Western University

Scholarship@Western
Digitized Theses Digitized Special Collections

2020

A Finite Volume Model for Predicting Water Vapour Transport in
Conjugate Fluid/Porous/Solid Domains

Christian Fischer
Western University

Follow this and additional works at: https://ir.lib.uwo.ca/digitizedtheses

Recommended Citation

Fischer, Christian, "A Finite Volume Model for Predicting Water Vapour Transport in Conjugate Fluid/
Porous/Solid Domains" (2020). Digitized Theses. 3223.

https://ir.lib.uwo.ca/digitizedtheses/3223

This Thesis is brought to you for free and open access by the Digitized Special Collections at
Scholarship@Western. It has been accepted for inclusion in Digitized Theses by an authorized administrator of
Scholarship@Western. For more information, please contact wiswadmin@uwo.ca.


https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/digitizedtheses
https://ir.lib.uwo.ca/disc
https://ir.lib.uwo.ca/digitizedtheses?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F3223&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses/3223?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F3223&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

A Finite Volume Model for Predicting Water
Vapour Transport in Conjugate
luid/Porous/Solid Domains

(Spine Title: Water Vapour Transport in Conjugate Domains)
(Thesis Format; Monograph)

by

Christian Fischer

Graduate Program in Engineering.
Department of Mechanical & Material Engineering

0

Submitted in Partial fulfillment
Of the requirements for the degree of
Master of Engineering Science

The School of Graduate and Postdoctoral Studies
The University of Western Ontario
London, Ontario, Canada
“Nov, 2011
© Christian Fischer 2011



THE UNIVERSITY OF WESTERN ONTARIO
SCHOOL OF GRADUATE AND POSTDOCTORAL STUDIES

CERTIFICATE OF EXAMINATION

Supervisor Examiners

Dr. Anthony Straatman Dr. A. Ray
Dr. K. Siddiqui
Dr. J. Yang

The thesis by
Christian Fischer
entitled:

A Finite Volume Model for Predicting Water Vapour Transport in Conjugate
Fluid/Porous/Solid Domains

Is accepted in partial fulfillment of the

requirements for the degree of

Master of Engineering Science

Date Chair of the Thesis Examination Board



Abstract

The principle aim of the presented work is to extend the capability of conjugate
heat/flow models to include moisture exchange such that applications in food
storage/ripening and heating, ventilation, and air conditioning (HVAC) can be simulated.
To accomplish this, several modifications were made to an existing finite-volume model
developed in-house. The most significant change was the implementation of a mass
fraction transport equation to track the evolution of the water vapour field in all regions
of the conjugate domain. This approach also required re-formulation of the energy
transport model to account for a dry air/water vapour binary mixture. Developments in
the porous regions are implemented using the technique of volume averaging, wherein
the governing equations are considered macroscopically. A non-equilibrium approach in
volume averaging the species and energy transport equations is implemented to allow
more versatility for future work. This non-equilibrium versatility is beneficial over
traditional equilibrium approaches, as often in agricultural or processing applications,
internal moisture and temperature conditions dictate the transfer between constituents.
Additionally, these conjugate domains consist of fluid-porous, fluid-solid, and porous-
solid interfaces, and interface conditions between governing equations must be
developed. Applications in the HVAC industry are chosen for validation, as the model is
utilized to predict operating temperatures in evaporative cooling cycles, and study energy

and humidity transport throughout these domains.

Keywords: porous media, conjugate vapour transfer, conjugate heat transfer, finite-
volume discretzation, Interface conditions
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Chapter 1  Introduction and Literature
Review

1.1 Motivation

Processes that undergo moisture transfer are common in many applications of
engineering. In particular, chemical engineering relies heavily on moisture exchange in
food processing, where the manipulation of moisture can be used for sanitation, quality
enhancement, ease of handling in production facilities, and product shelf life extension.
In mechanical and civil engineering, wicking processes are important for moisture
removal, and often water vapour is manipulated to create energy potential for
applications such as the conditioning of air in buildings. These processes introduce
engineering challenges in design and modeling and it is desirable to have insight to
control them. Often, the materials and domains under consideration have a structure
that enables permeation by gas or fluid. If this is the case, it is possible to use
modelling techniques developed for porous media to simulate flows and exchanges in

these applications.

A porous media can be generally defined as a heterogeneous system consisting
of a solid matrix with fluid voids. This definition allows for a wide range of scales. The
pore or void size may be of the order of the molecular size 3<d < 7A (d is the average
pore or void diameter), or as large as centimetres as in food stuffs (figure 1.1). The
scale of the problem must be carefully considered when a solution approach is

formulated for the domain, as mathematical treatments of this medium require scale



constraints. Also, porous structures often vary in geometry, some being oriented
similarly to packed beds of particles where others take on the form of interconnected
ligaments or spherical shaped voids. The type of structure affects the transport of fluid,
energy, and species through the domain; and in addition, the amount of available
surface area for exchange between constituents. This increased surface area is one of
the main reasons for using porous materials because exchange of energy and mass can

be enhanced over simple manufactured geometries.

Figure 1-1 Food systems: left - bulk chicory roots, middle - SEM image of bread, right - SEM
image of uncooked potato [1]

CFD techniques in modelling porous domains, until recently, have focussed
solely on fluid flow and heat transfer. The benefit of modelling these transported
variables using a porous media approach is that the concept of volume averaging [2, 3]
may be applied to eliminate computing pore level flow, thereby simplifying the entire
media to a continuum. The solid and fluid constituents of the porous domain may be
treated as a single continuum when volume averaging is applied to the mass,

momentum, and energy equations. There is also versatility in the volume averaging



approach, as derivation of the governing equations may be performed treating the fluid
and solid components as separate constituents. This is often done to the conservation of
energy equation under the assumption of local thermal non-equilibrium (LTNE),
whereby the temperature of the fluid and solid are computed separately [4]. The LTNE
approach is necessary for cases where the conductivity ratio of the solid to fluid is too
large, but it is also useful for cases where an accurate value of temperature in the solid

is needed to properly estimate coefficients in an energy or moisture exchange law.

In applications where water vapour transfer is important; continuity,
momentum, and energy is not a complete description of the transport phenomena. The
addition of a mass fraction or species conservation must be considered to fully describe
transport throughout the domain. Theoretical models have been developed for this
additional conservation equation. These models follow a similar progression as the
conservation of energy, where representing the porous medium as a single or multi-

continua is proposed [2, 4].

The differential forms of the equations described, which govern transport
through the porous media, serve as the basis for computational models through a single
medium type. However, when developing a computational model for applications that
transmit moisture; such as air conditioning and food processing/storage, it is also
imperative that the model is constructed with the ability to simulate transport through
multiple domain types such as pure fluid, porous, and solid. This is due to the
geometric configurations encountered in such processes. Furthermore, a model must
also be able to include interfaces between medium types. There have been few models

presented that accomplish this task.



complex physics. The model will also adopt a local thermal non-equilibrium model for
the energy equation to enable accurate exchange models to be used. The model will be
used in this thesis to carry out simulations of direct, indirect, and Maisotsenko

evaporative cooling.

The following literature review is separated into three main sections: Porous
media modelling where porous modelling techniques will be explained with a focus on
multi-component flow, applications and modelling of porous domains in the food
industry, including current modelling techniques in this sector; and application and

modelling of evaporative cooling in the HVAC industry.

1.2 Literature Review

1.2.1 Porous Media Modeling

Prediction of flow characteristics in porous media has been studied for over a
century. Notable milestones which are relevant to this work are the findings of Darcy,
who was able to relate pressure drop to bulk velocity using an empirical constant [7].

Darcy’s law is given as

-Vp = ~(u), (L1)
where p is the pressure, K is the permeability of the porous media, p is the dynamic
viscosity and (u) the vector of average velocity. The Darcy equation shows a linear
relation between pressure and bulk velocity. An unfamiliar term in this expression is
the permeability, and as given in equation 1.1, this parameter is a measure of the ability

of the porous material to allow fluid to flow through it. Although this expression is



useful, it is only valid in viscous dominated flows, where the Reynolds number is low.
This is not always practical and for flows that are not limited by this criterion, a more

advanced representation is needed.

Once the Reynolds number exceeds one, the Darcy equation alone is no longer
valid and an alternate correlation is needed to accurately model the effect of the porous
structure on the flow. Ergun developed an expression by considering granular solids,
which is capable of resolving higher Reynolds numbers by taking into account density,
viscosity, porosity, and geometric parameters of the solid particles. Ergun’s equation
contains a linear term similar to the Darcy equation, and a quadratic term accounting
for the effects of inertia but is limited to porous media of specific internal structure.
Ward [11] was able to take this correlation and make it applicable to other internal
structures using dimensional analysis to show that the quadratic term in Ergun’s
equation could be represented in terms of the dynamic pressure, the square-root of
permeability and a drag coefficient. This new expression contains a term similar to the

original works of Darcy, and a general term to account for inertial effects given as

-Vp = %u>+ 7 |<u)|<u).
The CE term is called the Ergun coefficient, and accounts for the form drag in the
medium. Although Ergun originally stated that this coefficient could be reduced to a
single value for all forms of porous media, this has been shown to be incorrect. This
model breaks down where macroscopic gradients exist in the flow, such as next to a
wall in the boundary layer region, and hence more sophisticated techniques must be

applied to capture the flow in these regions. The use of volume averaging of the



general transport equations over the porous domain is a technique that enables a broad
extension to the simple porous media modelling afforded through the use of equations

11 and 1.2.

The volume averaging method, developed independently by Whitaker and
Slattery [2, 3], is a method for modelling flow and energy transport in porous media.
The transport equations are applicable in the difficult regions mentioned above
(gradients near walls), as they are developed from the transport equations in a single
constituent continuum and therefore contain all relevant terms that resolve gradients.
The idea of this method is to not resolve the flow within the domain on the pore scale;
rather the transport equations are integrated over a representative volume (discussed
further in chapter 2), resolving only the bulk flow. This method is also extended to
mass fraction and thermal fields, where Whitaker used volume averaging to look at
energy and mass fraction transport for drying processes [7]. It is noted that volume
averaging alone does not present a closed form of the above equations rather it leaves
integral terms that are functions of pore level flow. In order to solve for the bulk flow,
closure methods must be used to manipulate these terms. These closure techniques are
not the purpose of this work however, it is stated that closure can be achieved by two
methods; the first is the use of constitutive equations where examination of flow at the
pore scale is needed, and the second, a semi-heuristic method that replaces the integral
terms with terms that relate to the volume averaged parameters often coming from
empirical relations such as the Darcy or Ergun equations. This work uses the semi-

heuristic form of closure to represent the final form of the volume averaged equations.



Vafai and Tien [12] introduced a method of semi-heuristically closing the
volume averaged momentum equations combining all unknown parameters and
replacing them with a body force term of the form of the Ergun extended Darcy law.
Thus, the closed form of the transport equations require a permeability, and an Ergun
coefficient. Vafai and Tien also used this method to close the energy equations, where
the additional integral terms arising from volume averaging were once again
combined. This combined term was classified as an effective heat flux vector
multiplied by an effective thermal conductivity. In flows with a high Peclet number
(Pe = RePr), thermal dispersion must also be considered. Thermal dispersion is a
transport process that occurs as a result of departures of the local velocity from the
volume-averaged velocity. These local “fluctuations” promote local mixing and result
in enhanced transport that must be accounted for in high Pe flows. Quintard et al [13],
Sahouri and Kaviany [14] have conducted experiments to characterize the thermal
dispersion in the volume averaged equations in terms of the local Peclet number.
Kaviany [4] furthered this study looking at the closure terms in the mass fraction
equations analogously to the energy equations and developed closed forms of these

transport equations.

Betchen et al [6] studied the effects of local thermal non-equilibrium in
graphite foams. This work developed a finite volume model for fluid flow and heat
transfer in conjugate fluid, porous, solid domains. The novelty of this work lies in the
thermal non-equilibrium development, as well as the model’s ability to solve though
conjugate domain interfaces without oscillation. This work used the concept of

effective thermo-physical properties to represent exchange coefficients in the porous



media. As graphite foams do not have well established models for representing these
effective properties, calibration of the model was required to correctly predict the flow

in the graphite.

The effect of local non-equilibrium between constituents in the mass fraction
and energy equations was also studied in the works of Quintard et al and Kaviany [13],
where unlike the studies mentioned, transport of energy and mass through the medium
was divided into transport through the solid and fluid separately. VVolume averaging in
a non-equilibrium representation of the domain is similar to the equilibrium case,
however additional terms are present representing the interfacial exchange between
constituents. The model is similar to that which was developed years earlier by
Whitaker for drying, with the differences lying in the closure of the equations. Semi-
heuristic closure is once again developed for these equations where it is important to
consider the effects of excess surface accumulation, convection, diffusion, adsorption,

and non-equilibrium sources when closing the equations [4].

1.2.2 Applications and modelling of porous domains in the food industry

The ability to control moisture is crucial in the food sector for many reasons.
One example is in processing facilities, where a dried product is easier to mix, mill and
segregate. Moisture and heat diffusion are also manipulated for sanitation, as insects
and other microorganisms are destroyed at low relative humidity with accompanying
temperatures at or above 60 degrees Celsius [8], Furthermore, quality may be altered
by moisture control, as certain products are dried to enhance quality, improve

palatability, and increase metabolic conversions as well as digestibility. Finally,



moisture and heat manipulation have a large impact on storage life, where often a
target equilibrium relative humidity (ERH) of less than 70% is desired to minimize
spoilage due to insects and micro-organisms; and to reduce unfavourable oxidative and

enzymatic reactions [8].

There have been many models that have been formulated to predict heat and
mass transfer within stored bulk food. Initially, one dimensional models of pure heat
and mass diffusion were extensively studied in the late 1960’s [10]. This approach was
extended to very basic modeling of air flow in sealed bins, where the domain was
mapped using two dimensional finite element techniques [15]. More recent studies
used finite element methods to predict streamlines of air through a three dimensional
bulk media, in conjunction with a one dimensional finite difference model for
determining temperature, as well as moisture changes in the air. The main issue with
this modelling approach is that the prediction of streamlines is accomplished by
interpolation and also, the method implies a fictitious movement of the solid as during
multiple iterations of the drying period, the streamlines are adjusted[16,17]. Another
method of evaluating the partial differential equations encountered in resolving
transport in food stuffs is seen in the Wang et al. model extended by Tassou and Xiang
[18], where a finite volume technique is presented that also includes transpiration, as
well as the effect of respiration in a vegetable storage facility. Respiration effects were
added utilizing a model developed by Becker et al [19], where the heat generated by
the product is correlated to the rate of carbon dioxide or water production. The fluid

flow in the food store, modeled similarly to a packed bed, was accounted for in the

10



momentum equations by using a Darcy term momentum sink to model the effects of

the additional drag, which limits the model to low Reynolds numbers.

