP ultrasound machine (b) US probe with load cells attached to it with a tissue 
mimicking phantom ready for testing (c)NI9237: each load cell is connected to one channel of this

device

Lab VIEW (National Instruments Corporation), a commercial software package was used 

to facilitate communication with the NI 9237 device. When the force was applied on each 

load cell, generated voltage was measured by the NI 9237 device. This measured data
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was stored in a text file using a Lab VIEW code. This voltage data was later converted to 

force data using a MATLAB (The Mathworks, Inc.) code.

One of the challenges encountered in designing the force data acquisition system was that 

the load cell measurements had to be synchronized with the US images acquired by the 

Sonix RP US machine. To facilitate this, the load cells were excited using a pulse 

generated by the BNC port included with the Sonix RP machine. The pulses were 

generated at the beginning of each frame acquisition. Therefore, the load cells registered 

values only when an image frame was being generated while they registered no values 

during the time where the US machine was reconstructing images. Figure 4-6 shows the 

synchronization process.
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Figure 4-6: Process used for image and force data acquisition synchronization

The rate o f image acquisition o f the US machine depends upon various parameters such 

as the frequency, sector o f FOV, depth, etc. With the setting pre-defined for breast 

ultrasound imaging in the US machine, the frame rate was 30 Frame/sec. The sampling 

rate o f NI 9237 was set to 1 kHz. Therefore the number o f force measurement data points
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measured by each load cell was around 333 samples per second. The average value of 

these sampled data points was computed to obtain forces Fi and F2 applied on the tissue 

surface. These values characterize the contact force linear distribution, which were fed to 

the stress distribution calculation method described earlier.

4.3. Indentation Experiment
As described earlier, a phantom was constructed to validate the proposed elastography 

system. This phantom comprised two different types o f material: gelatine and agar. To 

measure Young’s Modulus of each type, small cylindrical samples were constructed to 

undergo indentation test.

The indentation test was performed using an electromechanical system developed by 

Samani et al [28]. Figure 4-7 shows the experimental setup for this indentation test. In 

this test, each tissue sample underwent specific amount o f indentation applied to the 

sample following a sinusoidal pattern with a low frequency of 0.5 Hz. This loading was 

applied while reaction forces were being measure using a load cell. The test’s output was 

a force-displacement curve, which characterizes the tissue response. Using following the 

equation, Young’s modulus o f each specimen was calculated:

E = kS Eq. 3-45

where 5 is the slope o f force-displacement curve and k  is the conversion factor that only 

depends on the sample geometry, indenter, and boundary conditions, k can be found 

using using FEM as describe by Samani et al 2003.
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5. Results
In this chapter results obtained from each elasticity reconstruction technique in this 

project will be presented. This chapter includes numerical validation for elasticity 

reconstruction technique based on Optical Flow, Experimental validation elasticity 

reconstruction based on RF signal cross-correlation technique and indentation tests 

results.

5.1. Numerical Validation for Optical Flow Based Reconstruction 

Technique
For validating the elasticity reconstruction technique developed in conjunction with the 

Optical Flow displacement data acquisition method, first a breast FE model was created. 

This model undergoes a specific o f deformation consistent with a typical US probe 

pressure. This FE model represents a numerical breast phantom, which was created using 

ABAQUS (Dassault Systèmes Simulia Corp.) as shown in Figure 5-1. The FE mesh of 

this phantom was constructed using a modified transfmite interpolation technique 

described by O ’Hagan and Samani[43].

Figure 5-1: FEM of the breast

The displacements field resulting from the probe compression was computed by 

ABAQUS and used to generate synthetic pre- and post- compression images. Pre- and 

post-compression images were generated by salt and pepper noise in a way that they
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resemble ultrasound images. Once these two images were constructed, they were fed to 

the optical flow algorithm developed in this research to compute displacement values for 

each pixel in the pre-compression image. Nodal displacements were then computed using 

interpolation functions and transferred to the FE space. Since the loading values on the 

surface are known, they were fed to the Boussinesq analytical model, described in 

Section 3.4.1, to calculate the stresses in the centre o f each element in the FE model. The 

reconstructed values o f the Young’s modulus of the normal tissue and the suspicious area 

are given in Table 5-1.

