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Abstract
The principle aim of the presented work is to extend the capability of conjugate 

heat/flow models to include moisture exchange such that applications in food 

storage/ripening and heating, ventilation, and air conditioning (HVAC) can be simulated. 

To accomplish this, several modifications were made to an existing finite-volume model 

developed in-house. The most significant change was the implementation of a mass 

fraction transport equation to track the evolution of the water vapour field in all regions 

of the conjugate domain. This approach also required re-formulation of the energy 

transport model to account for a dry air/water vapour binary mixture. Developments in 

the porous regions are implemented using the technique of volume averaging, wherein 

the governing equations are considered macroscopically. A non-equilibrium approach in 

volume averaging the species and energy transport equations is implemented to allow 

more versatility for future work. This non-equilibrium versatility is beneficial over 

traditional equilibrium approaches, as often in agricultural or processing applications, 

internal moisture and temperature conditions dictate the transfer between constituents. 

Additionally, these conjugate domains consist of fluid-porous, fluid-solid, and porous- 

solid interfaces, and interface conditions between governing equations must be 

developed. Applications in the HVAC industry are chosen for validation, as the model is 

utilized to predict operating temperatures in evaporative cooling cycles, and study energy 

and humidity transport throughout these domains.

Keywords: porous media, conjugate vapour transfer, conjugate heat transfer, finite- 
volume discretzation, Interface conditions
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Chapter 1 Introduction and Literature 
Review

1.1 Motivation
Processes that undergo moisture transfer are common in many applications of 

engineering. In particular, chemical engineering relies heavily on moisture exchange in 

food processing, where the manipulation of moisture can be used for sanitation, quality 

enhancement, ease of handling in production facilities, and product shelf life extension. 

In mechanical and civil engineering, wicking processes are important for moisture 

removal, and often water vapour is manipulated to create energy potential for 

applications such as the conditioning of air in buildings. These processes introduce 

engineering challenges in design and modeling and it is desirable to have insight to 

control them. Often, the materials and domains under consideration have a structure 

that enables permeation by gas or fluid. If this is the case, it is possible to use 

modelling techniques developed for porous media to simulate flows and exchanges in 

these applications.

A porous media can be generally defined as a heterogeneous system consisting 

of a solid matrix with fluid voids. This definition allows for a wide range of scales. The 

pore or void size may be of the order of the molecular size 3 < d < 7A (d is the average 

pore or void diameter), or as large as centimetres as in food stuffs (figure 1.1). The 

scale of the problem must be carefully considered when a solution approach is 

formulated for the domain, as mathematical treatments of this medium require scale

1



constraints. Also, porous structures often vary in geometry, some being oriented 

similarly to packed beds of particles where others take on the form of interconnected 

ligaments or spherical shaped voids. The type of structure affects the transport of fluid, 

energy, and species through the domain; and in addition, the amount of available 

surface area for exchange between constituents. This increased surface area is one of 

the main reasons for using porous materials because exchange of energy and mass can 

be enhanced over simple manufactured geometries.

Figure 1-1 Food systems: left -  bulk chicory roots, middle -  SEM image of bread, right -  SEM 
image of uncooked potato [1]

CFD techniques in modelling porous domains, until recently, have focussed 

solely on fluid flow and heat transfer. The benefit of modelling these transported 

variables using a porous media approach is that the concept of volume averaging [2, 3] 

may be applied to eliminate computing pore level flow, thereby simplifying the entire 

media to a continuum. The solid and fluid constituents of the porous domain may be 

treated as a single continuum when volume averaging is applied to the mass, 

momentum, and energy equations. There is also versatility in the volume averaging
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approach, as derivation of the governing equations may be performed treating the fluid 

and solid components as separate constituents. This is often done to the conservation of 

energy equation under the assumption of local thermal non-equilibrium (LTNE), 

whereby the temperature of the fluid and solid are computed separately [4]. The LTNE 

approach is necessary for cases where the conductivity ratio of the solid to fluid is too 

large, but it is also useful for cases where an accurate value of temperature in the solid 

is needed to properly estimate coefficients in an energy or moisture exchange law.

In applications where water vapour transfer is important; continuity, 

momentum, and energy is not a complete description of the transport phenomena. The 

addition of a mass fraction or species conservation must be considered to fully describe 

transport throughout the domain. Theoretical models have been developed for this 

additional conservation equation. These models follow a similar progression as the 

conservation of energy, where representing the porous medium as a single or multi- 

continua is proposed [2, 4].

The differential forms of the equations described, which govern transport 

through the porous media, serve as the basis for computational models through a single 

medium type. However, when developing a computational model for applications that 

transmit moisture; such as air conditioning and food processing/storage, it is also 

imperative that the model is constructed with the ability to simulate transport through 

multiple domain types such as pure fluid, porous, and solid. This is due to the 

geometric configurations encountered in such processes. Furthermore, a model must 

also be able to include interfaces between medium types. There have been few models 

presented that accomplish this task.
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complex physics. The model will also adopt a local thermal non-equilibrium model for 

the energy equation to enable accurate exchange models to be used. The model will be 

used in this thesis to carry out simulations of direct, indirect, and Maisotsenko 

evaporative cooling.

The following literature review is separated into three main sections: Porous 

media modelling where porous modelling techniques will be explained with a focus on 

multi-component flow, applications and modelling of porous domains in the food 

industry, including current modelling techniques in this sector; and application and 

modelling of evaporative cooling in the HVAC industry.

1.2 Literature Review

1.2.1 Porous Media Modeling

Prediction of flow characteristics in porous media has been studied for over a 

century. Notable milestones which are relevant to this work are the findings of Darcy, 

who was able to relate pressure drop to bulk velocity using an empirical constant [7]. 

Darcy’s law is given as

-Vp = ^ (u ) , (L1)

where p is the pressure, K is the permeability of the porous media, p is the dynamic 

viscosity and (u) the vector of average velocity. The Darcy equation shows a linear 

relation between pressure and bulk velocity. An unfamiliar term in this expression is 

the permeability, and as given in equation 1.1, this parameter is a measure of the ability 

of the porous material to allow fluid to flow through it. Although this expression is
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useful, it is only valid in viscous dominated flows, where the Reynolds number is low. 

This is not always practical and for flows that are not limited by this criterion, a more 

advanced representation is needed.

Once the Reynolds number exceeds one, the Darcy equation alone is no longer 

valid and an alternate correlation is needed to accurately model the effect of the porous 

structure on the flow. Ergun developed an expression by considering granular solids, 

which is capable of resolving higher Reynolds numbers by taking into account density, 

viscosity, porosity, and geometric parameters of the solid particles. Ergun’s equation 

contains a linear term similar to the Darcy equation, and a quadratic term accounting 

for the effects of inertia but is limited to porous media of specific internal structure. 

Ward [11] was able to take this correlation and make it applicable to other internal 

structures using dimensional analysis to show that the quadratic term in Ergun’s 

equation could be represented in terms of the dynamic pressure, the square-root of 

permeability and a drag coefficient. This new expression contains a term similar to the 

original works of Darcy, and a general term to account for inertial effects given as

-Vp = £(u>+  —  |<u)|<u).K p

The CE term is called the Ergun coefficient, and accounts for the form drag in the 

medium. Although Ergun originally stated that this coefficient could be reduced to a 

single value for all forms of porous media, this has been shown to be incorrect. This 

model breaks down where macroscopic gradients exist in the flow, such as next to a 

wall in the boundary layer region, and hence more sophisticated techniques must be 

applied to capture the flow in these regions. The use of volume averaging of the
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general transport equations over the porous domain is a technique that enables a broad 

extension to the simple porous media modelling afforded through the use of equations 

1.1 and 1.2.

The volume averaging method, developed independently by Whitaker and 

Slattery [2, 3], is a method for modelling flow and energy transport in porous media. 

The transport equations are applicable in the difficult regions mentioned above 

(gradients near walls), as they are developed from the transport equations in a single 

constituent continuum and therefore contain all relevant terms that resolve gradients. 

The idea of this method is to not resolve the flow within the domain on the pore scale; 

rather the transport equations are integrated over a representative volume (discussed 

further in chapter 2), resolving only the bulk flow. This method is also extended to 

mass fraction and thermal fields, where Whitaker used volume averaging to look at 

energy and mass fraction transport for drying processes [7]. It is noted that volume 

averaging alone does not present a closed form of the above equations rather it leaves 

integral terms that are functions of pore level flow. In order to solve for the bulk flow, 

closure methods must be used to manipulate these terms. These closure techniques are 

not the purpose of this work however, it is stated that closure can be achieved by two 

methods; the first is the use of constitutive equations where examination of flow at the 

pore scale is needed, and the second, a semi-heuristic method that replaces the integral 

terms with terms that relate to the volume averaged parameters often coming from 

empirical relations such as the Darcy or Ergun equations. This work uses the semi

heuristic form of closure to represent the final form of the volume averaged equations.
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Vafai and Tien [12] introduced a method of semi-heuristically closing the 

volume averaged momentum equations combining all unknown parameters and 

replacing them with a body force term of the form of the Ergun extended Darcy law. 

Thus, the closed form of the transport equations require a permeability, and an Ergun 

coefficient. Vafai and Tien also used this method to close the energy equations, where 

the additional integral terms arising from volume averaging were once again 

combined. This combined term was classified as an effective heat flux vector 

multiplied by an effective thermal conductivity. In flows with a high Peclet number 

(Pe = RePr), thermal dispersion must also be considered. Thermal dispersion is a 

transport process that occurs as a result of departures of the local velocity from the 

volume-averaged velocity. These local “fluctuations” promote local mixing and result 

in enhanced transport that must be accounted for in high Pe flows. Quintard et al [13], 

Sahouri and Kaviany [14] have conducted experiments to characterize the thermal 

dispersion in the volume averaged equations in terms of the local Peclet number. 

Kaviany [4] furthered this study looking at the closure terms in the mass fraction 

equations analogously to the energy equations and developed closed forms of these 

transport equations.

Betchen et al [6] studied the effects of local thermal non-equilibrium in 

graphite foams. This work developed a finite volume model for fluid flow and heat 

transfer in conjugate fluid, porous, solid domains. The novelty of this work lies in the 

thermal non-equilibrium development, as well as the model’s ability to solve though 

conjugate domain interfaces without oscillation. This work used the concept of 

effective thermo-physical properties to represent exchange coefficients in the porous
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media. As graphite foams do not have well established models for representing these 

effective properties, calibration of the model was required to correctly predict the flow 

in the graphite.

The effect of local non-equilibrium between constituents in the mass fraction 

and energy equations was also studied in the works of Quintard et al and Kaviany [13], 

where unlike the studies mentioned, transport of energy and mass through the medium 

was divided into transport through the solid and fluid separately. Volume averaging in 

a non-equilibrium representation of the domain is similar to the equilibrium case, 

however additional terms are present representing the interfacial exchange between 

constituents. The model is similar to that which was developed years earlier by 

Whitaker for drying, with the differences lying in the closure of the equations. Semi

heuristic closure is once again developed for these equations where it is important to 

consider the effects of excess surface accumulation, convection, diffusion, adsorption, 

and non-equilibrium sources when closing the equations [4].

1.2.2 Applications and modelling of porous domains in the food industry

The ability to control moisture is crucial in the food sector for many reasons. 

One example is in processing facilities, where a dried product is easier to mix, mill and 

segregate. Moisture and heat diffusion are also manipulated for sanitation, as insects 

and other microorganisms are destroyed at low relative humidity with accompanying 

temperatures at or above 60 degrees Celsius [8], Furthermore, quality may be altered 

by moisture control, as certain products are dried to enhance quality, improve 

palatability, and increase metabolic conversions as well as digestibility. Finally,
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moisture and heat manipulation have a large impact on storage life, where often a 

target equilibrium relative humidity (ERH) of less than 70% is desired to minimize 

spoilage due to insects and micro-organisms; and to reduce unfavourable oxidative and 

enzymatic reactions [8].

There have been many models that have been formulated to predict heat and 

mass transfer within stored bulk food. Initially, one dimensional models of pure heat 

and mass diffusion were extensively studied in the late 1960’s [10]. This approach was 

extended to very basic modeling of air flow in sealed bins, where the domain was 

mapped using two dimensional finite element techniques [15]. More recent studies 

used finite element methods to predict streamlines of air through a three dimensional 

bulk media, in conjunction with a one dimensional finite difference model for 

determining temperature, as well as moisture changes in the air. The main issue with 

this modelling approach is that the prediction of streamlines is accomplished by 

interpolation and also, the method implies a fictitious movement of the solid as during 

multiple iterations of the drying period, the streamlines are adjusted[16,17]. Another 

method of evaluating the partial differential equations encountered in resolving 

transport in food stuffs is seen in the Wang et al. model extended by Tassou and Xiang 

[18], where a finite volume technique is presented that also includes transpiration, as 

well as the effect of respiration in a vegetable storage facility. Respiration effects were 

added utilizing a model developed by Becker et al [19], where the heat generated by 

the product is correlated to the rate of carbon dioxide or water production. The fluid 

flow in the food store, modeled similarly to a packed bed, was accounted for in the
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momentum equations by using a Darcy term momentum sink to model the effects of 

the additional drag, which limits the model to low Reynolds numbers.

Most methods above were utilized to model small particle food bulks where 

large moisture and temperature gradients between the produce and fluid are not 

expected. With increased particle size, such as apples, or potatoes, larger gradients may 

exist. Yongfu Xu [10], proposed a model to simulate such particles in bulk storage of 

food stuffs. This implemented four transport equations to simulate three dimensional 

mass, momentum, energy, and mass fraction of water exchange in the macro-domain 

of food particle storage units. The model idealized individual bulk items (potatoes) as 

spherical particles to estimate moisture content, temperature difference, conductivity 

and moisture diffusivity, allowing local heat and mass transfer properties within the 

particle to be evaluated. Locally, a single particle is considered as a sphere consisting 

of concentric shells with negligible variation of fluid conditions around the individual 

particle over a time interval. Finally, the surface conditions between the macro domain 

and individual particle are governed by the water activity of the product, obtained 

experimentally. Although the governing equations were listed for flow in the overall 

food store, little information was given about the techniques used to resolve these 

equations across the domain. Also, although the model maps an individual particle to 

determine surface conditions for moisture exchange, the energy, and species transport 

across the macro-domain is not fully considered to be in local equilibrium. Finally, 

though the model explains multiple medium configurations (fluid, porous, solid), a 

conjugate framework is never analyzed.
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Although all models mentioned above considered the domain to consist of 

spherical type products, simulations have also been conducted that consider non- 

spherical packing arrangements. Hoang et al [21] simulated a domain of bulk chicory 

roots where 3 dimensional transport of momentum, mass and energy was considered. 

The bulk store of chicory roots is considered to be a porous media, and the volume 

averaging technique was used to simulate storage conditions. A non-equilibrium 

approach for energy and vapour content in this model allowed the moisture content to 

be monitored in the solid constituent, however little detail about volume averaging of 

the transport equations is given. Also, although the model does show results for a 

conjugate domain, no mention of any special treatment at fluid porous interfaces is 

made for any of the equations. This model does compare simulation to experimental 

data, where a maximum error of 10% in measured weight loss is obtained after the 

initial cooling period.

The main benefits of the porous models are that all relevant variables (mass, 

momentum, energy, and mass fraction) are solved for, rather than models developed in 

the past which either study a single particle within a truncated domain, or make many 

simplifications of the domain. This is the advantage of volume averaging the domain, 

as detailed geometric dimensions of individual items are not needed; rather the domain 

is viewed as homogeneous with parameters accounting for the effects of the porous 

type structure.

1.2.3 Evaporative Cooling

Heating, Ventilation, and Air conditioning (HVAC) is a large field of 

Engineering with many applications. Particular interests in this field include
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Intake air 
(ambient)

sWater (wetted 
surface)

—►
Outlet air 
(product)

Figure 1-2 Direct evaporative cooler

Indirect evaporative cooling operates similarly to direct evaporative systems; 

however the working and conditioned air channels are separated. If each channel is 

analyzed, it is seen that the working or wet air channel functions as a direct evaporative 

cooler, where as the dry air channel is cooled by using a counter-flow or cross flow 

heat exchanger, utilizing the sensible exchange of energy through the wall that 

separates the two channels (Fig 1.3). This limits the amount of water vapour in the 

outlet air channel; unlike the direct evaporative design, to the initial specific humidity 

of the inlet air.