Most methods above were utilized to model small particle food bulks where
large moisture and temperature gradients between the produce and fluid are not
expected. With increased particle size, such as apples, or potatoes, larger gradients may
exist. Yongfu Xu [10], proposed a model to simulate such particles in bulk storage of
food stuffs. This implemented four transport equations to simulate three dimensional
mass, momentum, energy, and mass fraction of water exchange in the macro-domain
of food particle storage units. The model idealized individual bulk items (potatoes) as
spherical particles to estimate moisture content, temperature difference, conductivity
and moisture diffusivity, allowing local heat and mass transfer properties within the
particle to be evaluated. Locally, a single particle is considered as a sphere consisting
of concentric shells with negligible variation of fluid conditions around the individual
particle over a time interval. Finally, the surface conditions between the macro domain
and individual particle are governed by the water activity of the product, obtained
experimentally. Although the governing equations were listed for flow in the overall
food store, little information was given about the techniques used to resolve these
equations across the domain. Also, although the model maps an individual particle to
determine surface conditions for moisture exchange, the energy, and species transport
across the macro-domain is not fully considered to be in local equilibrium. Finally,
though the model explains multiple medium configurations (fluid, porous, solid), a

conjugate framework is never analyzed.

11



Although all models mentioned above considered the domain to consist of
spherical type products, simulations have also been conducted that consider non-
spherical packing arrangements. Hoang et al [21] simulated a domain of bulk chicory
roots where 3 dimensional transport of momentum, mass and energy was considered.
The bulk store of chicory roots is considered to be a porous media, and the volume
averaging technique was used to simulate storage conditions. A non-equilibrium
approach for energy and vapour content in this model allowed the moisture content to
be monitored in the solid constituent, however little detail about volume averaging of
the transport equations is given. Also, although the model does show results for a
conjugate domain, no mention of any special treatment at fluid porous interfaces is
made for any of the equations. This model does compare simulation to experimental
data, where a maximum error of 10% in measured weight loss is obtained after the

initial cooling period.

The main benefits of the porous models are that all relevant variables (mass,
momentum, energy, and mass fraction) are solved for, rather than models developed in
the past which either study a single particle within a truncated domain, or make many
simplifications of the domain. This is the advantage of volume averaging the domain,
as detailed geometric dimensions of individual items are not needed; rather the domain
is viewed as homogeneous with parameters accounting for the effects of the porous

type structure.

1.2.3 Evaporative Cooling
Heating, Ventilation, and Air conditioning (HVAC) is a large field of

Engineering with many applications. Particular interests in this field include

12
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Intake air Outlet air
(ambient) (product)

sWater (wetted
surface)

Figure 1-2 Direct evaporative cooler

Indirect evaporative cooling operates similarly to direct evaporative systems;
however the working and conditioned air channels are separated. If each channel is
analyzed, it is seen that the working or wet air channel functions as a direct evaporative
cooler, where as the dry air channel is cooled by using a counter-flow or cross flow
heat exchanger, utilizing the sensible exchange of energy through the wall that
separates the two channels (Fig 1.3). This limits the amount of water vapour in the
outlet air channel; unlike the direct evaporative design, to the initial specific humidity

of the inlet air.

Intake air

(ambient) Working Exhausted
Channel QSENSIB” O.LATEMT p a|r

Outlet air 4 Dry Q sensibie Ao Intake air

(product) channel (ambient)

Figure 1-3 Indirect evaporative cooler

Finally, dual evaporative cooling incorporates aspects from both the direct and
indirect configurations. The benefit of this approach is the ability to control the output

air temperature; as well as, the amount of moisture contained in the air. With the

14



constant refining in manufacturing techniques, these systems have become more

popular in the past 25 years [22].

Modelling of evaporative cooling cycles, where both heat and mass transfer are
present in fluid flow have followed a similar progression to the modelling techniques
developed for the food industry. Initial models were developed for spray evaporative
cooling, where airflow would be cooled in channels, through a series of plates as it was
misted with water. The modelling consisted of two approaches, the first being to
evaluate the channel as a series of small sections. Each section consisted of a volume
containing a plate, covered by water exposed to flowing air. Mass and energy balances
were considered over each element given a known inlet condition, and summed over
the domain to calculate the outlet conditions [23]. The second approach was to
construct overall balances of the system, ignoring intricate transfer inside the device
with the goal solely to predict the exit conditions [23]. Further development in
modelling lead itself into indirect evaporative cooling, where cross flow designs were
studied, considering both the primary and secondary channels. Similarly, a single
dimensional approach was taken where the specific humidity of the air is neglected,
accounting for both sensible and latent exchange in both channels through
experimental correlations for the heat transfer coefficient. To understand the effects of
latent heat transfer, additional models solved heat and mass transfer in the secondary
channel developing both sensible and latent Nusselt number correlations [24]. Again,

the primary focus of these models is to predict the output temperature of the system.

It is advantageous to use porous material in all types of evaporative cooling

designs, as in direct applications, the increased surface area allows more contact time
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between the flowing air and water enhancing mass transfer. In indirect applications, the
porous materials offer the same benefits as in the direct applications, with the
additional benefit of the ability to choose a material that can increase heat exchange
between the primary and secondary channels. The benefits of using porous material
make them desirable in evaporative cooling however makes the modeling associated

with their study, more complex.

1.2.4 Summary

Porous media models have been under development for over a century. There
have been many methods established to characterize the flow in this material. Early
studies accounted for the effects of the media by equating the pressure drop across it to
linear and quadratic bulk velocity terms. More recently, the method of volume
averaging has been used as it is able to include the effects of macro gradients due to
wall effects. The method of volume averaging is not restricted to mass and momentum,
and can also be used to account for energy and mass fraction transport within the
porous domain. This method of treating the domain allows us to simulate processes
that would normally require high computational cost. For example, using porous media
models in the food industry will produce methods of ensuring more accurate estimates
for quality control and processing conditions. Furthermore, using porous
representations of bulk food allow the overall domain to be modelled, as more direct
modelling techniques aimed at simulating individual product and fluid product
interaction would once again be too computationally intensive. This modelling strategy
is not solely focussed on one industry, as it may be extended to evaporative cooling

processes. Evaporative cooling; gaining more research interest as an environmentally
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friendly method of conditioning air benefits from the use of porous materials, as with a
greater surface area to volume ratios these material lead to higher mass and energy
transfer rates, which allows more efficient cooling than conventional spray coolers.
With these materials used in evaporative cooler configurations, the domain of interest
is best modelled using a porous media modelling approach. This allows the study of
direct, indirect, and more recent dual-stage configurations to be made, with goals of

predicting performance and air conditions.

1.3 Objectives

As stated earlier, the aim of the present work is to extend the capability of an
in-house conjugate heat/flow model to include moisture exchange such that
applications in food storage/ripening and heating, ventilation, and air conditioning
(HVAC) may be considered. Development of this model will follow the works of
Whitaker [2, 7], where the transport equations will be volume averaged throughout the
porous part of the conjugate domain. This derivation will follow a non-equilibrium
approach for species and heat transfer [4, 6, 13] as this allows more versatility in the
model. This non-equilibrium versatility is beneficial over traditional equilibrium
approaches, as in food applications; often the product’s internal moisture and
temperature conditions dictate the transfer between constituents. Although this is a
more versatile approach, extra transfer terms do exist between the constituents and the

derivation must ensure proper representation flux between constituents.

As mentioned, the potential for the domain to consist of more than one medium
type (a conjugate domain) does exist, and therefore the model must be developed such

that it can resolve any interface discrepancies in the transport equations. The works of
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Kaviany [4] and Betchen et al. [6] at the interface governing the discrete form of the
continuity, momentum, and energy equations is to be extended to also apply to the
mass fraction equations. This development will ensure that physically reasonable
estimates in the computational domain over interfaces are made for pressure, velocity,

temperature, and species as well as associated flux terms.

Though the model makes distinction between constituents in the fluid and
porous domain, the assumption of equilibrium between species is made in this model.
Therefore the water vapour and air in the fluid regions, both in and out of the porous
media are assumed to be a constant temperature mixture. Additionally, the solid
constituent in the porous structure is considered to be in equilibrium with any water it

may contain.

In full form, the general model will predict fluid flow, temperature distributions
in fluid, solid and porous domains, relative and specific humidity’s, and any exchange
between constituents. It is also developed as an un-steady model where the ability of
studying moisture evolution within the porous media over time is possible. This work
will look at the field of evaporative cooling, where configurations of cooling cycles;
both direct, and indirect as well as a novel dual stage cycle will be modelled. The
efficiencies of these devices will be evaluated at steady conditions and a comparison of

all three styles of cooling made.

1.4 Outline of Thesis

The subsequent chapters of this thesis are organized to address the above

objectives. A brief outline of the chapters are:
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Chapter 2: The governing equations for mass, momentum, energy, and species
are introduced for a single constituent medium. The process of volume
averaging is discussed where this methodology is used to investigate transport
through porous media. Finally, the governing equations for transport in the
porous part of the domain are presented in closed volume averaged form.
Chapter 3: The finite volume method for a general conservation equation is
discussed aimed at development of a computational model. The equations
presented in chapter two will be discretized for each media, where any
challenges in the model will be discussed and clarified.

Chapter 4: As the computational model is developed for a conjugate domain,
interfaces between mediums do exist. This chapter will explain the
methodology of dealing with interface discrepancies in all of the transport
equations.

Chapter 5: This chapter will validate the code as the models discussed in the
objectives section above (the evaporative cooler designs) will be modelled.
Relative humidity and temperature distribution will be analyzed where
efficiency will be used as a basis to compare configurations. The chapter will
conclude with contributions and future steps in the project.

Chapter 6: The thesis is summarized, the contributions of the thesis are stated,

and future recommendations are made.
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Chapter 2 - Governing Equations

2.1 Introduction

In this chapter, the governing equations for fluid flow, energy and mass
transport in an arbitrary porous medium are presented. Next, the definitions and
theorems that pertain to the volume-averaging method introduced in the previous
chapter are presented and utilized to develop the volume-averaged equations for the
conservation of mass, momentum, energy and species. The equations in this form will
be left in terms of pore level spatial deviations, where closure is given from heuristic
methods.

It is necessary when studying flow through porous media using a volume
averaging approach, to invoke certain assumptions about the transport in the domain.
The first is that the fluid being modeled is both incompressible and Newtonian. This
assumption is a valid one, as most working fluids in the applications of cooling or
conditioning, are air or refrigerant. The porous domain is also assumed to be spatially
periodic and isotropic at the pore level. Furthermore, the assumption of constant
porosity will be made. With material of roughly the same geometry, this estimate is a
valid one. The previous three assumptions allow the use of the spatially-periodic
boundary conditions on a representative unit cell within the domain, which are
important for closing the equations. In reality, porous domains do not have perfectly
periodic flow, but by properly choosing the unit cell, these assumptions lead to a good
approximation of the flow characteristics. It will also be assumed that the ratio of

conductive to convective resistance within the solid, characterized by the Biot number,
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is quite low. The effect of this assumption for both mass and heat transfer is that the
resistance to conduction/diffusion within the solid is much less than the resistance to
convection across the fluid boundary layer, therefore leading to a more uniform

distribution within the solid.

2.2 Governing equations in Fluid Region
The conservation of mass in the fluid region of the system assuming that the

fluid is incompressible, is of the form

dpf 2.1
R v =0 -
Although we have considered the fluid to be incompressible, and this assumption
usually warrants the transient term of equation 2.1 being neglected, this is not the case
in this derivation as the density of the atmospheric air has the ability to vary mainly as
a function of species content and temperature. Also, the velocity of equation 2.1

corresponds to the mass average velocity of the mixture.

The conservation of momentum for a Newtonian fluid is described by the well

know Navier-Stokes equations, given in all three dimensions as

PN+ Ve (o) = -Vp + pvav + pf, 22)

where pf is the density of the fluid, v the vector of velocity, p represents the fluid

pressure, p is its dynamic viscosity, and f representing a body force per unit mass on

the fluid.
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Air in the atmosphere can be represented as a mixture of nitrogen, oxygen,
argon, carbon dioxide, water vapour, and variations in other contaminates such as dust.
Dry air refers only to the components of the gas when the contaminants and water
vapour have been removed. Since the variations of these gases in the atmosphere,
generally remain constant, it is convenient to treat atmospheric air solely as a mixture
of dry air and water vapour with an error in this assumption of 0.2% [25]. The

conservation of this binary mixture is given as
+ Vu(pYav) = Ve (pf» ABVYa) + SYA,

and

P+ Ve (pf¥B) —V+ (pDBANE) + Syb > @4)
where YAand YB are the amount of water vapour and dry air present in the mixture,
DAo —DBA which is the binary diffusion coefficient and SY; represents the volumetric
rate of production of component A or B. In a single phase, the source term will sum to
zero, seen byXiLiSy,! = 0. As it is only required to have two equations to solve the
species and overall continuity equations, it is convenient to work with the first of the
two equations, the conservation of species A, as well as overall continuity in the

medium, equations 2.1, and 2.3.

Finally, considering the thermal energy equation for the fluid phase, it is

desirable to refer to the works of Bird et al [26] or the work of Slattery [2,3], where it
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Is shown for a multi-species system, the form of the equation neglecting compressional

work and viscous dissipation is

(2.5)

The last term in the above equation represents any possible sources of energy. Also,
the second last two terms on the right side of the equation, representing the diffusive
body force rate of work and the time rate of change of the diffusive kinetic energy can

be safely neglected due to their magnitude, and this is given as
! r D 1P (2.6)
|_ Pu-r=PfDiz2Auf= °

i=r = r

Therefore, the final form of equation 2.5 is

d 'PfARIA \/ihiA (2.7)
it PfAhA + Ve IPRYIVINIY — Veqf + Senergy

Decomposing the species velocity (Vj) into a diffusive velocity (u,) subtracted from
the bulk velocity (v) given as
f=v- Ui (2.8)

along with the continuity equation and the definition
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" (2.9)
i=l

equation 2.7 can be manipulated algebraically, to yield

(2.10)

= —Veqf V- energy .

with the second last term of 2.10 representing the energy transfer associated with the
species diffusion. Unlike the continuity equation, this term will not sum to zero when
summed over all species due to the differing enthalpies of specie ‘i’. Throughout this
analysis, the assumption will be made that all enthalpy is independent of pressure,

given as

h = h(T), (2.11)

and that the heat capacities of the fluid are constant. This latter assumption is
reasonable for dry air and water vapour over a temperature range of 263.15 [K] to
323.15 [K], as it yields an error of less than 0.2% [25]. With these assumptions made,

now enthalpy can be represented by

h=CPT+he, (2.12)

allowing equation 2.10, with the further use of Fourier’s law, to be expressed as
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(2.13)
(cp)f{"(pfTf) + V-(pfvT)}

= kiVZTE—Ve  pfUih,j - hO~ (p FYF)

+ Senergy
where the mixture specific heat, is expressed as the product of each species specific

heat and the content of the individual species in the flow, seen as

zZ p
T" (cp)j = Ya(cp)a + Yb(cp)b,
i=iFf

and the term associated with the energy transfer due to diffusion of species, simplified

with the use of Fick’s law for binary mixtures, is given as

(2.15)

This gives the final form of equation 2.12 as,

(cp)f{ " (pfTf)+7-(p,vT)} (

= kfV2Tt

+ V « (Pf(DABhNAVYA+ DabhBVYB))

—ho  (PFY) —V ¢ (pfvh0) + Senergy .

In the solid region, the energy and species equations take the form of;
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(2.17)

and

(2.18)

= ksV2Ts + Ve A BDBIMY))S + Snergy -
i

where the species diffusion term may or may be included or not, depending on the

application. Neglecting this term leads to

(2.19)

and

(2.20)

energy m

Separate equations govern transport for species content and energy in each region such

that the process of volume averaging may include the effects of local non equilibrium.

