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Abstract

Percutaneous renal access (PCA) is a critical step in needle-based renal procedures. Traditional

PCA training relies on apprenticeship, which raises concerns about patient safety and limits

training opportunities. In this thesis, we reviewed simulation-based training for PCA, described

the development of a novel augmented reality (AR) simulator for ultrasound (US)-guided PCA,

and evaluated its validity and e�cacy as a teaching tool.

Our AR simulator allows the user to practice PCA on a silicone phantom using a tracked

needle and US probe emulator under the guidance of simulated US on a tablet screen. 6 Expert

and 24 novice participants were recruited to evaluate the e�cacy of our simulator.

Experts highly rated the realism and usefulness of our simulator, reflected by the average

face validity score of 4.39 and content validity score of 4.53 on a 5-point Likert scale. Compar-

isons with a Mann-Whitney U test revealed significant di↵erences (p<0.05) in performances

between the experts and novices on 6 out of 7 evaluation metrics, demonstrating strong con-

struct validity. Furthermore, a paired T-test indicated significant performance improvements

(p<0.05) of the novices in both objective and subjective evaluation after training with our sim-

ulator.

Our cost-e↵ective, flexible, and easily customizable AR training simulator can provide

opportunities for trainees to acquire basic skills of US-guided PCA in a safe and stress-free

environment. The e↵ectiveness of our simulator is demonstrated through strong face, content,

and construct validity, indicating its value as a novel training tool.

Keywords: Augmented reality, Percutaneous renal access, Training simulator, Ultrasound-

guided needle insertion

ii



Summary of Lay Audience

Percutaneous renal access (PCA) is the initial step to gain access to the kidney for treating

common kidney diseases such as kidney stones. At present, mastering of this technique relies

on extensive clinical training. However, it is very challenging to keep up with the increasing

training demand for many training centres. To lessen the burden of the clinical education

and deliver safer patient care, training simulators were employed to provide supplementary

training opportunities. This thesis reviewed the existing training simulators for PCA and found

no augmented reality (AR)/ virtual reality (VR) simulator available for ultrasound (US)-guided

PCA, which is a safer alternative to fluoroscopy (FL)-guided PCA. Therefore, the goal of this

work was to develop and validate a training simulator for US-guided PCA.

Following a minimalism design approach, we integrated three-dimensional (3D) printed

hardware components, an easy-to-make silicone phantom, and personal mobile device to build

an low-cost training simulator for US-guided PCA. Since the surgical scene, including the

the kidney and US images are simulated and visualized in AR, the tradition lab setting is no

longer required. Trainees have the option to practice at home in a stress-free environment. In

addition, this simulator provides performance feedback via direct visualization and data sheet,

which facilitate deliberate practice without supervision. For educators, new training content,

such as patient specific cases can be easily imported to this simulator without any hardware

alteration.

A user study was conducted to validate some aspects of this simulator, and demonstrate

that training using our simulator resulted in significant skill improvements. To incorporate this

simulator into the training curriculum, more rigorous validation is required for future work.
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Chapter 1

Introduction

Percutaneous renal surgery is a standard minimally invasive procedure for diagnosis or treat-

ment of a variety of renal pathologies such as kidney stones and tumors [84]. In most cases, the

first step of percutaneous renal surgery is to create needle access from the skin into the kidney

under ultrasound (US) or fluoroscopic (FL) guidance [75]. This initial needle access serves as a

safe passage for larger surgical instruments, allowing surgeons to perform the surgery without

opening layers of tissues. Compared to open renal surgeries, percutaneous procedures are less

invasive and are associated with lower morbidity [43]. Nevertheless, access related complica-

tions, such as serious hemorrhage and pulmonary injuries, have been reported [47][68]. Given

that the kidney is highly vascularized, and is surrounded by vital organs such as the lung and

the colon, percutaneous renal access (PCA) is considered as the most challenging step during

needle-based renal procedures. Thus, establishing a safe and e�cient PCA is crucial to the

success of percutaneous renal surgeries and the recovery of patients [46].

This chapter includes the steps taken to guide the design of a training simulator for PCA.

1. Provide a relevant clinical background of PCA, identify the technical challenges per-

forming this procedure, and associated complications.

2. Review the current training method, identify the problem in training, and discuss poten-

tial solutions.

2



1.1. Clinical Background 3

3. Summarize the characteristics of medical training simulators, review the existing training

simulators for PCA, identify what is missing, and discuss feasible engineering solutions.

1.1 Clinical Background

1.1.1 The Early Development of PCA

The first documented PCA was performed by Thomas Hillier in 1864, to treat a 4-year-old boy

with a severe hydronephrotic right kidney due to a congenital defect. Over a period of four

and a half years, Hillier aspirated the boy’s right kidney periodically for temporary drainage,

and even attempted to establish a permanent fistula. Unfortunately, the fistula did not persist,

and the boy later died of a stone that obstructed his healthy left kidney at the age of 8 [13].

As x-ray imaging and pyelography became available for visualizing the urinary system, Nils

Alwall applied the liver biopsy technique on the kidney and performed the first image-guided

percutaneous renal biopsy in 1944 [6][75]. Poul Iverson and Claus Brun [49] subsequently

perfected this technique, and it was quickly adopted by physicians around the world for renal

diagnosis. Henceforth, PCA techniques were adopted for the treatment of many urological

diseases, such as kidney stones and tumors. Improvement in techniques and advancement in

equipment resulted in percutaneous renal procedures, and because of its low complication rate

and lower blood loss [15], percutaneous renal procedures became the preferred treatment over

open renal surgeries .

1.1.2 Image-Guidance for PCA

During minimally invasive surgeries (MIS), image-guidance is crucial to surgeons, just as nav-

igational technology is to a pilot when flying at night [70]. Since surgeons can no longer

see or feel the pathology or anatomical relationships as they could during open surgeries, this

information must be provided by intraoperative real-time imaging modalities. The most com-
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monly used image-guidance modalities for PCA are fluoroscopy (FL) and ultrasound (US).

In addition, computed tomography (CT)-guidance may be required for patients with abnormal

morphology such as morbid obesity, retrorenal colon, enlarged spleen, etc. [46].

FL has been used as the primary imaging modality for PCA guidance, as it provides high-

resolution imaging of the collecting system and good visibility of small stone fragments, nee-

dle, and guidewire [46][48]. However, cumulative radiation exposure to patients and providers

during FL-guided PCA poses an increased health risk [97], while the long term e↵ect of low-

dose ionizing radiation is still being investigated [18][62].

Compared to FL, US has the advantage of imaging of the visceral organs surrounding

the kidney in real time, eliminating the need for contrast material, and provides comparable

surgical outcomes at a lower institutional cost. Above all, US-guidance is radiation free, hence

ideal for pregnant women and children [34][97]. Disadvantage of US-guidance including the

lack of anatomic details, limited visualization of the guidewire, and di�culty tracking of small

stone fragments (Figure 1.1) [46][48].

Figure 1.1: FL-guided PCA (Left) [86] vs US guided PCA(Right) [16]. Image used with the
permission of Mary Ann Liebert Inc. and Hindawi.

.

A number of studies comparing clinical outcomes of percutaneous nephrolithotomy (PCNL)

using US or FL guided access found no significant di↵erences between the two groups in terms
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of total operating time and success rate. Whereas the US groups had higher stone-free rate,

shorter radiation exposure time, fewer access attempts, and lower incidence of hemorrhage

(bleeding), the FL groups had shorter access time [2][7][12][25][38][42]. A Higher incidence

of hemorrhage was found to be associated with the larger sheath size and a higher number of

punctures performed during FL-guided procedures [7].

In conclusion, FL and US each have their advantages and disadvantages. While choosing an

imaging modality for PCA guidance, the characteristics of each modality should be considered.

Whereas US-guided PCA has gained popularity around world including China and the U.S.,

this technique is rarely practiced in Canada, mainly due to the lack of training [19]. As more

Canadian institutions move towards adopting US-guided PCA, it is recommended to use US-

guidance on patients with dilated collecting systems, and which are free of staghorn stones

[12][53]. In addition, US can be used as an adjunct to FL as a strategy to reduce radiation

exposure [2][110].

1.1.3 US-Guided PCA Techniques and Complications

Anatomical Considerations

While planning for the best approach to the collecting system, a solid understanding of the renal

anatomy and the renal arterial system is of utmost importance for safe and e�cient PCA. The

kidneys are positioned between the abdominal lining and the back, defined as the retroperi-

toneal space. Nephrons are the filtering units of the kidney that filter the blood to regulate

chemical concentration and produce urine. There are approximately one million nephrons

found through out the medulla and the cortex, which is the pyramid shaped segments and the

outer region of the kidney respectively. The renal pyramids project into funnel shaped cham-

bers called calyces. The calyces are positioned radially around the renal pelvis, which is the

innermost hollow centre of the kidney where urine collects. The kidneys are highly vascular-

ized organs, with the renal artery branches into anterior and posterior divisions [39]. Between

these two divisions, lies the avascular field, known as the Brödel’s line (Figure 1.2) [39]. To
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avoid vascular injury, the best point of entry is through the fornix into a posterior calyx, which

usually traverses Brödel’s line [39]. Direct puncture into the infundibulum or renal pelvis could

result in significant hemorrhage. Moreover, the resulting tract would not be able to provide ad-

equate stability for other surgical instruments such as a nephrostomy tube [53][77]. Inadvertent

puncture of an anterior calyx can also lead to increased risk of bleeding and di�culty accessing

the ureter [39][46].

Figure 1.2: Access through a posterior calyx is preferred for lower risk of vascular injury [44].
Image used with the permission of National Center for Biotechnology Information.

.

Techniques of US-Guided Needle Insertion

US-guided PCA is often performed using a curvilinear ultrasound probe and an 18 gauge nee-

dle. During scanning, if the kidney is partially obscured by acoustic shadowing from the ribs,

a 30-45 degree rotation can be applied to align the probe to the ribs [19]. Needle insertion

can begin once a clear path to the target in the posterior calyx is planned on a longitudinal US

view of the kidney [19]. During insertion, the goal is to maintain alignment between the nee-

dle and the US beam (needle-beam alignment), in order to visualize the needle in its entirety
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(Figure 1.3). If misalignment happens, needle advancement should be stopped, and the US

probe should be used to identify and redirect the needle [19]. Successful access is verified on

observation or aspiration of urine after removing the stylet [19]. A needle guide would help

with needle-beam alignment at the expense of the flexibility of the accessing angle [19].

Figure 1.3: In-plane alignment technique (left), needle and US beam are in the same plane.
Out-of-plane technique (right), needle is perpendicular to the plane of US beam ( [94]. Image
used with the permission of Wolters Kluwer Health Inc.

.

Access Related Complications

Hemorrhage is the most common complication of PCA, however, minor hemorrhage during

PCA typically does not require intervention. Nevertheless, major hemorrhage happens to 1%-
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15% of the patients, requiring blood transfusion [39][74][105]. In addition to renal hemor-

rhage, inadvertent needle puncture can cause complications in other organs and structures ad-

jacent to the kidneys including thoracic injuries (4%-16%), and visceral organ injuries such as

colon injuries (<1%) [39]. Liver and spleen injuries are very rare in the absence of anatomic

abnormalities [39][92].

