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Abstract—Nowadays, electricity demand forecasting is critical
for electric utility companies. Accurate residential load fore-
casting plays an essential role as an individual component for
integrated areas such as neighborhood load consumption. Short-
term load forecasting can help electric utility companies reduce
waste because electric power is expensive to store. This paper
proposes a novel method to evolve deep neural networks for
time series forecasting applied to residential load forecasting. The
approach centres its efforts on the neural network architecture
during the evolution. Then, the model weights are adjusted using
an evolutionary optimization technique to tune the model per-
formance automatically. Experimental results on a large dataset
containing hourly load consumption of a residence in London,
Ontario shows that the performance of unadjusted weights
architecture is comparable to other state-of-the-art approaches.
Furthermore, when the architecture weights are adjusted the
model accuracy surpassed the state-of-the-art method called
LSTM one shot by 3.0%.

Index Terms—Neural architecture search, deep neural net-
works, evolutionary algorithms, short-term load forecasting,
residential load forecasting.

I. INTRODUCTION

With the introduction of renewable energies into electri-
cal grid systems, the electricity market and electric control
dispatching have become more complex and challenging to
manage. A consequence of this phenomenon is the need to
know the electric load demand ahead of time. Therefore,
accurate short-term load forecasting (STLF) is essential for
electric power management. In addition, accurate STLF mod-
els help avoid electric power overgeneration and thus improve
revenues. Finally, a good STLF model helps maintain the
electrical grid system stable and operating.

According to the International Energy Agency [1], house-
hold energy consumption worldwide accounts 27%, for all
consumption. In European Union-28, it accounts for 29%, and
particularly in Canada, it accounted for 33% of the electricity
dispatched in 2017. Because of this, forecasting residential
electricity consumption has become the focus of research for
short-, medium-, and long-term forecasts. Recently, a wide
variety of approaches to forecasting residential load consump-
tion were presented [2], [3]. Other studies were related to
statistical models, such as the ARIMA method [4], and others
are machine learning aligned approaches, such as support
vector machine [5].

The last decade, has shown that artificial neural networks
(ANN) are powerful and applicable approaches to forecasting
electricity consumption over buildings [6], industry [7], and
cities [8]. Electricity consumption can be represented by
multivariable time series models, where the output forecast
is the result of a function with multiple inputs such as time
of day, day of the week, weather, and social factors. Based
on this perspective, recent approaches using ANN to forecast
load have evolved from simple univariable models to complex
multivariable models. The next improvement was increasing
the complexity of the hidden layers from one to several layers;
such approaches are called multilayer perceptrons (MLP)
ANN models [9]. In the last decade, the state of the art for
load forecasting has been the use of recurrent neural networks
(RNN) [2], [10], [11]. The vast majority of these ANN models
are limited to fixed architectures, and their efforts are focussed
on tuning the model so that the ANN learns the optimal set of
weights. Hence, ANN models for load forecasting are more
weight- than architecture-focussed.

During the ANN design, numerous optimization and nor-
malization techniques are available to improve the model’s
performance. Nevertheless, quite a lot of progress can come
from ANN architectures [12], and they have been typically
neglected. Hence, there is a growing interest in automating
neural architecture search methods. This research work ap-
plies evolutionary algorithms to evolve ANN architecture to
improve the load forecasting model performance.

In the last 20 years, with the access to computing power,
the development of ANN techniques for time series forecasting
has been in rising. In most cases, the emphasis in training an
ANN or a deep neural network (DNN) model has been on
the weights, setting aside the architecture’s importance. This
paper proposes a method for developing a DNN for time series
forecasting that augments the importance of neural architecture
search during the evolution process. The contributions of this
paper can be summarized as follows:

1) A method to evolve a deep neural network centred on ar-
chitecture evolution (DNN-CAE). This method is based
on two main phases evolution for a DNN, focussing
the evolution efforts on the first phase on architecture
development and those in the second phase on weight
adjustment. To focus the evolution process on the DNN
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architecture, during the first phase, each network agent’s
fitness is measured using shared weights values. In the
second phase, the CMA-ES [13] technique is used to
adjust the DNN weights.