2.3 Governing Equations in Porous Region

2.3.1 Volume Averaging

Volume averaging is a method whereby the differential equations given above,
equations 2.1, 2.2, 2.3, 2.18, 2.19, and 2.20 are scaled such that they are representative
of bulk flow through the porous region of the domain. This method was derived by

Whitaker [2] and Slattery [3] independently in 1967. In the method of volume

26



averaging, an averaging volume V within the porous domain is associated with every
point (both fluid and solid phases) in space, and allows an average value to be defined
at every point in space. An example of an averaging volume is shown in figure 2.1a,
where there exists an average value of property \[/f assigned to its centroid, located by
position vector Xf, and integration over the volume is carried out with respect to the

position vector yfwhich will be represented as,

(2.21)
VEXf=y J yf(xf+ yf)dV|Xfryf(
vf
or in a form that is more convenient to write,
= (2'22)

vf

which represents the superficial average of property \/f. In the latter notation, it is
implied the average of quantity (\|//f) within the volume is associated with the volume
centroid and that its integration is carried forward with respect to the position vector
xf + yf given in the former definition. Also, it must be mentioned that the averaging
volume is to be much smaller than the overall system being studied in order to resolve
macroscopic changes and not lead to artificial smoothing. However, the averaging
volume must be large enough such that any further increases in the volume do not lead
to rapid changing of property \[/f, yielding a stationary average. This procedure of
selecting an appropriate average is shown in figure 2.1b, where it is seen that the

average value (yf) varies less as the averaging volume increases.
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Figure 2-1 a) control volume associated with averaging and position vector located with its
location b) plot of averaging quantity (i|/f) with increasing averaging volume V

Once again, a notable mention with regards to the above definition, is that the
volume average of a transport variable (equation 2.22), is associated with the centroid
of the volume. Therefore integration in the volume is carried out with respect to the
components of relative position vector x{+ y{ , and cannot generally be considered
constant within the averaging volume. This is mentioned as it relates to the evaluation

of spatial averages of volume averaged quantities.

In developing the set of volume averaged transport equations, the introduction
of the following theorems and definitions are necessary. To begin, the extrinsic or
superficial average of a variable in the fluid phase is defined in equation 2.22. An
extrinsic average of a quantity in the solid phase can be defined following a similar

definition and will be represented by (\/s). Another type of average is the intrinsic

average, defined for the fluid as

B (2.23)
amf= [ Fdv,
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undesirable to have the volume average of the gradient or divergence operator and is
more favourable to be presented with the derivative of the averaged quantity.
Therefore, it is useful to present the following spatial averaging theorem [2], which can

be shown in two forms, first to transform the average of the gradient

and secondly, to alter the average of the divergence operator such that it becomes the

divergence of the average value, seen as

Alif>= Vesyf>+ i | \(f +ndcA (2:30)

JAs

In general yf in equations 2.29, and 2.30 can be a scalar, vector or tensor of second
order. The unit normal n given by definition is defined to be from the fluid phase
directed at the solid phase. Again, the above definitions can also be applied to the solid

phase.

When volume averaging the given transport equations, it is undesirable to
volume average the product of multiple variables which may appear. In order to
accommodate this difficulty and move forward, it is useful to follow the type of
analysis used in turbulent transport, where in time averaging, velocity is decomposed
into a time average and temporal deviation [2]. Therefore using a similar analogy, it is
useful to decompose each transport quantity when volume averaging a product into the
sum of its intrinsic average and a deviation from that average, which will be declared

as \Jif. This can be stated for a general variable in the fluid region as
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Vf= <Vf)f+ Vf- (2.31)

and is identically defined in the solid region. The decomposition is then used in the

volume average of the product of two variables \pfl, and \/f2 to give

MIM2> = «v 2> >+ (<risfviz> + <ifl(vi2f) (2-32)

+ <MiVi2> »
Using equation 2.25 the first term of 2.32 is represented as

<SVL,>WU =\ j MfA> XAV [N, (2'33)
\Yi

and if we ignore the intrinsic average of the variable within the averaging volume, we

obtain

ANFRVRFL, = QFIfisf<d> = <Ifisfsfe- (2-34)

Under similar length scale constraints of t « L, equation 2.32 becomes

ARV = (VIFMR)fe + <VA)(¥F) + <H)QVI)F  (2-35)

+ (VFI¥12) o

It is consistent with this simplification to set the average of the spatial deviation equal

to zero, seen as (ijif2) = 0 [2]. Therefore in its final form, equation 2.35 becomes

QUffiVI2>= QFI(Vi2fe + <¥fIVA2) - (2-36)

which is written in terms of intrinsic averages. A similar expression is stated in terms

of the macroscopic averages of \|/fl,\/2, where with the use of equation 2.27, equation
2.36 is manipulated to become
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1 (2.37)
QAfiViZ> = QUIM2>E + <¥fIVi2>m

The preceding theorems and definitions allow volume averaging of the transport
equations to be accomplished. The following sections will now derive the equations for
transport of mass, momentum, energy and species in a porous domain given the above

averaging techniques.

2.3.2 Volume Averaging of Continuity, Species and Momentum

To obtain the continuity equation, we will apply the averaging theorems above
to the mixture continuity (equation 2.1), where the possibility of a mass source exists
in the fluid region as we consider the solid region to be colloidal, meaning the surface

contains moisture in a thin layer. Therefore

(2.38)

and examining each term individually, gives

(2.39)

where w enfs represents the speed of displacement of the bulk fluid and solid

interface. Furthermore, the convective term becomes

(2.40)

and combining the two yields
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d(pf> .
gi , V- enfsdiZ= 0. (2.41)

The superficial average of density in the accumulation term is then re-arranged using

equation 2.27 to give
<Pf>= 6<Pf)f (2-42)
and the convective transport term decomposed by using equation 2.31 to give
pf = <of}f + pf,and (2.43q)
vf = (vf + vf,and finally (2.43b)

2.43
deé;%f)f_l_ Ve (phf(v) + Ve (pfvf) (243)

+\ [ Pf(v- w) enfsddZ
V J*fs

It is mentioned that the convective term is expressed in terms of the superficial average

velocity, according to the following analysis:

«P)f(>f>= (pff(W)f(l) = <pfy'<v>fe = (pHf(v) (2.44)

The quantity pfvf is known as the dispersive flux of mass, and while the dispersion

terms are often considered to be important in the species continuity equations, this term
will be neglected in the total continuity [27]. The interface is assumed to be rigid as we

will neglect any shrinkage due to water loss. Using this along with the no slip
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condition, v = 0 on the interface, the integral term in equation 2.43c simplifies to zero.

Therefore, in its final form, the mixture continuity is represented as

de(pf)f 2.45
(pf) £V e<plav> = (M)fs, (2.45)
dt
where (m)fs in this work represents a source term due to the surface of the solid

containing a thin non-varying film of vapour.

Next we will use volume averaging on the species continuity equation

(equation 2.3) and this is given as;

(2.46)
+ /m(p,Yav)> = (Ve (pfDABVYA> + (SVA>.
Once again, we will address each term individually, where the transient term of
equation 2.46 is manipulated similarly to the transient term in the total continuity
equation, becoming
LA a<p/(YAf (2a7)
( dt | dt

and again it is assumed the interface displacement is zero. Next, we will examine the

convective term, where volume averaging leads to

(V+ (pFYA)> = Ve (pfYA) + A (2.48)

[ nfse(pfYAv) dcA,
v JAIS

and the spatial decomposition for density, mass fraction, and velocity are used to yield
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(V e(p,Yav)> (2.49)

= Ve (e<pffafast) + Ve (<pfSfAs) + V
o (<PWV)(YAN) +i f nfse(pfYAy) dA .
S
Finally, the diffusive term of equation 2.46 will be examined giving

(V « (pfDABVYA> (2.50)
= Ve (pDABWYA) + - [ nfse(pfDABVYA) dcA
VJIAR

and with use of the decomposition of density for the first term on the right side of the

equal sign, this gives

QDABWAS= «pf)DAIVYA>+ piDABWA) , (2.51)

where the variations of (pf)fand ©AB are neglected within the averaging volume [27],

in order to obtain

<P, BABWYA>= (p,>fBABVYA) + <piDABWAS>. (2.52)

It must be clarified that although the variation of Z2B and (pf)f are neglected within the
averaging volume, these parameters are not necessarily constant, as this simplification
does allow variations over the macroscopic region. The averaging theorem is then used

on the first term to the right of the equal sign of equation 2.52 to obtain

(pfADABVYA) = (pHfOAB('7<Ya>+ 2 f nfsYAdA \ (2.53)
\

v Ufs

where once again using the decomposition leads to
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(2.54)
<Pf)'»AB<VYA>= <p/DAB(v<Ya>+ i £ nfsYA

and finally, the terms above are combined giving
<PIRABVYA) (2.55)
= (PHI®AB(va) + —\] nfSYAd<A"

+ (pf®ABYA) .
Decomposing the last term in equation 2.55, and invoking certain length scale

constraints [27] gives

(PrabWa) = (pfR)ABWA), (2.56)

where Whitaker and Carbonel [28] show that
Wa < O(V(YA) (2.57)

and that it is also plausible to assume that the spatial deviation density is constrained

by

Pf « ( PR (2-58)

With equation 2.57 and 2.58, equation 2.56 becomes

<PEARABV(YA>» <pfDABVYA>, (2.59)

where finally (pf2)AB*YA) is simplified to
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. (2.60)
<P,®abVYa>= <pf)fDAB (v<YA>+ i £ nfsYAdc4) .

The final form of the complete diffusion term from equation 2.50 is simplified to be
(V « (pR2)ABVYA) (2.61)

= V' (pf)f® AB (v <Ya>+ —J nfsYAd<A

+ 7] [ ttfg (pfT)ABAYA) dc/Z.
VJ'Afs

The surface reaction known as absorption/desorption is represented in the last term of
equation 2.61 and will be designated given as (m)fs. The total continuity of species A

with the no-slip condition applied, as in total continuity, is expressed as

2.62
d(pféft(Y A)f+ V o (B<PiAS) (262
=V

a( (pHABVYA+ RIEE eva
s

- <PhfYAY) - (pfv)(YAF) + ()™

where written in its final form, similar to the expression developed by Kaviany [4]

9(pf>f(YA)T (2.63)

+ Vo (e<pffyastasf)

at
= V-De(fA(pff -V<YA) + (m)fs.
DeffA represents the total effective mass diffusivity tensor, and represents the

combined effects of the effective diffusivity and dispersion in the fluid, represented by
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dispersion
DeffA - DABgff + Dap’ (2.64)

The continuity for species A within the solid constituent is found similarly to equation

2.63, and given as

5<Pf)s<¥A)s

£f— a N =v

2.65
Defs, A<Pf>s «\KYa)s - e (2.65)

Finally, volume averaging of the momentum equations (equation 2.2) leads to

(2.66)
+ (Ve (pfw)> = <Vp> + (pVav) + off),

and again noting that the solid constituent is rigid and given the constraints of the
density and velocity deviations, the transient term, similar to the species continuity

equation is re-written as

IdpfA _ d(pff(v) (2.67)
\dtj~ dt -

Next, averaging the convective term with the use of the spatial decomposition leads to

(Ve (pfw)> = Ve (<phf(v)(v>f) + Ve ((phf(w>), (2.68)

where the last term on the right of equation 2.68 only exists, if a macroscopic gradient
in the flow field is present. This is the case near bounding walls, where the
macroscopic convective term does not capture the additional momentum transport of

the interaction of the pore level deviations with themselves.
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Volume averaging the pressure term, and expressing the pressure in terms of

the intrinsic average leads to

(Vp) = EV(p)f+ —  pfsp de/Z. (2.69)

JAs

Once again, the spatial decomposition for pressure is used for the integral term

(Vp) = BV +1 ( nfs(p)fdz+\ f nispaoz 270
Vs V I
and using the length scale constraints that 1«L, then
(2.71)

(Vp) = EV(p)f+ A~ [ nfsddZ+ " f nfspdc/zZ,
JoAls JHs

where it can be shown by setting ip = 1 that the fist integral term simplifies to zero,

assuming no variation in porosity and making use of the spatial averaging theorem of

equation 2.29. This is shown as;

(V1) = V(1) + 1 [ (hnde/z (2.72)

vV fs

Or with further simplification,

(2.73)

The pressure term in the momentum equation is now expressed as
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(Vp) = EV(p)f+i f nfspdc/z. (2.74)

vV s

The last term on the right side of equation 2.74 represents the effect of pore level

deviations causing an additional pressure force. The viscous term is handled similarly

to the diffusive term in the species equation, which leads to
(PVav) = pVe<v) + /A / pfs * Wdc/z, (2.75)

JAS

where the integral term accounts for the additional viscous forces at the fluid solid

interface due to the no-slip condition, and the first term accounts for the macroscopic

velocity gradients due to, for example, macroscopic boundary layers. Therefore the

momentum equation is stated as

dpf)y) + 1y . ((pPH(V>) + Ve« ((pHT(vv)) (2.76)

= -EV(p)f + pV2(Vv)

where | represents the unit vector.

2.3.3 Volume Averaging of Energy Equations

The energy equations will now be averaged for both the fluid and solid
constituent. The equations are volume averaged with many of the theories and
simplifications demonstrated in the continuity, species and momentum equations and
are averaged under the same length scale restrictions. With the use of equation 2.16,

this leads to
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Q

(2.77)
<N (Pfhf)> + (V- (pfvhf))

= -(V mg>“ /+(Z PfYiui®)> + “energy)

As in the governing equations for the fluid above, the enthalpies are represented using
the form of equations 2.9, and 2.12. Therefore the transient term with a rigid interface

becomes

(2.78)

t/

where the last term on the right of equation 2.78 represents the sum of each species

<h'1

reference state enthalpy. Noting that the heat capacity and reference enthalpy of
species ‘i’ remains constant, the first term is re-arranged using the spatial

decomposition to yield

(2.79)

=Z E(Q)f)Ji <PV + Z (Cp)f.i|(PtITE>m

where the final form of the transient term is

(2.80)

—Z_ (£(cp),,ir(<PF.i>f&f>f) + Eh° [<PfJ>"
|

+ (ep)f <PfA>)-
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The convective component with the no slip condition at the fluid solid interface is now

manipulated to give

. : (2.81)
A/« (pfvhf)) = 2 Ve<Plv(cp)fITE>+ £ Ve<hfpf,v>,

where the specific heat, as well as the reference enthalpy of species i may be taken out

of the integral to yield

i i (282)
(Ve (pfvhf)) = £ (¢ p)fiV e (pfivTi) + h?V « gfiv)
[ i

Using the spatial decomposition, and keeping in mind that deviation terms are

constrained by
Tha (T Pfe<pft v < O((v)f), (2.83)
the convective term becomes

(V+ (pfvhf)) (2.84)

= ZA (o)v
w(<P>f (v>(TEf + (pfIXf<Tiv) + <PRV><T»f)

+ hfV- (<pf >f >+ <t v>)}.

