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Abstract

Both nanocrystalline silver and bacterial cellulose have been used as 

biomedical materials. Silver has been used as an antimicrobial agent, and bacterial 

cellulose as a wound dressing. The combination of both these technologies has the 

potential to create a synergistic scenario. A novel method for the attachment of 

nanocrystalline silver to bacterial cellulose has been developed. The cellulose is 

oxidized with sodium metaperiodate to dialdehyde cellulose and functionalized with 

silver using thiosemicarbazide, silver protienate and ammoniacal silver. The samples 

were prepared using both a commercially available bacteria cellulose wound dressing, 

Biofill, and lab made, wet pellicle, as the substrate. The antimicrobial efficacy 

against E. coli and S. aureus has been determined using a modified disk diffusion test 

procedure, and the release profiles of silver into deionized water were determined. 

These tests have shown an antimicrobial efficacy ranging between 1 day for the 

Biofill prepared samples and 5 days for the pellicle based samples.

Key Words

Bacterial cellulose, nanocrystalline silver, nanoparticles, wound dressing, disk 
diffusion test, silver, cellulose, nanofibers, nanomaterials.
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Chapter 1 -  Introduction

"Great things are done by a series of small things brought together."-Vincent Van Gogh

There is no doubt that Van Gogh was considering things more abstract than the 

field of material science when he uttered the above words; but, they could now easily be 

applied to nanotechnology. Nanotechnology is the science of bringing together the 

smallest of things in an attempt to achieve the very great. A nano-object is commonly 

defined as something having dimensions of less than 100 nm, a nanometer being one 

billionth of a meter. Nanomaterials are small, so small that it becomes possible and even 

reasonable to quantify the number of atoms that they contain. It is this realm that many 

researchers are choosing to explore. Nanotechnology has become an expansive field of 

research in a short time and has had or will have an impact on many facets of everyday 

life, including in the electronic, chemical and biomedical fields.

In the field of biomedical engineering, new materials are sought to improve 

medical devices. The wound dressing, possibly one of the first ever biomedical devices, 

is now starting to incorporate nanotechnology. Plant derived cellulose, in the form of 

cotton gauze, is the most common material used in wound dressings, but now the more 

pure bacteria derived cellulose has found a niche in areas where cotton is less than ideal. 

Acteobacter xylium, a bacteria, produces a ultra-pure form of cellulose in a non-woven 

mesh of nano-fibers. Bacterial cellulose (BC) has demonstrated several noted 

advantages over plant derived cellulose, including immediate pain relief, a close 

adhesion to the wound bed, transparency that allows for easy wound inspection, faster
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healing, and improved exudates retention. [1], In addition to an established role in the 

field of wound dressings, bacterial cellulose is finding a place in other medical devices, 

Millon et al. explored the use of bacterial cellulose as a constituent in a poly(vinyl 

alcohol) aorta prosthesis, and others are exploring it as a possible tissue engineering 

scaffold [2] [3],

To further improve upon the properties of BC, we have devised a method for 

building in an antimicrobial efficacy using nanocrystalline silver. Nanocrystalline silver 

as an antimicrobial agent has garnered a lot of attention in recent times with a proven 

efficacy against a wide spectrum of infectums, including bacterial, viral, and fungal 

pathogens. It has been described as having the following advantages over other topical 

antibiotic treatments: it is effective against antibiotic resistant bacteria; it is difficult for 

bacteria to develop resistance against it; it has no known major side effects; and it 

potentially has anti-inflammatory properties [4], Research has been conducted on 

incorporating it into a wide variety of medical devices, including orthopedic implants, 

heart valves, surgical masks, and wound dressings, with varying degrees of success.

This report will examine a novel method for chemically binding nanocrystalline 

silver to a bacterial cellulose substrate. The method is comprised of three steps:

1. Selection of the BC substrate
2. Oxidation of the BC substrate
3. Attachment of Ag-NPs to the BC substrate

These steps will be explored and the resulting material will be objectively examined for 

possible use as an antimicrobial biomaterial.
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Chapter 2 -  Review of Literature

In this chapter a short historical perspective is provided for each of the major 

components of this project followed by an in depth exploration of on-going research in 

the respective field.

2.1 -  Silver nanoparticles

The spread of antibiotic resistant bacteria has become a major concern for 

today’s health care professionals. Nosocomial infections have been estimated to cause 

over 8000 deaths yearly in Canada [5], and has been described as the fourth most 

common cause of death in the United States [6], These incredible statistics have grown 

with the increase in antibiotic resistant ‘super bugs’, and have led to widespread use of 

alternative forms of infection control. One important alternative to antibiotics is silver.

The use of silver for its antimicrobial properties can be traced through history to 

superstitious and anecdotal practices, such as the ancient Romans storing drinking water 

in silver containers to prevent the spread of illness [7], or in more recent times to the 

coating of washing machines or toilet seats with silver nanoparticles (Ag-NPs) [8], 

While the true effectiveness of these practices is questionable, as early as the 17th 

century silver nitrate had found an important and somewhat verifiable role in medicine; 

it was frequently included in the medical supplies of a ship’s surgeon and used to treat 

sores. [9] In the 18th century, it took on a larger role in treating dermal ulcers, and the 

next century saw silver nitrate used to treat large burns. Silver nitrate was adopted for 

these uses not because of its antimicrobial properties, which were incomprehensible with 

the level of a medical knowledge of the time, but as a cauterizing agent to remove
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granulized tissue and promote scab formation. It seems obvious with today’s knowledge 

that silver nitrate’s unknown antimicrobial role aided many unwitting physicians and 

patients in the treatment of wounds [9], It was not until 1874 that the antimicrobial 

properties of silver salts were first investigated, and at this time silver nitrate was used in 

the treatment ophthalmianeonatorum, the infection of a newborn’s eyes with gonorrhea. 

This treatment is still used today. The use of silver nitrate for the treatment of burns 

increased until World War II when instances of its use quickly declined with the advent 

of penicillin and other antibiotics. Silver nitrate returned to the medical fray with a 

paper published in 1965 by Moyer. [10] At this time, silver sulphadiazine was 

developed “ ...to combine the inhibitory action of silver with the antibacterial effect of 

sulphadiazine.” [11] Whether the effects of silver can be described as inhibitory or 

antimicrobial will be discussed in the next section.

Accompanying the success of silver salts in fighting infection, there was an 

increased interest in using metallic silver in a similar fashion. Silver has been 

incorporated in both urinary and venous catheters, with moderate success [12]. There 

have also been attempts to liberate silver ions from metallic silver with novel methods 

such as using an electric current. One such study, conducted by Falcoe and Spadaro 

show a greater inhibition of bacteria at the anode of a silver coated piece of nylon, 

compared to the control [13]. Yet, they fail to discuss the independent effects of an 

electrical current on the growth of the bacteria.

The use of metallic silver has been over shadowed by the success of silver 

nanoparticles (Ag-NPs). Ag-NPs are generally held to be particles, sometimes 

crystalline in nature, of less than lOOnm in size. The antimicrobial efficacy is inversely



5

proportional to size, with smaller particles being more effective [14]. One important 

thing to note is while frequently described as ;nanosilver,’ some are composed of a large 

percentage of silver oxide, this is due to the large ratio of surface to bulk silver 

molecules [15]. Silver oxide has been used as an antimicrobial coating in the past [16], 

and the silver oxide component of the nanoparticles could play a significant role in their 

antimicrobial efficacy. Djokic and Burrell investigated silver oxide’s role, concluding, 

“An essential factor leading to an antimicrobial activity of metallic silver is a presence 

of Ag oxide(s) at the surface of this material.” [17]

There are now efforts to incorporate Ag-NPs into a wide range of medical 

devices, including but not limited to bone cement [18], surgical instruments [19], 

surgical masks [20], and wound dressings; the latter is the primary focus of the research 

presented in this thesis. Ag-NPs are considered a significant advancement in wound 

care technology, and several large biomedical companies, including Smith and Nephew, 

Inc.; Johnson & Johnson Medical Ltd.; ConvaTec ER; Squibb and Sons LLC; Argentum 

Medical LLC; Coloplast Ltd.; Medline Industries Inc.; and others have available 

products. In a sort of feedback loop, these biomedical companies have sponsored 

additional research into their products, increasing the available literature several fold [8] 

[4]. One review article author, after wading through the plethora of research, found it 

necessary to remind the reader to remain objective in the face of such a “marketing 

blitz.” [21]

2.1.1 -  How does silver work?

One important characteristic of the antimicrobial nature of silver is that bacteria 

have difficulty developing resistance to it. It has been hypothesized that this is the result
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of ionic silver having multiple modes of lethality, requiring a high level of adaptation in 

any given bacteria species [22], These modes of lethality are still being debated in the 

literature and are summarized by the following: an uncoupling of the respiratory chain 

from oxidative phosphorylation [23]; the collapse of the proton-motive forces across 

mitochondrial membranes [24]; a destructive interaction with thiol- groups of membrane 

bound enzymes and proteins [25]; and the binding to and seizing-up of DNA replication 

machinery. Ag-NPs act as reservoirs for ionic silver encompassing its modes of 

lethality, but additionally it punches holes in the cellular membrane of a bacterium, 

essentially causing the cell to bleed to death [26],

In addition to its antimicrobial role, there has been some research conducted on a 

potential role for silver compounds as antiviral agents. Silver sulfadiazine has been 

investigated as a tool to prevent ocular infection [27] and another silver-sulfur complex 

has been investigated as an antiviral coating for consumer products [28]. Ionic silver has 

also been investigated as a method to inactivate viruses in drinking water when 

combined with UV radiation [29]. More recently, Ag-NPs have been shown to have 

antiviral properties too. In 2005, two studies were published that described the 

interaction between Ag-NPs and HIV-1. One study showed that Ag-NPs bind to the 

surface of the virus where the glycoproteins essential to the infectious properties of the 

virus are assumed to be; this study went on to show an in vitro reduction of infection 

with silver treated HIV [30]. Another study showed that apoptosis can be delayed in 

human T-cells infected with HIV, by using Ag-NPs to reduce the viral load. [31] The 

same study showed Ag-NPs reduced HIV replication.
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Ag-NPs have been portrayed as a wonder drug when it comes to the wound 

healing industry, and in addition to the widely published and accepted antimicrobial 

ability of Ag-NPs, there has been some published work on other wound healing benefits. 

One study shows that Ag-NPs decrease inflammation, decrease cell death and reduce the 

concentration of harmful enzymes in the wound [32], While inflammation is the body’s 

way of clearing tissue debris, fighting infection and triggering the growth of new tissue; 

in a properly treated wound, a prolonged inflammation response can be 

counterproductive. Several papers report that Ag-NPs can either diminish inflammation 

or the results of it. Wright et al. states that Ag-NPs can “...play a role in altering or 

compressing the inflammatory events in wounds and facilitating early phases of wound 

healing.” [32] Shin et al. shows that Ag-NPs can alter cytokine production in human 

cells in vitro, and suggests it could be used as a treatment for inflammatory diseases 

[33], This is further confirmed in a porcine model by Nadworny et al [34]. It should be 

noted that most of this research has been conducted by groups with a vested interest in 

their silver systems.