2) A neural architecture search method for load forecasting,
which can be used to study the electricity consumption
of schools, buildings and residential facilities. For the
purposes of this paper, the method is used for residential
load forecasting. To the best of the authors’ knowledge,
this is the first work that uses neural architecture search
based on evolutionary techniques to learn electricity
consumption behaviours for the STLF problem.

3) The proposed method was evaluated with real world data
consisting of about three years of hourly load residential
data from a house in London, Ontario.

The rest of this paper is organized as follows. Section
II presents background for the techniques that are used as
a base for the proposed method. Section III presents work
related to STLF for residential data. Section IV describes the
methodology for the DNN-CAE model. Section V explains the
various experiments and the results obtained. Lastly, Section
VI presents conclusions and directions for future research.

II. BACKGROUND

Neural architecture search (NAS) [14] is an approach de-
veloped in the last five years for automating DNN architecture
engineering. NAS methods are specialized in finding the best
architecture from all possible architectures by following a
search strategy that maximizes performance. According to Liu
et al. [15], NAS optimization methods can be categorized
into reinforcement learning, evolutionary algorithms (EAs),
gradient-based algorithms, and Bayesian techniques. Among
these techniques, the more frequently used are reinforcement
learning and EAs. Reinforcement learning techniques com-
monly use policy optimization to estimate DNN parameters
and structure. Zhong et al. [16] presented an approach that
applied reinforcement learning to find the best architecture
over an RNN. On the other hand, EA techniques encode the
DNN structure into genomes, which are evolved to find the
best architecture [17]. Optimization methods depend heavily
on evaluation methods to measure DNN performance. Some
specialized methods used for evaluation on NAS are network
morphism [18], weight-sharing [19] and hypernetworks [20].

EAs [21] [22] are a class of population-based, stochastic
search techniques inspired by biological evolution. These types
of algorithms share the same types of evolution mechanics as
genetics: mutation, fitness assignment, selection and offspring.
The evolutionary mechanics and configuration vary from one
algorithm to another. However, they can be summarized as
a population of agents P (θ), which represents a potential
solution to an optimization problem. The performance of each
agent θi is evaluated over each generation through a fitness
function F (θi). Then some agents are selected to become
parents and generate the next offspring, the offspring are
mutated by defined evolutionary techniques. Evolution takes

Fig. 1. Evolutionary algorithm cycle. Adapted from geneticprogramming.com.

place by repeating this process through N cycles, or until a
stopping criterion is met (Back, 1996).

Following the application of EAs to DNNs the approach
called neuroevolution emerged, which evolves a DNN until the
network agent best suited for a defined task is found, as shown
in Fig. 1. These approaches move from classical learning
methods to evolutionary methods, where DNN characteristics
such as architecture, weights, and in some cases, hyperparam-
eters are encoded into genomes. The genomes are then evolved
using an EA according to a performance criterion. According
to Stanley et al. [23], the use of EAs to design ANNs presents
the advantages of high parallelization and diversity in the
search space of solutions. Another advantage of using EAs
is that if one is combined with a notion of quality (e.g.,
to maximize reward) during exploration, the population will
disseminate looking for different strategies and will quickly
point to the global optimum.

In addition to evolution strategies, another algorithm used
to optimize DNNs is called a covariance matrix adaptation
evolution strategy (CMA-ES) [13]. CMA-ES is a type of
black-box optimization technique based on EA for non-linear
and non-convex problems. CMA-ES is considered state-of-the-
art in evolutionary computation and has been adopted as one
of the standard tools for continuous optimization problems.
This approach creates a covariance matrix describing the cor-
relations between decision variables. Then, through evolution
mechanics, the matrix likelihood is maximized generating
successful solutions. The CMA-ES state variables, for a space
of dimension N , are given by the distribution mean m ∈ Rn,
the step size σ > 0 and the covariance matrix C ∈ Rnxn.
CMA-ES is an iterative algorithm that, in each of its iterations,
samples λ candidate solutions from a multivariate normal
distribution, evaluates them and then adjusts the sampling
distribution used for the next iteration [24].

