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Abstract 
Wrist injuries are common and can lead to the development of post-traumatic 

osteoarthritis. For example, one major complication after a wrist fracture, is when the fractured 

bone heals in a mal-aligned position, called malunion. It has been assumed that a malunion after 

wrist fractures alters joint congruency and mechanics leading to the development of post-

traumatic osteoarthritis and poor functional outcomes. It is unclear whether anatomical 

restoration is a key component for the management of wrist injuries and to limit the progression 

of post-traumatic osteoarthritis. However, the mechanistic pathways between joint structure (and 

mal-alignment) and patient outcomes, such as the development of osteoarthritis and joint 

function, are not clearly understood due to the limitations in current techniques. The present 

work advances our understanding of the relationship between joint structure (and mal-alignment) 

and joint contact mechanics using image-based 3D measurement tools. The purpose of the 

present work was to employ CT imaging and inter-bone distance mapping to determine the 3D 

implications of a wrist fracture on 3D joint space area (a measure of joint congruency). This 

image-based tool was then extended to 4DCT (3DCT and time) to examine the dynamic effects 

of wrist movement on joint contact mechanics, in the presence of a wrist injury. This research is 

an important step in the quest to determine a causal relationship between joint structure and 

patient function.  
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Summary for Lay Audience 
The wrist joint consists of eight articulating carpal bones that allow for complex motions 

while maintaining stability. The bones and ligaments of the wrist are critical to normal function 

and any damage to them requires prompt evaluation and proper treatment. When wrist fractures 

are undetected or improperly treated, the damaged bones can heal in the wrong positions leading 

to significant pain, stiffness, and progress to osteoarthritis; this is called a malunion. The 

pathomechanics of malunions are not well understood in the literature and the clinical 

consequences are controversial. This makes it difficult for surgeons to decide on the best 

treatment plan. 

Furthermore, current imaging modalities are unable to reliably detect wrist injuries 

because of their static nature and some patients will go on to have lifelong wrist pain and 

stiffness. It is thought that wrist injuries can be better visualised by having patients replicate 

movements causing the discomfort. Recent advances in 4D (three dimensions and time) 

Computed Tomography can capture the mechanical abnormalities causing the patients’ 

symptoms. The results from this work will help investigators gain a greater understanding of the 

biomechanical impact of wrist fractures.  
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Chapter 1 – Introduction 

1              Overview 
This chapter reviews the hand and wrist anatomy and wrist kinematics. The current 

understanding of injuries and complications of the wrist, joint biomechanics methods and 

imaging techniques are discussed. This chapter concludes with the rationale, objectives and 

hypotheses of this thesis.  
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1.1 The Structure and Function of the Wrist 

1.1.1 Osseous Anatomy  
The wrist connects the bones of the hand to the long bones of the forearm and enables a 

wide range of movements. 1 This functionality requires interactions between numerous bones, 

tendons and ligaments making the wrist an extremely complex joint in the human body. 1 The 

osseous framework of the wrist consists of the distal ends of the radius and ulna, eight small carpal 

bones, and the proximal portions of the five metacarpal bones. 2  

The wrist joint consists of articulations between the radius, ulna, carpal bones and 

metacarpals. The distal radius and ulna articulate with the proximal row of carpal bones. The bones 

within the proximal row are loosely joined while strong ligaments tightly bind the bones of the 

distal row in order to provide a rigid base for the articulations with the metacarpal bones. 3 

Altogether, there are 27 bones that form the hand and the wrist (Figure 1.1). 

 
Figure 1.1: Forearm, Hand and Wrist Osseous Anatomy. 
Bony anatomy of the right forearm, wrist and hand demonstrating groups of bones of interest. 
(A) Radius and Ulna (B) Carpals (C) Metacarpals (D) Phalanges. 
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1.1.2 Forearm Anatomy  
The forearm contains two long bones, the radius and the ulna that run parallel to each 

other. The radius is located on the lateral side of the forearm, while the ulna is on the medial 

side.  

1.1.2.1 Radius Osteology 
The radius is the first of the forearm bones (Figure 1.2). Distally, the radius articulates 

with the ulna, and the scaphoid and lunate carpal bones to form part of the wrist joint. The distal 

end of the radius consists of three articular surfaces: sigmoid notch, scaphoid facet and lunate 

facet. The sigmoid notch articulates with the distal ulnar forming the distal radioulnar joint. The 

scaphoid and lunate facet articulate with the scaphoid and lunate bones, respectively, forming the 

radiocarpal joint. The scaphoid and lunate fossae are separated by an interfacet prominence. 4 In 

addition, the lateral edge of the distal radius projects more distally forming the radial styloid 

process.  

 
Figure 1.2: Distal Radius Osseous Anatomy.  
(A) Anterior view (B) Distal articular surface 
 

1.1.2.2 Ulna Osteology 
The ulna is the second forearm bone (Figure 1.3). There are two important bone surfaces 

at the distal ulna: the head and the styloid process. 5 The ulnar head articulates with the radius 
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forming the distal radioulnar joint. The ulnar head also articulates with the triangular 

fibrocartilage complex, which stabilizes the ulnar aspect of the wrist. 5 The bone projection on 

the medial and posterior side of the distal ulna is the ulnar styloid process which is non-articular, 

and the origin point of the ulnar collateral ligament. 5 

 
Figure 1.3: Distal Ulna Osseous Anatomy.  
(A) Anterior view (B) Distal articular surface  
 

1.1.3 Carpal Anatomy  
The carpal bones connect the distal aspects of the long bones in the forearm to the bases 

of the metacarpal bones of the hand (Figure 1.4). 6 The eight carpal bones are divided into two 

rows forming a proximal row of four carpal bones and a distal row of four carpal bones. 6 The 

bones in the proximal carpal row are the scaphoid, lunate, triquetrum and pisiform. The carpal 

distal row bones are the trapezium, trapezoid, capitate, and hamate.  
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Figure 1.4: The Carpus Osseous Anatomy. 
Anterior view of the carpus, with all eight carpal bones labeled. 
 