In ta k e  a ir  

(a m b ie n t) W o rk in g

c h a n n e l Q sE N S IB lf OlATEMT 

^  *

E x h a u ste d
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In ta k e  a ir

(p ro d u ct) c h a n n e l (a m b ie n t)

Figure 1-3 Indirect evaporative cooler

Finally, dual evaporative cooling incorporates aspects from both the direct and 

indirect configurations. The benefit of this approach is the ability to control the output 

air temperature; as well as, the amount of moisture contained in the air. With the
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constant refining in manufacturing techniques, these systems have become more 

popular in the past 25 years [22].

Modelling of evaporative cooling cycles, where both heat and mass transfer are 

present in fluid flow have followed a similar progression to the modelling techniques 

developed for the food industry. Initial models were developed for spray evaporative 

cooling, where airflow would be cooled in channels, through a series of plates as it was 

misted with water. The modelling consisted of two approaches, the first being to 

evaluate the channel as a series of small sections. Each section consisted of a volume 

containing a plate, covered by water exposed to flowing air. Mass and energy balances 

were considered over each element given a known inlet condition, and summed over 

the domain to calculate the outlet conditions [23]. The second approach was to 

construct overall balances of the system, ignoring intricate transfer inside the device 

with the goal solely to predict the exit conditions [23]. Further development in 

modelling lead itself into indirect evaporative cooling, where cross flow designs were 

studied, considering both the primary and secondary channels. Similarly, a single 

dimensional approach was taken where the specific humidity of the air is neglected, 

accounting for both sensible and latent exchange in both channels through 

experimental correlations for the heat transfer coefficient. To understand the effects of 

latent heat transfer, additional models solved heat and mass transfer in the secondary 

channel developing both sensible and latent Nusselt number correlations [24]. Again, 

the primary focus of these models is to predict the output temperature of the system.

It is advantageous to use porous material in all types of evaporative cooling 

designs, as in direct applications, the increased surface area allows more contact time
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between the flowing air and water enhancing mass transfer. In indirect applications, the 

porous materials offer the same benefits as in the direct applications, with the 

additional benefit of the ability to choose a material that can increase heat exchange 

between the primary and secondary channels. The benefits of using porous material 

make them desirable in evaporative cooling however makes the modeling associated 

with their study, more complex.

1.2.4 Summary

Porous media models have been under development for over a century. There 

have been many methods established to characterize the flow in this material. Early 

studies accounted for the effects of the media by equating the pressure drop across it to 

linear and quadratic bulk velocity terms. More recently, the method of volume 

averaging has been used as it is able to include the effects of macro gradients due to 

wall effects. The method of volume averaging is not restricted to mass and momentum, 

and can also be used to account for energy and mass fraction transport within the 

porous domain. This method of treating the domain allows us to simulate processes 

that would normally require high computational cost. For example, using porous media 

models in the food industry will produce methods of ensuring more accurate estimates 

for quality control and processing conditions. Furthermore, using porous 

representations of bulk food allow the overall domain to be modelled, as more direct 

modelling techniques aimed at simulating individual product and fluid product 

interaction would once again be too computationally intensive. This modelling strategy 

is not solely focussed on one industry, as it may be extended to evaporative cooling 

processes. Evaporative cooling; gaining more research interest as an environmentally
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friendly method of conditioning air benefits from the use of porous materials, as with a 

greater surface area to volume ratios these material lead to higher mass and energy 

transfer rates, which allows more efficient cooling than conventional spray coolers. 

With these materials used in evaporative cooler configurations, the domain of interest 

is best modelled using a porous media modelling approach. This allows the study of 

direct, indirect, and more recent dual-stage configurations to be made, with goals of 

predicting performance and air conditions.

1.3 Objectives

As stated earlier, the aim of the present work is to extend the capability of an 

in-house conjugate heat/flow model to include moisture exchange such that 

applications in food storage/ripening and heating, ventilation, and air conditioning 

(HVAC) may be considered. Development of this model will follow the works of 

Whitaker [2, 7], where the transport equations will be volume averaged throughout the 

porous part of the conjugate domain. This derivation will follow a non-equilibrium 

approach for species and heat transfer [4, 6, 13] as this allows more versatility in the 

model. This non-equilibrium versatility is beneficial over traditional equilibrium 

approaches, as in food applications; often the product’s internal moisture and 

temperature conditions dictate the transfer between constituents. Although this is a 

more versatile approach, extra transfer terms do exist between the constituents and the 

derivation must ensure proper representation flux between constituents.

As mentioned, the potential for the domain to consist of more than one medium 

type (a conjugate domain) does exist, and therefore the model must be developed such 

that it can resolve any interface discrepancies in the transport equations. The works of
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Kaviany [4] and Betchen et al. [6] at the interface governing the discrete form of the 

continuity, momentum, and energy equations is to be extended to also apply to the 

mass fraction equations. This development will ensure that physically reasonable 

estimates in the computational domain over interfaces are made for pressure, velocity, 

temperature, and species as well as associated flux terms.

Though the model makes distinction between constituents in the fluid and 

porous domain, the assumption of equilibrium between species is made in this model. 

Therefore the water vapour and air in the fluid regions, both in and out of the porous 

media are assumed to be a constant temperature mixture. Additionally, the solid 

constituent in the porous structure is considered to be in equilibrium with any water it 

may contain.

In full form, the general model will predict fluid flow, temperature distributions 

in fluid, solid and porous domains, relative and specific humidity’s, and any exchange 

between constituents. It is also developed as an un-steady model where the ability of 

studying moisture evolution within the porous media over time is possible. This work 

will look at the field of evaporative cooling, where configurations of cooling cycles; 

both direct, and indirect as well as a novel dual stage cycle will be modelled. The 

efficiencies of these devices will be evaluated at steady conditions and a comparison of 

all three styles of cooling made.

1.4 Outline of Thesis

The subsequent chapters of this thesis are organized to address the above 

objectives. A brief outline of the chapters are:
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• Chapter 2: The governing equations for mass, momentum, energy, and species 

are introduced for a single constituent medium. The process of volume 

averaging is discussed where this methodology is used to investigate transport 

through porous media. Finally, the governing equations for transport in the 

porous part of the domain are presented in closed volume averaged form.

• Chapter 3: The finite volume method for a general conservation equation is 

discussed aimed at development of a computational model. The equations 

presented in chapter two will be discretized for each media, where any 

challenges in the model will be discussed and clarified.

• Chapter 4: As the computational model is developed for a conjugate domain, 

interfaces between mediums do exist. This chapter will explain the 

methodology of dealing with interface discrepancies in all of the transport 

equations.

• Chapter 5: This chapter will validate the code as the models discussed in the 

objectives section above (the evaporative cooler designs) will be modelled. 

Relative humidity and temperature distribution will be analyzed where 

efficiency will be used as a basis to compare configurations. The chapter will 

conclude with contributions and future steps in the project.

• Chapter 6: The thesis is summarized, the contributions of the thesis are stated, 

and future recommendations are made.
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Chapter 2 - Governing Equations

2.1 Introduction

In this chapter, the governing equations for fluid flow, energy and mass 

transport in an arbitrary porous medium are presented. Next, the definitions and 

theorems that pertain to the volume-averaging method introduced in the previous 

chapter are presented and utilized to develop the volume-averaged equations for the 

conservation of mass, momentum, energy and species. The equations in this form will 

be left in terms of pore level spatial deviations, where closure is given from heuristic 

methods.

It is necessary when studying flow through porous media using a volume 

averaging approach, to invoke certain assumptions about the transport in the domain. 

The first is that the fluid being modeled is both incompressible and Newtonian. This 

assumption is a valid one, as most working fluids in the applications of cooling or 

conditioning, are air or refrigerant. The porous domain is also assumed to be spatially 

periodic and isotropic at the pore level. Furthermore, the assumption of constant 

porosity will be made. With material of roughly the same geometry, this estimate is a 

valid one. The previous three assumptions allow the use of the spatially-periodic 

boundary conditions on a representative unit cell within the domain, which are 

important for closing the equations. In reality, porous domains do not have perfectly 

periodic flow, but by properly choosing the unit cell, these assumptions lead to a good 

approximation of the flow characteristics. It will also be assumed that the ratio of 

conductive to convective resistance within the solid, characterized by the Biot number,
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is quite low. The effect of this assumption for both mass and heat transfer is that the 

resistance to conduction/diffusion within the solid is much less than the resistance to 

convection across the fluid boundary layer, therefore leading to a more uniform 

distribution within the solid.

2.2 Governing equations in Fluid Region

The conservation of mass in the fluid region of the system assuming that the 

fluid is incompressible, is of the form

dpf ,  .
- ^  + V-(pfv) = 0

(2 . 1)

Although we have considered the fluid to be incompressible, and this assumption 

usually warrants the transient term of equation 2.1 being neglected, this is not the case 

in this derivation as the density of the atmospheric air has the ability to vary mainly as 

a function of species content and temperature. Also, the velocity of equation 2.1 

corresponds to the mass average velocity of the mixture.

The conservation of momentum for a Newtonian fluid is described by the well 

know Navier-Stokes equations, given in all three dimensions as

dpfV
dt + V • (pfw )  = -Vp + pV2v + pff ,

(2 .2)

where pf is the density of the fluid, v the vector of velocity, p represents the fluid

pressure, p is its dynamic viscosity, and f representing a body force per unit mass on 

the fluid.
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Air in the atmosphere can be represented as a mixture of nitrogen, oxygen, 

argon, carbon dioxide, water vapour, and variations in other contaminates such as dust. 

Dry air refers only to the components of the gas when the contaminants and water 

vapour have been removed. Since the variations of these gases in the atmosphere, 

generally remain constant, it is convenient to treat atmospheric air solely as a mixture 

of dry air and water vapour with an error in this assumption of 0.2% [25]. The 

conservation of this binary mixture is given as

+ V ■ ( p,Yav) = V • (pf» AB VYa) + SY,A,

and

dpfYB
dt + V • (pfYBv) — V • (pfDBAVYB) + Sy,b >

(2.4)

where YA and YB are the amount of water vapour and dry air present in the mixture, 

DAb — DBA, which is the binary diffusion coefficient and SY,i represents the volumetric 

rate of production of component A or B. In a single phase, the source term will sum to 

zero, seen byXiLiSy,! = 0. As it is only required to have two equations to solve the 

species and overall continuity equations, it is convenient to work with the first of the 

two equations, the conservation of species A, as well as overall continuity in the 

medium, equations 2.1, and 2.3.

Finally, considering the thermal energy equation for the fluid phase, it is 

desirable to refer to the works of Bird et al [26] or the work of Slattery [2,3], where it
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is shown for a multi-species system, the form of the equation neglecting compressional 

work and viscous dissipation is

(2.5)

The last term in the above equation represents any possible sources of energy. Also, 

the second last two terms on the right side of the equation, representing the diffusive 

body force rate of work and the time rate of change of the diffusive kinetic energy can 

be safely neglected due to their magnitude, and this is given as

ii

Ii=l

r D 1 P,
P.U‘ - f‘ = P f D ï Z 2 ^ u f=  °i=l r

(2 .6)

Therefore, the final form of equation 2.5 is

d
dt

' P f^hj^ + V • I PfYiVjhi^ — V • qf + Senergy
(2.7)

Decomposing the species velocity (Vj) into a diffusive velocity (u,) subtracted from 

the bulk velocity (v) given as

Vj = v -  Ui,

along with the continuity equation and the definition

(2 .8)
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(2.9)n

i=l

equation 2.7 can be manipulated algebraically, to yield

(2.10)

=  —V  • q f  —V  • energy »

with the second last term of 2.10 representing the energy transfer associated with the 

species diffusion. Unlike the continuity equation, this term will not sum to zero when 

summed over all species due to the differing enthalpies of specie ‘i’. Throughout this 

analysis, the assumption will be made that all enthalpy is independent of pressure, 

given as

and that the heat capacities of the fluid are constant. This latter assumption is 

reasonable for dry air and water vapour over a temperature range of 263.15 [K] to 

323.15 [K], as it yields an error of less than 0.2% [25]. With these assumptions made, 

now enthalpy can be represented by

allowing equation 2.10, with the further use of Fourier’s law, to be expressed as

h = h (T ), (2 .11)

h = CPT + h° , (2 .12)
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(2 .13 )
( cp ) f { ^ ( p f T f) +  V - ( p fv T ) }

= kfV2Tf—V • pfYlUih ,j -  h0^ (p fYf)

+ senergy

where the mixture specific heat, is expressed as the product of each species specific 

heat and the content of the individual species in the flow, seen as

Z p.
T" ( cp )j =  Ya ( c p ) a  +  Y b ( cp ) b , 

i = i Ff

and the term associated with the energy transfer due to diffusion of species, simplified 

with the use of Fick’s law for binary mixtures, is given as

(2.15)

This gives the final form of equation 2.12 as,

(cp)f{ ^ ( pfTf ) + 7 - ( p ,vT)} (

= kfV2Tf

+ V • (Pf(D AB hAVYA + Dab hBVYB))

— ho (PfYf) — V • (pfvh0) + Senergy .

In the solid region, the energy and species equations take the form of;
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(2 .17 )

and

(2.18)

= ksV2Ts + V • ^  PsDShsV(Y,)s + S,energy >

i

where the species diffusion term may or may be included or not, depending on the 

application. Neglecting this term leads to

Separate equations govern transport for species content and energy in each region such 

that the process of volume averaging may include the effects of local non equilibrium.

2.3 Governing Equations in Porous Region

2.3.1 Volume Averaging

Volume averaging is a method whereby the differential equations given above, 

equations 2.1, 2.2, 2.3, 2.18, 2.19, and 2.20 are scaled such that they are representative 

of bulk flow through the porous region of the domain. This method was derived by 

Whitaker [2] and Slattery [3] independently in 1967. In the method of volume

(2.19)

and

energy ■
(2.20)
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averaging, an averaging volume V within the porous domain is associated with every 

point (both fluid and solid phases) in space, and allows an average value to be defined 

at every point in space. An example of an averaging volume is shown in figure 2.1a, 

where there exists an average value of property \|/f assigned to its centroid, located by 

position vector Xf, and integration over the volume is carried out with respect to the 

position vector yf which will be represented as,

V f|Xf =  y  J  y f(xf +  y f ) d V | Xf+yf( 

v f

or in a form that is more convenient to write,

(2.21)

=  ( 2 '22) 
v f

which represents the superficial average of property \j/f. In the latter notation, it is 

implied the average of quantity (\|/f) within the volume is associated with the volume 

centroid and that its integration is carried forward with respect to the position vector 

xf + yf given in the former definition. Also, it must be mentioned that the averaging 

volume is to be much smaller than the overall system being studied in order to resolve 

macroscopic changes and not lead to artificial smoothing. However, the averaging 

volume must be large enough such that any further increases in the volume do not lead 

to rapid changing of property \|/f, yielding a stationary average. This procedure of 

selecting an appropriate average is shown in figure 2.1b, where it is seen that the 

average value (yf) varies less as the averaging volume increases.
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Figure 2-1 a) control volume associated with averaging and position vector located with its 
location b) plot of averaging quantity (i|/f) with increasing averaging volume V

Once again, a notable mention with regards to the above definition, is that the 

volume average of a transport variable (equation 2.22), is associated with the centroid 

of the volume. Therefore integration in the volume is carried out with respect to the 

components of relative position vector x{ + y { , and cannot generally be considered 

constant within the averaging volume. This is mentioned as it relates to the evaluation 

of spatial averages of volume averaged quantities.