III. RELATED WORK

Electricity consumption can be represented through time
series models. Every electricity consumption dataset presents
unique properties related to the location, weather, and social
factors where it was collected. Hence, because of this vari-
ability, each dataset is challenging to analyze and model. An
important branch of statistical machine learning that can learn
patterns from data is DNN models. DNN together with high
computing power has shown excellent performance for various
prediction tasks. Zheng et al. [10] presented a method using
LSTM for load forecasting on smart grids for a city. Marino et



al. [25], presented their approach to forecast building energy
consumption using DNN. Specifically, for residential load
forecasting, Zhang et al. [26] presented the perspective for a
single house load forecasting using SVR modelling. Recently,
Wang et al. [27] presented an approach using a probabilistic
method applied to LSTM. Most of the improvements presented
are related to enhancing load forecasting by improving the
ANN and finding out how to learn the weights of the neurons
effectively. Nevertheless, we have not found work that has
been developed to improve the architecture of a DNN for time
series forecasting. Furthermore, as far as the authors know, no
work has been done to automate architecture search for load
forecasting.

In STLF, EAs have been commonly used to optimize
hyperparameters in forecasting models such as the work pre-
sented by Zhang et al. [28] to tune SVR-based models with
differential evolution. In one of the most recent studies using
EA, Zeng et al. [10] combined particle optimization techniques
with a method called an extreme learning machine. In another
study, Bouktif et al. [29] proposed to use LSTM models using
feature selection combined with a genetic algorithm for load
forecasting. In terms of neuroevolution techniques applied to
load forecasting, Srinivasan [30] presented an approach to
evolve an ANN. In this approach, the architecture was fixed
at three layers, and only the hyperparameters and weights of
the ANN were evolved.

In contrast, the techniques presented so far have been
focussed on tuning model hyperparameters, or in the best
scenario, to evolve the DNN weights. Few approaches have
focussed on searching for the best DNN architecture otherwise
than by image optimization. The approach called weight ag-
nostic neural network presented by Gaier and Ha [31] focussed
on evolving a robust architecture for reinforcement learning
tasks, which can be used as a research base for additional
tasks such as time series forecasting.

This paper proposes a method to find a deep neural network
centred on architecture evolution (DNN-CAE) for short-term
load forecasting. The method focusses on NAS using EA
techniques. DNN-CAE search is used to find the optimal
architecture leaving aside the importance of the weights while
the model is trained. Finally, after the best architecture has
been found, the weights are tuned using a CMA-ES algorithm,
improving load forecasting performance.

IV. DNN-CAE METHODOLOGY

The approach presented in this paper has been implemented
in three phases, as shown in Fig. 2, which are: engineering
the dataset, evolution of the neural network architecture and
weight adjustment. Each one of these phases is explained in
detail next:

A. Phase 1: engineering the dataset

In this phase, three steps are performed before the dataset is
split between training and test sets. The steps of cleaning the
dataset, feature engineering and normalizing and splitting the

Fig. 2. Framework for the DNN-CAE model.

dataset are essential for adequate training and performance of
the algorithm.

1) Cleaning the dataset: The dataset is cleaned by remov-
ing all NaN and duplicated values. In addition, anomalies are
detected and removed, such as non-sequential data, values with
wrong units and filling missing values. After this step, the
whole data collected become consistent.

2) Feature engineering: In this step, the number of features
in the dataset is increased. Weather attributes related to the
same date and time as the data are added, such as temperature
and weather conditions as categorical values. New features are
also added to the dataset, such as day of the week, is weekday,
is weekend, is holiday, and the season of the year. Finally,
some cyclic features such as month, day, hour and weekday
are transformed through sine and cosine functions into cyclic
values. Past values from the same set as new features are also
added, such as previous target values from the last hour up to
the last 48 hours. Averages for the previous 24 and 48 hours,
and values for the last week at the same time, for the last
month, and for last year.