Table 5-1: Reconstructed values for different type of the tissues

Real Values(kPa) Reconstructed Values(kPa)

Normal Tissue 3.25 3.25±0.45

Suspicious Area 16.25 10.35±2.00

This indicates an average error o f 36% in the tumour’s reconstructed Young’s modulus 

value. This error is attributed to the limited accuracy that the Boussinesq analytical model 

can provide in addition to displacements errors due to the optical flow algorithm. Note 

that these results still indicate very significant improvement over the strain imaging 

technique as it shows an error o f 43.2%. In the second reconstruction technique 

developed to improve the reconstructed tumour to normal tissue Young’s modulus ratio, 

the procedure based on Eshelby equations described in Section 3.4.1 was used. In the 

optimization procedure, an interval of 0.1 to 10 was considered for the the Golden 

Section Search (GSS) algorithm to calculate K. This procedure led to a value of K = 

3.57. Compared to the true K value of 5, this result shows an error o f 28.6%. This shows 

that despite using a more accurate stress calculation model, the displacements errors due 

to the optical flow algorithm dominate. Also as seen in Figure 5-2(a), the tumour area is 

successfully detected by this method. Compared to an Elastogram (strain image) shown 

in Figure 5-2(b) obtained from conventional US elastography, the quality o f Young’s 

modulus image constructed by the proposed method is significantly better.
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(a) (b)
Figure 5-2: (a) Elastogram using the micromechanics based method (b) Elastogram using conventional

strain imaging method

This numerical study indicates the potential o f proposed method in developing a real-time 

US elastography system to detect suspicious areas and reconstruct its Young’s Modulus 

for diagnostic purposes.

5.2. Indentation Test Results for Gelatin Phantom Samples
As mentioned earlier, gelatin and agar samples o f each tissue type in the tissue mimicking 

phantom was constructed. Each was a cylindrical shape specimen that underwent a 

sinusoidal indentation with 1mm amplitude and 0.5 Hz frequency. Resulting reaction 

forces were measured by the load cell of the indentation apparatus. Figure 5-3 and Figure 

5-4 illustrate the force-displacement curves obtained from testing the gelatin and agar 

samples, respectively. Table 5-2 shows the slope values o f the force-displacement curve 

and the corresponding Young’s modulus values of each tissue type.

Table 5-2: Indentation results for each type of tissues

Slope (N/mm) Young’s Modulus(kPa)

Normal Tissue 5.2 22.1

Suspicious area 7.5 31.5
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The conversion factor k  in Eq. 3-48 was estimated using a FE model of the cylindrical 

samples. The estimated value was 4.2221 in both cylindrical samples since the geometry 

o f cylinders and indenter in both samples was identical.

Loading and Unloading Portion of Second Cycle

Figure 5-3: Force-Displacement curve for the gelatinous tissue

Loading and Unloading Portion of Second Cycle

Figure 5-4: Force-Displacement curve for the agar tissue sample
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5.3. Experimental Results of the RF signal Cross-correlation Based 

Technique
Figure 5-5 shows segmented strain image of the phantom obtained by DDC.

Figure 5-5: Segmented strain image

Once the boundary o f the suspicious area was estimated, it was fed into the iterative 

process described in Section 3.5.2 along with the load cells values Fi and F2 to 

reconstruct Young’s Modulus o f the normal and suspicious tissue areas. Note that the 

segmentation process requires drawing a rough initial contour to proceed. This introduces 

undeterministic noise in reconstruction procedure. Therefore the whole process was 

performed 20 times and average value of the reconstructed Young’s moduli with the 

corresponding error was calculated. Table 5-3 shows the results obtained from the 

reconstruction process along with values obtained independently from the indentation 

tests.
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Table 5-3: Reconstruction results for each type of the tissue

Real Value(kPa) Reconstructed

Value(kPa)

Error (%)

Normal Tissue 22.1 22.7 2.4

Suspicious area 31.5 33.3 5.7

The value o f the load cell forces, which were measured using the force data acquisition 

system were F I — 25.5g r  and F2 =  23.5gr. These forces were applied on the boundary 

o f the tissue mimicking phantom.