1.1.3.1 Scaphoid Osteology 
The scaphoid is the largest of the carpal bones in the proximal carpal and provides a 

stabilizing link between the proximal and distal carpal rows (Figure 1.5). 6 As a result, it receives 

most of the force transmitted through the radius and is frequently fractured in falls. 7 The 

scaphoid consists of cartilage forming an articular surface that covers 80% of its surface and 

allows it to facilitate articulations with five surrounding bones (distal radius, capitate, lunate, 

trapezium and trapezoid). 8 These articulations include: the proximal surface articulating with the 

scaphoid fossa of the distal radius forming the radioscaphoid joint; the ulnar facet of the 

scaphoid articulates with the lunate at the scapholunate joint; the distal ulnar aspect of the 

scaphoid articulates with the capitate forming the scaphocapitate joint; the distal aspect of the 

scaphoid is divided by a sagittal ridge separating the articulations between the trapezium laterally 

and trapezoid medially forming the scaphotrapeziotrapezoid joint. 8 On the palmar aspect of the 

bone between the proximal and distal articular surfaces, there is a rounded prominence called 

scaphoid tubercle that provides an attachment point for the radioscaphocapitate and 

scaphotrapezial trapezoid ligaments as well as a pivot point for the flexor carpi radialis tendon.   
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Figure 1.5: Scaphoid Anatomy.  
Bony anatomy of the left scaphoid with associated landmarks. (A) Anterior View (B) Dorsal 
View  
 

1.1.3.2 Lunate Osteology 
The lunate has often been described as the keystone bone of the carpal bones (Figure 

1.6). 8 It is located between the scaphoid and triquetrum in the proximal row and its ligamentous 

attachments play a critical role in stabilizing the proximal row. It has a moon-shaped 

configuration, where the palmar aspect is larger than the dorsal aspect. 8 Two types of lunates 

have been classified based on their midcarpal articulations. 9 The type I lunate has a single distal 

facet for the capitate and does not articulate with the hamate. 9 The type II lunate has two distal 

facets: the radial facet articulates with the capitate and the ulnar facet with the hamate. 9 

 

 

Figure 1.6: Lunate Anatomy  
Bony anatomy of a left lunate with associated landmarks. (A) Inferomedial View (B) 
Superolateral View 
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1.1.3.3 Trapezium Osteology 
The trapezium is on the radial side of distal carpal row, interposed between the scaphoid 

and the first metacarpal bone (Figure 1.7). 10 Its saddle-shaped surface articulates proximally 

with the scaphoid, medially with the trapezoid, and distally with the metacarpal of the thumb. 10  

 

Figure 1.7: Trapezium Anatomy  
Bony anatomy of a left trapezium with associated landmarks. (A) Palmar View (B) Superolateral 
View 
 

1.1.3.4 Trapezoid Osteology 
The trapezoid is the smallest bone in the distal carpal row, interposed between the 

trapezium and the capitate (Figure 1.8). Its wedge-shaped surface articulates with four bones: 

proximally with the scaphoid, distally with the second metacarpal, laterally with the trapezium, 

and medially with the capitate. 10 

 

Figure 1.8: Trapezoid Anatomy  
Bony anatomy of a left trapezoid with associated landmarks. (A) Superomedial View (B) Palmar 
View 



   
 

   
 

8 

1.1.3.5 Capitate Osteology 
The capitate is the largest carpal bone and occupies the center of the wrist in the distal 

carpal row (Figure 1.9). 10 The axis of rotation for all wrist movements passes through the 

capitate. 3 The capitate articulates with eight surrounding bones: proximally with the scaphoid 

and lunate, distally with the second and third metacarpal and smaller articulations with the 

second and fourth metacarpal, laterally with the trapezoid, and medially with the hamate. 10 

 
Figure 1.9: Capitate Anatomy  
Bony anatomy of a left capitate with associated landmarks. (A) Lateral View (B) Medial View 
 

1.1.4 Soft Tissue Anatomy  
Wrist joint control and stability is ensured through the relationship between static and dynamic 

joint stabilizers. 11 

1.1.4.1 Static Stabilizers 
The ligaments of the wrist are divided into extrinsic and intrinsic ligaments. Both the 

intrinsic and extrinsic wrist ligaments have a static function in joint stability. 11 The extrinsic 

ligaments are situated outside the carpus, attaching the distal radius and ulna to the carpal bones. 

Whereas, the intrinsic wrist ligaments are situated within the carpus, attaching the carpal bones to 

each other.  

The extrinsic ligaments include volar radiocarpal ligaments, volar ulnocarpal ligaments, 

and dorsal radiocarpal ligaments (Figure 1.10). These ligaments connect the distal radius to the 

carpal bones which stabilize the radiocarpal joint. 12 The volar radiocarpal ligament complex is 

composed of the short radiolunate, long radiolunate, radioscaphocapitate, and radioscapholunate 

ligaments. The short and long radiolunate ligaments originate on the ulnar aspect of the radius and 
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insert onto the lunate. The role of the long radiolunate is to limit ulnar or distal translocation of the 

lunate. 12 The radioscaphocapitate ligament originates at the radial styloid and inserts on the 

scaphoid and proximal capitate. This ligament runs in parallel with the long radiolunate ligament, 

and forms an empty space, called the space of Poirier that may predispose the wrist joint to 

instability. 12 Lastly is the radioscapholunate ligament, which does not provide structural support, 

but it does serve as a channel for vasculature to the lunate, and damages may lead to avascular 

necrosis. 12 

The intrinsic ligaments include the proximal row ligaments (scapholunate, and 

lunotriquetral ligaments) and the distal row ligaments (trapeziotrapezoid, trapezocapitate, and 

capitohamate ligaments). 13 Injuries to the proximal row ligaments are a common cause of wrist 

pain and instability. 14  The radiocarpal joint is dorsally spanned by the dorsal radiocarpal  

ligament. 15 This ligament originates on the dorsal surface of the radius and inserts on the lunate 

and triquetrum. The role of this ligament is to provide dorsal stabilization to the scaphoid during 

normal carpal kinematics. 16 

 
Figure 1.10. Extrinsic Ligaments of the Wrist.  
Schematic of the extrinsic ligaments on the palmar side of the wrist. 
 