1.1.4 PCA Training Status Quo

In North America, PCA is often performed by interventional radiologists as a staged proce-

dure before planned PCNL [46]. Recent studies have suggested that urologists can obtain PCA

safely and e↵ectively, transforming PCNL into a single-stage procedure, which eliminates the

need to transfer patients between di↵erent departments [23][93]. In addition, having the ability

to independently obtain the access provides better flexibility for the urologists, when selecting

the optimum tract or making a secondary tract [46][53]. An American survey revealed that

urologist-obtained PCA is associated with a higher stone-free rate (86% vs 61%) and lower

number of complications (5 vs 15), in comparison with radiologist-obtained PCA. However,

only 11% of urologists obtain access themselves, mainly due to the lack of training [101]. De-

spite previously reported benefits of urologist-obtained PCA, only 37.5% of Canadian residents

train at centres where urologists obtain their own PCA, independent of radiologists [72].

At present, US-guided PCA is taught through the traditional apprenticeship approach,

where trainees would perform this procedure on patients under the supervision of senior physi-

cians, until the trainee is considered proficient to operate independently. Therefore, factors

such as concerns for patient safety, and restricted training hours, limits the trainees’ opportu-

nity to gain experience with this procedure [76]. Moreover, achieving competency in PCA is

challenging due to the steep learning curve. Two recent studies evaluated the learning curve

for US-guided PCNL and reported that it would take 60 cases for novice trainees to gain surgi-

cal competency and 120 cases to achieve excellence [85][104]. For experienced surgeons, 20

cases are su�cient for the transition from FL-guided to US-guided PCNL [96]. Furthermore,
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competency evaluation is usually conducted by the supervising physician, using checklists or

in-training evaluation reports, which su↵er from subjectivity [59][64].

1.1.5 Challenges and potential solutions

In summary, US-guided PCA is a challenging procedure associated with a steep learning curve.

To achieve competency in US-guided PCA, a trainee should master technical skills, including

a good understanding of renal anatomy, the ability to obtain and interpret US images, and

proper skills to maintain needle-beam alignment during access [19]. However, the traditional

training approach is not su�cient to meet the training demands except at some high-volume

centres [46]. Beiko et al. [19] suggested the training be split into two di↵erent skill sets,

diagnostic renal imaging, and needle control, for a more structured learning approach. More

specifically, the authors advised trainees to practice renal US imaging on patients or abdominal

phantoms whenever an opportunity arose, to shorten the learning curve [19]. Likewise, training

simulators for percutaneous needle access can be a potential solution to the training demand for

mastering needle control. To further improve the accessibility, simulated US could be used to

eliminate the need to access US machines, providing flexibility in training time and location.

In addition, training simulators could provide objective feedback to trainees, decreasing the

demands for supervision by senior physicians.

1.2 Simulation-based Medical Education

Training simulators were first used in high-risk professions such as aviation and aerospace,

where mistakes can be fatal [73]. Similarly, during a medical procedure, the smallest error

could have dire consequences. Medical training simulators provide a stress-free and harm-

free environment for health professionals to acquire knowledge and surgical skills through

deliberate practice [82]. More importantly, simulation-based training can minimize risks as the

trainees begin to operate on patients [5]. While simulators are no substitute for clinical training
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in the operating room (OR), they can nevertheless help to shorten the learning curve [3][54].

A number of laparoscopic and endoscopic training simulators have demonstrated the transfer

of skill from a virtual environment to the operating room [80]. Therefore, simulation-based

training is now considered an essential adjunct to the traditional apprenticeship training, and

it has been successfully adopted by some centres [4][81]. However, a recent survey from the

United Kingdom indicated the lack of simulation-based training for many standard urology

procedures including PCA, possibly due to the high cost of the existing simulators [64].

1.2.1 Simulator Fidelity

Existing medical training simulators can be categorized into low-fidelity (LF) and high-fidelity

(HF) trainers based on their physical resemblance to the surgical procedure. Commonly used

LF simulators including intravenous injection trainers, silicone pads for suture practice, box

trainers for laparoscopic and endoscopic procedures, etc. A LF simulator typically provides

training on a specific task that is designed to improve manual dexterity, hand-eye coordina-

tion, or tissue handling [78]. Even though these simulators have limited functionality, they

are usually highly portable, easy to set up, and low maintenance [78]. Above all, they are

very e↵ective for novice trainees to acquire the basic surgical techniques at the initial stage of

training. [78].

HF simulators are mostly computer-based applications, working in conjunction with hard-

ware such as surgical tool emulators, haptic devices, tracking systems, phantoms, or manikins,

for complex procedure simulation. One common approach to creating a training scenario that

resembles the actual surgical procedure is to replicate it digitally, in a virtual reality (VR) envi-

ronment. The other option is to artificially enhance the physical world with additional informa-

tion in the form of a digital overlay, in other words, augmented reality (AR) [98]. In the field of

urology, AR/VR simulators are widely used for endoscopic and laparoscopic training [31]. A

significant advantage of AR/VR simulators is their ability to record training data, which could

be used for progress monitoring or providing objective performance feedback. Compared to
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the other types of simulators, the AR/VR technology o↵ers the freedom to simulate various

clinical scenarios, a range of tasks and di�culty levels, and patient-specific anatomies [64].

On the flip side, the cost of development and maintenance may be much higher. Live animal

models are also considered high fidelity as they provide realistic haptic feedback, respiratory

movement, and bleeding [4]. However, due to the limited supply, cost, and ethical considera-

tions, live animal models are not suitable for repetitive practice[8].

It is commonly believed that the e↵ectiveness of a simulator improves as its realism in-

creases. Yet, this is only partially true. Beyond a certain level, the simulator performance

reaches a plateau, regardless of the amount of money and e↵ort invested [52]. A large body

of studies has demonstrated that HF simulators are not necessarily more e↵ective than LF,

evidently suggesting that learning outcomes of training simulators are independent of their

physical fidelity [20][55][61][78]. Instead, more attention should be paid to the psychologi-

cal process during a surgical procedure [57][21]. Simulator design should follow a minimalist

approach to direct the focus of the user to the critical tasks after establishing the objectives of

training and intended trainee group [21][61]. Any additional non-essential information could

potentially cause distraction or cognitive overload [57][21]. In addition, other aspects, includ-

ing the accessibility, versatility, reproducibility, and maintenance requirements, should also be

considered during the design process [20].

1.2.2 Review of Existing Training Simulators for PCA

Existing training simulators can be grouped into the following categories: live animal models,

biological or non-biological bench models, and VR/AR-based simulators [64].

Live Animal

Two studies have reported the use of anesthetized live porcine models for PCA training, mainly

because of the similarity of the pig and human renal anatomy [41][58]. In addition, such

models provide tactile feedback, respiratory movement, and bleeding that is superior to other
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types of training simulators [58]. However, training on live animals requires ethics approval,

and veterinary support, which also increases the training cost [58]. Therefore, the use of live

porcine models for training is limited. Mishra et al. [58] concluded that live porcine models

are more suitable for skill assessment.

Biological Bench Models

Bench models made of ex-vivo porcine or bovine kidneys were the most common type of

PCA trainers from the 2000s to early 2010s [64]. The dissected kidneys were wrapped within

various types of materials including foam [22], sponge [1], silicone [87], chicken carcass

[32][35][100], as well as a combination of porcine skin flap [37], subcutaneous fascia and mus-

cle [40][107], and ribs (figure 1.4) [26][88][109]. These trainers are generally cheap and easy

to make. Furthermore, artificial stones can be manually placed into the renal pelvis for PCNL

training. Similar to the live animal model, biological bench models are designed to work with

image-guidance equipment and thus require wet lab access. While all except for one of these

trainers can be used for FL-guided PCA, four of them are not US compatible [22][1][32][100].

In addition, each biological bench model can be used only for a limited number of times. All

of these factors limit the accessibility, versatility, and reproducibility of these biological bench

models.

Figure 1.4: An example of ex-vivo porcine model for US/FL-guided PCA training [107]. Image
used with the permission of Elsevier.

.
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Non-Biological Bench Models

Since the mid 2010s, there has been an increase in research involving non-biological bench

models, ranging from the low fidelity vegetable [83] or sponge [91] to anatomically correct sil-

icone [106] or hydrogel [30] kidney models, to highly detailed three-dimensional (3D) printed

silicone models based on patient CT scans [14][95][103]. All of the above models were design

for FL-guided PCA with no US compatibility. Only three commercial US compatible bench

models exist for full PCNL procedures: the PCNL trainer (Encoris), Perc Trainer (Mediskills),

and PCNL trainer LS40 (Samed GmbH Dresden). These synthetic training models require a

dry lab setting and access to C-arms or US machines.

To eliminate radiation exposure during FL-guided PCA training sessions, Veneziano et al.

developed a 3D printed mini C-arm trainer (SimPORTAL), using two webcams to simulate

FL images, and a silicone flank model for needle insertion (figure 1.5) [66][99]. Images ob-

tained from the cameras were filtered and fused together through the ”chroma-key” technique

[99]. This low cost replication of a C-arm provides a radiation-free training environment and

dramatically improves the accessibility.

In summary, the artificial bench models are more accurate at replicating human anatomy,

and more durable than the biological bench models for repetitive practice. However, their

tactile feedback is inferior to that provided by biological tissues. One common drawback of

these bench models is the lack of performance feedback to trainees. Hence the presence of an

expert may be required to provide guidance [24].

VR/AR-based Simulators

The PERC Mentor (Simbionix) was the first VR simulator for FL-guided PCA, which has

been thoroughly validated for training and assessment purposes. This simulator features sev-

eral training scenarios of increasing complexity which were created in a virtual surgical envi-

ronment, a virtual C-arm controlled by the touch screen or a foot pedal, a sensorized needle

for location tracking, a torso mannequin that mimics various human tissues embedded with
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Figure 1.5: SimPORTAL-A mini C-arm simulator and a silicon flank model for radiation free
PCA training [99]. Image used with the permission of Mary Ann Liebert Inc.

.

palpable ribs, the visualization of the virtual anatomy with respiratory movement, a virtual

assistance providing warnings and directions, and performance reports of recorded training

parameters such as operation time, FL time, number of attempts, rib collisions, injuries to

adjacent organs, etc. [63]. A number of studies have reported its face [45][60][81], content

[45][58][60][81], construct [28][45][60][81], and predictive validities [54][60], as well as skill

acquisition of trainees [28][56][69][108]. Furthermore, two studies reported using the PERC

Mentor for PCA assessment [63][65]. However, the PERC Mentor hasn’t been widely adopted

by training centres mainly due to the high cost ($100,000)[64].