In developing the set of volume averaged transport equations, the introduction 

of the following theorems and definitions are necessary. To begin, the extrinsic or 

superficial average of a variable in the fluid phase is defined in equation 2.22. An 

extrinsic average of a quantity in the solid phase can be defined following a similar 

definition and will be represented by (\|/s). Another type of average is the intrinsic 

average, defined for the fluid as

<Yf)f = [  \|/f dV,
vf JVf

(2.23)
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undesirable to have the volume average of the gradient or divergence operator and is 

more favourable to be presented with the derivative of the averaged quantity. 

Therefore, it is useful to present the following spatial averaging theorem [2], which can 

be shown in two forms, first to transform the average of the gradient

and secondly, to alter the average of the divergence operator such that it becomes the 

divergence of the average value, seen as

<V • \i/f> = V • <yf> + i

In general y f in equations 2.29, and 2.30 can be a scalar, vector or tensor of second 

order. The unit normal n given by definition is defined to be from the fluid phase 

directed at the solid phase. Again, the above definitions can also be applied to the solid 

phase.

When volume averaging the given transport equations, it is undesirable to 

volume average the product of multiple variables which may appear. In order to 

accommodate this difficulty and move forward, it is useful to follow the type of 

analysis used in turbulent transport, where in time averaging, velocity is decomposed 

into a time average and temporal deviation [2]. Therefore using a similar analogy, it is 

useful to decompose each transport quantity when volume averaging a product into the 

sum of its intrinsic average and a deviation from that average, which will be declared 

as \j/f. This can be stated for a general variable in the fluid region as

I \(/f • ndcA.
J<Afs

(2.30)
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V f =  <Vf )f +  V f - (2 .31 )

and is identically defined in the solid region. The decomposition is then used in the 

volume average of the product of two variables \pfl, and \|/f2 to give

<VflVf2> = « v fl)f<vf2>,> + «'(<ri>fVf2> + <>i'fl(vf2>f) (2-32)

+ <VfiVf2> •

Using equation 2.25 the first term of 2.32 is represented as

< V „ > W U  = \  j <Vfi>f< ^ > f|X(+y(dV|X[+„  , (2'33)
Vf

and if we ignore the intrinsic average of the variable within the averaging volume, we 

obtain

<Vfl)f<Vf2)fL = <Vfl>f<¥f2>f<l> = <'l'fi>f<Vf2>fe- (2-34)X f

Under similar length scale constraints of t  «  L , equation 2.32 becomes

<VflVf2> = (vfl)f<Vf2)fe + <Vfi)f(¥f2) + <¥fl)<Vf2)f (2-35)

+ (Vfl¥ f2) •

It is consistent with this simplification to set the average of the spatial deviation equal 

to zero, seen as (ijif2) = 0 [2]. Therefore in its final form, equation 2.35 becomes

<v|/fiVf2> = <Vfl>f(Vf2>fe + <¥flVf2) - (2-36)

which is written in terms of intrinsic averages. A similar expression is stated in terms 

of the macroscopic averages of \|/fl, \|/f2 , where with the use of equation 2.27, equation 

2.36 is manipulated to become
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(2 .37 )
<VfiVf2> = <Vfi><Vf2>£ + <¥flVf2> ■

1

The preceding theorems and definitions allow volume averaging of the transport 

equations to be accomplished. The following sections will now derive the equations for 

transport of mass, momentum, energy and species in a porous domain given the above 

averaging techniques.

2.3.2 Volume Averaging of Continuity, Species and Momentum

To obtain the continuity equation, we will apply the averaging theorems above 

to the mixture continuity (equation 2.1), where the possibility of a mass source exists 

in the fluid region as we consider the solid region to be colloidal, meaning the surface 

contains moisture in a thin layer. Therefore

where w • nfs represents the speed of displacement of the bulk fluid and solid 

interface. Furthermore, the convective term becomes

(2.38)

and examining each term individually, gives

(2.39)

(2.40)

and combining the two yields
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(2 .41)d(pf>
dt + V- • nfs dc/Z = 0 .

The superficial average of density in the accumulation term is then re-arranged using 

equation 2.27 to give

<Pf> = 6<Pf)f (2-42)

and the convective transport term decomposed by using equation 2.31 to give

pf = <pf}f + pf , and (2.43a)

vf = (vf)f + vf , and finally (2.43b)

de(pf)f
dt + V • (pf)f(v) + V • (pfvf)

(2.43c)

+ \  [  Pf(v -  w) • nfs dc/Z. 
V J*fs

It is mentioned that the convective term is expressed in terms of the superficial average 

velocity, according to the following analysis:

«P,)f(v>f> = (pf>f(v)f(l)  = <pf)'<v>fe = (pf)f(v) (2.44)

The quantity pfvf is known as the dispersive flux of mass, and while the dispersion 

terms are often considered to be important in the species continuity equations, this term 

will be neglected in the total continuity [27]. The interface is assumed to be rigid as we 

will neglect any shrinkage due to water loss. Using this along with the no slip
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condition, v = 0 on the interface, the integral term in equation 2.43c simplifies to zero. 

Therefore, in its final form, the mixture continuity is represented as

de(pf)f
dt + v • <p/<v> = (m)fs ,

(2.45)

where (m)fs in this work represents a source term due to the surface of the solid 

containing a thin non-varying film of vapour.

Next we will use volume averaging on the species continuity equation 

(equation 2.3) and this is given as;

+ <V ■ (p,Yav)> = (V • (pfDABVYA)> + (SVA>.
(2.46)

Once again, we will address each term individually, where the transient term of 

equation 2.46 is manipulated similarly to the transient term in the total continuity 

equation, becoming

/3 pfYA\ _ a<p/(YA)f (2 .4 7)
( dt I dt

and again it is assumed the interface displacement is zero. Next, we will examine the 

convective term, where volume averaging leads to

(V • (pfYAv)> = V • (pfYAv) + ^  [  nfs • (pfYAv) dcA ,
v JAis

(2.48)

and the spatial decomposition for density, mass fraction, and velocity are used to yield
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(V  • ( p ,Ya v )> (2 .49 )

= V • (e<pf>f<YA>f<v>f) + V • (<pf>f<YAv>) + V 

• (<Pfv)(YA)f) + i  f  nfs • (pfYAv) dA  .
f̂S

Finally, the diffusive term of equation 2.46 will be examined giving

(V • (pfDABVYA)> (2.50)

= V • (pfDABVYA) + -  [  nfs • (pfDABVYA) dcA
V JAfs

and with use of the decomposition of density for the first term on the right side of the 

equal sign, this gives

<pfDABVYA> = «pf)fDA9VYA> + <pfDABVYA) , (2.51)

where the variations of (pf)fand ©AB are neglected within the averaging volume [27], 

in order to obtain

<P,BABVYA> = (p,>fBAB(VYA) + <pfDABVYA>. (2.52)

It must be clarified that although the variation of Z>AB and (pf)f are neglected within the 

averaging volume, these parameters are not necessarily constant, as this simplification 

does allow variations over the macroscopic region. The averaging theorem is then used 

on the first term to the right of the equal sign of equation 2.52 to obtain

(pf>fDAB(VYA) = (pf)f©AB ('7<Ya> + 2  f  nfsYA dA
\  v Ufs

where once again using the decomposition leads to

\  (2.53)
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(2 .54 )
<Pf)'»AB<VYA> =  < p / D AB ( v <Ya > +  i £  n fsYA

and finally, the terms above are combined giving

<Pf®ABVYA) (2.55)

= (Pf)f®AB ( v<Ya ) + — J nfsYA d<A ^

+ (pf®AB̂ YA) .

Decomposing the last term in equation 2.55, and invoking certain length scale 

constraints [27] gives

(P^abW a) = (pf2)ABVYA) , (2.56)

where Whitaker and Carbonel [28] show that

VYa < 0(V(YA)f) (2.57)

and that it is also plausible to assume that the spatial deviation density is constrained 

by

Pf « ( Pf)f . (2-58)

With equation 2.57 and 2.58, equation 2.56 becomes

<Pf>f®ABV(YA> »  <pfDABVYA>, (2.59)

where finally (pf2)AB̂ YA) is simplified to
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<P,®a b VYa > =  <pf) fD AB (v< Y A> +  i  £  n fsŸA dc4 )  .
(2 .60 )

The final form of the complete diffusion term from equation 2.50 is simplified to be

(V • (pf2)ABVYA)) (2.61)

=  V ' (pf)f® AB ( v <Ya > + — J nfsYA d<A

+  7J [  ttfg (p fT)AB^YA) dc/Z.
V J 'Afs

The surface reaction known as absorption/desorption is represented in the last term of 

equation 2.61 and will be designated given as (m)fs. The total continuity of species A 

with the no-slip condition applied, as in total continuity, is expressed as

d(pf)f(YA)f
at + V • (8<Pf>f<YA>f<v>f)

= V
(pf)f®AB

(2.62)

■ ( (pf)f»ABV<YA> + 'r p ~“  J  nfsYA
°̂ fs

-  <Pf)f<YAv) -  (pfv)(YA)f ) + (rh)fs

where written in its final form, similar to the expression developed by Kaviany [4]

9 (p f>f(YA)f _  ,  . (2 .6 3 )

a t
+ V • (e<pf>f<YA>f<v>f)

= V-De(f,A(pf>f -V<YA) + (m)fs.

DeffA represents the total effective mass diffusivity tensor, and represents the 

combined effects of the effective diffusivity and dispersion in the fluid, represented by
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Deff,A -  DAB,eff +  Ddispersion
AB (2 .64 )

The continuity for species A within the solid constituent is found similarly to equation 

2.63, and given as

5<Pf)s<YA)s
£— a ^  = v Defs,A<Pf>s • V<Ya)s -  <m>fs (2.65)

Finally, volume averaging of the momentum equations (equation 2.2) leads to

+ (V • (pfw)> = -<Vp> + (pV2v) + <pff ),
(2.66)

and again noting that the solid constituent is rigid and given the constraints of the 

density and velocity deviations, the transient term, similar to the species continuity 

equation is re-written as

Idpfv\ _  d(pf)f(v) (2.67)
\ d t j ~  dt '

Next, averaging the convective term with the use of the spatial decomposition leads to

(V • (pfw)> = V • (<pf)f(v)(v>f) + V • ((pf)f(vv>) , (2.68)

where the last term on the right of equation 2.68 only exists, if a macroscopic gradient 

in the flow field is present. This is the case near bounding walls, where the 

macroscopic convective term does not capture the additional momentum transport of 

the interaction of the pore level deviations with themselves.
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Volume averaging the pressure term, and expressing the pressure in terms of 

the intrinsic average leads to

(Vp) = £V(p)f + —

Once again, the spatial decomposition for pressure is used for the integral term

/  ■
J<Afs

nfsp dc/Z. (2.69)

(Vp) = £V(p)f + Ì  (  nfs(p)f dc/Z + \  f  nfsp dc/Z 
V Ĵ fs V J<Afs

(2.70)

and using the length scale constraints that 1«L, then

(Vp) = £V(p)f + ^ ~ [  n fs dc/Z + ^  f nfsp dc/Z,
JcAfs J<Afs

(2.71)

where it can be shown by setting ip = 1 that the fist integral term simplifies to zero, 

assuming no variation in porosity and making use of the spatial averaging theorem of 

equation 2.29. This is shown as;

(V1) =  V(1) +  1 [  ( l)n d c/Z
V fs

(2.72)

Or with further simplification,

(2.73)

The pressure term in the momentum equation is now expressed as
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(2 .74 )(Vp) = £V(p)f + i  f nfsp dc/Z.
V fs

The last term on the right side of equation 2.74 represents the effect of pore level 

deviations causing an additional pressure force. The viscous term is handled similarly 

to the diffusive term in the species equation, which leads to

(pV2v) = pV2<v) + ^ /  ■J<Ais
nfs • Vv dc/Z,

(2.75)

where the integral term accounts for the additional viscous forces at the fluid solid 

interface due to the no-slip condition, and the first term accounts for the macroscopic 

velocity gradients due to, for example, macroscopic boundary layers. Therefore the 

momentum equation is stated as

_d(pf)(y) + 1 y . ((pf)(v><v>) + V • ((pf)f(vv)) 

= -£V(p)f + pV2(v)

where I represents the unit vector.

(2.76)

2.3.3 Volume Averaging of Energy Equations

The energy equations will now be averaged for both the fluid and solid 

constituent. The equations are volume averaged with many of the theories and 

simplifications demonstrated in the continuity, species and momentum equations and 

are averaged under the same length scale restrictions. With the use of equation 2.16, 

this leads to
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(2 .77 )

= -(V  ■ q,> “  <V • ( Z  PfYiui^)>  + ^energy) •

As in the governing equations for the fluid above, the enthalpies are represented using 

the form of equations 2.9, and 2.12. Therefore the transient term with a rigid interface 

becomes

Q
< ^ ( Pfhf)> +  (V -  (p fv h f) )

+ Z l < h ' 1

(2.78)

where the last term on the right of equation 2.78 represents the sum of each species 

reference state enthalpy. Noting that the heat capacity and reference enthalpy of 

species ‘i’ remains constant, the first term is re-arranged using the spatial 

decomposition to yield

(2.79)

= Z £(Cp)fJ J i <PM>f<Tf>f + Z (Cp)f . i | (PtlTf> ■

where the final form of the transient term is

= Z  ( £( cp ),,i^ (< P f.i> f 1<Tf>f)  +  Eh° |< P fJ > '
i

+ (cp)f,|<P fÂ>)-

(2.80)
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The convective component with the no slip condition at the fluid solid interface is now 

manipulated to give

11 11

<V • (pfvhf)) = 2  V • <PfJv(cp)f lTf> + £  V • <hf pf ,v>,
(2.81)

where the specific heat, as well as the reference enthalpy of species i may be taken out 

of the integral to yield

i i  i i

(V • (pfvhf)) = £ ( c p) fiV • (pfivTf) + h?V • <pfiv)
(2.82)

i i

Using the spatial decomposition, and keeping in mind that deviation terms are 

constrained by

Tf «  (Tf)f P f« < p f>f v < 0 ((v )f) , (2.83)

the convective term becomes

(V • (pfvhf))

= Z { ( cp),.,v
i

■ (<Pfj>f (v>(Tf>f + (pfl>f<Tfv) + <PfJv><T»f) 

+ hf V - (<pf ,>f <v> + <Pt ,v>)}.

The conduction term is averaged and presented as

(2.84)
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<V • q f) =  (kfV 2Tf) (2 .85 )

-  V • k f ( V(Tf) +  — i  n fsTf dc/Z
V v  U fs

with the last term in equation representing the conduction per unit volume through the 

fluid solid interface. Finally, the energy associated with the diffusion of each species is 

given as

n

= 2  {(cp),v ■ <Pf,iu iTf>+ h°v ■ <Pf,iu i>}
i= l 

n r

+Z  nf!-((cp),(pfiu‘Tf))dt/!l  ̂ ^fs

+ \  f  nfs- ( h? (PfjUi)) d<4  .
J“4fs J

where the last two terms in equation 2.86 represent the diffusion of energy per unit 

volume through the fluid solid interface due to species transfer. The second term after 

the equal sign of equation 2.86, within the first summation bracket is identical to the 

diffusion term in the species continuity equation (equation 2.63) and volume averaging 

it will not be re-iterated. The first term following the equal sign within the summation 

bracket of equation 2.86 is decomposed to give

(p f iUjTf) =  (pf i Ui(Tf) f) +  (PfjUjTf) (2.87)
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Each term on the right side of equation 2.87 will now be examined individually, where 

Fick’s law will be made use of to simplify p f i Uj. Ignoring the variation of (Tf)f within 

the averaging volume due to length scale constraints, the first term becomes

<pflu ,a » f> = <pflu,) 0 » f = <pfDABVY,)<Tf>f . (2.88)

Using the same arguments as in the species continuity equation (equation 2.87), 

equation 2.88 is simplified to

(pfDABVYi)(Tr)f (2.89)

= Dab [<Pf)f (v<Y,> +  i  £  nfs7, AA )  (T,)<

+ <PfVY1)<7»fj  .