1.1.4.2 Dynamic Stabilizers 
Dynamic contribution towards joint stability includes the muscles and tendons that cross 

the wrist joint structures. 11 Many of the muscles of the flexor and extensor compartments of the 

forearm cross the radiocarpal joint and affect the motion and stability of the joint. 12 Wrist 
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extension is produced mainly by the dorsal muscles of the wrist which are the extensor carpi 

radialis longus and brevis, and extensor carpi ulnaris, with assistance from the extensor 

digitorum. 17 Wrist flexion is produced mainly by the dorsal muscles of the wrist which are the 

flexor carpi ulnaris, flexor carpi radialis, with assistance from the flexor digitorum    

superficialis. 17 

1.1.5 Joint Anatomy  
A two-layered capsule covers the articulation of the osseous and soft tissue structures 

mentioned above. 18 The outer portion of the capsule is composed of fibrous connective tissue 

which provides structural support. 18 The inner layer is a synovial membrane that secretes synovial 

fluid to keep the joint lubricated. 18 When all the components are functioning in unison with the 

wrist joints, an ellipsoidal (condyloid) joint is formed allowing for varying degrees of flexion, 

extension, abduction, and adduction movements. 19 The three wrist joints of interest include the 

distal radioulnar, radiocarpal, midcarpal joints. The ulna articulates with the radius as the distal 

radioulnar joint (Figure 1.11). The scaphoid and lunate articulate with the radius as the 

radioscaphoid and radiolunate joints making up the radiocarpal joint (Figure 1.11). The midcarpal 

joint separates the proximal and distal rows of carpal bones. The trapezium and trapezoid articulate 

with the scaphoid as the scapho-trapezium and scapho-trapezoid joints, which are parts of the 

midcarpal joint. A large range of motions occur at the radiocarpal and midcarpal joints; the 

scaphoid and the lunate bones are both important members of both wrist articulations. 
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Figure 1.11. Radioulnar, Radiocarpal and Midcarpal Wrist Joints. 
Dorsal view of the left wrist showing the distal radioulnar (green line), radiocarpal (blue line) and 
midcarpal (red line) joints.  
 

1.1.6 Biomechanics 
Studies investigating the force transmission across the wrist at neutral position and 

neutral forearm rotation, show that approximately 80% of the force is transmitted across the 

radiocarpal joint and 20% across the ulnocarpal joint. 20 The radiocarpal force can be further 

subdivided into that across the radioscaphoid joint (61.1%) and that across the radiolunate joint 

(38.9%). 21 Forces across the mid-carpal joint are estimated to be distributed at 23% through the 

scaphoid-trapezium-trapezoid joint, 28% through the scaphoid-capitate joint, 29% through the 

lunate-capitate joint, and 20% through the triquetrum-hamate joint. 22 Furthermore, wrist 

positions and movements influence load transmission across the wrist. However, wrist flexion 

has little impact on force transmission distribution across the wrist compared to the impact of 

forearm pronation/supination and ulnar deviation/radial deviation. 19 
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1.1.7 Range of Motion 
  The wrist is capable of different range of motions such as wrist flexion and extension, 

wrist radial and ulnar deviation, forearm supination and pronation.  

1.1.7.1 Wrist Extension and Flexion  

One anatomically defined motion is wrist extension (raising the back of the hand) and 

flexion (bending the palm down) (Figure 1.12). Extension and flexion occur between the 

radiocarpal and midcarpal articulations and previous studies have demonstrated that more motion 

occurs at the radiocarpal articulation. 23,24 As the wrist extends, there is a tendency for the 

scaphoid to supinate and the lunate to pronate, which effectively separates the palmar surfaces of 

the 2 bones; the reverse phenomenon occurs during wrist flexion. 19 On average, from a neutral 

(0-degree) position, the wrist flexes approximately 70 to 80 degrees and extends approximately 

60 to 75 degrees, for a total of approximately 130 to 155 degrees. 25 Total flexion normally 

exceeds extension by approximately 15 degrees. 25 

 

Figure 1.12. Extension/Flexion Range of Motion. 
The wrist joint in flexion (A) and extension (B) motion (Image reproduced with permission from 
Clare Padmore). 
 

1.1.7.2 Wrist Radial and Ulnar deviation 

Another anatomically defined motion is wrist radial (bending the wrist to the thumb) and 

ulnar deviation (bending the wrist to the little finger) (Figure 1.13). The wrist joint is more 

ulnarly deviated during daily activities such as holding and carrying objects, and the lunate bears 

a greater load than the scaphoid. 26 A literature review found that the radial and ulnar deviations 

ranged from 14.5 – 50.9° and 25.0 – 66.1°, respectively, depending on the position of the arm. 27 



   
 

   
 

13 

 
Figure 1.13. Radial/Ulnar Deviation Range of Motion. 
The wrist joint in radial (A) and ulnar (B) deviation motion (Image reproduced with permission 
from Clare Padmore). 
 

1.1.7.3 Forearm Pronation and Supination 

Pronation (palm down) and supination (palm up) is a rotational motion that exist 

exclusively in the forearm (Figure 1.14). 28 Pronation and supination are achieved through the 

distal radioulnar joint (DRUJ), which allows the radius to rotate around a nearly fixed ulna. 28 

The reported rotational range during pronation and supination is between 150° and 190°. 31,32 

Additionally, the average rotation angle of the radius at maximum pronation is 66.1° and at 

maximum supination is 75°. 31,32 

 
Figure 1.14. Pronation/Supination Range of Motion. 
The wrist joint in pronation (A) and supination (B) motion (Image reproduced with permission 
from Clare Padmore). 
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1.1.7.4 Dart-Throwing Motion 

The functional oblique motion of the wrist is the dart-throwing motion (DTM), from 

radial deviation-extension to ulnar deviation-flexion (Figure 1.15). 33 Most daily activities are 

performed using a DTM involving tool use, throwing, and weaponry that also may have played 

an important role in human evolution. 33 This motion is called DTM because it is similar to the 

act of throwing a dart, and was stated to be functional and natural. 34 The range during the DTM 

depends on the motion planes, with a maximum at around the motion plane of 45° from the 

sagittal plane (45° of pronation). 35 Most of the carpal kinematic data, however, has been 

measured, in vitro or in vivo, during pure wrist flexion/extension or pure wrist radial/ulnar 

deviation. 23,36,37  The movement of the scaphoid and lunate during a dart throw motion are 

poorly understood. 33 

 
Figure 1.15. Dart-Throwing Range of Motion. 
The wrist joint in forward dart-thrower (A) and reverse dart-thrower (B) motion (Image 
reproduced with permission from Clare Padmore). 
 

