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Abstract 

The use of steel fibers for concrete reinforcement has been growing in recent years owing 

to the improved shear strength and post-cracking toughness imparted by fiber inclusion. 

Yet, there is still lack of design provisions for steel fiber-reinforced concrete (SFRC) in 

building codes. This is mainly due to the complex shear transfer mechanism in SFRC. 

Existing empirical equations for SFRC shear strength have been developed with relatively 

limited data examples, making their accuracy restricted to specific ranges. To overcome 

this drawback, the present study suggests novel machine learning models based on artificial 

neural network (ANN) and genetic programming (GP) to predict the shear strength of 

SFRC beams with great accuracy. Different statistical metrics were employed to assess the 

reliability of the proposed models. The suggested models have been benchmarked against 

various soft-computing models and existing empirical equations. Sensitivity analysis has 

also been conducted to identify the most influential parameters to the SFRC shear strength. 

Keywords: Machine learning; artificial neural network; genetic programming; steel 

fibers; concrete; shear strength; statistical metrics; sensitivity analysis 
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Summary for Lay Audience 

Shear failure of reinforced concrete (RC) beams has been a concern due to its brittle and 

sudden nature. The use of conventional stirrups to increase the shear capacity of RC beams 

has been effective in avoiding catastrophic failures. However, using conventional stirrups 

is laborious, costly, and can be challenging when the structure has a thin or irregular cross-

section. The use of steel fiber-reinforced concrete has gained great momentum in recent 

years owing to the noteworthy increase in the shear capacity and possible replacement of 

minimum stirrups with steel fibers. Yet, the use of steel fibers remains limited due to the 

lack of design provisions in building codes. This is mainly associated with the complex 

shear transfer mechanism and random orientation of fibers inside the concrete matrix. 

Exiting empirical equations for SFRC beams shear capacity have been developed with a 

relatively few data samples, which makes their accuracy over new samples that fall outside 

their range of validity uncertain.  

To overcome such drawbacks, the research presented herein suggests two machine learning 

models developed from an extensive database to predict the shear capacity with high 

accuracy. The first hybrid model is a combination of artificial neural network (ANN) and 

atom search optimization (ASO). The second model, which is based on genetic 

programming (GP), is an alternative approach that aims to generate a transparent equation 

for estimating the SFRC shear strength. Appropriate tuning of the hyperparameters for each 

model has been conducted to achieve optimal accuracy. The performance of the suggested 

models was assessed via several statistical metrics. The accuracy of the models was also 

compared to that of other widely used machine learning models and empirical equations. 

Results reflected the superior accuracy of the proposed models in terms of correlation and 

error between predicted and actual values. In addition, sensitivity analyses were performed 

to identify the most important parameters affecting the shear strength. It was found that for 

both models, the shear span-to-depth ratio had the greatest influence on the shear capacity 

of SFRC beams without stirrups. 
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Chapter 1 

Introduction 

 

1.1 Background 

The use of fibers to enhance the mechanical properties of brittle materials is not a new 

concept and dates back thousands of years. For instance, ancient civilizations of West Asia 

incorporated straw fibers to reinforce sunbaked bricks. In recent times, asbestos fibers had 

been widely used to reinforce cement paste matrices, but because of the health risks 

associated with such fibers, alternate fiber types were suggested throughout the 1960s and 

1970s. Those fibers have been largely involved to enhance the mechanical properties of 

concrete.  

In modern times, the most common types of fibers used in concrete enhancement include 

natural, glass, synthetic, and steel fibers. Natural fibers such as Sisal and Bamboo are the 

oldest type of fiber reinforcement, while the use of synthetic fibers such as carbon and 

nylon as well as glass fibers started in the 1960s. Even though these types of fibers impart 

to concrete better mechanical strength, they can also bring drawbacks. Natural fibers are 

vulnerable to degradation because of the high alkalinity of the pore-water in concrete (ACI 

Committee 544, 2009). Similarly, glass fibers are prone to durability issues engendered by 

concrete alkalinity. Regarding synthetic fibers, Greenough and Nehdi (2008) and 

Majdzadeh et al. (2006) stated that their ability to enhance the shear capacity of concrete 

is lower than that of steel fibers.  

Currently, steel fibers are the most widely adopted and researched fiber type for concrete 

strength improvement (Slater et al. 2012). The use of steel fiber-reinforced concrete 

(SFRC) has been growing in recent years. SFRC was used in many construction projects 

including the floor slab of Chrysler Jefferson North Assembly Plant (Robinson et al. 1991) 

and the Gotthard Base Tunnel (Kronenberg, 2006). Steel fibers can impart to reinforced 

concrete several benefits including greater shear capacity and post-cracking toughness 

(Keshtegar et al. 2019). Such advantages on the shear strength encouraged the ACI 
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building code to allow the use of steel fibers as a replacement for minimum stirrups (ACI 

Committee 318, 2011). This can be effective when the placement of traditional stirrups is 

challenging, especially in some cases where the structure has a thin or irregular cross-

section, such as in architectural panels (Khuntia et al. 1999). Placing concrete in closely 

spaced stirrups can be problematic, leading to voids in the concrete itself. In addition, 

stirrups are associated with significant labor input and consequently greater construction 

costs. The use of steel fibers can help overcome the aforementioned drawbacks.  

Yet the adoption of SFRC in large-scale construction remains limited. This is essentially 

related to the lack of pertinent design provisions in building codes. The lack of shear design 

equations for SFRC beams is mainly linked to the complex shear transfer mechanism in 

SFRC beams without stirrups. The shear transfer in reinforced concrete is influenced by 

many factors including the aggregate interlock, which transfers shear stress across diagonal 

cracks. Moreover, shear resistance is also carried out via dowel resistance and compression 

block. Adding steel fibers was reported to enhance the shear strength because of the 

imparted post-cracking diagonal tension resistance across crack surfaces (Shoaib, 2012). 

Yet, the random orientation of the fibers as well as the intricate relationship between steel 

fibers and the concrete matrix make the accurate estimation of such contribution 

challenging. Such an intricacy has motivated researchers to develop accurate models for 

estimating the shear strength of SFRC beams. Conventional models for assessing the SFRC 

shear capacity have largely relied on empirical models, which are based on statistical 

analysis of experimental data (Ben Chaabene et al. 2020). However, these models have 

been developed with relatively few data examples, making their accuracy over new data 

that falls outside their range of validity uncertain. In addition, developing such models is 

associated with costly and time-consuming trial batches required to develop test specimens.  

Recently, machine learning (ML) models have emerged as a strong contender for 

predicting the mechanical properties of concrete. Unlike empirical models, ML models are 

developed with relatively large datasets that make their accuracy over “unseen” data better 

than empirical equations. 
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1.2 Research Objectives 

Even though ML models generally exhibit better accuracy than empirical and statistical 

models, the performance of each ML model can differ significantly from one problem to 

another. This is linked to the degree of complexity of the relationship between the inputs 

and the target variable along with the dataset size and number of features. Moreover, the 

performance of each ML algorithm depends on the hyperparameters, which require 

appropriate tuning before achieving optimal accuracy. Therefore, there is need to pursue 

more accurate algorithms that can acquire greater generalization capability to estimate the 

shear strength of SFRC beams. Therefore, the main objectives of the present thesis are: 

1) To mitigate the limited availability of experimental data examples of SFRC beams that 

failed in shear by generating synthetic data using a generative adversarial network 

model (GAN) and exploiting it in “train-on-synthetic” “test-on-real” modeling 

approach.  

2) To develop a novel hybrid machine learning model based on artificial neural network 

(ANN) to predict the shear capacity of SFRC beams without stirrups with accuracy 

and reliability that outperform that of existing models. The hyperparameters of the 

suggested model will be carefully tuned to achieve superior accuracy.  

3) To train a classification algorithm for forecasting the failure mode of SFRC beams. 

Since ANN is a black-box model, an alternative method based on genetic 

programming will be proposed to generate a transparent SFRC shear strength equation. 

This should help non-programming experts to easily implement the constitutive 

equation in any computing language.  

1.3 Original Contributions 

The research presented in this thesis proposes novel soft-computing approaches to 

predicting the shear capacity of SFRC beams without stirrups. Due to the intricate shear 

transfer mechanism in such beams and the limitation of empirical equations, developing 

more accurate models to estimate the shear strength is of paramount importance. The 

present thesis helps address the problem through the following specific contributions: 
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1. Development of a novel machine learning model that hybridizes atom search 

optimization (ASO) and ANN to assess the shear strength of SFRC beams without 

stirrups. 

2. Development of an accurate classification algorithm to forecast the failure mode of 

SFRC beams  

3. Proposing a new shear equation for SFRC beams without stirrups via genetic 

programming based on symbolic regression (GP-SR) model. 

4. For the first time in the open literature, an extensive synthetic database for SFRC 

beams without stirrups comprising 2000 data examples has been developed using a 

GAN model to cope with the limited number of experimental data samples. 

5. Sensitivity analyses were conducted through the developed models to identify the most 

influential parameters affecting SFRC shear strength. 

1.4 Thesis Structure 

The current thesis has been structured and organized according to the integrated-article 

guidelines of the Faculty of Graduate Studies at Western University. It comprises five 

chapters that focus on the application of machine learning for SFRC shear strength 

prediction. 

Chapter two provides a critical review of the different existing machine learning models 

used for forecasting the mechanical properties of concrete. Existing methods were 

categorized into four groups, highlighting the most commonly adopted soft-computing 

techniques. 

Chapter three presents a novel hybrid machine learning model that combines ASO and 

ANN to predict the shear strength of SFRC beams without stirrups. Hyperparameters of 

the suggested model were carefully tuned to attain maximum accuracy. The performance 

of the model was benchmarked against other ML models and empirical equations using 

various statistical metrics. Sensitivity analyses were also conducted to identify the most 

important parameters affecting the shear strength. Moreover, a classification algorithm was 

implemented to predict the failure mode of SFRC beams. 
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Chapter four provides an alternative approach for assessing the shear strength of SFRC. 

Unlike the “black-box” model presented in chapter three; the genetic programming-based 

model involved in this chapter can generate an explicit mathematical equation for SFRC 

shear capacity. In addition, a tabular GAN algorithm was deployed to overcome the issue 

of the relatively limited number of data examples existing in the open literature.  

Finally, Chapter five summarizes the research findings and conclusions, presents current 

knowledge gaps, and suggests future needed research. 
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Chapter 2 

 Machine Learning Prediction of Mechanical 

Properties of Concrete: Critical review 

 

2.1 Introduction 

Accurate estimation of the mechanical properties of concrete has been a concern since such 

properties are often required by design codes. The conventional methods for predicting 

mechanical strength have largely relied on empirical methods that consist of statistical 

analysis of experimental data. However, those methods are associated with multiple 

drawbacks such as costly and time-consuming trial batches required to develop the test 

specimens. Moreover, empirical equations are developed using limited data examples, 

which makes their accuracy over new data uncertain.  

Recently, machine learning (ML) methods have emerged as a strong contender for 

predicting the compressive, shear, and tensile strength of concrete along with its elastic 

modulus. ML models are developed via extensive databases, making their generalization 

capability and their accuracy over “unseen” data examples stronger than that of 

conventional techniques.  Even though ML models can be employed to achieve the same 

goal, i.e. predicting mechanical strength, their process and accuracy can differ significantly 

from one problem to another. As shown in Figure 2.1, The most common ML models used 

to forecast concrete strength can be generally grouped into four major categories, namely 

artificial neural networks (ANN), support vector machine (SVM), decision trees, and 

evolutionary algorithms (EA). In this chapter, a comprehensive survey of the literature was 

carried out to examine the application of ML on the mechanical strength of concrete. The 

different ML models are critically reviewed and discussed, thus identifying current 

knowledge gaps and presenting practical recommendations that emanate from the current 

review. 
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Figure 2.1: Machine learning models. 

 

2.2 Prediction of mechanical properties of concrete 

ML models have been extensively used as an effective tool for forecasting mechanical 

properties of concrete. Those models are typically applied to an extensive dataset, which 

is generally divided into training (TR), validation (VAL), and testing (TS) subsets. The 

training set is used for model training. Validation data provides unbiased evaluation of the 

model fit on training data and prevents model overfitting by stopping the training process 

when the error increases. The model is finally applied on the testing data to assess its 

predictive performance. The most commonly employed ML methods can be categorized 

into four major types, namely ANN, SVM, decision trees, and EA. The evaluation, process, 

and the application of these models are discussed below. 

2.2.1 Evaluation of machine learning models 

Performance assessment of ML algorithms has been carried out using several statistical 

methods that describe the model fitting. Table 2.1 entails potential statistical metrics 

employed for evaluating ML models with their corresponding mathematical expressions. 

These methods indicate how well the predicted values fit with actual data. Moreover, they 

can be adopted in sensitivity analysis, pointing out the weight of each input variable in the 

prediction process (Belalia Douma et al., 2017; Sonebi et al., 2016; Van Dao et al., 2019; 

Xu, Zhao, et al., 2019). Not only can statistical metrics assess the performance of ML 

techniques, they may also be used as reference for comparing the effectiveness of several 

algorithms. 
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Table 2.1: Statistical metrics 

Statistical parameter Formula 

Correlation coefficient (𝑅) 
𝑅 =

𝑛∑ 𝑦𝑖
′𝑦𝑖 − (∑ 𝑦𝑖

′)(∑ 𝑦𝑖)
𝑛
𝑖=1

𝑛
𝑖=1

𝑛
𝑖=1

√𝑛(∑ 𝑦𝑖
′2) − (∑ 𝑦𝑖

′)2𝑛
𝑖=1

𝑛
𝑖=1  √𝑛(∑ 𝑦𝑖

2) − (∑ 𝑦𝑖)
2𝑛

𝑖=1
𝑛
𝑖=1  

 

Coefficient of determination (𝑅2) 𝑅2 = 1 −
∑ (𝑦𝑖

′ − 𝑦𝑖)
2𝑛

𝑖=1

∑ (𝑦𝑖
 − 𝑦 )2𝑛

𝑖=1

 

Mean square error (𝑀𝑆𝐸) 𝑀𝑆𝐸 =
∑ (𝑦𝑖

′ − 𝑦𝑖)
2𝑛

𝑖=1

𝑛
 

Root mean square error (𝑅𝑀𝑆𝐸) 𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖

′ − 𝑦𝑖)
2𝑛

𝑖=1

𝑛
 

Mean absolute error (𝑀𝐴𝐸) 𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖

′ − 𝑦𝑖|
𝑛

𝑖=1
 

Mean absolute percentage error (𝑀𝐴𝑃𝐸) 𝑀𝐴𝑃𝐸 (%) =
1

𝑛
∑ |

𝑦𝑖
′ − 𝑦𝑖
𝑦𝑖

| × 100
𝑛

𝑖=1
 

Mean (𝜇) 𝜇 =
1

𝑛
∑

𝑦𝑖
𝑦𝑖
′

𝑛

𝑖=1
 

Standard deviation (𝜎) 𝜎 = √
1

𝑛
∑ (

𝑦𝑖
𝑦𝑖
′ − 𝜇)

2𝑛

𝑖=1
 

Coefficient of variation (𝐶𝑂𝑉) 𝐶𝑂𝑉 (%) =
𝜎

𝜇
× 100 

 

2.2.2 Artificial Neural Network 

Artificial neural network is a nonlinear model inspired by the basic framework of the 

human brain (Marugán et al., 2018; Mohandes et al., 2019; Nazemi et al., 2019; 

Sharifzadeh et al., 2019). In ANN models, information propagation is performed through 

links that receive the information from a processing element (neuron) to deliver it to the 

following neurons. Each information is affected by a weight, reflecting the significance of 

input variables to outputs (DeRousseau et al., 2018). Once a neuron receives an 

information, it merges with others coming from different neurons via a combination 

function. Then, the combined information is transported to the following nodes. This 

iterative process is repeated until the algorithm precisely fits the data, indicated by the 

convergence of the error rate, or when the maximum iteration number has been reached 
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(Bourdeau et al., 2019). The structure of ANN is generally composed of three types of 

layers: an input layer, a hidden layer(s), and an output layer (Fadaei et al., 2018). Figure 

2.2 illustrates the general structure of ANN. The input layer conveys input parameters for 

model training and testing. The hidden layer(s) is/are responsible for linking between the 

input layer and the output layer that delivers the result of the model. To produce the neuron 

output and ensure data transmission through hidden and output layers, activation functions 

are required (Hemmat Esfe et al., 2015; Mohandes et al., 2019).  Furthermore, ANN 

training is achieved via learning algorithms, which enable the model to understand the 

concept of the problem. Hence, the general structure of ANN changes according to the type 

of learning algorithm. Table 2.2 outlines the various ANN approaches employed for 

estimating concrete strength, which are discussed below. 

 

 

Figure 2.2: Structure of ANN model with m input variables and n hidden layers 

 

2.2.2.1 Backpropagation neural network 

It can be observed in Table 2.2 that the backpropagation (BP) approach has been widely 

used by researchers to train ANN (Xu, Chen, et al., 2019). BP is a local search technique 

that employs learning algorithms, such as gradient descent and Levenberg-Marquardt, to 
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update the weights and biases of the ANN. Such an approach minimizes the cost function 

that generally expresses the error between actual and predicted strength. Backpropagation 

neural network (BPNN) was employed for instance to forecast the compressive strength of 

high-performance concrete (HPC) (Chithra et al., 2016; Chou et al., 2011; Deepa et al., 

2010). The model incorporated concrete ingredients and age of testing as input parameters. 

Performance assessment revealed that BPNN exhibited good forecasting ability, 

outperforming regression models in terms of accuracy.  

Other studies investigated the ability of BPNN in estimating the compressive strength of 

recycled aggregate concrete (RAC) (Deng et al., 2018; Duan et al., 2013a; Khademi et al., 

2016; Hosein Naderpour et al., 2018; Topçu and Saridemir, 2008). For example, Topçu 

and Saridemir (2008) developed a BPNN based on gradient descent algorithm in addition 

to fuzzy logic (FL) model to forecast the compressive strength of RAC. Both methods 

showed good accuracy, but BPNN slightly outperformed FL in terms of R², MAPE, and 

RMSE. Later research by Naderpour et al., (2018) evaluated the performance of BPNN 

and inspected the influence of each input parameter on the compressive strength of RAC 

through sensitivity analysis. Their model included six input variables and eighteen hidden 

nodes. Results demonstrated that BPNN accurately predicted the compressive strength of 

RAC, and that water absorption of aggregates along with water-to-total material ratio had 

the greatest impact on concrete strength. More recent studies examined the feasibility of 

forecasting the compressive strength of self-compacting concrete (SCC) via BPNN (P. G. 

Asteris et al., 2016; Panagiotis G Asteris and Kolovos, 2019; Belalia Douma et al., 2017; 

Siddique et al., 2011). For instance, Asteris and Kolovos (2019) developed an ANN model 

trained with Levenberg–Marquardt algorithm. Their results indicated that BPNN can 

successfully predict the compressive strength of SCC. Sensitivity analysis revealed that 

viscosity-modifying admixtures incorporated within SCC had the most important effect on 

compressive strength. 

Moreover, several researchers have explored the applicability of BPNN to estimate the 

tensile strength of concrete (Behnood, Verian, et al., 2015; Topçu and Saridemir, 2008; 

Xu, Zhao, et al., 2019). For instance, Behnood et al., (2015) proposed a model to predict 

the tensile strength of steel fiber-reinforced concrete (SFRC). The model in which the 
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compressive strength of concrete was introduced as an input parameter, predicted the 

tensile strength of SFRC with satisfactory accuracy, showing better results than SVM. 

Furthermore, the elastic modulus of concrete has been estimated via BPNN (Duan et al., 

2013b; Mohammadi and Behnood, 2018; Xu, Zhao, et al., 2019). Mohammadi and 

Behnood (2018) compared the effectiveness of BPNN and radial basis function neural 

network (RBFNN) in predicting the elastic modulus of RAC. The Levenberg-Marquart 

Learning algorithm was used in the BPNN model. Their results showed that BPNN had 

better predictive ability than that of RBFNN. Furthermore, multiple studies have explored 

BPNN forecasting of the shear capacity of reinforced concrete (RC) beams (Amani and 

Moeini, 2012; Mansour et al., 2004), concrete beams reinforced longitudinally with fiber-

reinforced polymer (FRP) bars (Bashir and Ashour, 2012; Lee and Lee, 2014; H Naderpour 

et al., 2018), SFRC corbels (Kumar and Barai, 2010), and RC beams strengthened in shear 

with FRP (Perera et al., 2010; Tanarslan et al., 2012). Input parameters incorporated in 

these studies included the geometrical characteristics of beams along with the mechanical 

properties of concrete and reinforcing materials. Results indicated that BPNN successfully 

predicted the shear strength, demonstrating better accuracy than that of empirically 

developed equations (Lee and Lee, 2014). 

2.2.2.2 Extreme Learning Machine 

Extreme Learning Machine (ELM) is another potential approach used to train single 

hidden-layer feed-forward neural networks (J. Wang and Hu, 2015; Yaseen et al., 2018). 

In the ELM approach, hidden nodes are initiated in a random process and fixed without 

performing an iterative tuning. The model was adopted for instance by Al-Shamiri et al., 

(2019) to forecast the compressive strength of high-strength concrete (HSC). The number 

of hidden neurons in the model was gradually increased from 10 to 200, and the optimal 

obtained number was 110. Performance assessment of the model revealed the strong 

predictive ability of ELM, which was reflected by the value of the correlation coefficient. 

Earlier research by Yaseen et al., (2018) considered an ELM model to predict the 

compressive strength of foamed concrete. The model was benchmarked against three other 

ML algorithms namely M5 Tree, multivariate adaptive regression spline (MARS), and 

support vector regression (SVR). Performance assessment indicated that ELM had the best 

overall accuracy among the four models. 
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2.2.2.3 Hybrid ANN-based models 

The idea behind hybrid approaches is to combine several algorithms so that the model 

performance and process can be noticeably improved. Owing to their ability in combining 

the advantages of more than one model, hybrid approaches have become of great interest 

among researchers. Thus, the performance of models like Adaptive Neuro-Fuzzy Inference 

System (ANFIS) has been widely examined (Ahmadi-Nedushan, 2012; Amani and Moeini, 

2012; Khademi et al., 2016, 2017; Mohammadhassani et al., 2014; Van Dao et al., 2019; 

Yuan et al., 2014). ANFIS models are universal approximators that combine ANN and FL. 

This model uses ANN to enhance the membership capacities for decreasing the error rate 

in the output, while FL rules are responsible for providing expert knowledge (Jaafari et al., 

2019; Van Dao et al., 2019). FL rules are used within the algorithm as fuzzy “if-then” rules 

to create the specified input-output sets. ANFIS was employed for instance to predict the 

compressive strength of geopolymer concrete along with concrete containing blast furnace 

slag and fly ash (Van Dao et al., 2019; Yuan et al., 2014). Results disclosed that ANFIS 

has a strong prediction ability, outperforming the BPNN model. ANFIS was also developed 

to predict the shear strength of RC and HSC beams (Amani and Moeini, 2012; 

Mohammadhassani et al., 2014). The model exhibited good predictions which 

outperformed those presented by design codes such as the American Concrete Institute and 

Canadian Standards Association. Another approach of optimizing ANN consisted of 

incorporating metaheuristic algorithms (Behnood and Golafshani, 2018; Bui et al., 2018; 

Yuan et al., 2014). Yuan et al., (2014) adopted the Genetic Algorithm (GA) model to 

optimize the weights and thresholds of BPNN. GA is a metaheuristic algorithm inspired by 

the natural evolution and selection concept (Kramer, 2017; Tsai et al., 2009). Its ability in 

acquiring a near global optimal solution while escaping local optima makes it a potential 

candidate for optimizing BPNN. The hybrid GA-ANN model was used to forecast the 

compressive strength of concrete containing slag and fly ash. Comparative study between 

GA-ANN and BPNN indicated that GA-ANN achieved the best performance.  Behnood 

and Golafshani (2018) developed a multi-objective grey wolves optimization (MOGWO) 

algorithm for determining the most effective ANN structure. MOGWO is based on grey 

wolves optimization, which is a swarm intelligence optimization method based on the 

hunting strategies of grey wolves swarm. The hybrid MOGWO-ANN forecasted the 
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compressive strength of silica fume concrete with satisfactory accuracy. The maximum 

aggregate size was found to have significant impact on the compressive strength of 

concrete as indicated by sensitivity analysis. Bui et al., (2018) employed a modified firefly 

algorithm (MFA) to optimize the weights and biases of an ANN model for predicting the 

compressive and tensile strength of HPC. The firefly algorithm (FA) is a nature-inspired 

metaheuristics method based on the flashing characteristics and behavior of tropical 

fireflies (Yang, 2010). Study results showed that MFA-ANN model achieved accurate 

predictions and short computation time. 

2.2.3 Support vector machine 

Support Vector Machine is a ML classification model that aims to find an optimal 

hyperplane separating two different classes. As shown in Figure 2.3, the target of this 

method is maximizing the margin, which represents the distance from the hyperplane to 

the closest point of each class, to attain better classification performance on test data 

(DeRousseau et al., 2018). When the optimal hyperplane is found, the points located on its 

margin are called “support vectors”, and the solution proposed by this algorithm is based 

only on those points. However, some classes cannot be separated with a linear hyperplane, 

as illustrated in Figure 2.4.  

 

Figure 2.3: Hyperplane classification. 
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Table 2.2: Summary of used ANN-based models 

Dataset 

size 

TR 

(%) 

VAL 

(%) 

TS 

(%) 

Concrete Type Methods Used Input Variables Output Statistical Index Ref. 

99 24 23 34 Cellular Concrete BPNN Cement, w/c ratio, sand to cement ratio, foam 

volume to cement ratio 

Compressive 

strength 

Absolute 

average error, 

Average 
algebraic error 

(Nehdi et al., 2001) 

1178 77.8 N/A 22.2 Concrete containing 

construction and 

demolition waste 

BPNN Cement, w/c ratio, mortar, aggregates, admixture, 

ratio of recycled materials, fineness modulus of fine 

and coarse aggregates, maximum aggregate size of 

fine and coarse aggregates, water absorption, age of 
testing 

Compressive 

strength 

R², Absolute 

Error 

(Dantas et al., 2013) 

135 70 15 15 Concrete containing 

FA and BFS 

BPNN Cement, BFS, curing age, ultrasonic pulse velocity, 

rebound number, fly ash 

Compressive 

strength 

R, MSE (Atici, 2011) 

180 83 N/A 17 Concrete containing 

FA and BFS 

GA-BPNN 

ANFIS 

Cement, BFS, coarse aggregate, fine aggregate, fly 

ash, water, superplasticizer 

Compressive 

strength 

RMSE, R² (Yuan et al., 2014) 

144 10-fold  

cross-validation 

Concrete containing 

FA, Haydite 

lightweight 
aggregate and 

Portland limestone 

cement 

ANN 

 

Cement type, curing age, water, cementitious 

material, fly ash, sand, pea gravel, Haydite 

lightweight aggregate, Micro Air 

Compressive 

strength 

R, RMSE, MAE (Omran et al., 2016) 

1030 70 15 15 Concrete containing 

silica fume 

ANN combined 

with multi-
objective grey 

wolves 

Binder, water to binder ratio, silica fume to binder 

ratio, coarse aggregate to total aggregate ratio, 
coarse aggregate to binder ratio, superplasticizer to 

binder ratio, maximum aggregate size, concrete age 

Compressive 

strength 

RMSE, MAE, R (Behnood and 

Golafshani, 2018) 

91 N/A N/A N/A Foamed Concrete ELM Cement, oven dry density, water/binder ratio, 

foamed volume 

Compressive 

strength 

R, RMSE, 

MAE, Relative 

RMSE, Relative 
MAE 

(Yaseen et al., 2018) 

210 70 15 15 GPC ANFIS 

BPNN 

Fly ash, sodium hydroxide, sodium silicate solution, 

water 

Compressive 

strength 

R², RMSE, 

MAE 

(Van Dao et al., 

2019) 



15 

 

 

Table 2.2 (continued) 

Dataset 
size 

TR 
(%) 

VAL 
(%) 

TS 
(%) 

Concrete Type Methods Used Input Variables Output Statistical Index Ref. 

300 N/A N/A N/A HPC BPNN Cement, BFS, fly ash, water, superplasticizer, coarse 

and fine aggregates, and curing age 

Compressive 

strength 

RMSE, MAE, R (Deepa et al., 2010) 

1030 10- fold cross-

validation method 

HPC BPNN 

 

Cement, BFS, fly ash, water, superplasticizer, coarse 

aggregate, fine aggregate, age of testing 

Compressive 

strength 

R², RMSE, 

MAPE 

(Chou et al., 2011) 

1030 90 

80 

N/A 

N/A 

10 

20 

 

HPC BPNN 

Bagged ANN 

Gradient boosted 
ANN 

Wavelet-bagged 

ANN 
Wavelet-

gradient boosted 
ANN 

Cement, BFS, fly ash, water, superplasticizer, coarse 

aggregate, fine aggregate, age of testing 

Compressive 

strength 

R², RMSE, 

MAE 

(Ibrahim et al., 2013) 

270 70 15 15 HPC BPNN Cement, nano silica, fine aggregate, copper slag, age 

of specimen, superplasticizer 

Compressive 

strength 

R, R², RMSE, 

MAPE 

(Chithra et al., 2016) 

1133 10- fold cross-

validation method 

HPC MFA-BPNN Water, cement, BFS, fly ash, superplasticizer, coarse 

and fine aggregates, age of testing 

Compressive 

strength 

R, RMSE, 

MAE, MAPE 

(Bui et al., 2018) 

324 75 N/A 25 HSC ELM 

BPANN 

Water, cement, fine aggregate, coarse aggregate, 

superplasticizer 

Compressive 

strength 

RMSE, MAE, 

MAPE, R, 

Nash-Sutcliffe 
efficiency 

(Al-Shamiri et al., 

2019) 

173 70 15 15 Normal concrete BPNN 
ANFIS 

Cement, w/c ratio, maximum size of aggregate, 
gravel, sand 3/4, sand 3/8, fineness modulus of sand 

Compressive 
strength 

R² (Khademi et al., 
2017) 

210 67 N/A 33 RAC BPNN Age of the specimen, cement, water, sand, 

aggregate, recycled aggregate, superplasticizer and 

silica fume 

Compressive 

strength 

RMSE, R², 

MAPE 

(Topçu and 

Saridemir, 2008) 

139 N/A N/A N/A RAC BPNN Water absorption, w/c ratio, fine aggregate, natural 
coarse aggregate, recycled coarse aggregate, water 

to total material ratio 

Compressive 
strength 

R, MSE (Hosein Naderpour et 
al., 2018) 
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Table 2.2 (continued) 

Dataset 
size 

TR 
(%) 

VAL 
(%) 

TS 
(%) 

Concrete Type Methods Used Input Variables Output Statistical Index Ref. 

168 N/A N/A N/A RAC BPNN Water, cement, sand, natural coarse aggregate, 

recycled coarse aggregate, w/c ratio, fineness 
modulus of sand, water absorption of the aggregates, 

saturated surface-dried, density, maximum size of 

aggregates, impurity content and replacement ratio 
of recycled coarse aggregate, conversion coefficient 

of different concrete specimen 

Compressive 

strength 

R², RMSE, 

MAPE 

(Duan et al., 2013a) 

257 70 15 15 RAC BPNN 

ANFIS 

Cement, natural fine aggregate, recycled fine 

aggregate, natural coarse aggregates 10 mm, natural 

coarse aggregates 20 mm, recycled coarse 
aggregates 10 mm, recycled coarse aggregates 20 

mm, admixture, water, w/c ratio, sand to aggregate 

ratio, water to total materials ratio, replacement ratio 
of recycled aggregate to natural aggregate, 

aggregate/cement ratio 

Compressive 

strength 

R², Sum of 

squared errors, 

MSE 

(Khademi et al., 

2016) 

          

74 68 N/A 32 RAC BPNN 

Convolutional 

Neural Network 

Recycled coarse aggregate replacement ratio, 

recycled fine aggregate replacement ratio, fly ash 

replacement ratio, w/c ratio  

Compressive 

strength 

Relative error (Deng et al., 2018) 

112 70 15 15 Rubberized 

Concrete 

BPNN W/C ratio, superplasticizer, coarse aggregates, fine 

aggregates, crumb rubber, tire chips 

Compressive 

strength 

R, MAE, MSE (Bachir et al., 2018) 

324 70 15 15 Rubberized concrete  BPNN 

 

Temperature, exposure duration, fiber content, w/c 

ratio 

Compressive 

strength 

MSE, RMSE, R, 

average absolute 

deviation, COV, 
Sum of squared 

errors 

(Gupta et al., 2019) 

145 78 

83 

N/A 

N/A 

28 

17 

HSC 

Normal concrete 

ANFIS Compressive strength of concrete Elastic 

Modulus 

RMSE, MAPE (Ahmadi-Nedushan, 

2012) 
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Table 2.2 (continued) 

Dataset 
size 

TR 
(%) 

VAL 
(%) 

TS 
(%) 

Concrete Type Methods Used Input Variables Output Statistical Index Ref. 