There are aspects of Ag-NPs that are debated in the literature, such as the effect 

on the rate of reepithelialisation. One study suggests that Ag-NPs increase the rate of 

reepithelialisation by up to 70% [35], while another suggests it delays reepithelialisation 

by over 50% [36]. These conflicting results are not limited to those two studies, Honari 

et al. also shows improved healing at skin graft donor sites [37], where as Vlachou et al. 

says delayed healing is experienced [38] when a Ag-NP dressing is used. These counter 

claims emphasize the on going debate in the literature about the effects of Ag-NPs 

dressings. One point that is not contended is that Ag-NP dressings can be left on the
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wound for a period of up to seven days, whereas silver nitrate and silver sulphadiazine 

need to be reapplied every 2 and 12 hours respectively. Conventional wisdom is that the 

less disturbed a wound is during the healing process the better.

2.1.2 -  Methods use for creating Ag-NPs

There are many different procedural pathways that can produce Ag-NPs. They 

can be divided into three broad categories; physical vapor deposition, ion implantation, 

or wet chemistry.

Figure 2.1: Acticoat - three layers exposed.

Acticoat is widely accepted as the gold standard of Ag-NP wound dressings; and 

is a good example a silver system prepared by a physical vapor deposition process. In 

the case of Acticoat, the physical vapor deposition process involves placing the substrate 

(in this case HDPE) in a chamber opposite a silver cathode. The chamber is filled with 

argon gas; a current is passed through the gas, driving argon atoms into the silver
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cathode knocking free some silver atoms. The silver atoms are deposited in nanoparticle 

form on the substrate [39]. Several other researchers have also used physical vapor 

deposition to create silver particles [40] [41] [42], The particles created in this manner 

generally have been shown to be crystalline with crystallite grain diameters of 

approximately 15 nm [15]. A photo of a sample of Acticoat can be seen in Figure 2.1, 

Scanning Electon Micrographs are presented and discussed in the Results and 

Discussion chapter.

Although it may seem counter-intuitive, ion-implantation has been used to create 

Ag-NPs [43] [44], This process has been shown to produce silver particles embedded in 

polyurethane, silicone, polyethylene, and polymethylmethacrylate [45] [46]. The 

particles grow in the substrate with the bombardment of ions. The existence of 

nanoparticles is proven with optical absorbance, and the exact nature of the particles 

created with this method is not known.

There are several wet chemistry methods for creating silver nanoparticles, 

including the use of a reducing agent like sodium borohydride (NaBH4). Sodium 

borohydride has been used with polyvinyl alcohol [47], poly(vinylpyrrolidone), bovine 

serum albium [30], citrate [48] [49] and cellulose as stabilizing agents. In the case of 

BSA, the sulfur-, oxygen- and nitrogen-bearing groups mitigate the high surface energy 

of the nanoparticles during the reduction [30]. Whereas the hydroxyl groups on the 

cellulose are reported to help stabilize the particles. Citrate and cellulose have been used 

to create Ag-NPs independent of a reducing agent as well. An additional novel wet 

chemistry method used to create Ag-NPs took advantage of B-D-glucose as a reducing 

sugar and a starch as the stabilizer. [50]
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In addition to the methods of nanoparticle formation discussed in this section, it 

should not be interpreted as an exhaustive list; there are alternative pathways for creating 

Ag-NPs, but they are relatively uninvestigated [51] [52] [53]. Also, it is important to 

note, not all nanoparticles are created equal. The size and shape have been shown to 

have an impact on its efficacy [22], Additionally, crystal facet size, oxide content and 

several other factors could also affect the antimicrobial properties [4].

2.1.3 -  Potential health concerns with nanosilver

Ionic silver has had a long history of use in medical applications, and it has been 

shown irrefutably that ionic silver, in the right quantities, has a net positive benefit in 

treating wounds. Ag-NPs do not have such a long pedigree; and although over the last 

ten years it seems to evidently be an effective agent, it would be irresponsible to look at 

any relatively new technology without considering the potential problems.

First, it is best to dispel two common misconceptions about the safety of a topical Ag- 

NP dressing.

Allergic Reaction: While there is anecdotal evidence suggesting the possibility 

of a silver allergy, an extensive review of the medical literature does not lend any 

credence to this possibility [54], Some silver alloys that include nickel do elicit 

an allergic reaction, but those alloys are outside the scope of this thesis.

Argyria and Staining: Ingested silver compounds, like colloidal silver, can 

cause a condition called argyria, which is manifested as a permanent bluish-grey
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hue. A systemic change in colour is not a possible contradiction with the topical 

application of silver. The only reference to such an outcome in the literature is a 

case study of a 17-year-old man, who sustained burns to 30% of his body, and 

experienced a temporary bluish-grey hue after several days of treatment with 

Acticoat [55]. Argyria is the deposition of silver in deep tissues, a condition that 

cannot happen on a temporary basis, raising the question of whether the cause of 

the man’s discoloration was argyria or even a result of the silver treatment [56]. 

Silver dressings are known to cause a ‘‘transient discoloration,” that dissipates in 

2-14 days, but not a permanent discoloration [57].

To properly evaluate the safety of the topical application of silver, three criteria 

must be examined; how much of the silver is absorbed; what is its effect; and what is its 

longevity in the body [58], Normal levels of silver in blood plasma are below .0005 

ug/mL, and levels of up to .440 ug/mL have been observed as the result of the 

application of silver sulfadiazine cream, without any adverse side effects [59], Although 

silver levels o f . 193 ug/ml in blood plasma for a sustained period (three weeks) has been 

suggested as the cause of renal failure and death in one case study [60]. After 

discontinuing a silver treatment, silver blood plasma levels remain elevated for 

approximately three weeks before returning to normal. Silver is cleared through the 

urine, and some caution is required when treating a patient with poor kidney function, as 

they are likely to maintain a high blood silver concentration. [61]. A study conducted in 

vitro showed ionic silver levels of 13 to 56 ug/mL were toxic to human fibroblasts, the 

authors suggests the mechanism for toxicity was the same as heavy metal toxicity [62],



12

Most papers that discuss the health implications of topical silver application conclude it 

is a safe and effective treatment [62].

Ag-NPs have different characteristics than ionic silver and are potentially 

tolerated differently. One point of contention in the literature is how readily Ag-NPs 

from a wound dressing can penetrate the skin. It has been observed that Ti02 

microparticles found in sun-block creams can penetrate to the dermis [63], but there is 

no direct evidence suggesting that silver levels increase in the blood when Ag-NPs are 

applied to intact skin []. Rarely however, are these dressings used on intact skin, and it 

is important to evaluate the dressings in real world scenarios: on compromised skin. An 

increase in blood silver levels has been observed after the application of a Ag-NPs 

dressing; in a study with 30 burn patients, a maximum silver blood plasma level of .230 

ug/ml was observed, with a mean of .074 ug/ml at the end of treatment [38]. The 

authors suggest that the higher blood silver levels were related to kidney function - 

affecting silver clearance. No statistically relevant liver toxicity was observed in this 

study.

Paknikar et al. have investigated the effect of 7-20 nm Ag-NPs on human 

fibrosarcoma (HT-1080) and human skin/carcinoma cells (A431) [65], They found 

levels of .78 to 6.25 ug/ml for the human fibrosarcoma cells and 1.56 to 6.25 ug/ml in 

the human skin/carcinoma cells initiated apoptosis; whereas levels of 12.5 ug/ml caused 

necrosis in both. In an in vivo (rats) study conducted to determine the systematic 

toxicity of Ag-NPs 60nm in size, found induced liver toxicity and coagulation in 

peripheral blood, at the end a 28 days of oral administration [66], To summarize, the 

potential health implications, of using Ag-NPs: blood plasma levels do not reach a level
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of anywhere near concern with standard usage of Ag-NP dressings. If they do reach 

dangerous levels, one would look at the liver and the kidneys to observe the effects. 

Additionally, with silver being cleared through the kidneys, caution should be taken 

when considering the use on a patient with impaired kidney function.

No discussion of the health impact of silver would be complete without a review 

of the St. Jude’s Silzone heart valve -  a significantly notable event in the medical device 

industry. The Silzone valve was a standard bileaflet mechanical heart valve that was 

complemented with a silver coated Dacron sewing cuff [67]. Figure 2.2 shows an 

example of such a heart valve. While the nature of the silver coating on the cuff was not 

discussed in the literature, it was applied using a technique of ion beam-assisted 

deposition [68] suggesting it could be in the form of Ag-NPs. The silver was included in 

an attempt to decrease instances of endocarditis, an infection of the valve annulus. The 

valve was approved for sale in Canada, Europe, the United States, and most other 

markets around the world. In a post-commercialization study, researches showed that 

the valve prevented tissue ingrowth, created paravalvular leakage, valve loosening, and 

in the worst cases the valves have to explanted. After 3 years on the market and 36 000 

implants, St. Jude discontinued and voluntarily recalled the valve [69], This detrimental 

effect of silver has not been observed in the case of wound dressings -  with the 

exceptions of the previously discussed conflicting reports on the rate of 

reepithelialisation.
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Figure 2.2: St. Jude Heart Valve

2.1.4-Sum m ary

As discussed in this section, silver is an exceptionally useful antimicrobial agent, 

with a long history of use in medical applications. Ag-NPs are a more recent 

development, but share the positive attributes of silver salts, and also have limited 

drawbacks. The implantation of Ag-NP materials would raise concern in the medical 

community, given the failure of the Silzone heart valve, but the topical application of 

Ag-NPs in the form of a wound dressing has been proven safe and effective. The only 

thing lacking is a controlled method for delivering silver to the wound environment to 

both create a sustained antimicrobial effect and decrease the potential for discoloration.
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2.2 -  Bacterial Cellulose

Cellulose is the most prevalent polysaccharide in nature. There is a global 

annual production of approximately 1.5 trillion tons, primarily found in the woody 

structure of plants [70], BC has the same 13-1,4-glucan chemical structure shown in 

Figure 2.3, but is produced in an ultrapure form without the lignin and hemicellulose 

found mixed with plant sources of cellulose. It also has a different morphology and 

different physical properties. Plant cellulose has a degree of polymerization of 13000 -  

14000 where as BC has a degree of polymerization of 2000 -  6000. Depending on 

culture conditions BC can be produced in a less structured non-woven mesh-like form or 

in a freely suspended fiber form, with fiber bundles having a diameter of approximately 

50 nm (although this too can be a function of culture conditions). BC has a great affinity 

for water, with water content of up to 99% by mass. The loss of this water during drying 

results in an irreversible structural change due to loss of the hydrogen bonds; this will be 

discussed further in Chapter 4 [70].

Figure 2.3: Chemical ¡structure of cellulose

Although, there are a few genera of bacteria that produce cellulose including 

Acetobacter, Rhizobium, Agrobacterium and Sarcina, the species that has garnered the 

most attention is Acetobacter xylium (also known as Gluconacetobacter xyliuns) [71].
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A. xylium is a gram-negative, rod shaped aerobic bacterium with a long history of 

cultivation. Originally used for vinegar production, it is relatively easy to culture and 

has a high yield of cellulose; both factors that make it a prime research and 

commercialization target.