1.2 Injuries and Complications of the Wrist  

1.2.1 Scaphoid Fractures  
The scaphoid plays a major role in maintaining carpal stability. 38 It provides a 

mechanical link between the distal and proximal carpal rows and transfers compression loads 

from the hand to the forearm. 38 Scaphoid fractures are the most common carpal bone fracture, 

representing 60-70% of carpal bone fractures and 2-7% of all fractures. 39 Scaphoid fractures can 

escape early detection because in many cases they are subtle, and the initial symptoms are 

minimal. Missed scaphoid fractures have a high risk of non-union or malunion. 40 
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1.2.1.1 Mechanism of Fracture 

A scaphoid fracture occurs most often after a fall onto an outstretched hand which forces 

the wrist into hyperextension and radial deviation and applies an axial load on the wrist. 41 Most 

of the force transmits through the scaphoid making it prone to injury since the scaphoid acts as a 

hinge in stabilizing the wrist joint. 42 Athletic injuries and motor vehicle accidents are also 

common causes of scaphoid fractures. 41 

1.2.1.2 Demographics 

Scaphoid fractures predominantly affect young active individuals, with a mean age of 29 

years. 43 The incidence of scaphoid fractures is higher in males compared to females. 44 Scaphoid 

fractures are rare in the pediatric and elderly populations where the distal radius is more likely to 

fracture. 45 

1.2.1.3 Diagnosis  

One indication of a possible scaphoid fracture is anatomic snuffbox tenderness, which is 

a highly sensitive (85.71%), but it is nonspecific (29.62%). 46 Another indication is the scaphoid 

tubercle tenderness, which provides more diagnostic information with a similar sensitivity 

(95.23%) to the anatomic snuffbox tenderness test, but it is more specific (74.07%). 46 The lack 

of tenderness of the anatomic snuffbox and scaphoid tubercle makes a scaphoid fracture highly 

unlikely. 47 

There are several diagnostic modalities to assess a patient with a suspected scaphoid 

fracture. These include radiographs, computed tomography (CT), magnetic resonance imaging, 

bone scintigraphy and sonograms. 48–51 Scaphoid fractures are often missed with the use of 

radiographs alone and suspected scaphoid fractures are confirmed with CT scans, which are used 

in the decision-making process concerning whether to operate on scaphoid fractures. 50,52 

1.2.1.4 Treatment  

The aim of the treatment is to achieve anatomical restoration and functional recovery 

while avoiding complications such as non- or mal-union. 53 Treatment options consist of a splint, 

cast immobilisation, and operative treatment depending on the fracture's severity and location. 53 
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1.2.1.5 Complications 

Displaced or unstable fractures are prone to non-union and mal-union if not reduced and 

stabilized. 54 This can lead to instability, arthrosis and collapse of the carpal joint. 53 Other 

potential complications include limited mobility, decreased grip strength, avascular necrosis, and 

osteoarthritis. 53 Scaphoid non-union advanced collapse (SNAC) and scapholunate advanced 

collapse (SLAC) are common patterns of post-traumatic wrist arthritis which are the end-stage 

result of progressive instability and abnormal joint kinematics. 55,56 

1.2.1.5.1 Scapholunate advanced collapse 
Scapholunate advanced collapse (SLAC) is a common degenerative condition of the 

wrist. 57 SLAC wrist is often the terminal result from an untreated dorsal intercalated segment 

instability (DISI) deformity as a result of a long-standing scapholunate ligament injury. 56 

Watson and colleagues described a four-stage progressive pattern of arthrosis. 56 Stage 1 

demonstrates radial styloid degenerative changes. Stage 2 is represented by degenerative changes 

that involve the scaphoid fossa and the styloid. Stage 3 includes lunocapitate degenerative 

changes. Lastly, stage 4 is represented by pancarpal arthrosis with preservation of the radiolunate 

joint, but the degenerative changes in this stage are debated.  

1.2.1.5.2 Scaphoid non-union advanced collapse  
Scaphoid non-union advanced collapse (SNAC) are arthritic changes in the wrist that 

develop after a scaphoid fracture that has progressed to a scaphoid non-union. 58 SNAC is 

initially limited to the radial styloid and then it affects the radius scaphoid fossa and the 

midcarpal joint, but the radioulnar joint is spared due to its relatively spherical shape. 59 Vender 

and his colleagues discovered that the degenerative changes occur in a different pattern from the 

SLAC wrist and coined the term SNAC. 60 Vender and his colleagues described the arthritic 

changes in three stages. 60 The first stage is represented by degenerative changes at the interface 

between the radius scaphoid fossa and the fractured scaphoid distal fragment interface. The 

second stage is represented by degenerative changes at the interface between the fractured 

scaphoid proximal fragment and the capitate. The third stage is represented by degenerative 

changes at the radius-scaphoid, scaphoid-capitate and lunate-capitate interfaces. Additionally, the 

interface between the fractured scaphoid proximal pole and radius is often spared. The difference 



   
 

   
 

17 

between SNAC and SLAC wrist is that the articulation between the proximal pole of the 

scaphoid and the radius is spared in SNAC wrists. 61 

1.2.2 Scaphoid Malunions 

A scaphoid malunion results when a scaphoid fracture heals in a flexed position or when 

a scaphoid non-union with carpal collapse is grafted without correction of the angular    

deformity. 62 Unstable fractures at the waist of the scaphoid may fall into a ‘humpback’ 

deformity which occurs when the distal segment flexes and the proximal segment extends. 63 The 

humpback deformity of the scaphoid can cause dorsal rotation of the lunate together with the 

proximal scaphoid fragment which is referred to as the dorsal intercalated segment instability 