169 67 16.5 16.5 SCC BPNN Cement, coarse aggregate, fine aggregate, water, 

limestone powder, fly ash, ground granulated BFS, 
silica fume, rice husk ash, superplasticizer, viscosity 

modifying admixtures 

Compressive 

strength 

R  (P. G. Asteris et al., 

2016) 

114 80 N/A 20 SCC BPNN Binder, fly ash replacement percentage, water/binder 

ratio, fine aggregate, coarse aggregate, 

superplasticizer 

Compressive 

strength 

R, Relative error (Belalia Douma et al., 

2017) 

205 67 16.5 16.5 SCC BPNN Cement, coarse aggregate, fine aggregate, water, 

limestone powder, fly ash, ground granulated BFS, 

silica fume, rice husk ash, superplasticizers, 
viscosity modifying admixtures 

Compressive 

strength 

R, MSE (Panagiotis G Asteris 

and Kolovos, 2019) 

126 83  17 Steel fiber added 
lightweight concrete 

BPNN The amounts of steel fiber, water, w/c ratio, cement, 
pumice sand, pumice gravel, and superplasticizer 

Compressive 
strength 

MSE, MARE, R (Altun et al., 2008) 

421 N/A N/A N/A RAC BPNN Recycled aggregate replacement ratio, w/c ratio, 
aggregate to cement ratio, ratio of recycled 

aggregate maximum particle size to natural 

aggregate maximum particle size 

Elastic 
Modulus 

Mean, SD, 

RMSE, MAPE 

(Xu, Zhao, et al., 
2019) 

400 80 N/A 20 RAC BPNN 

RBFNN 

 

w/c ratio, volume replacement of natural aggregate 

by recycled aggregate, coarse aggregate to cement 

ratio, fine aggregate to total aggregate ratio, 
saturated surface dry specific gravity of the mixed 

(i.e., natural and recycled) coarse aggregates, water 

absorption of the mixed coarse aggregates, 28-day 
cube compressive strength of the mixture 

Elastic 

Modulus 
RMSE, MAE, 

MAPE 

(Mohammadi and 

Behnood, 2018) 

324 70 15 15 RAC BPNN Cement, water to cement ratio, total aggregate to 
cement ratio, fine aggregate percentage, mass 

substitution rate of natural aggregate by recycled 

aggregate, characteristic of coarse aggregate, 
constituents of recycled coarse aggregate, type and 

preparation methods of coarse aggregate, cement 

type, specimen size 

Elastic 
Modulus 

R², RMSE, 
MAPE 

(Duan et al., 2013b) 
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Table 2.2 (continued) 

Dataset 
size 

TR 
(%) 

VAL 
(%) 

TS 
(%) 

Concrete Type Methods Used Input Variables Output Statistical Index Ref. 

87 80 N/A 20 FRP reinforced BPNN Effective depth, web width, compressive strength of 

concrete, shear span to depth ratio, modulus of 
elasticity of FRP, reinforcement ratio 

Shear 

strength 

MAE, COV, σ, 

µ 

(Bashir and Ashour, 

2012) 

106 73 N/A 27 FRP reinforced BPNN Effective depth, web width, shear span to depth 

ratio, modulus of elasticity and ratio of  FRP 

flexural reinforcement, compressive strength of 

concrete 

Shear 

strength 

µ, σ, COV, 

RMSE, R² 

(Lee and Lee, 2014) 

177 60 20 20 FRP reinforced BPNN Width of web, effective depth of tensile 

reinforcement, shear span to depth ratio, 

compressive strength of concrete, FRP 
reinforcement ratio, modulus of elasticity of FRP 

Shear 

strength 

MAE, MSE, R, 

COV 

(H Naderpour et al., 

2018) 

122 80 N/A 20 High Strength 
Concrete 

ANFIS Tensile reinforcement ratio, concrete compressive 
strength, shear span to depth ratio 

Shear 
strength 

COV, MSE, R (Mohammadhassani 
et al., 2014) 

176 80 N/A 20 RC BPNN Cylinder concrete compressive strength, yield 
strength of longitudinal and transverse reinforcing 

bars, shear span to effective depth ratio, cross-

sectional dimensions of the beam, longitudinal and 
transverse reinforcement ratios 

Shear 
strength 

µ, COV (Mansour et al., 
2004) 

123 81 N/A 19 RC BPNN 

ANFIS 

Compressive strength, longitudinal reinforcement 

volume, shear span to depth ratio, transverse 
reinforcement, effective depth, beam width 

Shear 

strength 

R², RMSE, 

MAE 

(Amani and Moeini, 

2012) 

98 81 N/A 19 RC strengthened in 
shear with FRP 

BPNN Breadth of the beam, height of the beam section , 
ratio of the FRP transversal reinforcement, angle 

between principal fiber orientation and longitudinal 

axis of the member, elastic modulus of FRP 
reinforcement, longitudinal steel reinforcement 

ratio, cross sectional area of transverse steel per 

length unit, yielding stress of the shear steel 
reinforcement, compressive strength of concrete, 

shear span to depth ratio, strengthening 

configuration 

Shear 
strength 

R, µ, COV, σ (Perera et al., 2010) 
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Table 2.2 (continued) 

Dataset 
size 

TR 
(%) 

VAL 
(%) 

TS 
(%) 

Concrete Type Methods Used Input Variables Output Statistical Index Ref. 

84 61 N/A 39 RC strengthened in 

shear with FRP 

BPNN Beam width, effective height of the beam, concrete 

compressive strength, type of wrapping scheme, the 
angle between the principal fiber orientation and the 

longitudinal axis of the member, elastic modulus of 

the FRP reinforcement, rupture strain of FRP 
reinforcement, total fabric design thickness, shear 

span to depth ratio 

Shear 

strength 

RMSE, R² (Tanarslan et al., 

2012) 

730 90 N/A 10 SFRC BPNN Concrete cylinder compressive strength, effective 

depth, beam width, shear span to depth ratio, 

longitudinal steel ratio, fiber volume fraction, fiber 
aspect ratio 

Shear 

strength 

MAE, RMSE, 

Pearson’s 

coefficient 

(Kumar and Barai, 

2010) 

714 10-fold cross-
validation 

HPC MFA-BPNN Curing age, cubic compressive strength Tensile 
strength 

R, RMSE, 
MAE, MAPE 

(Bui et al., 2018) 

346 N/A N/A N/A RAC BPNN Recycled aggregate replacement ratio, w/c ratio, 

aggregate to cement ratio, ratio of recycled 
aggregate maximum particle size to natural 

aggregate maximum particle size  

Tensile 

strength 

Mean, SD, 

RMSE, MAPE 

(Xu, Zhao, et al., 

2019) 

210 67 N/A 33 RAC BPNN Age of the specimen, cement, water, sand, 

aggregate, recycled aggregate, superplasticizer, 

silica fume 

Tensile 

strength 

RMS, R², 

MAPE 

(Topçu and 

Saridemir, 2008) 

980 70 15 15 SFRC BPNN 

 

Water to binder ratio, concrete compressive 

strength, age of the specimen, fiber reinforcing 

index 

Tensile 

strength 

R, R², MAPE, 

MAE, RMSE 

(Behnood, Verian, et 

al., 2015) 

187 90 N/A 10 HSC BPNN Water to binder ratio, water content, fine aggregate 

ratio, fly ash replacement ratio, air-entraining agent, 
ratio, silica fume replacement ratio and 

superplasticizer content. 

Compressive 

strength 

RMSE, R², 

MAPE, sum of 
squares error 

(Öztaş et al., 2006) 

225 50 N/A 50 Ground granulated 
blast furnace slag 

concrete 

BPNN Cement, blast furnace slag, superplasticizer, 
aggregates, water and age of samples 

Compressive 
strength 

R² (Bilim et al., 2009) 
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Table 2.2 (continued) 

Dataset 
size 

TR 
(%) 

VAL 
(%) 

TS 
(%) 

Concrete Type Methods Used Input Variables Output Statistical Index Ref. 

2817 70 15 15 Normal and high-

performance 
concrete 

Grey wolf 

optimized ANN 
Grey wolf 

optimized 

ANFIS 

 

Coarse aggregate, sand, water, cement, BFS, fly ash, 

superplasticizer, age of specimens 

Compressive 

strength 

RMSE, scatter 

index, MAE, R², 
uncertainty with 

95% confidence 

level, MBE 

(Golafshani et al., 

2020) 

240 56 21 23 Silica fume concrete BPNN Cement, amount of silica fume replacement, water 

content, amount of aggregate, plasticizer content, 
and age of samples 

Compressive 

strength 

Mean absolute 

relative error, 
MSE 

(Özcan et al., 2009) 
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In such cases, the input space has to be mapped into higher dimensional feature space in 

order to make the linear separation of classes possible (Zheng et al., 2015). Nonlinear 

mapping process is generally performed through nonlinear function. Then, the output of 

the algorithm is obtained from nonlinear space through kernel functions (Kisi, 2015; 

Moraes et al., 2013; Raghavendra and Deka, 2014). These functions can be classified into 

five types; polynomial, sigmoid, radial basis, exponential radial basis, and linear 

(Zendehboudi et al., 2018). They help determine a nonlinear decision boundary without the 

need for computing the optimal hyperplane parameters in the feature space.  

 

 

Figure 2.4: Nonlinear mapping in SVM. 

 

Thus, the solution can be expressed as a combination of the weighted values of kernel 

functions at support vectors (Moraes et al., 2013). When SVM is mainly applied for 

regression analysis, the model is generally called support vector regression (SVR) (Chou 

et al., 2011; Zendehboudi et al., 2018). It deals with regression problems as a set of linear 

equations, leading to faster training process and better accuracy (Sadri and Burn, 2012; 

Yaseen et al., 2018). Several studies have examined the predictive ability of SVM Table 

2.3 outlines the different SVM-based models used for estimating concrete strength. It can 

be observed that SVM algorithms have been employed as standalone models in some 

studies and optimized with metaheuristic algorithms in others.  
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2.2.3.1 Standalone SVM models 

The application of individual SVM models to predict the mechanical strength of concrete 

has been extensively investigated. For instance, Chou et al., (2011) used SVM to predict 

the compressive strength of HPC. The model was developed using a radial basis kernel 

function. Results indicated that SVM had high prediction accuracy based on the value of 

MAPE. Omran et al., (2016) employed SVM based on sequential minimal optimization to 

forecast the compressive strength of concrete containing Haydite lightweight aggregate and 

Portland limestone cement. Deng et al., (2018) used SVM for predicting the compressive 

strength of recycled aggregate concrete (RAC). Performance evaluation showed that the 

model achieved acceptable predictive accuracy. In another study conducted by Behnood et 

al., (2015), SVM was employed to forecast the tensile strength of  SFRC and revealed 

better performance than that of nonlinear regression analysis. The elastic modulus of HSC 

and RAC was also predicted via SVM (Mohammadi and Behnood, 2018; Yan and Shi, 

2010) and satisfactory results were reported. The least-square support vector machine 

(LSSVM) is another variation of SVM in which the least-squares loss function is used to 

build the optimization problem and achieve better accuracy (Kaytez et al., 2015). Several 

studies evaluated the performance of this model in predicting the mechanical strength of 

concrete. For instance, Yaseen et al., (2018) proposed the least square support vector 

regression (LSSVR) to predict the compressive strength of foamed concrete and this model 

achieved reliable accuracy. 

2.2.3.2 Hybrid SVM-based models 

The application of SVM within hybrid approaches aims to optimize the process and the 

performance of standalone SVM models. Several studies have used FA, for instance, as an 

optimization approach to estimate the compressive strength and the shear strength of 

concrete. For example, Pham et al., (2016) adopted the FA-LSSVR hybrid model to 

estimate the compressive strength of HPC. FA was mainly incorporated to evaluate the 

hyperparameters of LSSVM. Two experiments were conducted: the first consisted of 

splitting data into training and testing sets, while the second one was based on 10-fold 

cross-validation. Results uncovered the strong ability of FA-LSSVR in forecasting the 

compressive strength of concrete, which was reflected by MAPE.  More recent studies 

investigated the prediction of the shear strength of RC and SFRC beams along with FRP 
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reinforced slabs through FA-LSSVM algorithm (Al-Musawi et al., 2020; Chou et al., 2016; 

Vu and Hoang, 2016). The model comprised input parameters including geometrical 

characteristics of beams and slabs, as well as the mechanical properties of reinforcing 

components. Results showed that FA-LSSVM achieved accurate forecasting of the shear 

strength of concrete structures. In another study conducted by Yu et al., (2018), an 

enhanced version of a swarm-based algorithm named cat swarm optimization was used to 

forecast the compressive strength of HPC. The enhanced cat swarm optimization (ECSO) 

model was employed to optimize the key parameters of SVM. The probabilistic Akaike 

information criterion was adopted as the objective function for the optimization problem. 

ECSO-SVM model exhibited high predictive ability, as evidenced by statistical metrics. 

Keshtegar et al., (2019) developed a new model that hybridizes the response surface 

method (RSM) and SVM. The model forecasted the shear strength of SFRC beams with 

satisfactory results. The hybrid RSM-SVM model was also compared to other standalone 

intelligent models such as RSM, SVR, and classical neural network in addition to eight 

empirical formulations. It was reported that RSM-SVR model had better accuracy 

compared to the other models. Cheng et al., (2012) developed an evolutionary fuzzy SVM 

inference model for time series data, which combines FL, SVM, and GA to estimate the 

compressive strength of HPC. Results indicated that the developed model performed better 

than SVM and BPNN as depicted in scatter diagrams presenting actual and predicted 

values. 

2.2.4 Decision tree models 

Decision tree models are ML techniques in which formal rules are created through patterns 

in the data (DeRousseau et al., 2018). As outlined in Table 2.4, three decision tree-based 

models, namely M5P-tree, Multiple Additive Regression Trees (MART) and Random 

Forest (RF) have mostly been used to predict the mechanical properties of concrete. The 

process and application of each model are discussed below. 
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Table 2.3: Summary of adopted SVM-based models 

Dataset 

size 

TR 

(%) 

VAL 

(%) 

TS 

(%) 

Concrete Type Methods Used Input Variables Output Statistical Index Ref. 

1030 10- fold  

cross-validation  

HPC SVM 

 

Cement, BFS, fly ash, water, superplasticizer, 

coarse aggregate, fine aggregate, age of testing 

Compressive 

strength 

R², RMSE, MAPE (Chou et al., 

2011) 

1030 90 N/A 10 HPC Evolutionary fuzzy 

SVM inference model 

for time series data 

Cement, BFS, fly ash, water, superplasticizer, 

coarse aggregate, fine aggregate, age of testing 

Compressive 

strength 

R, R², RMSE, MAE (Cheng et al., 

2012) 

144 10-fold  

cross-validation 

Concrete 

containing fly ash, 

Haydite 
lightweight 

aggregate and 

Portland limestone 
cement 

SVM Cement type, curing age, water, cementitious 

material, fly ash, sand, pea gravel, Haydite 

lightweight aggregate, Micro Air 

Compressive 

strength 

R, RMSE, MAE (Omran et al., 

2016) 

239 10-fold  
cross-validation 

HPC FA-LSSVR Cement, fine aggregate, small coarse aggregate, 
medium coarse aggregate, water, superplasticizer, 

concrete age 

Compressive 
strength 

RMSE, MAPE, R² (Pham et al., 
2016) 

91 N/A N/A N/A Foamed concrete LSSVR Cement, oven dry density, water/binder ratio, 
foamed volume 

Compressive 
strength 

R, RMSE, MAE, 
Relative RMSE, 

Relative MAE 

(Yaseen et al., 
2018) 

1761 70 N/A 30 HPC ECSO-SVM Water, cement, BFS, fly ash, superplasticizer, 

coarse, aggregate, fine aggregate, curing age 

Compressive 

strength 

Squared correlation 

coefficient, σ, 

Relative RMSE, R² 
MAPE, Index of 

agreement, MAE, 

SRL, Error to signal 
ratio 

(Yu et al., 

2018) 

74 68 N/A 32 RAC SVM 
 

 

  
  

Recycled coarse aggregate replacement ratio, 
recycled fine aggregate replacement ratio, fly ash 

replacement ratio, w/c ratio  

Compressive 
strength 

Relative error (Deng et al., 
2018) 
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Table 2.3 (continued) 

Dataset 
size 

TR 
(%) 

VAL 
(%) 

TS 
(%) 

Concrete Type Methods Used Input Variables Output Statistical Index Ref. 

82 88 N/A 12 FRP reinforced 

(slabs) 

Firefly algorithm 

combined with 
LSSVM 

Types of column section, section area of column, 

effective flexural depth of slab, compressive 
strength of concrete, Young’s modulus of the 

FRP slab, reinforcement ratio 

Shear 

strength 

RMSE, MAPE, R² (Vu and 

Hoang, 2016) 

10-fold  

cross-validation 

 

          

214 10-fold  

cross-validation 

RC Smart artificial firefly 

algorithm based 

LSSVR 

Ratio of effective depth to breadth of beam, yield 

strength of horizontal reinforcement, yield 

strength of vertical web reinforcement, ratio of 
shear span to effective depth, ratio of effective 

span to effective depth, main reinforcement ratio, 

horizontal and vertical shear reinforcement ratio 

Shear 

strength 

R, RMSE, MAE, 

MAPE 

(Chou et al., 

2016) 

139 70 N/A 30 SFRC Firefly algorithm 

Combined with SVR 

Concrete strength, longitudinal steel strength, 

shear span to depth ratio, effective depth of 

beam, beam width, maximum aggregate size, 
longitudinal steel ratio, steel fiber volume 

fraction, fiber length, the equivalent fiber 

diameter 

Shear 

strength 

Scatter index, MAPE, 

RMSE, MAE, Root 

mean square relative 
error, mean relative 

error, BIAS 

(Al-Musawi et 

al., 2020) 

139 75 N/A 25 SFRC Response surface 

method combined 
with SVR 

Concrete strength, longitudinal steel strength, 

shear span to depth ratio, effective depth of 
beam, beam width, maximum aggregate size, 

longitudinal steel ratio, steel fiber volume 

fraction, fiber length, equivalent fiber diameter 

Shear 

strength 

MAE, RMSE, 

modified agreement 
index, modified Nash 

and Sutcliffe 

efficiency 

(Keshtegar et 

al., 2019) 

980 70 15 15 SFRC SVM Water to binder ratio, concrete compressive 

strength, age of the specimen, fiber reinforcing 

index 

Tensile 

strength 

R, R², MAPE, MAE, 

RMSE 

(Behnood, 

Verian, et al., 

2015) 
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Table 2.3 (continued) 

Dataset 
size 

TR 
(%) 

VAL 
(%) 

TS 
(%) 

Concrete Type Methods Used Input Variables Output Statistical Index Ref. 

400 80 N/A 20 RAC SVR w/c ratio, volume replacement of natural 

aggregate by recycled aggregate, coarse 
aggregate to cement ratio, fine aggregate to total 

aggregate ratio, saturated surface dry specific 

gravity of the mixed (i.e., natural and recycled) 
coarse aggregates, water absorption of the mixed 

coarse aggregates, 28-day cube compressive 

strength of the mixture 

Elastic 

modulus 

RMSE MAE 

MAPE  

(Mohammadi 

and Behnood, 
2018) 

159 78 

81 

N/A 

N/A 

22 

19 

HSC  

Normal concrete 
 

SVM Compressive strength of concrete Elastic 

modulus 

RMSE, MAPE (Yan and Shi, 

2010) 

650 50 N/A 50 Concrete 

containing coarse 
recycled concrete 

aggregates 

LSSVR Coarse recycled concrete aggregate replacement 

ratio, aggregate to cement ratio, bulk density of 
recycled concrete aggregate, water absorption of 

coarse recycled concrete aggregate, water-to-

cement ratio 
 

Compressive 

strength 

RMSE, MAE, MAPE (Gholampour et 

al., 2020) 

421 47 N/A 53 Concrete 

containing coarse 
recycled concrete 

aggregates 

LSSVR Coarse recycled concrete aggregate replacement 

ratio, aggregate to cement ratio, bulk density of 
recycled concrete aggregate, water absorption of 

coarse recycled concrete aggregate, water-to-

cement ratio 
 

Elastic 

modulus 

RMSE, MAE, MAPE (Gholampour et 

al., 2020) 

346 51 N/A 49 Concrete 

containing coarse 
recycled concrete 

aggregates 

LSSVR Coarse recycled concrete aggregate replacement 

ratio, aggregate to cement ratio, bulk density of 
recycled concrete aggregate, water absorption of 

coarse recycled concrete aggregate, water-to-

cement ratio 
 

Tensile 

strength 

RMSE, MAE, MAPE (Gholampour et 

al., 2020) 
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2.2.4.1 M5P-tree 

M5P is an expanded version of Quinlan’s M5 algorithm, where a conventional decision 

tree is combined with linear regression functions at the nodes. The construction of the M5 

model is performed through three main steps (Behnood, Olek, et al., 2015; Zhan et al., 

2011). First, a tree model is built using a splitting criterion that divides the data into subsets. 

Then, tree pruning is performed to remove or merge unwanted subtrees in order to 

overcome data overfitting that appeared during tree construction. Finally, a smoothing 

process is performed to compensate for the sharp discontinuities occurring between 

adjacent linear models at the pruned tree leaves. This process is schematically represented 

in Figure 2.5.   

 

Figure 2.5: M5-tree process. 

 

In order to split the input space and generate the regression tree in this model, a measure 

called the standard deviation factor (SDR), which is the maximum reduction in output 

errors after branching, is considered (Behnood et al., 2017; Behnood, Verian, et al., 2015). 

M5 algorithm was modified to M5P to deal with enumerated attributes as well as attribute 
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missing values. In the M5P tree algorithm, all enumerated attributes are transformed into 

binary variables before tree construction (Almasi et al., 2017). M5P has been used in 

several studies to predict the mechanical properties of concrete (Behnood et al., 2017; 

Deepa et al., 2010; Omran et al., 2016).  The application of this model included forecasting 

the compressive strength of HPC and foamed concrete, along with concrete fabricated with 

fly ash, Haydite lightweight aggregate, and Portland limestone cement (Deepa et al., 2010; 

Omran et al., 2016; Yaseen et al., 2018). The model comprised various input variables 

including concrete mixture ingredients, age of testing, and other dimensionless ratios. It 

was concluded that the M5P model predicted the compressive strength accurately, as 

evidenced by statistical metrics. 

2.2.4.2 MART 

MART is a powerful meta classifier that involves the conventional classification and 

regression trees (CART) enhanced with stochastic gradient boosting that tends to improve 

the accuracy of learning algorithms by combining and fitting a series of models with low 

error rates, forming an ensemble model that has better performance (Elish, 2009; Friedman, 

2002). MART has been used by Chou et al., (2011) to predict the compressive strength of 

HPC. The model achieved adequate predictive accuracy and outperformed both ANN and 

SVM in terms of R². 

2.2.4.3 Random forest 

Random forest (RF) has also been adopted in multiple studies as a forecasting tool. RF 

combines multiple decision trees, each of which is built from a new training set based on 

the bagging method (Chehreh Chelgani et al., 2016; Han et al., 2019). The bagging method, 

which is also known as bootstrap aggregation, is an ensemble training method that consists 

of two steps: bootstrap and aggregation. In the first step, identically distributed and 

independent datasets are created by randomly resampling the original set of data. During 

the second step, the new datasets are used for training the base predictors independently. 

Results are obtained by averaging the predictions of each tree predictor through the 

aggregation method. The RF has been used by several researchers for predicting the 

mechanical strength of concrete. For instance, Han et al., (2019) employed RF to forecast 

the compressive strength of HPC. Earlier study by Mangalathu and Jeon (2018) adopted 
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the same model for predicting the shear strength of RC beam-column joints. Results of 

both studies were in good agreement, affirming the ability of RF in producing reliable 

predictions. Another research conducted by J. Zhang et al., (2019) consisted of applying 

RF to estimate the uniaxial compressive strength of SCC. The RF model was enhanced 

with a beetle antennae search (BAS) algorithm which was developed from the behavior of 

the beetle that tunes to a position with a higher concentration of odor when searching 

nearby areas using its two antennae (Jiang and Li, 2017). The authors concluded that BAS 

demonstrated great capacity in finding optimum hyper-parameters of RF and that the 

hybrid BAS-RF algorithm showed good forecasting ability. 

2.2.5 Evolutionary algorithms 

Evolutionary algorithms form a category of heuristic search methods in which the process 

of finding a solution in the search space is based on the mechanism of biological evolution 

including selection, mutation, recombination, reproduction, and recombination (Eiben and 

Smit, 2011; Vikhar, 2017). The general process of evolutionary algorithms is illustrated in 

Figure 2.6. First, an initial population representing a set of candidate solutions is randomly 

generated. Then, the evaluation of this population is performed via the fitness function. 

The next generation which comprises a better set of candidates is then generated through 

recombination and mutation. Recombination consists of generating new candidates via a 

binary operator applied on the previous generation (parents). Mutation only modifies one 

candidate from the previous set. After both operators, i.e. recombination and mutation, are 

applied, a new generation is created based on the fitness function. This iterative process 

stops when the desired value of fitness function is achieved or when the maximum number 

of generations is reached.  

 

Figure 2.6: General process of evolutionary algorithms. 
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Table 2.4: Summary of employed decision tree models 

Dataset 

size 

TR 

(%) 

VAL 

(%) 

TS 

(%) 

Concrete Type Methods 

Used 

Input Variables Output Statistical Index Ref. 

300 N/A N/A N/A HPC M5P-tree Cement, BFS, fly ash, water, superplasticizer, coarse and 

fine aggregates, and curing age 

Compressive 

strength 

RMSE, MAE, R (Deepa et al., 

2010) 

1030 10- fold  

cross-validation 

HPC MART 

Bagging 

regression 

trees 

Cement, BFS, fly ash, water, superplasticizer, coarse 

aggregate, fine aggregate, age of testing 

Compressive 

strength 

R², RMSE, 

MAPE 

(Chou et al., 

2011) 

144 10- fold 

cross-validation  

Concrete containing 

FA, Haydite 
lightweight 

aggregate and 

Portland limestone 
cement 

M5P-tree 

M5-rules 
REPTree 

 

Cement type, curing age, water, cementitious material, fly 

ash, sand, pea gravel, Haydite lightweight aggregate, Micro 
Air 

Compressive 

strength 

R, RMSE, MAE (Omran et al., 

2016) 

1030 5- fold 
cross-validation  

HPC Genetic 
weighted 

pyramid 

operation tree 

Cement, fly ash, slag, water, superplasticizer, coarse 
aggregate, fine aggregate, age of testing 

Compressive 
strength 

RMSE, MAE, 
MAPE, 

Reference index 

(Cheng et al., 
2014) 

1912 

 

85 N/A 15 Normal concrete 

HPC 

M5P-tree Cement, water, fly ash, BFS, superplasticizer, coarse 

aggregate, fine aggregate, age of concrete 

Compressive 

strength 

Slope of 

regression line 

(SRL), R, R², 
MAPE, MAE, 

RMSE 

(Behnood et 

al., 2017) 

91 N/A N/A N/A Foamed concrete M5-Tree Cement, oven dry density, water to binder ratio, foamed 

volume 

Compressive 

strength 

R, RMSE, MAE, 

Relative RMSE, 

Relative MAE 

(Yaseen et al., 

2018) 

1030 90  10 HPC Random 

Forest 

Water to binder ratio, BFS to water ratio, fly ash to water 

ratio, coarse aggregate to binder ratio, coarse aggregate to 
fine aggregate ratio 

Compressive 

strength 

R, MAE, RMSE, 

MAPE 

(Han et al., 

2019) 

131 10- fold 

cross-validation 

SCC Beetle 

antennae 
search based 

random forest 

Water to binder ratio, macro-synthetic polypropylene fiber, 

steel fiber, scoria, crumb rubber, natural fine aggregate, 
natural coarse aggregate 

Compressive 

strength 

RMSE, R (J. Zhang et al., 

2019) 
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Table 2.4 (continued) 

Dataset 
size 

TR 
(%) 

VAL 
(%) 

TS 
(%) 

Concrete Type Methods 
Used 

Input Variables Output Statistical Index Ref. 

536 70 N/A 30 RC Random 

Forest 

Concrete compressive strength, joint transverse 

reinforcement, joint shear stress, in-plane joint geometry, 
out-of-plane joint geometry, ratio of beam depth to column 

depth, joint eccentricity parameter, ratio of beam width to 

column width, column axial load ratio, beam bar bond 
parameter, column to beam flexural moment strength ratio, 

column intermediate longitudinal reinforcement factor 

Shear 

Strength 

µ, Covariance, 

COV, MSE, 
ABS, R² 

(Mangalathu 

and Jeon, 
2018) 

454 80 N/A 20 RAC M5 Tree Compressive strength, w/c ratio, coarse aggregate to cement 

ratio, fine aggregate to total aggregate ratio, volume fraction 

of recycled aggregate in RAC, saturated surface dry specific 
gravity, water absorption of the mixed coarse aggregates 

(natural aggregate + recycled aggregate) 

Elastic 

Modulus 

R, R² (Behnood, 

Olek, et al., 

2015) 

470 80 N/A 20 Concrete containing 

waste foundry sand 

M5P-Tree Waste foundry sand to cement ratio, water to cement ratio, 

coarse aggregate to cement ratio, fine aggregate to total 

aggregate ratio, waste foundry sand to fine aggregate ratio, 
superplasticizer to cement ratio multiplied by 1000, and age 

of concrete 

Compressive 

strength 

RMSE, MAE, 

MAPE, R², R 

(Behnood and 

Golafshani, 

2020) 

172 80 N/A 20 Concrete containing 
waste foundry sand 

M5P-Tree Waste foundry sand to cement ratio, water to cement ratio, 
coarse aggregate to cement ratio, fine aggregate to total 

aggregate ratio, waste foundry sand to fine aggregate ratio, 

superplasticizer to cement ratio multiplied by 1000, and age 
of concrete 

Elastic 
modulus 

RMSE, MAE, 
MAPE, R², R 

(Behnood and 
Golafshani, 

2020) 

295 80 N/A 20 Concrete containing 
waste foundry sand 

M5P-Tree Waste foundry sand to cement ratio, water to cement ratio, 
coarse aggregate to cement ratio, fine aggregate to total 

aggregate ratio, waste foundry sand to fine aggregate ratio, 

superplasticizer to cement ratio multiplied by 1000, and age 
of concrete 

Tensile 
strength 

RMSE, MAE, 
MAPE, R², R 

(Behnood and 
Golafshani, 

2020) 

40 15-fold cross 

validation 
20-fold cross 

validation 

high-volume 

mineral admixture 
concrete 

M5 

 
M5P 

Age of testing, cement, fly ash, slag content Compressive 

strength 

R², MAE (Ayaz et al., 

2015) 
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Table 2.4 (continued) 

Dataset 
size 

TR 
(%) 

VAL 
(%) 

TS 
(%) 

Concrete Type Methods 
Used 

Input Variables Output Statistical Index Ref. 

650 50 N/A 50 Concrete containing 

coarse recycled 
concrete aggregates 

M5 Coarse recycled concrete aggregate replacement ratio, 

aggregate to cement ratio, bulk density of recycled concrete 
aggregate, water absorption of coarse recycled concrete 

aggregate, water-to-cement ratio 

Compressive 

strength 

RMSE, MAE, 

MAPE 

(Gholampour 

et al., 2020) 

650 50 N/A 50 Concrete containing 

coarse recycled 

concrete aggregates 

M5 Coarse recycled concrete aggregate replacement ratio, 

aggregate to cement ratio, bulk density of recycled concrete 

aggregate, water absorption of coarse recycled concrete 
aggregate, water-to-cement ratio 

Compressive 

strength 

RMSE, MAE, 

MAPE 

(Gholampour 

et al., 2020) 

421 47 N/A 53 Concrete containing 

coarse recycled 
concrete aggregates 

M5 Coarse recycled concrete aggregate replacement ratio, 

aggregate to cement ratio, bulk density of recycled concrete 
aggregate, water absorption of coarse recycled concrete 

aggregate, water-to-cement ratio 

Elastic 

modulus 

RMSE, MAE, 

MAPE 

(Gholampour 

et al., 2020) 

346 51 N/A 49 Concrete containing 

coarse recycled 

concrete aggregates 

M5 Coarse recycled concrete aggregate replacement ratio, 

aggregate to cement ratio, bulk density of recycled concrete 

aggregate, water absorption of coarse recycled concrete 
aggregate, water-to-cement ratio 

Tensile 

strength 

RMSE, MAE, 

MAPE 

(Gholampour 

et al., 2020) 
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Evolutionary algorithms have been widely adopted for predicting concrete strength. Table 

2.5 entails some recent studies that adopted evolutionary algorithms for assessing concrete 

strength. Gandomi et al., (2014, 2017) employed gene expression programming (GEP) to 

predict the shear strength of slender RC beams. Minimizing the objective function that 

comprises the values of statistical indexes corresponding to learning, validation, and testing 

data has been performed to get the best GEP algorithm. The model achieved good 

predictive accuracy, and a comparative study revealed the superiority of GEP over design 

codes such as the ACI and Eurocode 2. Linear genetic programming is another 

evolutionary algorithm that has been used for instance in predicting the compressive 

strength of carbon fiber reinforced plastic (CFRP) confined concrete (Amir Hossein 

Gandomi, Alavi, and Sahab, 2010). Four different formulations have been developed 

through LGP model. Results showed that the formulations can provide strong accuracy. 

Parametric analysis was also conducted to figure out the impact of influencing parameters. 