The conduction term is averaged and presented as
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Veqf) = (kfV2TY) (2.85)

- Vekf(V(TF) + — i nfsTfdo/z
vUfs

with the last term in equation representing the conduction per unit volume through the
fluid solid interface. Finally, the energy associated with the diffusion of each species is

given as

n

=2 {(op),v=PliuiT>+ h°v m<Pfiui>}
i=I

47 (@) ER)

+\ mes nfs- (h? (PfjUi)) d<4‘1] :

where the last two terms in equation 2.86 represent the diffusion of energy per unit
volume through the fluid solid interface due to species transfer. The second term after
the equal sign of equation 2.86, within the first summation bracket is identical to the
diffusion term in the species continuity equation (equation 2.63) and volume averaging
it will not be re-iterated. The first term following the equal sign within the summation

bracket of equation 2.86 is decomposed to give

(pfiUjTE) = (pfivi(THf) + (PFjUjTF) (2.87)
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Each term on the right side of equation 2.87 will now be examined individually, where
Fick’s law will be made use of to simplify pfiuj. Ignoring the variation of (Tf)f within

the averaging volume due to length scale constraints, the first term becomes
Jflu,a» f>= <flu,) 0» f = PDABVY,)<TES. (2.88)

Using the same arguments as in the species continuity equation (equation 2.87),

equation 2.88 is simplified to
(PfDABVYi)(Tr)f (2.89)
= Dab [<PHf(v<Y,>+i £ nfs7, AA) (TK
+ PVYD<T>] .
The second term in equation 2.87 is again converted using Fick’s law to be
GfiUITH) = (p"ABVYJ). (2.90)

The spatial decomposition of density is now needed, where neglecting the deviation of

(pHf and Dab within the averaging volume once again gives

<DABVY,TE>= DAR((p(FVY T+ <pfVY.TR)) . (2.91)

This process is repeated once more for the gradient of the mass fraction to give
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(PfDAeVYiTf) (2.92)

= Dab (<PEXVRYIIO» + <pf<VY,TH)
+ PTBVLY ) + (p HVYITE>).,

The two components of equation 2.88 are re-assembled and this takes the form

. (2.93)
<Pfu, Tf>= Dab {<P(>f (v<Y,> + nfsy, j <t»

+ <PIVY,)(TH|

+ DAB{(pHfVYSI<TT) + (pffWY,TI>+ (pfTI>WY)f

+ <piVY, T}

Using the constraint on deviations terms, given by
Th« (THE  pfe« Bt WY, < O(V(Yi)f) (2.94)

allows equation 2.93 to be simplified to

(PAUTE>= Dab [<PEA (<Y + sy, ) SOR), @9

Finally, the energy term associated with the diffusion of species is given as
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(2.96)

e

o it + 2T il + he(pAfvYA)

The energy equation for the fluid phase is now presented in its volume averaged form

(2.97)
cp),.i| (<?«>"'«T»") + <P«>f) + | fto»v " ((P fl«™ ")
+ h2V-((pfl>'(v>)}
m(skfvm '+~i nfsTf a- (Cp)fI<PrIXF(THV) - (cp) f. <pflv><THf
(s kfvm e (Cp) (TfV) - (cp)f.<p
- hp <FfV)*
) ®AB(Pp)fj(pHf(7
+ EGAB(cp) fi<PRNYI)F<TRS + IO | iz
£ v NA S

+ £©ABhr<pf>fV<YI)f+ -- ¥\ (pl) f nfsYiddz + A f nfs: (kaTf) de/z
Vo B VIa

n

; | _ "
z {7 nsme(W o (pfiu'Tf)) <m*+ ~ wm(h?(pf.i"i))d™} -
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where the constraints of the temperature and density deviation have been used to
reduce the transient term. The same procedure in volume averaging the solid phase

energy equation is preformed and given as,

Il
z ((1 +(1- EKA<PSXH &%)

= Ve((L- £)ksV(Ts)s- ~ £ nfsTsdZ

n

i=l
®abps(cp)sl<7s>s

(1 - €)2)ABps(cp) \RYPs<Is) vV &Snstid<A

®ABNP

+ (1 - £)DABPShV(YI): v ’ I Esticb’Z uqﬂsnfs-(ksVTs)cUZ

~ X (VL us ((Qos,i (PsiUiTs)) dca

+h f, nfsm(hf (psiui)) do"

where the fluctuations in total density are not considered within the solid phase and it
Is mentioned that the direction of the normal nfS is represented in the negative sign in

front of integral terms.

2.4 Closed form of equations

Although the equations presented in the above sections are volume averaged,
they are not yet useful for a macro-scale computational model as terms exist that
require pore level resolution. Heuristic closure is studied in the works of [2, 4, 5, 6, 7]

where these terms may be grouped together and correlations used to represent them.
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This is not the aim of this work, however the closed form of the equations will be

needed for chapter 3, and therefore all equations in the porous region are given as:

2.98
DT Veeniw) = (nys (%)
at
(2.99)
e O<PIGIYA + 7 ' «PR)f(YAS<v» = Ve V'fU(pty BM(Ya>+ <>
i 2.100
Ef'_(_e\f)f_(_\f) + I\/ - «tp ft)f(v)<v))|\I ( )
= ev(p)f+ pava) - of- B E i)
+ Ephff
(2.101)
7 (HO( «([RAT + s R
V-(<pu > (v>(TF>)
i
+ hfV-(<pfi<v>)}
= Va(ekeff AT
+£ v ~[Deff(cp)f.(PRAV (YT + D efffhe(pBv(Yi)f]
i=l
+ hfSAfs ((Tf)p —(Tf)p) —hAATS<hi}fs,
2,102

(1 - 6) 3<Pfg(YAS = V mBeffs<ps>s «\fYa)s- (n,)fc
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(2.103)

= Ve(d - 8)kefisV(Ts)s)
2

Fy Ve[(i- e)de pos(asw w
+ (1 - £)DefS <Pxi)s h°V(Yi)s - hfsAfs((Tfp - <TBE) + hAdfs<hi)f

where momentum has been heuristically closed using the familiar Darcy and
Forchheimer terms, and the effective components keff and Tff in the species and
energy equations account for the stagnant portion of diffusion and may also account
for the effects of dispersion. This formulation of the governing equations is limited to
applications where correlations for the effective properties and the additional

coefficients have been studied, as heuristic closure determines these parameters.

2.5 Summary

A complete set of equations for continuity, species, momentum and energy
conservation have now been presented for the fluid, porous and solid regions. In full
form, the equations contain terms that require information about pore level fluctuations
which is not the goal of this work nor is desirable. In fact, the method of volume
averaging was developed to avoid computations of pore level flow and thus, these
terms must be eliminated. The method used to close these terms is described in the
literature review section where the equations are shown to be heuristically closed. The
next chapter shows the numerical implementation of the closed form of the transport

equations presented in this section.
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Chapter 3 - Numerical Methods

3.1 Introduction

This chapter describes the numerical methods selected to solve for the governing
equations derived in the previous chapter. Initially, the discretization of a general transport
equation, including the transient, convective, and diffusive terms will be addressed using a
finite volume technique. Additionally, volumetric source terms may exist in these equations
and their general discretization will be presented. The finite volume implementation is
chosen as a discretization method, as it has the advantage of being fully conservative. It is
assumed that the generalized form of the discrete equation presented up to this point is
developed under the assumption of a known velocity field; however in general, the solution
procedure requires that the flow field be computed. To solve for this field, the continuity
and momentum equations are also developed using the general finite volume discretization,
however the development of these equations require special attention as both pressure and
velocities are unknown. This special treatment is demonstrated through the concept of
pressure-velocity coupling, as it is used to maintain coupling between the continuity and

momentum equations.

Having established a finite volume approach for a general transport equation, this
methodology is utilized to discretize the mass, momentum, energy, and species
conservation equations. Each transport equation is presented in its discrete form for the pure
fluid, porous, and pure solid domain types, where focus is brought to any additional terms
not seen in previous models. These terms are attributed to the water vapour component of

the air mixture.
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To conclude this chapter, the solution approach to the system of equations is
presented, focusing mainly on any modifications encountered due to the addition of a mass
fraction equation. In this section, explanation on how the assembled matrices are solved is
given. Additionally, it is shown how parameters dependent on the solution field are re-

computed, and finally tolerance criteria that govern the solutions are explained.

3.2 Discretization of a General Transport Equation

The computational fluid dynamics model implemented is based upon the finite
volume discretization described by Patankar [29]. This method subdivides the domain
into multiple control volumes that do not overlap. The transport equations listed in the
previous chapter are integrated over a control volume and solved at discrete locations,
as opposed to all locations in the domain. There are benefits to choosing this method
over other finite techniques. One benefit being is that there is integral conservation of
all quantities over each control volume, each group of control volumes, and the entire
domain irrespective of the number of control volumes used. In this work, the domain is
subdivided into orthogonal hexahedron elements, and is discretized using a structured

grid framework shown for two dimensions in figure 3.1.
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Figure 3-1 Discretization of a two-dimensional structured grid, where the central grid P’ is
neighboured by West (‘W) ,East(‘E’), North(‘N’), and South(‘S’) nodes. Common faces are
classified as integration points denoted by smaller case

To begin, a general transport equation is given as

B 7 wpo = 7 i £ sy, O

2 3 4

where pf represents the mixture density of the transported fluid, ip represents a generic
transport variable (for example Y}, T; ), V represents the diffusion coefficient, and Sv
characterizes any volumetric sources. Beginning with the transient term of equation
3.1, the implementation of a first order backwards difference is used. The result is
integrated over a discrete volume V, where it assumed that the value ip is represented at

the centroid of the volume VWP, and is constant over that volume. This procedure is

given as,

dpfip  ifp~ vpld,, .. \ip- wp9 (32
/ WEPET 0 MR

dt
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where MVP is the mass of control volume P, At is the time step, and superscript ‘old’
represent the former value of i|/P from the previous time level. It is noted that the
discretization will treat terms associated with WP implicitly in the coefficient matrix,

and remaining terms will be expressed explicitly within the source term.

The convective term in equation 3.1 is first transformed from a volume integral

to a surface integral, given as

(3.3)

The surface integral is now integrated over all external faces of the hexahedral control

volume \P stated as

nf (3.4)

i=I
where rhi represents the mass flux through each of the integration points. In the case of
the grid structure chosen in this work, ‘nf (number of faces or integration points)
corresponds to the ‘e, w, n, s, t, b’ faces, and this was illustrated in two dimensional
form and previously shown in figure 3.1. The value of i/ in equation 3.4 at the
integration point must be approximated using an advection scheme. A first order
upwinding scheme is selected as an implicit method of predicting i|/ at the integration
point, as it is stable and therefore well suited for the advected values. This is shown for

the east face of the control volume as
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1+ ae 1 —ae (3.4)
te = —2—"P+—2--—--
where ae is a parameter used to determine the upwinding direction of the flow at
integration point ‘e\ This scheme does lead to erroneous results under certain
conditions, and in this work, higher order schemes are used to improve accuracy, and
reduce errors associated with upwinding. Many higher order advection schemes have
been formulated to predict integration point values in computational problems [30, 31,
32, 33, 34], Advection schemes of particular interest due to convergence properties,
and spatial accuracy of up to second order, are total variation diminishing (TVD)
schemes. These schemes are desirable for stability and non-oscillatory behaviour
because they have been designed to be preserve monotonicity. Monotonicity
preserving schemes are such that the total variation of the discrete solution should
diminish with time and these schemes ensure this by the use of limiter functions. TVD
Schemes that have been implemented in this work follow the limiters developed by
Van Albada [32] and also Venkatakrishnan [33]. While these schemes were found to
give stable non-oscillatory solutions, the monotone upstream-centred scheme for
conservation laws (MUSCL) limiter was chosen, as it produced comparable results at a
lower computational cost [34]. The MUSCL limited scheme is defined for the east face

as,

(3.5)
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(l/p - 1JE) (3.6)
= - forrhp< 0
Hl = AxpE p

where the limiter is a function of the Sweby factor (r) at the integration point. The
Sweby factor is defined as a ratio of upstream to downstream gradients. The limiter is

defined as

r+|r| (37)

= <Drle) = i

for the MUSCL scheme. The implementation of higher order improvements to the first
order implicit scheme is implemented through the use of a deferred correction (DCj),
where the difference between the higher order and first order estimate is calculated and
added explicitly to the system of equations. This method is utilized to avoid the
possibility of calculating negative active coefficients in the discretization. It is shown

for the east face as
mev/e = mei|ieDS + Priie(i”™e0S - iiieDS) , (3-8)
where the explicit correction for the east face is
DCe = prhe(4r¢os - iI™DH) . (39)

The variable P is used as a blending factor if needed, and superscripts HOS and UDS
represent the value of ipj at the integration point predicted using both the higher order

and upwind difference schemes, respectively.
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The diffusion term will now be discretized using the finite volume method. The
divergence theorem is used once again in the diffusion term to convert the volume

integral into a surface integral, given as

nf (3.10)
i=I
It is important to note that Anf is the area of the face at the integration point. The
gradients at the integration points are easily computed in regions of similar type
(example; pure fluid), however this term will be discussed further in section 4, where

values at the interface of multiple domain types (example; fluid-porous) are computed.

The final term of the general transport equation (equation 3.1), represents
volumetric sources. This term is discretized by directly integrating the volumetric
source over the control volume, given by

(3.12)

\%

Each transport equation is discretized over finite volumes in domains of similar type

(pure fluid, porous, and solid), and this is shown in figure 3.2.
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orous region
olid region
luid region

Figure 3-2 Discretization strategy in domains of similar type (pure
fluid, porous, solid), where each region is discretized as a
continuum

Unlike the general transport equation presented in equation 3.1, the momentum
equations also contain pressure terms. Pressure and velocity will be detailed more
carefully in the following pressure-velocity coupling section, however at this point, the
pressure term is treated as a source term, and is discretized following the procedure of

equation 3.11, which leads to

J1“VVpdV = (Vp)|p W. (312)

The discretization of all terms in the general transport equation leads to the general
formation of the discrete equation, given as

nnb (3.13)
apli/jp —" “nnb4*nnb + bp

or,
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nnb

aP«iljp =~ annb «ilinnb + bP,

(3.14)

where i|/ and i|i represent the scalar and vector form of the transport variable. Similarly
aP and annb; as well as aP, and anmb represent the active coefficients both in scalar
and matrix form at the cell centered value of \jj and i|r. It is noted that the summation is
performed over all neighbours; represented by ‘nnb’ (number of neighbours), of the
central ‘p’ node. The momentum equations are a special form of the above systems as
ipp in three dimensions is represented by all three components of velocity and a
pressure term. This system is underdetermined as no equation for pressure exists.
Therefore in order to seek a solution, the continuity equation is made to contain

pressure and this leads into the topic of pressure velocity coupling.

3.3 Pressure-Velocity Coupling

As stated in section 3.2, the continuity equation and momentum equations are
coupled and maintaining this coupling is important as the pressure term for
incompressible flows does not appear directly in the continuity equation. Therefore,
pressure must be expressed in the continuity equation appropriately. To explain this
idea further, the pressure field is correct when it drives velocity such that mass is
conserved. It is noted that even with pressure being included in the mass conservation,
care must be taken when specifying where the values of pressure and velocity are
defined. For instance, if both are specified at the same location; the centroid of a
control volume, the possibility exists that a highly non-uniform pressure field could

appear as a uniform field in the discretized momentum equations without being

58



detected. Methods have been developed to maintain the coupling between the

continuity and momentum equations.