(DISI). 64 The resulting scaphoid height loss, flexion, and potential DISI deformity can lead to 

abnormal wrist biomechanics. 65–67 

1.2.2.1 Scaphoid ‘Humpback’ Deformity Measurements 

Radiographs are commonly used by clinicians to assess the scaphoid ‘humpback’ 

deformity, but it can be difficult to visualize and thus radiographs are not a reliable diagnostic 

approach. 68,69 Computerized axial tomography (CT scans) through the longitudinal axis of the 

scaphoid are used to measure the humpback deformity. The three measuring techniques are the 

following: lateral intrascaphoid angle, the dorsal cortical angle, and the height-to-length ratio. The 

intra- and interobserver reliability was the best for the height-to-length ratio and worst for the 

intrascaphoid angle. 70 Therefore, the height-to-length ratio is the most reproducible method of 

assessing the humpback deformity. 70 The ratio was calculated by dividing the height by the length. 
70 The length of the scaphoid was measured from the most proximal to the most distal aspect of 

the scaphoid using a baseline along the volar aspect of the scaphoid. 70 The maximum height of 

the scaphoid was measured on a line perpendicular to the baseline (Figure 1.16). 70 The height-to-

length ratio, however, has not been shown to be correlated with clinical outcome measures of 

scaphoid fractures. 70  
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Figure 1.16. Height-to-Length Ratio.  
A baseline is drawn along the volar aspect of the scaphoid. The length of the scaphoid is parallel 
to the baseline and the height is perpendicular to the baseline. 

1.2.2.2 Long-Term Outcomes of Scaphoid Malunion 

The pathomechanics of scaphoid malunions are not well understood and the clinical 

consequences are controversial.  As the carpal bones are closely inter-connected, the alignment of 

one, in theory, can affect the kinematics and joint loading of the adjacent carpal bones. This 

occurrence can potentially lead to pain, limited range of motion, and abnormal cartilage wear. A 

review study confirmed that patients with scaphoid malunions seem to have a higher likelihood of 

post-traumatic arthritis, but the clinical implications of malunion are not completely          

understood. 71 Furthermore, Amadio et al. used trispiral tomography and reported that 27% of 

patients with a lateral intrascaphoid angle (LISA) greater than 45° had satisfactory outcome, but 

54% of cases in the malunion group demonstrated post-traumatic arthritis. 72 Additionally, Jiranek 

et al. found that patients who healed with a LISA greater than 45° had high subjective functional 

scores, but low objectives scores based on radiographs (range of motion and grip strength). 73  The 

validity of these findings is questionable because of the poor reproducibility of using LISA to 

assess a scaphoid malunion. 63,74,75  

Studies have found that the scaphoid alignment assessed by the H/L ratio demonstrated 

little effect on clinical outcomes. 76,77 More specifically, Forward et al. identified scaphoids treated 

conservatively for 1 year with a H/L ratio greater than 0.6 as the malunion group, and compared 

them to a group with an H/L ratio of less than 0.6; they found no significant difference in the 

clinical outcomes between the groups. 76 While this relationship has been investigated in the 

biomechanical literature, previous studies describing the clinical impact of malunion are 

controversial.  
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Patients with scaphoid malunion present with limited wrist extension due to the flexion and 

shortening of the malunited scaphoid (‘humpback’ deformity) and require a corrective osteotomy 

procedure. 78 Multiple case reports have indicated good outcomes after a corrective osteotomy 

procedure 72,79–83; however, these studies were limited to a small case series and had short follow-

ups. 72,79–83 Other studies have found no correlation between scaphoid malunion and clinical 

outcomes. 63,76,84–86 There is no clear consensus in the literature, therefore, regarding what degree 

of scaphoid deformity or carpal malalignment can be tolerated without clinically compromising 

wrist function. 

1.2.3 Distal Radius Fractures 
Distal radius fractures are common upper extremity fractures accounting for 75% of all 

forearm fractures. 87 The two common types of distal radius fractures are Colles’ and Smith’s 

fractures which are characterized by the forces applied to the wrist during the injury. 88 The 

Colles’ fracture occurs when the hand is extended backward on the wrist with characteristic 

dorsal tilt, dorsal shift, radial tilt and radial shift of the distal fragment. 89 The Smith's fractures, 

also referred to as a “reverse Colles’ fracture”, occurs when the hand is flexed forward under the 

wrist with characteristic palmar tilt of the distal fragment. 89 

1.2.3.1 Mechanism of Fracture 

A distal radius fracture occurs most often after a fall onto an outstretched hand. Older 

adults with osteoporotic bone and poor postural stability suffer from these fractures after a low-

energy fall onto an outstretched hand from a standing or seated position. 90 Children and young 

adults suffer from these fractures after a high energy falls on the playground or at sporting   

events. 91 Furthermore, distal radius fractures account for 23% of all sports-related fractures in 

adolescents. 92 

1.2.3.2 Demographics 

Distal radius fractures accounting for approximately 25% of fractures in the pediatric 

population and approximately 18% of fractures in the senior population. 87,93 The incidence of 

distal radius fractures has increased worldwide over the past 40 years, almost doubling in certain 

populations. 87 The increase in the prevalence of this injury may be due to the growth of the 

elderly population or a greater number of active seniors. 94  
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1.2.3.3 Diagnosis  

A physical exam, patient history, and imaging are typically utilized to diagnose a distal 

radius fracture. The physical exam evaluates the gross deformity (general appearance of the 

distal extremity) and focuses on ruling out complications such as compartment syndrome or 

neurovascular issues. 88 Imaging includes initial and follow-up x-rays and CT scans for complex 

or occult fractures to assess the alignment or fragmentation of the joint surface. 88,95 The x-ray 

examinations include evaluating the radial height, radial inclination, radial shift, volar tilt, ulnar 

variance, ulnar styloid fracture, and DRUJ widening. 88 

1.2.3.4 Treatment 

Closed reduction (plaster splint or cast) and cast immobilization is the primary 

management strategy for DRFs. 96 In unstable fracture patterns, where fracture reduction cannot 

be maintained with cast immobilization and thus leads to malunion in more than 50%, additional 

fixation is recommended (plates, screws, pins). 97,98 

1.2.3.5 Complications 

The type and frequency of complications differs among variants of distal radius fractures. 