The obtained results were in good agreement with those presented from experimental 

studies of other researchers. Golafshani and Behnood (2018) adopted three models, namely 

genetic programming (GP), artificial bee colony programming (ABCP), and biogeography-

based programming (BBP) to forecast the elastic modulus of RAC. The developed models 

achieved reliable accuracy. Also, water absorption along with fine aggregate-to-total 

aggregate ratio and compressive strength of concrete had significant effect on the elastic 

modulus of RAC. 

2.2.6 Selection of model inputs 

Selection of the most relevant features needed for training and testing the different ML 

models is key to simplifying the models and improving their performance. Beside 

computational efforts, human intelligence and experience are needed to select the most 

suitable parameters for running ML models. This leads to an accurate selection of the inputs 

that have noteworthy impact on concrete strength and avoiding parameters with low 

influence, which can save computation time. Several studies adopted common features for 

predicting concrete strength. For example, binder content, aggregates, and mineral 

additions such as fly ash and blast furnace slag have been extensively integrated (P. G. 

Asteris et al., 2016; Panagiotis G Asteris and Kolovos, 2019; Bui et al., 2018; Cheng et al., 

2012; Chou et al., 2011; Deepa et al., 2010; Han et al., 2019; Yu et al., 2018).
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Table 2.5: Summary of used evolutionary algorithms 

Dataset 

size 

TR 

(%) 

VAL 

(%) 

TS 

(%) 

Concrete 

Type 

Methods Used Input Variables Output Statistical 

Index 

Ref. 

1942 70 15 15 RC GEP Beam width, effective depth, shear span to depth ratio, 

compressive strength, longitudinal reinforcement ratio 

Shear strength R, MAE, 

RMSE 

(Amir H. 

Gandomi et al., 

2014) 

466 70 15 15 RC GEP Beam width, effective depth, shear span to depth ratio, 

compressive strength, longitudinal reinforcement ratio, amount of 

shear reinforcement 

Shear strength R, MAE, 

RMSE 

(Amir H. 

Gandomi et al., 

2017) 

1938 70 15 15 RC Linear genetic 

programming 

Compressive strength, mechanic arm, longitudinal reinforcement 

ratio, maximum size of coarse aggregate, shear span to depth 
ratio 

Shear strength R, MAE, 

RMSE 

(A H Gandomi et 

al., 2011) 

208 67 14 19 SFRC Multi expression 
programming 

(MEP) 

shear span to depth ratio, average fiber matrix interfacial bond 
stress, fiber factor, splitting tensile strength, split-cylinder 

strength of fiber concrete, compressive strength of concrete, 

longitudinal reinforcement ratio 

Shear strength R², MAE, 
RMSE 

(Sarveghadi et al., 
2019) 

83 53 22 25 RC GEP the axial force, the width of the cross-section, 28-day 

compressive strength of concrete, the ratio of shear span to the 

effective depth of the cross-section, the percentage of 
longitudinal reinforcement, the cross-sectional area, the 

transverse reinforcement ratio, and the yield stress of the 

transverse reinforcement, 

Shear strength R, MAE, 

RMSE 

(Aval et al., 2017) 

1028 70 N/A 30 HPC Geometric 

Semantic Genetic 
Programming 

Cement, Fly ash, Blast furnace slag, Water, Superplasticizer, 

Coarse aggregate, Fine aggregate, Age of testing. 

Compressive 

strength 

RMSE (Castelli et al., 

2013) 

70 
 

89 

81 
 

78 

N/A 
 

N/A 

19 
 

22 

Normal 
concrete 

HSC 

Linear genetic 
programming 

Compressive strength Elastic 
Modulus 

R, MAE (Amir Hossein 
Gandomi, Alavi, 

Sahab, et al., 

2010) 

104 54 19 27 FRP-

Reinforced 

concrete 

GEP Compressive strength, beam width, effective depth, shear span to 

depth ratio, longitudinal reinforcement ratio, modulus of 

elasticity of steel and FRP longitudinal bars 

Shear strength  Average 

absolute 

error 

(Kara, 2011) 
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Table 2.5 (continued) 

Dataset 
size 

TR 
(%) 

VAL 
(%) 

TS 
(%) 

Concrete 
Type 

Methods Used Input Variables Output Statistical 
Index 

Ref. 

101 90 N/A 10 CFRP 

confined 
concrete 

Linear genetic 

programming 

Diameter of the concrete cylinder, thickness of the CFRP layer, 

ultimate tensile strength of the CFRP laminate, unconfined 
ultimate concrete strength 

Compressive 

strength 

R, MAPE (Amir Hossein 

Gandomi, Alavi, 
and Sahab, 2010) 

400 80 N/A 20 RAC GP 

ABCP 

BBP 

Water to cement ratio, volume fraction of coarse RA in RAC, 

coarse aggregate to cement ratio, fine aggregate to total aggregate 

ratio, saturated surface dry specific gravity of the mixed coarse 

aggregates, water absorption of the mixed coarse aggregates, and 
28-day cube compressive strength of the mixture. 

Elastic 

modulus 

MAE, 

RMSE, 

MAPE, OBJ 

(Golafshani and 

Behnood, 2018) 
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Aggregates are also an important parameter affecting the mechanical strength of concrete. 

Appropriate hardness, granular size distribution, and cleanness of aggregates have a 

significant effect on the strength of concrete materials. Supplementary cementitious 

materials such as fly ash, blast furnace slag, and silica fume are amongst the most 

commonly incorporated materials in concrete owing to the beneficial effect of their 

pozzolanic properties and microfiller effect on the compressive strength of concrete (Ayaz 

et al., 2015; Nath and Sarker, 2014). For instance, fly ash can increase the workability 

resulting in less mixing water needed for concrete, which in turn can improve the strength 

of concrete. Ultrafine silica fume particles densify the cement paste-aggregate interfacial 

zone, dramatically enhancing compressive strength. Moreover, the water-to-binder (w/b) 

ratio, curing conditions and age, and chemical admixtures have been considered as crucial 

input parameters for assessing concrete strength. For instance, increasing the w/b ratio 

decreases the proportion of hydrated products and increases the porous structure in 

concrete, leading to lower mechanical strength.  

2.3 Discussion and critical analysis 

ML techniques have been adopted by several researchers as a new approach to forecast the 

mechanical strength of concrete materials. As entailed in Table 2.6, statistical metrics 

retrieved from a non-exhaustive list of studies reflects the noteworthy advantage of ML 

techniques over empirical formulas for the same testing data.  

This can be explained by the ability of ML techniques in accurately predicting the 

properties of complex concrete materials, where the relationship between concrete mixture 

ingredients and the corresponding compressive strength is highly nonlinear. Also, it can be 

observed in Tables 2, 3, 4, and 5 that ML models were developed based on extensive 

databases, implying that the number of data examples used for developing those models is 

significantly higher than that of empirically developed equations. Accordingly, the 

applicability of empirical models is limited to few examples, leading to higher error when 

forecasting “unseen” data. Furthermore, a potential problem associated with empirical and 

statistical formulas is their inability to provide an accurate estimation of the mechanical 

strength of concrete incorporating new admixtures, thus ignoring the effect of the new 

ingredients on the final output. Conversely, ML models offer the advantage of updating 
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the predictive mechanism by controlling the number of inputs (features) and ingredients 

considered within the model. Moreover, the impact of each input variable on concrete 

strength can be determined through ML techniques via sensitivity analysis. These 

advantages of ML models make the application of statistical and empirical models limited 

to some problems in which the studied concrete has a simple structure since conventional 

methods are convenient in providing explicit mathematical formulas.  

In addition to the difference between statistical approaches and ML models, there are 

contrasts between ML algorithms in terms of process and performance. Thus, each ML 

technique has several advantages and drawbacks compared to other models. This can be 

supported by the values of statistical metrics shown in Table 2.7, which reveals the 

performance of multiple ML models over the same testing data. As mentioned previously, 

several studies adopted ANN because of their inherent advantages. An explicit vector of 

weights and biases along with a fixed number of hidden layers and hidden neurons 

achieved after several trials can lead to a well-defined structure of ANN model. However, 

such repetitive trial and error-tuning process is time-consuming. Another major weakness 

of the ANN model is associated with the BP approach, where the training process is 

performed through a gradient descent algorithm on the error space that includes local 

minima (Jafrasteh and Fathianpour, 2017; L. Wang et al., 2015). As outlined in Figure 2.7, 

convergence of BP to local minima and avoidance of global solutions has been a concern 

(Chandwani et al., 2015; O. Akande et al., 2014; Yuan et al., 2014). Using ELM as an 

alternative method can mitigate the problem of convergence to local optima and provide 

more simplicity since no learning rate and stopping criteria are required (Christou et al., 

2019). Al-Shamiri et al., (2019) compared ELM to BPNN and recorded better performance 

with ELM model. However, the adopted model could require more hidden neurons than 

the BP approach due to the random determination of the input weights and hidden biases 

(L. Zhang and Zhang, 2017; Zhu et al., 2005). An excessive number of hidden neurons 

used in complex models leads to overfitting, which means that the complexity of concrete 

properties can be overestimated by ANN (Behnood and Golafshani, 2018). To overcome 

the aforementioned drawbacks, various metaheuristic and ensemble models have been 

proposed to enhance ANN performance and process. 
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Table 2.6: Comparison between ML models and empirical formulas over the same testing data 

Ref. Output Model Statistical metrics 

(Keshtegar et al., 2019) Shear strength (Kwak et al., 2002) 

RSM-SVR 

MAE 0.508 

0.186 

RMSE 0.699 

0.233 

 

  

(Sarveghadi et al., 2019) Shear strength (Kwak et al., 2002) 

MEP 

R 0.950 

0.952 

MAE 0.804 

0.520 

RMSE 1.680 

0.733 

 

(Al-Musawi et al., 2020) Shear strength (Kwak et al., 2002) 

SVR-FFA 

MAE 0.524 

0.176 

RMSE 0.717 

0.277 

 

  

(Vu and Hoang, 2016) Shear strength (Ospina et al., 2003) 

ANN 

R² 0.91 

0.96 

RMSE 117.51 

53.190 

MAPE 15.48 

10.48 

(Xu, Zhao, et al., 2019) Compressive strength (Pereira et al., 2012) 

ANN 

RMSE 28.15 

7.71 

MAPE 54.22 

15.13 

 

  

(Xu, Zhao, et al., 2019) Elastic modulus (Sri Ravindrarajah and Tam, 1985) 

ANN 

RMSE 5749.73 

4425.89 

MAPE 17.85 

11.21 

 

  

(Xu, Zhao, et al., 2019) Tensile strength (Pereira et al., 2012) 

ANN 

RMSE 0.720 

0.480 

MAPE 14.650 

11.890 
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Table 2.7: Comparison between ML models over the same testing data 

Ref. 
Dataset 

size 
Output Models Statistical metrics 

(Chou et al., 2011) 1030 Compressive 

strength 

ANN 

SVM 
MART 

R²  0.909 

0.885 
0.911 

RMSE 5.030 

5.619 
4.949 

MAPE 10.903 

12.773 
13.886 

 

(Bui et al., 2018) 1133 Compressive 
strength 

GEP 
FA-LSSVR 

MFA-ANN 

 

R 0.910 
0.940 

0.950 

MAE 5.200 
3.860 

3.410 

  

(Van Dao et al., 

2019) 

210 Compressive 

strength 

ANN 

ANFIS 

R² 0.851 

0.879 

MAE 1.989 

1.655 

RMSE 2.423 

2.265 

 
(Yu et al., 2018) 1761 Compressive 

strength 

BPNN 

ELM 

ANFIS 
SVM 

M5 

ECSO-SVM 

R² 0.960 

0.934 

0.906 
0.793 

0.937 

0.942 
 

MAE 5.038 

4.278 

4.183 
5.950 

4.028 

3.980 

  

(Pham et al., 2016) 

 

239 Compressive 

strength 

ANN 

SVM 
FA-LSSVR 

R² 0.760 

0.790 
0.870 

RMSE 6.740 

6.070 
4.860 

MAPE 13.410 

12.020 
9.810 

 

(Al-Shamiri et al., 
2019) 

324 Compressive 
strength 

ELM 
BP 

R 0.9965 
0.9949 

MAE 0.6049 
0.7372 

RMSE 0.7998 
0.9498 

 

(Yuan et al., 2014) 180 Compressive 
strength 

ANN 
GA-ANN 

ANFIS 

R² 0.680 
0.813 

0.950 

RMSE 3.21 
2.22 

1.46 

 

  

(Behnood, Verian, et 

al., 2015) 

980 Tensile 

strength 

ANN 

SVM 

M5 Tree 

R² 0.874 

0.890 

0.866 

MAE 0.408 

0.400 

0.412 
 

RMSE 0.526 

0.524 

0.598 

(Keshtegar et al., 

2019) 

139 Shear strength ANN 

SVR 
RSM 

RSM-SVR 

MAE 0.322 

0.622 
0.347 

0.186 

RMSE 0.461 

1.040 
0.444 

0.233 

 

  

 

For instance, using GA and ensemble algorithms such as bagging and gradient boosting to 

optimize the predictive accuracy of ANN has proven to be effective (Ibrahim et al., 2013; 

Yuan et al., 2014). However, GA-ANN model adopted by Yuan et al., (2014) tended to 

increase model complexity and computation time. Another alternative consists of using 

ANFIS models, which combine the learning abilities of ANN and the reasoning capabilities 

of FL (Yuan et al., 2014). Şahin and Erol (2017) reported that ANFIS could detect the 

nonlinear structure process with rapid learning capability. This is further supported by a 

comparative study conducted by Van Dao et al., (2019). However, ANFIS may suffer from 

issues related to fuzzy rule selection that affect its performance along with inability to 

generate more than one output variable (Yu et al., 2018).  
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Regarding SVM models, they have shown powerful nonlinear mapping and generalization 

abilities (Yu et al., 2018). They also have the ability to identify and integrate support 

vectors during the training process, which prevents non-support vectors from affecting the 

performance of the model. However, this technique has multiple disadvantages, such as the 

time-consuming and heuristic approach of selecting the appropriate kernel function, which 

depends on the trial and error process. In addition, the performance of the nonlinear SVR 

technique cannot be easily interpreted because the process of mapping a nonlinear input 

space to a high dimensional feature space can be complex (Dibike et al., 2014). 

The aforementioned techniques, i.e. ANN and SVM, are considered as “black-box” models 

due to massive node sizes and internal connections (Cheng et al., 2014; Farquad et al., 

2014; Yadav and Chandel, 2014). Thus, generating a transparent mathematical formula 

that describes the functional relationship between input variables and outputs through those 

models is difficult. To overcome this common problem, decision trees and EA can be 

deployed. Those models have the ability of generating explicit mathematical formulations 

that describe the relationships between features and corresponding outputs. However, 

decision tree algorithms can lead to overfitting issues. In addition, the accuracy of both 

decision trees and EA is typically lower than that of hybrid and standalone SVM and ANN 

models, as evidenced by statistical metrics retrieved from different previous studies 

(Behnood, Verian, et al., 2015; Bui et al., 2018; Yu et al., 2018). Shortcomings of decision 

tree models can be mitigated through tree-based ensemble models such as RF and MART 

(Chou et al., 2011). Chou et al., (2011) for instance recorded better results from MART 

model than those obtained from standalone ANN and SVM. Still, ensemble models bring 

more complexity to the model and increase computation time. In addition, it can be noticed 

that the size of the dataset used for developing the models varies from one study to another. 

Studies that considered fewer data examples may record accurate results. However, the 

model can exhibit higher error when exposed to new data compared to those developed 

from more extensive databases. 
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Figure 2.7: BPNN searching mechanism. 

 

2.4 Practical recommendations and knowledge gaps 

Since all ML approaches discussed above have various advantages and drawbacks, the 

selection of the most suitable model is based on different criteria. The nature of the 

relationship between concrete mixture ingredients and its mechanical strength is a major 

factor that influences the model choice. If this relationship is highly nonlinear and affected 

by several features, employing models such as ANN and SVM would be a good choice 

owing to their great ability in solving problems in non-linear environment with lower error. 

For more accurate results and better process, optimizing those models with metaheuristic 

algorithms is effective. However, when model transparency is required, decision trees and 

evolutionary algorithms can be employed because they can generate explicit mathematical 

formulas that better describe the physical relationship between inputs and output. Still, the 

accuracy of both models is lower than that of hybrid and standalone ANN and SVM models 

as indicated by statistical metrics shown in Table 2.7. Adopting ensemble models can 

increase the accuracy of decision trees but leads to higher computation time and model 

complexity.  
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According to the current study, hybrid ANN and SVM models have shown the best ability 

to predict concrete strength in terms of accuracy and process. Although they increase 

computation time, applying those models on extensive databases with appropriate feature 

selection would generate the most accurate results. However, the only way to select the 

most suitable metaheuristic model is based on a trial and error process. Thus, no accurate 

method exists to select the best optimization algorithm since they can provide different 

results from one problem to another. 

We stand at the brink of a fourth industrial revolution, where data driven intelligent 

systems, additive manufacturing, robotics, the internet of things, cloud computing, and 

other emerging technologies are fusing the digital, biological, and physical worlds. The 

construction field is lagging in capturing the opportunities in this rapidly changing world. 

Machine learning prediction of the engineering properties of construction materials and 

structures are a contribution towards generative intelligent design. Yet, diverse knowledge 

gaps still remain before structural engineers can emulate processes used in robotics, 

mechatronics and other advanced fields. 

2.5 Conclusions 

Several recent studies have been conducted to predict the mechanical strength of concrete, 

exploring the benefits of some approaches and presenting drawbacks of others. In 

particular, forecasting the strength of complex concrete mixtures by conventional statistical 

and empirical models has been a fundamental challenge since these models are generally 

inaccurate, and their development is costly and time-consuming. Thus, researchers have 

suggested ML models to overcome such drawbacks. In this study, ML models have been 

grouped into four major types, namely ANN, SVM, decision trees, and EA. The application 

of those models to predict the compressive strength, shear strength, tensile strength, and 

elastic modulus of concrete has been reviewed. Also, the advantages and drawbacks of the 

presented techniques have been critically discussed and compared. It has been realized that 

the performance of the models is influenced by various factors, such as the nature of the 

relationship between concrete mixture ingredients and its strength, the size of the training 

data set, and the number of features adopted in the model. The review of the performance 

of ML techniques along with their benefits and drawbacks presented in this study should 
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help engineers in choosing the suitable models for predicting the mechanical strength of 

concrete. Owing to their ability in providing accurate estimation of concrete strength, 

further research shall be conducted to examine the reliability of ML models in forecasting 

the properties of more innovative concrete types such as self-healing concrete, geopolymer 

concrete, nano-modified, bio-inspired, and other emerging binder systems. 
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Chapter 3 

 Novel Soft Computing Hybrid Model for 

Predicting Shear Strength and Failure Mode of 

SFRC Beams with Superior Accuracy 

 

3.1 Introduction 

The ability of steel fibers to enhance the post-cracking toughness and shear strength of 

concrete stimulated noteworthy increase in the use of steel fiber-reinforced concrete in the 

construction industry. However, steel fibers impart complexity to concrete and make 

accurate assessment of shear strength challenging. The empirical shear strength models 

usually suffer from multiple drawbacks including the costly and time-consuming 

experimental work associated with their development, and the limited number of samples 

used to develop such models. Emergence of machine learning (ML) models have motivated 

researchers to develop more accurate models and save the required experimental work. 

Yet, the performance of ML models can differ significantly from one problem to another. 

There is, therefore, a need to explore more powerful algorithms that can achieve superior 

accuracy for a specific problem. 

In the present chapter, a novel hybrid soft computing model that combines atom search 

optimization (ASO) and artificial neural network (ANN) has been implemented to predict 

the shear capacity of SFRC beams without stirrups. The ASO model was deployed to 

optimize the weights and biases of ANN and avoid local minima in which the standalone 

ANN model might fall. Hyperparameters of the suggested model have been carefully tuned 

via a trial and error process to select the most accurate algorithm. In addition, the 

performance of the proposed model was benchmarked against other ML models and 

empirical equations. Sensitivity analysis was also carried out to find out the most influential 

parameters. The current chapter also suggests four different ML classification approaches 

to forecast the failure mode of SFRC beams, which is not achievable by the model 

described earlier. This allows the estimation of the ductility degree and informs engineers 

of the likelihood of shear failure, which could avert sudden structural shear failures. 
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3.2 Experimental Database 

The comprehensive database retrieved from the open literature entails results of 

experimental tests performed on 573 SFRC beams without stirrups that failed in shear, 

flexural-shear, or flexural mode. Amongst the total number of specimens, 484 data 

examples have been selected from the published database of Lantsoght (Lantsoght, 2019). 

However, this database comprises specimens that only failed in shear mode or flexural-

shear mode. To create an appropriate dataset for failure mode classification of SFRC beams 

subjected to three-point and four-point shear testing method, 89 data examples which 

exhibited flexural failure were added to the database from the open literature (Amin and 

Foster, 2016; Batson et al., 1972; Cho and Kim, 2003; Kang et al., 2011; Kwak et al., 2002; 

Lim et al., 1987; Mansur et al., 1986; Narayanan and Darwish, 1987; Sahoo et al., 2016; 

Sahoo and Sharma, 2014; Shoaib et al., 2015; Tahenni et al., 2016). Accordingly, two 

different sets of data have been used to handle the regression and classification problems 

separately. The first set involves 484 specimens that failed in shear mode and flexural-

shear mode. The set is used for developing the regression model which predicts the shear 

capacity of SFRC beams, thus the 89 specimens that failed in flexural mode were 

discounted. The second set comprises 475 specimens that failed in three different modes 

namely, shear failure, flexural-shear failure, and flexural failure. This set is created by 

combining the additional 89 specimens with those data examples in Lantsoght’s dataset for 

which the failure mode is reported (386 specimens).   

The input variables considered for model training and testing include the beam width (𝑏𝑤), 

effective depth of beam (𝑑), longitudinal steel ratio (𝜌), shear span-to-depth ratio (𝑎/𝑑), 

steel fiber volume fraction (𝑉𝑓), fiber aspect ratio (𝑙𝑓/𝑑𝑓), compressive strength of 

concrete (𝑓
𝑐
′
) and tensile strength of fibers (𝑓

𝑡𝑓
). Statistical characteristics of the input 

variables are given in Table 3.1. The adopted features, however, have different ranges. 

This can affect the analysis by making features with significantly wider ranges more 

influential even though they can be less important predictors. This can be solved through 

data normalization. Scaling the data is crucial for ensuring the same treatment of all input 

features and to avoid biasing the model.
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Table 3.1: Statistical characteristics of employed dataset 

Input variables Geometric properties of the beam Steel properties Concrete properties Fiber properties Output variable Shear capacity 

𝒃𝒘 (mm) 𝒅(𝒎𝒎) 𝒂/𝒅 𝝆 𝒇′𝒄 (𝑴𝑷𝒂) 𝑽𝒇 (%) 𝒍𝒇/𝒅𝒇 𝒇𝒕𝒇 (𝑴𝑷𝒂) 𝒗𝒖 (𝑴𝑷𝒂)  

Minimum 50.000 85.250 0.460 0.004 9.770 0.200 25.000 260.000  0.558 

Maximum 610.000 923.000 6.000 0.057 215.000 4.500 191.000 4913.000  13.916 

Mean 145.816 258.595 2.919 0.025 48.933 0.890 71.607 1252.083  3.601 

Mode 200.000 127.000 3.500 0.031 33.220 1.000 60.000 1100.000  2.105 

Standard deviation 59.371 147.736 0.980 0.010 25.268 0.552 24.448 461.467  2.148 

Skewness 1.679 1.941 0.013 0.780 2.227 2.544 1.613 1.765  2.045 

Kurtosis 10.690 7.836 3.332 3.958 10.663 14.791 7.954 11.495  7.605 
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The formula adopted for data normalization is expressed as follows: 

𝑤𝑖,𝑛𝑜𝑟𝑚 =
𝑤𝑖 − 𝑤𝑚𝑎𝑥   

𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛 
(3.1) 

where 𝑤𝑚𝑎𝑥 and 𝑤𝑚𝑖𝑛 are the maximum and minimum values of the selected feature, 

respectively. Furthermore, before the training process, data were randomly permuted to 

expose the model to more diverse data and exclude similarity of features from the same 

reference. Data visualization and pre-processing which consisted of removing possible 

outliers was conducted to ensure better model training accuracy. 

3.3 Prediction of shear strength of SFRC beams 

3.3.1 Atom search optimization 

Atom search optimization (ASO) is a novel population-based heuristic algorithm that was 

first introduced by Zhao et al., (2019). ASO is inspired by molecular dynamics, in which 

positions and velocities of an atomic population are iteratively updated to converge to the 

near global solution of the search space. This atomic motion is generally governed by two 

types of forces, namely interaction forces and constraint forces (Ryckaert et al., 1977). The 

former type, which is approximated by the Lennard-Jones (L-J) potential, reflects the 

interaction force between a pair of atoms that can be repulsive or attractive (Stone, 2013; 

Zhao et al., 2019).  The mathematical expression of the interaction force (𝐼) applied to the 

𝑖𝑡ℎ atom from the 𝑗𝑡ℎ atom at the 𝑡𝑡ℎ iteration is given by: 

𝐼𝑖𝑗(𝑡) = −𝜂(𝑡) [2 (ℎ𝑖𝑗(𝑡))
13

− (ℎ𝑖𝑗(𝑡))
7

] (3.2) 

where ℎ𝑖𝑗 is a dimensionless number that depends on the Euclidian distance between 𝑖𝑡ℎ 

atom and 𝑗𝑡ℎ atom along with the collision diameter, while 𝜂(𝑡) is the depth function which 

adjusts regions of attraction and repulsion and has the following formula: 

𝜂(𝑡) = 𝛼 (1 −
𝑡 − 1

𝑇
)
3

𝑒−20(
𝑡
𝑇
) (3.3) 

with 𝑇 and 𝛼 defined as the maximum number of iteration and the depth weight, 

respectively. Thus, the total force applied to the 𝑖𝑡ℎ atom can be expressed as follows:  
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𝐼𝑖(𝑡) = ∑ 𝑟𝑗𝐼𝑖𝑗(𝑡)

𝑗∈𝐾𝐵𝑒𝑠𝑡

(3.4) 

where 𝑟𝑗 represents a random weight ranging in [0,1] and 𝐾𝐵𝑒𝑠𝑡 is a subset of the atomic 

population that contains the first 𝐾 atoms with the best values of the fitness function. As 

provided in Eq. (3.5), this subset, which is a function of the total number of atoms (𝑁), is 

updated in each iteration to allow the transition of the algorithm from exploration behavior, 

defined as the capacity to look for new solutions throughout the entire search space, to 

exploitation, which means the ability to find the best solution within a local region. 

𝐾(𝑡) = 𝑁− (𝑁− 2)√(𝑡/𝑇) (3.5) 

Regarding applied forces, each atom of the population is subjected to a constraint force 

caused by the atom holding the best position in the search space. This force is given by: 

𝐺𝑖(𝑡) = 𝜆(𝑡)(𝑥𝑏𝑒𝑠𝑡(𝑡)− 𝑥𝑖(𝑡)) (3.6) 

where 𝑥𝑏𝑒𝑠𝑡(t) and 𝑥𝑖(t) are the position of the best and 𝑖𝑡ℎ atom, respectively. The term 

𝜆(𝑡), defined in Eq. (3.7) and affected by a multiplier weight (𝛽), denotes the Lagrange 

multiplier. 

𝜆(𝑡) = 𝛽𝑒−
20𝑡
𝑇 (3.7) 

Given the interaction forces and the constraint forces, the acceleration of each atom 

described in Eq. (3.8) can be determined to update positions and velocities of the atomic 

population. Therefore, the mass of each atom needs to be introduced. The mass of each 

atom (𝑚) reflects the reliability of the solution defined by the position of the atom, 

indicating better solutions with higher mass values. Accordingly, the mass can be 

determined through the value of the fitness function as expressed in Eqs. (3.9) and (3.10). 

�̈�𝑖(𝑡) =
𝐼𝑖(𝑡)+ 𝐺𝑖(𝑡)

𝑚𝑖(𝑡)
(3.8) 

𝑚𝑖(𝑡) =
𝑀𝑖(𝑡)

∑ 𝑀𝑗(𝑡)
𝑁
𝑗=1

(3.9) 

where 𝑀𝑖(𝑡) is defined by: 
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𝑀𝑖(𝑡) = 𝑒
−

𝜑𝑖(𝑡)−𝜑𝐵𝑒𝑠𝑡(𝑡)

𝜑𝑤𝑜𝑟𝑠𝑡(𝑡)−𝜑𝐵𝑒𝑠𝑡(𝑡) (10) 

with 𝜑
𝐵𝑒𝑠𝑡

(𝑡), 𝜑
𝑊𝑜𝑟𝑠𝑡

(𝑡) and 𝜑
𝑖
(𝑡) are the fitness values of the best, worst and 𝑖𝑡ℎ atom, 

respectively at 𝑡𝑡ℎ iteration. Hence, updating the velocity and position of the 𝑖𝑡ℎ atom at 

(𝑡 + 1)𝑡ℎ iteration can be achieved via the following formulas: 

�̇�𝑖(𝑡 + 1) = 𝑟𝑖�̇�𝑖(𝑡)+ �̈�𝑖(𝑡) (3.11) 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + �̇�𝑖(𝑡 + 1) (3.12) 

The different forces that govern the motion of an atomic population within the search space 

are depicted in Figure 3.1. 

 

Figure 3.1: Various forces affecting atomic population. 

 

3.3.2 Artificial neural network 

Artificial neural network (ANN) is a machine learning technique inspired by the basic 

framework of the human brain (Marugán et al., 2018; Mohandes et al., 2019; Nazemi et 

al., 2019; Sharifzadeh et al., 2019). In the present study, a shallow neural network with one 

hidden layer and eight hidden neurons was employed. The adopted ANN structure is fixed 

after multiple simulations are performed based on a trial and error process as described 

below. A schematic of the model structure is given in Figure 3.2. The reason for selecting 
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a shallow network is the simplicity of its structure compared to deep neural networks. 

Simple structures are computationally less expensive and less vulnerable to overfitting that 

might occur in complex architectures. Having more than one hidden layer for this problem 

will significantly increase the number of network connections and consequently the 

number of weights and biases that need to be optimized. In addition, the convergence of 

ASO to near global optima will be more challenging with the increase of the number of 

such parameters. 

 

Figure 3.2: Structure of employed ANN model. 

 

3.3.3 Hybrid ASO-ANN model 

The process of the hybrid atom search optimized artificial neural network (ASO-ANN) 

consists of optimizing the neural network weights and biases through ASO search abilities 

to minimize the fitness function that expresses the error between actual and predicted 

values. For this specific problem, the atom positions in the search space represent a vector 

of weights and biases of ANN. The atom positions, i.e. the vector of weights and biases, 
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will be updated through an iterative process until the best accuracy reflected by the fitness 

function value is achieved. In the present study, the adopted fitness function is the root 

mean squared error, which can be expressed by equation 3.13, where 𝑦
𝑖
′  is the predicted 

value, 𝑦
𝑖
 is the actual value and 𝑛 is the number of data examples. 

𝑅𝑀𝑆𝐸 = √∑ (𝑦
𝑖
′ − 𝑦

𝑖
)
2𝑛

𝑖=1

𝑛
(3.13) 

The model training was conducted using 75% of data examples (363 specimens), which 

were randomly selected from the dataset. The other 25% (121 specimens) were used for 

the testing process. The flowchart of the hybrid ASO-ANN model is presented in Figure 

3.3. The process set out in the flowchart has been replicated many times. Each time a 

different structure of ANN is selected by changing the number of hidden units. After setting 

the ANN structure, the number of atoms along with their positions and velocities are 

initialized. The neural network is then trained using the positions of the atoms in the search 

space. The fitness value of each atom is generated by running the ANN; hence the location 

of the best atom is defined. Also, the fitness value of the worst atom is recorded for future 

calculations. Two stopping criteria are subsequently applied to check whether further 

iterations shall be performed. The first criterion is the maximum number of iterations, 

which is initially set at 𝑇 = 200. The second criterion is the number of consecutive 

iterations in which the fitness value remains unchanged. This value was fixed at twenty. If 

the algorithm meets one of those criteria, the iterative process is halted. Otherwise, the 

atom positions and velocities are updated to retrain the ANN model as per the process 

outlined in Section 3.3. As indicated earlier, the entire mechanism shown in the flowchart 

is repeated several times to determine the ANN structure that generates the best fitness 

value. This trial and error approach is implemented since there are no agreed upon methods 

to establish a properly predefined ANN structure. For each iteration, the values for depth 

and multiplier weights were set at 50 and 0.2, respectively. Three different computations 

are carried out and average values are considered for selecting the most suitable structure. 

As outlined in Table 3.2, a ranking system based on the average RMSE values over the 

training and testing phase was suggested to define the best ANN structure (Moayedi et al., 

2019). 
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Figure 3.3: Flowchart of ASO-ANN model. 