The second term in equation 2.87 is again converted using Fick’s law to be

<pfiU iTf) = (p^ABVYJf). (2.90)

The spatial decomposition of density is now needed, where neglecting the deviation of 

(pf)f and Dab within the averaging volume once again gives

<pfDABVY,Tf> = DAB((p(>f<VY,Tf> + <pfVY,Tf)) . (2.91)

This process is repeated once more for the gradient of the mass fraction to give
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(PfD AeVYiTf) (2 .92 )

=  Dab (<Pf>fV<Yi>fO» +  <pf>f<VY,Tf)

+  <PfTf>V<Y,)f + (p ffVY1Tf>).

The two components of equation 2.88 are re-assembled and this takes the form

<PfJu,Tf> = Dab {<P(>f (v<Y,> +  nfsY, j  <7»
(2.93)

+ <PffVY,)(Tf>,|

+ DAB{(pf)fV(Y,>f<Tf) + (pf>f<VY,Tf> + (pfTf>V(Y,)f 

+ <pfVY,Tf)} .

Using the constraint on deviations terms, given by

Tf «  (Tf)f pf «  <pf)f VY; < 0(V(Yi)f) (2.94)

allows equation 2.93 to be simplified to

(PflUiTf> =  Dab [<Pf>f (v<Y,> + nfsY, A A  ) <7»fJ . 
Finally, the energy term associated with the diffusion of species is given as

(2.95)
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(2 .96 )

— 2)ab

• (cp)fji<Pf>fv<Yi)<rf)f +
(cp)fi<Pf)f<7»f r  _----- ------------- nfsYj dcd + h°(Pf)fV(YA)

The energy equation for the fluid phase is now presented in its volume averaged form

(2.97)

cp),.i |  (<?«>' «T»') +  <P«>f)  + 1  f t 0» V  ’ ( ( P f / « ™ ' )
i i

+  h1?V -((p f l>'(v>)}

■ ( s k f V m ' + ^ i  nfsTf dcA- (Cp)f l <PfJ>f (TfV) -  (cp) f . <pflv><Tf>f 
\ v J<Ais

-  hp <Pf ¡V)^

+
XI

z -
1=1

£®AB(cp) f i<Pf)fV<Yi)f<Tf>f +
®AB(Pp)f j(pf)f(7f)

V I nfsYi dc/Z 
Ĵ fs

+  £©ABhr<pf>fV<Yi)f +  -- x-1.il\ (pI ) f
V JcJ

nfsYi dc/Z
<̂fs

+  ^  f  nfs ' (kfVTf) dc/Z 
VJ*ta

+
n f

Z  { ?  L rin,s ■ ( W o  ( pf.iu ‘ T f) )  <*■* +  ^  ■ ( h? ( p f .i " i ) ) d ^ }  -
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where the constraints of the temperature and density deviation have been used to 

reduce the transient term. The same procedure in volume averaging the solid phase 

energy equation is preformed and given as,

II

Z  ((1 “  + (1 -  £K ^ < P S.,>S)
(2.98)

=  V • ( (1 -  £)ksV(Ts )s -  ^  £  nfsTs dc/Z

n

i=l

+ (1 -  £)DABPsh?V(Yi):

(1 -  e)2)ABps(cp) V<Yi>s<rs)

®ABh°P,

® a b p s ( c p ) s 1 <7-s >s

V I ■J J l f s

nfsYi dc/Z

V

u
L nfsYi d<A
Ĵ fs

nfs • (ksVTs) dc/Z
<AfS

~  X  (V L  Ufs ' ((Cp)s,i (Ps,iUiTs)) dcA

+ h f  nfs ■ (hf (ps,iui ) ) dĉ lv JcAfc I

where the fluctuations in total density are not considered within the solid phase and it 

is mentioned that the direction of the normal nfS, is represented in the negative sign in 

front of integral terms.

2.4 Closed form of equations

Although the equations presented in the above sections are volume averaged, 

they are not yet useful for a macro-scale computational model as terms exist that 

require pore level resolution. Heuristic closure is studied in the works of [2, 4, 5, 6, 7] 

where these terms may be grouped together and correlations used to represent them.
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This is not the aim of this work, however the closed form of the equations will be 

needed for chapter 3, and therefore all equations in the porous region are given as:

de(pf)f
+ V • <Pf)f(v) = ( hysat

e 9<Pfgt<YA> + 7 ' «Pf)f(YA>f<v» = V • V'fU(pty  ■ V(Ya> + <n,>fe

£d(pf)f(v) i t t  N 
-----^ ---- + - V - « p f)f(v)<v))

^ B /  x £<Pf)fCE= -eV(p)f + pBV2(v) -  <v) -
Vk

l<v)|<v)

+ £<pf)ff

Z  (E(Ĉ(4 i t (<P«>f <Tf>f) + £h° s  <P«>f)

V-(<pu>f(v>(Tf>')
i

+ hfV-(<pf/<v>)}

= V ■ (ekeff,fV(Tf)f)

+ £  v  • [D eff,f(cp) f .(Pf>fV(Yj>f<Tf)f +  D eff,fh°(pf>fV(Yi)f]
i=l

+  hfSAfs ((Tf)p — (Tf)p) — hAAfS<hi}fs,

(1 -  6) 3<Pfgt(YA>S = V ■ Beff.s<ps>s • V{Ya)s -  (n,)fc

(2.98)

(2.99)

(2 . 100)

(2 . 101)

(2.102)

48



(2 .103 )

= V • ( d  -  8)kefi,sV(Ts)s )
2

+ y , v • [( i -  e)d« * <p« >s (cp)s , w w
i=l

+ (1 -  £)Deff(S <Ps<i)s h°V(Yi)s -  hfsAfs((Tf)p -  <Tf>£) + hAAfs<hi)f

where momentum has been heuristically closed using the familiar Darcy and 

Forchheimer terms, and the effective components keff and T)eff in the species and 

energy equations account for the stagnant portion of diffusion and may also account 

for the effects of dispersion. This formulation of the governing equations is limited to 

applications where correlations for the effective properties and the additional 

coefficients have been studied, as heuristic closure determines these parameters.

2.5 Summary

A complete set of equations for continuity, species, momentum and energy 

conservation have now been presented for the fluid, porous and solid regions. In full 

form, the equations contain terms that require information about pore level fluctuations 

which is not the goal of this work nor is desirable. In fact, the method of volume 

averaging was developed to avoid computations of pore level flow and thus, these 

terms must be eliminated. The method used to close these terms is described in the 

literature review section where the equations are shown to be heuristically closed. The 

next chapter shows the numerical implementation of the closed form of the transport 

equations presented in this section.
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Chapter 3 - Numerical Methods

3.1 Introduction

This chapter describes the numerical methods selected to solve for the governing 

equations derived in the previous chapter. Initially, the discretization of a general transport 

equation, including the transient, convective, and diffusive terms will be addressed using a 

finite volume technique. Additionally, volumetric source terms may exist in these equations 

and their general discretization will be presented. The finite volume implementation is 

chosen as a discretization method, as it has the advantage of being fully conservative. It is 

assumed that the generalized form of the discrete equation presented up to this point is 

developed under the assumption of a known velocity field; however in general, the solution 

procedure requires that the flow field be computed. To solve for this field, the continuity 

and momentum equations are also developed using the general finite volume discretization, 

however the development of these equations require special attention as both pressure and 

velocities are unknown. This special treatment is demonstrated through the concept of 

pressure-velocity coupling, as it is used to maintain coupling between the continuity and 

momentum equations.

Having established a finite volume approach for a general transport equation, this 

methodology is utilized to discretize the mass, momentum, energy, and species 

conservation equations. Each transport equation is presented in its discrete form for the pure 

fluid, porous, and pure solid domain types, where focus is brought to any additional terms 

not seen in previous models. These terms are attributed to the water vapour component of 

the air mixture.
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To conclude this chapter, the solution approach to the system of equations is 

presented, focusing mainly on any modifications encountered due to the addition of a mass 

fraction equation. In this section, explanation on how the assembled matrices are solved is 

given. Additionally, it is shown how parameters dependent on the solution field are re

computed, and finally tolerance criteria that govern the solutions are explained.

3.2 Discretization of a General Transport Equation

The computational fluid dynamics model implemented is based upon the finite 

volume discretization described by Patankar [29]. This method subdivides the domain 

into multiple control volumes that do not overlap. The transport equations listed in the 

previous chapter are integrated over a control volume and solved at discrete locations, 

as opposed to all locations in the domain. There are benefits to choosing this method 

over other finite techniques. One benefit being is that there is integral conservation of 

all quantities over each control volume, each group of control volumes, and the entire 

domain irrespective of the number of control volumes used. In this work, the domain is 

subdivided into orthogonal hexahedron elements, and is discretized using a structured 

grid framework shown for two dimensions in figure 3.1.
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Figure 3-1 Discretization of a two-dimensional structured grid, where the central grid ‘P’ is 
neighboured by West (‘W’) ,East(‘E’), North(‘N’), and South(‘S’) nodes. Common faces are 
classified as integration points denoted by smaller case .

To begin, a general transport equation is given as

dpfip ,  N (3.1)
- g -  + 7  ■ (p,>|)v) = 7  ■ (rviji) + Sy,

2 3 4

where pf represents the mixture density of the transported fluid, ip represents a generic 

transport variable (for example Yj, T; ), V represents the diffusion coefficient, and Sv 

characterizes any volumetric sources. Beginning with the transient term of equation 

3.1, the implementation of a first order backwards difference is used. The result is 

integrated over a discrete volume V, where it assumed that the value ip is represented at 

the centroid of the volume VP, and is constant over that volume. This procedure is 

given as,

/ dpfip
d t

dV = Pf-
ifrp ~  v|/pId 

At
Vp — Myp vj/p -  vlJp 

At

old (3.2)
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where MVP is the mass of control volume P, At is the time step, and superscript ‘old’ 

represent the former value of i|/P from the previous time level. It is noted that the 

discretization will treat terms associated with v|/P implicitly in the coefficient matrix, 

and remaining terms will be expressed explicitly within the source term.

The convective term in equation 3.1 is first transformed from a volume integral 

to a surface integral, given as

The surface integral is now integrated over all external faces of the hexahedral control 

volume VP stated as

where rhi represents the mass flux through each of the integration points. In the case of 

the grid structure chosen in this work, ‘n f (number of faces or integration points) 

corresponds to the ‘e, w, n, s, t, b’ faces, and this was illustrated in two dimensional

integration point must be approximated using an advection scheme. A first order 

upwinding scheme is selected as an implicit method of predicting i|/ at the integration

(3.3)

nf (3.4)

i= l

form and previously shown in figure 3.1. The value of i|/ in equation 3.4 at the

point, as it is stable and therefore well suited for the advected values. This is shown for

the east face of the control volume as

53



t e  = — 2--- ^ P + — 2----
1 +  a e 1 — a e (3 .4)

where ae is a parameter used to determine the upwinding direction of the flow at 

integration point ‘e \  This scheme does lead to erroneous results under certain 

conditions, and in this work, higher order schemes are used to improve accuracy, and 

reduce errors associated with upwinding. Many higher order advection schemes have 

been formulated to predict integration point values in computational problems [30, 31, 

32, 33, 34], Advection schemes of particular interest due to convergence properties, 

and spatial accuracy of up to second order, are total variation diminishing (TVD) 

schemes. These schemes are desirable for stability and non-oscillatory behaviour 

because they have been designed to be preserve monotonicity. Monotonicity 

preserving schemes are such that the total variation of the discrete solution should 

diminish with time and these schemes ensure this by the use of limiter functions. TVD 

Schemes that have been implemented in this work follow the limiters developed by 

Van Albada [32] and also Venkatakrishnan [33]. While these schemes were found to 

give stable non-oscillatory solutions, the monotone upstream-centred scheme for 

conservation laws (MUSCL) limiter was chosen, as it produced comparable results at a 

lower computational cost [34]. The MUSCL limited scheme is defined for the east face 

as,

(3.5)
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*|Je = -  <*>
(l|/p -  lJ/E)

for rhp < 0
(3 .6)

AxPE

where the limiter is a function of the Sweby factor (r) at the integration point. The 

Sweby factor is defined as a ratio of upstream to downstream gradients. The limiter is 

defined as

d> = <D(r |e) = r + | r |  
1 +  |r|

(3.7)

for the MUSCL scheme. The implementation of higher order improvements to the first 

order implicit scheme is implemented through the use of a deferred correction (DCj), 

where the difference between the higher order and first order estimate is calculated and 

added explicitly to the system of equations. This method is utilized to avoid the 

possibility of calculating negative active coefficients in the discretization. It is shown 

for the east face as

mevj/e =  mei|ieDS + Priie(i^e0S -  iiieDS) , (3-8)

where the explicit correction for the east face is

DCe = prhe(4r“os -  il^DS) . (3.9)

The variable P is used as a blending factor if needed, and superscripts HOS and UDS 

represent the value of ipj at the integration point predicted using both the higher order 

and upwind difference schemes, respectively.
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The diffusion term will now be discretized using the finite volume method. The 

divergence theorem is used once again in the diffusion term to convert the volume 

integral into a surface integral, given as

It is important to note that Anf is the area of the face at the integration point. The 

gradients at the integration points are easily computed in regions of similar type 

(example; pure fluid), however this term will be discussed further in section 4, where 

values at the interface of multiple domain types (example; fluid-porous) are computed.

The final term of the general transport equation (equation 3.1), represents 

volumetric sources. This term is discretized by directly integrating the volumetric 

source over the control volume, given by

Each transport equation is discretized over finite volumes in domains of similar type 

(pure fluid, porous, and solid), and this is shown in figure 3.2.

nf (3.10)

i=l

V

(3.11)
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§ -Porous region 
-Solid region 
-Fluid region

Figure 3-2 Discretization strategy in domains of similar type (pure 
fluid, porous, solid), where each region is discretized as a 
continuum

Unlike the general transport equation presented in equation 3.1, the momentum 

equations also contain pressure terms. Pressure and velocity will be detailed more 

carefully in the following pressure-velocity coupling section, however at this point, the 

pressure term is treated as a source term, and is discretized following the procedure of 

equation 3.11, which leads to

f  VpdV = (Vp)|p VP . (312)
J V

The discretization of all terms in the general transport equation leads to the general

formation of the discrete equation, given as

nnb

aplj/p — ^   ̂^nnb4*nnb + bp
i=l

(3.13)

or,
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(3 .14 )
aP • i|jp = ^  annb • i|innb + bP ,

i= l

where i|/ and i|i represent the scalar and vector form of the transport variable. Similarly 

aP- and annb; as well as aP, and annb represent the active coefficients both in scalar 

and matrix form at the cell centered value of vjj and i|r. It is noted that the summation is 

performed over all neighbours; represented by ‘nnb’ (number of neighbours), of the 

central ‘p’ node. The momentum equations are a special form of the above systems as 

ipp in three dimensions is represented by all three components of velocity and a 

pressure term. This system is underdetermined as no equation for pressure exists. 

Therefore in order to seek a solution, the continuity equation is made to contain 

pressure and this leads into the topic of pressure velocity coupling.

3.3 Pressure-Velocity Coupling

As stated in section 3.2, the continuity equation and momentum equations are 

coupled and maintaining this coupling is important as the pressure term for 

incompressible flows does not appear directly in the continuity equation. Therefore, 

pressure must be expressed in the continuity equation appropriately. To explain this 

idea further, the pressure field is correct when it drives velocity such that mass is 

conserved. It is noted that even with pressure being included in the mass conservation, 

care must be taken when specifying where the values of pressure and velocity are 

defined. For instance, if both are specified at the same location; the centroid of a 

control volume, the possibility exists that a highly non-uniform pressure field could 

appear as a uniform field in the discretized momentum equations without being

nnb
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detected. Methods have been developed to maintain the coupling between the 

continuity and momentum equations.