McKay et al. found overall complication rates vary from 6% to 80% and rates of post-traumatic 

arthritis ranging from 7% to 65%. 99 The most frequent complication after distal radius fractures 

is malunion. 100 Other complications include tendon irritation and rupture, nerve injury, non-

union, pain syndromes, loss of reduction, and post-traumatic osteoarthritis. 101 

1.2.4 Distal Radius Malunion  
Malunion of the radius is defined as a mal-alignment associated with dysfunction. 102 

More specifically, malunion occurs when a fracture heals with improper alignment, articular 

incongruity, incorrect length, or a combination of these elements leading to deformity, motion 

range limitation, pain and loss of strength. 103–105 A malunited distal radius fracture can be extra-

articular or intra-articular and can cause severe functional impairments. 104 Extra-articular 

malunions are commonly the result of non-operative management and are characterized by a loss 

of the normal palmar tilt of the articular surface in the sagittal plan, a loss of ulnar inclination in 

the frontal plane, and a loss of length relative to the ulna. 104,106 Whereas, intra-articular 

malunions are associated with a step-off or a gap at the radiocarpal joint and/or the distal 
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radioulnar joint as a result of insufficient reduction and fixation in surgical treatment. 104,106 

Therefore, early surgical correction of an intra-articular malunion should be pursued to restore 

the integrity of the joint before the onset cartilage damage. 106 

1.2.4.1 Radiographic Evaluation  

A suspected malunion is confirmed using radiographs and verified with specific criteria used 

to define a malunion. The guidelines written by the American Society for Surgery of the Hand 

(ASSH) 107 used to designate radiographic alignment as unacceptable are:  

1. Radial inclination <15 degrees  

2. Volar tilt > 20 degrees, dorsal tilt > 10 degrees  

3. Ulnar variance ≥ 3 mm  

Surgical correction is strongly recommended for patients presenting with both clinical and 

radiographic symptoms of a malunion. 103. A corrective osteotomy is strongly considered for 

patients presenting with angulation of the distal articular surface of the radius greater than 25 

degrees in the sagittal plane. 108 

1.2.4.2 Long-Term Outcomes of Distal Radius Malunion 

Previous studies that have examined the relationship between a distal radius malunion and 

functional outcomes demonstrate conflicting results. Some authors have produced evidence 

supporting a link between anatomic restoration and function after fracture 109–111, but other 

authors have shown that precision of fracture reduction has no predictive value on post-fracture 

wrist function. 112,113 Studies even demonstrated satisfactory function regardless of radiographic 

deformity, commonly seen in the elderly. 114–116 A previous study reported that patients have a 

higher risk of prolonged disability (arm-related) when mal-alignment and degenerative changes 

occur 117; conversely, another study has indicated that a large amount of radiographic deformity 

is required before functional impairment occurs. 118 Consequently, the clinical evidence linking 

incongruity to post-traumatic arthritis is inconclusive.  

Radiographic degenerative changes are frequently reported in patients who have suffered a 

DRF. Previous studies have shown no correlation between anatomically reduced fractures 

(according to standard radiographic measures on the radial height, radial inclination, volar tilt, 

etc.) and good functional outcomes or increased patient satisfaction. 119,120 Alternatively, other 
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studies have indicated that radiographic measurements do correlate with functional       

outcomes. 121–123 The long-term clinical impact of distal radius fractures, therefore, has not been 

clearly defined in the literature.  

Distal radius fractures that heal with a positive ulnar variance alter joint loading of the wrist 

and has been shown to affect subjective outcome, grip strength, and ROM. 124,125 Dorsal tilt may 

alter the force distribution in the radiocarpal joint, increasing the load through the ulna, and may 

result in midcarpal instability. 126 Furthermore, dorsal tilt has been associated with decreased grip 

strength, persistent pain, and increased difficulties with daily activities. 110,111 Another study 

suggests that the combination of a substantial dorsal tilt and positive ulnar variance appears to 

cause the persistent disability. 127 The relationship between distal radius malunions and persistent 

long-term pain and disability, however, needs to be further examined.  

1.3 Joint Contact Mechanics of the Wrist 

1.3.1 Joint Surface Area in Normal Wrists 
Previous studies have shown that changes in the joint contact mechanics are closely 

associated with the motion of carpal bones. 36,128–130 At all wrist positions, in vivo and in vitro 

studies have found that the scaphoid contributed a greater extent to wrist motion compared to the 

lunate. 131–133 But there is still no consensus regarding the role of each joint to the wrist motion. 

A more detailed understanding of normal carpal kinematics during continuous wrist motion is 

necessary.  

1.3.2 Joint Surface Area in Malunited Scaphoid Wrists 
The biomechanical understanding of scaphoid malunions is not extensively investigated. 

To examine the effects of scaphoid malunion on wrist motion, a single in vitro cadaveric study 

had been performed. 134 The authors analyzed simulated scaphoid malunions in four cadaveric 

specimens 134. This study found that the loss of wrist extension was proportional to the angular 

deformity, where the loss of radiocarpal extension occurred at 15° of angulation and loss of 

midcarpal extension occurred at 30° of angulation. 134 Other studies have measured in vivo 

kinematics after a scaphoid non-union using static three-dimensional (3D) and dynamic four-

dimensional (4D) imaging. 135–137 An in vivo study is necessary to further investigate into joint 

mechanics during wrist motion after a scaphoid malunion. 
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1.3.3 Joint Surface Area in Malunited Distal Radius Wrists 
In vivo studies demonstrate conflicting results on the effect of distal radius malunion on the 

kinematics of DRUJ during forearm rotation. One study demonstrated that distal radius malunion 

did not alter the kinematic pattern of the DRUJ during forearm rotation, and the range of motion 

was not limited by bony impingements at the sigmoid notch. 138 This study concluded that altered 

DRUJ kinematics was not the primary cause of distal radioulnar dysfunction. 138 Another study 

demonstrated that joint space area (JSA) at the DRUJ was significantly smaller and located more 

proximally in the malunited wrists compared to contralateral uninjured wrists. This study 

concluded that DRUJ congruency and mechanics were altered in patients with malunited distal 

radius fractures. 29 Another study revealed no change in the JSA and locations of contacting 

regions at the radiocarpal joints when comparing the injured and non-injured wrists. 139 These 

previous studies were limited to static 3D imaging and a small case series. Additionally, it is still 

unclear whether altered congruency and mechanics of the DRUJ and radiocarpal joints is a major 

contributor to early signs of wrist osteoarthritis. A previous study also demonstrated the 

extension-flexion arc of motion can be limited due to the osseous deformity seen in distal radius 

mal-alignment that results in abnormal load transmission. 140 Future work investigating the 

mechanism of joint mechanics in patients with distal radius malunion during functional range of 

motions using dynamic 4DCT imaging is required.  