Higher ranks reflect better performance of the model. It can be observed that ANN with 10 

hidden nodes displayed the best accuracy over the training and testing phases. Hence, this 

structure was adopted for future simulations.  After fixing the ANN structure, the number 

of atoms is another important factor that needs to be determined for optimal results. The 

same constant values of hyperparameters, i.e. 𝛼 = 50 and 𝛽 = 0.2, were used to determine 

the best atoms number for the model. The results of the different simulations are depicted 

in Figure 3.4. It can be observed that an atomic population of 125 atoms achieved the best 

accuracy in terms of RMSE after multiple iterations. It was also found that after 150 

iterations, the value of RMSE remained constant for the different atomic populations.
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Table 3.2: Ranking system for ANN structure selection 

Model 

number 

Number of 

Hidden 

layer nodes 

RMSE 

Ranking 

Total Ranking 
First Computation Second Computation Third Computation Average 

Training Testing Training Testing Training Testing Training Testing Training Testing 

1 1 0.769 0.871 0.989 1.050 0.790 0.888 0.849 0.936 1 1 2 

2 2 0.799 0.871 0.781 0.852 0.802 0.860 0.794 0.861 2 3 5 

3 3 0.727 0.872 0.783 0.842 0.732 0.867 0.747 0.861 3 4 7 

4 4 0.704 0.866 0.756 0.886 0.739 0.834 0.733 0.862 4 2 6 

5 5 0.738 0.841 0.709 0.769 0.721 0.821 0.723 0.810 5 5 10 

6 6 0.693 0.816 0.704 0.858 0.663 0.756 0.687 0.810 6 6 12 

7 7 0.684 0.784 0.683 0.765 0.678 0.743 0.681 0.764 7 7 14 

8 8 0.642 0.811 0.598 0.723 0.602 0.725 0.614 0.753 8 8 16 

9 9 0.559 0.707 0.591 0.721 0.603 0.717 0.584 0.715 10 10 20 

10 10 0.507 0.614 0.624 0.669 0.578 0.689 0.570 0.658 15 15 30 

11 11 0.567 0.643 0.566 0.650 0.598 0.682 0.577 0.658 12 14 26 

12 12 0.532 0.666 0.647 0.762 0.596 0.702 0.592 0.710 9 11 20 

13 13 0.562 0.726 0.573 0.721 0.595 0.704 0.577 0.717 13 9 22 

14 14 0.594 0.637 0.550 0.688 0.569 0.664 0.571 0.663 14 13 27 

15 15 0.598 0.752 0.579 0.616 0.575 0.713 0.584 0.694 11 12 23 
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Figure 3.4: Performance assessment for different atom number. 

 

Therefore, the maximum number of iterations selected for model development is 150. This 

will save computational time for future calculations while maintaining similar accuracy. 

The next step consists of fixing the depth and multiplier weight values. Empirically, the 

values should be in the range from 0 to 100 and from 0 to 1 for the depth and multiplier 

weight, respectively (Zhao et al., 2019). Accordingly, different values of 𝛼 and 𝛽 were 

used to determine the model having best accuracy. One of the two parameters remained 

constant in each analysis. Results of the simulations are illustrated in Figure 3.5 and 

Figure 3.6. It was determined that the best values of 𝛼 and 𝛽 are 80 and 0.6, respectively. 

The final values of the model parameters used in the subsequent section are entailed in  

Table 3.3. The reason for adopting a single-variate approach for determining the structure 

and hyperparameters is the associated computational time. Trying possible combinations 

by the integration of several for loops in the same script led to unusual computational time. 
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Figure 3.5: Performance assessment for depth weight values. 

 

Figure 3.6: Performance assessment for multiplier weight values. 
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Table 3.3: Final values of ASO-ANN parameters 

Parameter  Value 

Number of hidden nodes in ANN 10 

Number of atoms 125 

Depth weight 80 

Multiplier weight 0.6 

Maximum number of iterations 150 

 

3.4 Classification of failure mode of SFRC beams 

For simply supported beams loaded at midspan, it is important to estimate the failure mode 

since it reflects ductility. Regression models like ASO-ANN can provide a numerical 

estimation of the load capacity of the beam. However, they cannot depict the likelihood of 

shear failure. Therefore, a classification model is needed to predict the failure mode of 

SFRC beams without stirrups undergoing three- and four-point shear testing. Such beams 

can fail in three distinct modes, namely shear failure (𝑆), flexural-shear failure (𝐹𝑆) and 

flexural failure (𝐹) (Huang et al., 2015; Kang et al., 2011). As illustrated in Figure 3.7, 

flexural failure is associated with the development of flexural cracks, while flexural-shear 

failure is initiated by the formation of flexural cracks ending with failure in shear. 

Conversely, shear failure is stimulated by shear cracks that propagate inclined to the 

beam’s main axis. Shear failure is more brittle compared to other modes, while flexural 

failure reflects desired ductile behavior (Kang et al., 2011). Four classification models 

named decision tree, 𝑘-Nearest Neighbors (KNN), SVM, and naïve Bayes were 

implemented to forecast the failure mode of SFRC. Training these models was conducted 

with 75% of data examples (356 specimens), while 119 specimens were used for the testing 

phase. Prior to training, data were normalized using the 𝑧-score method. A brief description 

of each model is discussed below. 
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Figure 3.7: Four-point and three-point shear testing methods of SFRC beams. 

3.4.1 Decision tree 

Decision tree models are non-parametric machine learning techniques in which formal 

rules are created via patterns in the data (DeRousseau et al., 2018). The output of this model 

is obtained through various decisions described by test functions at tree nodes (Karbassi et 

al., 2014). 

3.4.2 K-nearest neighbor 

k-nearest neighbor (KNN) is a non-parametric classifier that aims to assign uncategorized 

samples to the group of its nearest samples (Ahmadi-Nedushan, 2012). Generally, the 𝑘 

neighboring samples are determined through Euclidian distance, which can be expressed 

as follows: 

𝛿(𝑝
1
, 𝑝
2
) = √∑(𝑝

1𝑖
− 𝑝

2𝑖
)2

𝑛

𝑖=1

(3.14) 

where 𝑝
1𝑖

 and 𝑝
2𝑖

 represent the coordinates of two points 𝑝
1
 and 𝑝

2
 in 𝑛 dimensional space, 

respectively. Appropriate selection of the parameter 𝑘 is crucial because the risk of model 

overfitting and instability can increase when high values of the parameter are selected 

(Cracknell and Reading, 2014). 
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3.4.3 Naïve Bayes 

Naïve Bayes (NB) is a probabilistic model that adopts the Bayes theory for classifying data. 

Estimation of class probabilities through NB is based on “naïve” assumption of feature 

independence (Mangalathu and Jeon, 2018). Thus, the probability that an output variable 

𝑦 = (𝑦1, … , 𝑦𝑛) is associated with a class 𝐶 is given by: 

𝑃(𝐶|𝑦) =
𝑃(𝐶)∏ 𝑃(𝑦

𝑖
|𝐶)𝑛

𝑖=1

𝑃(𝑦)
(3.15) 

3.4.4 Support vector machine 

Support vector machine is a classification algorithm that is based on the concept of 

“margins”. This model aims to find the optimal hyperplane that classifies the data through 

maximizing the margin representing the distance between the hyperplane and the closest 

points of each class (Omran et al., 2016; Raghavendra and Deka, 2014). This classification 

process is performed using a subset of training examples called support vectors. When 

linear separation of classes cannot be performed in complex problems, kernel functions are 

needed to make such a separation achievable (Zheng et al., 2015). Quadratic kernel 

function was used in the current study. 

3.5 Results and discussion 

3.5.1 Shear strength prediction 

The performance of the ASO-ANN model was benchmarked against six empirical 

equations, which are outlined in Table 3.4. In addition, the performance of the model was 

compared to that of several hybrid and standalone machine learning techniques including 

ANN, genetic algorithm optimized neural network (GA-ANN), particle swarm optimized 

neural network (PSO-ANN), support vector regression (SVR), and particle swarm 

optimized SVR (PSO-SVR). Genetic algorithm and particle swarm optimization are both 

metaheuristic algorithms that can enhance the accuracy of ANN and SVR (Safarzadegan 

Gilan et al., 2012; Yuan et al., 2014). The parameters of the various ML models are outlined 

in Table 3.5. Several statistical metrics were used for validating and comparing the above 

models as discussed below
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Table 3.4: Empirical equations developed for estimating shear capacity of SFRC beams 

Reference Suggested model 

(Sharma, 1986) 
𝑣𝑢 = 𝑘𝑓𝑡(𝑑/𝑎)

1
4 

𝑘 = 1 𝑖f 𝑓𝑡 is obtained by direct tension test; (2/3) if obtained by indirect tension test; (4/9)  if  obtained via modulus of rupture  

 

(Narayanan and Darwish, 1987) 𝑣𝑢 = 𝑒(0.24𝑓𝑠𝑝𝑓𝑐 + 80𝜌(𝑑/𝑎)) + 𝑣𝑏 

𝑣𝑏 = 0.41𝜏𝐹;  𝐹 = (𝑙𝑓/𝑑𝑓)𝑉𝑓𝜌𝑓;  𝜏 = 4.15 𝑀𝑃𝑎 

𝑒 = {
1  if (𝑎/𝑑)  ≥ 2.8

2.8 (𝑑/𝑎) if (𝑎/𝑑) < 2.8
 

𝑓𝑠𝑝𝑓𝑐 = +0.7 + √𝐹 

 

(Ashour et al., 1992) 

𝑣𝑢 = {
(2.11√𝑓𝑐

′3
+ 7𝐹) (𝜌(𝑑/𝑎))

1
3 if (𝑎/𝑑)  ≥ 2.5

(2.11√𝑓𝑐
′3
+ 7𝐹) (𝜌(𝑑/𝑎))

1
3(5𝑑/2𝑎) + 𝑣𝑏(2.5 − 𝑎/𝑑) if (𝑎/𝑑) < 2.5

 

𝑣𝑢 = (0.7√𝑓𝑐
′ + 7𝐹) (𝑑/𝑎) + 17.2 𝜌(𝑑/𝑎) 

 

(Khuntia et al., 1999) 𝑣𝑢 = (0.167𝛼 + 0.25𝐹)√𝑓𝑐
′ 

𝛼 = {
1  if (𝑎/𝑑)  ≥ 2.5

2.5 (𝑑/𝑎) if (𝑎/𝑑) < 2.5
 

 

(Kwak et al., 2002) 
𝑣𝑢 = 3.7𝑒𝑓𝑠𝑝𝑓𝑐

2
3 (𝜌(𝑑/𝑎))

1
3 + 0.8𝑣𝑏 

𝑒 = {
1  if (𝑎/𝑑)  > 3.4

3.4 (𝑑/𝑎) if (𝑎/𝑑) ≤ 3.4
 

 

(Shahnewaz and Alam, 2014) 
𝑣𝑢 = 0.2 + 0.034𝑓𝑐

′ + 19𝜌0.087 − 5.8(𝑎/𝑑)
1
2 + 3.4𝑉𝑓

0.4 − 800(𝑙𝑓/𝑑𝑓)
−1.6 − 12((𝑎/𝑑)𝑉𝑓)

0.05
− 197((𝑎/𝑑)(𝑙𝑓/𝑑𝑓))

−1.4

+ 105(𝑉𝑓(𝑙𝑓/𝑑𝑓))
−2.12

 𝑖𝑓 (𝑎/𝑑) ≤ 2.5 

𝑣𝑢 = 0.2 + 0.072(𝑓𝑐
′)0.85 + 12.5𝜌0.084 − 24(𝑎/𝑑)0.07 + 13.5𝑉𝑓

0.07 + 450(𝑙𝑓/𝑑𝑓)
−2 − 0.0002((𝑎/𝑑)𝑉𝑓)

3.9
− 27.69((𝑎/𝑑)(𝑙𝑓/𝑑𝑓))

−0.84

+ 1181(𝑉𝑓(𝑙𝑓/𝑑𝑓))
−2.69

− 21.89((𝑎/𝑑)𝑉𝑓)(𝑙𝑓/𝑑𝑓)
−0.9  𝑖𝑓 (𝑎/𝑑) > 2.5 
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Table 3.5: Parameters of various ML models 

Model 
Optimized 

parameters 
Algorithm properties Value / Type 

 

ASO-ANN 

 

Weight and biases 

vector of ANN 

 

Atom Population 

Depth weight 

Multiplier weight 

Maximum iteration number 

Number of ANN hidden neuron 

Hidden layer activation function 

Output layer activation function 

 

 

125 

80 

0.6 

150 

10 

Hyperbolic tangent sigmoid transfer 

function 

Linear transfer function 

 

PSO-SVR Regularization 

parameter (𝐶) 
Loss function (휀) 
RBF parameter (𝜎) 
 

Particles number 

Acceleration constant (𝑐1)  
Acceleration constant (𝑐2)  
Inertia weight 

Maximum iteration number 

Kernel function 

125 

2 

2 

Linearly decreasing from 0.9 to 0.3 

150 

RBF kernel 

 

GA-ANN 

 

Weight and biases 

vector of ANN 

Population size 

Selection 

Crossover 

Mutation 

Maximum generation number 

Number of ANN hidden neuron 

Hidden layer activation function 

Output layer activation function 

 

150 

Roulette wheel 

0.7 

0.3 

175 

12 

Hyperbolic tangent sigmoid transfer 

function 

Linear transfer function 

 

PSO-ANN Weight and biases 

vector of ANN 

Particles number 

Acceleration constant (𝑐1)  
Acceleration constant (𝑐2)  
Inertia weight 

Maximum iteration number 

Number of ANN hidden neuron 

Hidden layer activation function 

Output layer activation function 

 

125 

2 

2 

Linearly decreasing from 0.9 to 0.3 

150 

10 

Hyperbolic tangent sigmoid transfer 

function 

Linear transfer function 

 

ANN Weight and biases 

vector of ANN 

Training function 

Hidden layer activation function 

Output layer activation function 

 

Levenberg-Marquardt 

Hyperbolic tangent sigmoid transfer 

function 

Linear transfer function 

 

SVR Regularization 

parameter (𝐶) 
Loss function (휀) 
RBF parameter (𝜎) 
 

Kernel function RBF kernel 

 

3.5.1.1 Statistical metrics 

Performance assessment of the proposed algorithms was conducted through several 

statistical metrics that denote the model fitting. Beside 𝑅𝑀𝑆𝐸 that was described earlier, 
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the correlation coefficient (𝑅), mean absolute error (𝑀𝐴𝐸), and modified agreement index 

(𝑑′) are adopted as expressed below: 

𝑅 =
𝑛∑ 𝑦𝑖

′𝑦𝑖 − (∑ 𝑦𝑖
′)(∑ 𝑦𝑖)

𝑛
𝑖=1

𝑛
𝑖=1

𝑛
𝑖=1

√𝑛(∑ 𝑦𝑖
′2) − (∑ 𝑦𝑖

′)𝑛
𝑖=1

2𝑛
𝑖=1

√𝑛(∑ 𝑦𝑖
2) − (∑ 𝑦𝑖)

𝑛
𝑖=1

2𝑛
𝑖=1

(3.16)
 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦

𝑖
′ − 𝑦

𝑖
|

𝑛

𝑖=1

(3.17) 

𝑑′ = 1−
∑ |𝑦

𝑖
− 𝑦

𝑖
′|𝑛

𝑖=1

∑ |𝑦
𝑖
− �̅�|𝑛

𝑖=1 + |𝑦
𝑖
′ − �̅�|

 (3.18) 

with �̅� is the mean of actual data. These metrics are widely used in the AI field to evaluate 

the predictive accuracy of machine learning models (Chai and Draxler, 2014).  

3.5.1.2 Prediction results 

The performance of the different empirical models, as well as the adopted machine learning 

algorithms, is reflected by the values of statistical models. The accuracy of each model in 

the training and testing phases is outlined in Table 3.6. The closer the 𝑅 and 𝑑′ values to 1 

the better the model accuracy is. Conversely, smaller values of 𝑀𝐴𝐸 and 𝑅𝑀𝑆𝐸 reflect 

better precision of the model.  It can be observed that the proposed ASO-ANN achieved 

the highest predictive accuracy amongst all ML models in terms of correlation with 𝑅 =

0.974 for the training phase and 𝑅 = 0.951 for the testing phase.  

Table 3.6: Performance assessment of different ML models 

Model 
Training phase   Testing phase  

R MAE RMSE d’ R MAE RMSE d’ 

ANN 0.890 0.573 0.894 0.812 0.878 0.622 0.993 0.789 

SVR 0.904 0.625 0.852 0.821 0.894 0.676 1.037 0.807 

PSO-ANN 0.930 0.428 0.663 0.859 0.905 0.472 0.802 0.846 

GA-ANN 0.931 0.421 0.649 0.863 0.912 0.466 0.783 0.861 

PSO-SVR 0.953 0.354 0.562 0.881 0.929 0.424 0.734 0.870 

ASO-ANN 0.974 0.239 0.461 0.928 0.951 0.304 0.601 0.909 
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Furthermore, the model presented minimum error between actual and predicted values with 

𝑀𝐴𝐸 = 0.239 and 𝑅𝑀𝑆𝐸 = 0.461 for the training phase and 𝑀𝐴𝐸 = 0.304 and 𝑅𝑀𝑆𝐸 =

0.601 for the testing phase.  

Such superior performance of ASO-ANN can be explained by several factors. The search 

mechanism in ASO-ANN is based on the concept of attraction and repulsion forces applied 

between atoms. Atoms holding heavier mass, i.e. better fitness value, have small 

acceleration, thus they look for better positions in a local search zone. Contrarily, atoms 

with lighter mass will be attracted by heavy atoms, but their acceleration is much more 

important and makes them seek for new promising areas quickly. Repulsive forces are the 

key difference between ASO and other metaheuristic algorithms. Those forces prevent 

convergence of the algorithm at an early stage of the search process. Usually, the direction 

of particles or individuals in nature-inspired optimization algorithms is significantly 

affected by the particle holding the best fitness value in each iteration. Incorporating 

repulsive forces can provide particles of an optimization algorithm with better chance to 

explore the search space. This can also avoid premature convergence of the model and 

ensure the discovery of new promising regions. As iterations progress, repulsion becomes 

weaker to allow the concentration of the atomic population in local regions and ensure the 

convergence of the algorithm.  

Estimating the shear strength of SFRC beams is a complex problem characterized by an 

intricate relationship with input variables. Such intricacy can make any optimization 

algorithm face problems when seeking near global optima, especially that the search space 

might involve multiple local solutions. Adopting a metaheuristic algorithm with better 

capacity in seeking new regions in the search space, i.e. better exploration capability, is 

key to alleviating this challenging problem and increasing chances of convergence toward 

near global solutions.  

Contrarily to ASO-ANN, the standalone ANN model exhibited the lowest accuracy 

amongst the ML techniques with 𝑅 = 0.890 for the training and 𝑅 = 0.878 for the testing 

phases, respectively. The adopted ANN model was trained by the Levenberg–Marquardt 

algorithm, which can be trapped in local minima and lead to lower accuracy. Similarly, the 

standalone SVR model showed lower accuracy than that of hybrid ML models, which is 
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mainly due to lack of optimization of the RBF kernel function hyperparameters as well as 

the regularization parameter and loss function. When these standalone models are 

combined with metaheuristic algorithms, the accuracy of the latter is significantly 

improved via enhancement of the process and optimization of hyperparameters (M. Nehdi 

et al., 2007; Moncef Nehdi and Nikopour, 2011). However, implementing these 

optimization techniques can affect model transparency and speed, leading to longer 

simulations and intricate structures. Thus, hybrid models should be avoided when fast 

simulations and model transparency are favored. Moreover, it can be observed that ML 

models performed better on training data compared to testing data. This is mainly because 

they have been established through training data, which leads to lower accuracy when such 

models are exposed to new data in the testing phase.  

Analysis of results also reveals the superiority of ML models over empirical formulations 

in the testing phase in terms of 𝑅,𝑀𝐴𝐸, 𝑅𝑀𝑆𝐸, and 𝑑. The equation proposed by Kwak et 

al., (2002) exhibited the best accuracy amongst empirically developed equations with 𝑅 =

0.873 in the testing phase. Yet, the accuracy of the suggested formula is lower than that of 

data-driven models as outlined in Table 3.7.  

Table 3.7: Performance assessment of empirical models 

Model 
Testing phase  

R MAE RMSE d’ 

(Sharma, 1986) 0.672 1.249 1.942 0.614 

(Narayanan and Darwish, 1987) 0.806 0.953 1.678 0.745 

(Ashour et al., 1992) 0.713 1.294 2.528 0.623 

(Khuntia et al., 1999) 0.737 1.431 1.943 0.647 

(Kwak et al., 2002) 0.873 0.823 1.433 0.758 

(Shahnewaz and Alam, 2014) 0.863 1.576 1.856 0.712 

 

Empirical models were generally established through limited number of data examples, 

leading to higher error when forecasting the shear capacity of “unseen” data compared to 

ML techniques. It can also be observed in Table 3.7 that the Kwak et al., (2002) model 
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performed better than the Narayanan and Darwish (1987) model, even though both models 

were reported to have similar performance in the literature. This is mainly due to the limited 

number of data examples used to validate and compare the models. Expanding the dataset 

revealed remarkable contrast in the performance of the two models.  

Another visual metric that can be explored to compare the performance of different models 

is the Taylor diagram illustrated in Figure 3.8 (Taylor, 2001). Taylor diagram provides a 

graphical illustration of the accuracy of each model based on the correlation coefficient, 

the root mean-square-centered difference, and the standard deviation.  

 

Figure 3.8: Taylor Diagram visualization of model performance in SFRC shear 

strength prediction. 

It can be observed from Figure 3.8 that the closest prediction to the point representing 

actual data has been recorded for the proposed ASO-ANN model, affirming earlier 

discussion above. In addition, the formulation proposed by Ashour et al., (1992) showed 
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higher values of standard deviation and root mean-square-centered difference, which 

means that the accuracy of the model over the testing data was rather very low compared 

to the other empirical equations. The diagram also confirms the superiority of ML models 

over empirical formulations. 

When solving problems in a highly nonlinear environment involving composite materials, 

it is desirable to adopt ML techniques with superior exploration capability since they have 

been generated with extensive datasets comprising a wide variety of input features. Those 

features can significantly affect the shear strength of SFRC, but their level of impact might 

be different. For a black-box model like ASO-ANN, where there is no transparent equation 

describing the relationship between input parameters and output, it is crucial to reveal the 

significance of input variables to the response and to discover some of the model aspects. 

Therefore, sensitivity analysis was carried out to highlight the contribution of each feature 

to the shear capacity.  

3.5.1.3 Sensitivity analysis of shear strength 

Sensitivity analysis (SA) captures how significantly the output of the model is affected by 

changes within input variables (Kumar and Barai, 2010; Vu-Bac et al., 2015; Xu et al., 

2019). There are two main categories of SA: local sensitivity analysis and the global 

sensitivity analysis (GSA). The former focuses on the local impact of input parameters on 

the final output (Sudret, 2008). The latter examines the influence of input factors over their 

entire spatial range and quantify the uncertainty of the output caused by input uncertainty 

taken individually or in interaction with other parameters. Therefore, using GSA for 

complex nonlinear problems, such as the case of SFRC shear capacity, is much more 

rational for examining the impact of input variables on the output.  

Amongst GSA techniques, variance-based methods have been widely considered as an 

effective and versatile approach in sensitivity analysis (Saltelli et al., 2010). The technique 

presents a specific methodology for determining first-order and total order sensitivity 

indices for each input parameter of the ASO-ANN model. Given a model of the form 𝑌 =

𝑓(𝑋1, 𝑋2, … , 𝑋𝑘) where 𝑌 is scalar, the variance-based method employs a variance ratio to 

assess the significance of parameters through variance decomposition expressed as 

follows: 
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(3.19) 

where 𝑉 represents the variance of the model output, 𝑉𝑖 is the first-order variance for the 

input 𝑋𝑖, and 𝑉𝑖𝑗 to 𝑉1,2,…,𝑘 correspond to the variance of the interaction of the 𝑘 parameters. 

𝑉𝑖 and 𝑉𝑖𝑗, which reflect the importance of the input to the variance of the output, depend 

on the variance of the conditional expectation as follows: 

𝑉𝑖 = 𝑉𝑋𝑖[𝐸𝑋~𝑖(𝑌|𝑋𝑖)] (3.20) 

𝑉𝑖𝑗 = 𝑉𝑋𝑖𝑋𝑗 [𝐸𝑋~𝑖𝑗(𝑌|𝑋𝑖, 𝑋𝑗)]− 𝑉𝑖 − 𝑉𝑗 (3.21) 

with 𝑋~𝑖 indicates the set of all variables excluding 𝑋𝑖. The first-order sensitivity index 

(𝑆𝑖) describing the first-order effect of an input 𝑋𝑖 on the final output is given by: 

𝑆𝑖 =
𝑉𝑖
𝑉(𝑌)

 (3.22) 

Conversely, the total effect of the input factor 𝑋𝑖 which comprises the first-order effect 

along with effects coming from the interaction with other factors is given by the following 

formula (Saltelli et al., 2010) :   

𝑆𝑇𝑖 =
𝐸𝑋~𝑖 (𝑉𝑋𝑖(𝑌|𝑋~𝑖))

𝑉(𝑌)
= 1 −

𝑉𝑋~𝑖 (𝐸𝑋𝑖(𝑌|𝑋~𝑖))

𝑉(𝑌)
(3.23) 

The methodology presented by Saltelli et al., (2008) for calculating first- and total-order 

sensitivity indices was adopted herein. Data sampling was performed via the Latin 

hypercube sample (LHS) generated from the mean vector and covariance matrix of the 

input matrix involving all data examples and all input features considered in the current 

study for the regression model. The model used for determining the final output is ASO-

ANN with the same structure and parameters used in the previous section. 

Results of the sensitivity analysis are presented in Figure 3.9. It can be observed that the 

shear span-to-depth ratio was the most influential amongst all input features. The first order 

and total order sensitivity of 𝑎/𝑑 are significantly higher than that of the other variables 

with 𝑆𝑖 = 0.4662 and 𝑆𝑇𝑖 = 0.5997. The compressive strength of concrete can be 
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classified as the second most important input feature with 𝑆𝑖 = 0.1520 and 𝑆𝑇𝑖 = 0.2526. 

Conversely, the beam width revealed poor first-order influence on the shear capacity of 

SFRC beams. The first-order effect is almost zero, while the total order effect is 0.0665. 

An interesting aspect of GSA can be revealed for instance through comparing indices of 

𝑏𝑤 and 𝑓
𝑡𝑓

. In terms of first order impact, 𝑓
𝑡𝑓

 outperformed 𝑏𝑤. However, the interaction 

with the other input parameters made the beam width a more influencing parameter. Such 

discovery cannot be revealed through single-variate sensitivity analysis, which makes GSA 

a strong contender for studying the impact of input parameters in complex nonlinear 

environments. 

 

Figure 3.9: Sensitivity indices of input variables. 

 

3.5.2 Prediction of failure mode 

Earlier regression models are unable to predict SFRC failure mode. In the present study, 

the classification models were trained through 75% of data examples and tested with the 
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remaining data. Each model is trained with 10-fold cross-validation method applied to the 

training set. Training data is therefore clustered into 10 subsamples. One subsample is used 

to test the model, while the rest is used for model training. The process is repeated 10 times, 

and average results are retained to construct each model. Each model is then applied to 

assess its predictive accuracy over the testing set. The parameters of the various 

classification models are entailed in Table 3.8. 

 

Table 3.8: Parameters of the classification models 

Model Parameters 

KNN Number of neighbors: 10 

Distance Metric: Euclidean 

Distance weight: Squared inverse 

 

SVM Kernel function: Quadratic 

Kernel scale: automatic 

Multiclass method: One vs One 

 

Decision Tree Maximum number of splits: 100 

Split criterion: Gini’s diversity index 

 

Naïve Bayes Distribution name for numeric predictors: Kernel 

Distribution name for categorical predictors: Multivariate multinomial distribution 

Kernel type: Gaussian 

 

 

Results of the classification process are depicted in Figure 3.10, which illustrates scatter 

plots of the classification process of SFRC beams into 𝑆, 𝐹𝑆, and 𝐹 failure modes. Results 

are plotted as a function of 𝑓
𝑐
′
 and 𝑎/𝑑, the most influential input parameters according to 

sensitivity analysis. Since the number of specimens that failed in 𝑆 mode was higher than 

that of 𝐹𝑆 and 𝐹 modes, a new performance metric that considers this gap between numbers 

was needed. 
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Figure 3.10: Scatter plots of failure mode classification. 
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Thus, the model performance can be expressed as follows: 

𝛾 = (
1

3
) [
𝑐𝐹𝑆
𝑁𝐹𝑆

+
𝑐𝑆
𝑁𝑆
+
𝑐𝐹
𝑁𝐹
] × 100 (3.24) 

with 𝑐𝐹𝑆, 𝑐𝑆 and 𝑐𝐹 are the numbers of correctly predicted 𝐹𝑆, 𝑆, and 𝐹 modes, respectively, 

while 𝑁𝐹𝑆, 𝑁𝑆 and 𝑁𝐹 are the total number of specimens that failed in 𝐹𝑆, 𝑆, and 𝐹 modes, 

respectively. Table 3.9 entails the performance evaluation of each classification algorithm. 

It can be observed that the worst classification accuracy was recorded for the naïve Bayes 

model, with a precision of 47.02%. This low accuracy can be explained by the assumption 

of features independence, which is not in compliance with the present study as two features 

comprised one variable in common (the effective depth of the beam), and sensitivity 

analysis revealed possible interaction between variables. The 𝑘-nearest neighbor achieved 

the best classification accuracy on the testing phase with 𝛾 = 96.68 %, while SVM 

provided lower accuracy with 𝛾 = 86.08 %. 

Table 3.9: Performance evaluation of classification algorithms 

Model 𝒄𝑭𝑺 𝒄𝑺 𝒄𝑭 𝑵𝑭𝑺 𝑵𝑺 𝑵𝑭 𝜸 (%) 

Naïve Bayes 1 78 9 7 89 23 47.02 

k-nearest neighbor 7 84 22 7 89 23 96.68 

SVM 5 85 21 7 89 23 86.08 

Decision tree 5 82 16 7 89 23 77.71 

 

Another graphical tool that can further describe the performance of each classification 

model is the confusion matrix. As shown in Figure 3.11, each row of the matrix 

corresponds to the actual data and each column is associated with predicted data. The best 

percentages have been recorded for the 𝑘-nearest neighbor and SVM.  

It can be observed that amongst all actual data, beams that failed in 𝐹𝑆 mode were correctly 

classified by KNN. Also, all specimens that failed in 𝑆 mode in the predicted data have the 

same classification as their counterparts in actual data. Regarding SVM, classification 

accuracy was slightly better compared to KNN for the 𝑆 mode with 95.5%, but lower for 

𝐹 and 𝐹𝑆 modes. 
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 Figure 3.11: Confusion matrix of each classification model. 
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The confusion matrix of naïve Bayes demonstrates the lowest classification accuracy with 

39.1% and 14.3% for 𝐹 and 𝐹𝑆 modes, respectively, which is in good agreement with 

previous results. According to the obtained results, KNN achieved the best performance 

amongst all models. The advantage of k-nearest neighbor is its ability to perform well with 

problems having a lot of data examples. Appropriate selection of the parameter 𝑘 is also 

key to getting better accuracy. Hence, 𝑘-nearest neighbor can be adopted by engineers to 

forecast the likelihood of shear failure and to estimate the ductile behavior of SFRC beams 

without transverse reinforcement. This can help in avoiding sudden failures that can occur 

in some structures due to lack of ductility. In addition, forecasting the failure mode of 

beams allows selecting the most suitable structural retrofitting approaches at early stages 

of the construction process, making such operations less costly and more effective. 

3.5.3 Improvement of developed models 

Even though the suggested ASO-ANN model yielded superior accuracy, there is one 

drawback associated with its implementation. The repulsive forces governing the motion 

of the atomic population help the algorithm seek more promising regions in the search 

space and consequently more accurate solutions. However, they can delay the model 

convergence, which leads to relatively higher computation time. An effective method to 

overcome this issue is by using suitable ML models to reduce the number of inputs through 

feature selection techniques. Recently, sequential feature selection (SFS) and neural 

interpretation diagram (NID) have gained great momentum in such applications owing to 

their ability to identify the most influential parameters and reduce data dimensionality 

(Abuodeh et al., 2020b). SFS appends features sequentially to the model until more 

addition does not generate an effective change in the selected objective function. Regarding 

NID, the importance of each variable to the output is illustrated by the magnitudes and 

signs of the network weights (Abuodeh et al., 2020a, 2020b). Analysis of such weights can 

prompt insights into the most influential parameters affecting the response variable. 

Therefore, linking the abovementioned techniques, i.e. SFS and NID, to the suggested 

ASO-ANN model can effectively decrease computation time and simplify the model 

architecture, while possibly maintaining adequate predictive accuracy. The same 

algorithms can also be applied to simplify the suggested classification model by identifying 
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the most important parameters affecting the failure mode of SFRC beams. Training k-

nearest neighbor with the reduced number of features can engender faster training process 

without affecting its accuracy. This model improvement approach is worth exploring in 

future studies. 

3.6 Conclusions 

Shear failure of SFRC beams is a brittle and sudden failure mode. Developing reliable 

models that can accurately forecast the shear capacity of SFRC beams has long been a 

concern. Several recent studies have been conducted to achieve this goal, exploring the 

benefits of various approaches. In the present study, a novel metaheuristic algorithm named 

atom search optimization was used to optimize the weights and biases of an artificial neural 

network for predicting the shear strength of SFRC beams without stirrups. ASO is based 

on molecular dynamics, where velocities and positions of atoms are updated to achieve the 

best position in the search space, thus helping the ANN to avoid local minima and converge 

to the near global solution.  