One such method is the staggered grid approach developed by Harlow and 

Welch [29]. This concept is to solve the scalar variables such as pressure, temperature, 

etc., at standard volume nodal points while solving for velocity components on a 

staggered grid centred about integration points. This method is well established 

however it requires extra indexing and geometric information about the velocity 

components, and additional interpolations regarding these components. The additional 

parameters obviously make two and three dimensional problems quite complex as an 

additional cost is presented in storage of these staggered quantities.

Another method is that of Rhie and Chow, where coupling is maintained using 

a collocated grid. Essentially, the advected velocity meue in the x-direction is obtained 

from a different equation than the advecting velocity me = pAeiie. Where the east face 

velocity ue is obtained similar to any advected scalar and ue is obtained from a special 

momentum equation. Although these two parameters come from different equations, it 

is desirable that they solve to be approximately equal to each other ue *  ue. On 

collocated grids, a direct solution where pressure and velocity are solved as a coupled 

set; or a segregated solution, where each are solved separately, may be formulated. In 

this work, the direct solution method is chosen to solve the coupled set of equations. 

For the formulation of collocated method, the partially discretized equations for 

continuity and momentum in the fluid region are presented as;

59



(3 .15)(Pf,p -  Pf,p°)Vp
nf

At + o
1=1

(u P -  Up)pf;pVp
nf

At +  ^  m . ( u j  -  U p )

i=l

(3.16)

nf

= -(V p)lPVP + ^ llf( A ^ )
i=l

+ pf<pVpfp,

noting that equation 3.16 is obtained by subtracting equation 3.15 from the discretized 

form of equation 2.76 to ensure a conservative method.

In developing an expression for ue, momentum must be conserved over a 

virtual volume, centered about the integration points within the domain. Beginning 

with the conservation of momentum for the ‘x’ velocity component, equation 3.13 for 

the ‘P’ node is written as

nnb
-  V . iaPUP — ^  a nnbu nnb +  bp — ~

j= l______________
Up

(3.17)
V p

and likewise for the neighbouring volume,

3P (3.18)
a Eu E — Ue _  .

By analogy, the advecting velocity at the integration point is found using a similar 

expression,

dp
aeae = ue - - e Ve (3.19)
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where ae, and Ve are the active coefficient and volume associated with the virtual 

volume. The inverse distancing approximation is then made for regions of similar types 

(fluid, or porous) that,

/AxeEw AxPe„ \ (3.20)
u' = W lp+z ^ UE)

1 1It is also approximated that ae = - ( a P + aE) and Ve = - (V P+VE) and finally

simplifying that aP «  aE «  ae and VP « VE « Ve, the final form of equation 3.19 

becomes

/AxeE
ue =  IT-----\Axpe

AxeE AxPe >
Up + - ---------U E

(3.21)
AxPE

VP
aP Ldx

dp 'AxeE dp
<Axpe dx

AxPe dp
p ^ Axpe dx J]

Or in more concise notation [6],

~ IDUe = Ug - Ve_ d p ID-

ae dx e dx e

(3.22)

where superscript ‘ID’ represents an inverse distancing approximation. Here, the first 

pressure gradient term is approximated using the values surrounding the east 

integration point and is treated implicitly in equation 3.15, whereas the second gradient 

is deferred and approximated using the inverse distance of cell centered values at nodes 

P and E. These two methods of representing the pressure gradient will be almost equal 

in a converged solution however they serve to smooth out any oscillations as the 

solution procedure progresses.
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Similarly, this method carried out in the porous region, noting that the 

discretized momentum equations in this region differ in form than that of in the pure 

fluid region (equations 2.15, and 2.16). This is presented as;

£((pf)p ”  (Pf)p°)vP
At

nf

+ ^  rhi = Vp<hi)fs 
i= l

« u )p  -  (u )p )(Pf)pVp
At

nf
Z ITI-

Y « u ) i  -  <u)P)
i=l

= - < v(p>0|pvp + £ w ( a ^ )
i= l v 7

£<pf)̂ ,VpCE

£PfVp
K < u )p

K |(u)p|(u)p +  (pf)pVpfp

where üe in rhj is replaced with (ü)e and equation 3.17 with

d<p)f
aP(u)P = (u)P -  £■ dx V p .

(3.23)

(3.24)

(3.25)

Using the same procedure implemented to derive equation 3.22, gives an 

approximation for the advecting velocity in the porous region [6], seen as

<U>e = <U>iD -
EVe d (p )f d(p>f

ID-

a e dx dxe e .

(3.26)

where the correction term is multiplied by a factor of porosity.

3.4 Discrete Form of all Transport Equations

To complete the set of discretized equations, the closed form of the species and 

energy equations specific to each region of the domain, are discretized. All discrete
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equation presented, have been treated similarly to momentum, where the continuity 

equation multiplied by the transport variable at the P node are subtracted from the 

discretized equation. This is presented in final form as:

Fluid Region

(YP -  Y p )p f pVP 

At + 2 > ( Y' - Y p ) = i > ( p fA | )
i=l i=l

Pf,pVp
At

ns

X { M t y V f P  -  TP°) + h?(YV.P "  YV°P)}
Y=1

ns nf

+  ^  ^  { (Cp)f ^p) +  V ) }
Y=1 I i= l  

nf

- S  k'(Aâïï)l,+S Df(Ap'h?
i= l  l Y=1 V

3Y£
Y dn ,

Porous Region

£«Ya)Ê -  <YA>(p°)<pf>fpVp + ̂  (<Ya), _ <Ya>, }
i= l

- S " . - K » ¥ )1 =  1 +  Vp<hA>fs

(3.27)

(3.28)

(3.29)
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£V p (p f)
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(3 .30 )

+ hy((Yy>[ -  <YY)^)}

+ hfSAfsVp((Tf}p — (Tf)p) -  hAVP(nA)fs

( l- £ )« Y A>sp-<YA)Sp0)(pf>spVP (3.31)
At

n f
-  ^  D s,eff f  A (P f) : 

i= l  '

d(YA)s
dn -  VP(nA)fs

ns

I
Y=1

(1 -  s)<pf)sVp 
i t

{(cp) sy{YT)|« T s) | -  (Ts)p°)
(3.32)

+ h?«YT>| -  (Yy)p°)j

n f (
=Zi = l

^s,eff A
3(TS)S

dn

+ A(Ps)Shy

-  hfsAfsVp((Tf)P -  (Tf)p) -  hAVP(nA)fs

A variety of reaction types can be defined in the reaction term (nA)fs. As stated in the 

previous chapter, this work considers only a heterogeneous surface reaction between
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the two constituents present (solid and fluid). Models tend to assume that the solid 

surface reaction rate is kinetically controlled [10], meaning concentration of species 

‘A’ is approximately uniform and there is negligible diffusion resistance of that species 

reaching the surface. In keeping a general derivation, for the purpose of looking at 

lower velocities or larger particle size in the case of food storage, where (YA)ps differs 

substantially from (YA) | and the deviation of (YA)f is under investigation, the surface 

reaction is given as [4, 35, 36];

<nA>fS _ (3.33)

1  + . 1
<n)g (n>KS

Equation 3.33 represents a parallel resistance model for the surface reaction, where the 

kinetic component (n)*, is;

(ft>ts = -<Pf>fKAAfs(YA>f , (3.34)

And the diffusion component (n)^, analogous to heat transfer is given as,

(6)0 = (Pf)fhm(fSAfs((YA)ps — (YA)p) . (3.35)

Here, hmfs represents the mass transfer coefficient, and Afs denotes the specific 

surface area associated with the fluid solid boundary.

Solid

Energy transport is the only form of exchange in the solid region, and is 

governed by a transient diffusion equation presented as
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PsVpCspy. -  Tg) 
At

n f

= 2 > (^ )
i= l

(3 .36 )

where the density ps, specific heat cs, and thermal conductivity ks are parameters of 

the solid medium.

The discrete forms of the transport equations have now been presented for 

regions of fluid, porous and solid regions. Although the flow is incompressible, 

variations in properties such as density are still caused by temperature, species and 

pressure variations and therefore the derivation considers this. Furthermore, density of 

the fluid is also affected by the exchange of water vapour in the porous media. These 

variations increase the complexity of the systems being solved.

3.5 Solution Procedure

The numerical procedure for this system requires additional attention as 

variations in parameters with temperature, pressure and species content (content of 

water vapour) occur. Furthermore, calculation of parameters not computed directly by 

the discrete form of the transport equations (equations 3.15, 3.16, 3.23, 3.24, 3.27- 

3.32), such as vapour pressure and relative humidity becomes important when 

initializing the solution, maintaining boundary conditions, and determining mass 

transfer rate within the porous medium.

Equations 3.27 and 3.29 represent the transport of the mass fraction of water 

vapour in the mixture composition throughout the domain. Although this equation 

format is more suitable for representing each component of a mixture and species 

diffusion, it is not the best representation of the composition of humid air in a domain.
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This is because mass fraction is not easily measured directly in practice. In fact, for 

applications involving humid air, the ratio of the amount of water vapour in the air to 

amount of dry air on a mass basis is defined. This is defined as the specific humidity 

a)spec °f the air, and is shown as a ratio of masses or with the ideal gas law, a ratio of 

pressures given as;

Here, mv, and ma are the mass of the water vapour and air, pv, and pa the partial 

pressure of the vapour and air, V the volume occupied, and Rv, and Ra the specific 

gas constants of the vapour and air components. Their exists two bounds to the range 

of o)spec, the first occurs when the mixture consists solely of dry air, represented by a 

specific humidity of zero. The second of these bounds being the maximum amount of 

moisture the air can hold, classified as saturated air. These limits are scaled better with 

the definition of relative humidity, which is the ratio of the amount of vapour in the air 

to the maximum amount of vapour air can hold (mg) at a given temperature, again 

defined in mass or pressure basis as

where the pg is equal to the saturation pressure of water at the temperature of the 

vapour. The saturation pressure is found by using saturated water tables or more 

conveniently, by a temperature based correlation [25]. Expressions 3.37, and 3.38 are 

related, and with the use of Dalton’s law this gives

PyV/RyT _  Pv/Ry 
PaV/RaT -  pa/R a '

(3.37)

^rel ~~ (3.38)
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(3 .39)
0)

Ra/Rv *̂relPg
SP6C Ptot “  <*>relPg '

In practice, the relative and specific humidity’s are traditionally measured by a sling 

psychrometer or more recently, by an electronic sensor. oospec, o)rei and the mass 

fraction of vapour YA are interchangeable by considering the sum of the individual 

components ( £F=i Yi = 1), which gives

Ya =
(3.40)

to + 1
spec

With the relation between specific humidity, relative humidity, and mass fraction 

established, the system may be initialized for the iterative solution process.

Also important for the system, is the proper declaration of boundary conditions. 

Although this is problem dependent, it must be clarified that similar to the domain, it is 

important to implement conditions that make use of measurable parameters. This is of 

concern in the mass fraction equation, where an inlet relative humidity is generally 

specified as it is known, yet what is needed is an input mass fraction for the solution 

procedure. As shown, converting from relative humidity to mass fraction is 

accomplished with the use of equations 3.39, and 3.40 however when using a Dirichlet 

type condition for a prescribed value, it is noticed that the pressure in equation 3.39 is 

not generally known. In fact, defining a constant inlet boundary pressure does lead to 

oscillation at the inlet, because pressure is allowed to develop through the domain and 

is not known at the inlet. Therefore, in order to create a specified inlet relative 

humidity, a Dirichlet condition at the inlet is imposed where pressure must be 

extrapolated. This is given for a west inlet as;
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1 (3 .40 )
Yinlet —

Ra/Ry tOrelPg
Ptot,in ^relPg

+ 1

with the pressure term at the west face being constructed as

Ptot,in — Pe
dp
dx ÀX; (3.41)

e,E
inE

Here pE is the pressure at the node just east of the inlet, the gradient term in the x 

direction is evaluated at the east face of the E node, and the AxinE represents the 

distance to the inlet face. It is also mentioned that ptot,in also on the scale of 

atmospheric pressure, as this is the defined outlet condition.

Assuming the boundary and initial conditions of the system have been 

computed, and the domain was a medium of similar type, the active coefficients would 

be assembled and the solution procedure could be initiated. However this work is 

developed for conjugate domains and this requires special attention at interfaces. 

Chapter 4 will explain how to treat interfaces in the discrete domain.

At this point, it will be assumed that the interface corrections have been 

performed and the active coefficient matrices assembled for all transport equations. 

The matrix is sparse in structure and in this work, is represented as

Ax = b (3.42)

Where A is the global coefficient matrix, b is the constant vector and x represents the 

solution vector. The solution to the system of discrete equations is carried forward 

using a software package named PETSc (Portable, Extension Toolkit for Scientific
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computation) [37, 38, 39]. This package contains Krylov subspace iterative solvers 

which are used to solve the large matrix stmctures in this work. The system is also 

preconditioned in the PETSc environment to accelerate the solution procedure. 

Preconditioning is performed on the matrix as

Ml1Ax = xb , (3.43)

where the preconditioning procedure is assumed to be from the left only. 

Preconditioning is performed such that XA is better conditioned than A alone. Once 

again, multiple preconditioning techniques are possible with this toolkit and further 

information regarding this package is presented in [37],

The solutions to the discrete equations are solved using a sequential method. 

This means that although velocities, pressures, temperatures, and mass fractions are not 

all solved simultaneously, they are solved at each non-linear iteration. Once computed, 

the solutions of these fields allow parameters that are influenced by temperature, 

pressure, and mass fraction to be re-computed at each subsequent iteration. This 

includes updates on a cell by cell basis to mixture density, partial pressures, relative 

humidity, and saturation pressure. Also in terms of any porous section in the domain, 

this method allows updates to the additional drag, dispersion, and fluid-solid exchange 

terms. These variations in parameters and properties do lead to an increase in the non

linearity of the system; however it is observed in this work that the sequential method 

does converge without any need for relaxation.
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Determining convergence is accomplished by computing a normalized residual 

value at every iteration, over the domain across each control volume. To define the 

convergence criterion for the non linear problem, we manipulate equation 3.13 as

where the residual is computed after each coefficient update. This represents a single 

volume residual or local residual. To obtain a good representation for global 

convergence, the maximum local residual is found over all control volumes. The 

magnitude of the residual value is dependent on the transport variable associated with 

it. To eliminate this problem, the residual is normalized such that the magnitude of ij; is 

of no influence. Convergence is obtained for the non-linear loops when the maximum 

value of the normalized residual meets an assigned tolerance of RP < 10-5.

3.6 Summary

In this chapter, the descretization of a general transport equation across a three 

dimensional orthogonal structured finite volume domain was presented. Additionally, 

the concept of pressure-velocity coupling was presented, where a scheme was 

implemented for collocated grids. Furthermore, a complete set of transport equations 

for mass, momentum, energy, and species was presented in discrete form for conjugate 

fluid, porous, and solid domains. The solution procedure for a system of this type was 

covered where a brief mention of convergence was covered. In this chapter, it was 

assumed that interfaces between mediums were already discretized. Chapter four will

(3.44)

nnb
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address the problems encountered at these interfaces, and develop methods of avoiding 

oscillations across, and in the vicinity of these interfaces.
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Chapter 4 - Interfaces Encountered in the
Domain

4.1 Introduction

The code development in this work is for applications that contain conjugate 

fluid/porous/solid domains, and it must be noted that the treatment of the interfaces 

between differing regions requires additional consideration above that of the general 

form of the conservation equations for a single medium. At an interface, the forms of 

the governing equations often differ, and the goal in the numerical treatment of these 

interfaces is to have physically reasonable estimates for advection, conduction, and 

pressure in the regions where rapid geometrical changes occur. These estimates will 

apply to all regions where the domain type changes, for example, fluid-solid, fluid- 

porous, and porous-solid. The subsequent sub-sections in this chapter will address the 

mathematical approach to distributing transport quantities at the interface; and the 

computational methods associated with the interface. The overall goal is to establish 

conditions that are physically reasonable and monotonically convergent.