5.4. Sensitivity Analysis for Tumour Location
In section 3.5.2, a method to estimate Young’s modulus of the normal tissue was 

proposed. This method involves measuring the strain values from the strain image and 

computing the stress components o f upper elements in the FE model of a homogeneous 

material with arbitrary Young’s Modulus but same geometry and loading distribution on 

the surface. This method provides accurate results when the tumours are not excessively 

stiff and are located deeper within the tissue. Since in real cases, suspicious areas tend to 

be stiffer than the surrounding tissue, accuracy of stresses calculated using the proposed 

technique may suffer. To assess the accuracy in relation to this issue, a sensitivity 

analysis was performed by varying the stiffness of the tumour area relative to the 

background. It was assumed that the tumour location is confined in the one bottom third 

o f the phantom. The location of tumour, its size and its Young’s modulus were varied 

systematically. Figure 5-6 shows different location o f the tumour as well as upper 

elements in the FE model that were used to reconstruct background tissue’s Young’s 

modulus. Table 5.4 summarizes results obtained from this analysis. It is worth 

mentioning that this analysis confirmed that the deeper the tumour, the better the 

background tissue’s Young’s Modulus estimation.
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Upper Elements in 
FE model v

Figure 5-6: Different locations of the tumour

Table 5-4 shows the maximum and average error in the reconstructed normal tissue’s 

Young’s modulus values. It shows a maximum error o f 5.12%, which indicates that the 

proposed method is highly accurate for challenging elastography applications where the 

tumour located deep inside the organ such as breast elastography.

Table 5-4: Sensitivity Analysis for Young’ Modulus value due to Homogeneity assumption

Maximum Error (%) Average Error (%)

Young’s Modulus of normal 

tissue

5.12 2.37
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6. Summary and Conclusion
In this project, a novel technique for breast elastography was proposed, which utilizes a 

force data acquisition system to measure force distributions on the breast’s surface. With 

incorporating force data, the accuracy of stress distribution calculation using SFEM and 

therefore elastic moduli reconstruction was improved.

6.1. Displacement Data Acquisition
In this project two techniques were developed to acquire nodal displacement data induced 

by mechanical stimulation. Unlike conventional techniques, which provide only the axial 

displacement field, an optical flow technique was developed to find the 2D displacement 

field between pre- and post-compression images. Ultrasound imaging can provide such 

images. Since ultrasound images are comprised o f a large number of speckles, 

conceptually one can use them as landmarks to track the displacement. Optical flow 

technique is capable o f tracking such speckles provided that the brightness associated to 

speckles remains the same from pre-compression image to post-compression image.

Another approach that was taken in this project to acquire displacement data was strain 

imaging using cross-correlation based method. This method was readily implemented in 

the Sonix RP US machine available in our laboratory. Although strain images obtained 

from the 2D probe RF signal cross-correlation provides axial strains only, they are known 

to be the most accurate compared to other techniques. Research is still ongoing to 

develop RF signal cross-correlation techniques capable o f providing accurate 2D 

displacements.

6.2. Force Data Acquisition
A force data acquisition system to measure the force applied on the breast surface was 

designed and implemented. This system contains two load cells attached tightly to the 

sides o f US probe. The system is capable of measuring the applied forces with high 

accuracy. The load cells were connected to a half/full bridge device, NI 9237, to measure 

the induced voltage as a result o f tension or compression of strain gauges in each of the 

load cells. Once the generated voltages by each load cell were measured, a proper
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conversion factor was used to convert the induced voltages to their corresponding force 

values. The system is capable of measuring the value o f load cells in high sampling 

frequency, thus allowing reduction of the noise measurement level by averaging the 

sampled forces.

The forces values were then used to estimate contact loading distribution on the breast 

surface. A linear distribution was assumed provided that the surface o f the breast is 

relatively larger than the US probe or the surface itself is planar.

6.3. Reconstruction Techniques
Two techniques were proposed to reconstruct Young’s modulus of normal and suspicious 

tissues. The output o f both techniques is the absolute value o f Young’s Muduls and their 

ratio. Each technique comprises different displacement data acquisition system but both 

require the loading data applied on the surface.