In 2019, Tai et al. [90] published a study of a novel AR-based simulation platform —Sim-

PCNL for FL-guided PCA training. SimPCNL consists of a PC, two PHANTOM Omni devices

that provide realistic tactile sensation, and a Microsoft Hololens, which provides an AR view

of the surgical scene [90]. The combination of visual and haptic simulation e↵ectively replaces

the traditional training phantoms. More importantly, the force feedback from the haptic devices

is used for physics-based tissue mesh deformation in real-time [90]. These force and velocity
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data are also recorded as valuable evaluation parameters [90]. In this study, the authors success-

fully demonstrated the face, content, and construct validities of this simulator [90]. Criterion

validity was also established through a comparison with the PERC Mentor (figure 1.6)[90].

Even though the cost of the Hololens and the PHANTOM Omnis is higher compared to the

bench models, this simulator is much cheaper and more portable than the PERC Mentor .

Figure 1.6: Comparison between real surgery, PERC Mentor, and SimPCNL. The left column
displays the surgical interface. The right column displays the operation scene [90]. Image used
with the permission of SAGE.

.

In conclusion, AR/VR training simulators can simulate various training scenarios, record

objective performance parameters for skill assessment, and provide a radiation-free environ-

ment for repetitive, deliberate practice. Yet, both of these simulators are designed for FL-

guided PCA. No AR/VR training simulator was reported for US-guided PCA.
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1.2.3 Challenges and possible solutions

In a review study of 109 articles of simulation in medical education, Issenberg et al. [9] reported

the top simulation features lead to e↵ective learning are feedback (47%), repetitive practice

(39%), curriculum integration (25%), and range of di�culty levels (14%). AR/VR training

simulators have a clear advantage over bench models and live animal models in providing

these features. The existing AR/VR simulators are validated but underutilized due to their high

cost, highlighting the need for a low-cost simulator for US-guided PCA.

Visualization

Two types of AR/VR visualization devices are monoscopic devices, including cellphones,

tablets, monitors etc, and stereoscopic head-mounted displays (HMD) such as the hololens,

Vive (HTC), Google Cardboard, etc. The high-end HMDs are often equipped with multiple

sensors and cameras for tracking the user’s poses relative to the surrounding environment.

Google Cardboard or similar passive devices can be used with cellphones to provide a stereo

view. The simpler mobile devices merely serve as a display (VR) or capture video of the real

world using a single camera (AR). Even though stereoscopic devices enhance depth perception,

selection of an AR/VR device should be made according to the surgical scenario.

During an actual needle access procedure, the physician would be standing at a fixed lo-

cation, operating at elbow height. His/her head motion would be limited, switching focus

between the operating hands and the US display. Thus the viewpoint can be fixed once the pro-

cedure starts during training. The advanced HMDs provide no additional benefit over a simple

mobile device for operator tracking.

US simulation

Since there is limited availability of US machines, US simulation would significantly improve

the accessibility of a training simulator. There are two di↵erent approaches to simulate US

images: real-time simulation based on mesh models [11], or manipulation of pre-recorded US
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volume, each having its own advantages and disadvantages.

The pre-recorded US image approach would be more realistic than the use of simulated

images, but it requires scanning of the real-patient for each training case. Additionally, the US

e↵ect of a needle needs to be added to the volume in real-time, which requires more program-

ming e↵ort, since the AR/VR development platform (Unity) has very limited capability for

processing medical images. However, it is feasible to expand Unity’s functionality via native

plugins in order to achieve the desired result. However, this simulation approach heavily relies

on the processing power of the mobile device.

On the other hand, the PLUS toolkit [11] can be used to simulate US images based on mesh

models of the renal system and the needle. The acoustic properties of di↵erent tissues and

material can be carefully customized for optimum results. This process can be performed on

a PC/server to reduce the workload on a mobile device. Transmission between the PC/Server

and the mobile device can be established via a simple communication plugin.

Tracking

Optical tracking and electromagnetic tracking (EMT) are the most commonly used systems

for surgical navigation, with both systems providing sub-millimeter tracking accuracy. How-

ever, the optical systems require a direct and continuous line of sight between the sensor and

the camera, and the EMT systems are prone to interference from metallic objects and elec-

tromagnetic fields [50]. Vuforia is a proprietary image processing software development kit

(SDK) that uses feature detection algorithms to register and track image markers or 3D ob-

jects. Setting up the system only requires registering a unique marker to the Vuforia database,

then attached it to an object which needs to be tracked. A camera is also required to capture

the images, which is available on almost all mobile devices. The tracking accuracy of Vuforia

varies, depending on the quality, size of the image, the camera resolution, and the lighting con-

dition. With the new generation of mobile devices featuring depth-sensing cameras, the image

tracking accuracy would be greatly improved.
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Phantom

Haptic devices such as the PHANTOM Omni provide superior haptic feedback compared to

that provided by simple artificial phantoms. Although it costs over $1000 and the range of

motion is limited. Poniatowski et al. [71] studied the needle insertion forces for PCA on

a human cadaver. While the peak of the force-depth representing skin puncture is evident,

the peak representing renal collecting system puncture is non-uniform and indistinguishable

at times. Therefore, confirmation of perforation of the renal collecting system should not be

relied on using haptic feedback.

A wide variety of hydrogel or silicone materials is available for fabricating tissue mimick-

ing phantoms. The hydrogel-based materials are often used to make US compatible phantoms,

because their acoustic property is similar to that of human soft tissue [17]. However, some

of these hydrogel materials degrade rapidly due to microbial invasion and dehydration [67].

Poly(vinyl alcohol) cryogel, PVA-C, is a magnetic resonance imaging (MRI) and US compat-

ible material that can be preserved for several months [89]. But it cannot sustain repetitive

needle puncture. While silicone materials are more durable for practicing needle insertions,

their acoustic properties do not match those of human soft tissue. Maggi et al. [51] reported

that the attenuation of silicone could be modified with additives if US compatibility is desired.

1.3 Objective

The objective of this thesis work was to develop a low-cost and accessible AR training sim-

ulator for US-guided PCA, utilizing personal mobile device and o↵-the-shelf components, to

provide extra training opportunities to novice trainees, in addition to the traditional apprentice-

ship approach.
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1.4 Thesis Outline

In response to the limitations of current systems outlined above, Chapter 2 of this thesis de-

scribes the development of a novel AR training simulator for US-guided PCA as well as the

validation steps and results. Chapter 3 then discusses the advantages and limitation of the

current work and proposed directions for future research.



Chapter 2

Development and validation of an

augmented reality simulator for

ultrasound-guided percutaneous renal

access

This chapter is adapted from the following manuscript:

• Yanyu Mu, David Hocking, Zhan Tao Wang, Gregory J. Garvin, Roy Eagleson, and Terry

M. Peters. ”Augmented reality simulator for ultrasound-guided percutaneous renal ac-

cess.” International Journal of Computer Assisted Radiology and Surgery, 15(5):749–757,

2020.

2.1 Introduction

As reviewed previously, ultrasound (US)-guided percutaneous renal access (PCA) is gaining

popularity over fluoroscopy (FL)-guided PCA for better procedure outcomes and reduced ra-

diation in minimally invasive treatment of renal disease. However, the current apprenticeship

20
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training cannot meet the growing training demand. As a supplement, simulator training can

provide additional learning opportunities to novice trainees. Several augmented reality (AR)/

virtual reality (VR) simulators for FL-guided PCA were reviewed in chapter 1. One of the

main reasons that simulators are underutilized in training is their high cost. Therefore, we

identify the need for a cost-e↵ective, versatile and easily accessible simulator for US-guided

PCA training.

In this chapter, we propose the development of a novel AR simulator, emphasizing the

use of o↵-the-shelf components and incorporating a simple and easily made physical phantom

for US-guided PCA, and evaluated its validity and e�cacy as a teaching tool. The major

contributions of our simulator are as follows:

1. The simulator was designed to exploit the popularity of modern portable devices and

personal computers, which allows the trainees to use their personal devices for visual-

ization and computation. This approach significantly reduces the cost and improves the

accessibility of our simulator.

2. Through computer vision-based tracking of a silicone phantom, an US probe emulator,

and a needle via a mobile device camera, we are able to simulate a virtual PCA procedure

for the user to have a realistic training experience under AR without the need of any

external tracking device. This implementation further reduces the cost.

3. Virtual anatomy models with di↵erent patient pathologies can be imported into our simu-

lator as training cases, making it customizable for educators to create a variety of clinical

scenarios ranging from common to extremely rare.
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2.2 Material and methods

2.2.1 Phantom

The phantom consists of two layers of silicone, a 3mm deep skin mimicking layer on top of

an 8.5cm deep soft tissue-mimicking layer. The skin mimicking layer was fabricated using

a two-part silicone (Ecoflex 0010, Smooth- On inc., USA) with a Shore hardness of 00-10.

Ecoflex R� part A and part B were mixed with a 1:1 ratio by weight and cured at room temper-

ature overnight. The cured surface was powdered with talc to create a dry and smooth surface

for smooth movement of the US probe emulator. To achieve the softness of human soft tissue,

a silicone tactile mutator Slacker R� (Smooth-On inc., Macungie, PA, USA), Ecoflex R� part A,

and Ecoflex R� part B were mixed at 2:1:1 ratio by weight. Although Slacker R� provides many

benefits such as increasing the softness, rebound, and self-healing properties of silicone [67],

it also increases the tackiness which leads to greater friction during needle insertions. Conse-

quently, we observed a small amount of silicone adhered to the needle shaft after each needle

withdrawal. Glass microspheres have been used primarily as a filler material in the industry

due to its low density. We introduced glass microspheres into the silicone mixture at a 4%

weight ratio, which resulted in smoother needle insertion, and no silicone material adhesion to

the needle shaft. We speculate that the ball-bearing property of glass microspheres e↵ectively

decreased the friction on the needle shaft, while maintaining the overall softness, rebound, and

self-healing properties of the modified silicone.

2.2.2 Hardware

Initial Design

The initial design utilized Google Cardboard combining with a cellphone to provide better

depth perception through immersive stereoscopic visualization. However splitting the cell-

phone display for stereoscopic view dramatically restricted the field of view (FOV). Moreover,
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the generated stereoview was provided at the cost of a lower resolution, which was not suitable

for inspecting details of the virtual renal anatomy at the operating distance. Lastly, the latency

introduced by the software, that caused a perceptible lag between the time the US transducer or

needle was moved, and the appearance of this motion on the display, induced motion sickness

and eye fatigue while wearing a HMD [33]. Hence, a simple monoscopic mobile device was

considered a more e�cient and cost-e↵ective option for visualization purposes.

Final Version

During the performance of a PCA, the physicians need to check their hand movement or the

US machine display intermittently to confirm probe and needle position with reference to the

US image. These head movements complicate the procedure, making it more challenging for

novice trainees to master the basic techniques such as in-plane needle alignment. We elim-

inated the need for these head motions by combining the US image stream with the camera

feed of the surgical site on the same tablet screen, therefore, providing a more intuitive user

experience. The tablet screen was split into two sections: the top for the US image stream and

the bottom for camera feed (Figure 2.1 Left). The tablet utilized in this project is a Samsung

s5e (Samsung Electronics Co., LTD., Suwon, South Korea) with a 13-megapixel rear camera.