4.2 Mathematical Model at Interfaces

As stated, a conjugate domain contains multiple medium types, and in order for 

the solution across the full domain to be computed, the mathematical treatment at 

interfaces between domains must be considered. This special treatment is seen at 

interfaces between differing regions, where the possibility exists for having 

discontinuities in the governing equations. The goal of this section is to develop
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interface conditions which are used to match the transport equations in neighbouring 

domains so that the discretized form of the equations, which will be explained in 

section 4.3, reflects the physical properties of conservation. It is noted that in the 

following sections, the transport variables directly next to a porous region (in the solid 

or fluid), are not necessarily the point values, and due to length scale constraints, a 

volume average cannot be taken directly on the porous side next to an interface. 

However, these values can be considered as a local average over the area of the 

interface which reduces to a classic point or volume average at short distances from 

that interface. Thus, the discretized transport equations utilizing the mathematical 

conditions still reflect the physical principles of conservation.

4.2.11nterface Joining Pure fluid and Pure Porous regions

Conditions at the interface between a pure fluid and a porous region have been 

extensively studied for the flow of fluid [4, 6, 40]. This work will assume the condition 

of continuity of the velocity at the interface, and this is what is imposed. This is 

represented by;

ti f  (tt)p0r (4-1)

where it is noted that the velocity in equation 4.1 is the mass fraction averaged velocity 

of the mixture. This differs slightly from the works reference above, however still 

represents a physically reasonable condition. Furthermore, referring to the different 

forms of equations 3.16 and 3.24, it is seen that the stress at the interface must also be 

addressed. Therefore, it is reasonable to enforce the continuity of interface stress on the 

pure fluid side with the intrinsic average of the stress on the porous side. These
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conditions have also been well-established, and are presented in similar form to [6, 41]

as;

(n • t • a)f = (n • t • <a>f)por (4-2)

for the shear stress component, and

(n • n • <j)f = (n • n • <a>f)por (4-3)

for the normal component of stress. It is noted that n is an outward unit normal and t 

represents a tangent unit vector. Also, subscripts ‘f  and ‘por’ represent the distribution 

on the pure fluid and porous sides of the interface. The stress tensors represented in 

equations 4.2 and 4.3 are given by;

Mf
/du; £uA
VdXj d x j

(4-4)

pB/ d(uj) d(uj)\  
£ \  dxj dxj ) ~ <P)fôij

(4 -5 )

where |iB is the Brinkman viscosity, and 6,j is the Kronecker delta function. Equations

4.4 and 4.5 show that a fraction of the total stress on the fluid side is carried into the 

fluid constituent of the porous side. This implies that the remainder of the total stress is 

balanced by the solid constituent of the porous medium. The parameter that governs 

the division of stress into both constituents is porosity which is defined by equation 

2.26. Finally, it is insisted that the pressure at the interface be continuous, and this is 

given as

75



Pf — (p )p o r ■ (4 .6 )

Although equation 4.6 means that pressure is represented by a single value at the 

interface, it can be seen through equations 3.16, and 3.24, that due to the differing 

forms of the advecting velocity, there must be an allowance for a rapid change in 

pressure in the pure fluid region at the interface which is associated with the dynamic 

pressure effects [6]. It is important that pressure transitions smoothly in the cells 

surrounding interfaces, as any oscillation will not only influence the mass and 

momentum equations, but also affect the convective terms in the remaining transport 

equations; and alter terms that are affected by partial pressures.

The species transport equation that is used to govern the transport of the water 

vapour component of the mixture is now considered at the fluid-porous interface. The 

transport of species through a fluid-porous interface may include effects of excess 

surface accumulation, diffusion, convection and other processes. Many studies have 

been devoted to modelling the species equation in a pure fluid or pure porous region, 

however only few have looked at transport through both regions joined by an interface 

[9, 42]. One characteristic that makes mass transfer complex to study is the possibility 

that discontinuities may exist at interfaces separating regions of differing 

concentrations. Another complexity is that there are many forms of mass transfer 

between differing media types such as absorption, adsorption, and forms of surface 

reaction.

It is important at this point to develop a general method of modelling interfaces, 

but also to tailor the derivation to suit interfaces found in the applications encountered
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in this work. In these applications, the diffusion of vapour within the solid constituent 

across the macroscopic porous domain is not considered to be of high influence to the 

vapour transport in the system. This means that the diffusion term in equation 3.30 and 

the energy associated with these terms in equation 3.32 are neglected. This assumption 

is made for both the air conditioning processes and the modeling of bulk foods. The 

reason for this assumption in evaporative cooling is that the porous material is assumed 

to be kept saturated at all times by an external water source and therefore internal 

diffusion of the water component can be neglected. In bulk food storage, the porous 

modelling technique is used to simplify large domains of whole food items. Although 

within a food item there may be diffusive transport, this is not represented by the 

diffusive term in the macroscopic species transport equation for the solid. Therefore, to 

achieve a continuous distribution through the interface, species A in the fluid region is 

taken to be continuous with the intrinsic average of species A in the porous region, 

given as;

YA,f = (Y)Apor, (4.7)

where YA f represents the content of species A (the water vapour component) in the 

fluid region and (Y)A por the volumetric average of species A in the porous region. At 

this point, for a general derivation, it is also insisted that a species flux balance through 

the interface is enforced, given as
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(4 .8)

Further simplifications to this conservation expression based on the above assumptions 

will be carried out in section 4.3.3.

The energy equations must also be resolved at the interface. Therefore, a 

physically reasonable method of ensuring a proper distribution of heat through the 

interface from the pure fluid to the fluid-solid constituents of the porous region must be 

established. In this work, the temperature on the pure fluid side of the fluid-porous 

interface is taken to be continuous with the total average temperature on the porous 

side for the thermal equilibrium of the interface [40, 6], and this is given as

Tf = (T)por. (4.9)

Additionally it must be considered that energy flux is also balanced across the interface 

and this is shown as
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(4 .10)

where energy balance at the interface must consider the energy associated with 

conduction and the enthalpy associated with species diffusion.

4.2.2 Interfaces Joining with solid regions

The conditions enforced at interfaces that join with solid regions are that which 

are enforced at impermeable boundaries. That is, the pressures are extrapolated from 

the interior of the domain to the interface, and the no slip, no penetration velocity 

conditions are enforced at the interface. This also applies to the mass fraction transport 

equation as it is considered that the solid boundaries are rigid and do not contain any 

water vapour, nor are they capable of accumulating or transporting vapour. Therefore, 

for simplicity, the amount of water vapour is extrapolated from the interior of the 

domain to the solid interface.

The conditions for the energy equation are constmcted similarly as the interface 

conditions given in equations 4.9 and 4.10. At the fluid/solid interface, the continuity 

of temperature and an energy balance give;
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Tsoi =  (T)f ,a n d (4 .11)

(4.12)

Also, between the pure solid and pure porous region similar conditions apply, giving:

4.3 Computational Treatment at Interfaces

At volumes adjacent to the interfaces encountered throughout the domain, it is 

important to obtain accurate estimates of the terms governed by the discretized 

equations. This is done by utilizing the interface conditions developed in section 4.1 

for fluid/porous, fluid/solid, and porous/solid regions. An example of a structured two 

dimension case of this type of domain is given in figure 4.1.

TSoi -  (T)por (4.13)

por

(4.14)
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-Porous region 
-Solid region 
-Fluid region

(U) (1+l.J)

Figure 4-1 Two dimensional structured finite-volume grid for a conjugate domain. (I,J) 
represents the labelling scheme for the ‘P’ node, (I+1,J) for the ‘E’ node, and 
(I,J+1) for the ‘N’ node.

4.3.1 Advected Velocity

In the pure fluid volume adjacent to the interface (volume ‘I,J’), the advective 

terms in the discrete forms of the momentum, energy, and species equations must be 

modified. It is required that these terms be continuous through the interface that 

separates the pure fluid, and porous regions. To accomplish this, the intrinsic fluid 

velocity, temperature, and mass fraction are taken to be advected. If the east face is 

considered, the discretized advected terms that correspond to this in the momentum, 

energy and mass fraction equations are given as;

Momentum: rhe ^ ^

Species: me(Y)e

Energy: ! [me {(cp)f;Y<YY>P<Tf>e + h°(Yy)fe}]

(4.15)

(4.16)

(4.17)
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To understand the form of the advected velocity, the interface can be idealized as an 

array of a large number of sudden expansions and contractions, depending on flow 

direction, where the ratio of cross sectional area on the fluid side to that of the porous 

side is represented by the porosity.

A control volume coinciding with a pure fluid/porous interface must have an 

expression developed for the advecting velocity similar to equation 3.22, where a 

special momentum equation is developed about the integration point on the ‘e’ face. 

This is given as;

Ve (dP\ 1 /V p  dp
a e IdxJ

1
e 2 \Ve dx

+
£VP d(p)f
V, dx E -'

(4.18)

where the pressure term labelled as ‘1’ is(D 1 Vp dp
e " V e 2 dx +

p+
eVe d<P)f 

2 dx
(4.19)

E -J

Unlike the development of equation 3.22, the assumption aP «  aE »  ae is not made as 

due to source terms, these coefficients may differ significantly [6]. Also, the behaviour 

of pressure is quite different in neighbouring regions to an interface. Therefore the 

pressure gradient terms given above must be developed for half volumes surrounding 

the interface, given as the P+ (a volume from node ‘P’ to integration point ‘e’) and E- 

(a volume from integration point ‘e’ to node ‘E’) regions.
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4.3.2 Pressure Term

In order to compute the pressure gradient terms, an approximation of pressure 

at the interface is to be constructed. Standard approximation methods normally used in 

the fluid region are not accurate at the interface due to the Darcy and Forchheimer 

terms present in the discrete equations within the porous region. Also, as stated, rapid 

velocity changes occur at the interface which also complicate the estimate. Therefore, 

the approximation imposed is that developed by [6], and is made by considering the 

momentum balance of a control volume (figure 4.22) on a simple volume next to the 

interface.

1 ' 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1

• uw' , e •

P ' | p
P 1

1 1 
1 1 
1 
1

E

1—1 
A uw-e

Figure 4-2 Control volume next to an interface: ‘uw’ defines the upwind west face of the 
control volume, ‘e’ is the integration point along the face separating the P and E 
nodes, and PE and Pw represent the pressure of each node

With the assumption that Auw_e is much smaller the distance from ‘P’ to the 

integration point ‘e’, the mass flux tangent to the interface may be neglected. Also, it is 

assumed the viscous stresses balance separately and furthermore, that uuw = ue = 

(u)e which leads to an estimation for pressure, given as
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(4 .20 )il -  £\ me(u)e
V £ )  Ae '

where the upwind pressure Puw is found by an extrapolation to the interface. This 

estimate is then averaged with an estimate of interface pressure from the porous side, 

also obtained by extrapolation from the ‘E’ node to the integration point ‘e \  More 

details of this implementation are found in the work of Betchen et al. [6].

4.3.3 Diffusive and Advective terms

It is seen in the discretized form of the momentum equations (equations 3.16, 

and 3.24), that only portions of the viscous stresses involving the face-normal 

components of the velocity gradients appear in the formulation for an incompressible 

fluid. Therefore, the conditions of equations 4.2a and 4.2b are utilized, but modified to 

require that these portions of the viscous stress balance on each side of the interface, 

given as

Pf
du
dn

pB d(u)
£ dn

(4.21)

por

If the east face of the fluid volume is examined in figure 4.1, it is seen that the 

conditions 4.2-4.3 place the proper requirements on normal stress at the interface, but 

the shear stress conditions differ, where

Hf [
/du
dy

+
d(u)
dy

+
(4.22)

is now given as
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^ l f=7 l ir j por

(4 .23)

The conditions required to match the species and energy equation at the 

interface are given by equations 4.7 and 4.8, where it is assumed that there is a 

diffusive and conductive balance of mass fraction and energy respectively, across the 

interface. To accomplish this, a similar approach to that used for heat transfer given in 

[43, 6] is applied, where the interface is simplified using a one-dimensional resistance 

model, shown in figure 4.3.

Figure 4-3 Resistance models for Mass fraction diffusion (left), and Heat transfer conduction 
(right)

This leads to discrete balances through the interface of;

Nf — eDab
<ya >; -  ( ya ) p

Ax = D (YA)e "  <YA)fe (4-24>
Pe t e f f “ AxPe

- , (T)f -  TP , (T)^-(T>;
%  “  £ k f — -------- ~  k f , e f fAxPe AxPe

(4-25)
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q's = (1 -  e)k:
(T)| -  TP

Ax = k,
<T)| -  (T) (4.26)

Pe
s,eff “ AxPe

It is noticed that the diffusion of species into the solid is neglected even though it is 

represented in figure 4.3. This is due mainly to the assumptions stated in section 4.1, 

where it is mentioned that the diffusion of species at the interface is presented in 

general form, however the model itself is tailored to be application specific. 

Furthermore, for applications that involve a discontinuity in the mass fraction 

equations at the surface of the solid constituent in the porous domain, this is dealt with 

through the use of a source in the discrete equation explained further in section 4.3.3.

by

It is noticed that equations 4.21, 4.23 and 4.24-4.26 all have similar form, given

(4.27)

where I\ and r2 are the diffusion coefficients. If the diffusion coefficients have abrupt 

changes, as seen in the derived interface conditions, a simple arithmetic mean may not 

capture the flux conditions. A better method of approximating the flux is needed, and 

this is shown by first discretizing equation 4.27 at the interface of volume I,J (figure 

4.1) as follows:

r  = r  ~ ^ e  (4.28)
Axpe AxeE

Isolating for \|ie, an estimate for the interface value is found to be

86



(4 .29)AXpelVv
AxeE rJ

AxeE
AXpe

If expression 4.29 is substituted into either side of equation 4.28, this yields an estimate 

to the diffusive flux at the interface of the form

r t|iE tpP (4.30)

+ r2

This expression, similar to that developed by Patankar [29], representing the diffusion 

coefficient at the interface by using a harmonic mean. Also, equation 4.30 provides a 

physically based estimate for the advected momentum, mass fraction and temperature 

interface terms.

As stated earlier, at an interface between a pure fluid and porous region, 

additional complications may exist. This would occur where a pure fluid volume joins 

with the solid constituent of a porous volume. Although temperature is taken to be 

continuous across interfaces, this may not be the case for the mass fraction field. 

Examples of this are seen when thin films of mass on solid’s surface exist, or the solid 

itself is composed of a high content of the transported species, or also if there is a 

heterogeneous surface reaction.

If the transfer rate is to be determined in this region, then some estimation of 

the surface value of the transported variable is to be made. This may require the use of 

Henry’s law, which relates the mole fraction of species A in a solid or liquid to the 

partial pressure outside of this phase. Alternatively if surface reaction occurs, the use 

of an equation similar to equation 3.33 may be needed. However, as stated in section
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4.1, the applications considered in this work consider only evaporation from a 

saturated surface of the solid constituent in the porous media [figure 4.4],

Figure 4-4 Representation of interface between for species transport

Therefore with this assumption and the earlier assumption of the gas mixture being 

ideal, Raoult’s law may be utilized [44] to estimate the value of the partial pressure of 

species A (the water vapour component) on the fluid side of the interface. This is given 

as

Pa Ix=o — (cAlx=o)PA,sat» (4.30)

where it is assumed that the mole fraction is essentially unity for evaporative cooling, 

the application of interest in chapter 5, and that there exists a thin film of this water. 

The saturation pressure at the interface is required to calculate the partial pressure of 

the water vapour at the interface, however this is not yet known. To estimate this 

pressure, once again a temperature based correlation is used where the interface 

temperature is estimated from equation 4.29. Additionally, specifying a surface mass 

fraction at the interface is done similarly to specifying an inlet relative humidity 

(equation 3.40). The pressure at the interface must be approximate and this is done
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using the procedure described in section 4.3.2. It is noted that the additional diffusion 

away from the surface is added as a source/sink term in the discrete equations for the 

(I,J) volume of figure 4.1. Additionally, it is mentioned that the saturated surface area 

considered for this surface flux is not the total area of the integration face, but a 

fraction ‘e’ of it.