3) Normalizing and splitting the dataset: In this step, the
whole dataset is normalized by applying min-max normaliza-
tion as given in (1). Then, the dataset is split into training
and test sets with a proportion of 80%-20%. During evolution
of the DNN, the model is trained with the training set. Then
the CMA-ES algorithm uses the last 20% of the training set
to adjust the weights. This approach is taken to evolve the
DNN’s weights with similar behavior as the test set, but with
the training set data. Carrying out this procedure also improves
model accuracy for the weight adjustment phase. Finally, the
test set is used for model performance measurement.



TABLE I
DESCRIPTION OF PARAMETERS USED DURING EVOLUTION.

Parameter Description
Ps Population size of network agents.
Swb Shared weights negative and positive boundaries.
Sws Shared weights list size.
Gmax Maximum number of generations.
Fb Fitness threshold.
Mnode Probability of inserting a node.
Mconn Probability of adding a connection.
Mact Probability of changing an activation function.
Afl List of available activation functions.
Ts Tournament size.

x =
xi − xmin

xmax − xmin
(1)

B. Phase 2: evolution of the neural network architecture

In this phase, NAS with an EA optimization method is per-
formed. This approach focusses on the architecture evolution
by reducing the importance of the weights. In general terms,
during the evolution phase, the architecture search avoids
weight training and adjustment by sampling on different fitness
measurements using shared weights values. Each network
agent is evaluated over a set of shared weights values, and the
cumulative loss function is recorded. Finally, the parents that
will create the offspring are chosen by tournament selection.
This process is repeated following evolution mechanics until
the model with the best unadjusted-weights-architecture is
found. Table I describes the various parameters used during
search architecture evolution.

Algorithm 1 describes the evolution of the neural network
architecture for the DNN-CAE approach, which is illustrated
in Fig. 2. In the following subsections, each component of the
neural network architecture evolution as shown in Fig. 2 will
be described; the descriptions refer to the corresponding lines
in Algorithm 1.

1) Initial population and initialization: An initial popu-
lation with a minimal neural network topology is created.
Each network agent θi starts with an input layer and one
output layer. In this step, no connections are made between
the input and output layers. The size of the network agent
population P (θ) is set according to Ps. In addition, during this
step, the various values for the shared weights wj ∈ asw are
defined with (2). The array of shared weights asw, the current
generation g and the best fitness for the current generation fg
are also initialized. This step is performed only once during
the evolution process as shown in line 3 of Algorithm 1.

wj = Swb

(
−1 + 2j

Sws

)
,∀j = 0, 1, . . . , Sws (2)

2) Stopping criterion: Here the algorithm checks whether
Gmax or Fb has been reached. If one of these criteria has been
reached, the evolution interaction stops, the best agent θbest is
saved, and the procedure moves forward to the next phase. If
neither of the criteria is satisfied, the iterative evolution process
continues. Both parameters Gmax and Fb are set in line 1 of

Algorithm 1: Architecture evolution
1 Parameters: Ps, Swb, Sws, Gmax, εb, Mconn, Mnode, Afl, Ts.
2 Output: θbest with best fitness.
3 Initialize: P (θ) of size Ps, asw with (2), g = 0, fg = −∞.
4 while g < Gmax ∧ fg < Fb do

/* Mutate population */
5 for i = 1, . . . , Ps θi ∈ P (θi) do

- insert a node with probability Mnode,
- add a connection with probability Mconn,
- change an existing activation function

to another listed in Afl.
6 end

/* Evaluate fitness */
7 for i = 1, . . . , Ps θi ∈ P (θi) do
8 for j = 0, 1, . . . , Sws wj ∈ asw do
9 Calculate lj(θi, wj) with (3).