One such method is the staggered grid approach developed by Harlow and
Welch [29]. This concept is to solve the scalar variables such as pressure, temperature,
etc., at standard volume nodal points while solving for velocity components on a
staggered grid centred about integration points. This method is well established
however it requires extra indexing and geometric information about the velocity
components, and additional interpolations regarding these components. The additional
parameters obviously make two and three dimensional problems quite complex as an

additional cost is presented in storage of these staggered quantities.

Another method is that of Rhie and Chow, where coupling is maintained using
a collocated grid. Essentially, the advected velocity meue in the x-direction is obtained
from a different equation than the advecting velocity me = pAeiie. Where the east face
velocity ue is obtained similar to any advected scalar and ue is obtained from a special
momentum equation. Although these two parameters come from different equations, it
is desirable that they solve to be approximately equal to each otherue * ue. On
collocated grids, a direct solution where pressure and velocity are solved as a coupled
set; or a segregated solution, where each are solved separately, may be formulated. In
this work, the direct solution method is chosen to solve the coupled set of equations.
For the formulation of collocated method, the partially discretized equations for

continuity and momentum in the fluid region are presented as;
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(uP -

nf 3.15
(Pfp - PP VP | 5:49)

At
1=1
Up)pfpVvp , (3.16)
At

= -(Vp)IPW +~ LIf(A™)  + pRpVpfp,

noting that equation 3.16 is obtained by subtracting equation 3.15 from the discretized

form of equation 2.76 to ensure a conservative method.

In developing an expression for ue, momentum must be conserved over a

virtual volume, centered about the integration points within the domain. Beginning

with the conservation of momentum for the ‘x’ velocity component, equation 3.13 for

the ‘P’ node is written as

nnb . (3.17)
aPUP —." annbunnb + !Jp — Vp

Up

and likewise for the neighbouring volume,

3P (3.18)
aEUE — Ue _ :

By analogy, the advecting velocity at the integration point is found using a similar

expression,

d )
aeae = ue - _p e\ (3.19)
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where ae,and \eare the active coefficient and volume associated with the virtual
volume. The inverse distancing approximation is then made for regions of similar types

(fluid, or porous) that,

[AXeEw AxPe@ (3.20)

U=W"piz R
It is also approximated that ae = -1(aP+ aB and Ve:-J(V P+VE) and finally

simplifying that aP « aE« aeand VP« VE« VB, the final form of equation 3.19

becomes

IAXEE ~ AxPe > (3.21)

WP dp '‘AxeE dp AxPe dp
aP Ldx <Axpepr’\AxpedXJ

Or in more concise notation [6],

b e dp ID- (3.22)
ae UXe dxe

where superscript ‘ID’ represents an inverse distancing approximation. Here, the first
pressure gradient term is approximated using the values surrounding the east
integration point and is treated implicitly in equation 3.15, whereas the second gradient
is deferred and approximated using the inverse distance of cell centered values at nodes
P and E. These two methods of representing the pressure gradient will be almost equal
in a converged solution however they serve to smooth out any oscillations as the

solution procedure progresses.
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Similarly, this method carried out in the porous region, noting that the
discretized momentum equations in this region differ in form than that of in the pure

fluid region (equations 2.15, and 2.16). This is presented as;

, o nf (3.23)
E((Pp ™ (POPIVP L A i =\t
+ rhi = Vp<hi)fs

nf
- . N (3.24)
u)p (lti)( )pVp z Y«u)i - <U)H

PfVp

= -<v(p>0lpvp+£ w(a”™ ) K <OP

i=1 \Y 7

E<pf)\MCE

k 1WplWp + (ppVpfp

where e in rhj is replaced with ({i)e and equation 3.17 with

aP(u)P = (u)P- E.dzz)f Vp. (3.25)

Using the same procedure implemented to derive equation 3.22, gives an

approximation for the advecting velocity in the porous region [6], seen as

Eve d(p)f  d(p>f > (3.26)

ae Ox _dx

e = 4HD-
where the correction term is multiplied by a factor of porosity.

3.4 Discrete Form of all Transport Equations

To complete the set of discretized equations, the closed form of the species and

energy equations specific to each region of the domain, are discretized. All discrete
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equation presented, have been treated similarly to momentum, where the continuity
equation multiplied by the transport variable at the P node are subtracted from the

discretized equation. This is presented in final form as:

Fluid Region
_ (3.27)
e YAF;)pfpVP+2 > (Y-Y p)=i>(pfA |)
i=l i=l
PEDVD \y (3.28)
o YX:l{M tyV P - TP)+ 2 (WP" WP}
ns nf
AN (o p) + V)}
Y=1 li=|
" . 3YE
=S K(Ainl+S, Ci{ANPan
Porous Region
EcYa)E- Abp)<pbbVp+r  (<Ya), e ) (329)

_S"._K»¥) + Vp<hAsfs

=1

63



™l (3.30)
EVp(pf) |
At 2 {(ep)fvAp ((Thp - TP>P°) + h? «Mp - <V p0)}
Y=1
ns nf

+7 * i (ep)fy(Yy)p((TRL (Tf)p)

y=1 1=1

+ hy((YW>L- <))}

+ hiSKfsvp((Tflp —(Tp) - hAVRnAYs
(I-£)«Y Aop-<Y AR0)(pPp\P (3:31)

At

nf

. le,efffA(Pf): d(gﬁ)s - VP(nA)fs

I= '
® (- 9<phswb (3.32)
| " {(cp)sy{YD[«Ts)| - (Ts)p°)

Y=1

+ h2«YT| - (Yy)pO)i

nf (A ) A3(T9S
— S,e
|Z\ dn

+

A(Ps)Shy

- hfsAfsVp((THP- (THp) - hAP(NAs

A variety of reaction types can be defined in the reaction term (nA)fs. As stated in the

previous chapter, this work considers only a heterogeneous surface reaction between
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the two constituents present (solid and fluid). Models tend to assume that the solid
surface reaction rate is kinetically controlled [10], meaning concentration of species
‘A’ is approximately uniform and there is negligible diffusion resistance of that species
reaching the surface. In keeping a general derivation, for the purpose of looking at
lower velocities or larger particle size in the case of food storage, where (YA)s differs
substantially from (YA)| and the deviation of (YA)f is under investigation, the surface

reaction is given as [4, 35, 36];

3.33

S (3:33)
1+ .1

<n)g (PKS

Equation 3.33 represents a parallel resistance model for the surface reaction, where the

Kinetic component (n)*, is;

(fots = -<PF>FRAARS(YAS, (3.34)

And the diffusion component (n)”, analogous to heat transfer is given as,

(6)0 = (PHfMESATS((YAE —(YA)P) . (3.35)

Here, hmfs represents the mass transfer coefficient, and Afs denotes the specific

surface area associated with the fluid solid boundary.
Solid

Energy transport is the only form of exchange in the solid region, and is

governed by a transient diffusion equation presented as
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PsVoCspy. - Tg) (3.36)

At :i;>(’\)

where the density ps, specific heat cs, and thermal conductivity ks are parameters of

the solid medium.

The discrete forms of the transport equations have now been presented for
regions of fluid, porous and solid regions. Although the flow is incompressible,
variations in properties such as density are still caused by temperature, species and
pressure variations and therefore the derivation considers this. Furthermore, density of
the fluid is also affected by the exchange of water vapour in the porous media. These

variations increase the complexity of the systems being solved.

3.5 Solution Procedure

The numerical procedure for this system requires additional attention as
variations in parameters with temperature, pressure and species content (content of
water vapour) occur. Furthermore, calculation of parameters not computed directly by
the discrete form of the transport equations (equations 3.15, 3.16, 3.23, 3.24, 3.27-
3.32), such as vapour pressure and relative humidity becomes important when
initializing the solution, maintaining boundary conditions, and determining mass

transfer rate within the porous medium.

Equations 3.27 and 3.29 represent the transport of the mass fraction of water
vapour in the mixture composition throughout the domain. Although this equation
format is more suitable for representing each component of a mixture and species

diffusion, it is not the best representation of the composition of humid air in a domain.
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This is because mass fraction is not easily measured directly in practice. In fact, for
applications involving humid air, the ratio of the amount of water vapour in the air to
amount of dry air on a mass basis is defined. This is defined as the specific humidity
a)spec °f the air, and is shown as a ratio of masses or with the ideal gas law, a ratio of
pressures given as;

PyV/IRyT _ Pv/Ry (3.37)
PaV/RaT - pa/Ra‘’

Here, mv,and ma are the mass of the water vapour and air, pv,and pa the partial
pressure of the vapour and air, V the volume occupied, and Rv, and Ra the specific
gas constants of the vapour and air components. Their exists two bounds to the range
of o)spec, the first occurs when the mixture consists solely of dry air, represented by a
specific humidity of zero. The second of these bounds being the maximum amount of
moisture the air can hold, classified as saturated air. These limits are scaled better with
the definition of relative humidity, which is the ratio of the amount of vapour in the air
to the maximum amount of vapour air can hold (mg) at a given temperature, again

defined in mass or pressure basis as

rel ~ (3.38)

where the pg is equal to the saturation pressure of water at the temperature of the
vapour. The saturation pressure is found by using saturated water tables or more
conveniently, by a temperature based correlation [25]. Expressions 3.37, and 3.38 are

related, and with the use of Dalton’s law this gives
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Ra/Rv "™relPg (3.39)
FBC Ptot “ <relPg *

0)
In practice, the relative and specific humidity’s are traditionally measured by a sling
psychrometer or more recently, by an electronic sensor. omspec, o)rei and the mass

fraction of vapour YA are interchangeable by considering the sum of the individual

components (£F=i Yi = 1), which gives

v (3.40)

+1
tOgpec
With the relation between specific humidity, relative humidity, and mass fraction

established, the system may be initialized for the iterative solution process.

Also important for the system, is the proper declaration of boundary conditions.
Although this is problem dependent, it must be clarified that similar to the domain, it is
important to implement conditions that make use of measurable parameters. This is of
concern in the mass fraction equation, where an inlet relative humidity is generally
specified as it is known, yet what is needed is an input mass fraction for the solution
procedure. As shown, converting from relative humidity to mass fraction is
accomplished with the use of equations 3.39, and 3.40 however when using a Dirichlet
type condition for a prescribed value, it is noticed that the pressure in equation 3.39 is
not generally known. In fact, defining a constant inlet boundary pressure does lead to
oscillation at the inlet, because pressure is allowed to develop through the domain and
iIs not known at the inlet. Therefore, in order to create a specified inlet relative
humidity, a Dirichlet condition at the inlet is imposed where pressure must be

extrapolated. This is given for a west inlet as;
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with the pressure term at the west face being constructed as

dp (3.41)

Ptotin —Pe oF AXnE

Here pE is the pressure at the node just east of the inlet, the gradient term in the x
direction is evaluated at the east face of the E node, and the AXInE represents the
distance to the inlet face. It is also mentioned that ptotin also on the scale of

atmospheric pressure, as this is the defined outlet condition.

Assuming the boundary and initial conditions of the system have been
computed, and the domain was a medium of similar type, the active coefficients would
be assembled and the solution procedure could be initiated. However this work is
developed for conjugate domains and this requires special attention at interfaces.

Chapter 4 will explain how to treat interfaces in the discrete domain.

At this point, it will be assumed that the interface corrections have been
performed and the active coefficient matrices assembled for all transport equations.

The matrix is sparse in structure and in this work, is represented as
Ax=Db (3.42)

Where A is the global coefficient matrix, b is the constant vector and x represents the
solution vector. The solution to the system of discrete equations is carried forward

using a software package named PETSc (Portable, Extension Toolkit for Scientific
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computation) [37, 38, 39]. This package contains Krylov subspace iterative solvers
which are used to solve the large matrix stmctures in this work. The system is also
preconditioned in the PETSc environment to accelerate the solution procedure.

Preconditioning is performed on the matrix as

MIIAx= X, (3.43)

where the preconditioning procedure is assumed to be from the left only.
Preconditioning is performed such that XA is better conditioned than A alone. Once
again, multiple preconditioning techniques are possible with this toolkit and further

information regarding this package is presented in [37],

The solutions to the discrete equations are solved using a sequential method.
This means that although velocities, pressures, temperatures, and mass fractions are not
all solved simultaneously, they are solved at each non-linear iteration. Once computed,
the solutions of these fields allow parameters that are influenced by temperature,
pressure, and mass fraction to be re-computed at each subsequent iteration. This
includes updates on a cell by cell basis to mixture density, partial pressures, relative
humidity, and saturation pressure. Also in terms of any porous section in the domain,
this method allows updates to the additional drag, dispersion, and fluid-solid exchange
terms. These variations in parameters and properties do lead to an increase in the non-
linearity of the system; however it is observed in this work that the sequential method

does converge without any need for relaxation.
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Determining convergence is accomplished by computing a normalized residual
value at every iteration, over the domain across each control volume. To define the

convergence criterion for the non linear problem, we manipulate equation 3.13 as

(3.44)

nnb

where the residual is computed after each coefficient update. This represents a single
volume residual or local residual. To obtain a good representation for global
convergence, the maximum local residual is found over all control volumes. The
magnitude of the residual value is dependent on the transport variable associated with
it. To eliminate this problem, the residual is normalized such that the magnitude of ij; is
of no influence. Convergence is obtained for the non-linear loops when the maximum

value of the normalized residual meets an assigned tolerance of RP < 10-5.

3.6 Summary

In this chapter, the descretization of a general transport equation across a three
dimensional orthogonal structured finite volume domain was presented. Additionally,
the concept of pressure-velocity coupling was presented, where a scheme was
implemented for collocated grids. Furthermore, a complete set of transport equations
for mass, momentum, energy, and species was presented in discrete form for conjugate
fluid, porous, and solid domains. The solution procedure for a system of this type was
covered where a brief mention of convergence was covered. In this chapter, it was

assumed that interfaces between mediums were already discretized. Chapter four will
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address the problems encountered at these interfaces, and develop methods of avoiding

oscillations across, and in the vicinity of these interfaces.
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Chapter 4 - Interfaces Encountered in the
Domain

4.1 Introduction

The code development in this work is for applications that contain conjugate
fluid/porous/solid domains, and it must be noted that the treatment of the interfaces
between differing regions requires additional consideration above that of the general
form of the conservation equations for a single medium. At an interface, the forms of
the governing equations often differ, and the goal in the numerical treatment of these
interfaces is to have physically reasonable estimates for advection, conduction, and
pressure in the regions where rapid geometrical changes occur. These estimates will
apply to all regions where the domain type changes, for example, fluid-solid, fluid-
porous, and porous-solid. The subsequent sub-sections in this chapter will address the
mathematical approach to distributing transport quantities at the interface; and the
computational methods associated with the interface. The overall goal is to establish

conditions that are physically reasonable and monotonically convergent.