1.4 Experimental Methods of Assessing Joint Contact  

1.4.1 Direct Methods  
Initial techniques for evaluating and quantifying the contact area in articulating joints 

were direct approaches. Such approaches rely on invasive procedures and are limited to inferring 

motion from static positions. Three techniques will be discussed: first, the silicone casting 

technique is known as the gold standard by which to study joint contact area. 141 This technique 

consists of a cement injection within the articular surface, and the areas lacking the dried cement 

are the joint contact areas; the injection of cement is invasive, since it requires sectioning of the 

surrounding capsule and soft tissue. While directly accessing the joint, the magnitude and 

orientation of contact can alter, resulting in an inaccurate representation of native joint contact 

mechanics. This procedure is also time-consuming, due to the setting time of cement; second, 

pressure-sensitive films involve the insertion of a film into the joint, whereby the joint is loaded 

in a single position that applies pressure and produces a stain; the intensity of the stain is then 
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calibrated to the magnitude of pressure. Previous studies have used this technique to assess the 

distribution and magnitude of pressures in the radiocarpal joint 142,143; third, dynamic pressure-

sensitive film provides real-time contact data throughout a range of motion. Previous studies 

have examined real-time contact data in the radiocarpal joint 144 and DRUJ. 145,146 The second 

and third techniques are limited by the invasive introduction of the film that can produce 

overestimated pressure recordings due to artifacts (crinkling, sliding and shear stress) and 

inherent thickness of the film.   

1.4.2 Indirect Methods  
Indirect approaches non-invasively study joint contact area using Computed Tomography 

(CT) and Magnetic Resonance (MR) imaging volumetric datasets. 147,148 This approach involved 

identifying overlapping pixels in each slice in order to measure the contact area 149; it was not 

only time-consuming, but also used two-dimensional (2D) slices which can introduce errors 

when anatomically complex structures are examined. Proximity mapping was then introduced to 

measure 3D joint congruency and mechanics. The volumetric data acquired from CT imaging are 

used to generate 3D bone reconstructions of the articulating joints and create proximity maps 

using software algorithms. 150 The joint contact mechanics are defined by the Joint Space Area 

(JSA) measurements based on the assumption that regions at a lower inter-bone distance are the 

same regions that are most likely in contact (high proximity). This previously developed inter-

bone distance algorithm was initially developed for in vitro cadaveric testing and has been 

validated against a gold standard. 151 This algorithm has been used in several subsequent in vitro 

and in vivo studies investigating shoulder, elbow, and wrist contact mechanics. 30,151,152 

1.5 Imaging Techniques  
Imaging techniques play an important role in accurately diagnosing wrist injuries and 

prescribing adequate treatments. Previous studies examining carpal contact mechanics have 

relied on static radiographs and Computed Tomography (CT) imaging.  

1.5.1 Radiographs 
Radiographs (x-rays) are the first line of investigation to assess suspected fractures and 

fracture healing and alignment. The x-rays are produced by the bombardment of accelerated 

electrons to a metal anode in tubes, and the transmitted x-rays are detected by phosphor screen or 

a film combination. This two-dimensional (2D) projection image has intensity proportional to the 
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amount by which the x-rays are attenuated as they pass through the body. The x-rays passing 

through an object experience exponential attenuation proportional to the linear attenuation 

coefficient of the object. The resulting image provides important diagnostic information due to 

differences in the attenuation coefficients of bone, muscle, fat, and other tissues in the 40–120 keV 

range used in clinical radiography. 153 Radiographs are cost-effective and have excellent contrast 

for bone applications.  

Literature shows that there is a discrepancy between radiographic and clinical results, 

which may be due to its inability to accurately detect articular incongruity using conventional 2D 

radiography. It has been shown that conventional radiography can underestimate the presence of 

intra-articular distal radius fractures. 154 Additionally, fractures of the scaphoid and other carpal 

bones are often unnoticed on radiographs. 53 Moreover, patients with wrist injuries continue to 

experience wrist pain or a snapping sensation in the joint with motion with no bone position 

abnormalities on static radiographs. 155 The challenge is that the wrist is very complex and relying 

on 2D projection-based images limits the clinician in assessing the extent of the mal-alignment 

and the consequences of mal-alignment on the surrounding joints in the wrist. 

1.5.2 Fluoroscopy   
Fluoroscopy is used as a diagnostic tool to guide instruments through the internal structures 

of a patient for certain medical procedures. Fluoroscopy (X-ray “movie”) allows for real-time 

kinematics to be assessed. Fluoroscopy involves an injection of a contrast agent (“X-ray dye”), 

and its movement is tracked through the body producing a moving image of the body’s functioning 

organs. During a fluoroscopy procedure, X-rays are passed through the body and received by an 

image intensifier which converts x-rays to moving images played on a monitor. Fluoroscopic 

techniques overcome the limitation of static studies. 156 Fluoroscopic techniques have been utilized 

to dynamically analyze movement of joints that mainly occur about a single axis, but this technique 

is limited by the unavailability of 3D imaging and the use of active motion. The 2D nature of 

fluoroscopy makes it difficult to detect complex and subtle musculoskeletal abnormalities, such as 

wrist joint instabilities. 155 

Recently developed 3D fluoroscopy is used to measure in vivo joint kinematics based on 

3D models of bones matched to the 2D features of the acquired radiographic images. 157 3D 

fluoroscopy can accurately monitor real-time complex motions and joint forces under dynamic in 

vivo conditions. The outcome of the procedure remains strongly operator dependent; it requires 

the user to align the 3D model of the segment to the relevant fluoroscopic projections and to get 
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as close as possible to the real pose. This is time-consuming and pose estimations can be 

inaccurate. Moreover, fluoroscopic images obtained with this instrument are geometrically 

distorted and unsuitable for a quantitative analysis, unless a careful correction procedure is 

performed.  