Plant cellulose was first described by Anselm Payen in 1838, who determined its 

chemical composition by way of elemental analysis. While BC has been used for 

hundreds of years in the traditional Philippine dessert nata-de-coco -  a BC pellicle 

soaked in syrup - it was first confirmed as cellulose in 1886 by AJ Brown [72],

The focus of the original research into A. xylinum and BC followed two avenues. 

First, it was used as a vehicle to examine the biochemical pathways of cellulose 

production, research that could be used to model cellulose metabolism in higher 

organisms [72]; and second, for the commercial application of paper production - a 

primary use of plant cellulose [73]. The original hope was that BC could become a 

substitute for plant-derived cellulose in the paper making process, but the relatively high 

production costs have prevented BC from becoming widely used. It has however found 

a niche role in some higher-grade papers, as a finishing layer. In the patent databases, 

one can find reference to a wide range of potential BC applications, as a food thickener; 

as a film to maintain the moisture of chewing gum; as a coating to slow the burning of a 

cigarette; and as a rheological modifier for use in drilling mud formulations [74], 

Despite the ingenuity for finding potential applications, only three have met with 

success: nata-de-coco (the previously mentioned Philippine dessert); as an acoustic 

membrane in high-end Sony earphones [75], and as a wound dressing [1],
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One continuing mystery surrounding BC is its exact biological function. A. 

xyliam is a successful and prevalent bacterium in nature, frequently finding a home in 

rotting fruits and sweetened liquids. The most familiar form of BC is that of a pellicle 

on the top of a static cultured growth media. It has thus been hypothesized that cellulose 

acts as a floatation device bringing the bacteria to the oxygen rich air-media interface. 

This hypothesis has largely been discredited by experiments conducted on submerged 

oxygen-permeable silicone tubes that show cellulose grows well submerged if enough 

oxygen is present [76]. Others suspect that cellulose is used to immobilize the bacteria 

in an attempt to keep it near the food source; or as a form of protection against 

ultraviolet light [77].

Cellulose I

Figure 2.4: Cellulose synthesis redrawn from |78|.

BC is assembled extra-cellularly. Cellulose monomers are synthesized by the 

enzyme, cellulose synthase, within the cell and are excreted from two rows of 50 to 80
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pores in the cell membrane, where they form protofibrils of between 2 - 4  nm. These in 

turn are bundled into fibrils of 80 nm by 4 nm, which are assembled in fiber form. 

Figure 2.4 shows this in detail, with the protofibrils being secreted from the pores in the 

membrane and being assembled into larger fibers. These fibers are considered cellulose 

type I, whereas cellulose type II fibers are B-1,4 glucan chains arranged in disorganized 

and random manner. The fibers have been described as morphologically falling between 

algal and plant cellulose [79], An interesting occurrence with BC is the division of the 

fiber with cell division - the fiber branches into two as the cell divides and the fiber 

forming apparatus is divided as well [80].

2.2.1 -  Production of cellulose

BC can be produced in either static or agitated cultures. In static culture, the 

cellulose is produced in a nonwoven nano-mesh that grows on top of the media - a 

pellicle. Static culture has been successfully used in commercial applications, where a 

sheet of cellulose is required, such as in a wound dressing, audio diaphragm or in the 

case of nata-du-coco. Agitated culture produces cellulose in a loose fiber suspension, or 

in the irregular balls of loosely related fibers. Agitated cultures have a few hypothetical 

advantages for bulk bacterial cellulose production: it requires less space, is less labour 

intensive, and is more cost effective; these benefits have yet to be commercially realized 

[81] [82], Other culture methods have been attempted with moderate success, including 

an air-lift reactor and a continuous static culture bioreactor which pulls the pellicle from 

the surface of the media at a rate equal to its growth [83], Additionally, shake flask 

cultures are frequently used to produce BC in smaller quantities for research purposes.
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There is a wide range of medias used for the production of BC. The traditional 

nata-de-coco cottage industry uses coconut milk mixed with sucrose, with 

approximately a fifth of the media coming from the left-overs of the last batch. The 

coconut milk can be substituted for other fruit juices like pineapple juice, to create 

desserts like nata-de-pina [84], One frequently used research media is Schramm and 

Hestrin Medium [85], Developed by Schramm and Hestrin and described in a 1954 

paper, it includes (% w/v): glucose, 2.0; peptone, .5; yeast extract, .5; disodium 

phosphate, .27; citric acid, .115. The pH of the media is adjusted to a pH of 6.0 with 

diluted HC1 and NaOH [86]. There are many variations on this basic media description, 

but all iterations contain a carbon source whether it is in the form of glucose, fructose, 

sucrose, monosaccharides, or unrefined sugar sources like fruit juice, or beet molasses 

[87]. They also must have a nitrogen source, this is the yeast extract in the case of the 

Schramm and Hestrin media, but could be corn steep liquor, or an synthetic form a 

nitrogen.

Researchers have used a wide variety of media additives, from antifoam in 

shaken and agitated cultures, to a wide variety of vitamins including: inositol, nicotinic 

acid, pyridoxine hydrochloride, thiamnine hydrochloride, D-pantothenic acid calcium, 

riboflavin, p-aminobenzoic acid, folic acid and d-biotin [88], Thickeners have been used 

to allow for higher agitation speed, while lessening the effects of shear. These include 

xanthan, agar, acetan, polyacrylamide-co-acrylic acid and alginate. In one such case, the 

addition of 0.4% (w/v) agar to the media was shown to enhanced the production rate of 

cellulose by over 50% [88], Polyacrylamide-co-acrylic acid was shown by Joseph et al. 

to have a similar effect by more than doubling BC production from 2.7±.8 to 6.5±.5 g
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dm° [89] Others have learned that the addition of alginate prevents cellulose clump 

formation increasing cellulose yield [90]. Ethanol has also been added to culture 

medium, with mixed results. One group showed that ethanol reduced the production of 

gluconicacis, lowering pH levels to sub-optimal levels; [91] while others have reported 

an increased yield in instances where ethanol is added. [92]

In relation to additives there are several other culture conditions that affect BC 

production and yields. These include: pH, temperature, dissolved oxygen, and shear 

rate. The optimal pH for BC growth has been described as falling within 5-7 or 4-6, 

with most research papers reporting using 5. A. xylium produced gluconic acid, which 

lowers the pH requiring a pH control system to maintain the ideal level [93]. Frequently 

4N NaOH and 4 N H2S04 are used to control pH [8 8 ]. Dissolved oxygen is usually 

maintained at 30%. [8 8 ], A temperature range of 25-30 degrees Celsius is described as 

the optimal temperature range, but the narrower range of 28-30 degrees Celsius is 

usually used.

One potential method of increasing the cellulose yield is through co-culture. 

Seto et al. in attempting to isolate a culture of A xylium discovered a colony of A xylium 

growing in close association with Lactobacillus mali [94], It was found that when 

cultured together the cellulose yield was tripled. The researchers could not sufficiently 

explain the increased yield; they eliminated the possibility of a direct role for 

extracellular polysaccharide produced by L. mali, and did not observe any active 

extracellular enzymatic activity. Regardless, the increased cellulose production is an 

interesting observation.



21

2.2.2 -  Bacterial cellulose as a wound dressing

It is difficult to know for certain what the first medical interventions were in 

human history, but to hypothesize that it was the covering of a wound - would be a good 

guess. The dressing of a wound is essential for the health of a patient; infection can 

threaten anyone regardless of wound size if left unsterilized and exposed; fluid loss can 

kill those with extensive burns; and, dermal ulcers can threaten both life and limb. 

Cosmetically, the covering of a wound can reduce scarring. The characteristics that 

make an ideal dressing include biocompatibility, sterility, semiocclusiveness, strength, 

conformability, and moisture retentive properties [95]. While wound dressing 

technologies based on materials such as alginate or synthetic polymers go part way 

towards addressing the required characteristics, BC does a better job.

BC has a wound care pedigree, being chemically identical to cotton -  which in 

the form of cotton gauze has been an essential dressing material. BC, like cotton gauze, 

is highly biocompatible. Research conducted at Chalmers University of Technology in 

Goteborg Sweden has confirmed this [96]. With the intent of developing a tissue 

engineering scaffold, the group conducted systematic biocompatibility studies by 

placing pieces of BC subcutaneously in a rat model. The group observed no signs of 

inflammation or other symptoms of a negative host response. The group has continued 

to pursue their tissue engineering scaffold, and have found BC performs favorably with 

both smooth muscle and endothelia cells [3], As of late 2006, this group is testing their 

tissue engineered BC small diameter vessels in a large animal model.

Bacterial cellulose, like Ag-NPs, can be used to treat dermal ulcers and burns. 

Dermal ulcers are notoriously difficult to cure even after the underlining pathology is
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treated. A dermal ulcer is usually defined as a wound which has a loss of integrity, is 

infected, and has difficulty healing; with treatment they can take weeks or months to 

heal and in severe cases require radical intervention like amputation. Alvarez et al. 

tested Xcell, a dressing based on wet BC pellicle, in the treatment of venous leg ulcers, 

and found considerable improvement over the standard treatment [97]. The two areas of 

greatest improvement were in: autolyic debridement, with a 40% increase in the removal 

of nonviable tissue; and pain, with a statistical significant reduction in reported pain. 

Alvarez et al. stated that the BC dressing “...creates a protective, hypoxic, moist 

environment similar to an undisturbed wound protected by its own blister roof.”

In addition to the treatment of ulcers, studies conducted on using BC in the 

treatment of burns have been promising. Legeza et al. studied the impact of bacterial 

cellulose on radiation and thermal burns and showed that a BC dressing accelerated 

wound healing by between 6  and 17 %, with scab detachment occurring 14-15% sooner 

[98]. Apart from the commercially available products, Czaja et al. have investigated 

using a never-dried bacterial cellulose membrane for the treatment of 2nd and 3rd degree 

burns in animal models [1]. They were found to accelerate the healing process. He also 

listed the additional benefit of being able to produce sheets of a variety of sizes, 

therefore eliminating the need to staple together several smaller sheets, as is standard 

procedure with other wound dressings.