To track the poses of the US probe emulator, needle, and silicone phantom in real-time,

unique image markers must be attached to each component securely. For this purpose, we

designed the attachments for the needle and silicone phantom (Figure 2.1 Right) with Space-

Claim 19.1 (SpaceClaim Corp., Concord MA, USA). The stereolithography (.stl) file of an

Ultrasonix C5- 2/60 curvilinear US probe model was downloaded from Plus toolkit printable

three-dimensional (3D) models catalog (Perk Lab, Queen’s University, Kingston, ON, Canada),

then modified to incorporate an image marker. All components were then 3D printed using the

Ultimaker 3 (Ultimaker B.V., Geldermalsen, Netherlands).



24 Chapter 2. Augmented Reality (AR) Simulator for US-Guided PCA

Figure 2.1: AR visualization and system hardware. (Left) The top section displays real-time
2D US simulation and the bottom section displays the 3D AR scene of PCA with full AR as-
sistance. (Right) The hardware setup including a mounted tablet, a 3D printed probe emulator,
a needle, and a silicone phantom. Image used with the permission of Springer Nature.
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2.2.3 Software

Segmentation and three-dimensional (3D) model construction

The 3D kidney models were generated retrospectively from diagnostic nephrostomy computed

tomography (CT) studies stored in a PACS database. Recent Nephrostomy tube insertion cases

were reviewed by one of the interventional radiologists along with preceding CT studies. Five

cases were selected based on hydronephrosis grade including one mild, two moderate, and two

severe cases. Hydronephrosis is the swelling of a kidney caused by a blockage that doesn’t

allow proper urine drainage. The segmentation of the renal parenchyma and collecting sys-

tem was performed by the same radiologist using TeraRecon Aquarius iNtuition ver.4.4.13.P2

(TeraRecon Inc., Foster City, CA, USA). The parapelvic fat, renal masses, and cysts were ex-

cluded from the segmentation and the proximal ureter was included only to the level of the

lower pole of the kidney. The gross contour of the kidney was manually interpolated across

these structures. Finally, the segmented volumes were converted to meshes and exported as .stl

files.

Vuforia tracking

Infrared optical, electromagnetic, and GPS tracking systems are well-established for real-time

tracking of surgical instruments in surgical navigation for their high accuracy. However, due

to their complex setup and high cost, training simulators employing these tracking systems are

not widely adopted in medical schools. As AR applications increase in popularity, computer

vision-based camera tracking has become an active research area. Vuforia software develop-

ment kit (SDK) (PTC Inc., USA) is licensed software that uses its proprietary computer vision-

based image recognition algorithm to track 2D images or 3D objects in real-time by detecting

sharp corners and edges from camera images. Based on detected features, the position and

orientation of the marker in the virtual space are computed using a�ne transformation. Three

unique, non-repetitive Vuforia markers were used to estimate the locations and orientations of
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the needle, the US probe emulator, and the silicone phantom. To use Vuforia marker, a digital

copy of the image needs to be uploaded to Vuforia server for feature detection (Figure 2.2).

The digital markers were cropped and adjusted to ensure good visibility of texture details un-

der the camera, which improved the performance of feature recognition and the robustness of

object tracking. The physical dimensions of the printed markers were measured using a caliper

then the processed marker data were imported into Unity (Unity Technologies, USA) at 1:1

scaling ratio. 3D virtual models of the needle, the US probe emulator and the silicone phantom

were registered to the markers in the Unity. Once a marker was identified, the corresponding

virtual object appears on the screen based on the pose of the marker. The dimensions of virtual

objects are the same as the physical models. The data stream, referred to as the tracker stream

in this chapter, containing positions and orientations of these virtual objects was packaged in

Unity and then used for US simulation. The tracking precision of the needle marker was tested

on a 20⇥20 cm grid placed 30 cm away from the tablet camera at 45� angle to simulate the

tracking area during training. 225 tracking positions were recorded at various needle poses

angled within 30� from the grid surface normal. The tracking error is consistently low over the

entire tracking area with a mean and max error of 1.7 mm and 3.5 mm respectively.

Figure 2.2: An simplified result of Vuforia feature detection.
.



2.2. Material and methods 27

Simulation workflow

An overall deployment diagram is shown below in Figure 2.3. In this project, we used the

previously validated public software library for US imaging research (PLUS) for real-time US

image simulation [11]. PLUS accepts the tracker stream and the mesh models of the kidney

and the needle as inputs to compute individual US scanline based on the pose of the probe.

Acoustic properties of each mesh model, including attenuation, absorption, and reflection, were

modified in the configuration file (Appendix A.) to achieve the most realistic simulation e↵ect.

However, this algorithm does not simulate characteristics of real ultrasound images such as

speckle and reverberation. It is important to set up a proper environment for the kidney model in

the configuration file to simulate the US e↵ect of kidney In Vivo. Therefore, layers of material

were configured such as air, a working volume of gel, the kidney shell, and the collecting

system. Similarly, a needle would appear as a thin line on simulated US. Adding a concentric

tube over the needle model created a halo e↵ect which is more realistic. To optimize the

processing performance of the tablet, PLUS was configured to run on a separate PC.

Data transfer between the tablet and the PC was achieved through a communication plug-in

built for Unity, which is a modified version of open image-guided therapy link (OpenIGTLink).

Since the original OpenIGTLink was written in C/C++, while our Unity application was writ-

ten in C#, marshaling methods (Appendix B.) were used to write the Unity implementation to

transfer data between managed and unmanaged codes. The modified code (Appendix C. & D.)

was compiled to a dynamic-link library (DLL) in Visual Studio. However, to create plug-in

that works on Android devices, an extra step is required to cross-platform compile our code

into shared object library (.SO) using Android Studio. Once the communication is established

between the tablet and the PC, the tracker stream is transmitted to PLUS for US simulation,

and the simulated images are sent back to our Unity application in raw data format.
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Figure 2.3: Simulation workflow diagram. Image used with the permission of Springer Nature.

AR visualization

To simulate the PCA training environment, we imported models of the 3D kidney, the US

probe, and the virtual needle into a Unity scene. Nevertheless, when rendering an AR scene,

virtual objects were always drawn on top of real objects, which caused the kidney to appear

floating above the silicone phantom. To correct this depth perception problem, we placed

the virtual kidney model inside a virtual box, that was manually registered to the phantom

container. The illusion of a hollow box can be created by applying depth mask outside of the

hollow area (colored in blue), to lower the render queue of the virtual walls (Figure 2.4). A

virtual skin layer with a keyhole cutout was placed to help users focus on the region of interest

(ROI) while providing additional depth cues. The virtual skin layer was manually registered

to the surface of the phantom using the needle tip. A similar floating rendering e↵ect also

a↵ects the US probe. While using the probe, the user’s hand could be completely occluded by

the virtual probe model, creating a disconnect between the real world and the virtual one. We

applied the same depth mask technique to the virtual probe model to lower the render queue

of the virtual probe model. As a result, the camera feed of the probe was drawn first, which

allows the user to see part of the hand holding the probe.

Three training levels (beginner, intermediate and advanced) were designed for users with

di↵erent skill levels. In the beginner level, a small US image plane was attached below the

probe, which helps the user understand the 2D US image within the context of the 3D kidney
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Figure 2.4: Demonstration of depth mask e↵ect. Left: The wall of the hollow white box were
visible. The white box appears to be floating on top of the red box from camera feed. Middle:
Depth mask was applied to the blue area. Right: The walls of the red box from camera feed
was drawn before the virtual white box.

model. In addition, the needle trajectory was also provided to the user, shown as a green

projection line attached to the needle tip, serving as a visual aid for in-plane needle alignment

(Figure 2.1 Left). Once the user had developed a good understanding of the anatomy and

US images, the virtual kidney model was switched o↵ in the intermediate level, while the

augmented needle trajectory was still available. Finally, all the virtual aids, including the

virtual kidney model, the augmented needle trajectory, and the US image plane below the

probe were switched o↵ at the advanced level. The users were expected to complete the task at

the advanced level relying solely on the US display.

2.2.4 Simulator Training Procedure

To perform a PCA e↵ectively, a user first inspects the US scans to identify the target inside

the virtual kidney (the posterior calyx of the lower pole), under the simulated US guidance.

Careful planning should be undertaken to achieve a direct needle access with the shortest path.

Once the needle insertion path is planned, the user begins to insert an 18 gauge needle into the

phantom, and guide it towards the target. As the needle advances inside the virtual kidney, it

is crucial to maintain the in-plane view of the needle in the US image, in order to visualize

the needle tip position. Losing track of the needle tip could cause severe complications by
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Figure 2.5: Screenshot of the result scene displaying the optimum access trajectory in green
line and the user needle trajectory in white dotted line. Image used with the permission of
Springer Nature.

inadvertently injuring critical tissue structures. Once the target area is reached, the user presses

the ‘Complete’ button to terminate the simulation and review the needle access trajectory.

For user performance evaluation, a cone-shaped target region was manually registered to

each virtual kidney, of which the central line was defined as the optimal needle access tra-

jectory. This cone-shaped target region remains invisible to the users unless the ‘Show Hint’

button was pressed. The actual needle trajectory was recorded automatically once the needle

tip pierces through the skin layer of the silicone phantom at a rate of 10 records per second.

After the ‘Complete’ button is pressed, the application switches to the result scene where users

receive intuitive visual feedback of their performance. An overlay of the optimal needle access

trajectory (green line), the actual needle trajectory (white dots), and the transparent collecting

system model are displayed in the result scene (Figure 2.5).

2.2.5 Evaluation Metrics

The following seven metrics are recorded by the simulator to evaluate user performance.

1. Final distance to target: the distance from the final needle tip position to the optimum

target position.

2. Total path length: the total distance that the needle tip traveled in the phantom.
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3. Total time: the total time from the moment that the needle tip entered the phantom until

‘Complete’ button was pressed

4. Overall adaptive distance: the weighted Euclidean distance from the actual needle path

to the optimal trajectory (2.1), where N represents the total number of data points, wi

represents the adaptive weight based on the needle insertion depth: 1 � e�(depth/0.3), and d

represents the Euclidean distance between the needle tip position and the optimal trajec-

tory.

WD =
1
N
·

NX

i=1

wi · di (2.1)

5. Needle shaft visualization time: the total time that part of the needle shaft is visible on

the US image

6. Needle tip visualization time: the total time that the needle tip is visible on the US image

7. Inside collecting system or not: a binary status indicating whether the final needle tip

position is inside the targeted collecting system.

2.3 Validation

To integrate a simulator into the training curriculum, its validity must be proven through an

established evaluation process including face, content, construct, concurrent, and predictive

validity assessment [10][27][79]. Face validity examines the resemblance between a simulator

and the actual procedure, and can be assessed using user survey. Content validity evaluates

the educational content of a simulator, and it should be assessed by experts in the field. Con-

struct validity examines whether the simulation performance of a user reflects the actual skill

level, which can be assessed by comparing performance of an expert group with an non-expert

group. Concurrent validity compares the simulation training e↵ect to an established training

method. Finally, predictive validity examines if performance in the simulated environment can
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translates to the real world. This can be assessed by correlating simulation performance with

the operating room performance. For this study, we focused on the evaluation of face, content,

and construct validity.