Performance assessment of the hybrid ASO-ANN model was carried out in this study via 

several statistical metrics. The performance of the model was also benchmarked against 

six hybrid and standalone machine learning models, along with six existing empirical 

formulations. It was found that the ASO-ANN achieved the best accuracy, outperforming 

the other models in terms of 𝑅, 𝑀𝐴𝐸, 𝑅𝑀𝑆𝐸, and 𝑑′. Sensitivity analysis using the ASO-

ANN revealed that the shear span-to-depth ratio and the compressive strength of concrete 

had significant influence on the shear capacity, while the tensile strength of fibers had the 

lowest total effect. 

Moreover, four classification machine learning algorithms were trained and tested for 

predicting the failure mode of SFRC beams. Results indicated that the k-nearest neighbor 

demonstrated the most reliable accuracy. This is very encouraging since engineers could 

adopt it for estimating the likelihood of shear failure, which would allow taking precautions 

to avert unwanted brittle structural shear failures and choosing the most suitable retrofitting 

techniques. 
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However, it is suggested that the developed regression and classification models be 

improved via feature selection techniques, such as SFS and NID, to ensure higher model 

transparency. Moreover, the inability of the suggested “black-box” ASO-ANN model and 

k-nearest neighbor to generate transparent mathematical equations for SFRC shear strength 

and illustrate real-time crack propagation in the structure, respectively, should trigger 

further research to explore the effectiveness of alternative ML models, such as genetic 

programming and recurrent neural networks in mitigating such shortcomings. 
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Chapter 4 

 Genetic Programming Based Symbolic 

Regression for Shear Capacity Prediction of 

SFRC Beams 

4.1 Introduction 

Complex shear transfer mechanisms in steel fiber-reinforced concrete beams (SFRC) have 

motivated researchers to develop diverse methods for predicting the shear capacity of 

SFRC beams, including empirical and soft-computing models. However, existing models 

were developed with relatively limited databases, making their generalization capability 

uncertain. To account for the limited experimental data, a novel approach based on tabular 

generative adversarial network (TGAN) has been employed in the present study to generate 

synthetic data comprising 2000 data examples. A “train on synthetic - test on real” 

philosophy was adopted. Accordingly, the synthetic data was used for training a genetic 

programming-based symbolic regression (GP-SR) model to develop a shear strength 

equation for SFRC beams without stirrups. Feature selection techniques were used to train 

the model effectively and avoid irrelevant data that can negatively impact the model 

accuracy. Unlike the “black-box” models developed in the previous chapter, the analysis 

of the evolved GP-SR based equation can generally prompt human insights into 

underlaying mechanical and physical phenomena characterizing the problem, which helps 

instill trust in the developed equation. The evolved equation was tested on 309 real 

experimental data examples thus far unknown to the model. The accuracy of the model was 

also benchmarked against eleven existing equations for SFRC shear strength. In addition, 

multiple validation criteria were employed to validate the predictive capacity of the 

proposed equation. Global sensitivity analysis was finally carried out to determine the most 

influential parameters to the model. Deploying TGAN for training a GP-SR and using real 

experimental test data has never been done for modeling the shear capacity of SFRC beams 

in the open literature. The new predictive equation established with this novel approach 

should expand the accuracy of pertinent design codes while mitigating the “black box” 

limitations of existing soft computing models. 
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4.2 Database Description 

The experimental database used in the present study comprises results obtained via three-point 

and four-point shear testing methods applied on 309 SFRC beams without stirrups. Only 

specimens that exhibited pure shear failure mode were included in the database. The dataset 

englobes eight features including the beam width (𝑏𝑤), effective depth of the beam (𝑑), shear 

span-to-depth ratio (𝑎/𝑑),  longitudinal steel ratio (𝜌), compressive strength of concrete (𝑓𝑐
′), 

steel fiber volume fraction (𝑉𝑓), fiber aspect ratio (𝑙𝑓/𝑑𝑓), and fiber type. Table 4.1 entails 

the range of features along with the references from which test results have been retrieved. It 

was reported that the fiber volume fraction had a noteworthy effect on the shear strength of 

SFRC beams. However, its combination with the fiber aspect ratio led to a more significant 

effect (Slater et al., 2012). This combination is commonly known as the fiber factor (𝐹), which 

also involves the bond factor (𝑑𝑓) determined by the type of steel fibers. The fiber factor is 

expressed as follows: 

𝐹 = 𝑉𝑓 ×
𝑙𝑓
𝑑𝑓
× 𝑑𝑓 (4.1) 

The bond factor is equal to 0.5, 0.75, and 1 for straight, crimped, and hooked fibers, 

respectively. Owing to its important influence, the fiber factor was used herein as an input 

parameter that accounts for the fiber type. The descriptive statistics of the various input 

variables and the corresponding output of the final database used in subsequent sections are 

provided in Table 4.2. 

Data pre-processing was also conducted to ensure that data can effectively train the models 

without impacting accuracy. For this purpose, data visualization was performed to check 

the distribution of values for the different input parameters and ensure that outliers that 

deviate significantly from the entire dataset were discounted. It is also worth mentioning 

that only reliable data was collected and examples with assumed feature values in the open 

literature were not included in the dataset to ensure the most accurate results. Feature 

selection is another data pre-processing technique that can help remove irrelevant data and 

ensure better model accuracy. The process of this technique is discussed in detail in the 

subsequent section. 
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Table 4.1: Database of SFRC beams without stirrups 

No.  

of 

data 

Geometric properties of the beam Steel 

properties 

Concrete 

properties 

Fiber properties Shear 

capacity 

Ref. 

 𝒃𝒘 (𝒎𝒎) 𝒅 (𝒎𝒎) 𝒂/𝒅 𝝆 (%) 𝒇′𝒄 (𝑴𝑷𝒂) 𝑽𝒇 (%) 𝒍𝒇/𝒅𝒇 Fiber type 𝒗𝒖 (𝑴𝑷𝒂)  

 min max min max min max min max min max min max min max  min max  

32 150 150 251 251 3.49 3.49 2.67 2.67 24.90 64.60 0.50 1.50 50 85 hooked, 

crimped 

1.726 5.179 (Singh and Jain, 2014) 

3 150 150 261 261 3.45 3.45 1.95 1.95 23.80 32.90 0.75 1.25 80 80 hooked 2.376 2.912 (Sahoo and Sharma, 

2014) 

6 140 140 175 175 1.50 2.50 1.28 1.28 82.00 83.80 0.50 1.50 80 80 hooked 2.531 7.592 (Manju et al., 2017) 

8 150 150 200 200 2.50 4.50 1.34 1.34 9.77 33.68 1.00 3.00 55 55 hooked 1.067 2.133 (Arslan et al., 2017) 

3 150 150 217 217 1.59 2.95 1.85 1.85 35.00 35.00 0.75 0.75 80 80 hooked 2.581 4.547 (Sahoo et al., 2016) 

2 300 300 622 622 2.81 2.81 1.98 1.98 34.00 36.00 0.32 0.69 65 65 hooked 1.527 1.903 (Amin and Foster, 2016) 

3 100 100 135 135 2.22 2.22 1.16 1.16 64.20 64.20 0.50 0.50 65 65 hooked 3.037 3.185 (Tahenni et al., 2016) 

28 85 85 126 130 2.02 3.52 2.05 5.72 30.60 53.55 0.25 2.00 100 133 crimped 1.901 7.096 (Narayanan and 

Darwish, 1987) 

4 150 150 219 219 2.00 2.80 1.91 1.91 40.85 43.23 1.00 2.00 60 60 hooked 2.922 3.531 (Cucchiara et al., 2004) 

2 125 125 212 212 2.00 3.00 1.52 1.52 30.80 30.80 0.50 0.50 63 63 hooked 2.528 4.038 (Y.-K. K. Kwak et al., 

2002) 

2 100 100 130 130 3.08 3.08 3.09 3.09 38.69 42.40 1.00 2.00 60 60 straight 4.462 5.692 (D. H. Lim and Oh, 

1999) 

21 152 205 381 610 3.44 3.50 1.52 2.63 28.70 50.80 0.75 1.50 55 80 hooked 1.815 3.782 (Dinh et al., 2010) 

1 125 125 225 225 2.89 2.89 3.49 3.49 90.00 90.00 1.25 1.25 60 60 hooked 5.582 5.582 (Pascal Casanova et al., 

1997) 

4 150 300 202 437 2.97 3.09 1.17 1.50 19.60 21.30 0.50 1.00 55 55 hooked 1.220 1.848 (Hassan Aoude et al., 

2012) 

6 200 200 435 910 2.50 2.51 0.99 1.04 24.40 55.00 0.25 0.38 50 50 hooked 1.368 1.857 (Minelli and Plizzari, 

2013) 

1 125 125 210 210 4.00 4.00 1.53 1.53 44.60 44.60 0.50 0.50 63 63 hooked 1.333 1.333 (Kang et al., 2011) 

1 125 125 225 225 2.89 2.89 3.49 3.49 90.00 90.00 1.25 1.25 60 60 hooked 4.907 4.907 (P. Casanova and Rossi, 

1999) 

6 152 152 221 221 1.50 3.50 1.20 2.39 34.00 34.00 0.50 1.00 60 60 hooked 1.459 4.376 (T. Y. Lim et al., 1987) 

9 150 150 197 197 2.00 3.60 1.36 2.04 20.60 33.40 0.50 0.75 60 60 hooked 1.523 2.910 (Mansur et al., 1986) 

8 152 610 254 813 3.45 3.61 2.47 2.86 29.00 50.00 0.75 0.75 67 67 hooked 2.477 3.506 (Zarrinpour and Chao, 

2017) 

13 200 300 180 570 2.77 3.33 2.87 4.47 60.20 93.30 0.50 1.00 40 86 hooked, 

straight 

2.673 8.306 (Noghabai, 2000) 

6 200 200 314 314 3.50 3.50 3.50 3.50 132.00 154.00 1.00 2.00 75 75 straight 3.201 5.717 (Randl et al., 2018) 
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Table 4.1 (Continued) 

No.  

of 

data 

Geometric properties of the beam Steel 

properties 

Concrete 

properties 

Fiber properties Shear 

capacity 

Ref. 

 𝑏𝑤 (𝑚𝑚) 𝒅 (𝒎𝒎) 𝒂/𝒅 𝝆 (%) 𝒇′𝒄 (𝑴𝑷𝒂) 𝑽𝒇 (%) 𝒍𝒇/𝒅𝒇 Fiber type 𝒗𝒖 (𝑴𝑷𝒂)  

 min max min max min max min max min max min max min max  min max  

5 55 55 265 265 2.00 4.91 2.76 4.31 33.95 41.90 1.00 1.00 100 100 crimped 2.882 5.489 (R. Narayan Swamy et 

al., 1993) 

6 150 150 560 560 1.63 1.63 2.14 2.14 40.80 56.50 0.40 1.50 60 60 hooked 2.441 3.869 (Adebar et al., 1997) 

6 120 120 168 168 1.43 1.43 1.32 2.82 25.70 86.10 0.50 1.50 60 60 hooked 2.985 9.254 (Cho and Kim, 2003) 

3 200 200 265 265 3.02 3.02 1.78 1.78 38.00 47.90 0.50 1.00 50 50 hooked 1.717 2.811 (Greenough and Nehdi, 

2008) 

2 200 200 285 310 2.55 2.77 1.13 3.33 39.80 39.80 0.38 0.38 80 80 hooked 2.145 3.895 (Kang et al., 2012) 

19 200 200 260 305 1.54 4.04 1.03 3.55 26.50 47.60 0.25 0.75 45 80 hooked 1.584 5.789 (Dupont and 

Vandewalle, 2003) 

5 175 175 210 210 4.50 4.50 3.10 4.01 36.41 40.84 0.40 1.20 100 100 crimped 1.905 3.238 (R. N. Swamy and 

Bahia, 1985) 

34 101 101 127 127 1.20 5.00 3.09 3.09 33.22 40.21 0.22 1.76 62 102 straight, 

crimped 

1.715 11.226 (Batson et al., 1972) 

6 100 100 175 175 2.00 4.50 3.59 3.59 80.00 80.00 0.50 1.00 100 100 straight 2.743 7.371 (Shin et al., 1994) 

3 200 200 300 300 2.50 4.50 3.08 3.08 110.00 111.50 0.75 0.75 75 75 hooked 3.517 4.767 (Vamdewalle and 

Mortelmans, 1994) 

4 152 152 283 283 2.50 2.50 1.99 1.99 33.03 34.38 1.00 2.00 100 100 hooked 3.088 3.367 (K.-H. Kwak et al., 

1993) 

7 100 100 159 166 3.02 3.14 3.43 4.78 35.50 88.00 0.50 2.00 60 60 hooked 1.813 5.094 (Hwang et al., 2013) 

2 150 150 219 219 2.00 2.80 1.91 1.91 80.04 80.04 1.00 1.00 55 55 hooked 3.470 4.292 (Spinella et al., 2012) 

1 100 100 275 275 2.00 2.00 0.55 0.55 28.40 28.40 0.50 0.50 75 75 hooked 1.527 1.527 (Chalioris and Sfiri, 

2011) 

5 125 125 210 212 3.77 3.81 1.52 2.28 49.60 59.40 0.50 1.00 55 80 hooked 1.623 2.248 (H Aoude and Cohen, 

2014) 

8 100 100 140 245 0.90 2.50 0.64 1.12 36.08 36.90 0.50 0.75 63 63 hooked 1.235 6.143 (Qissab and Salman, 

2018) 

6 100 100 85 85 3.52 3.52 1.66 1.66 49.30 54.80 0.50 2.00 127 191 crimped 1.994 2.581 (Furlan and De Hanai, 

1997) 
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Table 4.1 (Continued) 

No.  

of 

data 

Geometric properties of the beam Steel 

properties 

Concrete 

properties 

Fiber properties Shear 

capacity 

Ref. 

 𝑏𝑤 (𝑚𝑚) 𝒅 (𝒎𝒎) 𝒂/𝒅 𝝆 (%) 𝒇′𝒄 (𝑴𝑷𝒂) 𝑽𝒇 (%) 𝒍𝒇/𝒅𝒇 Fiber type 𝒗𝒖 (𝑴𝑷𝒂)  

 min max min max min max min max min max min max min max  min max  

2 200 200 273 273 2.75 2.75 3.48 3.48 109.20 110.90 0.75 0.75 64 67 hooked 3.681 3.846 (Dancygier and Savir, 

2011) 

2 80 80 165 165 2.99 2.99 1.71 1.71 39.87 41.23 1.00 1.50 50 50 hooked 2.424 3.030 (Krassowska and 

Kosior-Kazberuk, 2018) 

1 300 300 420 420 3.21 3.21 3.22 3.22 62.30 62.30 0.75 0.75 65 65 hooked 3.302 3.302 (Yoo and Yang, 2018) 

2 125 125 222 222 1.80 1.80 1.45 1.45 30.00 30.00 0.50 0.50 80 80 hooked 2.811 3.063 (Gali and Subramaniam, 

2017) 

2 310 310 240 258 3.00 3.00 2.50 4.03 23.00 41.00 1.00 1.00 55 55 hooked 2.638 3.777 (Shoaib et al., 2014) 

7 300 300 523 923 3.00 3.00 1.44 2.55 23.00 80.00 1.00 1.00 55 55 hooked 1.555 2.843 (Shoaib, 2012) 

2 200 200 300 300 2.00 3.50 3.60 3.60 199.00 215.00 2.00 2.00 55 55 hooked 6.217 9.767 (Bae et al., 2013) 

 

Table 4.2: Descriptive statistics of the database 

 
𝒃𝒘 (𝒎𝒎) 𝒅 (mm) 𝒂/𝒅 𝒓𝒉𝒐 (%) 𝒇𝒄

′  (𝑴𝑷𝒂) 𝑽𝒇(%) 𝒍𝒇/𝒅𝒇 𝑭 𝒗𝒖 (𝑴𝑷𝒂) 

𝜇 150.889 263.582 3.043 2.505 47.922 0.833 74.803 0.538 3.252 

𝜎 60.332 161.975 0.812 1.034 26.365 0.470 25.700 0.346 1.642 

Minimum 55.000 85.250 0.900 0.550 9.770 0.220 40.000 0.102 1.067 

25% 101.000 150.000 2.500 1.810 33.220 0.500 60.000 0.315 2.183 

50% 150.000 221.000 3.080 2.540 40.210 0.750 65.000 0.499 2.882 

75% 200.000 275.000 3.500 3.090 53.200 1.000 80.000 0.645 3.598 

Maximum 610.000 923.000 5.000 5.720 215.000 3.000 191.000 2.865 11.226 

Skewness 2.066 2.008 -0.229 0.857 2.704 1.356 1.995 2.043 1.927 

Kurtosis 13.450 7.469 2.883 4.008 13.296 5.722 8.404 11.040 7.605 
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4.3 Feature Selection 

Irrelevant features with relatively low consequence on the target variable may adversely 

affect the model performance and increase computation time. Thus, identifying informative 

features with feature selection methods is key to decreasing the dimensionality of data, 

removing irrelevant data, simplifying the generated model, and speeding up the learning 

mechanism (Xue et al., 2016). One way to select the most relevant features is through their 

importance scores. Importance scores reflect the significance of the input parameter to the 

target variable. Decision tree models included in the scikit-learn library of Python offer a 

simple way to extract such importance scores using the “.feature_importances_” attribute.  

Hence, three models, namely classification and regression trees (CART), random forest 

(RF), and stochastic gradient boosting (XGBoost) have been deployed to assess feature 

relevance. For each algorithm, five different values of “random state” were specified to 

randomly select 70% of the experimental database used for training the model. Results are 

depicted in Figure 4.1. 

 

Figure 4.1: Feature importance scores. 
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The results correspond to the mean values obtained from the five simulations, and the error 

bars represent the standard deviation. It can be observed that 𝑎/𝑑 , 𝜌, and 𝑓𝑐
′ had the most 

significant effect on the shear capacity. The beam width presented the lowest importance 

score except for CART, where its standard deviation was significant. The effective depth 

of the beam had lower effect compared to that of the fiber volume fraction. The fiber factor 

had superior influence over 𝑉𝑓 and 𝑙𝑓/𝑑𝑓, affirming the aforementioned assumptions. 

Furthermore, the correlation matrix illustrated in Figure 4.2 reflects a strong linear 

dependency between 𝐹 and 𝑉𝑓. All of these factors can help disregard 𝑏𝑤, 𝑑, 𝑉𝑓, and 𝑙𝑓/𝑑𝑓 

due to their little impact and/or linear dependency with other more influential parameters. 

Therefore, only 𝑎/𝑑, 𝜌, 𝑓𝑐
′, and 𝐹 have been selected for training TGAN in the next 

sections. 

 

Figure 4.2: Correlation matrix of input features. 

 

bw d a/d ρ f'c Vf lf/df F

bw 1.00 0.65 0.01 -0.18 0.11 0.04 -0.38 -0.06

d 0.65 1.00 -0.05 -0.22 0.05 0.03 -0.34 -0.04

a/d 0.01 -0.05 1.00 0.30 -0.07 -0.10 0.13 -0.09

ρ -0.18 -0.22 0.30 1.00 0.30 0.14 0.21 0.08

f'c 0.11 0.05 -0.07 0.30 1.00 0.22 0.01 0.09

V f 0.04 0.03 -0.10 0.14 0.22 1.00 -0.06 0.83

lf/df -0.38 -0.34 0.13 0.21 0.01 -0.06 1.00 0.34

F -0.06 -0.04 -0.09 0.08 0.09 0.83 0.34 1.00
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4.4 Genetic Programming Based Symbolic Regression 

Genetic programming (GP) is an evolutionary algorithm that develops a population of 

computer programs for solving specific problems (Koza, 1994). GP is based on Darwinian 

principles of natural selection and genetic spread of features adopted by biologically 

developing species (Deshpande et al., 2013; Ghugare and Tambe, 2017). Symbolic 

regression (SR) is a particular application of GP in which GP evolves populations of 

symbolic tree expressions to generate the mathematical formula that provides the best 

fitness value. Accordingly, GP based symbolic regression (GP-SR) aims to optimize the 

expression and the corresponding parameters of a linear or nonlinear function expressed as 

follows: 

𝑦 = 𝑓(𝑥, 𝑝) (4.2) 

where 𝑥 = (𝑥1, … , 𝑥𝑛)
𝑇 is an 𝑛-dimensional vector of model inputs, 𝑦 represents the model 

output, and 𝑝 = (𝑝1, … , 𝑝𝑚)
𝑇 denotes the 𝑚-dimensional vector of the model parameters.  

Before the start of the analysis, the tree depth and size are initialized. Then, the algorithm 

generates a random population of tree-structured symbolic expressions by combining 

several functions such as addition, multiplication, and subtraction, with input parameters 

and random constants. Each developed expression is evaluated via the mean squared error 

(MSE), which represents the selected fitness function. Expressions with the best fitness 

value are prone to a probabilistic selection and recombination via two genetic operations 

named crossover and mutation (Nembhard and Sun, 2019). As illustrated in Figure 4.3, 

crossover corresponds to an exchange of sub-trees between a pair of expressions that 

recorded high fitness values. This exchange leads to new offspring formulations. Regarding 

mutation, a randomly selected node of the previously formed tree is modified as shown in 

Figure 4.4, to stimulate diversity within the tree-structured populations and expand the 

exploration of better data fitting models. The newly generated expressions replace those 

with lower fitness values in the tree population. The iterative process of evaluation, 

selection, crossover, and mutation defines one generation of the analysis. The process is 

repeated until the maximum number of generations is achieved. 
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Figure 4.3: Crossover in GP-SR model. 

 

 

Figure 4.4: Mutation in GP-SR model. 
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As entailed in Table 4.3, different parameters have been selected for model deployment in 

python. Ramped half-and-half is an initialization approach that combines the “full” and 

“grow” methods, leading to a population of trees with different shapes and depths that 

range from the selected initial tree depth to the maximum tree depth. Tournament size 

refers to the number of individuals that will vie to produce the next generation. Parsimony 

coefficient is applied to penalize large programs by making their fitness less favorable and 

ensure that trees have reasonable length and enough transparency. 

Table 4.3: Set of parameters used to develop GP-SR 

Parameter Values 

Population size 1000, 2000, 3000, 4000, 5000 

Crossover rate (%) 70, 80, 90 

Mutation rate (%) 30, 20, 10 

Tournament size 5, 10 ,15 ,20, 25, 30 

Parsimony coefficient 0.1, 0.01, 0.001, 0.0001 

Function set +, -, ×, /, √, ln, exp 

Methods used Initialization: Ramped half-and-half 

Selection: Tournament selection 

Crossover: Subtree exchange 

Mutation: Subtree replacement 

Initial tree depth 2 

Maximum tree depth 12 

 

4.5 Model Training through TGAN 

Training machine learning models with limited databases can create overfitting issues. 

Models trained with further clean data acquire greater generalization capability compared 

to those developed with few data examples. Nevertheless, gathering large datasets might 

be challenging for certain problems due to the restricted number of experimental tests. 

Recently, tabular generative adversarial networks (TGAN) has been introduced as a new 

approach to expand existing databases with synthetic data. TGAN consists of building a 

generative model that can produce synthetic data with similar characteristics to the actual 

data (Xu and Veeramachaneni, 2018). The approach comprises two key components called 

the generator and the discriminator. As shown in Figure 4.5, the generator receives a 

random noise as input and generates synthetic data. Conversely, the discriminator learns to 
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distinguish between real examples and “fake” examples and assigns a specific score to 

indicate whether data is actual or synthetic. The key objective of the generator is to fool 

the discriminator by enhancing the quality of synthetic data and make the distinction 

process harder.  

 

Figure 4.5: Simplified process of TGAN. 

 

Generally, long short-term memory (LSTM) network and multi-layer perceptron are used 

as generator and discriminator, respectively. For the present study, the collected 

experimental database of 309 samples was used to train TGAN. The generative model 

produced 2000 synthetic samples that will be involved in the training GP-SR model. The 

trained GP-SR model is tested afterwards over real experimental data to verify the 

generalization capability of the model as well as the reliability of synthetic data. The entire 

process of developing GP-SR model is schematically represented in Figure 4.6. It is to be 

understood that the “fake” synthetic data is only used for training the model. The robustness 

and predictive accuracy of the GP-SR model is exclusively validated on real experimental 

data that is unknown to the model, and thus far never presented to it. 
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Figure 4.6: Process of training and testing GP-SR. 

 

4.6 Results and Discussion 

4.6.1 Statistical metrics 

Statistical metrics are commonly used for assessing the predictive accuracy of ML models 

as well as comparing the performance of various algorithms. The metrics used in this study 

are the correlation coefficient (R), root mean squared error (RMSE), mean absolute error 

(MAE), and three other parameters characterizing the ratio of the predicted value (𝑣𝑝)  and 

tested value (𝑣𝑡) including the mean (𝜇), standard deviation (𝜎), and  coefficient of 

variation (𝐶𝑂𝑉). The expression of each metric is indicated below. 

𝑅 =
𝑛∑ 𝑣𝑝𝑖𝑣𝑡𝑖 − (∑ 𝑣𝑝𝑖)(∑ 𝑣𝑡𝑖)

𝑛
𝑖=1

𝑛
𝑖=1

𝑛
𝑖=1

√𝑛(∑ 𝑣𝑝𝑖
2 ) − (∑ 𝑣𝑝𝑖)

𝑛
𝑖=1

2𝑛
𝑖=1 √𝑛(∑ 𝑣𝑡𝑖

2) − (∑ 𝑣𝑡𝑖)
𝑛
𝑖=1

2𝑛
𝑖=1

(4.3)
 

𝑅𝑀𝑆𝐸 = √
∑ (𝑣𝑝𝑖 − 𝑣𝑡𝑖)

2𝑛
𝑖=1

𝑛
(4.4) 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑣𝑝𝑖 − 𝑣𝑡𝑖|

𝑛

𝑖=1

(4.5) 

𝜇 =
1

𝑛
∑(

𝑣𝑝𝑖
𝑣𝑡𝑖
)

𝑛

𝑖=1

 (4.6) 
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𝜎 =  
√∑ ((

𝑣𝑝𝑖
𝑣𝑡𝑖
) − 𝜇)

2

𝑛
𝑖=1

𝑛
 (4.7)

 

𝐶𝑂𝑉 (%) =
𝜎

𝜇
× 100 (4.8) 

Higher values of 𝑅𝑀𝑆𝐸 and 𝑀𝐴𝐸 reflect greater error between values, while lower COV 

indicates a lower level of dispersion of the different data points around the mean. 

4.6.2 Proposed new shear equation 

As indicated earlier, the proposed equation for predicting the shear capacity of SFRC 

beams without stirrups is a function of four parameters that have the highest influence on 

its value. It is worth mentioning that the suggested equation has been selected based on two 

criteria. The first criterion is the program length, which represents the total number of 

nodes. Extremely complex equations were discounted and only those with a length of less 

than 30 were considered to ensure enough model transparency. The second criterion is the 

fitness value described above. The equation that provides the best fitness value will be 

considered as the best solution. The final equation obtained from the GP-SR model is 

expressed as follows: 

𝑣𝑢(𝑀𝑃𝑎) = 0.921 +

0.694 × ln (1.786 𝐹 + 1.091 𝜌) × √0.787 𝑓𝑐
′ +

4.863 𝜌 √0.798 𝑓𝑐
′

 (
𝑎
𝑑
)
3

(
𝑎
𝑑
)

 (4.9)

 

where 𝑓𝑐
′ is expressed in (MPa), while 𝜌, 𝐹, and 

𝑎

𝑑
 are dimensionless numbers. Several 

observations can be extracted from the proposed formula by altering one variable and 

keeping the others constant at their mean values. Figure 4.7 shows that an increase in the 

shear span-to-depth ratio leads to lower shear capacity. This can be explained by the arch 

action effect, which represents the compressive force generated along the loading points 

and beam supports. In the region of short shear spans, loads are carried in part via the arch 

action. The arch action tends to resist the applied shear, leading to higher capacity (Jeong 

and Kim, 2014). Moreover, an increase in the value of the fiber factor engenders higher 
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shear strength. The increase of shear capacity is attributed to the improvement of both the 

arch action and dowel action caused by fiber inclusion (Narayanan and Darwish, 1987). 

The shear capacity is also improved by the increase of the compressive strength of concrete. 

The rate of increase diminishes with higher compressive strength, contrarily to some 

studies that reported exponential relationships (Khuntia et al., 1999). Similarly, the rate of 

increase in the shear capacity is reduced when a higher reinforcement ratio is included. 

This is reflected by the logarithmic function and the square root function applied to the 

reinforcement ratio. This was previously confirmed by Swamy and Bahia (1985). The 

decrease of the shear capacity improvement rate for the longitudinal reinforcement ratio 

was linked to the influence of the steel area and net concrete width at the steel level (Li et 

al., 1992; R. N. Swamy and Bahia, 1978).  These two factors exhibited an important 

influence on the dowel resistance and consequently on the shear capacity. 

The other important aspect that needs further investigation is the size effect. Several recent 

studies reported a significant influence of this factor on shear strength (Chao, 2020; Minelli 

et al., 2014; Shoaib et al., 2014). The abovementioned equation determines the shear stress, 

which represents the shear force per unit area. When the original database was collected, 

the shear stress representing the shear force divided by the product of beam width and 

effective depth of beam has been considered as the output variable. This dependency 

explains the low importance scores attributed to these two input features. The resultant 

shear force is therefore expressed as follows: 

𝑣𝑢(𝑀𝑁) =

[
 
 
 
 
 
 
 

0.921+

0.694 × ln (1.786 𝐹 + 1.091 𝜌) × √0.787 𝑓𝑐
′ +

4.863 𝜌 √0.798 𝑓𝑐
′

 (
𝑎
𝑑
)
3

(
𝑎
𝑑
)

]
 
 
 
 
 
 
 

𝑏𝑤𝑑 (4.10) 

 

It was reported that larger beams would generally fail at lower stress because of the size 

effect. In the resultant shear force equation, the shear span and effective depth of the beam 

are both related to the size effect. Chao (2020) reported that the shear span is a significant 

parameter that influences the size effect. When the depth of the beam is increased, the shear 
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span also increases to maintain specific ratios and ensure realistic specimen configuration. 

Thus, the compression zone for larger beams typically has lower contribution to shear 

resistance, which leads to lower shear capacity (Chao, 2020). The fiber factor in the 

equation also influences the size effect. Minelli et al., (2014) posited that incorporating 

steel fibers can mitigate the size effect in shear, which makes the results for plain concrete 

not applicable to SFRC beams. 

 

 

Figure 4.7: Effect of input features on the shear capacity. 

 

4.6.3 Performance assessment of proposed equation 

Evaluation of the proposed model has been performed through the statistical metrics 

described earlier. Also, the model was benchmarked against several existing equations 

outlined in Table 4.4. Some of the equations are based on an empirical approach, while 

others were developed using soft computing techniques (Sarveghadi et al., 2019; 
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Shahnewaz and Alam, 2014, 2020). The performance of each model over the experimental 

database is captured in Table 4.5. It can be observed that the proposed equation 

outperformed all the other models with 𝑅 = 0.8878, 𝑅𝑀𝑆𝐸 = 0.8421, and 𝑀𝐴𝐸 = 0.6099. 

This indicates that the model generates lower error as well as stronger uphill linear pattern 

between predicted and experimental values. Smith (1986) argued that if a positive 

correlation coefficient is higher than 0.8 then there is a strong correlation between actual 

and predicted values. To better investigate the model validity, Golbraikh and Tropsha 

(2002) introduced several validation criteria. As outlined in Table 4.6, 𝑘 and 𝑘′ that denote 

the slope of regression lines through the origin should be close to 1, and the correlation 

coefficients through the origin (𝑅0
2 and  𝑅′0

2) should be close to 𝑅. Moreover, Roy and Roy 

(2008) suggested another validation criterion (𝑅𝑚) that evaluates the external 

predictability of a model, and stated that for a good model, 𝑅𝑚 should be greater than 0.5. 

It was found that the proposed equation satisfied all the validation criteria, indicating a 

strong predictive ability for new unseen data.  

In addition, the model exhibited the lowest 𝐶𝑂𝑉 amongst the presented equations, which 

means that the obtained values had lower level of dispersion around the mean. The main 

reason behind the superior accuracy of the proposed model is the extensive database used 

in its training. Even though the data used for training was synthetic and generated from 

TGAN, the model exhibited strong generalization capability, which indicates that TGAN 

can produce reliable data examples for training. It is worth mentioning that this is the 

biggest database that has ever been used for training a soft computing model to predict the 

shear strength of SFRC beams. Moreover, the model has shown compliance with previous 

research findings as described in the previous section, which also explains its reliability. 