The commercialization of BC wound care products has proceed in an anfractuous 

manner, with Johnson and Johnson conducting the original research into a bacterial 

cellulose wound care system in the 1980s, but not actually producing a marketable 

product [99] [100], Johnson and Johnson later sold their bacterial cellulose technology
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to Xylos Corp. Xylos produced a BC dressing under the trade name XCell. The 

company continued research into the biomedical applications of BC filing patents on a 

bacterial cellulose wound dressing customized for chronic wounds and for an 

implantable soft tissue repair graft [101]. But, Xylos Corp sold their cellulose wound 

care line to Lohmann and Rauscher GmbH, a company much better suited to the 

marketing and delivery of the product. Bionext Produtos Biotechnologicos Ltda, a 

Brazilian company, developed their own line of wound care products independent of 

Johnson and Johnson’s original research. Bionext’s first generation product was called 

Biofill, but has since been replaced by a next generational product called Bionext [102], 

While the only commercialized medical applications of BC are in the field of wound 

care there is continued research into other uses. These include skin tissue engineering 

[103], cartilage tissue engineering [104], small diameter blood vessel replacements 

[105], and as a brain dura substitute [106],
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Chapter 3 -  Experimental Methods

3.1 -  Bacterial cellulose production

Two types of bacterial cellulose were used to conduct experiments: dried pellicle 

in the form of the commercial product Biofdl and lab-made, wet pellicle. Biofill, 

obtained via Axcellon Inc. from Bionext Produtos Biotechnologicos Ltda., is a dried and 

stretched BC pellicle. The lab-made cellulose pellicle was produced using the following 

procedure and was preserved in its wet form through all chemical reactions, and dried 

prior to characterization and testing.

The BC prepared in the lab was grown from Acetobacter xylinum BPR2001 

subsp. Sucrofermentans: American Type Culture Collection (ATCC) number 700178. A 

500mL shake flask fdled with 250mL of the media with composition listed in Table 3.1, 

was inoculated with three loops of A. xylinum. The shake flask was placed in a shaker 

incubator at 28 degree Celsius and 175 RPM for three days. A 10 mL aliquot of this 

culture was added to a Pyrex dish measuring 26 by 36 cm and filled to a depth of 8  

millimeters, with 750 mL the media listed in Table 3.1. The dish was covered with 

tinfoil and placed in a static incubator for 7 days.

Table 3*1: Media Composition

(%w/v)
Yeast Extract 5.3
Fructose 4
Potassium Dihydrogenphosphate .33
Ammonium Sulphate .1
Magnesium Sulphate .025
Trisodium Citrate .042
Citric Acid . 8 8
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3.1.1 -  Cleaning of bacterial cellulose pellicle

The pellicle was removed from the surface of the media as seen in Figure 3.1. It 

was rinsed thoroughly in deionised water for 5 minutes. It was then placed into a clean 

Pyrex pan, and autoclaved for 15 minutes. It was rinsed again, and placed in 500mL of 

1 N sodium hydroxide (NaOH). The BC and NaOH were maintained at 80 °C for 90 

minutes, removed and rinsed thoroughly. It was soaked over night and rinsed repeatedly 

until all colour was removed from it and its pH was neutral.

Figure 3.1: Pellicle from Static Culture
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3 .2 - Silver Loading

3.2.1 -  Dry bacterial cellulose pellicle

The procedure was adapted from Guhados [107] . A sheet of Biofill with a mass 

50 mg was placed in 50 mL of .16 M sodium metaperiodate (NalCL) solution, to achieve 

a molar ratio of 1:13, cellulose to NalCL. The cellulose and solution were left at room 

temperature for 15, 30 or 60 minutes. The cellulose was then rinsed once in ethylene 

glycol, to arrest the oxidation, and then rinsed 10 times in deionised water. The 

cellulose was then placed in a solution of 1 % thiosemicarbazide and 5 % acetic acid, 

and reacted for 90 minutes at 60 °C. It was then thoroughly rinsed in deionized water 

was placed in a solution of 1% silver proteinate and 2 % sodium borate (Na2B40 y 

• 1OH2O) for 1 hour in the dark. The silver proteinate solution was prepared by mixing 

the two constituents and filtering the resulting mixture through a 45 um cellulose-nitrate 

filter. An ammoniacal silver solution was prepared by adding 1 gram of silver nitrate 

(AgNC>3) to 8  mL of deionised water and then adding ammonia hydroxide drop wise 

until the brown precipitate dissolved. This solution was diluted to a volume of 75 mLs. 

The cellulose was placed in the ammoniacal silver solution and was maintained at 60 °C 

for 15 minutes. The cellulose was then rinsed and dried in a convection oven at 23 °C.

3.2.2 -  Lab made, wet pellicle

The dry mass of a lab-made pellicle was determined by cutting a section of 

approximately 2 cm of wet pellicle, weighing it and drying it at 60° C in a convection 

oven. This was done in triplicate.
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A piece of wet pellicle was cut to a size that corresponded to a dry mass of 50 

mg and was placed in 100 mL of sodium metaperiodate (NaI04) solution, so a molar 

ratio of .5:1, 1:1, 1.5:1, or 2:1 - NaI04:cellulose was achieved . The cellulose and 

solution were left at room temperature for 24 hours. The cellulose was then rinsed once 

in ethylene glycol, to arrest the oxidation, and then rinsed in deionised water and soaked 

for 72 hours. The cellulose was then placed in a solution of 1 % thiosemicarbazide and 

5 % acetic acid, and reacted for 90 minutes at 60 °C. The cellulose was thoroughly 

rinsed and soaked for 72 hours. The samples was placed in a solution of 1% silver 

proteinate and 2% Na2B4 0 7  IOH2O. The solution was prepared by mixing the two 

constituents and filtering the resulting solution through a 45 pm cellulose nitrate filter. 

An ammoniacal silver solution was prepared by adding 1 gram of AgNOi to 8  mL of 

deionised water and then adding ammonia hydroxide drop wise until the brown 

precipitate dissolved. This solution was diluted to a volume of 75 mLs. The cellulose 

was placed in the ammoniacal silver solution and was maintained at 60 °C for 15 

minutes. The cellulose was then rinsed and dried in a convection oven at 23 °C.

3.2.3 -  Determination of aldehyde groups

The aldehyde group analysis was conducted on pieces of BC taken through the 

oxidation step, but prior to the addition of thiosemicarbazide. The cellulose was dried 

and weighed. The BC was cut into thin strips, and placed in 10 mL of .05 M sodium 

hydroxide (NaOH). It was kept at 60°C for 30 minutes, at which point 5 mL of .1 M 

hydrochloric acid (HC1) was added to neutralize the NaOH. The solution was then
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titrated with .01 M NaOH, using phenolphthalein as an indicator [108], Tests were 

repeated in triplicate.

3.2.4 -  Determination of silver loading

A piece of silver loaded BC with a mass of 20 mg was placed in vials filled 5 mL 

solution of 50% nitric acid. The solution was left for 24 hours. The silver concentration 

in the samples was measured by a Varian Spectr AA 55, Atomic Absorption 

Spectrometer (AAS). Some vials were diluted prior to measuring the concentration, to 

ensure the concentration of silver fell within the range detectable by the AAS. The AAS 

was preformed at a wavelength of 338.3 nm, using air and acetylene gas for the flame. 

The spectrometer was calibrated with .2, .5, 1, 5, 10, 15 ppm of silver standards; the 

standards were measured before after sampling to ensure measurement stability. Tests 

were repeated in triplicate.

Silver levels were computed using the following equation (1):

Silver Fraction  =
(5 m l + d i l u t i o n  v o l u m e ) * m a s s  f a c t o r * a b s o r b a n c e * c a l i b r a t i o n  f a c t o r

m a s s  o f  s a m p l e ( i )
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3.3 -  Characterization

3.3.1 -  X-ray diffraction

AgNP-BC samples were characterized using a Rigaku MiniFlex X-ray 

diffractometer. Samples were scanned at a 20 range of 10° to 90° at 0.1° increments. 

The samples were stored at room temperature in the dark prior to scanning.

3.3.2 -  Scanning electron microscopy

The scanning electron microscopy (SEM) was conducted on a Leo-1530 

Scanning Electron Microscope with an accelerated voltage of 1 kV. No coatings were 

used. Particle size was determined using ImageJ software. A sample for 500 particles 

were measured, 50 per SEM image over 10 SEM images.

3.3.4 -  Fourier-transform infrared spectroscopy

The FT-IR spectra of BC and dialdehyde-BC were determined using 

PerkinElmer FTIR Spectrum BX. A resolution of 2.0 cm' 1 was used with an interval of 

0.5 cm '1, over an interval of 64 scans. The BC sample tested was Biofill, using the 

preparation conditions as stated early in the chapter for Biofill, with the exception that 

the Biofill was oxidized for 24 hours, as opposed to 60 minutes.
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3.4 -  Determination of silver release kinetics

Amber glass vials were filled with 5 mL of deionized water, and BC-silver 

samples of sizes shown in Table 3.2 were placed in the water and maintained at 37 0 C. 

The samples were transferred to a new vial at 5 minutes, 20 minutes, 40 minutes, 1 hour, 

2 hours, 4 hours, 8  hours, 24 hours, 48 hours, and 96 hours. Once the sample had been 

transferred to a new vial, the old vial containing the water and released silver was stored 

at 4°C, until the silver concentration was measured using AAS. The fractional release of 

silver was also determined using equation (1) seen on page 28. Tests were repeated in 

triplicate.

Table 3.2: Release kinetic sample sizes

Sample Type Sample mass in mg
Acticoat 80
Silver enhanced Biofill 30
Silver enhanced pellicle 40

3 .5 - Antimicrobial tests
The antimicrobial protocol used was a modified Kirby Bauer Method; adapted 

from Taylor et al. and Clinical and Laboratory Standard Institute’s procedures [4] [109], 

Escherichia coli and Staphylococcus aureus Newman were cultured in Trypic Soy Broth 

for 24 hours. The culture was diluted to an approximate cell density of 1.5 *108, 

determined by measuring an optical absorbance of 0.132 at 600 nm [109], In 100 pL 

aliquots, the bacteria was then placed on Mueller Hinton agar plates and spread using a 

cell spreader. Three disks, 1 cm in diameter, of the prepared cellulose film were placed 

on the agar in an arrangement that would prevent any overlap of potential clear zones. 

The plates were incubated for 24 hours at 35 °C. The clear zones were measured by
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scanning the plates and using the image processing software “Image J.” New agar plates 

were then inoculated using the same procedure and the samples were transferred to the 

new plates. This process was repeated every 24 hours, until no clear zone remained [4]. 

The clear zone diameter was measured as seen in Figure 3.2 and the zone of inhibition 

was determined using equation 2 :

Zone Diameter

Figure 3.2: How the clear zone size is 
determined

„ r  i i • i •. • Zone D iam eter-Sam ple DiameterZone o f  Inhibition = ----------------- -— ------------- (2)

Sample Diameter = 1 cm 

An example of a plate is seen in Figure 3.3.

Figure 3.3: An example of a clcarzone test on a sample of 
silver loaded BC. Tested against S . A ureus
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Chapter 4 -  Results and Discussion

The primary purpose of this research project is to explore a novel antimicrobial 

material for possible use in biomedical applications -  with wound dressing being the 

area of chief consideration. The design requirements considered while evaluating the 

material are the ability to tune the silver loading, maintain the release of silver overtime, 

and exhibit antimicrobial properties. The material is a BC substrate with Ag-NPs 

attached to it. It is created in a three-step process (as detailed in the Methods chapter). 