In the first proposed technique, the optical flow method was applied to acquire 

displacement field between pre- and post-compression images. Strain tensors were then 

computed by differentiation of the estimated displacement field. The loading distribution 

was estimated using the data acquisition system developed in this research, and was fed 

into two different analytical models to compute stresses at the centre o f each element in 

the breast model. The first method of computing stress distribution involved computing 

stress components using the analytical solution proposed by Boussinesq. The second 

method involved updating the ratio of Young’s modulus o f the tumour to the normal 

tissue using strain tensors in homogeneous specimen using an analytical micromechanics 

based method proposed by Lui et al [13]. Once stress distribution was calculated using 

either method, simple Hook’s law equation was used to reconstruct Young’s modulus of 

each element in the model.

In the second proposed reconstruction technique, axial strain images acquired by the 

Ultrasonix RP machine using cross-correlation techniques were used. Loading 

distribution was estimated using measured contact forces on the surface. To calculate 

stresses in this technique, a SFEM technique involving two different NNs to construct
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two main models was used. The first NN was trained with uniform constant loading on 

the surface where the tumour location, Young’s Modulus o f each type o f tissue and 

tumour geometry was randomly altered to take into account these parameters variation. 

The second NN was trained with ramp loading applied on the surface while varying the 

same parameters as in the previous NN. The inputs o f each NN comprise the tumour 

geometry and Young’s Modulus of each tissue. Once the reaction forces were measured, 

linear combination o f these two main modes computed the stress distribution. In this 

technique, Eq. 2-11 was used iteratively to reconstruct the ratio of the Young’s Moduli. 

Once the ratio was reconstructed, the stress field corresponding to a homogeneous 

medium was used in conjunction with the actual strain tensors for upper elements in the 

FE model to find Young’s modulus of normal tissue. This was used along with the 

previously calculated ratio to determine the tumour’s Young’s modulus.

6.4. Numerical Simulations and Tissue Mimicking Phantom Study
To validate the proposed methods, simulations were first performed on the numerical 

breast phantom shown in Figure 32-5. The phantom was numerically deformed using a 

FE model. Pre- and post-compression images were then constructed using nodal positions 

and speckle noise. To obtain displacement data, a hierarchical framework of optical flow 

acting on pre- and post-compression was used to estimate the displacement field, thus the 

strain tensors. Stress distribution was, then, calculated using analytical models. The 

results showed the feasibility of using optical flow in tissue deformation acquisition 

application. The reconstruction error was 36% when the stress distribution was calculated 

using Boussinesq theorem while it was reduced to 28.6% when a more accurate 

micromechanics based was used to calculate the stress field. The errors can be attributed 

to two major sources: displacements errors obtained from the flow algorithms and stress 

field errors. It may be speculated that the former is dominant. At any rate, the obtained 

elasticity image depicted in Figure 5-2 shows promising results. The tumour tissue was 

effectively detected and the accuracy of the reconstructed Young’s modulus may be 

acceptable for diagnostic purposes.
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For tissue mimicking phantom study, a gelatine/agar phantom shown in Figure 4-1 was 

constructed to validate the proposed technique. The second reconstruct approach that 

involved using the US acquired axial displacements in conjunction with SFEM. As 

reported in Section 5.3, the reconstruction results were very promising while the methods 

retain the real-time aspect of image reconstruction. Also, sensitivity analysis was 

performed, which showed that the deeper the tumour within the tissue, the better the 

estimation o f the normal tissue’s Young’s Modulus leading to more accurate 

reconstruction.

6.5. Pros and Cons of the Proposed Methods
This section is dedicated to discuss the pros and cons o f the proposed methods. While the 

proposed methods are real-time, there are issues associated with each approach.

6.5.1. Pros of the Methods
In this project, two real-time techniques were proposed to reconstruct Young’s modulus 

o f soft tissue and potential suspicious areas. In the first approach, analytical models were 

utilized to compute the stress field. In fact this method can be considered as a real-time 

unconstrained elastography method. Unlike other elastography techniques that 

incorporate only the axial displacement field, optical flow was used, which is capable of 

estimating 2D displacement field. Exploiting the 2D displacement field in principle 

should increase the accuracy of the reconstruction and reduce errors provided that the 

motion tracking technique is sufficiently accurate. In the second technique, SFEM was 

applied to calculate the stress field for real-time and accurate Young’s modulus 

reconstruction. Unlike the first technique, the second technique can be categorized as 

constrained elastography techniques in which that the elastic modulus within each tissue 

volume was assumed to be uniformly distributed.