10 end
11 Calculate L(θi) =

∑
lj(θi, wj).

12 Calculate F (θi) with (4).
13 end

/* Select and reproduce */
14 Initialize: offspring.
15 for i = 1, . . . , Ps do
16 Randomly select Ts candidates from P (θi).
17 Pick up θi with the best fitness from the tournament and

copy it to the offspring.
18 end
19 P (θi)←− offspring.
20 fg ←− best F (θi) ∈ P (θi).
21 g = g + 1.
22 end
23 θbest ←− θ(fg)

Algorithm 1, the while-loop in line 4 runs until one or both
criteria are satisfied.

3) Mutate population: To avoid local optima, mutation
must be implemented over each agent θi in each new genera-
tion. Following the work of Gaier and Ha [31], each agent θi
enhances its performance by directly implementing one of the
three possible mutations, which are 1) insert a node, 2) add a
connection, and 3) change the activation function. The first two
mutations were chosen because they enhance the behaviour
and performance of θi. Note that these mutations increase the
complexity of the architecture.

To insert a node, an existing connection between two nodes
is split into two connections, and then a new node is added
with a random activation function. To add a connection, two
unconnected nodes not belonging to the same layer are ran-
domly selected, and then a new connection is created. Finally,
mutation of the activation function changes one function for
another one that is randomly selected.

The first for-loop (lines 5 to 6) of Algorithm 1 performs the
mutation step, with probabilities of inserting a node, adding
a connection, and changing the activation function set by the
parameters Mnode, Mconn and Mact, respectively. The list of
the allowed activation functions is given in Afl.

4) Evaluate fitness: This step is divided into three actions,
as shown in Fig. 2, and lines (7 to 13) of Algorithm 1, which
are 1) evaluate the loss function, 2) calculate cumulative loss
function, and 3) calculate the fitness value for each θi.

During the first action, all the θi weights are set to a single



shared value wj . Then the network agent’s performance over a
training set batch is evaluated, and the loss function lj(θi, wj)
is calculated with (3), (lines 8 to 10) of Algorithm 1.

lj (θi, wj) = −
batch∑
k=0

abs (ŷk (θi, wj)− yk) (3)

where θi is the network agent to be evaluated, wj is the
shared weights value, ŷk(θi, wj) is the prediction for the
network evaluated with wj , and yk is the target values from
the training set. The loss function is negative because the
algorithm minimizes the loss function over each generation.

The second action calculates the cumulative loss function
L(θi) (line 11). Here, the loss function lj calculated for each
wj are added together. Finally, the third action calculates each
network agent’s fitness F (θi) (line 12) of Algorithm 1. The
fitness function is stated in (4):

F (θi) = −L(θi)−Nc(θi)−Nn(θi) (4)

where L(θi) is the cumulative loss function as calculated, Nc

is the total number of active connections in the network, and
Nn is the number of nodes in the network. The advantage of
using (4) is that when two agents present the same cumulative
loss function; the agent with the simpler architecture receives
the higher fitness score.

5) Select and reproduce: Among the possible parent se-
lection techniques, tournament selection was chosen because
this method has given good results in NAS approaches such
as those presented by Real et al. [17] and Liu et al. [15].
This characteristic avoids stagnation of the evolution process
through dominance by the best-fitness individual and allows
diversity during parent selection to create the next offspring.
By using tournament selection (lines 14 to 18) of Algorithm 1,
individuals are randomly selected according to the tournament
size Ts. The best individuals from tournament selection are
part of the next generation of offspring. This process is
repeated until Ps is reached.

C. Phase 3: Weight adjustment

This phase receives the model with the best unadjusted-
weights-architecture from phase 2 and, through weight adjust-
ment, enhances DNN model performance. Consequently, in
this phase, the weights are analyzed to create the DNN-CAE.