The first step is the selection and/or production of the BC substrate. Biofill, a dried and 

stretch BC pellicle, was one of two sources of cellulose that was used; it has a successful 

commercial history, and the quickest path to making available a silver loaded BC wound 

dressing is to predicate it on an already successful product. The second form of 

cellulose used was produced in the lab; this, as we will see is morphologically different 

from Biofill, and has correspondingly different characteristics. The second step is the 

oxidation of the BC substrate; this step prepares the sample for functionalization with 

thiosemicarbazide and silver. And it follows, that the last step is the functionalization or 

attachment of Ag-NPs to the BC substrate. Results of these steps, and their 

corresponding characterization will be detailed and discussed in this chapter.
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4.1 -  Bacterial cellulose substrate

Figure 4.1: Labmadc cellulose (left) versus Biofill (right). Top and side views.

A piece of lab made, wet pellicle versus Biofill can be seen in Figure 4.1. The 

wet pellicle, as produced by the procedure listed in the Methods chapter is comprised of 

99% water by mass, with only the remaining 1% being cellulose. When wet it is 2 -3 

mm thick, but decreases to a thickness of 60 ± 1 0  pm upon drying (the other dimensions 

remain unchanged), and does not reswell upon rewetting; whereas, Biofill is 40 ± 10 pm 

regardless of whether it is dry or wet. The nanostructure of wet pellicle can be seen in 

Figure 4.3. This SEM was taken using critical point drying to preserve the 

nanostructure. The highly porous 3-D structure is irreversibly lost during the normal air 

drying process; one can note the flattening of the fibers and the collapse of the pores, 

due to the loss of hydrogen bonds and their role in preserving the nanostructure, as 

illustrated by the SEM of Biofill [110].
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Figure 4.3: Lab made pellicle after critical point dry in g.
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4.1.1 -  Production of lab made, wet pellicle

The original work conducted by Guhados on the BC silver material, was 

preformed on free BC fibers produced in agitated culture that had been cast into a film 

and dried [107], This process is labour intensive, primarily due to the fiber purification 

steps required when producing BC in agitated culture, and costly, due to the use of 

membrane filters in the casting process. Additionally, the cast film did not share all the 

advantageous characteristics of BC pellicle. In response to the issues with using a film 

cast from free BC fiber, BC pellicle was selected as the substrate instead. And as 

previously stated two types of pellicle were tested: Biofill and lab made, wet pellicle.

An interesting aspect of the wet pellicle was the variation in the produced 

pellicle. Like any biosystem there is some variation outside the influence of reasonable 

experimental control. For example, the pellicle can partially sink after some initial 

growth, allowing for a second thinner pellicle to form; this creates a delaminated or 

double-layered pellicle. Also, the smoothness of the pellicle can vary; with some 

pellicles bumps of approximately half-a-centimeter in diameter and height were 

observed. This occurred in approximately 20 -  25 % of cultures, and could be the result 

of mutation of the bacteria. Mutations in A. xylium are reported throughout the 

literature, but primarily manifest as non-cellulose producing phenotypes that arise in 

agitated and shaken culture. One paper reports that these non-cellulose producing 

strains often return to producing cellulose when placed back in static culture [111]. It is 

unclear what is exactly occurring with the unsmooth BC pellicle, but it could be the 

result of mutation in the seed culture - produced in shaken culture - and the return of 

those bacteria to cellulose producing pheonotypes once placed in static culture. From a
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pragmatic point of view, this problem was overcome qualitatively, with some pellicles 

being rejected on personal judgment, like in any quality control inspection.

A growth period of 7 days was selected as the pellicle had an area density, when 

dried, similar to Biofill. While Biofill is described as being dried and stretched, the lab 

made pellicle was not stretched, as the exact procedure for doing this is not known and it 

is suspected that specialized equipment is used. So, while Biofill and lab made pellicle 

share a similar area density, they are not necessarily identical.

If grown for a long period of time and with more media, a thicker pellicle can be 

produced. The pellicles produced for this research project had a thickness of 2 -  3 mm 

where there have been reports in the literature of pellicles of 2 -  4 cm thick, in cultures 

maintained over 30 days [112]. As we will see during the rest of this chapter, starting 

from a wet pellicle will increase the loading of silver -  primarily due to an increase in 

accessibility of the internal structure -  and correspondingly the antimicrobial 

effectiveness of the end material.

4 .2 - Oxidation of the bacterial cellulose substrate

The second step, the oxidation of the BC, was the original focus of the research, 

as it was assumed to provide a facile and effective method for tuning silver loading. 

While this proved to be somewhat true, as we will see, the source of the cellulose, step 

one, plays a more important role. The BC was oxidized using sodium metaperiodate 

(NaIC>4) to obtain 2,3-dialdehyde cellulose (DAC). NaIC>4 breaks the C-2-C-3 bond of 

the glucose residues resulting in the structure shown in Figure 4.4 [113].
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Figure 4.4: Oxidization Reaction
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Figure 4.5: FTIR spectrum of bacterial cellulose and oxidized cellulose

The oxidation was confirmed using fouricr transform infrared spectroscopy (FT-IR). 

The low level of oxidation made it difficult to detect a change in the FT-IR spectra, and 

so a sample of Biofill was oxidized for 20 hours as opposed to the single hour used for 

sample preparation. The oxidized samples show peaks at 1735 cm' 1 and 880 cm"1 which
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correspond to the stretching of the free aldhyde and hemiacetal structure respectively. A 

flattening of the OH peak is also observed [114].

4.2.1 -  Quantify oxidation level: Biofill

The oxidation level was measured using the Cannizzaro reaction as described by 

Pommerening et al. [108] This procedure provided a simple and repeatable method to 

determine the number of aldehyde groups, expressed as a percentage of cellulose 

monomers. An alternative method for determining the oxidation level involves using 

optical absorbance to measure the initial periodate concentration and remaining 

concentration after oxidation, to determine the percentage consumed. This method was 

reported by Maekawa and Koshijima [115]. Both methods were compared by 

RoyChowdhury and Kumar and showed to yield similar results under ideal conditions 

[116], making using a redundant method moot. The optical absorbance method was 

attempted, but ultimately failed to yield usable results, due most likely to the high ratio 

of NaIC>4 to BC, with an expected change in NaIC>4 levels on the order of a fraction of a 

percent. In other words, the sensitivity of that method was not great enough for this 

application.

Table 4.1: Oxidation Level Biofill.

Sample (oxidation time) Oxidation L e v e l______
15 minute 
30 minute 
60 minute

As can be seen by the small standard deviations, in Table 4.1, the oxidation reaction 

produced highly repeatable results and the Cannizzaro method proved precise. The 

oxidation times of 15, 30 and 60 minutes were selected as a continuation of Guhados’s

.52 ± .03% 

.91 ± .03% 
1.89 ±.08%
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work; he had preformed the reaction on microcrystalline cellulose and BC produced in 

shaken and agitated culture [107],

4.2.2 -  Quantify oxidation level: lab made, wet pellicle

The oxidation procedure was adapted when the work shifted to using wet 

pellicle. Wet pellicle is 99% water, with the remaining being BC. The high percentage 

of water presented a challenge. For example during the oxidation step of the procedure, 

a 15 minute oxidation time would not ensure that the NaI04 had diffused throughout the 

sample, possibly preventing an even oxidation of the sample. Additionally, it would be 

difficult to wash all the reagents from the sample afterwards. To overcome these 

challenges, the procedure was modified. Instead of using a set amount of oxidizing 

agent and varying the reaction time, the reaction time was kept constant and the 

oxidizing agent was varied. A time point of 24 hours was selected, and the molar ratio 

of the oxidizing agent to BC was varied between .5:1, 1:1, 1.5:1, and 2:1. Asa reminder, 

a fixed ratio of 13:1 was used for the dry pellicle samples, with the time points varied 

from 15 minutes, 30 minutes, and 60 minutes. The resulting oxidation levels can be 

seen in Table 4.2.

The oxidation level was determined using the same quantify procedure as the dry 

pellicile (Biofill). The samples were dried before determining the oxidation levels.

Table 4,2: Oxidation Level Pellicle

Sample Oxidation Level
5 N aI04: 1 BC ........................................... 2.6 ± .2 %
1 N aI04: 1 BC 4.2 ± .3 %
1.5 NaI04: 1 BC 5.8 ± .3 %
2 N aI04: 1 BC 6.8 ± .3 %
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The overall oxidation level was greater than that for the Biofill samples. This was done 

intentionally to further increase the silver loading and antimicrobial properties. The 

upper limit was not arbitrary; 7% was not exceeded because it yielded a material that 

cracked and flaked easily. The loss of this structural integrity makes it unsuitable 

consideration as a potential wound dressing.
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4.3 -  Attachment of silver nanoparticles to the bacterial 
cellulose substrate

thought of in two discrete sub-steps: first, functionalizing the DAC in preparation for the 

silver treatment; and second, the silver treatment.

The functionalization of the DAC is accomplished using thiosemicarbazide. 

Thiosemicarbazide is a ligand, which has historically been used as a chelating agent. It 

provides an anchor for the silver protienate. The thiolized DAC is seen in Figure 4.6.

Figure 4.6: Cellulose with thiosemicarbazide

The conformation of the thiosemicarbazide and silver complex was explored by 

Bonamartini et al. [117] They showed that there are two likely configurations, seen in 

Figure 4.7 with M representing the metal ion. The first association is the only one that 

could occur, given the bonding arrangement of the thiosemicarbazide and BC.

The third step of linking the silver nanoparticles to the BC substrate can be

nh2
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Figure 4,7: Thiosemicarbazide and metal ion bonding arraugeineut 

The material presented in this thesis represents an extension of the work began

by Guhados in 2005. He was the first to used thiosemicarbazide with oxidized BC to

create a chelating polymer, although previously it has been combined with oxidized

plant cellulose to a similar end. Koshijima et al. had shown such a material has a high

affinity for silver and mercury, capturing 2.38 mMole/g cellulose and 3.12 mMole/g

cellulose respectively, with a lesser affinity for copper and cadmium [118].

There are two silver compounds used to produce the Ag-NPs. The first treatment

is with silver proteinate. Silver proteinate is proprietary silver protein complex that was

formally sold under the brand names of Argerol or Stillargol, and used to treat certain

eye and nose infections; its only modern use is in histological studies. The second form

of silver used is ammoniacal silver, also known as Tollen’s reagent; it is sometimes used

in organic chemistry to distinguish between organic functional groups.

If divided differently the entire process can be thought of as a three-step process

(described by the main constituents): periodate -  thiosemicarbazide -  silver protienate

(PA-TSC-SP). This is how it is frequently portrayed in histology; where it is used as a

method for staining glycogen. The method is described in several textbooks [119] [120]

[121], and was widely used in the 1970s and 80s [122] [123]; but, it is difficult to find

reference to it in the literature during the 1990s or 2000s. This histological method
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resembles the one presented by Kuga and Brown in 1988 [124], in which they stained 

the reducing end groups of BC fibers. Kuga and Brown did not oxidize the cellulose, 

but instead demonstrated the orientation of BC fibrils in the larger fibers on non- 

oxidized samples. The process used was unique, as it did not use NaIO.4, but instead 

relied on the reducing ends of the cellulose fibrils. Guhados also showed that the silver 

maps to the sulphur locations using energy-dispersive x-ray spectroscopy, when the 

above procedure was conducted on microcrystalline cellulose [107],

4.3.1 -  X-ray diffraction

To properly evaluate the efficacy of the Ag-NP-BC dressing, it is important to 

compare it to an established material that has a clinical history. In this case Acticoat was 

selected, as it is widely held as the gold standard of silver dressing. To validate the 

comparison, the nature of the silver particles must be examined and shown to be akin.