The ranking system presented in Table 4.7 can further confirm the superior performance 

of the developed model. The system uses the average scores based on the values of 

statistical metrics. Higher scores are assigned with higher 𝑅 values, and lower scores are 

attributed to higher 𝑅𝑀𝑆𝐸,𝑀𝐴𝐸 𝑎𝑛𝑑 𝐶𝑂𝑉. The other existing equations demonstrated 

lower accuracy compared to the proposed model. For example, The formula suggested by 

Shahnewaz and Alam (2020) achieved the second best predictive accuracy in terms of 𝑅, 

𝑅𝑀𝑆𝐸, and 𝑀𝐴𝐸, which is also reflected in the ranking system.   
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Table 4.4: Existing equations for SFRC shear strength 

Reference Suggested model 

(Sharma, 1986) 
𝑣𝑢 = 𝑘𝑓𝑡(𝑑/𝑎)

1
4 

𝑘 = {

1
2/3
4/9

if 𝑓𝑡 is obtained by direct tension test
    if 𝑓𝑡 is obtained by indirect tension test
    if 𝑓𝑡 is obtained via modulus of rupture

  

 

(Narayanan and 

Darwish, 1987) 
𝑣𝑢 = 𝑒(0.24𝑓𝑠𝑝𝑓𝑐 + 80𝜌(𝑑/𝑎) ) + 𝑣𝑏 

𝑣𝑏 = 0.41𝜏𝐹;  𝐹 = (𝑙𝑓/𝑑𝑓)𝑉𝑓𝜌𝑓;  𝜏 = 4.15 𝑀𝑃𝑎 

𝑒 = {
1  if (𝑎/𝑑)  ≥ 2.8

2.8 (𝑑/𝑎) if (𝑎/𝑑) < 2.8
 

𝑓𝑠𝑝𝑓𝑐 =
𝑓𝑐𝑢𝑓

(20 − √𝐹)
+ 0.7 + √𝐹 

 

(Ashour et al., 1992) 

𝑣𝑢 = {
(2.11√𝑓𝑐

′3
+ 7𝐹) (𝜌(𝑑/𝑎))

1
3 if (𝑎/𝑑)  ≥ 2.5

(2.11√𝑓𝑐
′3
+ 7𝐹) (𝜌(𝑑/𝑎))

1
3(5𝑑/2𝑎) + 𝑣𝑏(2.5 − 𝑎/𝑑) if (𝑎/𝑑) < 2.5

 

𝑣𝑢 = (0.7√𝑓𝑐
′ + 7𝐹) (𝑑/𝑎) + 17.2 𝜌(𝑑/𝑎) 

 

(Khuntia et al., 1999) 𝑣𝑢 = (0.167𝛼 + 0.25𝐹)√𝑓𝑐
′ 

𝛼 = {
1  if (𝑎/𝑑)  ≥ 2.5

2.5 (𝑑/𝑎) if (𝑎/𝑑) < 2.5
 

 

(Y.-K. K. Kwak et 

al., 2002) 𝑣𝑢 = 3.7𝑒𝑓𝑠𝑝𝑓𝑐

2
3 (𝜌(𝑑/𝑎))

1
3 + 0.8𝑣𝑏 

𝑒 = {
1  if (𝑎/𝑑)  > 3.4

3.4 (𝑑/𝑎) if (𝑎/𝑑) ≤ 3.4
 

 

(Shahnewaz and 

Alam, 2014) 
𝑣𝑢 = 0.2 + 0.034𝑓𝑐

′ + 19𝜌0.087 − 5.8(𝑎/𝑑)
1
2 + 3.4𝑉𝑓

0.4 − 800(𝑙𝑓/𝑑𝑓)
−1.6

− 12((𝑎/𝑑)𝑉𝑓)
0.05

− 197((𝑎/𝑑)(𝑙𝑓/𝑑𝑓))
−1.4

+ 105(𝑉𝑓(𝑙𝑓/𝑑𝑓))
−2.12

 𝑖𝑓 (𝑎/𝑑) ≤ 2.5 

𝑣𝑢 = 0.2 + 0.072(𝑓𝑐
′)0.85 + 12.5𝜌0.084 − 24(𝑎/𝑑)0.07 + 13.5𝑉𝑓

0.07 + 450(𝑙𝑓/𝑑𝑓)
−2

− 0.0002((𝑎/𝑑)𝑉𝑓)
3.9
− 27.69((𝑎/𝑑)(𝑙𝑓/𝑑𝑓))

−0.84

+ 1181(𝑉𝑓(𝑙𝑓/𝑑𝑓))
−2.69

− 21.89((𝑎/𝑑)𝑉𝑓)(𝑙𝑓/𝑑𝑓)
−0.9  𝑖𝑓 (𝑎/𝑑)

> 2.5 

 

(Gandomi et al., 

2011) 
𝑣𝑢 =

2𝑑

𝑎
(𝜌𝑓𝑐

′ + 𝑣𝑏) +
𝑑

2𝑎
 

𝜌

(288 𝜌 − 11)4
+ 2 

 

(Shahnewaz and 

Alam, 2020) 
𝑣𝑢 = 3.2 + 0.072 𝑓𝑐

′ + 𝜌𝑉𝑓(1.26 − 0.25(𝑎/𝑑)) − (𝑎/𝑑)(1.92 + 0.017𝑓𝑐
′ − 0.38(𝑎/𝑑))  

  

(Arslan, 2014) 

𝑣𝑢 = (0.2 𝑓𝑐
′
2
3 (
𝑐

𝑑
) + √𝜌(1 + 4𝐹)𝑓𝑐

′)(
3
𝑎
𝑑

)

1
3

  

c

d
 is a solution of (

𝑐

𝑑
)
2

+
600𝜌

𝑓𝑐
′

𝑐

𝑑
−
600𝜌

𝑓𝑐
′ = 0  
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Table 4.4 (Continued) 

Reference Suggested model 

(Sarveghadi et al., 

2019) 

𝑣𝑢 =

{
  
 

  
 

𝑓𝑡
′ + 𝑣𝑏

𝑎
𝑑
− 𝜌 +

3𝜌
𝑣𝑏
(𝑣𝑏 + 2 +

𝑎
𝑑
− 𝑓𝑡 + 4𝜌𝑓𝑡)

+ 𝑣𝑏 if fc
′ < 41.4 MPa

𝑑

𝑎
(2𝑓𝑡

′ +

𝑎
𝑑

𝜌 + 𝜌(4 + 𝑣𝑏) (
𝑎
𝑑
+ 𝜌) (−1 −

𝑎
𝑑
)
− 2) + 𝑣𝑏 if fc

′ > 41.4 MPa

 

𝑓𝑡
′ = 0.79√𝑓𝑐

′ 

 

RILEM (RILEM TC, 

2003) 
𝑣𝑅𝑑 = 𝑣𝑐𝑑 + 𝑣𝑓𝑑  

𝑣𝑐𝑑 = 0.12𝑘(100𝜌𝑓′𝑐)
1/3;  𝑘 = 1 + √

200

𝑑
≤ 2;  𝜌 ≤ 2% 

𝑣𝑓𝑑 = 𝑘𝑓𝑘𝑙𝜏𝑓𝑑;  𝑘𝑙 = 1 +√
200

𝑑
≤ 2; 𝑘𝑓 = 1 (rectangular section); 𝜏𝑓𝑑

= 0.12𝑓𝑅𝑘,4; 𝑓𝑅𝑘,4 = 1 𝑀𝑃𝑎 (assuming sufficient fiber dosage)  

 

However, this equation is not consistent with real-world findings. The longitudinal steel 

reinforcement ratio has a linear relationship with the output, which means that the rate of 

increase of the shear capacity remains constant for higher reinforcement ratios. Similarly, 

Narayanan and Darwish’s equation (Narayanan and Darwish, 1987) assumes a linear 

relationship between both variables. The low accuracy of existing formulas can also be 

attributed to the lack of important parameters involved in it. For instance, Khuntia et al., 

(1999) disregarded the influence of 𝜌. Sharma’s formula (Sharma, 1986) did neither 

consider the effect of fibers nor that of 𝜌. For these reasons, both equations achieved 

relatively low accuracy with a correlation coefficient less than 0.7.  

The RILEM equation revealed the worst precision amongst the different equations with 

𝑅 = 0.6072,  𝑅𝑀𝑆𝐸 = 2.0013, and 𝑀𝐴𝐸 = 1.8154. The low accuracy presented by 

RILEM formula is mainly linked to safety factors included in the equation for design 

precautions, which leads to inaccurate results when predicting the shear capacity measured 

by laboratory tests.  The Taylor diagram illustrated in Figure 4.8 is a visual metric that can 

further depict the performance of the various equations. Taylor diagram considers the 

correlation coefficient, the standard deviation, and the root mean-square-centered 

difference to illustrate the predictive accuracy of each model. 
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Table 4.5: Performance evaluation of existing models 

Reference 𝑹 𝑹𝑴𝑺𝑬 𝑴𝑨𝑬 𝒗𝒑/𝒗𝒕 

    𝝁 𝝈 𝑪𝑶𝑽 (%) 

(Sharma, 1986) 0.6622 1.3933 0.8792 0.9438 0.2987 31.6513 

(Narayanan and Darwish, 

1987) 
0.8038 1.2902 0.9926 0.7571 0.2842 36.1127 

(Ashour et al., 1992) 0.7989 1.1665 0.8646 0.8486 0.3009 35.4641 

(Khuntia et al., 1999) 0.6489 1.6794 1.2247 0.716 0.2657 37.1101 

(Y.-K. K. Kwak et al., 2002) 0.8086 0.9811 0.6761 1.0142 0.3557 35.0734 

(Shahnewaz and Alam, 

2014) 
0.7464 1.9003 1.5764 0.4975 0.4591 92.2946 

(Gandomi et al., 2011) 0.8133 1.0438 0.7749 1.2177 0.3581 29.4112 

(Shahnewaz and Alam, 

2020) 
0.8172 0.9668 0.6712 1.0376 0.3035 29.2529 

(Sarveghadi et al., 2019) 0.6156 1.9592 1.5749 0.7881 0.6065 76.9602 

(Arslan, 2014) 0.765 1.1011 0.6716 0.9767 0.2374 24.3084 

(RILEM TC 162-TDF, 2003) 0.6072 2.0013 1.8154 1.6841 0.5455 32.3902 

Suggested Model 0.8878 0.8421 0.6099 0.9489 0.2242 23.6299 

 

Table 4.6: Validation of proposed new equation 

Condition number Formula Calculated values 

1 
0.85 ≤ 𝑘 =

∑ 𝑣𝑡𝑖𝑣𝑝𝑖
𝑛
𝑖=1

∑ 𝑣𝑝𝑖
2𝑛

𝑖=1

≤ 1.15 
𝑘 = 0.9998 

2 
0.85 ≤ 𝑘′ =

∑ 𝑣𝑡𝑖𝑣𝑝𝑖
𝑛
𝑖=1

∑ 𝑣𝑡𝑖
2𝑛

𝑖=1

≤ 1.15 
𝑘′ = 0.9573 

3 

 

4 

|
𝑅2 − 𝑅0

2

𝑅2
| < 0.1 

|
𝑅2 − 𝑅′0

2

𝑅2
| < 0.1 

with  

𝑅0
2 = 1 −

∑ (𝑣𝑝𝑖 − 𝑘𝑣𝑝𝑖)
2𝑛

𝑖=1

∑ (𝑣𝑝𝑖 − 𝑣𝑝̅̅ ̅)
2𝑛

𝑖=1

 

𝑅′0
2 = 1 −

∑ (𝑣𝑡𝑖 − 𝑘′𝑣𝑡𝑖)
2𝑛

𝑖=1

∑ (𝑣𝑡𝑖 − 𝑣�̅�)
2𝑛

𝑖=1

 

𝑅2 − 𝑅0
2

𝑅2
= −0.0612 

𝑅2 − 𝑅′0
2

𝑅2
= −0.0254 

5 
𝑅𝑚 = 𝑅2 × (1 − √|𝑅2 − 𝑅0

2| > 0.5 
𝑅𝑚 = 0.5080 
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Table 4.7: Ranking of the different shear equations 

 Ranking 

Reference 𝑹 𝑹𝑴𝑺𝑬 𝑴𝑨𝑬 𝑪𝑶𝑽 Average 

Suggested Model 12 12 12 12 12 

(Shahnewaz and Alam, 2020) 11 11 11 10 11 

(Arslan, 2014) 6 8 10 11 9 

(Gandomi et al., 2011) 10 9 8 9 9 

(Y.-K. K. Kwak et al., 2002) 9 10 9 6 9 

(Ashour et al., 1992) 7 7 7 5 7 

(Sharma, 1986) 4 5 6 8 5.5 

(Narayanan and Darwish, 1987) 8 6 5 4 5.5 

(Khuntia et al., 1999) 3 4 4 3 3.5 

(Shahnewaz and Alam, 2014) 5 3 2 2 2.5 

(Sarveghadi et al., 2019) 2 2 3 1 2 

(RILEM TC 162-TDF, 2003) 1 1 1 7 1 

 

Based on the diagram, the closest point to the point representing observed data is that of 

the proposed equation. This means that the suggested formula has the highest accuracy, 

confirming the abovementioned results. Conversely, The equation proposed by Sarveghadi 

et al., (2019) showed the lowest accuracy, which was indicated by the relatively high root 

mean-square-centered difference. Thereupon, this model has a rather low accuracy 

compared to its counterparts.  

The model proposed in the present study proved to have superior predictive accuracy. Yet, 

it is crucial to understand the degree to which each parameter of the equation affects the 

shear capacity. Thus, sensitivity analysis can provide a better understanding of the equation 

by revealing the most influential parameters. The process adopted for sensitivity analysis 

is discussed below.  
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Figure 4.8: Taylor Diagram for SFRC shear strength prediction. 

 

4.6.4 Sensitivity analysis 

Sensitivity analysis (SA) aims to quantify the uncertainty of a model output linked to 

various sources of uncertainty in the different inputs (M. Nehdi and Al Martini, 2009; 

Moncef Nehdi and Nikopour, 2011). For complex nonlinear problems, global sensitivity 

analysis models such as variance-based sensitivity analysis are widely adopted owing to 

their ability in considering the interactions of the input with the other variables when 

quantifying the output uncertainty (Saltelli et al., 2010). Variance-based methods present 

a specific methodology to determine first-order and total-order sensitivity indices for each 

input variable of the developed equation. For a model having the form 𝑌 =
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𝑓(𝑋1, 𝑋2, … , 𝑋𝑘), the variance-based approach employs a variance ratio to assess the 

relevance of parameters through variance decomposition that can be expressed as follows: 

𝑉 =∑𝑉𝑖

𝑘

𝑖=1

+∑∑𝑉𝑖𝑗

𝑘

𝑗>𝑖

+⋯+ 𝑉1,2,…,𝑘

𝑘

𝑖=1

(4.11) 

where 𝑉 denotes the variance of the model output, 𝑉𝑖 is the first-order variance for the input 

𝑋𝑖, and 𝑉𝑖𝑗 to 𝑉1,2,…,𝑘 represent the variance of the interaction of the 𝑘 parameters. 𝑉𝑖 and 

𝑉𝑖𝑗, which indicate the significance of the input to the variance of the output, depends on 

the variance of the conditional expectation as shown in Eq. (4.12) and Eq. (4.13). 

𝑉𝑖 = 𝑉𝑋𝑖[𝐸𝑋~𝑖(𝑌|𝑋𝑖)] (4.12) 

𝑉𝑖𝑗 = 𝑉𝑋𝑖𝑋𝑗 [𝐸𝑋~𝑖𝑗(𝑌|𝑋𝑖, 𝑋𝑗)] − 𝑉𝑖 − 𝑉𝑗 (4.13) 

with 𝑋~𝑖 notation corresponds to the set of all variables excluding 𝑋𝑖. The first-order 

sensitivity index (𝑆𝑖) for an input 𝑋𝑖 is therefore given by: 

𝑆𝑖 =
𝑉𝑖
𝑉(𝑌)

 (4.14) 

Conversely, the total effect of the input factor 𝑋𝑖, which comprises the first-order effect 

along with effects coming from the interaction with other features, is given by the following 

formula (Saltelli et al., 2010) :   

𝑆𝑇𝑖 =
𝐸𝑋~𝑖 (𝑉𝑋𝑖(𝑌|𝑋~𝑖))

𝑉(𝑌)
= 1 −

𝑉𝑋~𝑖 (𝐸𝑋𝑖(𝑌|𝑋~𝑖))

𝑉(𝑌)
(4.15) 

The approach suggested by Saltelli et al., (2008) for calculating first- and total-order 

sensitivity indices has been used in the current study. The number, names, and bounds of 

the variables were first specified. Data sampling was then conducted via Saltelli’s 

extension of the Sobol sequence to generate 10000 samples. The analysis was repeated 5 

times, each time a random subset that consists of 70% of the entire database was generated 

by using a different random state. Consequently, different variable bounds are specified in 

each analysis. Results are illustrated in Figure 4.9. It can be observed that shear span-to-

depth ratio demonstrated the greatest effect on the model output. The second most 
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influential parameter was the longitudinal steel reinforcement ratio, followed by the 

compressive strength of concrete. The lowest influence was recorded for the fiber factor. 

Moreover, total-order sensitivity index was greater than the first-order index for each 

parameter due to the interaction of the feature with the other variables. The presented 

results of sensitivity analysis are also consistent with previous studies in the open literature 

(Shahnewaz and Alam, 2020). However, the results are not in compliance with studies 

which reported that the fiber factor had the most significant effect. It is worth mentioning 

that those studies were based on a limited number of data examples, as well as a specific 

types of fibers. The type of fiber has a significant effect on the experimental results. Thus, 

equations developed from data using certain types of fibers are more sensitive to the fiber 

factor than others developed with a different type of fiber. For example, some studies 

mentioned that hooked fibers have higher efficiency in resisting pull out forces compared 

to straight fibers (Qi et al., 2018), which also affects the shear capacity. This contrast 

engenders different results when the model is developed with extensive databases because 

the model will search for a solution that can be applied to different fiber types. 

 

Figure 4.9: Sobol indices of different variables. 
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4.7 Verification of model applicability for reinforced concrete 

beams 

Verification of model applicability for reinforced concrete (RC) beams without steel fibers 

consists of evaluating the predictive accuracy of the equation when the fiber factor 

approaches zero. Therefore, the equation for RC without fiber reinforcement will have the 

following expression: 

𝑣𝑢(𝑀𝑃𝑎) = 0.921 +

0.694 × ln (1.091 𝜌) × √0.787 𝑓𝑐
′ +

4.863 𝜌 √0.798 𝑓𝑐
′

 (
𝑎
𝑑
)
3

(
𝑎
𝑑
)

 (4.16)

 

Such verification is of paramount importance since it can extend the range of validity of 

the proposed equation to RC beams without steel fibers. In order to investigate that, 20 

different RC samples were used for assessing the model accuracy. The specimens were 

gathered from different references in the open literature to ensure sufficient data diversity 

and adequate model generalization capability (Ahmad et al., 1986; Bhal, 1968; Bresler and 

Scordelis, 1963; Chana, 1981; Cossio and Siess, 1960; Elzanaty et al., 1986; Feldman and 

Siess, 1955; Grimm, 1997; Hallgren, 1994; Hamadi and Regan, 1980). The results are 

shown in Figure 4.10. 

 

 

Figure 4.10: Correlation between predicted and experimental RC Shear strength. 
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The obtained coefficient of determination is 𝑅2 = 0.9216, which indicates that there is a 

strong linear relationship between the predicted and experimental values of RC beam shear 

strength. Therefore, the model validity can be extended to RC beam specimens without 

steel fiber reinforcement. 

 

4.8 Conclusions 

The current study proposes a new equation for assessing the shear capacity of SFRC beams 

without stirrups. The data preprocessing stage involved a feature selection approach using 

CART, RF, and XGBoost. The equation was evolved using a GP-SR model trained with 

2000 examples of a synthetic database generated from TGAN. The accuracy of the 

proposed new model was assessed on 309 experimental data examples retrieved from the 

open literature. The model was also benchmarked against 11 existing equations developed 

either with empirical approaches or soft-computing models. The following conclusions can 

be drawn: 

• The feature importance analysis indicated that the shear span-to-depth ratio, 

longitudinal reinforcement ratio, compressive strength of concrete, and fiber factor had 

the most significant effect on SFRC beam shear capacity. Further analysis with a 

correlation matrix revealed a strong linear dependency between 𝑉𝑓 and 𝐹. 

• Validation of the proposed equation reflected its superior predictive accuracy on new 

data unknown to the model, which was indicated by the values of 𝑘, 𝑘′, and 𝑅𝑚. 

• The proposed new model exhibited the highest predictive accuracy with an 𝑅 value of 

0.8878 and 𝑅𝑀𝑆𝐸 and 𝑀𝐴𝐸 of 0.8421 and 0.6099, respectively. This reflects the 

reliability of the model in providing accurate estimations as well as the effectiveness 

of synthetic data generated by TGAN in properly training the GP-SR mode. 

• Analysis of the proposed equation showed consistency with experimental findings. 

Higher 𝑎/𝑑 values led to decreased shear capacity, while greater values of 𝜌, 𝐹, and 

𝑓𝑐
′ led to enhanced shear capacity. This is attributed to the effect of the arch action, 
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which increases with lower 𝑎/𝑑, and the influence of the dowel action which is 

enhanced with greater 𝜌 and 𝐹. 

• Sensitivity analysis showed that 𝑎/𝑑 had the greatest influence on the shear capacity, 

while the lowest effect was linked to 𝐹. 
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Chapter 5 

 Conclusions and Recommendations 

 

5.1 Summary and Conclusions 

This thesis presents a compilation of three studies conducted to better estimate the complex 

shear behavior and capacity of SFRC beams subjected to three- and four-point testing.  

In Chapter 2, a critical review of the various machine learning models employed to predict 

the mechanical properties of concrete was conducted. The review aimed to identify the 

most accurate and reliable ML models for predicting the mechanical strength of concrete 

with high accuracy. Four major techniques were employed in the open literature including 

ANN, SVM, decision trees, and EA. The applications of each model in hybrid or 

standalone form along with its performance were critically reviewed and discussed. 

Moreover, a comparison between the performance of each approach over the same testing 

data was carried out. The study revealed the superiority of hybrid ANN- and SVM-based 

models in accurately predicting the mechanical properties of concrete.  

Based on the conclusions of Chapter 2, a hybrid ANN-based model was developed in 

Chapter 3 to predict the shear strength of SFRC beams with superior accuracy. An ASO 

algorithm was combined with ANN to form a hybrid model in which weights and biases 

of ANN were optimized with the searching capabilities of ASO. Results revealed that the 

ASO-ANN model achieved superior predictive accuracy, outperforming existing widely 

used standalone and hybrid soft-computing models, as well as other empirical formulations 

in terms of 𝑅, 𝑀𝐴𝐸, 𝑅𝑀𝑆𝐸, and 𝑑′. It was found that the superior accuracy achieved by 

ASO-ANN was mainly linked to the searching strategy of ASO. Repulsive forces affecting 

the atomic motion help the algorithm explore more promising regions of the search space 

and consequently ensuring the discovery of better solutions. The search strategy also 

helped overcome the drawbacks of standalone ANN trained with gradient descent, which 

can be easily trapped in local minima. In addition, a global sensitivity analysis involving a 

variance-based method was conducted to reveal the important parameters affecting the 
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shear strength. It was found that the shear span-to-depth ratio was the most influential 

parameter for the suggested model. Furthermore, four classification models were deployed 

to forecast the failure mode of SFRC, which cannot be achieved by regression models. 

Scatter plots, confusion matrices, and an accuracy metric, γ were used to compare the 

performance of the models. It was concluded that k-nearest neighbor was the most accurate 

model, providing the best predictions of the likelihood of shear failure. Even though the 

suggested models could accurately predict the shear capacity and failure mode of SFRC 

beams, they fall inside the “black-box” category of soft-computing models. This makes the 

generation of transparent mathematical formulas using such models unfeasible. 

In Chapter 4, a genetic programming-based symbolic regression model was developed to 

generate a shear strength equation for SFRC beams without stirrups and overcome the 

shortcomings of “black-box” models. Synthetic data generated from TGAN was used to 

train the proposed model and overcome the problem associated with the relatively small 

experimental database existing in the open literature. Results of the “train on synthetic - 

test on real” philosophy adopted in this chapter reflected the satisfactory accuracy of the 

new formula, which outperformed existing empirical and ML-based equations. The 

suggested equation also showed consistency with real-world findings that describe the 

relationship between the input parameters and the shear strength. Sensitivity analysis was 

finally performed to identify the most influential parameters. It was found that the shear 

span-to-depth ratio had the greatest impact on the output, which is in good agreement with 

the findings of the previous Chapter. 

The two models suggested in the present study exhibited good predictive accuracy. The 

ASO-ANN model has better accuracy than the GP-SR model. However, a non-

programming expert who is not familiar with machine learning models might find the use 

of ASO-ANN challenging. The GP-SR based equation presents an alternative approach to 

estimate the shear strength by providing an explicit formula that can be used by engineers 

regardless of their programming skills. Therefore, the selection of the suitable approach 

depends mainly on the designer’s programming background along with the extent to which 

the user can trust a “black-box” model that doesn’t explicitly reveal the relationship 

between the input parameters and the shear strength. 
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5.2 Model Limitations 

The presented models exhibited robust accuracy. Yet, there are some limitations associated 

with their application. The validity of each model is limited to predicting the shear capacity 

of simply supported beams made in laboratory conditions and subjected to three- and four-

point shear testing methods. This will make their accuracy for on-site developed beams as 

well as beams embedded in complex structural buildings questionable because of the 

different load combinations and conditions to which these specimens are exposed. 

Moreover, training and testing the ASO-ANN was performed via 75% and 25% of the 

dataset, respectively. These proportions need to be also tuned to verify what percentages 

of training and testing data provide an optimal accuracy because assuming such values 

does not guarantee the best results. Moreover, the models do not account for an important 

parameter, which is the effect of concrete aggregate type and proportions. Aggregate 

interlock influences the shear capacity and future ML-based models need to be developed 

with a database that comprises aggregate properties. 

 

5.3 Recommendations for Future Work 

The present study presented novel approaches to predict the shear capacity of SFRC. 

Conversely, the study induces the need for future research as follows: 

1. Even though the suggested models can predict the shear capacity of SFRC beams, 

they cannot reflect the behavior of the entire structure. Designers need to 

understand the load distribution in the structure, which can be achieved by 

alternative techniques such as finite element methods. 

2. Identifying real-time crack growth using recurrent neural network is of paramount 

importance especially that it can provide better visualization of the cracked SFRC 

structures and avert sudden failures. 

3. TGAN proved to generate reliable synthetic data that can effectively train 

evolutionary algorithms and overcome the small database issues. Therefore, the 

potential of TGAN can be explored when there is a lack of data in certain types of 
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concretes such as shrinkage-compensating concrete, concrete containing phase 

change materials, etc. 

4. Shear design provisions for concrete structures in some building codes are based 

on the modified compression field theory. The consistency between this theory and 

ML-based equations is worth investigation in future studies. 
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Appendix 

 

Table 5.1: Database used to develop ASO-ANN and the classification algorithms 

Beam Geometry 
Longitudinal 
Steel 

Concrete 
Properties 

Fiber Properties Shear Strength Failure Mode 

bw(mm) d (mm) a/d ρ f'c (Mpa) Vf lf/df ftf (MPa) vu (MPa)  

150 251 3.49 0.0267 28.1 0.75 65 1100 3.0013 S 

150 251 3.49 0.0267 25.3 0.75 65 1100 2.0983 S 

150 251 3.49 0.0267 27.9 1 65 1100 2.8951 S 

150 251 3.49 0.0267 26.2 1 65 1100 3.2669 S 

150 251 3.49 0.0267 28.1 1.5 65 1100 2.9482 S 

150 251 3.49 0.0267 27.3 1.5 65 1100 3.4794 S 

150 251 3.49 0.0267 27.5 0.5 80 1050 1.7264 S 

150 251 3.49 0.0267 24.9 0.5 80 1050 2.0452 S 

150 251 3.49 0.0267 27.8 0.75 80 1050 2.4170 S 

150 251 3.49 0.0267 27.3 0.75 80 1050 2.6826 S 

150 251 3.49 0.0267 26.3 1 80 1050 3.0810 S 

150 251 3.49 0.0267 27.1 1 80 1050 2.7623 S 

150 251 3.49 0.0267 53.4 0.75 65 1100 3.0013 S 

150 251 3.49 0.0267 54.1 0.75 65 1100 3.3466 S 

150 251 3.49 0.0267 53.2 1 65 1100 3.8247 S 

150 251 3.49 0.0267 55.3 1 65 1100 4.3825 S 

150 251 3.49 0.0267 64.6 1.5 65 1100 5.1793 S 

150 251 3.49 0.0267 59.9 1.5 65 1100 4.2497 S 

150 251 3.49 0.0267 47.8 0.5 80 1050 3.3732 S 

150 251 3.49 0.0267 49.5 0.5 80 1050 4.0372 S 

150 251 3.49 0.0267 55.3 0.75 80 1050 3.8778 S 

150 251 3.49 0.0267 56.4 0.75 80 1050 4.7278 S 

150 251 3.49 0.0267 53.4 1 80 1050 3.3997 S 

150 251 3.49 0.0267 51 1 80 1050 4.1700 S 

150 251 3.49 0.0267 27.8 1 50 1025 2.0983 S 

150 251 3.49 0.0267 27.2 1 50 1025 2.0717 S 

150 251 3.49 0.0267 27.6 1 85 1050 2.6029 S 

150 251 3.49 0.0267 27.9 1 85 1050 2.1514 S 

150 251 3.49 0.0267 34.7 1 50 1025 2.6295 S 

150 251 3.49 0.0267 36.2 1 50 1025 2.6560 S 

150 251 3.49 0.0267 37 1 85 1050 2.9216 S 

150 251 3.49 0.0267 38.3 1 85 1050 2.7623 S 

150 261 2.3 0.0116 28.7 0.5 80 1100 3.6526 FS 

150 261 3.45 0.0195 32.9 0.75 80 1100 2.7586 S 

150 261 3.45 0.0195 23.8 1 80 1100 2.3755 S 
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Table A.1 (continued) 

Beam Geometry 
Longitudinal 
Steel 

Concrete 
Properties 

Fiber Properties Shear Strength Failure Mode 

bw(mm) d (mm) a/d ρ f'c (Mpa) Vf lf/df ftf (MPa) vu (MPa)  

150 261 3.45 0.0195 24.1 1.25 80 1100 2.9119 S 

310 258 3 0.0184 22 1 55 1100 2.5381 FS 

310 258 3 0.0245 31 1 55 1100 3.7259 FS 

300 550 3 0.0119 30 1 55 1100 1.8848 FS 

140 175 1.5 0.0128 82 0.5 80 1100 4.8163 S 

140 175 1.5 0.0128 83.2 1 80 1100 6.3265 S 

140 175 1.5 0.0128 83.8 1.5 80 1100 7.5918 S 

140 175 2.5 0.0128 82 0.5 80 1100 2.5306 S 

140 175 2.5 0.0128 83.2 1 80 1100 3.2245 S 

140 175 2.5 0.0128 83.8 1.5 80 1100 5.5102 S 

150 200 2.5 0.0134 33.68 1 55 1100 2.1333 S 

150 200 2.5 0.0134 24.53 1 55 1100 1.4333 S 

150 200 2.5 0.0134 21.43 2 55 1100 1.6333 S 

150 200 2.5 0.0134 9.77 3 55 1100 1.2667 S 

150 200 3.5 0.0134 20.21 1 55 1100 1.0667 S 

150 200 3.5 0.0134 21.43 2 55 1100 1.4000 S 

150 200 3.5 0.0134 27.91 3 55 1100 1.9333 S 

150 200 4.5 0.0134 24.53 1 55 1100 1.4000 S 

150 200 4.5 0.0134 21.43 2 55 1100 1.1667 FS 

152 381 3.4 0.0271 49.2 1 80 1100 2.9873 NA 

152 381 3.4 0.0271 31 1.5 60 1100 2.5901 NA 

152 381 3.4 0.0271 44.9 1.5 60 1100 3.2808 NA 

152 381 3.4 0.0271 44.9 1.5 60 1100 3.2981 NA 

152 381 3.4 0.0271 49.2 1 80 1100 3.7816 NA 

152 381 3.4 0.0271 31 1.5 60 1100 3.4017 NA 

152 381 3.5 0.0271 38.1 1 60 1100 2.5556 NA 

152 381 3.5 0.0271 38.1 1 60 1100 3.4881 NA 

152 381 3.5 0.0197 38.1 1 60 1100 3.0564 NA 

152 381 3.5 0.0197 38.1 1 60 1100 3.1082 NA 

200 260 1.5 0.0181 41.2 0.25 67 1100 5.3654 NA 

200 260 1.5 0.0181 40.3 0.76 67 1100 5.7500 NA 

200 260 2.5 0.0181 40 0.25 67 1100 2.0577 NA 

200 260 2.5 0.0181 38.7 0.76 67 1100 2.7500 NA 

200 260 2.5 0.0115 40 0.25 67 1100 1.5577 NA 

200 260 2.5 0.0115 38.7 0.76 67 1100 2.0385 NA 

200 460 3.4 0.028 37.7 0.5 67 1100 2.6413 NA 

200 460 3.4 0.028 38.8 0.5 67 1100 2.7283 NA 

200 460 3.4 0.028 37.7 0.5 67 1100 2.8043 NA 

200 460 3.4 0.028 37.7 0.5 67 1100 2.8478 NA 

200 260 3.5 0.0356 46.9 0.25 67 1100 2.0962 NA 

200 260 3.5 0.0356 43.7 0.51 67 1100 2.2885 NA 
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Table A.1 (continued) 