1) Shared weights tuning: In this step, the effect of the
shared weights over the best unadjusted-weights-architecture
model is analyzed. The model is tested over the range of values
specified by the parameters Swb. By reducing the sampling
step size, the shared weights value that maximizes the model
accuracy is found. Then this shared value, which minimizes
the error, is picked up and sent to the DNN-CAE performance
evaluation step, as shown in Fig. 2.

2) CMA-ES weight adjustment: In this step, the CMA-ES
technique is used to evolve the weights of the best unadjusted-
weights-architecture model and tune the DNN. This step uses
what can be considered a baseline version, featuring non-elitist
(µ, λ) selection. All tuning constants are set to their default

values, as stipulated by Hansen [24]. In this step, the CMA-ES
algorithm interacts with the model until it finds the best set of
individual values for the weights and passes these values on
to the next step.

3) DNN-CAE performance evaluation: Finally, in this step,
the best unadjusted-weights-architecture model with both op-
timized shared weights and CMA-ES weight values is tested.
For this purpose, the model performance over the test set is
evaluated, first with the values of the shared weights and then
with the CMA-ES values. Finally, the set of weights that best
enhances performance is selected. In consequence, the DNN-
CAE model is the best architecture found by the architecture
centred evolution approach and the best set of weights. Finally,
the RMSE (5) and the MAPE (6) are calculated to measure
the model performance over the test set.

RMSE =

√√√√ 1

n

n∑
k=0

(ŷk − yk)2 (5)

MAPE =
1

n

n∑
k=0

∣∣∣∣ ŷk − ykyk

∣∣∣∣x100 (6)

where ŷk denotes the predicted consumption, yk denotes the
actual electricity consumption of the household, and n is the
number of observations.

V. EXPERIMENTS

DNN-CAE is used for short-term load forecasting as a DNN
model that accesses the inputs from the current time step and
previous electricity consumption values to forecast the next
hour’s consumption. All the models and experiments were
run on a Linux server with 24 Intel(R) Xeon(R) E5-2630 v2
processors.

A. Data

Patterns in residential electricity consumption present com-
plex and non-linear relationships, which makes them a chal-
lenging problem. The characteristics of electricity consump-
tion depend on the weekday and the hour of the day, as shown
in Fig. 3. Residential load consumption data for one household
were provided by the London Hydro utility company. The raw
dataset from smart meters contains electricity consumption
data measured in kilowatt-hours (kW-h) on a one-hour time
scale. Historical hourly weather and temperature data were
obtained from the Canadian Government Official Website [32].
The dataset contains hourly data from January 1, 2014, to
December 31, 2016.

B. Shared weights range evaluation and parameter selection

To run the model adequately, it is necessary to evaluate
the range of operation for the various shared weights values.
Table II shows the results for shared weights performance
tests, each carried out with a different range of shared weights
and different sampling steps size. In each performance test, the
median fitness and the best individual fitness were measured.



TABLE II
SHARED WEIGHTS PERFORMANCE* TESTS.

Shared weights values Best agent
fitness

Best possible
shared weightRange

between
Sampling
step

[-10, 10] 1.0 3000 0
0.5 6130 0

[-5, 5] 1.0 1020 0
0.5 1550 0

[-2, 2] 1.0 663 0.1
0.5 419 0.1

[-1.5, 1.5] 0.5 96 0.4
[-1, 1] 0.1 85 0.4

*Performance test with Gmax = 256 and Ps = 128.

Then the best shared weights value was picked, and the DNN-
CAE weights were adjusted to measure fitness performance.

Table II shows that the best fitness values increase as the
range of evaluation becomes larger. Consequently, conver-
gence to the best picked weight is lost. In contrast, if the
selected range narrows, the best fitness value decreases and
begins to converge to a value different than zero. Based on
the results from Table II, the limits for Swb were set to [-1,
1] with Sws = 0.1.

C. Experiment 1: DNN-CAE for residential load forecasting

The parameters selected to run Experiment 1 are presented
in Table III. These parameters were chosen empirically after
several model runs. Fig. 4 shows the model evolution over
1024 generations. The time that took to evolve the model was
11 hours and 46 minutes, with a depth of 644 nodes.