Acticoat is prepared through physical vapour deposition of silver on a 

polyethylene substrate. As one can see from the diffraction peaks in Figure 4.8 the 

silver on the BC has the same crystalline structure as those on Acticoat. The XRD 

fingerprint corresponds to a face-centered cubic-structure [15]. These plots use a 10 

point moving average to smooth some of the noise found in the data.
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Figure 4.8: XRD specta for nod silver-BC and Acticoat samples

4.3.2 -  Scanning electron microscopy

The silver particle size was explored using SEM. An image of the silver loaded 

Biofill (dry pellicle) is seen in Figure 4.9. Multiple micrographs of several 

independently made samples were taken, showing the repeatability, uniformity, and a 

particles size that is seen in Figure 4.10. It should be noted that the resolution of the 

micrographs was 4 nm/1 pixel. The histogram bin size were selected based on 4 pixels, 

or 16 nanometers, this does not indicate a precision to last digit as the rules of significant 

figures would normally suggest. It was difficult to obtain a more precise reading on the 

particle size due to the resolution limitation of the SEM images. Transmission electron



microscopy could not be used due to the sample thickness. Regardless, these results do 

show irrefutably that the majority of the particles fall between 32 and 64 nm.

Figure 4.9: SIM  of silver loaded Biofill. 1.89 ± .08% oxidized.
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Particle Size (nm)

Figure 4.10: Silver particle size distribution on 1.89 ±  .08% oxidized Biotlll sample. Based on figure 4.5 and 
additional frames.

The lab made, wet pellicle samples were heavily coated with silver as can be 

seen in Figure 4.11. While the coating looks particle based, it would be more apt to 

describe it as BC coated an almost confluent layer of silver. This made particle size 

determination impossible, hence no particle distribution is presented for the wet pellicle 

based system.
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Figure 4.11: SKM of silver loaded on lab-made pellicle (6.8 ± .3 % oxidized) after drying at room temperature.

SEMs of Acticoat yield two different silver morphologies: the discrete particles 

and grape-bunch types of silver as seen in A and B of Figure 4.12 respectively. The 

discrete particles have a particles size falling primarily between 32 and 64 nm (Figure 

4.13), while the clusters have an estimated size of between 200 and 500 nm, with knobs 

of between 50 and 150 nm. Both images have been taken from the same piece of 

Acticoat, calling into question the consistency of the manufacturing process.
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Figure 4.12: SEMs of two different locations on Acticoat, demonstrate two different particles morphologies. 
Scale bar applies to both A and B.
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Figure 4.13: Silver particle size distribution from Acticoat Based on Figure 4. J2A and additional frames.
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4.3.4 -  Silver loading: Biofill

It was hypothesized that the silver loading levels could be adjusted by changing 

the oxidation level, fulfilling the criteria for making a tunable material. Oxidation 

weakens the material, therefore narrowing the range of workable oxidation levels; 

although sufficient range was left to show a linear relationship between the loading of 

silver and the oxidation level -  this is seen in Figure 4.14. The linear relationship proves 

the chemical association between the oxidation level and silver; further confirming what 

was discussed in section 4.2. The Y-intercept of the slope is the point that represents 

non-oxidized BC (this was experimentally determined); this shows that there is both 

silver associated with non-oxidized BC and that it is present in a proportionally large 

amount. Oneway ANOVA tests (p < .05) were preformed on the measurements 

presented in Figure 4.14, the populations were statistically different in both the Y and X 

directions, with the corresponding Tukey test showing that the points in the Y direction 

are not statistically different from adjacent points.
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Figure 4.14: Oxidation of Biofill versus silver loading.

Having such a large amount of silver associated with the unoxidized BC, 

suggests two possible associations. It could be silver bound to the reducing end groups 

of the cellulose fibrils. As previously mentioned the silver binding process without the 

oxidation step mimics the procedure that Kuga et al., use for labeling the reducing end 

groups of BC [124], thus indicating that some of the silver is bound in a similar manner. 

Or it could be unbound silver that has remained after the rinsing steps; while the samples 

are rinsed after both the silver loading steps, the rinsing is gentle. It is possible that not 

all the loose silver is removed during the rinses. In one possible scenario, silver 

protienate not removed during the rinsing is enhanced with ammoniacal silver in the 

next step, creating unbound Ag-NPs caught in the Biofill mesh.
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If we compare the loaded silver with the silver that is released after 96 hours 

from the sample (Figure 4.15), we see that the released silver is independent of the 

loading level. The silver release seems to be primarily a function of sample mass, as 

opposed to the original hypothesis that it would depend on silver loading levels -  

although additional experimentation would be need to confirm this. In other words the 

silver available for release is constant between samples, indicating the silver loading 

does not affect silver available for release.

4.3.5 -  Silver loading: Lab-made, wet pellicle

In Figure 4.15 the silver loading is expressed as a function of oxidation level, for 

the lab made pellicle and compared to the data from Figure 4.14. It should be noted that 

there is a much higher loading of silver. This can be explained once again by the 3D 

structure of the wet pellicle, in which the internal structure is more accessible and
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available for silver deposition. When comparing the loading levels in the unoxidized 

Biofill and wet pellicle samples -  this high level of loading in the unoxidation would 

suggest access to the internal structure makes a large difference. A portion of the silver 

is bound to the reducing end groups of the cellulose fibrils; in a 3D environment these 

end groups are more accessible and therefore can bind more silver, compared to the 

essentially 2D Biofill.

Figure 4.16: Oxidation of lab made, wet pellicle versus silver loading (also including data from Figure 4.14)

Oneway ANOVA tests (p < .05) were preformed on the silver loading 

measurements (Figure 4.16) showing that the population means are statistically different 

in both the Y and X directions, with a corresponding Tukey test showing the points are 

not statistically different to adjacent points in the Y direction.

Like previously discussed the linear relationship between the silver loading and 

the oxidation level is an indication of the association between the aldehyde groups and
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the silver. There is a difference in the slopes of the lines, with the lab-made pellicle 

expressing a less steep slope. The reasons for this are not clear. One possible 

explanation is that the oxidation loosens the fibers of the Biofill, increasing the surface 

area for silver binding. This would not have such a large material impact on lab-made 

cellulose, because so much surface area is already exposed.

Similar to the case of the Biofill (dry pellicle), the amount of silver released over 

a 96 hour period from the wet pellicle preparation is independent of silver loading levels 

as seen in Figure 4.17. This reinforces the idea that silver release is a function of total 

sample mass, suggesting that there are two species of silver present, bound silver and 

unbound silver. The bound silver is responsible for the change in silver loading levels 

with the oxidation level, and the unbound silver is responsible for the silver release. The 

unbound silver would simply be a function of sample mass, much like the silver release. 

Further experimentation would be required to confirm this. The entire baseline silver 

loading is not necessarily unbound, like discussed, part could be bound to the reducing 

end groups of the cellulose fibrils. This idea is reinforced when examining the silver 

loading for 0% oxidation sample, showing that only about half of the loaded silver is

released.
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Oxidation Level (%)
Figure 4.17: Wet pellicle silver loading versus silver release after 96 hours.

4.3.6 -  Silver loading by area

An alternative and practical way to look at the prepared samples is silver loading 

by area. This provides the ability to compare the samples to the loading in Acticoat and 

gives an idea of the dose that will be delivered to a wound and to the agar in the 

antimicrobial tests. It should be noted that there is a difference in the thickness of the 

lab-made cellulose and the Biofill prepared samples. The wet pellicle is 60±10 pm after 

drying compared to the Biofill of 40±10 pm. This information is presented in Figure 

4.18. Acticoat are the heaviest loaded samples.
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Figure 4.18: Silver loading by area. The biofill samples are labeled according how long they were oxidized for, 
and the lab-made, wet pellicle are labeled according to the ratio of oxidizing agent to cellulose.
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4 .4 - Silver release

The material’s design is based on the supposition that binding the silver to the 

substrate will create a better controlled release of the silver, increasing the longevity of 

the antimicrobial properties and reducing tissue staining. To determine the longevity of 

the dressing, it is important to derive a release profile for the silver.

4.4.1 -  Silver release from dry pellicle (Biofill)

The traditional manner in displaying release curves is to show the mass released 

over the total mass available for release. This is not the case with Figure 4.19, in which 

the mass of silver released is shown as a fraction of the total silver on the compound. 

Displaying the graph with the silver release as a percentage of total loaded silver, 

conveys more information. For example as can be seen from the sample oxidized for 15 

minutes, that silver release seems to level off at a level around 12 %. This suggests a 

level of about 12 % of the loaded silver is available for release, information that could

not have been ascertained otherwise.
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Figure 4.19: Biofill release profile

The data presented in Figure 4.19 might suggest that the 15 minute oxidized sample 

release more silver that the 60 minute oxidized sample, which is only partially true. The 

release presented in the graph is a function of a fraction of the total silver, and the 15 

minute oxidized sample has less silver loaded than the 60 minute sample, therefore the 

fractional released is larger.

4.4.2- Lab-made, wet pellicle release

The curves for the samples prepared from the lab made, wet pellicle are similar to the 

curves seen with samples prepared from Biofill. Figure 4.20 shows the release of silver 

as a portion of total silver loading, and it is apparent that the samples with lower levels 

of silver loading release a proportionally larger amount of silver. The results for
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Acticoat are shown for comparison. It should be noted that Acticoat is 13 ± .4 % silver 

by mass, and is tripled layered.

Figure 4.20: Release profile lab-made, wet pellicle

4.4.3 -  Silver release mechanism

There are several possible modes of release. For example, when Acticoat is 

placed in water the silver can be seen simply falling off the polyethylene substrate as a 

fine black powder -  this type of release may also be present in the BC based dressing 

although does not occur in observable levels. As previously discussed there is the 

potential for unbound silver to be present in the material, and could influence the silver 

release profile.
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Additionally, it should be noted that the total silver released is a percentage of 

the total loaded silver. This is best explained by suggesting the largest component of the 

released silver is unbound silver -  which would be independent of the loading level, and 

instead be a function of substrate mass. But, the simple letting go of the unbound silver 

is not necessarily the only mode of silver release. The original design was based on the 

premise that nanosilver dissolves into Ag+ and Ag° clusters (defined as a grouping of 8 

or more atoms) as described by Fan and Bard. [125]. Hoskin et al. postulate that it is the 

oxidation of the silver in an aqueous environment that contributes to this break down 

with dissolved oxygen playing a role [126], as seen in the following mechanism:

0 2(aq) + 4H+(aq) + 4Ag°(s) 4Ag+(aq)+2H20(l)

Fan and Bard explore the release of silver from an Acticoat like material, as it relates to 

silver clusters and silver ions in a 1 M NaC1 0 4  solution. A limitation of the study 

conducted for this project is that only total silver release is studied, without making the 

distinction between Ag-NPs, Ag° clusters and Ag+ ions. But, it is safe to assume, silver 

release can be summarized as having three distinct types of silver -  Ag-NPs, ionic silver 

and silver clusters.