Beam Geometry 
Longitudinal 
Steel 

Concrete 
Properties 

Fiber Properties Shear Strength Failure Mode 

bw(mm) d (mm) a/d ρ f'c (Mpa) Vf lf/df ftf (MPa) vu (MPa)  

200 260 3.5 0.0356 48.3 0.76 67 1100 2.9615 NA 

200 260 3.5 0.0283 37.7 0.5 67 1100 2.1154 NA 

200 260 3.5 0.0283 38.8 0.5 67 1100 2.5192 NA 

200 540 3.5 0.0273 37.7 0.25 67 1100 1.4074 NA 

200 560 3.5 0.0273 38.8 0.5 67 1100 2.0446 NA 

200 260 4 0.0181 41.2 0.25 67 1100 1.5577 NA 

200 260 4 0.0181 40.3 0.76 67 1100 2.2308 NA 

150 217 1.59 0.0185 35 0.75 80 1100 4.5469 S 

150 217 2.47 0.0185 35 0.75 80 1100 3.0108 S 

150 217 2.95 0.0185 35 0.75 80 1100 2.5806 S 

300 622 2.81 0.0198 34 0.321 65 2300 1.5273 S 

300 622 2.81 0.0198 36 0.687 65 2300 1.9025 S 

100 135 2.22 0.0116 64.2 0.5 65 1100 3.0370 S 

100 135 2.22 0.0116 64.2 0.5 65 1100 3.1852 S 

100 135 2.22 0.0116 64.2 0.5 65 1100 3.1111 S 

100 135 2.22 0.0116 64 1 65 1100 3.2593 FS 

100 135 2.22 0.0116 64 1 65 1100 3.4815 FS 

100 135 2.22 0.0116 64 1 65 1100 3.1111 FS 

100 135 2.22 0.0116 60 1 80 1100 3.6296 FS 

100 135 2.22 0.0116 60 1 80 1100 3.7778 FS 

100 135 2.22 0.0116 60 1 80 1100 3.2593 FS 

85 130 2.02 0.0205 51.85 0.25 100 2000 2.8959 S 

85 130 2.52 0.0205 51.85 0.25 100 2000 2.6244 S 

85 130 3.02 0.0205 51.85 0.25 100 2000 2.7149 S 

85 130 2.02 0.0205 33.32 0.25 100 2000 2.6244 S 

85 130 2.52 0.0205 33.32 0.25 100 2000 1.9910 S 

85 130 3.02 0.0205 33.32 0.25 100 2000 1.9005 S 

85 130 3.02 0.0205 51.68 0.5 133 2000 3.1674 S 

85 130 3.02 0.0205 30.6 0.5 133 2000 1.9005 S 

85 130 3.02 0.0205 31.025 1 100 2000 2.8959 S 

85 130 2.02 0.0205 51.68 0.5 133 2000 4.5249 S 

85 130 2.52 0.0205 51.68 0.5 133 2000 3.6199 S 

85 130 3.52 0.0205 41.65 0.5 133 2000 2.5339 S 

85 130 2.02 0.0205 48.705 1 133 2000 5.5204 S 

85 130 2.52 0.0205 48.705 1 133 2000 4.3439 S 

85 130 3.52 0.0205 48.79 1 133 2000 2.8959 S 

85 128 3.06 0.037 41.65 0.5 133 2000 2.8493 S 

85 126 3.11 0.0572 41.65 0.5 133 2000 3.4547 S 

85 128 3.06 0.037 30.6 0.5 133 2000 2.2059 S 

85 126 3.11 0.0572 30.6 0.5 133 2000 2.2409 S 

85 128 3.06 0.037 48.79 1 133 2000 4.3199 S 
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Table A.1 (continued) 

Beam Geometry 
Longitudinal 
Steel 

Concrete 
Properties 

Fiber Properties Shear Strength Failure Mode 

bw(mm) d (mm) a/d ρ f'c (Mpa) Vf lf/df ftf (MPa) vu (MPa)  

85 126 3.11 0.0572 48.79 1 133 2000 4.9486 S 

85 126 3.11 0.0572 53.55 1.5 100 2000 4.7619 S 

85 126 3.11 0.0572 43.18 2 100 2000 4.8553 S 

85 128 3.06 0.037 53.55 1.5 100 2000 4.4118 S 

85 126 2.08 0.0572 50.15 0.5 100 2000 5.4155 S 

85 126 2.08 0.0572 45.9 1 100 2000 6.7227 S 

85 126 2.08 0.0572 53.55 1.5 100 2000 7.0962 S 

85 126 2.08 0.0572 43.18 2 100 2000 6.2558 S 

150 219 2.8 0.0191 40.85 1 60 1115 2.9224 S 

150 219 2.8 0.0191 40.85 2 60 1115 3.1355 S 

150 219 2 0.0191 43.23 1 60 1115 3.5008 S 

150 219 2 0.0191 43.23 2 60 1115 3.5312 S 

125 212 2 0.0152 63.8 0.5 63 1079 5.0566 FS 

125 212 2 0.0152 68.6 0.75 63 1079 5.4340 FS 

125 212 2 0.0152 30.8 0.5 63 1079 4.0377 S 

125 212 3 0.0152 30.8 0.5 63 1079 2.5283 S 

100 130 3.08 0.0309 38.69 1 60 1303 4.4615 S 

100 130 3.08 0.0309 42.4 2 60 1303 5.6923 S 

152 381 3.44 0.0196 44.8 0.75 55 1100 2.9528 S 

152 381 3.44 0.0196 44.8 0.75 55 1100 2.7801 S 

152 381 3.44 0.0196 38.1 1 55 1100 2.9355 S 

152 381 3.44 0.0196 38.1 1 55 1100 2.9873 S 

152 381 3.44 0.0263 31 1.5 55 1100 2.5729 S 

152 381 3.44 0.0263 31 1.5 55 1100 3.4017 S 

152 381 3.44 0.0263 44.9 1.5 55 1100 3.3154 S 

152 381 3.44 0.0263 44.9 1.5 55 1100 3.2808 S 

152 381 3.44 0.0263 49.2 1 80 1100 2.9873 S 

152 381 3.44 0.0263 49.2 1 80 1100 3.7816 S 

152 381 3.44 0.0196 43.3 0.75 80 2300 3.3326 S 

152 381 3.44 0.0196 43.3 0.75 80 2300 3.2808 S 

205 610 3.5 0.0196 50.8 0.75 55 1100 2.9428 S 

205 610 3.5 0.0196 50.8 0.75 55 1100 2.7189 S 

205 610 3.5 0.0196 28.7 0.75 80 1100 2.8309 S 

205 610 3.5 0.0196 28.7 0.75 80 1100 2.7749 S 

205 610 3.5 0.0152 42.3 0.75 55 1100 2.7989 S 

205 610 3.5 0.0152 29.6 0.75 80 1100 2.1591 S 

205 610 3.5 0.0152 29.6 0.75 80 1100 1.8153 S 

205 610 3.5 0.0196 44.4 1.5 55 1100 3.4946 S 

205 610 3.5 0.0196 42.8 1.5 80 1100 3.3826 S 

150 340 2.5 0.0308 58.87 1 65 1150 5.1176 NA 

150 340 2.5 0.0308 51.67 2 65 1150 5.7059 NA 
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Table A.1 (continued) 

Beam Geometry 
Longitudinal 
Steel 

Concrete 
Properties 

Fiber Properties Shear Strength Failure Mode 

bw(mm) d (mm) a/d ρ f'c (Mpa) Vf lf/df ftf (MPa) vu (MPa)  

150 735 3.81 0.0106 42 1.25 75 1200 3.2562 NA 

150 735 3.81 0.0106 38 1.25 60 1200 3.2562 NA 

125 225 2.89 0.0349 90 1.25 60 1200 5.5822 S 

150 202 2.97 0.0117 21.3 0.5 55 1100 1.5512 S 

150 202 2.97 0.0117 19.6 1 55 1100 1.8482 S 

300 437 3.09 0.015 21.3 0.5 55 1100 1.2204 S 

300 437 3.09 0.015 19.6 1 55 1100 1.5561 S 

200 435 2.51 0.0104 24.8 0.38 50 1100 1.5287 S 

200 435 2.51 0.0104 33.5 0.38 50 1100 1.3678 S 

200 435 2.51 0.0104 33.5 0.57 78 1333 1.6207 S 

200 435 2.51 0.0104 38.6 0.38 50 1100 1.6092 S 

200 435 2.51 0.0104 61.1 0.64 48 1250 2.1839 FS 

200 455 2.51 0.0099 24.4 0.25 50 1100 2.1538 FS 

200 455 2.51 0.0099 24.4 0.25 50 1100 1.7143 S 

200 910 2.5 0.0104 24.4 0.25 50 1100 1.4121 S 

200 910 2.5 0.0104 55 0.25 50 1100 1.8571 S 

125 210 2 0.0153 44.6 0.5 63 1100 3.0857 FS 

125 210 4 0.0153 44.6 0.5 63 1100 1.3333 S 

125 210 2 0.0153 57.2 0.5 63 1100 2.9333 FS 

125 225 2.89 0.0349 90 1.25 60 1200 4.9067 S 

125 225 2.89 0.0349 90 1.25 60 1200 4.9067 S 

152 221 2.5 0.012 34 0.5 60 1130 1.7266 S 

152 221 1.5 0.0239 34 1 60 1130 4.3760 S 

152 221 2.5 0.0239 34 1 60 1130 2.4708 S 

152 221 3.5 0.0239 34 1 60 1130 1.9945 FS 

152 221 1.5 0.0239 34 0.5 60 1130 4.0188 S 

152 221 2.5 0.0239 34 0.5 60 1130 1.9052 S 

152 221 3.5 0.0239 34 0.5 60 1130 1.4587 S 

150 197 2 0.0136 29.1 0.5 60 1260 2.5381 S 

150 197 2.8 0.0136 29.1 0.5 60 1260 1.7597 S 

150 197 3.6 0.0136 29.1 0.5 60 1260 1.5228 S 

150 197 2 0.0136 29.9 0.75 60 1260 2.8765 S 

150 197 2.8 0.0136 29.9 0.75 60 1260 2.0305 S 

150 197 2.8 0.0204 29.9 0.75 60 1260 2.1997 S 

150 197 2.8 0.0136 20.6 0.75 60 1260 1.5228 S 

150 197 2.8 0.0204 20.6 0.75 60 1260 2.0305 S 

150 197 2.8 0.0204 33.4 0.75 60 1260 2.9103 S 

152 254 3.5 0.0248 29 0.75 67 1096 3.1082 S 

610 254 3.5 0.0247 29 0.75 67 1096 3.1044 S 

152 394 3.61 0.0286 39 0.75 67 1096 2.7050 S 

152 394 3.61 0.0286 39 0.75 67 1096 3.2561 S 
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Table A.1 (continued) 

Beam Geometry 
Longitudinal 
Steel 

Concrete 
Properties 

Fiber Properties Shear Strength Failure Mode 

bw(mm) d (mm) a/d ρ f'c (Mpa) Vf lf/df ftf (MPa) vu (MPa)  

203 541 3.45 0.0254 50 0.75 67 1096 2.4767 S 

203 541 3.45 0.0254 50 0.75 67 1096 3.5056 S 

254 813 3.5 0.027 50 0.75 67 1096 3.3850 S 

254 813 3.5 0.027 50 0.75 67 1096 3.4866 S 

200 180 3.33 0.0447 90.6 1 40 2600 8.3056 S 

200 180 3.33 0.0447 83.2 1 48 1850 8.1944 S 

200 180 3.33 0.0447 80.5 0.5 86 2200 7.0000 S 

200 180 3.33 0.0447 80.5 0.75 86 2200 7.2778 S 

200 195 3.08 0.0309 39.4 1 48 1850 4.8462 S 

200 235 2.77 0.0428 91.4 1 50 1100 6.5957 S 

200 235 2.77 0.0428 93.3 1 40 2600 7.7234 S 

200 235 2.77 0.0428 89.6 1 48 1850 8.6596 S 

200 410 2.93 0.0306 76.8 1 40 2600 3.5610 S 

200 410 2.93 0.0306 76.8 1 40 2600 4.1341 S 

200 410 2.93 0.0306 72 1 48 1850 4.5122 S 

200 410 2.93 0.0306 72 1 48 1850 4.0244 S 

200 410 2.93 0.0306 69.3 0.5 86 2200 3.2561 S 

200 410 2.93 0.0306 69.3 0.5 86 2200 3.8415 S 

200 410 2.93 0.0306 60.2 0.75 86 2200 4.1707 S 

200 410 2.93 0.0306 75.7 0.75 86 2200 3.5976 S 

300 570 2.98 0.0287 76.8 1 40 2600 2.6725 S 

300 570 2.98 0.0287 72 1 48 1850 3.5556 S 

300 570 2.98 0.0287 60.2 0.75 86 2200 3.0468 S 

200 314 3.5 0.035 132 2 75 2000 4.0287 S 

200 314 3.5 0.035 154 2 75 2000 5.0955 S 

200 314 3.5 0.035 146 2 75 2000 5.7166 S 

200 314 3.5 0.035 133 1 75 2000 4.2675 S 

200 314 3.5 0.035 143 1 75 2000 3.2006 S 

200 314 3.5 0.035 153 1 75 2000 4.9363 S 

125 215 2 0.0037 92 1 75 260 1.6744 NA 

125 215 4 0.0037 92.6 1 75 260 0.8930 NA 

125 215 6 0.0037 93.7 1 75 260 0.5581 NA 

125 215 1 0.0283 99 0.5 75 260 9.0791 NA 

125 215 2 0.0283 99.1 0.5 75 260 4.8000 NA 

125 215 4 0.0283 95.4 0.5 75 260 2.2698 NA 

125 215 6 0.0283 95.83 0.5 75 260 1.9721 NA 

125 215 1 0.0283 95.3 1 75 260 12.7256 NA 

125 215 2 0.0283 95.3 1 75 260 6.0279 NA 

125 215 4 0.0283 97.53 1 75 260 3.1628 NA 

125 215 6 0.0283 100.5 1 75 260 1.9721 NA 

125 215 1 0.0283 96.4 1.5 75 260 13.9163 NA 
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Table A.1 (continued) 

Beam Geometry 
Longitudinal 
Steel 

Concrete 
Properties 

Fiber Properties Shear Strength Failure Mode 

bw(mm) d (mm) a/d ρ f'c (Mpa) Vf lf/df ftf (MPa) vu (MPa)  

125 215 2 0.0283 96.6 1.5 75 260 7.1814 NA 

125 215 4 0.0283 97.1 1.5 75 260 3.4977 NA 

125 215 6 0.0283 101.32 1.5 75 260 1.9721 NA 

125 215 2 0.0458 94.5 1 75 260 6.6977 NA 

125 215 4 0.0458 93.8 1 75 260 3.8698 NA 

125 215 6 0.0458 95 1 75 260 2.9395 NA 

140 340 2 0.0167 35 0.5 60 1100 4.5798 NA 

140 340 2 0.0167 33 0.75 60 1100 3.8025 NA 

140 340 2 0.0167 36 1 60 1100 4.4328 NA 

140 340 2.5 0.0167 36 1 60 1100 3.2353 NA 

140 340 1.5 0.0167 36 1 60 1100 6.4496 NA 

150 350 2.86 0.0561 121.1058 0.8 65 2000 6.4952 NA 

150 350 2.86 0.0561 120.3022 1.6 65 2000 10.1333 NA 

260 340 4 0.0172 21 0.75 60 1336 1.3235 NA 

260 340 4 0.0172 56 0.75 60 1336 2.3416 NA 

150 276 1.81 0.0146 48.6 0.96 85 1100 2.9710 NA 

100 345 0.7 0.0355 52.89 0.25 100 2000 10.1449 NA 

100 345 0.7 0.0355 51.004 0.5 100 2000 9.4203 NA 

100 345 0.7 0.0355 47.56 0.75 100 2000 10.4638 NA 

100 345 0.7 0.0355 55.924 1 100 2000 11.4783 NA 

100 345 0.7 0.0355 54.94 1.25 100 2000 11.3913 NA 

100 345 0.46 0.0355 50.512 1 100 2000 13.1594 NA 

100 345 0.58 0.0355 47.806 1 100 2000 11.7101 NA 

100 345 0.81 0.0355 45.592 1 100 2000 9.9130 NA 

100 345 0.93 0.0355 49.118 1 100 2000 9.9710 NA 

100 345 0.7 0.0355 30.996 1 100 2000 8.5217 NA 

100 345 0.7 0.0355 34.686 1 100 2000 9.6522 NA 

63.5 102 3 0.022 53 1 29 1000 2.4703 NA 

127 204 3 0.0221 53 1 29 1000 1.9299 NA 

63.5 102 3 0.022 50.2 2 29 1000 3.0878 NA 

127 204 3 0.0221 50.2 2 29 1000 2.5475 NA 

63.5 102 3 0.022 62.6 1 29 1000 2.6247 NA 

127 204 3 0.0221 62.6 1 29 1000 2.3545 NA 

63.5 102 1 0.022 62.6 1 29 1000 7.7196 NA 

63.5 102 1.5 0.022 62.6 1 29 1000 4.9406 NA 

63.5 102 1.75 0.022 62.6 1 29 1000 4.4774 NA 

63.5 102 2 0.022 62.6 1 29 1000 3.8598 NA 

63.5 102 2.25 0.022 62.6 1 29 1000 3.3966 NA 

63.5 102 2.5 0.022 62.6 1 29 1000 3.0878 NA 

63.5 102 2.75 0.022 62.6 1 29 1000 2.6247 NA 

63.5 102 3 0.011 62.6 1 29 1000 1.8527 NA 
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Table A.1 (continued) 

Beam Geometry 
Longitudinal 
Steel 

Concrete 
Properties 

Fiber Properties Shear Strength Failure Mode 

bw(mm) d (mm) a/d ρ f'c (Mpa) Vf lf/df ftf (MPa) vu (MPa)  

63.5 102 3 0.033 62.6 1 29 1000 2.6247 NA 

63.5 102 3 0.033 54.1 1 57 1000 3.7054 NA 

127 204 3 0.0221 22.7 1 60 1172 3.0107 NA 

63.5 102 3 0.022 22.7 1 60 1172 3.0878 NA 

63.5 102 3 0.011 22.7 1 60 1172 2.3159 NA 

63.5 102 1.5 0.011 22.7 1 60 1172 5.5581 NA 

127 204 3 0.0221 26 1 100 1172 3.0107 NA 

63.5 102 3 0.022 26 1 100 1172 3.3966 NA 

55 265 2 0.0431 36.49 1 100 1570 5.4889 S 

55 265 3.43 0.0431 41.902 1 100 1570 3.9794 S 

55 265 4.91 0.0431 36.9 1 100 1570 2.8816 S 

55 265 2 0.0276 38.704 1 100 1570 4.8714 S 

55 265 3.43 0.0276 33.948 1 100 1570 3.0875 S 

55 265 4.91 0.0276 36.818 1 100 1570 2.8816 FS 

55 265 2 0.0155 36.572 1 100 1570 4.5969 FS 

150 560 1.63 0.0214 54.1 0.75 60 1200 3.2976 S 

150 560 1.63 0.0214 49.9 1.5 60 1200 3.8690 S 

150 560 1.63 0.0214 54.8 0.4 60 1200 2.4405 S 

150 560 1.63 0.0214 56.5 0.6 60 1200 2.7738 S 

150 560 1.63 0.0214 46.9 0.4 60 1200 2.9524 S 

150 560 1.63 0.0214 40.8 0.6 60 1200 2.8333 S 

120 167.5 1.43 0.0132 25.7 0.5 60 1100 2.9851 S 

120 167.5 1.43 0.0132 25.3 1 60 1100 3.9303 FS 

120 167.5 1.43 0.0132 23.9 1.5 60 1100 4.1791 FS 

120 167.5 1.43 0.0132 57.8 0.5 60 1100 4.6766 FS 

120 167.5 1.43 0.0132 61.5 1 60 1100 5.0746 FS 

120 167.5 1.43 0.0282 70.5 0.5 60 1100 8.8557 S 

120 167.5 1.43 0.0282 67.3 1 60 1100 8.4080 S 

120 167.5 1.43 0.0282 67.3 1.5 60 1100 9.2537 S 

120 167.5 1.43 0.02 82.4 0.5 60 1100 7.8109 S 

120 167.5 1.43 0.02 81.1 1 60 1100 8.0597 FS 

120 167.5 1.43 0.0282 86.1 0.5 60 1100 7.6119 S 

120 167.5 1.43 0.0282 89.4 1 60 1100 8.4577 FS 

200 265 3.02 0.0178 47.9 0.5 50 1100 1.7170 S 

200 265 3.02 0.0178 38 0.75 50 1100 2.0000 S 

200 265 3.02 0.0178 42.2 1 50 1100 2.8113 S 

200 265 3.02 0.0178 45.4 0.5 50 1100 2.1887 S 

200 265 3.02 0.0178 44.4 0.75 50 1100 2.7358 S 

200 265 3.02 0.0178 40.3 1 50 1100 2.7736 S 

200 265 3.02 0.0178 53.7 0.5 43 1100 2.0189 S 

200 265 3.02 0.0178 46 0.75 43 1100 2.3208 S 
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Table A.1 (continued) 

Beam Geometry 
Longitudinal 
Steel 

Concrete 
Properties 

Fiber Properties Shear Strength Failure Mode 

bw(mm) d (mm) a/d ρ f'c (Mpa) Vf lf/df ftf (MPa) vu (MPa)  

200 265 3.02 0.0178 42.2 1 43 1100 2.8679 S 

200 310 2.55 0.0113 39.8 0.375 80 1100 2.1452 S 

200 285 2.77 0.0333 39.8 0.375 80 1100 3.8947 S 

200 260 3.46 0.0355 46.4 0.25 65 1100 2.1154 S 

200 260 3.46 0.0355 43.2 0.5 65 1100 2.3077 S 

200 260 3.46 0.0355 47.6 0.75 65 1100 2.9808 S 

200 260 1.54 0.0181 40.7 0.25 65 1100 5.4038 S 

200 260 1.54 0.0181 42.4 0.75 65 1100 5.7885 S 

200 262 2.48 0.0115 39.1 0.25 65 1100 1.5840 S 

200 262 2.48 0.0115 38.6 0.75 65 1100 2.0802 S 

200 260 2.5 0.0181 39.1 0.25 65 1100 2.0962 S 

200 260 2.5 0.0181 38.6 0.75 65 1100 2.7885 S 

200 260 4.04 0.0181 40.7 0.25 65 1100 1.5962 S 

200 260 4.04 0.0181 42.4 0.75 65 1100 2.2692 S 

200 262 2.48 0.0115 26.5 0.25 45 1100 1.9275 S 

200 262 2.48 0.0115 27.2 0.75 45 1100 2.3092 S 

200 260 2.5 0.0181 26.5 0.25 45 1100 1.9423 S 

200 260 2.5 0.0181 27.2 0.75 45 1100 2.3269 S 

200 262 2.48 0.0115 47.4 0.5 65 1100 2.5000 S 

200 260 2.5 0.0181 46.8 0.5 65 1100 3.0385 S 

200 262 2.48 0.0115 45.4 0.5 80 1100 2.8244 S 

200 305 2.46 0.0103 34.4 0.57 80 1100 2.6885 S 

200 305 2.46 0.0103 30.2 0.38 80 1100 2.6885 FS 

175 210 4.5 0.0401 36.408 0.4 100 1050 2.1769 S 

175 210 4.5 0.0401 38.376 0.8 100 1050 3.1293 S 

175 210 4.5 0.0401 40.836 1.2 100 1050 3.1565 S 

175 210 4.5 0.031 39.114 0.8 100 1050 3.2381 S 

175 210 4.5 0.0401 38.54 0.8 100 1050 1.9048 S 

101 127 4.8 0.0309 33.22 0.22 102 1100 2.1049 FS 

101 127 4.8 0.0309 33.22 0.22 102 1100 2.1049 FS 

101 127 4.8 0.0309 33.22 0.22 102 1100 2.0270 FS 

101 127 4.8 0.0309 33.22 0.22 46 1100 2.1049 FS 

101 127 4.8 0.0309 33.22 0.22 46 1100 2.1049 FS 

101 127 4.8 0.0309 33.22 0.22 46 1100 2.0270 FS 

101 127 4.8 0.0309 33.22 0.22 102 1100 2.0270 FS 

101 127 4.4 0.0309 33.22 0.22 102 1100 2.4168 S 

101 127 4.2 0.0309 33.22 0.22 102 1100 2.4168 S 

101 127 4.2 0.0309 33.22 0.22 102 1100 2.1049 S 

101 127 4.2 0.0309 33.22 0.22 102 1100 1.8711 S 

101 127 4.3 0.0309 33.22 0.22 102 1100 2.2609 S 

101 127 4.3 0.0309 33.22 0.22 102 1100 2.1049 S 
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Table A.1 (continued) 

Beam Geometry 
Longitudinal 
Steel 

Concrete 
Properties 

Fiber Properties Shear Strength Failure Mode 

bw(mm) d (mm) a/d ρ f'c (Mpa) Vf lf/df ftf (MPa) vu (MPa)  

101 127 4.2 0.0309 40.21 0.44 102 1100 2.4947 FS 

101 127 4 0.0309 40.21 0.44 102 1100 2.4947 S 

101 127 4 0.0309 40.21 0.44 102 1100 2.3388 S 

101 127 4 0.0309 40.21 0.44 102 1100 2.4947 S 

101 127 4.4 0.0309 33.22 0.22 102 1100 2.1829 S 

101 127 4.4 0.0309 33.22 0.22 102 1100 2.0270 S 

101 127 4 0.0309 33.22 0.22 62 1100 2.2609 S 

101 127 4 0.0309 33.22 0.22 62 1100 2.3388 S 

101 127 4 0.0309 33.22 0.22 62 1100 2.4947 S 

101 127 4.6 0.0309 33.22 0.22 62 1100 1.9490 S 

101 127 4.4 0.0309 33.22 0.22 62 1100 2.0270 S 

101 127 4.4 0.0309 33.22 0.22 62 1100 1.9490 S 

101 127 5 0.0309 33.22 0.22 62 1100 1.8711 S 

101 127 4.8 0.0309 33.22 0.22 62 1100 1.7151 S 

101 127 4 0.0309 40.21 0.44 62 1100 2.4168 S 

101 127 4.2 0.0309 40.21 0.44 62 1100 2.5727 S 

101 127 4.2 0.0309 40.21 0.44 62 1100 2.2609 S 

101 127 4.2 0.0309 40.21 0.44 62 1100 2.4947 S 

101 127 3.2 0.0309 39.72 0.88 62 1100 2.8066 S 

101 127 3.4 0.0309 39.72 0.88 62 1100 2.6507 S 

101 127 3.4 0.0309 39.72 0.88 62 1100 2.4947 S 

101 127 3.4 0.0309 39.72 0.88 62 1100 3.1964 S 

101 127 3.4 0.0309 39.72 0.88 62 1100 3.0405 S 

101 127 2.8 0.0309 39.79 1.76 62 1100 4.3658 FS 

101 127 1.8 0.0309 39.79 1.76 62 1100 5.9250 S 

101 127 1.2 0.0309 39.79 1.76 62 1100 11.2263 S 

101 127 1.2 0.0309 39.79 1.76 62 1100 10.8365 S 

101 127 4.8 0.0309 33.22 0.22 62 1100 1.8711 S 

101 127 4.8 0.0309 33.22 0.22 62 1100 1.7931 S 

101 127 4.8 0.0309 33.22 0.22 62 1100 1.9490 S 

150 259.5 2 0.0252 34.45 0.5 35 700 2.9030 S 

150 259.5 2 0.0252 36.08 1 35 700 3.5453 S 

150 259.5 2 0.0252 37.13 1.5 35 700 4.0077 S 

150 259.5 2 0.0252 35.26 2 35 700 3.8279 S 

100 127 3.6 0.0199 20.68966 1 25 4913 1.5748 S 

100 127 2 0.0199 20.68966 1 100 2350 2.2835 S 

100 127 2.4 0.0199 20.68966 1 100 2350 2.2835 S 

100 127 2 0.0199 20.68966 1 83 2350 3.0709 S 

100 127 3.6 0.0199 20.68966 1 83 2350 2.2047 S 

100 127 4.8 0.0199 20.68966 1 83 2350 1.8898 S 

100 127 2 0.0199 20.68966 1 63 2350 2.5197 S 
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Table A.1 (continued) 

Beam Geometry 
Longitudinal 
Steel 

Concrete 
Properties 

Fiber Properties Shear Strength Failure Mode 

bw(mm) d (mm) a/d ρ f'c (Mpa) Vf lf/df ftf (MPa) vu (MPa)  

100 175 2 0.0359 80 0.5 100 1856 6.8000 S 

100 175 2 0.0359 80 1 100 1856 7.3714 S 

100 175 3 0.0359 80 0.5 100 1856 3.1429 S 

100 175 3 0.0359 80 1 100 1856 4.0571 S 

100 175 4.5 0.0359 80 0.5 100 1856 2.7429 S 

100 175 4.5 0.0359 80 1 100 1856 3.4286 S 

200 300 1.75 0.0308 109.5 0.75 75 2000 8.8333 FS 

200 300 2.5 0.0308 110 0.75 75 2000 4.7667 S 

200 300 3.5 0.0308 111.5 0.75 75 2000 3.5167 S 

200 300 4.5 0.0308 110.8 0.75 75 2000 3.5667 S 

150 255 1.96 0.0493 55.842 1 47 700 6.6144 S 

152.4 282.575 2.5 0.0199 33.06897 1 100 1100 3.1581 S 

152.4 282.575 2.5 0.0199 33.24138 1 100 1100 3.3670 S 

152.4 282.575 2.5 0.0199 33.03448 2 100 1100 3.0884 S 

152.4 282.575 2.5 0.0199 34.37931 2 100 1100 3.2045 S 

50 170 2.41 0.0237 32.062 3 100 1100 3.7647 FS 

50 170 2.41 0.0237 39.278 4.5 100 1100 4.1176 FS 

50 170 1.62 0.0237 32.062 3 100 1100 5.8824 FS 

50 170 1.62 0.0237 39.278 4.5 100 1100 6.2353 FS 

50 170 0.81 0.0237 32.062 3 100 1100 9.4118 S 

50 170 0.81 0.0237 39.278 4.5 100 1100 12.5882 FS 

100 165.5 3.02 0.0343 39.4 0.5 60 1200 1.8127 S 

100 165.5 3.02 0.0343 39.2 1 60 1200 3.0816 S 

100 165.5 3.02 0.0343 40 1.5 60 1200 3.2024 S 

100 165.5 3.02 0.0343 35.5 2 60 1200 2.8399 S 

100 159 3.14 0.0478 58 1 60 1200 4.5912 S 

100 159 3.14 0.0478 80.1 0.5 60 1200 4.5283 S 

100 159 3.14 0.0478 88 1 60 1200 5.0943 S 

150 219 2.8 0.0191 80.04 1 55 1100 3.4703 S 

150 219 2 0.0191 80.04 1 55 1100 4.2922 S 

100 275 2 0.0055 28.4 0.5 75 1100 1.5273 S 

125 212 3.77 0.0152 59.4 0.5 55 1100 1.6226 S 

125 212 3.77 0.0152 49.6 0.5 80 1100 1.6981 S 

125 210 3.81 0.0228 49.7 0.75 55 1100 1.6762 S 

125 210 3.81 0.0228 51.5 1 55 1100 2.2095 S 

125 210 3.81 0.0228 54.5 1 55 1100 2.2476 S 

100 140 1.07 0.0112 36.08 0.5 63 1100 5.1429 S 

100 140 1.07 0.0112 36.9 0.75 63 1100 6.1429 S 

100 140 2.5 0.0112 36.08 0.5 63 1100 2.8571 S 

100 140 2.5 0.0112 36.9 0.75 63 1100 3.5714 FS 

100 150 1 0.0105 36.08 0.5 63 1100 7.0667 FS 
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Table A.1 (continued) 

Beam Geometry 
Longitudinal 
Steel 

Concrete 
Properties 

Fiber Properties Shear Strength Failure Mode 

bw(mm) d (mm) a/d ρ f'c (Mpa) Vf lf/df ftf (MPa) vu (MPa)  