1) DNN-CAE shared-weight fitness evaluation: Fig. 5
shows the results for shared-weight DNN-CAE fitness perfor-
mance over the test set. During this evaluation, the model was
tested within the range [-1, 1]. Fig. 5 shows that the DNN-
CAE best performance for shared weights occurred between
0.6 and 0.8. The maximum fitness value was found at 0.71,
with fitness of -45.44.

2) CMA-ES adjustment performance evaluation: After run-
ning the CMA-ES algorithm to adjust the weights individually,
the DNN-CAE model performance over the test set was evalu-

Fig. 3. Residential daily electricity consumption for a random week in 2015.

TABLE III
PARAMETERS USED DURING EXPERIMENT 1

Parameter Value
Ps 128
Gmax 1024
εb 0.10
Mconn 0.25
Mnode 0.25
Maf 0.50

Afl
linear, step, sine, gaussian,

tanh, sigmoid, inverse, absolute, ReLu
Ts 32

Fig. 4. Fitness graph showing fitness evolution over each generation. The
first 30 generations’ values were removed for better visualization.

ated. The CMA-ES weight evolution ran over 500 generations
for 2 hours and 46 minutes.

3) DNN-CAE tuned performance: After tuning the DNN-
CAE model with the best values for each adjustment tech-
nique, the evaluation is conducted. Three experiments were
performed for each: best fitness, RMSE, and MAPE; the
average of the values was calculated and are presented in Table
IV. For RMSE and MAPE, the lower the values, the more
accurate the model is. Fig. 6 shows how the model fit the test
set over the first week of the test set for both techniques.

D. Experiment 2: Evolution behaviour based on activation
function selection

In this experiment, three models were evolved to analyze
their evolution behaviour with restriction on the available

Fig. 5. DNN-CAE fitness performance for shared-weight within the range
[-1, 1] and Sws = 0.01.

TABLE IV
EXPERIMENT 1 PERFORMANCE TUNING TECHNIQUES COMPARISON

Tuning technique Best fitness RMSE (kW-h) MAPE (%)
Shared weights -61.41 0.2623 22.18

CMA-ES -34.75 0.1885 9.51



TABLE V
PARAMETERS MODIFIED DURING EXPERIMENT 2

Parameter WALF-3AF WALF-5AF WALD-9AF

Afl inverse, abs, ReLu
tanh, sigmoid,

inverse,
abs, ReLu

linear, step, sine,
gaussian, tanh,

sigmoid, inverse,
abs, ReLu

Gmax 500

TABLE VI
COMPARATIVE RESULTS FROM RESTRICTING ACTIVATION FUNCTIONS

Model Evolution
time

(minutes)

CMA
time

(minutes)

MAPE (%)
Shared
weights CMA-ES

WALF-3AF 178 35 18.80 8.16
WALF-5AF 93 57 28.37 7.74
WALF-9AF 122 71 31.32 9.49

activation functions. The first model, CAE-3AF, had only
inverse, absolute and ReLu activation functions set; the second
model, CAE-5AF, had the most used activation functions
available, which were: sigmoid, hyperbolic tangent, inverse,
absolute and ReLu. Finally, the third model, CAE-9AF, had
all the activation functions available. The three models were
evolved with the same parameters as in Experiment 1, with
modifications only to Ps and Afl. Table V shows the param-
eters values as modified to run Experiment 2.

For this experiment, the error threshold was removed and
the models evolved until the maximum number of generations
was reached. The time required to evolve each model was also
recorded. Table VI presents the results of this experiment.

Clearly, CAE-9AF presents a higher error than the other two
models, which could have been a consequence of extensive
search among all the activation functions. On the other hand,
CAE-3AF and CAE-5AF showed closest error values after
500 generations. Nevertheless, the model with five activation
functions was 29% faster than the model with three activation
functions. So far, these experiments have determined that the
CAE-5AF model performs well and that the time to evolve it
is optimal.