Silver levels were measured using Atomic Absorption Spectrophotometry, which 

had the advantages of simplicity and availability, allowing for the testing of a multitude 

of samples; but had the disadvantage of poor sensitivity, measuring only to.5 ppm. In 

Gray’s PhD thesis, conducted on the nanosilver linked polyurethane substrate, she 

attempted to use AAS, but was ultimately unsuccessful due to its lack of sensitivity
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[127], She was only able to evince through indirect methods (antimicrobial results) that 

silver was released.

The other disadvantage of AAS is its inability to handle highly ionic solutions -  

the silver signal was lost when testing the release in phosphate buffered solution. In the 

past other groups have investigated the release of silver into several ionic solutions 

including: alpha-medium, PBS(-), calf serum, .9% NaCl, artificial saliva, 1.2 mass% 1- 

cysteine, 1 mass% lactic acid, .01 mass% HC1, and simulated body fluid [128] [129] -  

using inductively couple plasma mass spectrometry (ICP-MS). The release of silver into 

an ionic solution or the wound environment raises interesting questions. The silver 

release, if in ionic form would quickly bind to negative ions in solution, for example 

chlorine, forming biologically inactive silver-chloride. In the case of Acticoat, the 

recommended application procedure in clinical settings requires soaking the dressing in 

distilled water -  as oppose to the standard saline. Whether this step is superfluous or 

not, as the dressing is then applied to the normally strongly ionic concentration of a 

wound’s exudate, is an excellent question. The answer, unfortunately, is still elusive. 

Despite this, the release of silver into de-ionised water has been investigated in the 

literature with proven silver systems [4],

! t
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4.5 -  Antimicrobial properties

The microbial test preformed on the samples was an adapted disk diffusion test. 

The genuine disk diffusion test is a qualitative clinical procedure used to determine the 

susceptibility of bacteria to a specific antibiotic. The genuine test is preformed by 

inoculating a Mueller Hinton agar Petri dish with an aliquot of bacteria and placing a 

standardized sized disk soaked in a specific antibiotic on the agar. The antibiotic 

diffuses out of the disk preventing the bacteria from growing in a halo like area around 

the disk. The size of this halo is dependent on several factors; including how susceptible 

the bacteria is to the antibiotic, how well the antibiotic diffuses through the agar, 

whether the antibiotic reacts with the agar, and how well the bacteria grows on the agar. 

In a clinical setting the test results are compared to a set of standards either developed in 

lab or provided by the Clinical and Laboratory Standards Institute (CLSI) -  and a 

dichotomous result is given: susceptible or resistant.

While CLSI publishes the standards for a wide range of antibiotics, they have yet 

(as of 2008) to published results for any test involving silver compounds. But, the test 

remains widely used in the literature to examine the efficacy of silver compounds, 

although frequently interpreted to offer more qualitative results. Several researchers 

have raised concerns, with Falcone and Spadaro stating that the inhibition zone from 

silver materials . .are complex and appear to be self-limited in size due to diffusion and 

competing binding process.” [13] Silver ions react readily with the agar, so much so that 

in the case of silver nitrate loaded BC, the agar beneath the cellulose sample turns white 

with what is assumed to be silver chloride. With other silver species no noticeable 

change in the colour of the agar is observed, but it is highly likely these competing
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binding processes are still at work. Additionally, the clear zone is established (although 

not observable) within the first 3 to 6 hours after placing the sample on the dish [109], 

In this short time, silver nanoparticles would diffuse to a lesser extent than smaller 

antibiotics, creating a clearzone that is comparatively smaller.

Modifying the test has mitigated some of these problems. First the inclusion of 

an Ag-NPs ‘standard’ dressing, in the form of Acticoat, was used. This reduces the 

requirement for a comparison to the CLSI standards, as Acticoat becomes the measuring 

stick, having a history as an effective silver dressing. As discussed earlier, an 

examination of Acticoat indicates that the Ag-NPs are of approximately the same nature 

as those present in the BC prepared sample. And while there is little to be done about 

the competing binding processes that Falcone and Spadaro alluded to, these will at least 

be equal in both cases. Additionally, to offset the limitations of the test, it is expanded 

to a multiday test by following the procedure established by White et al., and instead of 

drawing conclusions only on the comparative efficacy of the material, information on 

the longevity of the dressing can be discerned. In a 2005 paper by Callant-Behm et al., 

published explicitly as an indepth analysis of the disk diffusion test versus a kill-kinetic 

test for silver dressings, concludes that the White et al. method provides “...useful data 

as to dressing longevity...” [130]
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4.5.1 -  Disk diffusion test - Biofill

Table 4.3: Clear zone size - Bio fill prepared samples.

Sample Clear Zone: 
E. coli

Clear Zone: 
S. Aureus

15 minute oxidized 0 mm .5-1.5 mm
30 minute oxidized 0 mm .5-1.5 mm
60 minute oxidized 0 mm .5-1.5 mm
Acticoat 1 - 2  mm 1.5 -2.5 mm

The clearzone sizes are listed in Table 4.3. One should refer to the Methods section to 

view how these were determined; the procedure is comparable to those published in the 

scientific literature, but differs from that established by the Clinical and Laboratory 

Standards Institute (CLSI). The numbers are presented as a range in part to indicate the 

qualitative nature of the test, as opposed to a more quantitative test. Additionally, it 

should be noted that while the E. coli and S. aureus results are displayed in the same 

table they should not be compared, only numbers within a column should be compared. 

This is due to the inclination of E. coli to Mueller Hington agar (the standard agar used 

for this test). In other words, E. coli grows better that S. aureus on Mueller Hington 

agar, making the clear zones smaller, or in this case non-existent.

Table 4.4: Days of observable clear zone - Bio fill

Sample Days of observable clear zone (5. aureus)
15 minute oxidized 1 day
30 minute oxidized 1 day
60 minute oxidized 1 day
Acticoat 6 days

Table 4.4 shows the longevity of the samples. Both tables show that there is little 

difference between the efficacies and the longevities of the different oxidation levels.

(

I
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This leads to the conclusion that longevity is based on silver release and is independent 

of silver loading. The longevity was also much less than Acticoat was the watershed 

result that eventually led to the revaluation of initial substrate and following that, the use 

of wet pellicle.

4.5.2 - Disk diffusion test -  wet pellicle

The antimicrobial tests conducted on the lab-made cellulose are modified dear- 

zone tests, the same as those conducted on the Biofill prepared samples. The results 

were significantly better than the Biofill. One can see in Table 4.5 that the clear zones 

are significantly larger than those seen with the Biofill samples. The S. aureus clear 

zones are larger than those of the E. coli, due to the fact that S. aureus does not grow as 

well as the E. coli on the agar used. As discussed in the last section, more silver is 

present and more silver is released in lab-made, wet pellicle samples than the Biofill 

prepared samples, this directly results in the larger clear zone.

Like before, the results again are given as a range, indicating the uncertainty in 

measuring the clearzone size. While some slight variation in the S. aureus 

measurements, the conclusion is that all sample preparations have essentially similar 

efficacy. This corresponded to the release kinetics, which show antimicrobial efficacy is 

dependant on silver release, and not silver loading -  this is not a totally unexpected

result.
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Table 4.5: Clear zone sizes -  lab-made pellicle samples.

Sample Clear Zone: 
E. coli

Clear Zone: 
S. aureus

.5 NaI04: 1 BC 1 -  2 mm 1.5 -2.5 mm
1 NaI04: 1 BC 1 -  2 mm 1.5 -  2.5 mm
1.5 NaI04: 1 BC 1 -  2 mm 1 -2.5 mm
2 NaI04: 1 BC 1 -  2 mm 1 -  2 mm
Acticoat 1 -  2 mm 1.5 -  2.5 mm

The longevity of the sample is displayed in Table 4.6. But, once again there was

little difference between oxidation levels, suggesting that like antimicrobial efficacy and 

longevity is dependant on silver release.

The results do show that samples remain active for five days having a similar 

longevity as Acticoat. If we compare these results to the area density of silver (Figure 

4.18) we see that these results are accomplished about one third of silver per square 

centimeter as Acticoat, as the case with wet pellicle cellulose oxidized with a ratio .5:1 

(oxidizer to cellulose). This initial loading difference in silver loading does not 

necessarily translate into a difference in dose, with the total dose per cm of Acticoat 

falling within the range of total doses for the wet pellicle samples. The pellicle sample 

has the added advantage of a closer adhesion of the material to the agar, which would 

translate into the real world application with a closer adhesion to the wound bed.

Table 4.6: Days of observable clear zone -  lab-made pellicle samples

Sample Days of observable of 
clearzone: E. coli

Days of observable 
clearzone: S. aureus

.5 NaI04: 1 BC 5 days 5 days
1 N aI04: 1 BC 5 days 5 days
1.5 NaI04: 1 BC 5 days 5 days
2 N aI04: 1 BC 5 days 5 days
Acticoat 5 days 6 days
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4.6 -  Alternatives
The results lead to the conclusion that the initial premise of binding silver to the 

BC substrate maybe unnecessary, and should be reevaluated. An alternative is the 

creation Ag-NPs in the interior mesh like structure of the wet pellicle. There are several 

manners in which to create silver nanoparticles and several of these were explored. 

These included using silver nitrate and an autoclave or the reducing agent sodium 

borohydride. More information can be found on these in Appendix A. While there is 

substantially more work to be done on these systems to appropriately evaluate their 

efficacy, the groundwork has been laid.
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Chapter 5 -  Conclusion and Future Design 
Considerations

The research outlined in this thesis explores variations on one approach of 

combining silver and bacterial cellulose, for the production of an antimicrobial material 

that can be used as a biomedical biomaterial. The process yields a novel material, with 

nanocrystalline silver bound to the surface. It was expected that the bounded Ag-NPs 

would release silver in a bioactive form and provide an antimicrobial effect, while this 

may have occurred it did not do so in distinguishable levels. Instead unbound silver 

caught in the BC mesh was released and created the antimicrobial effect. This leads to 

two possible thought pathways: one redesign the material to focus on unbound Ag-NPs, 

several methods are described in Appendix A for doing this; or examine the 

effectiveness of the material in such settings where the release of silver is not required. 

Surgical gloves would be a good example of a device where bound silver could 

potentially prevent bacteria from sitting on the surface of the glove, decreasing the 

chance of spreading infection. The effectiveness of non-released or non-releasable 

silver preventing the buildup of bacterial is not established in the literature, and is 

suggested here merely as a hypothesis.

One consideration in the development of this biomaterial is the type of BC used. 

Two types were examined in this thesis, Biofill and lab-made wet cellulose (reacted wet, 

used dry); a third exists. Guhados originally developed the silver loading process on 

loose BC fibers. The fibers were produced in shaken and agitated cultures, methods that
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have several distinct advantages and disadvantages. One advantage is the potential for 

scale up, but as stated in the Literature Review this promise has yet to be realized. 