4.2 Mathematical Model at Interfaces

As stated, a conjugate domain contains multiple medium types, and in order for
the solution across the full domain to be computed, the mathematical treatment at
interfaces between domains must be considered. This special treatment is seen at
interfaces between differing regions, where the possibility exists for having

discontinuities in the governing equations. The goal of this section is to develop
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interface conditions which are used to match the transport equations in neighbouring
domains so that the discretized form of the equations, which will be explained in
section 4.3, reflects the physical properties of conservation. It is noted that in the
following sections, the transport variables directly next to a porous region (in the solid
or fluid), are not necessarily the point values, and due to length scale constraints, a
volume average cannot be taken directly on the porous side next to an interface.
However, these values can be considered as a local average over the area of the
interface which reduces to a classic point or volume average at short distances from
that interface. Thus, the discretized transport equations utilizing the mathematical

conditions still reflect the physical principles of conservation.

4.2.11nterface Joining Pure fluid and Pure Porous regions

Conditions at the interface between a pure fluid and a porous region have been
extensively studied for the flow of fluid [4, 6, 40]. This work will assume the condition
of continuity of the velocity at the interface, and this is what is imposed. This is

represented by;

tif  (tt)pOr (4-1)

where it is noted that the velocity in equation 4.1 is the mass fraction averaged velocity
of the mixture. This differs slightly from the works reference above, however still
represents a physically reasonable condition. Furthermore, referring to the different
forms of equations 3.16 and 3.24, it is seen that the stress at the interface must also be
addressed. Therefore, it is reasonable to enforce the continuity of interface stress on the

pure fluid side with the intrinsic average of the stress on the porous side. These
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conditions have also been well-established, and are presented in similar form to [6, 41]

as,

(netea)f= (n et e<a>f)por (4-2)

for the shear stress component, and

(Neneg)f = (N on <) por (4-3)

for the normal component of stress. It is noted that n is an outward unit normal and t
represents a tangent unit vector. Also, subscripts ‘f and ‘por’ represent the distribution
on the pure fluid and porous sides of the interface. The stress tensors represented in

equations 4.2 and 4.3 are given by;

/[du; £uA (44)
M
Vi dxj
pB/d(uj)  d(uj)\ (4-5)
EVdj dyj) o

where [iBis the Brinkman viscosity, and 6, is the Kronecker delta function. Equations
4.4 and 4.5 show that a fraction of the total stress on the fluid side is carried into the
fluid constituent of the porous side. This implies that the remainder of the total stress is
balanced by the solid constituent of the porous medium. The parameter that governs
the division of stress into both constituents is porosity which is defined by equation

2.26. Finally, it is insisted that the pressure at the interface be continuous, and this is

given as
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Pf — (p)porm (4.6)

Although equation 4.6 means that pressure is represented by a single value at the
interface, it can be seen through equations 3.16, and 3.24, that due to the differing
forms of the advecting velocity, there must be an allowance for a rapid change in
pressure in the pure fluid region at the interface which is associated with the dynamic
pressure effects [6]. It is important that pressure transitions smoothly in the cells
surrounding interfaces, as any oscillation will not only influence the mass and
momentum equations, but also affect the convective terms in the remaining transport

equations; and alter terms that are affected by partial pressures.

The species transport equation that is used to govern the transport of the water
vapour component of the mixture is now considered at the fluid-porous interface. The
transport of species through a fluid-porous interface may include effects of excess
surface accumulation, diffusion, convection and other processes. Many studies have
been devoted to modelling the species equation in a pure fluid or pure porous region,
however only few have looked at transport through both regions joined by an interface
[9, 42]. One characteristic that makes mass transfer complex to study is the possibility
that discontinuities may exist at interfaces separating regions of differing
concentrations. Another complexity is that there are many forms of mass transfer
between differing media types such as absorption, adsorption, and forms of surface

reaction.

It is important at this point to develop a general method of modelling interfaces,

but also to tailor the derivation to suit interfaces found in the applications encountered
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in this work. In these applications, the diffusion of vapour within the solid constituent
across the macroscopic porous domain is not considered to be of high influence to the
vapour transport in the system. This means that the diffusion term in equation 3.30 and
the energy associated with these terms in equation 3.32 are neglected. This assumption
Is made for both the air conditioning processes and the modeling of bulk foods. The
reason for this assumption in evaporative cooling is that the porous material is assumed
to be kept saturated at all times by an external water source and therefore internal
diffusion of the water component can be neglected. In bulk food storage, the porous
modelling technique is used to simplify large domains of whole food items. Although
within a food item there may be diffusive transport, this is not represented by the
diffusive term in the macroscopic species transport equation for the solid. Therefore, to
achieve a continuous distribution through the interface, species A in the fluid region is
taken to be continuous with the intrinsic average of species A in the porous region,

given as;

YAT = (Y)Apor, 4.7

where YAf represents the content of species A (the water vapour component) in the
fluid region and (Y)Apor the volumetric average of species A in the porous region. At
this point, for a general derivation, it is also insisted that a species flux balance through

the interface is enforced, given as
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(4.8)

Further simplifications to this conservation expression based on the above assumptions

will be carried out in section 4.3.3.

The energy equations must also be resolved at the interface. Therefore, a
physically reasonable method of ensuring a proper distribution of heat through the
interface from the pure fluid to the fluid-solid constituents of the porous region must be
established. In this work, the temperature on the pure fluid side of the fluid-porous
interface is taken to be continuous with the total average temperature on the porous

side for the thermal equilibrium of the interface [40, 6], and this is given as

Tf = (T)por. (4.9)

Additionally it must be considered that energy flux is also balanced across the interface

and this is shown as
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(4.10)

where energy balance at the interface must consider the energy associated with

conduction and the enthalpy associated with species diffusion.

4.2.2 Interfaces Joining with solid regions

The conditions enforced at interfaces that join with solid regions are that which
are enforced at impermeable boundaries. That is, the pressures are extrapolated from
the interior of the domain to the interface, and the no slip, no penetration velocity
conditions are enforced at the interface. This also applies to the mass fraction transport
equation as it is considered that the solid boundaries are rigid and do not contain any
water vapour, nor are they capable of accumulating or transporting vapour. Therefore,
for simplicity, the amount of water vapour is extrapolated from the interior of the

domain to the solid interface.

The conditions for the energy equation are constmcted similarly as the interface
conditions given in equations 4.9 and 4.10. At the fluid/solid interface, the continuity

of temperature and an energy balance give;
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Tsoi = (T)f,and (4.11)

(4.12)

Also, between the pure solid and pure porous region similar conditions apply, giving:

TSoi - (T)por (4.13)

(4.14)

por

4.3 Computational Treatment at Interfaces

At volumes adjacent to the interfaces encountered throughout the domain, it is
important to obtain accurate estimates of the terms governed by the discretized
equations. This is done by utilizing the interface conditions developed in section 4.1
for fluid/porous, fluid/solid, and porous/solid regions. An example of a structured two

dimension case of this type of domain is given in figure 4.1.
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-Porous region
-Solid region
-Fluid region

V) (14J)

Figure 4-1 Two dimensional structured finite-volume grid for a conjugate domain. (1,J)
represents the labelling scheme for the ‘P’ node, (I1+1,J) for the ‘E’ node, and
(1,J+1) for the ‘N’ node.

4.3.1 Advected Velocity

In the pure fluid volume adjacent to the interface (volume ‘1,J’), the advective
terms in the discrete forms of the momentum, energy, and species equations must be
modified. It is required that these terms be continuous through the interface that
separates the pure fluid, and porous regions. To accomplish this, the intrinsic fluid
velocity, temperature, and mass fraction are taken to be advected. If the east face is
considered, the discretized advected terms that correspond to this in the momentum,

energy and mass fraction equations are given as;

Momentum: rhe”# (4.15)
Species: me(Y)e (4.16)

. o (4.17)
Energy: I [me {(cp)EYYSR<TEe + h°(Yy)E}]
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To understand the form of the advected velocity, the interface can be idealized as an
array of a large number of sudden expansions and contractions, depending on flow
direction, where the ratio of cross sectional area on the fluid side to that of the porous

side is represented by the porosity.

A control volume coinciding with a pure fluid/porous interface must have an
expression developed for the advecting velocity similar to equation 3.22, where a
special momentum equation is developed about the integration point on the ‘e’ face.

This is given as;

(4.18)

Ve (apv 1Npdp B d(p)f
ae ldxJ e 2\Vedx V, dx £
1

where the pressure term labelled as ‘1’ is

L Vpdp Ve d<P)f (4.19)
"Ve 2dxp+ 2 dx E.]

Unlike the development of equation 3.22, the assumption aP « aE» ae is not made as
due to source terms, these coefficients may differ significantly [6]. Also, the behaviour
of pressure is quite different in neighbouring regions to an interface. Therefore the
pressure gradient terms given above must be developed for half volumes surrounding
the interface, given as the P+ (a volume from node ‘P’ to integration point ‘e’) and E-

(a volume from integration point ‘e’ to node ‘E’) regions.
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4.3.2 Pressure Term

In order to compute the pressure gradient terms, an approximation of pressure
at the interface is to be constructed. Standard approximation methods normally used in
the fluid region are not accurate at the interface due to the Darcy and Forchheimer
terms present in the discrete equations within the porous region. Also, as stated, rapid
velocity changes occur at the interface which also complicate the estimate. Therefore,
the approximation imposed is that developed by [6], and is made by considering the
momentum balance of a control volume (figure 4.22) on a simple volume next to the

interface.

1
1 1
1 1
1 1
1 1
1 1
1 1
. uw' € .
P " p
P 1 E
1 1
1 1
1
1
1
A uw-e

Figure 4-2 Control volume next to an interface: ‘uw’ defines the upwind west face of the
control volume, ‘e’ is the integration point along the face separating the P and E
nodes, and PEand Rw represent the pressure of each node

With the assumption that Auw_e is much smaller the distance from ‘P’ to the
integration point ‘e’, the mass flux tangent to the interface may be neglected. Also, it is
assumed the viscous stresses balance separately and furthermore, that uuw = ue =

(u)e which leads to an estimation for pressure, given as
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il - £\ me(u)e (4.20)

VE) Ae
where the upwind pressure Puw is found by an extrapolation to the interface. This
estimate is then averaged with an estimate of interface pressure from the porous side,
also obtained by extrapolation from the ‘E’ node to the integration point ‘e\ More

details of this implementation are found in the work of Betchen et al. [6].

4.3.3 Diffusive and Advective terms

It is seen in the discretized form of the momentum equations (equations 3.16,
and 3.24), that only portions of the viscous stresses involving the face-normal
components of the velocity gradients appear in the formulation for an incompressible
fluid. Therefore, the conditions of equations 4.2a and 4.2b are utilized, but modified to
require that these portions of the viscous stress balance on each side of the interface,
given as

du pBd(u) (4.21)
dn £ dn

por

If the east face of the fluid volume is examined in figure 4.1, it is seen that the
conditions 4.2-4.3 place the proper requirements on normal stress at the interface, but

the shear stress conditions differ, where

/du d(u) (4.22)
Hf [ + +
dy dy

IS now given as
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A/3V|\|f—$bisi(|\’/)'\ (4.23)
- J por

The conditions required to match the species and energy equation at the
interface are given by equations 4.7 and 4.8, where it is assumed that there is a
diffusive and conductive balance of mass fraction and energy respectively, across the
interface. To accomplish this, a similar approach to that used for heat transfer given in
[43, 6] is applied, where the interface is simplified using a one-dimensional resistance

model, shown in figure 4.3.

Figure 4-3 Resistance models for Mass fraction diffusion (left), and Heat transfer conduction
(right)

This leads to discrete balances through the interface of;

ya>; - (va)p _ Dy YA " e (424>
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L LS ML
It is noticed that the diffusion of species into the solid is neglected even though it is
represented in figure 4.3. This is due mainly to the assumptions stated in section 4.1,
where it is mentioned that the diffusion of species at the interface is presented in
general form, however the model itself is tailored to be application specific.
Furthermore, for applications that involve a discontinuity in the mass fraction
equations at the surface of the solid constituent in the porous domain, this is dealt with

through the use of a source in the discrete equation explained further in section 4.3.3.

It is noticed that equations 4.21, 4.23 and 4.24-4.26 all have similar form, given

by

(4.27)

where I\ and r2 are the diffusion coefficients. If the diffusion coefficients have abrupt
changes, as seen in the derived interface conditions, a simple arithmetic mean may not
capture the flux conditions. A better method of approximating the flux is needed, and
this is shown by first discretizing equation 4.27 at the interface of volume 1,J (figure

4.1) as follows:

r =r ~Ne (4.28)
Axpe AxeE

Isolating for \ie, an estimate for the interface value is found to be
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AXpel\vv AxeE (4.29)
AXeETJ AXpe

If expression 4.29 is substituted into either side of equation 4.28, this yields an estimate

to the diffusive flux at the interface of the form

r tiE tpP (4.30)
+ In2
This expression, similar to that developed by Patankar [29], representing the diffusion
coefficient at the interface by using a harmonic mean. Also, equation 4.30 provides a
physically based estimate for the advected momentum, mass fraction and temperature

interface terms.

As stated earlier, at an interface between a pure fluid and porous region,
additional complications may exist. This would occur where a pure fluid volume joins
with the solid constituent of a porous volume. Although temperature is taken to be
continuous across interfaces, this may not be the case for the mass fraction field.
Examples of this are seen when thin films of mass on solid’s surface exist, or the solid
itself is composed of a high content of the transported species, or also if there is a

heterogeneous surface reaction.

If the transfer rate is to be determined in this region, then some estimation of
the surface value of the transported variable is to be made. This may require the use of
Henry’s law, which relates the mole fraction of species A in a solid or liquid to the
partial pressure outside of this phase. Alternatively if surface reaction occurs, the use

of an equation similar to equation 3.33 may be needed. However, as stated in section
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4.1, the applications considered in this work consider only evaporation from a

saturated surface of the solid constituent in the porous media [figure 4.4],

Figure 4-4 Representation of interface between for species transport

Therefore with this assumption and the earlier assumption of the gas mixture being
ideal, Raoult’s law may be utilized [44] to estimate the value of the partial pressure of
species A (the water vapour component) on the fluid side of the interface. This is given

as

Pa Ix=0 — (CAIX=0)PA,sat» (4.30)

where it is assumed that the mole fraction is essentially unity for evaporative cooling,
the application of interest in chapter 5, and that there exists a thin film of this water.
The saturation pressure at the interface is required to calculate the partial pressure of
the water vapour at the interface, however this is not yet known. To estimate this
pressure, once again a temperature based correlation is used where the interface
temperature is estimated from equation 4.29. Additionally, specifying a surface mass
fraction at the interface is done similarly to specifying an inlet relative humidity

(equation 3.40). The pressure at the interface must be approximate and this is done
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using the procedure described in section 4.3.2. It is noted that the additional diffusion
away from the surface is added as a source/sink term in the discrete equations for the
(1,J) volume of figure 4.1. Additionally, it is mentioned that the saturated surface area
considered for this surface flux is not the total area of the integration face, but a

fraction ‘e’ of it.

4.3.4 Interface with pure solid region

The computational implementation of the conditions encountered at interfaces
between a pure fluid or porous region, and a pure solid region the same as the
conditions implemented at an impermeable boundary for the fluid flow problem. The
conditions implemented for the energy equation between a pure fluid and solid are well
developed and may be implemented using equation 4.29. Finally, at the interface
between a pure solid and porous region, a similar thermal resistance model given by
figure 4.3 and equations 4.25 and 4.26 is implemented to govern the conduction

transfer.