2.3.1 Experimental Protocol

To validate the e↵ectiveness of our training simulator, we performed a single-centre user study

approved by the Health Sciences Review Ethics Board (114409) of Western University. For

this study, we enrolled 24 novices and 6 experts on a voluntary basis. The novices consisted of

24 post-graduate medical students with no previous experience in PCA. The experts consisted

of urologists and interventional radiologists with over five years of experience in PCA.

For the novices, we started with a five minutes introductory tutorial, which covered the ra-

tionale of this study, renal anatomy, targeting, basic US scanning techniques, and AR tracking.

When the participants were comfortable with the simulator, the training and testing procedures

began. The training and testing procedures were split into three phases including the pre-

training testing, training, and post-training testing phases. During the pre- and post-training

testing, the simulation was run at the advanced level, which meant no AR assistance was avail-

able for the participants. The procedure for pre- and post-training testing were identical. A

single PCA procedure was performed by the novices on each of the three kidney models with

di↵erent grades of hydronephrosis: one severe, one moderate, and one mild case. The evalu-

ation metrics were recorded automatically by the application. In addition, each performance

was video recorded and evaluated by two blinded experts using a modified global rating scale

(GRS), which includes target identification, US needle tracking, economy of motion, and abil-

ity to perform needle access [82]. GRS is a survey tool which has been used to assess clinical

competence [36]. During the training phase, the novices had the option to choose the level of

AR assistance as they need. One moderate and one mild hydronephrosis cases were used for

practicing, which were excluded from the testing cases. Participants were given 15 minutes to

practice and ask questions.
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Since the experts did not require training, they were given a short introduction of our sim-

ulator, followed by five minutes period to familiarize themselves with the system. The PCA

procedures were performed by the experts following the same testing protocol for novices. Af-

ter the session, a standard 5-point Likert scale (1 = strongly disagree and 5 = strongly agree)

questionnaire was administered to the experts to assess the face and content validity.

2.3.2 Evaluation Method

First, the face and content validity was evaluated through questionnaires administered to the

experts. Second, the construct validity was determined based on the distinguishability of a list

of evaluation metrics collected from both novices and experts during needle insertion tasks,

where the distinguishability is evaluated using the Mann-Whitney U Test. In addition, we

also evaluated the training e↵ectiveness of our simulator based on PCA skill acquisition. The

PCA skill acquisition was determined by examining the change in performance of each novice

participant based on the parameters collected before and after the training phase, with the paired

T-Test being used to analyze the significance of this change. All the statistics were computed

using Matlab R2018b.

2.3.3 Results

Face and content validity

The mean scores of face validity statements are detailed in Table 1. In summary, all experts

rated the simulator as a 4 or 5 in all categories including the overall realism of the US image, the

identification process, and the needle insertion procedure, except for one 3 rating of the needle

insertion procedure, achieving an overall average score of 4.39 out of 5 (Table 2.1). In terms of

content validity, experts strongly agreed that our simulator is able to teach the basic techniques

to perform PCA, such as understanding of the basic anatomy, US interpretation, needle inser-

tion planning, and the in-plane needle alignment with US beam, achieving an overall average
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Table 2.1: Mean scores of face and content validity (range 1-5)

Face validity Expert (n=6)
Realism of the US images 4.39 (4, 5)
Realism of the identification process 4.33 (4, 5)
Realism and usefulness of the needle insertion procedure 4.44 (3, 5)
Content validity Expert (n=6)
Basic renal anatomy 4.80 (4, 5)
Ultrasound images interpretation 4.80 (4, 5)
Safe planning 4.50 (4, 5)
In-plane needle-beam alignment 4.50 (4, 5)
Perform PCA 4.67 (4, 5)

Overall value of the simulator as a training tool 4.16 (4, 5)
Overall value of the simulator as a assessment tool 4.33 (4, 5)
Recommend this simulator to others 4.67 (4, 5)
Use this simulator in your training program 4.33 (4, 5)

score of 4.65 out of 5. Furthermore, experts were extremely satisfied with the overall value

of this simulator as a training and assessment tool. They are highly likely to recommend this

system to others and use it in their training program.

Construct validity

As depicted in Table 2, experts significantly outperformed novices on 6 of 7 evaluation metrics

on the simulator (p<0.05). Compared to novices, experts were able to insert the needle closer

to the optimum location and optimum trajectory, while achieving a shorter needle path length,

a shorter completion time, more accurate needle tip tracking, and a 100 percent success rate to

insert the needle inside the collecting system for all trials. However, there were no significant

di↵erences in needle shaft visualization time between experts and novices (0.89s vs 0.81s,

respectively). We suspect that partially visualizing the needle shaft does not contribute to the

overall performance of PCA.
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Table 2.2: Construct validity

Construct validity Novice (n=24) Expert (n=6) p-value
Final distance to target (mm) 18.5 ± 8.1 8.7 ± 3 0.005
Total path length (mm) 326.1 ± 166.6 175.1 ± 37.7 0.036
Total time (s) 36.7 ± 23.5 17.9 ± 5.8 0.036
Overall adaptive distance (mm) 15.6 ± 5.7 9.8 ± 3.2 0.031
Needle shaft visualization time (%) 78 ± 20 89 ± 9 0.154
Needle tip visualization time (%) 43 ± 19 66 ± 11 0.006
Inside collecting system or not (%) 60 ± 43 100 0.026
†Data in this table are represented in mean value ± standard deviation. Statistical di↵erences were calculated with the Mann-Whitney U test.
A p-value<0.05 was considered significant.

Acquisition of US-guided PCA skills

The PCA performances of the novice group was assessed subjectively and objectively both

before and after training on our simulator. The objective assessments were based on multiple

elements such as operation time, distance, needle visualization, and needle access accuracy, as

shown in Table 3. The novice participants demonstrated statistically significant improvements

in most categories after training, except for the total time and needle shaft visualization, where

the improvements were not significant. The subjective assessments of novice performance

were made using a global rating scale (GRS) (range 1 - 5) in four categories, as shown in

Table 4. Similar to the objective assessments, the novice participants demonstrated significant

improvement in all categories after training.

2.4 Discussion

The introduction of medical simulators has brought promising opportunities for training medi-

cal professionals outside of operating room (OR), in a safe and stress-free environment [10]. To

overcome the common challenges in terms of cost and accessibility, we developed an a↵ord-

able and e↵ective training simulator for PCA utilizing portable devices and AR. Using Vuforia,

a computer vision-based camera tracking SDK, we are able to track the needle, the US probe
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Table 2.3: Novice performance pre-training vs. post-training

Novice (n=24) Pre-training Post-training p-value
Final distance to target (mm) 18.5 ± 8.1 8.7 ± 3.2 <0.0001
Total path length (mm) 326.1 ± 166.6 263.9 ± 142.7 0.04
Total time (s) 36.7 ± 23.5 30 ± 14.5 0.11
Overall adaptive distance (mm) 15.6 ± 5.7 9 ± 2.5 <0.0001
Needle shaft visualization time (%) 78 ± 20 81 ± 13 0.446
Needle tip visualization time (%) 43 ± 19 62 ± 15 0.0002
Inside collecting system or not (%) 60 ± 43 94 ± 13 <0.0001
†Data in this table are represented in mean value ± standard deviation. Statistical di↵erences were calculated with the paired T-test. A
p-value<0.05 was considered significant.

Table 2.4: GRS (range 1-5) assessments of novice performance before and after training

Novice (n=24) Pre-training Post-training p-value
Identify Target 3.4 ± 1.2 4.5 ± 0.6 <0.0001
US Needle Tracking 2.3 ± 1.2 3.6 ± 1 <0.0001
Economy of Motion 3.1 ± 1.3 3.6 ± 1 0.041
Ability to Perform Needle Access 2.3 ± 1.2 3.7 ± 1 <0.0001
†Statistical di↵erences were calculated with Wilcoxon signed-rank test. A p-value<0.05 was considered significant.
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emulator, and the silicone phantom through the camera video stream in real-time without the

need for any external tracking hardware. As a result, the estimated cost of this simulator can

be kept below $100.

In general, the e↵ectiveness of a training simulator is demonstrated through face, content,

construct, concurrent, and predictive validities [10][27][79]. Following this convention, we

first established face and content validity. The high face and content validity scores demonstrate

that our simulator closely resembles an actual US-guided PCA procedure and that the skills

required for an successful US-guided PCA using our simulator was similar to the skills required

for an actual US-guided PCA. Next, construct validity was clearly indicated by the ability of

our simulator to distinguish between novices and experts with a high degree of confidence for 6

out of 7 objective evaluation metrics except for the needle shaft visualization time. In addition,

our experiment showed significant improvements in the US-guided PCA skills of the novice

participants, which is demonstrated by the consistent increase in both objective evaluation

metrics and subjective GRS in post-training testing. Compared with the objective evaluation

metrics in pre-training testing, the final distance to the target, the overall adaptive distance, and

the needle tip visualization time improved over 40% in post-training testing, which became

very close to the experts’ performance.

According to the user feedback, all novices agreed that our simulator is easy to use and

useful to improve their PCA skills, and they would like to have the option to practice at home

using our simulator. The expert group was satisfied with the overall value of this simulator as

a training (4.16 out of 5) and assessment (4.33) tool, and they are highly likely to recommend

this system to others (4.67) and use it in their training program (4.33), as shown in Table 1. The

major area of improvement that the experts have suggested is the occasional tracking instability.
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2.5 Conclusions

Our proposed AR training simulator can provide educators with an alternative to allow for

additional training opportunities for trainees to acquire basic skills of US-guided PCA in a

safe and stress-free environment. The e↵ectiveness of our simulator is demonstrated through

face, content, and construct validities. In addition, pre-post testing comparisons showed signif-

icant improvements in both the objective and subjective performances of our novice trainees.

To further improve the objective evaluation of user performance, our next step is to design

an overall scoring system combing the evaluation metrics, which will allow us to assess the

concurrent validity of our simulator. In future iterations, with the advancement of mobile

computing technology, we would like to incorporate realistic lighting and shadows, as well as

tissue deformation characteristics, to further improve the depth perception and realism of our

simulator.



Chapter 3

Conclusions and Future Work

3.1 Conclusions

Simulation-based training facilitate the acquisition and refinement of essential skills for percu-

taneous renal access (PCA) prior to clinical exposure by providing opportunities for deliberate

and repetitive practice. The evaluation metrics from our simulator would provide more consis-

tent objective feedback for targeted training of PCA skills and shorten the learning curve during

early training, as demonstrated through the substantial performance improvements over a short

amount of training time in the novice group. In addition, our simulator o↵ers di↵erent levels

of augmented reality (AR) assistance, which allows for more customizable, self-directed, and

progressive training with increasing di�culty. Aside from skill enhancements, our simulator

has a simple setup, which o↵ers the flexibility to train at home. This not only protects pa-

tients from unnecessary harm but also provides trainees a stress-free environment for repetitive

computer-guided practice. Since the visualization of patient pathology is implemented through

virtual modeling, our simulator has the capacity to include a large dataset with a wide vari-

ety of clinical scenarios. In addition, the presented ultrasound (US)-guided needle insertions

simulation system, utilizing the versatility of AR technology, can be extended to other clinical

applications such as spinal needle insertion or central line insertion

39
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The computer vision-based camera tracking for AR has distinct advantages in cost and

portability. However, the performance can be sensitive to varying lighting conditions. During

the experiment, we noticed mild tracking instability, which could be caused by the internal

tracking algorithm and external lighting artifacts such as specular highlights [102]. Therefore,

moderately bright and di↵used lighting should be provided for the best user experience.