4.3.4 Interface with pure solid region

The computational implementation of the conditions encountered at interfaces 

between a pure fluid or porous region, and a pure solid region the same as the 

conditions implemented at an impermeable boundary for the fluid flow problem. The 

conditions implemented for the energy equation between a pure fluid and solid are well 

developed and may be implemented using equation 4.29. Finally, at the interface 

between a pure solid and porous region, a similar thermal resistance model given by 

figure 4.3 and equations 4.25 and 4.26 is implemented to govern the conduction 

transfer.

4.4 Summary

In this chapter, a mathematical model for the interfaces separating differing 

domain types was discussed. These conditions are developed to be continuous across 

the interfaces, where there is still allowance for rapid changes near the interface. The 

interface conditions are then developed numerically, where it is shown that the discrete 

equations developed in chapter 3 require additional attention when considering 

advection, diffusion, conduction and pressure. Finally, the species equation is 

discussed where the numerical procedure for representing saturated surfaces at the pure 

fluid/porous interfaces are discussed.
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Chapter 5 - Results and Discussion

5.1 Introduction

This chapter presents three test cases to study the finite volume code developed 

in previous chapters. First, two validation cases are presented, where these cases are 

used to verify and validate the extensions made to the in-house computational code. 

The first case is the investigation of a direct evaporative cooling cycle. In this test 

scenario, adiabatic boundary conditions are imposed and the incoming fluid mixture is 

allowed to saturate through the porous media. The model is utilized to predict the 

mixture temperature at the outlet of the cooler, and verify the interface conditions at 

the pure fluid/porous regions. In the second case, an indirect evaporative cooling cycle 

is modelled. This case not only investigates the principles involved in indirect 

evaporative cooling, but also allows the numerical code to be tested in a conjugate pure 

fluid, porous, and solid environment. In the indirect cooling cycle, the simulated results 

are used to predict the wet bulb effectiveness of the cooling configuration. More 

recently, there have been novel developments in evaporative cooling cycles, mainly in 

the area of dual-stage evaporative cooling. One notable development is the 

Maisotsenko evaporative cooling cycle. This configuration; described further in section 

5.3, not only claims to reduce the temperature of the conditioned air to its inlet wet- 

bulb temperature without adding moisture, but also claims that the air being 

conditioned approaches due point temperature of the inlet air. The final test case 

investigated in this work is a simplified Maisotsenko cycle. This case utilizes all
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The configuration of the fluid and porous regions in the channel are presented 

in figure 5.1, where the dimensions are taken to be consistent with the previous studies 

single phase flow though a porous plug. The relevant flow parameters are given as: 

£ = 0.7, pB = [if, and a Reynolds number based on the channel height of ReH = 1. The 

inertia coefficient in the momentum equations is calculated by the given relation [4]

1.75c
VÏ5ÔF 0.2440 . (5.1)

The boundary conditions imposed for velocity are:

• Inlet conditions: A fully developed velocity profile is imposed on the x = 0 

plane; this is given for a channel flow as;

u(°, y) = p p  [ l -  p] and v(0, y) = 0 , (5'2)

where U is the average axial velocity in the channel. The inlet fluid temperature 

is arbitrarily chosen to be Tf = 25 degrees Celsius [298.15 K], with a relative 

humidity of oorel = 40%, which is converted to a proper mass fraction for the 

inlet boundary in equation 3.30 with equation 3.40. The pressure at the inlet 

plane is extrapolated from the interior of the domain.

• Outlet conditions: Zero derivative conditions in the x direction are imposed for 

both components (u and v) of velocity on the outlet plane (x = 8H). A constant 

uniform pressure is set at the outlet, which in this case is equal to atmospheric 

pressure as the value of the pressure chosen is important because it serves as a 

datum for pressure and affects the temperature and mass fraction fields inside
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the domain. Finally, zero derivative conditions for temperature and mass 

fraction are assumed at the outlet.

• Wall conditions: No slip, no penetration conditions are imposed on the wall 

boundaries (y = 0, and y = H). Furthermore, adiabatic wall conditions are 

enforced in the energy equation and both mass fraction and pressure are 

extrapolated to the walls from inside the domain assuming a constant gradient.

As noted, this simulation is performed to also test the forms of the energy and 

species equations developed in the proposed model, and therefore additional 

parameters are needed for these equations. It will be assumed that the porous material 

in this case is aluminum with a fluid and solid phase effective conductivity of kf>eff =

0.0237 ^ / m K, and kseff = 6.46 ^Vm K [45]. The effective fluid phase diffusivity is

diameter are given as dp = 3.8 mm and 1D = 0.55 mm and that pB = pf.

As this is a multi-component mixture, one might expect the mixture thermal 

conductivity, and dynamic viscosity to change based on the composition. Previous 

works focussed on determining the mixture thermal conductivity and dynamic 

viscosity of humid air have suggested correlations, such as [47, 48]

where £v, <̂A are the properties of the water vapour and air, and Pv/P the specific 

humidity. As the temperature range is limited in evaporative cooling, and these

given to be Df eff = 1.5 x 10 4m2/s  [46]. Also the pore diameter and ligament

(5.3)
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properties vary little over the operating conditions (0-50 degrees Celsius), and due to 

the magnitude of the specific humidity’s encountered in this range, the thermal 

conductivity and dynamic viscosity are taken to that of air at 300 [K] (table 5.1).

)le 5-1 Properties of mixture for test case
Properties of air [300 K]
Specific heat [J/kgK] 1005

Properties of water vapour [300 K]
Specific heat[JAgK] 1820
Latent heat [JAgK] 2500.9 x 10A3

Properties of mixture [300 K]
Thermal Conductivity [W/mk] 0.0255
Binary Diffusion Coefficient [mA2/s] 2.6 x 10A-5
Dynamic Viscosity [Ns/mA2 ] 1.843 x 10A-5

The convective interfacial heat and mass transfer coefficients within the plug 

are calculated by utilizing equivalent Nusselt and Sherwood correlations [45], given as 

Nusur = CTRe[d5Pr0 37 = hsurlD/k f and analogously Shsur = Cm Ref^Sc0,37 = 

hm.surlo/Df. The coefficients in each of the correlation are taken as CT = Cm = 0.52 

[45]. The effects of dispersion are neglected in this study. Finally, as this is an 

evaporative cooler, the surface conditions in the porous region are assumed to be 

saturated and remain saturated during the cooling process.

A non-uniform structured grid consisting of 31 control volumes in each x-axis 

section of the channel (0 - 3H, 3H - 5H, 5H - 8H), and 21 control volumes in the y- 

direction is found to give accurate results, where a coarse representation of this grid is 

shown in figure 5.2.
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Figure 5-2 Plot showing coarse non-uniform grid used for adiabatic saturator 

In previous studies the pressure profile is plotted throughout the domain, as it 

is used to evaluate the model imposed for the interface conditions in the momentum 

equations. In this study, pressure is also important for the energy and mass fraction 

equations, as oscillations in pressure will also cause problems in the temperature and 

mass fraction fields. Figure 5.3 is a plot of the pressure profile in the domain, which 

compares the results obtained in this simulation with previously obtained solutions 

from [6, 40]. This plot is utilized for two reasons; first to show that pressure transitions 

free of numerical oscillation at the interface, and also to show that grid refinement and 

grid convergence matched the previous studies. The pressure plot is expected to match 

the results obtained in previous studies, as the only affect in the mass and momentum 

equations would be the variation in mixture density, and this was found to be

negligible throughout the domain; from 1.192 ^ / m 3 to 1.212 3, or 1.67%

different.
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Figure 5-3 Centerline pressure profile through porous plug 

Figure 5.4 illustrates the temperature and relative humidity profiles of the inlet 

mixture as it permeates the porous region in this simulation. The temperature and 

relative humidity profiles remain almost constant in the regions outside the porous plug 

(0 < x < 3H and 5H < x < 8H). This is to be expected, as there is no influence from the 

saturated media. The small increase in the centerline relative humidity past x = 5H is 

due to the transport of moisture from the walls to the core as the velocity profile re

develops. As the mixture passes through the media (3H < x < 5H), water diffuses into 

the mixture which directly affects the resulting temperature and relative humidity of 

the mixture.
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Figure 5-4 Centerline mixture temperature and relative humidity profiles 

If an energy balance is taken over the domain shown in Fig. 5.1, and it is 

assumed that the makeup water saturating the porous medium is at the temperature of 

the outlet condition, then what is given is similar to an adiabatic saturator. This implies 

that the enthalpy of the mixture at the inlet is equal to the enthalpy of the mixture at the 

outlet (hin = hout). Utilizing the Psychrometric chart given in figure 5.5, the outlet dry 

bulb temperature can be predicted. This is performed by locating the inlet state, based 

on dry bulb temperature and relative humidity (state 1 in figure 5.4), and then 

following a line of constant enthalpy toward the saturation state. The line is followed 

until it intersects with the outlet humidity condition predicted from the simulation 

(state 2 in figure 5.4). The dry bulb temperature is then read off of the chart at this 

state. The results of the outlet conditions obtained in the simulation are compared with 

this approach, which is summarized in table 5.2.
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Figure 5-5 Theoretical prediction of outlet temperature from outlet relative humidity found in 
simulation

Table 5-2 Prediction of outlet temperature from Psycrometric chart compared to numerical 
results

Psychrometric Chart Simulation % Difference

Inlet Temperature [°C] 25.0 25.0
Inlet Relative Humidity [%] 40.0 40.0
Outlet Temperature [°C] 18.2 17.76 2.4%
Outlet Relative Humidity [%] 76.0 76.0

The difference between the outlet temperature predicted from the 

psychrometric chart and the outlet temperature predicted in the model is 0.44 degrees 

Celsius or approximately 2.4%. This is an acceptable result as there will be slight 

difference due to small density variations, and pressure changes throughout the 

domain. Also, in order to have adiabatic saturation, the liquid water supplied is
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assumed to be at the exit temperature of the mixture which in the simulation is taken as 

an average bulk temperature.

This simulation is also performed to verify the interfaces in the model 

qualitatively, which are shown in figure 5.3, and 5.4, where flow through the porous 

plug presents pure fluid/porous transitions at the 3H and 6H interfaces. A contour plot 

of specific humidity is given in figure 5.6, which shows the transition of specific 

humidity from 0 < x < 3H, 3H < x < 5H, and 5H < x < 8H. It is seen that the conditions 

implemented in the discrete form of the energy and mass fraction transport equations 

resolve the transition from pure fluid to porous and conversely, from porous to pure 

fluid without any oscillatory behaviour.

w spec [k g v a p /k g a ir l

Figure 5-6 Specific Humidity Contours for Adiabatic Porous Plug Saturator
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5.3 Test Case 2: Indirect Evaporative Cooling

Indirect evaporative cooling is often chosen over direct evaporative cooling, 

as the specific humidity of the delivered air is not altered. This allows more control in 

the comfort level of the air delivered to the conditioned space. In this test case, a two 

channel counter flow indirect evaporative cooler is simulated (figure 5.7). This is a 

conjugate pure fluid/porous/solid problem and is used to both validate the interface 

conditions in all regions of differing domain types, and make a comparison of results to 

that obtained by Zhan et al [49], The goal of the simulation is to predict the outlet 

temperature of the product air stream (the air delivered to the conditioned room).

Figure 5-7 top view of counterflow indirect evaporative cooler with ‘L’ giving the 
channel length, ‘H’ the working and dry channel height, and ‘f  the 
thickness of the material separating the two channels.

As the complete geometry of the indirect evaporative cooler being analyzed consists of 

multiple channels similar to figure 5.7 in a stacked arrangement, this allows the domain 

to be simplified by making symmetry arguments, such that only the domain volume Vx 

shown by the dashed line in figure 5.7 is modelled. Also, it will be assumed that the 

depth of the channel is much longer than the height H, and therefore the problem is
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additionally simplified to two-dimensions. All boundary conditions imposed must now 

reflect the domain V1? and the conditions are given as:

• Inlet conditions: A constant velocity profile is imposed at inlet of the product 

channel with magnitude U. In the porous region, the inlet velocity is also 

allowed to develop with a prescribed uniform inlet of U. In the fluid and porous 

regions, U = 0.4 [m/s], and V = 0 [m/s] at both inlets. The fluid temperature at 

both inlets is given to be Tf = 25 [°C], and the relative humidity’s as o)rei = 

35% consistent with [49]. The pressures at the inlets are extrapolated from the 

interior of the domain.

• Outlet conditions: Zero normal derivative conditions are imposed for both 

components (u and v) of velocity. A uniform pressure value is set at both of the 

outlets, which is equal to atmospheric pressure. Zero normal derivative 

conditions are imposed for the temperature and mass fraction equations.

• Symmetry plane: At the symmetry planes; the northern and southern most faces 

of the Vx control volume illustrated in figure 5.5, the u component of velocity is 

given a zero normal gradient condition, v = 0, and pressure is extrapolated. The 

energy and mass fraction equations are also given zero normal gradient 

boundary conditions.

The porous material in the working channel is modelled using the known 

properties of the aluminum foam given in test case 1. That is, the fluid and solid phase 

effective conductivity is given as kfeff = 0 .0237[^/m K], and kseff = 6 .46[^ /m K]

[45]. The binary diffusion coefficient is given as Df eff = 1.5 x 10-4 [m2/s] [46]. The
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pore diameter and ligament diameter are dp = 3.8 mm and 1D = 0.55 mm. It is 

assumed that |iB = gf, and that the fluid properties are taken at the fluid inlet 

temperature. Dispersion is neglected in this simulation. The convective interfacial heat 

and mass in the porous region are given as, Nusur = CTRe1° /P r0-37 = hsurlD/k f and 

Shsur — Cm Ref^Sc037 = hm surlB/Df where CT = Cm = 0.52 [45]. The interior wall 

with thickness ‘t’ separating the working and dry channels in figure 5.5 is assumed to 

be aluminum, with thermal conductivity of ks = 250.0 [^Vm K] • This is modelled to 

validate the interface conditions at the pure fluid/porous and pure fluid/solid regions. 

The remaining properties of the mixture are given by imposing the same arguments in 

the first test case, and are taken to be that of air at 300[K] (table 5.1). The channel 

length L is 1.4 [m] and both the working and product channel each have a height of H 

= 0.08[m], Finally, it is assumed that the surface of the porous region is kept saturated, 

and that the device is operated at steady state conditions.

It is noted that the results presented have been obtained using a grid 

convergence procedure in the fluid and porous channel regions (table 5.3). In the 

interior wall, four volumes are used in the y-direction. Results are acceptable when the 

percentage difference in the bulk outlet temperature of the product channel is less than 

5% between consecutive grid refinements. Table 5.3 only indicates the quantity of 

control volumes used in the x and y direction in the two channels, however it is stated 

that grid refinement is used at the inlet and outlet, and in regions near the interior wall.
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Table 5-3 Grid convergence study for indirect evaporative cooling simulation
Number of volumes Bulk Temperature %
(X-direction x Y-direction) of product 

channel [°C]
Difference

101 CV x 36 (18 wet channel, 18 dry channel) 23.88

111 CV x 46 (23 wet channel, 23 dry channel) 22.66 5.1%

121 CV x 56 (28 wet channel, 28 dry channel) 22.14 2.4%

Relative humidity and temperature contour plots of the above conditions in 

the simulated domain (V,) of figure 5.7 are given in figure 5.8 and figure 5.9. 

Although the plots cannot be quantitatively compared to the work of [49], as these 

results only present the outlet dry bulb temperature, the simulations are qualitatively 

evaluated.

Figure 5-8 Plot showing relative humidity contours of the product and working channels for 
the case of an indirect evaporative cooler.
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0.3

Figure 5.9 - Plot showing temperature contours of the product and working channels for the 
case of an indirect evaporative cooler.