Another advantage is the direct use of loose fibers in nanocomposites, with the 

corresponding disadvantage being to use the loose fibers for a wound dressing they 

would need to be cast in a film. The main disadvantage is the added complexity in 

production -  there is difficulty with pellicle to ensure all reagents are rinsed from the 

cellulose after each step -  this difficulty is multiplied with the use of loose fibers. Loose 

fibers must be washed in a centrifuge; it would be a time consuming and difficult task to 

ensure all the reagents were rinsed from the BC. Not all of the color is removed from 

the cellulose after even a dozen washes, suggesting at least some contaminants remain; 

purity is an important characteristic for biomedical materials. This leads to the 

conclusion BC should be produced in pellicle form, except when used in a composite. 

The data presented in the thesis also leads to the conclusion that the silver loading 

should be conducted on wet 3D pellicle instead of dry pellicle.

The commercial future of a material based on the three step process explored in 

this thesis is questionable. Several criteria must be examined before proceeding towards 

a path of commercialization. First, the cost of silver proteinate is prohibitive. Second, 

designing a scaled production line would be difficult, especially with rinsing between 

steps. Third, biocompatibility test need to be conducted; the outcome of which are not 

assured. While BC is biocompatible, the biocompatibility of the other constituents are 

either not known or not good. Silver proteinate has had a medical role in the past, and 

some grades have been sold under the brand Argerol for medical use.
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Thiosemicarbazide is both allergenic and toxic, with an oral dosage for a rat of 9 mg/kg, 

with a specific warning against irritation to skin; whether binding it to BC mitigates this 

toxicity is unknown. Also, if there is any remaining ammoniacal silver, this too could 

cause biocompatibility issues.

Some aspects of the design still need to be examined. As mentioned during the 

discussion, the oxidation process weakens the material; the ideal strength and flexibility 

of the material depends on the application, but should be qualitatively studied. 

Additionally, one of the important benefits of BC for a wound dressing application is its 

transparency; this is compromised by silver loading. Where the ideal balance between 

silver loading and transparency lies needs to be determined and the oxidation level 

adjusted to optimize for that criteria. Another feature not tested for was the potential for 

staining of the skin and wound tissue, any material that leave silver behind will create 

localized discoloration. In other words, staining should be expected.
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Appendix A -  Alternative Methods

There is compelling evidence presented in the body of this thesis indicating that 

the antimicrobial efficacy of the discussed material is due to unbound Ag-NPs. There 

are several possible procedures for developing simpler systems, they rely on the idea of 

creating silver particle in situ -  in the unwoven fiber mat of either Biofill or lab made, 

wet pellicle -  instead of binding the Ag-NPs to the BC fibers. A few potential methods 

were explored, they have been evaluated using some of the techniques already discussed 

in the body of this thesis, but none has been subjectted to the full battery of tests.

' 2  r  5 , t

A.1 Autoclaved silver

One of the simplest methods for creating a nanosilver dressing is using the steam 

and pressure of an autoclave. This procedure has been explored using cellulose cotton 

by Vigneshwaran et al. [131]. That research group created an Ag-NP cotton material by 

placing a cotton sample in a solution of silver nitrate and autoclaving it. This method 

was adapted for use with BC, and provides a promising method for creating the novel 

nanomaterial. The exact mechanism that creates the Ag-NPs is unclear, Vigneshwaran 

hypothesize that it was starches in the cotton that reduced the silver, these would not be 

present in the BC, therefore eliminating it as a possibility.

The procedure has one distinct advantage -  it uses only compounds that are 

already used in the treatment of wounds, silver nitrate and BC; no other chemical 

treatments are required. Additionally, the final product remains flexible and strong, 

without the degradation of strength that accompanies oxidation. Any unreduced silver
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will remain as silver nitrate, which already has antimicrobial properties. During 

manufacturing, the combination of the autoclaving step for production could be 

combined with the sterilization step reducing overall costs.

A.1.1 -  Autoclaved silver: Methods

Biofill was placed in a solution of AgN0 3  of concentration of .1 M, and left for 

15 minutes. The Biofill in solution was placed in the autoclave, and run on a 15 minute 

wet cycle. The cycle reached a temperature of 121° C and a pressure of 15 psi. The 

samples were removed from the autoclave and solution, and dried in a convection oven 

at room temperature.

Optical absorbance for the silver loaded BC samples was determined using a 

Beckman Coulter DU 520 UV-Vis Spectrophotometer. They were backgrounded 

against Biofill.

For additional characterisation techinques please see Chapter 3: Methods.

A.1.2 -  Autoclaved silver: results and discussion

No scanning electron microscopy was performed on the samples. Instead optical 

absorbance was used to confirm the presence of Ag-NPs. Optical absorbance is 

frequently used for this purpose with a peak at 450 nm indicating the presence [132] of 

Ag-NPs. This peak is seen in Figure A.l and therefore confirms the presence of Ag- 

NPs. XRD was conducted on the samples, but no peaks corresponding to
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nanocrystalline silver were observed (Figure A.2); this could be because there is no 

crystalline silver, or could be a result of a level that is below the detectible range. Table 

A. 1 shows that the amount of Ag-NPs makes up a smaller proportion of the total sample 

weight than the materials discussed in the body of the thesis; the silver loading for a 100 

mM autoclaved sample is 5.1% silver compared to 5.5% silver for the unoxidized Biofill 

sample. It should be noted that the method described in the body of this thesis places the 

samples in two solutions of silver; the first having a significant silver concentration and 

second has a silver nitrate concentration of about 70 mM prior to adding the ammonia 

hydroxide. Summing these two treatments would put the amount of silver to prepare 

those samples at a higher level than the level of silver used to prepare the autoclaved 

samples.

The results of the antimicrobial tests can be seen in Table A.2. The antimicrobial 

test showed that there was an antimicrobial effect for the heavier loaded sample.
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Figure A.1: Autoclaved samples -  optical absorbance. Background plain BC.
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Figure A.2: Autoclaved samples -  XRD 

Table A.1: Autoclaved samples -  silver density

Sample Silver Density (w/w%)

100 mM 5.1 ±.15
10 mM 1.8 ±.37

Table A.2: Autoclaved sam ples- antimicrobial size of clearzone

Sample Clear Zone: Clear Zone:
E. co li S. A u reu s

100 mM 0 - .5 mm .5-1.5 mm
10 mM 0 mm 0 mm
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Table A.3: Autoclaved samples -  antimicrobial longevity

Sample Days of observable of Days of observable
clearzone: E. c o l i ___ clearzone: S. a ureus

100 mM 1 days 2 days
10 mM _____ 0 days 0 days

A.2 -  Sodium borohydride reduced

Sodium borohydride (NaBHU) is a strong reducing agent that has been used 

throughout the literature to reduce silver nitrate to Ag-NPs. If combined with BC, it can 

be an easy method for creating an Ag-NP material. Maneerung et al. describe this 

method in a paper published in April 2008, as one can see from the date on the SEMs I 

independently developed the same method [133]. The major concern with this method 

is removing the remaining sodium borohydride and/or products of the reduction from the 

BC. Maneering et al. washes the BC thoroughly to mitigate this concern, but this is not 

a perfect solution. Washing probably removes some of the silver, creating inefficiency 

in the process and does not ensure all the sodium borohydride is removed.

A.2.1 -  Sodium borohydride reduced: Method

Biofill samples were soaked in silver nitrate solutions of 100 mM and 10 mM of 

solution for 15 minutes. The samples were removed from the silver solution and placed 

in a solution of 100 mM of sodium borohydride. They were left for 5 minutes, and then 

rinsed. The were dried in a convection oven at room temperature.

For characterisation techinque please see Chapter 3: Methods.



86

A.2.2 -  Sodium borohydride reduced: Results and discussion

These samples have the same efficacy as the autoclaved perpared samples, but 

with less silver. The lower silver level could be the result of a few factors, the 

autoclaved samples were kept in the silver solutions for a longer period of time (15 

minutes, plus the time in the autoclave), this could of allowed for a more silver to soak 

in and/or more silver to form Ag-NPs; but, more likely the reduced silver content is a 

result of rinsing the samples. This is a simple and effective system, but with the 

drawback of dealing with the products of the silver nitrate -  sodium borohydride 

reduction.

The optical absorbance was taken for the 100 mM sample, and a peak as 450 nm is 

observed (Figure A.3). Like with the autoclaved sample this shows the presence of Ag- 

NPs. This is further confirmed with SEMs. Figure A.4 shows Ag-NPs on the BC 

substrate. The Ag-NPs are small on the order of 20 -  50 nm.
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Figure À.3: Optical spectra for sodium borohydride prepared samples. Background plain BC.
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Figure A.4: SEM of sodium borohydride prepared samples 

Table A.4: Silver Density on Sodium Boroliyride prepared samples

Sample Silver Density (w/w%)
100 rnM 2.4 ±.5
10 mM 1.1 ±.5

Table A.5: Silver nitrate - antimicrobial size of ciearzone

Sample Clear Zone: Clear Zone:
E. coli S. Aureus

100 mM 0 - .5 mm .5-1.5 mm
10 mM 0 mm 0 mm
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Table A.6: Silver nitrate - antimicrobial longevity

Sample Days of observable of Days of observable
clearzone: E. coli clearzone: S. aureus

100 mM 1 days 2 days
10 mM 0 days 0 days

A.3 -  Silver Nitrate

The simplest method to create a BC silver loaded dressing is to soak a piece of 

BC in silver nitrate, and do nothing else. This would not create an Ag-NP material, but 

could add some value to the standard BC dressing. It has the advantages of being 

simple, and having both constituents already used in wound care would allow for an 

expedited approval process. A secondary objective of testing these samples was to 

establish controls for the above methods. The silver loading was not measured.

A.3.1 -  Silver nitrate: Method

Biofill samples were placed in 100 and 10 mM AgNC>3 solutions, and left for 15 

minutes. The samples were removed and air-dried. Antimicrobial tests were conducted 

in triplicate.

A.2.2 -  Silver nitrate: Results and discussion

The results show that just adding silver nitrate to BC creates an antimicrobial 

material; this is an obvious result. The results also show that both the sodium 

borohydride and autoclaved samples are slightly better when it comes to antimicrobial
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efficacy. Further testing will be required to fully explore the difference in activity for 

the autoclaved and silver nitrate samples. The results are about the same as the results 

seen in the body of the thesis for Biofill prepared samples -  but as previously stated 

these samples are easier to prepare, and probably more likely to pass regulatory hurdles.

Table A.7: Silver nitrate -  antimicrobial size of clearzone.

Sample Clear Zone: Clear Zone:
E. coli S. aureus

100 mM 0 -  .5mm 0 -  1 mm
10 mM 0 mm 0 mm

Table A.8: Silver nitrate-- antimicrobial longevity tests.

Sample Days of observable of Days of observable
clearzone: E. coli clearzone: S. aureus

100 mM 1 day 1 day
10 mM 0 days 0 days
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