The haptic feedback can be another useful feature to improve the realism of our simulator.

Nevertheless, studies have shown that haptic feedback is less reliable compared with visual

feedback and may not be necessary for real-time image-guided needle insertion [29]. Hence,

our goal is to focus on training the users to perform PCA solely relying on the US images with-

out any AR assistance nor the sensation to confirm calyx puncture. In addition, our general

purposed phantom provides us the freedom to simulate patient-specific scenarios without fab-

ricating various physical phantoms, and thus improving the versatility and cost-e↵ectiveness.

3.2 Future Work

As the presented training simulator is a preliminary design, more refinements are needed max-

imize its benefits. As we mentioned in section 1.1.5, PCA training can be slit into two sections:

diagnostic renal imaging and needle control. It would be beneficial to create two correspond-

ing training modules with virtual guidance such as animations and prompts, as well as progress

tracking, to provide a structured learning experience and the sense of accomplishment. Addi-

tionally, we can apply elements of gamification such as points and leaderboards to increase

user engagement. Currently, user performance feedback is provided in the form of direct visu-

alization of the needle path, and data sheets with recorded performance parameters. Thus, to

calculate the total point, a marking scheme needs to be developed first to determine the weight

of each performance parameter.

Another direction of improvement relies on technology advancement such as depth sensing

cameras and the computing power of mobile devices. As mentioned previously, the newer gen-
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eration of mobile devices feature depth sensing cameras which can be incorporated into camera

tracking algorithms to further improve the tracking accuracy and stability. Improvements in vi-

sual fidelity including depth perception and real-time tissue deformation can be implemented,

given a powerful mobile chipset.

In this preliminary study, we have successfully established face, content, and construct va-

lidity through a user study described in chapter two. The next step is to establish concurrent

validity by comparing the performance against a gold standard. Lastly proof of correlation

between simulator performance and operating room (OR) performance can be used to demon-

strate the predictive validity of this approach.
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Appendix A. Example of US Simulation Configuration File 
 

 
<PlusConfiguration version="2.3"> 
 
  <DataCollection StartupDelaySec="1.0" > 
    <DeviceSet  
      Name="PlusServer For Unity local Moderate 2" 
      Description="Simulated Ultrasound" 
    /> 
     <!-- Image marker tracker--> 
    <Device 
      Id="TrackerDevice" 
      Type="OpenIGTLinkTracker" 
      MessageType="TRANSFORM" 
      ToolReferenceFrame="Tracker" 
      ServerAddress="127.0.0.1" 
      ServerPort="18946" 
      AcquisitionRate="90" 
      IgtlMessageCrcCheckEnabled="true" 
      UseReceivedTimestamps="false" 
      UseLastTransformsOnReceiveTimeout="true" 
      LocalTimeOffsetSec ="0.0" 
      ReconnectOnReceiveTimeout="true"> 
      <DataSources> 
        <DataSource Type="Tool" Id="Probe"  /> 
        <DataSource Type="Tool" Id="Needle"  /> 
        <DataSource Type="Tool" Id="Kidney" /> 
        <DataSource Type="Tool" Id="Gelblock" /> 
      </DataSources> 
      <OutputChannels> 
        <OutputChannel Id="TrackerStream"> 
          <DataSource Id="Probe" /> 
          <DataSource Id="Needle" /> 
          <DataSource Id="Kidney" /> 
          <DataSource Id="Gelblock" /> 
        </OutputChannel> 
      </OutputChannels> 
    </Device>     
 <!-- For getting images from the US simulator --> 
    <Device 
      Id="VideoDevice" 
      Type="UsSimulator" 
      LocalTimeOffsetSec="0.0" 



      AcquisitionRate="90" > 
      <DataSources> 
        <DataSource Type="Video" Id="Video" PortUsImageOrientation="MF" />   
      </DataSources>       
      <InputChannels> 
        <InputChannel Id="TrackerStream" /> 
      </InputChannels> 
      <OutputChannels> 
        <OutputChannel Id="VideoStream" VideoDataSourceId="Video" /> 
      </OutputChannels>       
      <vtkPlusUsSimulatorAlgo 
        ImageCoordinateFrame="Image" 
        ReferenceCoordinateFrame="Reference" 
        IncomingIntensityMwPerCm2="300" 
        BrightnessConversionGamma="0.25" 
        BrighntessConversionOffset="30" 
        NumberOfScanlines="128" 
        NumberOfSamplesPerScanline="1000" 
        NoiseAmplitude="14.0" 
        NoiseFrequency="2.5 3.5 1" 
        NoisePhase="50 20 0"         
        > 
        <SpatialModel Name="Air"  
        DensityKgPerM3="1.2"  
        SoundVelocityMPerSec="343"  
        AttenuationCoefficientDbPerCmMhz="100.0"  
        BackscatterDiffuseReflectionCoefficient="0.1"  
        SurfaceReflectionIntensityDecayDbPerMm="50"  
        /> 
        <SpatialModel 
          Name="Gelblock" 
          Type="Model" 
          ObjectCoordinateFrame="Gelblock" 
          ModelFile="D:/AllModels/CubeModel_m.stl" 
          DensityKgPerM3="910" 
          SoundVelocityMPerSec="1540" 
          AttenuationCoefficientDbPerCmMhz="3.0" 
          BackscatterDiffuseReflectionCoefficient="0.1" 
          SurfaceSpecularReflectionCoefficient="0.0" 
          SurfaceDiffuseReflectionCoefficient="0.0" 
          TransducerSpatialModelMaxOverlapMm="50" 
        />      
        <SpatialModel 
          Name="Kidney" 
          ObjectCoordinateFrame="Kidney" 



          ModelFile="D:/AllModels/ModerateKidney2_m.stl" 
          DensityKgPerM3="1066" 
          SoundVelocityMPerSec="1570" 
          AttenuationCoefficientDbPerCmMhz="1.0" 
          BackscatterDiffuseReflectionCoefficient="0.001" 
          SurfaceSpecularReflectionCoefficient="0.0" 
          SurfaceDiffuseReflectionCoefficient="0.0" /> 
        <SpatialModel 
          Name="Calyces" 
          ObjectCoordinateFrame="Kidney" 
          ModelFile="D:/AllModels/ModerateCollecting2_m.stl" 
          DensityKgPerM3="1201" 
          SoundVelocityMPerSec="2200" 
          AttenuationCoefficientDbPerCmMhz="0" 
          BackscatterDiffuseReflectionCoefficient="0.000"           
          SurfaceSpecularReflectionCoefficient="0.0" 
          SurfaceDiffuseReflectionCoefficient="0.3" 
        /> 
        <!--SpatialModel 
          Name="Vessel" 
          ObjectCoordinateFrame="Kidney" 
          ModelFile="D:/Artery_m.stl" 
          ModelToObjectTransform=" 
            1 0 0 0 
            0 1 0 0 
            0 0 1 0 
            0 0 0 1" 
          DensityKgPerM3="1102" 
          SoundVelocityMPerSec="2000" 
          AttenuationCoefficientDbPerCmMhz="0.01" 
          BackscatterDiffuseReflectionCoefficient="0.001"           
          SurfaceSpecularReflectionCoefficient="0.0" 
          SurfaceDiffuseReflectionCoefficient="0.0" 
        /--> 
         
        <SpatialModel  
          Name="Needle"  
          ObjectCoordinateFrame="NeedleTip"  
          ModelFile="D:/AllModels/NeedleModel.stl"  
          DensityKgPerM3="2500"  
          SoundVelocityMPerSec="5000"  
          AttenuationCoefficientDbPerCmMhz="3.0"  
          BackscatterDiffuseReflectionCoefficient="1"  
          SurfaceSpecularReflectionCoefficient="0.0"  
          SurfaceDiffuseReflectionCoefficient="0.3"  



          SurfaceReflectionIntensityDecayDbPerMm="0.1"  
        /> 
        <SpatialModel  
          Name="Needle"  
          ObjectCoordinateFrame="NeedleTip"  
          ModelFile="D:/AllModels/NeedleModel_Double_6mm.stl"  
          DensityKgPerM3="1600"  
          SoundVelocityMPerSec="5000"  
          AttenuationCoefficientDbPerCmMhz="0.03"  
          BackscatterDiffuseReflectionCoefficient="0.9"  
          SurfaceSpecularReflectionCoefficient="0.0"  
          SurfaceDiffuseReflectionCoefficient="0.0"  
          SurfaceReflectionIntensityDecayDbPerMm="0"  
        /> 
        <RfProcessing> 
          <ScanConversion 
            TransducerName="Ultrasonix_C5-2/60" 
            TransducerGeometry="CURVILINEAR" 
           ModelToObjectTransform=" 
            1 0 0 0 
            0 1 0 0 
            0 0 1 0 
            0 0 0 1" 
            RadiusStartMm="60.0" 
            RadiusStopMm="130.0" 
            ThetaStartDeg="-28.0" 
            ThetaStopDeg="28.0" 
            TransducerCenterPixel="410 100" 
            OutputImageSizePixel="820 616"    
            OutputImageSpacingMmPerPixel="0.13 0.13" /> 
        </RfProcessing> 
        <!-
- Image size pixel change background black size  small: smaller black window  --> 
        <!-
- Image pixel spacing change ultrasound simulation size  larger spacing: smaller 
US image affects resolution --> 
      </vtkPlusUsSimulatorAlgo> 
 
    </Device> 
     
    <Device  
      Id="TrackedVideoDevice"  
      Type="VirtualMixer" > 
      <InputChannels> 
        <InputChannel Id="TrackerStream" /> 



        <InputChannel Id="VideoStream" /> 
      </InputChannels> 
       
      <OutputChannels> 
        <OutputChannel Id="TrackedVideoStream"/> 
      </OutputChannels> 
    </Device> 
 
    <!--Device 
      Id="CaptureDevice" 
      Type="VirtualCapture" 
      BaseFilename="RecordingTest.igs.mhd" 
      EnableCapturingOnStart="FALSE" > 
      <InputChannels> 
        <InputChannel Id="TrackedVideoStream" /> 
      </InputChannels> 
    </Device-->     
  </DataCollection> 
 