Qualitatively, the results of the temperature and relative humidity plots 

correctly simulate the indirect evaporative cooling process. It is viewed that in the wet 

channel, the humidity increases in the stream-wise direction through the saturated 

media, from ojrel = 35% to wrei = 94.7%, which is due to the large wet bulb depression 

present in the incoming water vapour/air mixture. Also, it is seen that due to the 

increased drag in this channel through the porous block, represented by the Darcy- 

Forcheimer terms in the momentum equations, the contour lines of humidity are 

essentially vertical. This is because the U-velocity varies less in the y-direction of the 

porous plug than it does in the pure fluid region, as momentum is spread over the 

channel.
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In the product channel, as the flow develops over the plate, it loses sensible 

energy to the porous side which decreases the temperature of the flow, in the region 

near the interior wall. As the specific humidity remains constant in this channel, the 

decrease in temperature of the mixture leads to an increase in relative humidity. This is 

because the saturation state of the mixture is influenced by temperature.

The interface conditions appear to function correctly through the regions 

intersecting the solid interior wall as there are no numerical oscillations in the 

temperature and mass fraction field. To further validate this point; the entrance region 

of the porous channel and the exit region of the product channel, near the interior wall 

are examined further. Inspecting figures 5.8 and 5.9, it is noticed that the relative 

humidity of the product channel increases slightly near the interface of the pure 

fluid/solid region directly adjacent to the outlet. This is because some of the heat from 

the inlet of the working channel conducts into the product channel. This results in a 

slight increase in the fluid temperature next to the interface in the product channel due 

to the high conductivity of the aluminum. As the temperature increases in this fluid 

region, the saturation pressure also increases, which ultimately lowers the relative 

humidity in this region.

The supply air temperature (air exiting the product channel) from the 

simulation is plotted against the results of Zhan et al. [49, 50], in figure 5.8. Although 

these two studies are not identical; in that this work utilizes a porous domain to saturate 

the media rather than a fibre sheet along the working channel wall, the concept is 

similar and therefore the trends in the data are expected to be similar.
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Figure 5-9 Outlet temperature compared with inlet temperature for indirect cooling process

The results obtained from the current numerical work follow a similar trend 

as the results obtained in [49, 50]. However, it is seen that the outlet temperatures 

predicted in this simulation are greater than the experimental values. Discrepancies in 

the data results are expected for the following reasons;

• The sensors utilized in the experimental setup have certain accuracies 

associated with measurement. In the experiment performed [49, 50], the 

thermocouples have an accuracy of ±0.2 [°C] over there 0-100 [°C] operating 

range, and the hot-wire anemometer is stated to have an accuracy of +5% in a 

0.2-20 [m/s] operation range. Although the magnitude of the temperature 

accuracy is small within the operation range of the experiment, this is not the
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case for the measured velocity, which may introduce some error on the inlet 

conditions imposed in the simulation.

• In the simulation, the channel inlet velocity is assumed to be U = 0.4 [m/s], 

instead of 2.4 [m/s] such that laminar conditions are maintained.

• It is also assumed in the simulation, that recirculation does not occur. In the 

experimental setup, it is stated that recirculation of working air to the product 

channel occurs. Depending on the amount of recirculation, there may be a large 

impact on the product channel as both the inlet humidity and temperature 

conditions would differ from the imposed inlet of this simulation. This would 

have the effect of lowering the inlet temperature, but increasing the inlet 

humidity. As the amount of recirculation is not fully defined, this is neglected 

in the simulation.

The wet bulb effectiveness is a standard measure of the efficiency of an 

evaporative cooling process. This is defined as

_  Tj db — T0 db (5.4)
^w b rp rp >

M,db — M,wb

where Tiwb,Ticlb, T0 db ar the inlet wet bulb, inlet dry bulb, and outlet dry bulb 

temperatures. In the experimental results, the average wet bulb effectiveness is 

calculated to be 77%. The simulated cooling cycle gives an average wet bulb 

effectiveness of 42%. Although the simulated results predict a much lower average wet 

bulb effectiveness, they seem to better reflect stated values in other literature which 

claim standard indirect evaporative cooling processes generally obtain between 50- 

60% wet bulb effectiveness [22].
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5.4 Test Case 3: Simplified Maisotsenko Cycle

In the two previous test cases, direct and indirect evaporative cooling was 

simulated. As stated, the advantage of a direct evaporative cooling process is that the 

cooling efficiency; defined by equation 5.4, is much higher than an indirect 

evaporative cooling process. This difference in performance is seen to be even greater 

in most practical applications, as indirect configurations are generally cross flow 

oriented. The disadvantage of direct evaporative cooling is that the air being delivered 

to the working space is generally poorly conditioned, due to the high value of relative 

humidity. A desired scenario would be to obtain the performance of a direct 

evaporative cooler, with the configuration of an indirect evaporative cooler.

In this work, a more recent technique of evaporative cooling, called the 

Maisotsenko evaporative cooling cycle [51] is investigated. This configuration is 

similar to an indirect evaporative cooler, as both a wet working channel and a dry 

product channel exist, however a third dry channel is added to the geometry where a 

simplified version is given in figure 5.10. The addition of the third dry channel is novel 

in that it provides preconditioning to the inlet air prior to entering the porous section of 

the working zone. This is further explained after the contour plots in this section. This 

geometry is said to be more efficient at cooling the product channel over traditional 

indirect evaporative cooling processes.
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Figure 5-10 The Maisotsenko Evaporative cooling cycle

As very little numerical or experimental data is available to investigate 

Maisotsenko configurations, the test case proposed will study the cycle qualitatively. 

Therefore, dimensions similar to the indirect evaporative cooler of the second test case 

are implemented on the simplified domain; shown in figure 5.10, to simulate this novel

cycle.
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Figure 5-11 Domain conditions for the Maisotsenko evaporative cooling cycle.

The boundary conditions implemented in this test case, with domain represented 

in figure 5.11, are:
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• Inlet conditions: A constant velocity profile of magnitude U is imposed at the 

inlets of both the pure fluid working and pure fluid product channels. In both 

fluid and porous regions, U = 0.4 [m/s], and V = 0 [m/s]. The fluid temperature 

at both inlets is given to be Tf=25 [°C], and the relative humidity is given to be 

oorei = 35 %. The pressures at both of the inlets are extrapolated from the 

interior of the domain.

• Outlet conditions: Zero normal derivative conditions are imposed for the two 

components (u and v) of velocity at both the pure fluid product channel and the 

porous working channel outlet. Additionally, a uniform pressure value is set at 

both of the outlets, which is equal to atmospheric conditions. Finally, zero 

normal derivative conditions are imposed for the temperature and mass fraction 

equations.

• Boundary Walls: The no slip, no penetration conditions for velocity are 

enforced on the bounding walls. The pressure is extrapolated from the interior 

of the domain to the wall. The bounding walls are assumed to be well insulated 

and therefore the adiabatic Temperature conditions at the walls are enforced. 

Mass fraction is extrapolated to the wall.

• Symmetry planes: At the symmetry plane given by the dashed line in figure 

5.10, the u component of velocity is given a zero normal gradient condition, v = 

0, and pressure is extrapolated. The energy and mass fraction equations are also 

given zero normal gradient boundary conditions.

The porous material in the working channel is modelled using the properties

of the aluminum foam from the indirect evaporative cooling test case (test case 2).
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The pore and ligament diameter of the foam are given as, dp = 3.8 [mm] and 

1D = 0.55 mm. The effective binary diffusion coefficient is given as Df eff =

1.5 x 10-4[m / s] [46]. The fluid and solid phase effective conductivity is given as

kf.eff = 0.0237[W/m k], and kseff = 6 .46 [^ /m K] [45]. It is assumed that 

pB = pf, and that the fluid properties are taken at the fluid inlet temperature. 

Dispersion is once again neglected in this simulation. The convective interfacial 

heat and mass transfer in the porous calculated by Nusur = CTRef)d5Pr0-37 = 

hsurb/kf and Shsur = CmReld5Sc0-37 = hm surlD/D f where CT = Cm = 0.52 [45]. 

The interior wall with thickness ‘f  separating three channels in figure 5.10 is 

assumed be aluminum with thermal conductivity of ks = 250.0 [ ^ / m K], The 

properties of the water vapour/dry air mixture are taken to be for an inlet 

temperature of 25 [°C], The channel length L is 1.2 [m], consistent with the 

indirect evaporative cooling cycle in the second test case. Although the total 

channel length is defined, the lengths of each interior wall and gap 

0 i, 12 , 13, 14, 15, and 16) separating the two sections of the working channel must be 

determined. As this case is for pure demonstration, these lengths are chosen 

arbitrarily, but aimed at maximizing saturation throughout the working channel. 

These lengths are listed in table 5.4, given as:

Table 5-4 Simplified Maitsosenko Channel Lengths
Section of working channel Length [m]
1, 0.46
12 0.04
u 0.36
I4 0.04
Is 0.26
U 0.04
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The working and product channels each have a height of H = 0.08[m], and the 

thickness of each interior wall is given as t = 0.0005 [m]. The surface of the porous 

region is assumed to be saturated, and the device is operated at steady state conditions. 

In order to obtain a sufficiently conditioned coefficient matrix, the steady state 

solutions were obtained by marching in time from an initial condition where all field 

variables are set to an initial state: this being velocity components set equal to zero, 

pressure to atmosphere, and temperature and mass fraction to the inlet conditions. 

Steady state is assumed when the maximum change in the fields, in any volume, 

between successive time steps falls below 0.01%. A grid of 280 control volumes in the 

x-direction, and in the y-direction: 30 control volumes over each of the pure fluid 

region channels, 4 control volumes over each interior wall, and 50 control volumes in 

the porous region, are found to be grid-converged to within 5% based on the bulk 

outlet temperature.

The contours of relative humidity and temperature for the domain of figure 

5.11 with the given inlet conditions above are presented in Figures 5.12 and 5.13.
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Figure 5-12 Plot showing relative humidity contours of the product and working channels for 
basic Maisotsenko Cycle
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Figure 5-13 Plot showing relative humidity contours of the product and working channels for 
basic Maisotsenko Cycle

The bulk temperature of the air exiting product channel is 20.88 [°C]. The wet

bulb temperature of the intake air to the system is 15.5 [°C], Although the outlet air is
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not at or below the inlet wet bulb temperature, it is exiting at a lower value than the 

simulated indirect evaporative cooling cycle with similar geometry. Comparing both 

designs; this configuration yields a wet bulb effectiveness of 44%, whereas using the 

indirect evaporative cooler with identical inlet conditions gives an effectiveness of 

26%. This indicates that the Maisotsenko cycle is more effective at cooling the inlet air 

when using a similar geometric design as the indirect cooler. Although this example is 

purely demonstrative, there are relevant qualitative conclusions that can be drawn from 

the simulation.

The cycle is explained using the psychrometric chart:

Working channel

• 1-2’; As the inlet working air travels through the dry side of the working 

channel (southern most channel), it is cooled similarly to the dry product 

channel (northern most channel). This is functioning as an indirect evaporative 

cooler for the working channel and is seen in figures 5.12 and 5.13, as the 

mixture humidity rises and the mixture temperature lowers, near the interior 

wall of the dry side of the working channel.

• 2’-3’-3: As the air enters the inlet to the porous region of the domain, it is has 

been reduced in temperature from the inlet conditions. At this reduced 

temperature, saturating the air approaches a lower wetbulb temperature then 

boundary inlet condition (2’-3’). However, as the inlet condition in the product 

channel is at a higher temperature, some sensible heat is absorbed back into the 

near saturated working channel (3’-3).
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Dry Channel

• 1-4: The product channel is cooled along a similar line as the dry side of the 

working channel losing sensible heat to the porous section of the working 

channel. Under ideal conditions, this allows the dry product channel to 

approach the dew point temperature.

Figure 5-14 Maisotsenko cycle analyzed on Psychrometric chart

Although the product air never reaches the dew point, the process explained above is 

occurring in the system. The mixture on the dry side of the working channels (sections 

0 < x < 0.5, 0.5 < x < 0.9 and 0.9 < x < 1.2 [m]) is cooling similar to an indirect 

evaporative cycle. As the mixture enters the wet working porous media, it is already at 

a reduced temperature then the inlet conditions. Therefore, saturating the air will allow 

the temperature to be reduced below conditions achieved in the indirect evaporative 

cooling cycle. Although this test case is purely demonstrative, it shows that the
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Maisotsenko cycle does have the potential to be a much more efficient evaporative 

cooling design and more work on this cycle should be investigated.

Again, as this was only a demonstrative simulation, improvements to the 

simulation can be made. It is recommended that in order to see the full potential of this 

particular configuration, optimization of the geometric parameters 11( 12 , 13, 14, 15, and 16 

be performed.

5.5 Summary

The three test cases investigated study the developmenet of the additional mass 

fraction and re-developed energy transport to the base model. These cases validate the 

model as they are able to simulate moisture transfer in the conjugate regions as well as 

resolve interfaces between differing regions. The complete work is summarized in 

chapter 6.
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Chapter 6 - Summary, Contributions, and 
Future Recommendations

6.1 Summary

The principle aim of the presented work was to extend the capability of an in- 

house conjugate heat/flow model to include moisture exchange such that applications 

in food storage/ripening and heating, ventilation, and air conditioning (HYAC) could 

be considered. This task was accomplished by implementing a mass fraction transport 

equation into the existing model to account for a dry air-water vapour mixture, and re

formulating the energy transport equations to account for this multi component 

mixture. As stated, the model developed is utilized to solve conjugate fluid, porous, 

and solid domains. Formulation in the porous regions followed the works of Whitaker, 

where volume averaging the governing equations throughout the porous part of the 

conjugate domain simplified the media such that this part of the domain could be 

modelled. The derivation followed a non-equilibrium approach for species and heat 

transfer as this allowed more versatility in the model for future work. This non

equilibrium versatility is beneficial over traditional equilibrium approaches, as often in 

agricultural applications, internal moisture and temperature conditions dictate the 

transfer between constituents. Although this is a more versatile approach, extra transfer 

terms do exist between the constituents and the derivation must ensure proper 

representation of flux between constituents. Additionally, because this is a conjugate 

numerical code; treatment through fluid-porous, and porous-solid interfaces was also 

addressed. Applications in the HVAC industry were chosen for validation, as the
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model was utilized to predict operating temperatures in evaporative cooling cycles, and 

study the energy and mass fraction transport processes throughout the modelled 

domains.

6.1 Contributions

The primary contributions of this work may be summarized as follows:

• The author presents a 3-D structured conjugate finite volume code that is used 

to model mass, momentum, and energy transport. This model is extended to 

include the capability to support vapour transport in the fluid and porous 

domains, and mass transfer in the porous domain. As the fluid being modelled 

is now represented as a mixture, re-formulation of the energy transport 

equations of the base code was also required.

• As interfaces between regions are modelled in the numerical code, special 

attention was given to the development of physically reasonable conditions at 

these interfaces. This included an approximation of the interfacial heat and 

mass fraction flux associated with extensions to the model. This also included 

an approximation for partial pressure at the interface between the pure fluid and 

porous regions. These conditions are implemented to ensure physically 

reasonable results are obtained, which is demonstrated by the validation cases 

presented.

• In order to validate the model, as the cases being studied were more complex 

then the code was designed for, the base code was re-structured such that it
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could be executed on SHARCNET using faster processing power, and 

alleviating memory limitations.

6.3 Recommendations for Future Work

Further work is clearly required in making the model more applicable to the 

complex domains encountered in engineering processes. This model is limited to 

applications where the domain may be simplified to be nearly orthogonal. Although 

this is a good foundation for model development and for the evaporative cooling 

processes considered in this work, further extending the development to unstructured 

domains would be quite beneficial. Also, this model was developed to consider multi- 

component fluids, as in the applications being considered, excessive amounts of liquid 

is not desired and the assumption of having only a saturated surface is justifiable. 

Further extension of the model to include multi-phase fluid fields would be beneficial 

and it is seen that this model provides a good platform for the gas mixture part of any 

multiphase extension. As only HVAC applications are considered due to the lack of 

data for agricultural type applications, it is recommended that experiments be 

performed to quantify the necessary parameters needed to simulate domains in the food 

industry. Finally, it is suggested that a parametric study of the final test case be 

performed to optimize the geometry of the Maisotsenko evaporative cooler.
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