4.4 Summary

In this chapter, a mathematical model for the interfaces separating differing
domain types was discussed. These conditions are developed to be continuous across
the interfaces, where there is still allowance for rapid changes near the interface. The
interface conditions are then developed numerically, where it is shown that the discrete
equations developed in chapter 3 require additional attention when considering
advection, diffusion, conduction and pressure. Finally, the species equation is
discussed where the numerical procedure for representing saturated surfaces at the pure

fluid/porous interfaces are discussed.
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Chapter 5 - Results and Discussion

5.1 Introduction

This chapter presents three test cases to study the finite volume code developed
in previous chapters. First, two validation cases are presented, where these cases are
used to verify and validate the extensions made to the in-house computational code.
The first case is the investigation of a direct evaporative cooling cycle. In this test
scenario, adiabatic boundary conditions are imposed and the incoming fluid mixture is
allowed to saturate through the porous media. The model is utilized to predict the
mixture temperature at the outlet of the cooler, and verify the interface conditions at
the pure fluid/porous regions. In the second case, an indirect evaporative cooling cycle
is modelled. This case not only investigates the principles involved in indirect
evaporative cooling, but also allows the numerical code to be tested in a conjugate pure
fluid, porous, and solid environment. In the indirect cooling cycle, the simulated results
are used to predict the wet bulb effectiveness of the cooling configuration. More
recently, there have been novel developments in evaporative cooling cycles, mainly in
the area of dual-stage evaporative cooling. One notable development is the
Maisotsenko evaporative cooling cycle. This configuration; described further in section
5.3, not only claims to reduce the temperature of the conditioned air to its inlet wet-
bulb temperature without adding moisture, but also claims that the air being
conditioned approaches due point temperature of the inlet air. The final test case

investigated in this work is a simplified Maisotsenko cycle. This case utilizes all
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The configuration of the fluid and porous regions in the channel are presented

in figure 5.1, where the dimensions are taken to be consistent with the previous studies

single phase flow though a porous plug. The relevant flow parameters are given as:

£= 0.7, pB = [if, and a Reynolds number based on the channel height of ReH= 1. The

inertia coefficient in the momentum equations is calculated by the given relation [4]

1.75¢

(5.1)
oA 0.2440 .
VISOF

The boundary conditions imposed for velocity are:

Inlet conditions: A fully developed velocity profile is imposed on the x = 0

plane; this is given for a channel flow as;

u®y) =pp [I-pl and  v(0,y) =0, (52

where U is the average axial velocity in the channel. The inlet fluid temperature
is arbitrarily chosen to be Tf= 25 degrees Celsius [298.15 K], with a relative
humidity of corel = 40%, which is converted to a proper mass fraction for the
inlet boundary in equation 3.30 with equation 3.40. The pressure at the inlet

plane is extrapolated from the interior of the domain.

Outlet conditions: Zero derivative conditions in the x direction are imposed for
both components (u and v) of velocity on the outlet plane (x = 8H). A constant
uniform pressure is set at the outlet, which in this case is equal to atmospheric
pressure as the value of the pressure chosen is important because it serves as a

datum for pressure and affects the temperature and mass fraction fields inside
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the domain. Finally, zero derivative conditions for temperature and mass
fraction are assumed at the outlet.

» Wall conditions: No slip, no penetration conditions are imposed on the wall
boundaries (y = 0,andy = H). Furthermore, adiabatic wall conditions are
enforced in the energy equation and both mass fraction and pressure are

extrapolated to the walls from inside the domain assuming a constant gradient.

As noted, this simulation is performed to also test the forms of the energy and
species equations developed in the proposed model, and therefore additional
parameters are needed for these equations. It will be assumed that the porous material

in this case is aluminum with a fluid and solid phase effective conductivity of kf>eff =

0.0237~ Im K and kseff = 6.46 "V m K [45]. The effective fluid phase diffusivity is

given to be Dfeff = 1.5x 10 4m2/s [46]. Also the pore diameter and ligament

diameter are given as dp = 3.8 mm and ID= 0.55 mm and that pB = pf.

As this is a multi-component mixture, one might expect the mixture thermal
conductivity, and dynamic viscosity to change based on the composition. Previous
works focussed on determining the mixture thermal conductivity and dynamic

viscosity of humid air have suggested correlations, such as [47, 48]

(5.3)

where £v, €A are the properties of the water vapour and air, and Pv/P the specific

humidity. As the temperature range is limited in evaporative cooling, and these
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properties vary little over the operating conditions (0-50 degrees Celsius), and due to
the magnitude of the specific humidity’s encountered in this range, the thermal

conductivity and dynamic viscosity are taken to that of air at 300 [K] (table 5.1).

)le 5-1 Properties of mixture for test case
Properties of air [300 K]

Specific heat [J/kgK] 1005
Properties of water vapour [300 K]

Specific heat[JAgK] 1820

Latent heat [JAgK] 2500.9 x 10A3
Properties of mixture [300 K]

Thermal Conductivity [W/mK] 0.0255

Binary Diffusion Coefficient [mA2/s] 2.6 x 10A-5
Dynamic Viscosity [Ns/mA2 ] 1.843 x 10A5

The convective interfacial heat and mass transfer coefficients within the plug
are calculated by utilizing equivalent Nusselt and Sherwood correlations [45], given as
Nusur = CTRe[d5Pr037 = hsurlD/k f and analogously Shsur = CmRefASc037 =
hm.surlo/Df. The coefficients in each of the correlation are taken as CT = Om = 0.52
[45]. The effects of dispersion are neglected in this study. Finally, as this is an
evaporative cooler, the surface conditions in the porous region are assumed to be

saturated and remain saturated during the cooling process.

A non-uniform structured grid consisting of 31 control volumes in each x-axis
section of the channel (0 - 3H, 3H - 5H, 5H - 8H), and 21 control volumes in the y-
direction is found to give accurate results, where a coarse representation of this grid is

shown in figure 5.2.
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Figure 5-2 Plot showing coarse non-uniform grid used for adiabatic saturator

In previous studies the pressure profile is plotted throughout the domain, as it
Is used to evaluate the model imposed for the interface conditions in the momentum
equations. In this study, pressure is also important for the energy and mass fraction
equations, as oscillations in pressure will also cause problems in the temperature and
mass fraction fields. Figure 5.3 is a plot of the pressure profile in the domain, which
compares the results obtained in this simulation with previously obtained solutions
from [6, 40]. This plot is utilized for two reasons; first to show that pressure transitions
free of numerical oscillation at the interface, and also to show that grid refinement and
grid convergence matched the previous studies. The pressure plot is expected to match
the results obtained in previous studies, as the only affect in the mass and momentum

equations would be the variation in mixture density, and this was found to be

negligible throughout the domain; from 1.192 ~ /m3to 1212 3, or 1.67%

different.
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Figure 5-3 Centerline pressure profile through porous plug

Figure 5.4 illustrates the temperature and relative humidity profiles of the inlet
mixture as it permeates the porous region in this simulation. The temperature and
relative humidity profiles remain almost constant in the regions outside the porous plug
(0 <x < 3H and 5H < x < 8H). This is to be expected, as there is no influence from the
saturated media. The small increase in the centerline relative humidity past x = 5H is
due to the transport of moisture from the walls to the core as the velocity profile re-
develops. As the mixture passes through the media (3H < x < 5H), water diffuses into
the mixture which directly affects the resulting temperature and relative humidity of

the mixture.
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Figure 5-4 Centerline mixture temperature and relative humidity profiles

If an energy balance is taken over the domain shown in Fig. 5.1, and it is
assumed that the makeup water saturating the porous medium is at the temperature of
the outlet condition, then what is given is similar to an adiabatic saturator. This implies
that the enthalpy of the mixture at the inlet is equal to the enthalpy of the mixture at the
outlet (hin = hout). Utilizing the Psychrometric chart given in figure 5.5, the outlet dry
bulb temperature can be predicted. This is performed by locating the inlet state, based
on dry bulb temperature and relative humidity (state 1 in figure 5.4), and then
following a line of constant enthalpy toward the saturation state. The line is followed
until it intersects with the outlet humidity condition predicted from the simulation
(state 2 in figure 5.4). The dry bulb temperature is then read off of the chart at this
state. The results of the outlet conditions obtained in the simulation are compared with

this approach, which is summarized in table 5.2.
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Figure 5-5 Theoretical prediction of outlet temperature from outlet relative humidity found in
simulation

Table 5-2 Prediction of outlet temperature from Psycrometric chart compared to numerical

results
Psychrometric Chart Simulation % Difference
Inlet Temperature [°C] 25 0 250
Inlet Relative Humidity [%0] 40.0 40.0
Outlet Temperature [’C] 18.2 17.76 2.4%
Outlet Relative Humidity [%]  7g o 76.0

The difference between the outlet temperature predicted from the
psychrometric chart and the outlet temperature predicted in the model is 0.44 degrees
Celsius or approximately 2.4%. This is an acceptable result as there will be slight
difference due to small density variations, and pressure changes throughout the

domain. Also, in order to have adiabatic saturation, the liquid water supplied is
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assumed to be at the exit temperature of the mixture which in the simulation is taken as

an average bulk temperature.

This simulation is also performed to verify the interfaces in the model
qualitatively, which are shown in figure 5.3, and 5.4, where flow through the porous
plug presents pure fluid/porous transitions at the 3H and 6H interfaces. A contour plot
of specific humidity is given in figure 5.6, which shows the transition of specific
humidity from 0 < x < 3H, 3H < x < 5H, and 5H < x < 8H. It is seen that the conditions
implemented in the discrete form of the energy and mass fraction transport equations
resolve the transition from pure fluid to porous and conversely, from porous to pure

fluid without any oscillatory behaviour.

w spec[kgvap/kgairl

Figure 5-6 Specific Humidity Contours for Adiabatic Porous Plug Saturator
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5.3 Test Case 2: Indirect Evaporative Cooling

Indirect evaporative cooling is often chosen over direct evaporative cooling,
as the specific humidity of the delivered air is not altered. This allows more control in
the comfort level of the air delivered to the conditioned space. In this test case, a two
channel counter flow indirect evaporative cooler is simulated (figure 5.7). This is a
conjugate pure fluid/porous/solid problem and is used to both validate the interface
conditions in all regions of differing domain types, and make a comparison of results to
that obtained by Zhan et al [49], The goal of the simulation is to predict the outlet

temperature of the product air stream (the air delivered to the conditioned room).

Figure 5-7 top view of counterflow indirect evaporative cooler with ‘L’ giving the
channel length, ‘H’ the working and dry channel height, and ‘f the
thickness of the material separating the two channels.

As the complete geometry of the indirect evaporative cooler being analyzed consists of
multiple channels similar to figure 5.7 in a stacked arrangement, this allows the domain
to be simplified by making symmetry arguments, such that only the domain volume \x
shown by the dashed line in figure 5.7 is modelled. Also, it will be assumed that the

depth of the channel is much longer than the height H, and therefore the problem is

100



additionally simplified to two-dimensions. All boundary conditions imposed must now

reflect the domain V1?and the conditions are given as:

Inlet conditions: A constant velocity profile is imposed at inlet of the product
channel with magnitude U. In the porous region, the inlet velocity is also
allowed to develop with a prescribed uniform inlet of U. In the fluid and porous
regions, U = 0.4 [m/s], and V = 0 [m/s] at both inlets. The fluid temperature at
both inlets is given to be Tf = 25 [°C], and the relative humidity’s as o)rei =
35% consistent with [49]. The pressures at the inlets are extrapolated from the
interior of the domain.

Outlet conditions: Zero normal derivative conditions are imposed for both
components (u and v) of velocity. A uniform pressure value is set at both of the
outlets, which is equal to atmospheric pressure. Zero normal derivative
conditions are imposed for the temperature and mass fraction equations.
Symmetry plane: At the symmetry planes; the northern and southern most faces
of the \&control volume illustrated in figure 5.5, the u component of velocity is
given a zero normal gradient condition, v = 0, and pressure is extrapolated. The
energy and mass fraction equations are also given zero normal gradient

boundary conditions.

The porous material in the working channel is modelled using the known

properties of the aluminum foam given in test case 1 That is, the fluid and solid phase

effective conductivity is given as kfeff = 0.0237["/m K], and kseff = 6.46["/m K]

[45]. The binary diffusion coefficient is given as Dfeff = 1.5 x 10-4 [m2/s] [46]. The
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pore diameter and ligament diameter are dp = 3.8 mm and D= 0.55 mm. It is
assumed that |iB= gf, and that the fluid properties are taken at the fluid inlet
temperature. Dispersion is neglected in this simulation. The convective interfacial heat
and mass in the porous region are given as, Nusur = CTRe1/Pr037 = hsurlD’k f and

Shsur —CmRefASc037 = hmsurlB/Df where CT = Cm = 0.52 [45]. The interior wall

with thickness ‘t’ separating the working and dry channels in figure 5.5 is assumed to

be aluminum, with thermal conductivity of ks = 250.0 [*Vm K]e This is modelled to
validate the interface conditions at the pure fluid/porous and pure fluid/solid regions.
The remaining properties of the mixture are given by imposing the same arguments in
the first test case, and are taken to be that of air at 300[K] (table 5.1). The channel
length L is 1.4 [m] and both the working and product channel each have a height of H
= 0.08[m], Finally, it is assumed that the surface of the porous region is kept saturated,

and that the device is operated at steady state conditions.

It is noted that the results presented have been obtained using a grid
convergence procedure in the fluid and porous channel regions (table 5.3). In the
interior wall, four volumes are used in the y-direction. Results are acceptable when the
percentage difference in the bulk outlet temperature of the product channel is less than
5% between consecutive grid refinements. Table 5.3 only indicates the quantity of
control volumes used in the x and y direction in the two channels, however it is stated

that grid refinement is used at the inlet and outlet, and in regions near the interior wall.

102



Table 5-3 Grid convergence study for indirect evaporative cooling simulation
Number of volumes Bulk Temperature %
(X-direction x Y-direction) of product Difference
channel [°C]
101 CV x 36 (18 wet channel, 18 dry channel) 23.88
111 CV x 46 (23 wet channel, 23 dry channel) 22.66 5.1%

121 CV x 56 (28 wet channel, 28 dry channel) 22.14 2.4%

Relative humidity and temperature contour plots of the above conditions in
the simulated domain (V,) of figure 5.7 are given in figure 5.8 and figure 5.9.
Although the plots cannot be quantitatively compared to the work of [49], as these
results only present the outlet dry bulb temperature, the simulations are qualitatively

evaluated.

Figure 5-8 Plot showing relative humidity contours of the product and working channels for
the case of an indirect evaporative cooler.
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Figure 5.9 - Plot showing temperature contours of the product and working channels for the
case of an indirect evaporative cooler.

Qualitatively, the results of the temperature and relative humidity plots
correctly simulate the indirect evaporative cooling process. It is viewed that in the wet
channel, the humidity increases in the stream-wise direction through the saturated
media, from grd = 35% to wra = 94.7%, which is due to the large wet bulb depression
present in the incoming water vapour/air mixture. Also, it is seen that due to the
increased drag in this channel through the porous block, represented by the Darcy-
Forcheimer terms in the momentum equations, the contour lines of humidity are
essentially vertical. This is because the U-velocity varies less in the y-direction of the
porous plug than it does in the pure fluid region, as momentum is spread over the

channel.
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In the product channel, as the flow develops over the plate, it loses sensible
energy to the porous side which decreases the temperature of the flow, in the region
near the interior wall. As the specific humidity remains constant in this channel, the
decrease in temperature of the mixture leads to an increase in relative humidity. This is

because the saturation state of the mixture is influenced by temperature.