  <PlusOpenIGTLinkServer 
    MaxNumberOfIgtlMessagesToSend="10" 
    MaxTimeSpentWithProcessingMs="50" 
    ListeningPort="18944" 
    SendValidTransformsOnly="true" 
    OutputChannelId="TrackedVideoStream" > 
    <DefaultClientInfo> 
      <MessageTypes> 
        <Message Type="IMAGE" /> 
        <Message Type="TRANSFORM" /> 
      </MessageTypes> 
        <TransformNames> 
        <!--These transforms becomes active transforms in slicer--> 
        <Transform Name="GelblockToReference" /> 
        <Transform Name="NeedleTipToReference" /> 
        <Transform Name="ProbeToReference" /> 
        <Transform Name="KidneyToReference" /> 
      </TransformNames> 
      <ImageNames> 
        <Image Name="Image" EmbeddedTransformToFrame="Reference" /> 
      </ImageNames> 
    </DefaultClientInfo> 
  </PlusOpenIGTLinkServer> 
 
  <CoordinateDefinitions> 
  <!--scaling change 1xX --> 



      <Transform From="Image" To="Probe" 
      Matrix=" 
            0.13 0 0 -53.3 
            0 0 0.13 0 
            0 -0.13 0 8 
            0 0 0 1" />  
 
    <Transform From="Image" To="TransducerOriginPixel" 
      Matrix=" 
            1 0 0 0 
            0 1 0 0 
            0 0 1 0 
            0 0 0 1" />     
    <Transform From="Tracker" To="Reference"  
      Matrix=" 
            1 0 0 0 
            0 1 0 0 
            0 0 1 0 
            0 0 0 1"  /> 
    <Transform From="NeedleTip" To="Needle" 
      Matrix=" 
         1 0 0 0 
         0 1 0 0 
         0 0 1 0 
         0 0 0 1" /> 
 
  </CoordinateDefinitions>  
 
</PlusConfiguration> 
 

 

 

 

 

 

 

 

 

 



Appendix B. UNITY C# Marshalling 

 
using System.Collections; 
using System.Collections.Generic; 
using UnityEngine; 
using System.Runtime.InteropServices; 
using UnityEngine.UI; 
using System; 
using System.IO; 
using System.Net.Sockets; 
using AOT; 
using System.Threading; 
using UnityEngine.SceneManagement; 
 
public class UnityIGT : MonoBehaviour 
{ 
 
    private delegate void ServerDelegate(int Svalue); 
    [DllImport("OpenIGTLink")] 
    static extern void ServerConnect(int serverport, double fps, ServerDelegate 
ServerConnectionStatus); 
 
 
    private delegate void ReceiverDelegate(int Rvalue); 
    [DllImport("OpenIGTLink")] 
    static extern void ReceiverConnect(string hostname, int clientport, ReceiverDelegate 
ReceiverConnectionStatus); 
 
   
    private delegate void PositionDelegate(float PositionX); 
    [DllImport("OpenIGTLink")] 
    static extern void GetData(float[] orientation, int Osize, float[] position, int 
Psize, PositionDelegate SentPosition); 
 
   
    private delegate void GetImageDelegate(IntPtr Address); 
    [DllImport("OpenIGTLink")] 
    static extern void GetImage(GetImageDelegate GetImageData); 
 
    private delegate void CloseSendDelegate(); 
    [DllImport("OpenIGTLink")] 
    static extern void CloseSendSocket(); 
 
    private delegate void CloseReceiveDelegate(); 
    [DllImport("OpenIGTLink")] 
    static extern void CloseReceiveSocket(); 
 
 
 
    public GameObject[] TracketObject; 
    float[] ObjectPosition = new float[12]; 
    float[] ObjectOrientation = new float[16]; 
    public static GameObject MySprite; 
    public static GameObject MySpriteSM; 
    public InputField EnterIP; 



    string IPAddress; 
    bool startR = false; 
    bool startS = false; 
    static bool Received = false; 
    public static byte[] ImageData; 
    public static Texture2D ImageTexture; 
    Thread ReceiveThread; 
    Thread SendThread; 
 
    public static Text Statustext; //disconnect/connect/receiver 
 
 
    void Start() 
    { 
        MySprite = GameObject.FindWithTag("Image"); 
        MySpriteSM = GameObject.FindWithTag("SmallImage"); 
        Application.targetFrameRate = 60; 
        ImageData = new byte[505120];         
    } 
 
 
    void Update() 
    { 
        for (int i = 0; i < 4; i++) 
        { 
            if (TracketObject[i].activeSelf == true) 
            { 
                //ObjectStatustext.text = "Object Found"; 
                ObjectPosition[i * 3 + 0] = TracketObject[i].transform.position.x; 
                ObjectPosition[i * 3 + 1] = TracketObject[i].transform.position.y; 
                ObjectPosition[i * 3 + 2] = TracketObject[i].transform.position.z; 
                ObjectOrientation[i * 4 + 0] = TracketObject[i].transform.rotation.x; 
                ObjectOrientation[i * 4 + 1] = TracketObject[i].transform.rotation.y; 
                ObjectOrientation[i * 4 + 2] = TracketObject[i].transform.rotation.z; 
                ObjectOrientation[i * 4 + 3] = TracketObject[i].transform.rotation.w; 
            } 
            else 
            { 
                //ObjectStatustext.text = "Object Lost"; 
                Array.Clear(array: ObjectPosition, index: 0, length: 
ObjectPosition.Length); 
                Array.Clear(array: ObjectOrientation, index: 0, length: 
ObjectOrientation.Length); 
            } 
        }        
        Resources.UnloadUnusedAssets(); 
 
    } 
 
 
    public void StartServer() 
    { 
        ServerConnect(18946, 60, ServerConnectionStatus); 
    } 
    public void StartClient() 
    { 
        IPAddress = EnterIP.text; 
        ReceiverConnect(IPAddress, 18944, ReceiverConnectionStatus); 



    } 
    public void AutoSend() 
    { 
        InvokeRepeating("StartSendData", 0f, 0.03333f); 
 
    } 
    public void StartSendData() 
    { 
        GetData(ObjectOrientation, 4, ObjectPosition, 3, SentPosition); 
    } 
 
    public void StartReceiveThread() 
    { 
        startR = true; 
        ReceiveThread = new Thread(AutoReceive); 
        ReceiveThread.Start(); 
    } 
    public void AutoReceive() 
    { 
        while (startR == true) 
        { 
            StartReceivingImage(); 
        } 
    } 
    public void StartReceivingImage() 
    { 
        GetImage(GetImageDataAddress); 
    } 
    public void InvokeUpdate() 
    { 
        InvokeRepeating("UpdateTexture", 0f, 0.033333f);      
    } 
    public void UpdateTexture() 
    { 
        if (Received == true) 
        { 
            ImageTexture = new Texture2D(820, 616, TextureFormat.Alpha8, false); 
            ImageTexture.LoadRawTextureData(ImageData); 
            ImageTexture.Apply(); 
            MySprite.GetComponent<RawImage>().texture = ImageTexture; 
            MySpriteSM.GetComponent<RawImage>().texture = ImageTexture; 
        } 
    } 
 
 
    [MonoPInvokeCallback(typeof(ServerDelegate))] 
    private static void ServerConnectionStatus(int Svalue) 
    { 
        if (Svalue == 1) 
        { 
            Statustext = GameObject.FindWithTag("Status").GetComponent<Text>(); 
            Statustext.text = "Connected to Server"; 
        } 
    } 
    [MonoPInvokeCallback(typeof(ReceiverDelegate))] 
    private static void ReceiverConnectionStatus(int Rvalue) 
    { 
        if (Rvalue == 1) 



        { 
            Statustext = GameObject.FindWithTag("Status").GetComponent<Text>(); 
            Statustext.text = "Receiver Started"; 
        } 
    } 
    [MonoPInvokeCallback(typeof(PositionDelegate))] 
    private static void SentPosition(float PositionX) //verify plus received position 
    { 
    } 
    [MonoPInvokeCallback(typeof(GetImageDelegate))] 
    private static void GetImageDataAddress(IntPtr Address) 
    { 
        Marshal.Copy(Address, ImageData, 0, 505120); 
        Received = true; 
        //RC = RC + 1; 
    } 
    public void LetsGo() 
    { 
        AutoSend(); 
        StartClient(); 
        StartReceiveThread(); 
        InvokeUpdate(); 
    } 
    public void Restart() 
    { 
        ReceiveThread.Abort(); 
        SceneManager.LoadScene("UltrasoundSimulator_Standing_Sep"); 
    } 
 
    public void Disconnect() 
    { 
        startR = false; 
        CloseReceiveSocket(); 
        CloseSendSocket();       
        ReceiveThread.Abort(); 
    } 
    private void OnApplicationQuit() 
    { 
        ReceiveThread.Abort(); 
    } 
 
} 
 

 

 

 

 

 

 

 



Appendix C. OpenIGTLink Based Sender  
#include <iomanip> 
#include <iostream> 
#include <math.h> 
#include <cstdlib> 
#include <cstdlib> 
 
#include "igtlOSUtil.h" 
#include "igtlMessageHeader.h" 
#include "igtlTransformMessage.h" 
#include "igtlServerSocket.h" 
#include "igtlClientSocket.h" 
#include "igtlTrackingDataMessage.h" 
#include "igtl_tdata.h" 
 
#define UnityIGTLinkSendAPI _declspec(dllexport) 
 
igtl::ServerSocket::Pointer  UnityServerSocket; 
igtl::Socket::Pointer UnitySendSocket; 
igtl::TimeStamp::Pointer ts; 
 
extern "C" { 
 typedef void(_stdcall* CallbackServer)(int Svalue); 
 UnityIGTLinkSendAPI void _stdcall ServerConnect(int serverport, double fps, 
CallbackServer ServerConnectionStatus) 
  //UnityIGTLinkSendAPI void ServerConnect(int serverport, double fps, 
void(*ServerConnectionStatus)(int Svalue)) 
 { 
 
 
  //int interval = (int)(1000.0 / fps); 
 
  // Establish Connection 
  igtl::ServerSocket::Pointer serversocket; 
  serversocket = igtl::ServerSocket::New(); 
  int r = serversocket->CreateServer(serverport); 
  UnityServerSocket = serversocket; 
  UnitySendSocket = serversocket->WaitForConnection(10000); 
 
  if (UnitySendSocket.IsNotNull()) 
  { 
   ServerConnectionStatus(1); 
  } 
 
 } 
 //--------------------------------------------------------------------------------
---------------------------------------- 
 
 void SendProbeToReference(igtl::Matrix4x4& Pmatrix, igtl::ServerSocket::Pointer 
serversocket, igtl::Socket::Pointer clientsocket) 
 { 
  // Allocate Transform Message Class 
  igtl::TransformMessage::Pointer PTransformMessage = 
igtl::TransformMessage::New(); 
 