Fig. 6. DNN-CAE performance for shared weights and CMA-ES adjustment.
For visualization purposes, only 48 hours from the first week of the test set
is shown.

TABLE VII
BENCHMARK MODEL PARAMETERS

Method # Features # Hidden
layers

# Hidden
nodes/layer

Vanilla LSTM 1 2 5
MLP 33 2 20
LSTM features 6 2 12
LSTM one-shot 33 2 20

TABLE VIII
LOAD FORECASTING EVALUATION SUMMARY

Method RMSE
(kW-h)

MAPE
(%) Best epoch

Vanilla LSTM 0.2074 18.58 1500
LSTM features 0.1744 16.84 1475
MLP-T/2 hours back 0.2161 15.69 500
MLP-T/6 hours back 0.2157 15.41 1200
MLP-T/12 hours back 0.2188 15.26 1000
MLP-D/1 day back 0.2130 16.74 1000
MLP-D/2 days back 0.2153 14.94 900
MLP-D/3 days back 0.2211 16.54 1100
LSTM/2 hours back 0.1938 13.69 1500
LSTM/6 hours back 0.1610 11.44 1300
LSTM/12 hours back 0.1565 10.72 700
DNN-CAE SW 0.2198 14.04 Gmax = 1000
DNN-CAE 0.1707 7.72 Gmax = 1000

E. Experiment 3: Benchmark comparison

In Experiment 3, a benchmark comparison was performed
between the proposed DNN-CAE and conventional ANN
methods. For purpose of this comparison, the benchmark
presented by Kong et al. [33] was reproduced. The methods
selected for the comparison were MLP, vanilla LSTM and
LSTM One-shot (LSTMOS). Vanilla LSTM is the simplest
method with only one input for the residential load time
series. However, LSTM-features model has additional features
for training, such as time, weekdays and holidays. LSTMOS
[33] is state-of-the-art in residential load forecasting. Table
VII presents the parameters used to configure the ANN as
presented in [33].

MLP and LSTMOS were trained with different backward
time steps. To follow the convention used in [33] -T is for
backward hour steps, and -D is for backward day steps. As Ta-
ble VIII shows, the results of DNN-CAE with shared weights
are close to those of the MLP method. After adjustment of
the DNN-CAE weights the model accuracy surpassed the best
LSTM one shot model by 3.0%. Therefore, DNN-CAE is a
serious competitor among the listed algorithms for STLF task
of residential load forecasting.

VI. CONCLUSIONS

This paper proposed an approach for NAS based on EAs,
focusing on the architecture first during the evolution phase,
which resulted in the creation of a neural architecture for
short-term residential electrical load forecasting. Later, the
model was tuned by adjusting the weights, which enhanced
model performance. The evolution starts with simple neural
architectures and grows in complexity as the model evolves.
As shown, DNN-CAE has been optimized to work with a



single shared weights parameter over a range of shared weights
values. Therefore, the model is easy to tune to achieve ac-
ceptable performance with shared weights. Furthermore, using
the CMA-ES technique the weights are adjusted individually,
enhancing model accuracy. In addition, after running three
different experiments, DNN-CAE showed accuracy in the
range of 90%. The model presented in this work can be used in
a general sense in other similar time series forecasting domains
such as energy utility, weather, and finances.

DNN-CAE shared weights presented results similar to those
from MLP. Furthermore, DNN-CAE after weights adjustment
outperformed the LSTM one-shot method, which is the-state-
of-the-art for residential load forecasting. The results presented
in this work are the first of their kind applied to short-
term load forecasting. As future work, the authors plan to
investigate how to improve model accuracy. This paper has
also evaluated model performance for only one residential
dataset. In future work, DNN-CAE will be applied to create a
general architecture for different homes in the same area, and
then, by tuning the weights, the model will be able to adapt
its forecast from one house to another. Finally, a sensitivity
analysis will be performed on DNN-CAE to identify the
importance each parameter plays on the model.
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