100 150 1 0.0105 36.9 0.75 63 1100 8.3333 FS 

100 150 2.33 0.0105 36.08 0.5 63 1100 2.9333 S 

100 150 2.33 0.0105 36.9 0.75 63 1100 3.0667 S 

100 170 2.41 0.0092 36.08 0.5 63 1100 2.4118 S 

100 170 1.29 0.0092 36.08 0.5 63 1100 1.2353 S 

100 245 0.9 0.0064 36.08 0.5 63 1100 2.0408 S 

100 85.25 3.52 0.0166 54.8 1 127 1100 2.2287 S 

100 85.25 3.52 0.0166 50 2 127 1100 2.4633 FS 

100 85.25 3.52 0.0166 49.3 1 191 1100 2.4633 S 

100 85.25 3.52 0.0166 49.3 1 191 1100 2.1114 S 

100 85.25 3.52 0.0166 53.7 2 191 1100 2.2287 S 

100 85.25 3.52 0.0166 53.5 0.5 191 1100 2.5806 S 

100 85.25 3.52 0.0166 53.5 0.5 191 1100 1.9941 S 

200 273 2.75 0.0348 110.9 0.75 64 1000 3.6813 S 

200 273 2.75 0.0348 109.2 0.75 67 1000 3.8462 S 

80 165 2.99 0.0171 41.23 1 50 800 2.4242 S 

80 165 2.99 0.0171 39.87 1.5 50 800 3.0303 S 

300 420 3.21 0.0322 62.3 0.75 65 1400 3.3016 S 

125 222 1.8 0.0145 30 0.5 80 1225 2.8108 S 

125 222 1.8 0.0145 30 0.5 80 1225 3.0631 S 

70 270 2.56 0.0332 50 0.769 58 1100 4.2857 S 

110 270 2.56 0.0212 50 0.769 58 1100 3.1987 S 

150 270 2.56 0.0155 50 0.769 58 1100 2.6914 S 

310 258 3 0.025 23 1 55 1100 2.6382 S 

310 240 3 0.0403 41 1 55 1100 3.7769 S 

310 258 3 0.025 41 1 55 1100 3.4759 FS 

310 240 3 0.0403 80 1 55 1100 6.1559 FS 

300 531 3 0.0188 23 1 55 1100 1.5945 S 

300 523 3 0.0255 23 1 55 1100 1.5551 S 

300 523 3 0.0255 41 1 55 1100 2.8426 S 

300 923 3 0.0144 41 1 55 1100 1.8021 S 

300 920 3 0.0203 41 1 55 1100 1.8261 S 

300 923 3 0.0144 80 1 55 1100 2.3546 S 

300 920 3 0.0203 80 1 55 1100 2.3551 S 

200 300 3.5 0.036 215 2 55 1100 6.2167 S 

200 300 2 0.036 199 2 55 1100 9.7667 S 

120 266 1.13 0.0126 31.9 0.2 50 834 3.9474 S 

120 266 1.13 0.0126 31.9 0.4 50 834 4.1353 S 

120 266 1.13 0.0126 31.9 0.6 50 834 4.5426 S 

150 261 2.3 0.0087 23.9 0.5 80 1100 NA F 

150 261 2.3 0.0087 27.4 1 80 1100 NA F 
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Table A.1 (continued) 

Beam Geometry 
Longitudinal 
Steel 

Concrete 
Properties 

Fiber Properties Shear Strength Failure Mode 

bw(mm) d (mm) a/d ρ f'c (Mpa) Vf lf/df ftf (MPa) vu (MPa)  

150 261 2.3 0.0087 27.2 1.5 80 1100 NA F 

150 261 2.3 0.0115 34.9 1 80 1100 NA F 

150 261 2.3 0.0115 34.1 1.5 80 1100 NA F 

300 550 3 0.0091 30 1 55 1100 NA F 

300 950 3 0.0053 31 1 55 1100 NA F 

300 950 3 0.007 31 1 55 1100 NA F 

150 200 4.5 0.0134 27.91 3 55 1100 NA F 

150 217 1.6 0.0185 45.5 1 80 1100 NA F 

150 217 1.6 0.0185 42 1.5 80 1100 NA F 

150 217 2.5 0.0185 45.5 1 80 1100 NA F 

150 217 2.5 0.0185 42 1.5 80 1100 NA F 

150 217 3 0.0185 45.5 1 80 1100 NA F 

150 217 3 0.0185 42 1.5 80 1100 NA F 

100 135 2.2 0.0116 63.1 2 65 1100 NA F 

100 135 2.2 0.0116 65 2 80 1100 NA F 

100 135 2.2 0.0116 62.2 3 65 1100 NA F 

85 130 3 0.02 49.7 1.5 100 2000 NA F 

85 130 3 0.02 53.8 2 100 2000 NA F 

85 130 3 0.02 54.2 2.5 100 2000 NA F 

85 130 3 0.02 52.0 3 100 2000 NA F 

125 212 3 0.0152 63.8 0.5 62.5 1079 NA F 

125 212 3 0.0152 68.6 0.75 62.5 1079 NA F 

125 212 4 0.0152 63.8 0.5 62.5 1079 NA F 

125 212 4 0.0152 68.6 0.75 62.5 1079 NA F 

125 212 4 0.0152 30.8 0.5 62.5 1079 NA F 

205 610 3.5 0.016 42.3 0.75 55 1100 NA F 

200 435 2.5 0.0104 24.8 0.57 50 1100 NA F 

200 435 2.5 0.0104 58.3 0.64 79 1333 NA F 

125 210 2 0.015 47.7 0.75 63 1100 NA F 

125 210 3 0.015 44.6 0.5 63 1100 NA F 

125 210 3 0.015 47.7 0.75 63 1100 NA F 

125 210 4 0.015 47.7 0.75 63 1100 NA F 

125 210 3 0.015 57.2 0.5 63 1100 NA F 

125 210 4 0.015 57.2 0.5 63 1100 NA F 

152 221 1.5 0.011 34 1 60 1130 NA F 

152 221 2.5 0.011 34 1 60 1130 NA F 

152 221 3.5 0.011 34 1 60 1130 NA F 

152 221 1.5 0.011 34 0.5 60 1130 NA F 

152 221 3.5 0.011 34 0.5 60 1130 NA F 

150 197 4.4 0.0134 29.1 0.5 60 1260 NA F 

150 197 3.6 0.0134 29.9 0.75 60 1260 NA F 
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Table A.1 (continued) 

Beam Geometry 
Longitudinal 
Steel 

Concrete 
Properties 

Fiber Properties Shear Strength Failure Mode 

bw(mm) d (mm) a/d ρ f'c (Mpa) Vf lf/df ftf (MPa) vu (MPa)  

150 197 4.4 0.0134 29.9 0.75 60 1260 NA F 

150 197 2.8 0.0079 29.9 0.75 60 1260 NA F 

150 197 2 0.0134 30 1 60 1260 NA F 

150 197 2.8 0.0134 30 1 60 1260 NA F 

150 197 3.6 0.0134 30 1 60 1260 NA F 

150 197 4.4 0.0134 30 1 60 1260 NA F 

150 197 2.8 0.0079 20.6 0.75 60 1260 NA F 

150 197 2.8 0.0079 33.4 0.75 60 1260 NA F 

150 197 2.8 0.0134 33.4 0.75 60 1260 NA F 

55 265 3.43 0.0155 35.342 1 100 1570 NA F 

55 265 4.91 0.0155 33.046 1 100 1570 NA F 

120 167.5 1.43 0.0132 28.8 2 60 1100 NA F 

120 167.5 1.43 0.0132 60.6 1.5 60 1100 NA F 

120 167.5 1.43 0.0132 62.3 2 60 1100 NA F 

120 167.5 1.43 0.0282 69.6 2 60 1100 NA F 

120 167.5 1.43 0.02 83 1.5 60 1100 NA F 

120 167.5 1.43 0.02 82.2 2 60 1100 NA F 

120 167.5 1.43 0.0282 82.7 1.5 60 1100 NA F 

120 167.5 1.43 0.0282 89.9 2 60 1100 NA F 

101 127 4.8 0.0309 33.22 0.22 102 1100 NA F 

101 127 4.8 0.0309 33.22 0.22 102 1100 NA F 

101 127 4.8 0.0309 33.22 0.22 102 1100 NA F 

101 127 4.8 0.0309 33.22 0.22 102 1100 NA F 

101 127 4.8 0.0309 33.22 0.22 102 1100 NA F 

101 127 4.8 0.0309 33.22 0.22 102 1100 NA F 

101 127 4.8 0.0309 33.22 0.22 102 1100 NA F 

101 127 4.8 0.0309 33.22 0.22 102 1100 NA F 

101 127 4.4 0.0309 33.22 0.22 102 1100 NA F 

101 127 4.4 0.0309 33.22 0.22 102 1100 NA F 

101 127 4.3 0.0309 33.22 0.22 102 1100 NA F 

101 127 4.2 0.0309 40.21 0.44 102 1100 NA F 

101 127 4.2 0.0309 40.21 0.44 102 1100 NA F 

101 127 2.2 0.0309 39.79 1.76 62 1100 NA F 

101 127 2.4 0.0309 39.79 1.76 62 1100 NA F 

101 127 2.6 0.0309 39.79 1.76 62 1100 NA F 

101 127 5 0.0309 33.22 0.22 62 1100 NA F 

101 127 4.4 0.0309 40.21 0.44 62 1100 NA F 

101 127 4.8 0.0309 40.21 0.44 62 1100 NA F 

101 127 4.4 0.0309 40.21 0.44 62 1100 NA F 

101 127 4.4 0.0309 40.21 0.44 62 1100 NA F 

101 127 4.4 0.0309 40.21 0.44 62 1100 NA F 
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Table A.1 (continued) 

Beam Geometry 
Longitudinal 
Steel 

Concrete 
Properties 

Fiber Properties Shear Strength Failure Mode 

bw(mm) d (mm) a/d ρ f'c (Mpa) Vf lf/df ftf (MPa) vu (MPa)  

101 127 3.6 0.0309 39.72 0.88 62 1100 NA F 

100 85.25 3.52 0.017 54.8 1 127 1100 NA F 

100 85.25 3.52 0.017 50 2 127 1100 NA F 

100 85.25 3.52 0.017 53.7 2 161 1100 NA F 

205 610 3.5 1.6 42.3 0.75 55 1100 NA F 
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Table 5.2: Database used to develop the GP-SR model 

Beam Geometry Longitudinal Steel Concrete Properties Fiber Properties Shear Strength 

bw(mm) d (mm) a/d ρ (%) f'c (Mpa) Vf lf/df F vu (MPa) 

150 251 3.49 2.67 28.1 0.75 65 0.488 3.001 

150 251 3.49 2.67 25.3 0.75 65 0.488 2.098 

150 251 3.49 2.67 27.9 1 65 0.650 2.895 

150 251 3.49 2.67 26.2 1 65 0.650 3.267 

150 251 3.49 2.67 28.1 1.5 65 0.975 2.948 

150 251 3.49 2.67 27.3 1.5 65 0.975 3.479 

150 251 3.49 2.67 27.5 0.5 80 0.400 1.726 

150 251 3.49 2.67 24.9 0.5 80 0.400 2.045 

150 251 3.49 2.67 27.8 0.75 80 0.600 2.417 

150 251 3.49 2.67 27.3 0.75 80 0.600 2.683 

150 251 3.49 2.67 26.3 1 80 0.800 3.081 

150 251 3.49 2.67 27.1 1 80 0.800 2.762 

150 251 3.49 2.67 53.4 0.75 65 0.488 3.001 

150 251 3.49 2.67 54.1 0.75 65 0.488 3.347 

150 251 3.49 2.67 53.2 1 65 0.650 3.825 

150 251 3.49 2.67 55.3 1 65 0.650 4.383 

150 251 3.49 2.67 64.6 1.5 65 0.975 5.179 

150 251 3.49 2.67 59.9 1.5 65 0.975 4.250 

150 251 3.49 2.67 47.8 0.5 80 0.400 3.373 

150 251 3.49 2.67 49.5 0.5 80 0.400 4.037 

150 251 3.49 2.67 55.3 0.75 80 0.600 3.878 

150 251 3.49 2.67 56.4 0.75 80 0.600 4.728 

150 251 3.49 2.67 53.4 1 80 0.800 3.400 

150 251 3.49 2.67 51 1 80 0.800 4.170 

150 251 3.49 2.67 27.8 1 50 0.375 2.098 

150 251 3.49 2.67 27.2 1 50 0.375 2.072 

150 251 3.49 2.67 27.6 1 85 0.638 2.603 

150 251 3.49 2.67 27.9 1 85 0.638 2.151 

150 251 3.49 2.67 34.7 1 50 0.375 2.630 

150 251 3.49 2.67 36.2 1 50 0.375 2.656 

150 251 3.49 2.67 37 1 85 0.638 2.922 

150 251 3.49 2.67 38.3 1 85 0.638 2.762 

150 261 3.45 1.95 32.9 0.75 80 0.600 2.759 

150 261 3.45 1.95 23.8 1 80 0.800 2.376 

150 261 3.45 1.95 24.1 1.25 80 1.000 2.912 

140 175 1.5 1.28 82 0.5 80 0.400 4.816 

140 175 1.5 1.28 83.2 1 80 0.800 6.327 

140 175 1.5 1.28 83.8 1.5 80 1.200 7.592 

140 175 2.5 1.28 82 0.5 80 0.400 2.531 
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Table A.2 (continued) 

Beam Geometry Longitudinal Steel Concrete Properties Fiber Properties Shear Strength 

bw(mm) d (mm) a/d ρ (%) f'c (Mpa) Vf lf/df F vu (MPa) 

140 175 2.5 1.28 83.2 1 80 0.800 3.225 

140 175 2.5 1.28 83.8 1.5 80 1.200 5.510 

150 200 2.5 1.34 33.68 1 55 0.550 2.133 

150 200 2.5 1.34 24.53 1 55 0.550 1.433 

150 200 2.5 1.34 21.43 2 55 1.100 1.633 

150 200 2.5 1.34 9.77 3 55 1.650 1.267 

150 200 3.5 1.34 20.21 1 55 0.550 1.067 

150 200 3.5 1.34 21.43 2 55 1.100 1.400 

150 200 3.5 1.34 27.91 3 55 1.650 1.933 

150 200 4.5 1.34 24.53 1 55 0.550 1.400 

150 217 1.59 1.85 35 0.75 80 0.600 4.547 

150 217 2.47 1.85 35 0.75 80 0.600 3.011 

150 217 2.95 1.85 35 0.75 80 0.600 2.581 

300 622 2.81 1.98 34 0.321 65 0.209 1.527 

300 622 2.81 1.98 36 0.687 65 0.447 1.903 

100 135 2.22 1.16 64.2 0.5 65 0.325 3.037 

100 135 2.22 1.16 64.2 0.5 65 0.325 3.185 

100 135 2.22 1.16 64.2 0.5 65 0.325 3.111 

85 130 2.02 2.05 51.85 0.25 100 0.188 2.896 

85 130 2.52 2.05 51.85 0.25 100 0.188 2.624 

85 130 3.02 2.05 51.85 0.25 100 0.188 2.715 

85 130 2.02 2.05 33.32 0.25 100 0.188 2.624 

85 130 2.52 2.05 33.32 0.25 100 0.188 1.991 

85 130 3.02 2.05 33.32 0.25 100 0.188 1.901 

85 130 3.02 2.05 51.68 0.5 133 0.499 3.167 

85 130 3.02 2.05 30.6 0.5 133 0.499 1.901 

85 130 3.02 2.05 31.025 1 100 0.750 2.896 

85 130 2.02 2.05 51.68 0.5 133 0.499 4.525 

85 130 2.52 2.05 51.68 0.5 133 0.499 3.620 

85 130 3.52 2.05 41.65 0.5 133 0.499 2.534 

85 130 2.02 2.05 48.705 1 133 0.998 5.520 

85 130 2.52 2.05 48.705 1 133 0.998 4.344 

85 130 3.52 2.05 48.79 1 133 0.998 2.896 

85 128 3.06 3.7 41.65 0.5 133 0.499 2.849 

85 126 3.11 5.72 41.65 0.5 133 0.499 3.455 

85 128 3.06 3.7 30.6 0.5 133 0.499 2.206 

85 126 3.11 5.72 30.6 0.5 133 0.499 2.241 

85 128 3.06 3.7 48.79 1 133 0.998 4.320 

85 126 3.11 5.72 48.79 1 133 0.998 4.949 

85 126 3.11 5.72 53.55 1.5 100 1.125 4.762 
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Table A.2 (continued) 

Beam Geometry Longitudinal Steel Concrete Properties Fiber Properties Shear Strength 

bw(mm) d (mm) a/d ρ (%) f'c (Mpa) Vf lf/df F vu (MPa) 

85 126 3.11 5.72 43.18 2 100 1.500 4.855 

85 128 3.06 3.7 53.55 1.5 100 1.125 4.412 

85 126 2.08 5.72 50.15 0.5 100 0.375 5.416 

85 126 2.08 5.72 45.9 1 100 0.750 6.723 

85 126 2.08 5.72 53.55 1.5 100 1.125 7.096 

85 126 2.08 5.72 43.18 2 100 1.500 6.256 

150 219 2.8 1.91 40.85 1 60 0.600 2.922 

150 219 2.8 1.91 40.85 2 60 1.200 3.136 

150 219 2 1.91 43.23 1 60 0.600 3.501 

150 219 2 1.91 43.23 2 60 1.200 3.531 

125 212 2 1.52 30.8 0.5 63 0.315 4.038 

125 212 3 1.52 30.8 0.5 63 0.315 2.528 

100 130 3.08 3.09 38.69 1 60 0.300 4.462 

100 130 3.08 3.09 42.4 2 60 0.600 5.692 

152 381 3.44 1.96 44.8 0.75 55 0.413 2.953 

152 381 3.44 1.96 44.8 0.75 55 0.413 2.780 

152 381 3.44 1.96 38.1 1 55 0.550 2.936 

152 381 3.44 1.96 38.1 1 55 0.550 2.987 

152 381 3.44 2.63 31 1.5 55 0.825 2.573 

152 381 3.44 2.63 31 1.5 55 0.825 3.402 

152 381 3.44 2.63 44.9 1.5 55 0.825 3.315 

152 381 3.44 2.63 44.9 1.5 55 0.825 3.281 

152 381 3.44 2.63 49.2 1 80 0.800 2.987 

152 381 3.44 2.63 49.2 1 80 0.800 3.782 

152 381 3.44 1.96 43.3 0.75 80 0.600 3.333 

152 381 3.44 1.96 43.3 0.75 80 0.600 3.281 

205 610 3.5 1.96 50.8 0.75 55 0.413 2.943 

205 610 3.5 1.96 50.8 0.75 55 0.413 2.719 

205 610 3.5 1.96 28.7 0.75 80 0.600 2.831 

205 610 3.5 1.96 28.7 0.75 80 0.600 2.775 

205 610 3.5 1.52 42.3 0.75 55 0.413 2.799 

205 610 3.5 1.52 29.6 0.75 80 0.600 2.159 

205 610 3.5 1.52 29.6 0.75 80 0.600 1.815 

205 610 3.5 1.96 44.4 1.5 55 0.825 3.495 

205 610 3.5 1.96 42.8 1.5 80 1.200 3.383 

125 225 2.89 3.49 90 1.25 60 0.750 5.582 

150 202 2.97 1.17 21.3 0.5 55 0.275 1.551 

150 202 2.97 1.17 19.6 1 55 0.550 1.848 

300 437 3.09 1.5 21.3 0.5 55 0.275 1.220 

300 437 3.09 1.5 19.6 1 55 0.550 1.556 
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Table A.2 (continued) 

Beam Geometry Longitudinal Steel Concrete Properties Fiber Properties Shear Strength 

bw(mm) d (mm) a/d ρ (%) f'c (Mpa) Vf lf/df F vu (MPa) 

200 435 2.51 1.04 24.8 0.38 50 0.190 1.529 

200 435 2.51 1.04 33.5 0.38 50 0.190 1.368 

200 435 2.51 1.04 38.6 0.38 50 0.190 1.609 

200 455 2.51 0.99 24.4 0.25 50 0.125 1.714 

200 910 2.5 1.04 24.4 0.25 50 0.125 1.412 

200 910 2.5 1.04 55 0.25 50 0.125 1.857 

125 210 4 1.53 44.6 0.5 63 0.315 1.333 

125 225 2.89 3.49 90 1.25 60 0.750 4.907 

152 221 2.5 1.2 34 0.5 60 0.300 1.727 

152 221 1.5 2.39 34 1 60 0.600 4.376 

152 221 2.5 2.39 34 1 60 0.600 2.471 

152 221 1.5 2.39 34 0.5 60 0.300 4.019 

152 221 2.5 2.39 34 0.5 60 0.300 1.905 

152 221 3.5 2.39 34 0.5 60 0.300 1.459 

150 197 2 1.36 29.1 0.5 60 0.300 2.538 

150 197 2.8 1.36 29.1 0.5 60 0.300 1.760 

150 197 3.6 1.36 29.1 0.5 60 0.300 1.523 

150 197 2 1.36 29.9 0.75 60 0.450 2.877 

150 197 2.8 1.36 29.9 0.75 60 0.450 2.031 

150 197 2.8 2.04 29.9 0.75 60 0.450 2.200 

150 197 2.8 1.36 20.6 0.75 60 0.450 1.523 

150 197 2.8 2.04 20.6 0.75 60 0.450 2.031 

150 197 2.8 2.04 33.4 0.75 60 0.450 2.910 

152 254 3.5 2.48 29 0.75 67 0.503 3.108 

610 254 3.5 2.47 29 0.75 67 0.503 3.104 

152 394 3.61 2.86 39 0.75 67 0.503 2.705 

152 394 3.61 2.86 39 0.75 67 0.503 3.256 

203 541 3.45 2.54 50 0.75 67 0.503 2.477 

203 541 3.45 2.54 50 0.75 67 0.503 3.506 

254 813 3.5 2.7 50 0.75 67 0.503 3.385 

254 813 3.5 2.7 50 0.75 67 0.503 3.487 

200 180 3.33 4.47 90.6 1 40 0.200 8.306 

200 180 3.33 4.47 80.5 0.5 86 0.430 7.000 

200 180 3.33 4.47 80.5 0.75 86 0.645 7.278 

200 235 2.77 4.28 91.4 1 50 0.500 6.596 

200 235 2.77 4.28 93.3 1 40 0.200 7.723 

200 410 2.93 3.06 76.8 1 40 0.200 3.561 

200 410 2.93 3.06 76.8 1 40 0.200 4.134 

200 410 2.93 3.06 69.3 0.5 86 0.430 3.256 

200 410 2.93 3.06 69.3 0.5 86 0.430 3.842 
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Table A.2 (continued) 

Beam Geometry Longitudinal Steel Concrete Properties Fiber Properties Shear Strength 

bw(mm) d (mm) a/d ρ (%) f'c (Mpa) Vf lf/df F vu (MPa) 

200 410 2.93 3.06 60.2 0.75 86 0.645 4.171 

200 410 2.93 3.06 75.7 0.75 86 0.645 3.598 

300 570 2.98 2.87 76.8 1 40 0.200 2.673 

300 570 2.98 2.87 60.2 0.75 86 0.645 3.047 

200 314 3.5 3.5 132 2 75 0.750 4.029 

200 314 3.5 3.5 154 2 75 0.750 5.096 

200 314 3.5 3.5 146 2 75 0.750 5.717 

200 314 3.5 3.5 133 1 75 0.375 4.268 

200 314 3.5 3.5 143 1 75 0.375 3.201 

200 314 3.5 3.5 153 1 75 0.375 4.936 

55 265 2 4.31 36.49 1 100 0.750 5.489 

55 265 3.43 4.31 41.902 1 100 0.750 3.979 

55 265 4.91 4.31 36.9 1 100 0.750 2.882 

55 265 2 2.76 38.704 1 100 0.750 4.871 

55 265 3.43 2.76 33.948 1 100 0.750 3.088 

150 560 1.63 2.14 54.1 0.75 60 0.450 3.298 

150 560 1.63 2.14 49.9 1.5 60 0.900 3.869 

150 560 1.63 2.14 54.8 0.4 60 0.240 2.441 

150 560 1.63 2.14 56.5 0.6 60 0.360 2.774 

150 560 1.63 2.14 46.9 0.4 60 0.240 2.952 

150 560 1.63 2.14 40.8 0.6 60 0.360 2.833 

120 167.5 1.43 1.32 25.7 0.5 60 0.300 2.985 

120 167.5 1.43 2.82 70.5 0.5 60 0.300 8.856 

120 167.5 1.43 2.82 67.3 1 60 0.600 8.408 

120 167.5 1.43 2.82 67.3 1.5 60 0.900 9.254 

120 167.5 1.43 2 82.4 0.5 60 0.300 7.811 

120 167.5 1.43 2.82 86.1 0.5 60 0.300 7.612 

200 265 3.02 1.78 47.9 0.5 50 0.250 1.717 

200 265 3.02 1.78 38 0.75 50 0.375 2.000 

200 265 3.02 1.78 42.2 1 50 0.500 2.811 

200 310 2.55 1.13 39.8 0.375 80 0.300 2.145 

200 285 2.77 3.33 39.8 0.375 80 0.300 3.895 

200 260 3.46 3.55 46.4 0.25 65 0.163 2.115 

200 260 3.46 3.55 43.2 0.5 65 0.325 2.308 

200 260 3.46 3.55 47.6 0.75 65 0.488 2.981 

200 260 1.54 1.81 40.7 0.25 65 0.163 5.404 

200 260 1.54 1.81 42.4 0.75 65 0.488 5.789 

200 262 2.48 1.15 39.1 0.25 65 0.163 1.584 

200 262 2.48 1.15 38.6 0.75 65 0.488 2.080 

200 260 2.5 1.81 39.1 0.25 65 0.163 2.096 
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Table A.2 (continued) 

Beam Geometry Longitudinal Steel Concrete Properties Fiber Properties Shear Strength 

bw(mm) d (mm) a/d ρ (%) f'c (Mpa) Vf lf/df F vu (MPa) 

200 260 2.5 1.81 38.6 0.75 65 0.488 2.789 

200 260 4.04 1.81 40.7 0.25 65 0.163 1.596 

200 260 4.04 1.81 42.4 0.75 65 0.488 2.269 

200 262 2.48 1.15 26.5 0.25 45 0.113 1.928 

200 262 2.48 1.15 27.2 0.75 45 0.338 2.309 

200 260 2.5 1.81 26.5 0.25 45 0.113 1.942 

200 260 2.5 1.81 27.2 0.75 45 0.338 2.327 

200 262 2.48 1.15 47.4 0.5 65 0.325 2.500 

200 260 2.5 1.81 46.8 0.5 65 0.325 3.039 

200 262 2.48 1.15 45.4 0.5 80 0.400 2.824 

200 305 2.46 1.03 34.4 0.57 80 0.456 2.689 

175 210 4.5 4.01 36.408 0.4 100 0.300 2.177 

175 210 4.5 4.01 38.376 0.8 100 0.600 3.129 

175 210 4.5 4.01 40.836 1.2 100 0.900 3.157 

175 210 4.5 3.1 39.114 0.8 100 0.600 3.238 

175 210 4.5 4.01 38.54 0.8 100 0.600 1.905 

101 127 4.4 3.09 33.22 0.22 102 0.112 2.417 

101 127 4.2 3.09 33.22 0.22 102 0.112 2.417 

101 127 4.2 3.09 33.22 0.22 102 0.112 2.105 

101 127 4.2 3.09 33.22 0.22 102 0.112 1.871 

101 127 4.3 3.09 33.22 0.22 102 0.112 2.261 

101 127 4.3 3.09 33.22 0.22 102 0.112 2.105 

101 127 4 3.09 40.21 0.44 102 0.224 2.495 

101 127 4 3.09 40.21 0.44 102 0.224 2.339 

101 127 4 3.09 40.21 0.44 102 0.224 2.495 

101 127 4.4 3.09 33.22 0.22 102 0.112 2.183 

101 127 4.4 3.09 33.22 0.22 102 0.112 2.027 

101 127 4 3.09 33.22 0.22 62 0.102 2.261 

101 127 4 3.09 33.22 0.22 62 0.102 2.339 

101 127 4 3.09 33.22 0.22 62 0.102 2.495 

101 127 4.6 3.09 33.22 0.22 62 0.102 1.949 

101 127 4.4 3.09 33.22 0.22 62 0.102 2.027 

101 127 4.4 3.09 33.22 0.22 62 0.102 1.949 

101 127 5 3.09 33.22 0.22 62 0.102 1.871 

101 127 4.8 3.09 33.22 0.22 62 0.102 1.715 

101 127 4 3.09 40.21 0.44 62 0.205 2.417 

101 127 4.2 3.09 40.21 0.44 62 0.205 2.573 

101 127 4.2 3.09 40.21 0.44 62 0.205 2.261 

101 127 4.2 3.09 40.21 0.44 62 0.205 2.495 

101 127 3.2 3.09 39.72 0.88 62 0.409 2.807 
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Table A.2 (continued) 

Beam Geometry Longitudinal Steel Concrete Properties Fiber Properties Shear Strength 

bw(mm) d (mm) a/d ρ (%) f'c (Mpa) Vf lf/df F vu (MPa) 

101 127 3.4 3.09 39.72 0.88 62 0.409 2.651 

101 127 3.4 3.09 39.72 0.88 62 0.409 2.495 

101 127 3.4 3.09 39.72 0.88 62 0.409 3.196 

101 127 3.4 3.09 39.72 0.88 62 0.409 3.041 

101 127 1.8 3.09 39.79 1.76 62 0.818 5.925 

101 127 1.2 3.09 39.79 1.76 62 0.818 11.226 

101 127 1.2 3.09 39.79 1.76 62 0.818 10.837 

101 127 4.8 3.09 33.22 0.22 62 0.102 1.871 

101 127 4.8 3.09 33.22 0.22 62 0.102 1.793 

101 127 4.8 3.09 33.22 0.22 62 0.102 1.949 

100 175 2 3.59 80 0.5 100 0.250 6.800 

100 175 2 3.59 80 1 100 0.500 7.371 

100 175 3 3.59 80 0.5 100 0.250 3.143 

100 175 3 3.59 80 1 100 0.500 4.057 

100 175 4.5 3.59 80 0.5 100 0.250 2.743 

100 175 4.5 3.59 80 1 100 0.500 3.429 

200 300 2.5 3.08 110 0.75 75 0.563 4.767 

200 300 3.5 3.08 111.5 0.75 75 0.563 3.517 

200 300 4.5 3.08 110.8 0.75 75 0.563 3.567 

152.4 282.575 2.5 1.99 33.06897 1 100 1.000 3.158 

152.4 282.575 2.5 1.99 33.24138 1 100 1.000 3.367 

152.4 282.575 2.5 1.99 33.03448 2 100 2.000 3.088 

152.4 282.575 2.5 1.99 34.37931 2 100 2.000 3.205 

100 165.5 3.02 3.43 39.4 0.5 60 0.300 1.813 

100 165.5 3.02 3.43 39.2 1 60 0.600 3.082 

100 165.5 3.02 3.43 40 1.5 60 0.900 3.202 

100 165.5 3.02 3.43 35.5 2 60 1.200 2.840 

100 159 3.14 4.78 58 1 60 0.600 4.591 

100 159 3.14 4.78 80.1 0.5 60 0.300 4.528 

100 159 3.14 4.78 88 1 60 0.600 5.094 

150 219 2.8 1.91 80.04 1 55 0.550 3.470 

150 219 2 1.91 80.04 1 55 0.550 4.292 

100 275 2 0.55 28.4 0.5 75 0.375 1.527 

125 212 3.77 1.52 59.4 0.5 55 0.275 1.623 

125 212 3.77 1.52 49.6 0.5 80 0.400 1.698 

125 210 3.81 2.28 49.7 0.75 55 0.413 1.676 

125 210 3.81 2.28 51.5 1 55 0.550 2.210 

125 210 3.81 2.28 54.5 1 55 0.550 2.248 

100 140 1.07 1.12 36.08 0.5 63 0.315 5.143 

100 140 1.07 1.12 36.9 0.75 63 0.473 6.143 
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Table A.2 (continued) 

Beam Geometry Longitudinal Steel Concrete Properties Fiber Properties Shear Strength 

bw(mm) d (mm) a/d ρ (%) f'c (Mpa) Vf lf/df F vu (MPa) 

100 140 2.5 1.12 36.08 0.5 63 0.315 2.857 

100 150 2.33 1.05 36.08 0.5 63 0.315 2.933 

100 150 2.33 1.05 36.9 0.75 63 0.473 3.067 

100 170 2.41 0.92 36.08 0.5 63 0.315 2.412 

100 170 1.29 0.92 36.08 0.5 63 0.315 1.235 

100 245 0.9 0.64 36.08 0.5 63 0.315 2.041 

100 85.25 3.52 1.66 54.8 1 127 0.953 2.229 

100 85.25 3.52 1.66 49.3 1 191 1.433 2.463 

100 85.25 3.52 1.66 49.3 1 191 1.433 2.111 

100 85.25 3.52 1.66 53.7 2 191 2.865 2.229 

100 85.25 3.52 1.66 53.5 0.5 191 0.716 2.581 

100 85.25 3.52 1.66 53.5 0.5 191 0.716 1.994 

200 273 2.75 3.48 110.9 0.75 64 0.480 3.681 

200 273 2.75 3.48 109.2 0.75 67 0.503 3.846 

80 165 2.99 1.71 41.23 1 50 0.500 2.424 

80 165 2.99 1.71 39.87 1.5 50 0.750 3.030 

300 420 3.21 3.22 62.3 0.75 65 0.488 3.302 

125 222 1.8 1.45 30 0.5 80 0.400 2.811 

125 222 1.8 1.45 30 0.5 80 0.400 3.063 

310 258 3 2.5 23 1 55 0.550 2.638 

310 240 3 4.03 41 1 55 0.550 3.777 

300 531 3 1.88 23 1 55 0.550 1.595 

300 523 3 2.55 23 1 55 0.550 1.555 

300 523 3 2.55 41 1 55 0.550 2.843 

300 923 3 1.44 41 1 55 0.550 1.802 

300 920 3 2.03 41 1 55 0.550 1.826 

300 923 3 1.44 80 1 55 0.550 2.355 

300 920 3 2.03 80 1 55 0.550 2.355 

200 300 3.5 3.6 215 2 55 1.100 6.217 

200 300 2 3.6 199 2 55 1.100 9.767 
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