  //Package Data then send 



  PTransformMessage->SetHeaderVersion(IGTL_HEADER_VERSION_1); 
  PTransformMessage->InitPack(); 
  PTransformMessage->SetDeviceName("ProbeToTracker"); 
  PTransformMessage->SetMatrix(Pmatrix); 
  ts = igtl::TimeStamp::New(); 
  ts->GetTime(); 
  PTransformMessage->SetTimeStamp(ts); 
  PTransformMessage->Pack(); 
  UnitySendSocket->Send(PTransformMessage->GetPackPointer(), 
PTransformMessage->GetPackSize()); 
  //igtl::Sleep(1); // wait 
     // Close connection 
        //socket->CloseSocket(); 
 } 
 UnityIGTLinkSendAPI void _stdcall CloseSendSocket() 
 { 
  UnityServerSocket->CloseSocket(); 
  UnitySendSocket->CloseSocket();   
 } 
 //------------------------------------------------------------ 
 void SendNeedleToReference(igtl::Matrix4x4& Nmatrix, igtl::ServerSocket::Pointer 
serversocket, igtl::Socket::Pointer clientsocket) 
 { 
        // Allocate Transform Message Class 
  igtl::TransformMessage::Pointer NTransformMessage = 
igtl::TransformMessage::New(); 
  //Package Data then send 
  NTransformMessage->SetHeaderVersion(IGTL_HEADER_VERSION_1); 
  NTransformMessage->InitPack(); 
  NTransformMessage->SetDeviceName("NeedleToTracker"); 
  NTransformMessage->SetMatrix(Nmatrix); 
  ts = igtl::TimeStamp::New(); 
  ts->GetTime(); 
  NTransformMessage->SetTimeStamp(ts); 
  NTransformMessage->Pack(); 
  UnitySendSocket->Send(NTransformMessage->GetPackPointer(), 
NTransformMessage->GetPackSize()); 
  //igtl::Sleep(1); // wait  
     // Close connection 
     //socket->CloseSocket(); 
 } 
 //------------------------------------------------------------ 
 void SendKidneyToReference(igtl::Matrix4x4& Kmatrix, igtl::ServerSocket::Pointer 
serversocket, igtl::Socket::Pointer clientsocket) 
 { 
        // Allocate Transform Message Class 
  igtl::TransformMessage::Pointer KTransformMessage = 
igtl::TransformMessage::New(); 
  //Package Data then send 
  KTransformMessage->SetHeaderVersion(IGTL_HEADER_VERSION_1); 
  KTransformMessage->InitPack(); 
  KTransformMessage->SetDeviceName("KidneyToTracker"); 
  KTransformMessage->SetMatrix(Kmatrix); 
  ts = igtl::TimeStamp::New(); 
  ts->GetTime(); 
  KTransformMessage->SetTimeStamp(ts); 
  KTransformMessage->Pack(); 



  UnitySendSocket->Send(KTransformMessage->GetPackPointer(), 
KTransformMessage->GetPackSize()); 
  //igtl::Sleep(1); // wait  
     // Close connection 
     //socket->CloseSocket(); 
 } 
 void SendGelblockToReference(igtl::Matrix4x4& Gmatrix, igtl::ServerSocket::Pointer 
serversocket, igtl::Socket::Pointer clientsocket) 
 { 
  // Allocate Transform Message Class 
  igtl::TransformMessage::Pointer GTransformMessage = 
igtl::TransformMessage::New(); 
  //Package Data then send 
  GTransformMessage->SetHeaderVersion(IGTL_HEADER_VERSION_1); 
  GTransformMessage->InitPack(); 
  GTransformMessage->SetDeviceName("GelblockToTracker"); 
  GTransformMessage->SetMatrix(Gmatrix); 
  ts = igtl::TimeStamp::New(); 
  ts->GetTime(); 
  GTransformMessage->SetTimeStamp(ts); 
  GTransformMessage->Pack(); 
  UnitySendSocket->Send(GTransformMessage->GetPackPointer(), 
GTransformMessage->GetPackSize()); 
  //igtl::Sleep(1); // wait  
  // Close connection 
  //socket->CloseSocket(); 
 } 
 //--------------------------------------------------------------------------------
---------------------------------------- 
 typedef void(_stdcall* CallbackPosition)(float ReceivedPosition); 
 UnityIGTLinkSendAPI void _stdcall GetData(float *Rorientation, int Osize, float 
*Rposition, int Psize, CallbackPosition CheckPosition) 
 //UnityIGTLinkSendAPI void GetData(float *Rorientation, int Osize, float 
*Rposition, int Psize, void(*CheckPosition)(float ReceivedPosition)) 
 { 
 
  // build matrx  
  igtl::Matrix4x4 Pmatrix; 
  float Porientation[] = 
{ Rorientation[0],Rorientation[1],Rorientation[2],Rorientation[3] }; 
  igtl::QuaternionToMatrix(Porientation, Pmatrix); 
  Pmatrix[0][3] = Rposition[0]; 
  Pmatrix[1][3] = Rposition[1]; 
  Pmatrix[2][3] = Rposition[2]; 
 
  igtl::Matrix4x4 Nmatrix; 
  float Norientation[] = 
{ Rorientation[4],Rorientation[5],Rorientation[6],Rorientation[7] }; 
  igtl::QuaternionToMatrix(Norientation, Nmatrix); 
  Nmatrix[0][3] = Rposition[3]; 
  Nmatrix[1][3] = Rposition[4]; 
  Nmatrix[2][3] = Rposition[5]; 
 
  igtl::Matrix4x4 Kmatrix; 
  float Korientation[] = 
{ Rorientation[8],Rorientation[9],Rorientation[10],Rorientation[11] }; 
  igtl::QuaternionToMatrix(Korientation, Kmatrix); 
  Kmatrix[0][3] = Rposition[6]; 



  Kmatrix[1][3] = Rposition[7]; 
  Kmatrix[2][3] = Rposition[8]; 
 
  igtl::Matrix4x4 Gmatrix; 
  float Gorientation[] = 
{ Rorientation[12],Rorientation[13],Rorientation[14],Rorientation[15] }; 
  igtl::QuaternionToMatrix(Gorientation, Gmatrix); 
  Gmatrix[0][3] = Rposition[9]; 
  Gmatrix[1][3] = Rposition[10]; 
  Gmatrix[2][3] = Rposition[11]; 
   
  float receivedX = Nmatrix[0][3]; 
        CheckPosition(receivedX); 
 
  SendProbeToReference(Pmatrix, UnityServerSocket, UnitySendSocket); 
  SendNeedleToReference(Nmatrix, UnityServerSocket, UnitySendSocket); 
  SendKidneyToReference(Kmatrix, UnityServerSocket, UnitySendSocket); 
  SendGelblockToReference(Gmatrix, UnityServerSocket, UnitySendSocket); 
 } 
 
 //--------------------------------------------------------------------------------
--------------------------------------- 
 
} 
 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix D. OpenIGTLink Based Receiver  
#include <iomanip> 
#include <iostream> 
#include <math.h> 
#include <cstdlib> 
 
#include "igtlOSUtil.h" 
#include "igtlMessageHeader.h" 
#include "igtlTransformMessage.h" 
#include "igtlServerSocket.h" 
#include "igtlClientSocket.h" 
#include "igtlTrackingDataMessage.h" 
#include "igtl_tdata.h" 
#include "igtlImageMessage.h" 
#include "igtlStatusMessage.h" 
 
#define UnityIGTLinkReceiveAPI _declspec(dllexport) 
 
igtl::ImageMessage::Pointer SendimgMsg; 
igtl::ClientSocket::Pointer Unityclientsocket; 
 
extern "C" { 
 typedef void(_stdcall* CallbackImage)(void* ImageDataPointer); 
 UnityIGTLinkReceiveAPI void _stdcall GetImage(CallbackImage GetImageData) 
  //-------------------------------------------------------------------------
-- 
 { 
 
  // Create a message buffer to receive header 
  igtl::MessageHeader::Pointer headerMsg; 
  headerMsg = igtl::MessageHeader::New(); 
  //------------------------------------------------------------ 
  // Allocate a time stamp  
  igtl::TimeStamp::Pointer ts; 
  ts = igtl::TimeStamp::New(); 
  //------------------------------------------------------------ 
  //for (int i = 0; i < 100; i++) 
  //{ 
  // Initialize receive buffer 
  headerMsg->InitPack(); 
  // Receive generic header from the socket 
  int r = Unityclientsocket->Receive(headerMsg->GetPackPointer(), 
headerMsg->GetPackSize()); 
  headerMsg->Unpack(); 
  //------------------------------------------------------------ 
  // Get time stamp 
  igtlUint32 sec; 
  igtlUint32 nanosec; 
  headerMsg->GetTimeStamp(ts); 
  ts->GetTimeStamp(&sec, &nanosec); 
 
  // Check data type and receive data body   
  if (strcmp(headerMsg->GetDeviceType(), "IMAGE") == 0) 
  { 
 
   igtl::ImageMessage::Pointer imgMsg; 



   imgMsg = igtl::ImageMessage::New(); 
   imgMsg->SetMessageHeader(headerMsg); 
   imgMsg->AllocatePack(); 
   // Receive transform data from the socket 
   Unityclientsocket->Receive(imgMsg->GetPackBodyPointer(), 
imgMsg->GetPackBodySize()); 
   // Deserialize the transform data 
   // If you want to skip CRC check, call Unpack() without argument. 
   int c = imgMsg->Unpack(0); 
   if (c & igtl::MessageHeader::UNPACK_BODY) // if CRC check is OK 
   { 
    // Retrive the image data 
    int   size[3];          // image dimension 
    float spacing[3];       // spacing (mm/pixel) 
    int   svsize[3];        // sub-volume size 
    int   svoffset[3];      // sub-volume offset 
    int   scalarType;       // scalar type 
    int   endian;           // endian 
 
    scalarType = imgMsg->GetScalarType(); 
    endian = imgMsg->GetEndian(); 
    imgMsg->GetDimensions(size); 
    imgMsg->GetSpacing(spacing); 
    imgMsg->GetSubVolume(svsize, svoffset); 
    imgMsg->AllocateScalars(); 
    imgMsg->GetScalarPointer(); 
    GetImageData(imgMsg->GetScalarPointer()); 
   } 
  } 
  else 
  { 
   Unityclientsocket->Skip(headerMsg->GetBodySizeToRead(), 0); 
  } 
 
 } 
 typedef void(_stdcall* CallbackReceiver)(int Cvalue); 
 UnityIGTLinkReceiveAPI void _stdcall ReceiverConnect(char*  hostname, int 
clientport, CallbackReceiver ReceiverConnectionStatus) 
  //UnityIGTLinkReceiveAPI void ReceiverConnect(char*  hostname, int 
clientport, void(*ReceiverConnectionStatus)(int Cvalue)) 
 { 
  igtl::ClientSocket::Pointer clientsocket; 
  clientsocket = igtl::ClientSocket::New(); 
  int j = clientsocket->ConnectToServer(hostname, clientport); 
  Unityclientsocket = clientsocket; 
 
  if (j == 0) 
  { 
   ReceiverConnectionStatus(1); 
  } 
 
  //------------------------------------------------------------ 
  // Close connection (The example code never reaches this section ...) 
  // clientsocket->CloseSocket(); 
 } 
 UnityIGTLinkReceiveAPI void _stdcall CloseReceiveSocket() 
 { 
  Unityclientsocket->CloseSocket(); 



 } 
} 
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