6.5.2. Cons of the Methods
One of the difficulties encountered in the first proposed technique was that when 

compression was applied on the phantom’s surface, the speckle patterns changed. These 

changes introduced errors in the optical flow tracking technique. The reason is that as
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mentioned in Section 3.1.1, the main equation governing the optical flow techniques was 

Motion Constraint Equation, which assumes that the brightness associated with each 

speckle remains constant from pre-compression image to post-compression image. 

Unfortunately, this was not the case, and as a result the accuracy of the calculated 

displacement field suffered. Furthermore, optical flow techniques have intrinsic issues 

associated with approximating derivatives of the image intensity leading to extra 

reconstruction errors. Another drawback that pertains to the second elastography 

technique was lateral displacements were not available as the current cross correlation 

techniques are not well developed to estimate them in real-time.

6 .6 . Future Directions
In this work, novel imaging systems were developed for breast cancer assessment. At this 

point, a proof o f concept was provided as the methods were tested and their feasibility 

and accuracy were demonstrated based on numerical and tissue mimicking phantom 

experiments. Future research work may involve the following:

• Developing fully online reconstruction system: parts of the system involve 

offline processing such as system calibration, retrieving force data, etc. The 

system can be further developed to coordinate all o f steps from data 

acquisition and elastic modulus reconstruction using a more sophisticated 

Lab VIEW program.

• Improving optical flow: for this purpose work is under way in our group to 

incorporate Navier equations as an additional constraint.

• Incorporating incompressibility o f soft tissues to compute lateral 

displacements: to this end, Lubinski et al [15] proposed a technique to 

compute displacement field in lateral direction by having axial displacement 

field and incorporating the incompressibility constrains. This technique may 

be implemented and used in the first proposed system.

• Assuming multiple lesions in the phantom studies: in the present work, a 

simple case o f having one lesion was used to validate the proposed methods. 

To assess the effectiveness of these techniques with multi-focal cancer types,
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future developments may consider multiple lesions with random dimensions 

and locations.

• Real patient study: one of the future developments may involve real breast 

cancer patient’s study where clinicians and patients can provide feedback on 

the system’s performance and utility.

• Improving the force distribution estimation: In order to improve stress field 

calculation more accurate contact force distribution may be considered instead 

of the linear load distribution used in the present work.
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Appendix A: Transfinite Interpolation
The TFI approach to grid generation is based on the concept o f mapping a computational 

domain C (logical space) into a closed and bounded region defined in the physical 

domain P. TFI is simple to implement and only requires a unique mapping between the
—>

boundaries o f the two domains F:dC -* dP be defined.

Figure 1-i: A unit square (logical space) (A). A prostate shaped physical space (B)

In 2D C is in the form of the unit square, i.e. C (f,r;) E [0,1]. The mapping function F is 

built by partitioning dP into four curves parameterized using the coordinates of dC as 

shown in Figure 1-i:

X L = ([xL,yL) = F(0,7j) X r = (xfi,yfi) = P(l,i?) 
XB = (xB, yB) = F tf , 0) X T = (xT, yT) = F (f, 1) 

that are joined at four comers denoted by:

Eq. A-l

X tr — (x TR>yrR) — F ( l,l)  XBR — (xBR,yBR) — F(1,0) 
X tl = (xTL>yrL) = ^(0.1) XBL = (xBL,yBi ) = F(0,0)

Eq. A-2

Using F in Eq. A -l, we can now construct a TFI mapping function from C to P using the 

vector-valued bilinear blended map:

X = (Z,ri) = xtf.r i)
y tf.r i)

(1 -  r])XB + r)XR + (1 -  Q X t
= + s x R -  ^ x TR -  f  (i -  n ) x BR

-rìdi  -  O XTL -  (1  -  0 ( 1  "  V)XBL
Eq. A-3
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In order to generate the vertices o f a grid over the closed shape in Cartesian domain P 

(Figure A-l B) and N * N  computational gridX c =  i , j  =  0,1, ...,N  — 1

is defined and then mapped into P using Eq. A-3. It is important to note that when X c a 
rectilinear grid is. This technique only requires that F be defined for the vertices on the 
outer surface o f X c.
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