The interface conditions appear to function correctly through the regions
intersecting the solid interior wall as there are no numerical oscillations in the
temperature and mass fraction field. To further validate this point; the entrance region
of the porous channel and the exit region of the product channel, near the interior wall
are examined further. Inspecting figures 5.8 and 5.9, it is noticed that the relative
humidity of the product channel increases slightly near the interface of the pure
fluid/solid region directly adjacent to the outlet. This is because some of the heat from
the inlet of the working channel conducts into the product channel. This results in a
slight increase in the fluid temperature next to the interface in the product channel due
to the high conductivity of the aluminum. As the temperature increases in this fluid
region, the saturation pressure also increases, which ultimately lowers the relative

humidity in this region.

The supply air temperature (air exiting the product channel) from the
simulation is plotted against the results of Zhan et al. [49, 50], in figure 5.8. Although
these two studies are not identical; in that this work utilizes a porous domain to saturate
the media rather than a fibre sheet along the working channel wall, the concept is

similar and therefore the trends in the data are expected to be similar.
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Figure 5-9 Outlet temperature compared with inlet temperature for indirect cooling process

The results obtained from the current numerical work follow a similar trend
as the results obtained in [49, 50]. However, it is seen that the outlet temperatures
predicted in this simulation are greater than the experimental values. Discrepancies in

the data results are expected for the following reasons;

 The sensors utilized in the experimental setup have certain accuracies
associated with measurement. In the experiment performed [49, 50], the
thermocouples have an accuracy of £0.2 [°C] over there 0-100 [°C] operating
range, and the hot-wire anemometer is stated to have an accuracy of +5% in a
0.2-20 [m/s] operation range. Although the magnitude of the temperature

accuracy is small within the operation range of the experiment, this is not the
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case for the measured velocity, which may introduce some error on the inlet
conditions imposed in the simulation.

* In the simulation, the channel inlet velocity is assumed to be U = 0.4 [m/s],
instead of 2.4 [m/s] such that laminar conditions are maintained.

» It is also assumed in the simulation, that recirculation does not occur. In the
experimental setup, it is stated that recirculation of working air to the product
channel occurs. Depending on the amount of recirculation, there may be a large
impact on the product channel as both the inlet humidity and temperature
conditions would differ from the imposed inlet of this simulation. This would
have the effect of lowering the inlet temperature, but increasing the inlet
humidity. As the amount of recirculation is not fully defined, this is neglected

in the simulation.

The wet bulb effectiveness is a standard measure of the efficiency of an
evaporative cooling process. This is defined as

_ Tjb—Todb (5.4)
Rdo = Mwb

wb

where Tiwb,Ticlb, TOdo ar the inlet wet bulb, inlet dry bulb, and outlet dry bulb
temperatures. In the experimental results, the average wet bulb effectiveness is
calculated to be 77%. The simulated cooling cycle gives an average wet bulb
effectiveness of 42%. Although the simulated results predict a much lower average wet
bulb effectiveness, they seem to better reflect stated values in other literature which
claim standard indirect evaporative cooling processes generally obtain between 50-

60% wet bulb effectiveness [22].
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5.4 Test Case 3: Simplified Maisotsenko Cycle

In the two previous test cases, direct and indirect evaporative cooling was
simulated. As stated, the advantage of a direct evaporative cooling process is that the
cooling efficiency; defined by equation 5.4, is much higher than an indirect
evaporative cooling process. This difference in performance is seen to be even greater
in most practical applications, as indirect configurations are generally cross flow
oriented. The disadvantage of direct evaporative cooling is that the air being delivered
to the working space is generally poorly conditioned, due to the high value of relative
humidity. A desired scenario would be to obtain the performance of a direct

evaporative cooler, with the configuration of an indirect evaporative cooler.

In this work, a more recent technique of evaporative cooling, called the
Maisotsenko evaporative cooling cycle [51] is investigated. This configuration is
similar to an indirect evaporative cooler, as both a wet working channel and a dry
product channel exist, however a third dry channel is added to the geometry where a
simplified version is given in figure 5.10. The addition of the third dry channel is novel
in that it provides preconditioning to the inlet air prior to entering the porous section of
the working zone. This is further explained after the contour plots in this section. This
geometry is said to be more efficient at cooling the product channel over traditional

indirect evaporative cooling processes.
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Figure 5-10 The Maisotsenko Evaporative cooling cycle

As very little numerical or experimental data is available to investigate
Maisotsenko configurations, the test case proposed will study the cycle qualitatively.
Therefore, dimensions similar to the indirect evaporative cooler of the second test case

are implemented on the simplified domain; shown in figure 5.10, to simulate this novel

cycle.
Symmetry plane
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Figure 5-11 Domain conditions for the Maisotsenko evaporative cooling cycle.

The boundary conditions implemented in this test case, with domain represented

in figure 5.11, are:
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Inlet conditions: A constant velocity profile of magnitude U is imposed at the
inlets of both the pure fluid working and pure fluid product channels. In both
fluid and porous regions, U = 0.4 [m/s], and V = 0 [m/s]. The fluid temperature
at both inlets is given to be Tf=25 [°C], and the relative humidity is given to be
oorei = 35 %. The pressures at both of the inlets are extrapolated from the
interior of the domain.

Outlet conditions: Zero normal derivative conditions are imposed for the two
components (u and v) of velocity at both the pure fluid product channel and the
porous working channel outlet. Additionally, a uniform pressure value is set at
both of the outlets, which is equal to atmospheric conditions. Finally, zero
normal derivative conditions are imposed for the temperature and mass fraction
equations.

Boundary Walls: The no slip, no penetration conditions for velocity are
enforced on the bounding walls. The pressure is extrapolated from the interior
of the domain to the wall. The bounding walls are assumed to be well insulated
and therefore the adiabatic Temperature conditions at the walls are enforced.
Mass fraction is extrapolated to the wall.

Symmetry planes: At the symmetry plane given by the dashed line in figure
5.10, the u component of velocity is given a zero normal gradient condition, v =
0, and pressure is extrapolated. The energy and mass fraction equations are also

given zero normal gradient boundary conditions.

The porous material in the working channel is modelled using the properties

of the aluminum foam from the indirect evaporative cooling test case (test case 2).
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The pore and ligament diameter of the foam are given as, dp = 3.8 [mm] and

ID= 0.55 mm. The effective binary diffusion coefficient is given as Dfeff =

1.5x10-4[m /s] [46]. The fluid and solid phase effective conductivity is given as

kfeff = 0.0237[W/m k], and kseff= 6.46["/m K] [45]. It is assumed that
pB = pf, and that the fluid properties are taken at the fluid inlet temperature.
Dispersion is once again neglected in this simulation. The convective interfacial
heat and mass transfer in the porous calculated by Nusur = CTRef§bPr037 =
hsurb/kf and Shsur = CmReld5Sc037 = hmsurlDYD f where CT = Cm = 0.52 [45].

The interior wall with thickness ‘f separating three channels in figure 5.10 is

assumed be aluminum with thermal conductivity of ks = 250.0 [*/m K], The
properties of the water vapour/dry air mixture are taken to be for an inlet
temperature of 25 [°C], The channel length L is 1.2 [m], consistent with the
indirect evaporative cooling cycle in the second test case. Although the total
channel length is defined, the lengths of each interior wall and gap
01, 12,13,14,15,and 16) separating the two sections of the working channel must be
determined. As this case is for pure demonstration, these lengths are chosen
arbitrarily, but aimed at maximizing saturation throughout the working channel.

These lengths are listed in table 5.4, given as:

Table 5-4 Simplified Maitsosenko Channel Lengths

Section of working channel Length [m]
1 0.46
© 0.04
u 0.36
14 0.04
Is 0.26
u 0.04
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The working and product channels each have a height of H = 0.08[m], and the
thickness of each interior wall is given as t = 0.0005 [m]. The surface of the porous
region is assumed to be saturated, and the device is operated at steady state conditions.
In order to obtain a sufficiently conditioned coefficient matrix, the steady state
solutions were obtained by marching in time from an initial condition where all field
variables are set to an initial state: this being velocity components set equal to zero,
pressure to atmosphere, and temperature and mass fraction to the inlet conditions.
Steady state is assumed when the maximum change in the fields, in any volume,
between successive time steps falls below 0.01%. A grid of 280 control volumes in the
x-direction, and in the y-direction: 30 control volumes over each of the pure fluid
region channels, 4 control volumes over each interior wall, and 50 control volumes in
the porous region, are found to be grid-converged to within 5% based on the bulk

outlet temperature.

The contours of relative humidity and temperature for the domain of figure

5.11 with the given inlet conditions above are presented in Figures 5.12 and 5.13.
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Figure 5-12 Plot showing relative humidity contours of the product and working channels for
basic Maisotsenko Cycle
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Figure 5-13 Plot showing relative humidity contours of the product and working channels for
basic Maisotsenko Cycle

The bulk temperature of the air exiting product channel is 20.88 [°C]. The wet

bulb temperature of the intake air to the system is 15.5 [°C], Although the outlet air is
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not at or below the inlet wet bulb temperature, it is exiting at a lower value than the
simulated indirect evaporative cooling cycle with similar geometry. Comparing both
designs; this configuration yields a wet bulb effectiveness of 44%, whereas using the
indirect evaporative cooler with identical inlet conditions gives an effectiveness of
26%. This indicates that the Maisotsenko cycle is more effective at cooling the inlet air
when using a similar geometric design as the indirect cooler. Although this example is
purely demonstrative, there are relevant qualitative conclusions that can be drawn from

the simulation.

The cycle is explained using the psychrometric chart:

Working channel

o 1-2’; As the inlet working air travels through the dry side of the working
channel (southern most channel), it is cooled similarly to the dry product
channel (northern most channel). This is functioning as an indirect evaporative
cooler for the working channel and is seen in figures 5.12 and 5.13, as the
mixture humidity rises and the mixture temperature lowers, near the interior
wall of the dry side of the working channel.

o 2’-3’-3: As the air enters the inlet to the porous region of the domain, it is has
been reduced in temperature from the inlet conditions. At this reduced
temperature, saturating the air approaches a lower wetbulb temperature then
boundary inlet condition (2°-3’). However, as the inlet condition in the product
channel is at a higher temperature, some sensible heat is absorbed back into the

near saturated working channel (3’-3).
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Dry Channel

» 1-4: The product channel is cooled along a similar line as the dry side of the
working channel losing sensible heat to the porous section of the working
channel. Under ideal conditions, this allows the dry product channel to

approach the dew point temperature.

Figure 5-14 Maisotsenko cycle analyzed on Psychrometric chart

Although the product air never reaches the dew point, the process explained above is
occurring in the system. The mixture on the dry side of the working channels (sections
0<x<05 05<x<0.9and09 < x< 12 [m]) is cooling similar to an indirect
evaporative cycle. As the mixture enters the wet working porous media, it is already at
a reduced temperature then the inlet conditions. Therefore, saturating the air will allow
the temperature to be reduced below conditions achieved in the indirect evaporative

cooling cycle. Although this test case is purely demonstrative, it shows that the
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Maisotsenko cycle does have the potential to be a much more efficient evaporative

cooling design and more work on this cycle should be investigated.

Again, as this was only a demonstrative simulation, improvements to the
simulation can be made. It is recommended that in order to see the full potential of this
particular configuration, optimization of the geometric parameters 11(12,13,14,15 and 16

be performed.

5.5 Summary

The three test cases investigated study the developmenet of the additional mass
fraction and re-developed energy transport to the base model. These cases validate the
model as they are able to simulate moisture transfer in the conjugate regions as well as
resolve interfaces between differing regions. The complete work is summarized in

chapter 6.
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Chapter 6 - Summary, Contributions, and
Future Recommendations

6.1 Summary

The principle aim of the presented work was to extend the capability of an in-
house conjugate heat/flow model to include moisture exchange such that applications
in food storage/ripening and heating, ventilation, and air conditioning (HYAC) could
be considered. This task was accomplished by implementing a mass fraction transport
equation into the existing model to account for a dry air-water vapour mixture, and re-
formulating the energy transport equations to account for this multi component
mixture. As stated, the model developed is utilized to solve conjugate fluid, porous,
and solid domains. Formulation in the porous regions followed the works of Whitaker,
where volume averaging the governing equations throughout the porous part of the
conjugate domain simplified the media such that this part of the domain could be
modelled. The derivation followed a non-equilibrium approach for species and heat
transfer as this allowed more versatility in the model for future work. This non-
equilibrium versatility is beneficial over traditional equilibrium approaches, as often in
agricultural applications, internal moisture and temperature conditions dictate the
transfer between constituents. Although this is a more versatile approach, extra transfer
terms do exist between the constituents and the derivation must ensure proper
representation of flux between constituents. Additionally, because this is a conjugate
numerical code; treatment through fluid-porous, and porous-solid interfaces was also

addressed. Applications in the HVAC industry were chosen for validation, as the

117



model was utilized to predict operating temperatures in evaporative cooling cycles, and
study the energy and mass fraction transport processes throughout the modelled

domains.

6.1 Contributions

The primary contributions of this work may be summarized as follows:

» The author presents a 3-D structured conjugate finite volume code that is used
to model mass, momentum, and energy transport. This model is extended to
include the capability to support vapour transport in the fluid and porous
domains, and mass transfer in the porous domain. As the fluid being modelled
is now represented as a mixture, re-formulation of the energy transport
equations of the base code was also required.

* As interfaces between regions are modelled in the numerical code, special
attention was given to the development of physically reasonable conditions at
these interfaces. This included an approximation of the interfacial heat and
mass fraction flux associated with extensions to the model. This also included
an approximation for partial pressure at the interface between the pure fluid and
porous regions. These conditions are implemented to ensure physically
reasonable results are obtained, which is demonstrated by the validation cases
presented.

* In order to validate the model, as the cases being studied were more complex

then the code was designed for, the base code was re-structured such that it
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could be executed on SHARCNET using faster processing power, and

alleviating memory limitations.

6.3 Recommendations for Future Work

Further work is clearly required in making the model more applicable to the
complex domains encountered in engineering processes. This model is limited to
applications where the domain may be simplified to be nearly orthogonal. Although
this is a good foundation for model development and for the evaporative cooling
processes considered in this work, further extending the development to unstructured
domains would be quite beneficial. Also, this model was developed to consider multi-
component fluids, as in the applications being considered, excessive amounts of liquid
IS not desired and the assumption of having only a saturated surface is justifiable.
Further extension of the model to include multi-phase fluid fields would be beneficial
and it is seen that this model provides a good platform for the gas mixture part of any
multiphase extension. As only HVAC applications are considered due to the lack of
data for agricultural type applications, it is recommended that experiments be
performed to quantify the necessary parameters needed to simulate domains in the food
industry. Finally, it is suggested that a parametric study of the final test case be

performed to optimize the geometry of the Maisotsenko evaporative cooler.
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