Videofluoroscopy allows for a real dynamic investigation in which the wrist is moved 

through a full range of movement to reproduce the stresses and positions which may be causing 

the pain or instability seen in patients. 158 This dynamic method has been used to diagnose 

midcarpal and ligament instability, but its diagnostic ability is limited due to its relatively low 

resolution. 159,160 This can be problematic because subtle dynamic changes cannot be identified as 

it is a projectional technique and the carpal bones may overlap. 161 Therefore, dynamic imaging 

with good spatial and temporal resolution is required. 

1.5.3 Computed Tomography  
Computed tomography (CT) has a superior performance compared to radiography for 

detecting carpal and distal forearm fractures. It has been clearly shown that CT can provide more 

accurate and detailed information for quantifying the displacement and deformity of these 

fractures. 162–164  More specifically, CT has been found to have a higher sensitivity for carpal 

bone fractures. 165,166 Gilley et al. found that up to 33% of scaphoid fractures were judged 

nondisplaced on radiograph but displaced on CT scan. 167 Welling et al. also found that many 

carpal bone fractures are radiographically occult and detectable only on CT. More specifically, it 

demonstrated that radiographs failed to detect 30% of wrist fractures identified at CT and 

suggested the importance of future studies using advanced imaging to improve fracture detection 

in clinical settings. 165 

The advantage of using CT to diagnose acute wrist injury is the visualization of anatomic 

structures without the overlap of other structures that confounds radiographic interpretation. 165 

The main drawback of CT is the higher amount of radiation. However, some authors argue that 

despite the increased radiation exposure, early evaluation of clinically suspected fractures should 

be performed with CT if the radiograph appears normal. 168 This would avoid unnecessary 

immobilization and prevent the delayed diagnosis of fractures which reduces the risk for 

complications such as non-union or malunion. 169 

In displaced fractures, recognizing the deformities is important when deciding on the type 

of intervention, as it may alter the treatment or require surgical approach to the fracture. There 

has been a substantial interobserver variability in treatment recommendations for fractures of the 
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upper extremity. 170,171 This can be explained by the variation from measuring or estimating 

radiographic deformity. Recently, it has been shown that CT image-based methods can obtain 

precise 3D measurements and their reliability is substantially higher. 172 De Muinck Keizer et al. 

found that using 3D measurements to plan corrective surgery resulted in improved radiographic 

and functional outcomes in patients with a malunited fracture of the distal radius. 173 

A previously developed CT-based imaging method for measuring in-vivo 3D kinematics 

of the carpal bones during motion can image and analyze dynamic 3D information of a moving 

joint in vivo. 174,175 This method calculates the joint space thickness using dynamic distance maps 

during different wrist motions instead of using a static CT scan. 176 In vivo carpal kinematics 

examines the 3D carpal movements during a step-wise motion of the wrist. 36 However, in vivo 

carpal kinematics are measured using static methods and only represent an approximation of the 

true in vivo kinematics of the carpal bones. 36 Therefore, the kinematics acquired in a step-wise 

motion can differ from kinematics during a continuous dynamic motion where tendon 

contractions and time-dependent soft tissue properties play a role in real-time motion. 36 

1.5.4 Four-Dimensional Computed Tomography  
The wrist joint requires four-dimensional (4D) dynamic joint imaging because the wrist is a 

complex structure, consisting of a radius, ulna, eight carpals, and five metacarpals all engaged 

with each other. Each of these carpal bones exhibits multiplanar motion involving significant 

out-of-plane rotation of bone rows, which is prominent during radio-ulnar deviation. The 

kinematics of these carpal bones have not been adequately defined in the literature. 24  

Four-dimensional computed tomography (4DCT) is a dynamic CT technique similar to CT 

perfusion allows for evaluation of continuous wrist motion as opposed to sequential static 3DCT. 

Four-dimensional (4D) CT obtains three-dimensional computed tomography volume sequences 

of a moving structure imaged over time, creating a dynamic volume data set. 177 Four-

dimensional CT has promising clinical potential for the visualization of dynamic musculoskeletal 

pathophysiology and is currently being used to depict normal and abnormal carpal kinematics. 177 

Many studies have used this technique to examine the wrist, shoulder, knee, and hip. 178–180 Four-

dimensional kinematic studies allow evaluation of bone impingement, dynamic instability 

conditions, intra-articular ligament injury, and vascular compression syndromes. 155,161 

Moreover, 4DCT allows a kinematic assessment of active wrist motion with high temporal and 

spatial resolution. Dynamic instability methods need to be developed to capture carpal bone 
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trajectories during active motion or dynamic loading. 181 If physicians can diagnose dynamic 

instability early, interventions can be implemented to restore normal wrist function. 181 

In diseases related to carpal motion, such as dynamic carpal instability, diagnoses are made 

based on clinical history and signs because there are no accepted diagnostic imaging          

criteria. 182,183 Some joint disorders may not even show abnormalities in a static radiograph but 

will still have dormant abnormalities that are aggravated with joint movement that can only be 

visualized using dynamic wrist imaging. For example, diagnosis of ulnar impaction is also made 

based on clinical symptoms and ulnar positive variance on a plain radiograph. 184,185 Dynamic 

imaging can provide evidence of pathology that only occurs temporarily during motion, such as 

abnormal arrangement of carpal bones or impaction of the ulnar styloid process during motion. 

This technique has shown potential for the evaluation of carpal instability, particularly in cases 

of inconclusive initial assessment. 155 Currently, 4DCT is not in widespread clinical use due to 

the lack of data regarding normal baseline appearances and diagnostic thresholds for establishing 

a definitive diagnosis in clinically suspected wrist instabilities.  

1.6 Rationale  
Osteoarthritis is the narrowing of cartilage in the affected joint leading to pain and limitation 

of joint mobility. It has been theorized that joint mal-alignment after an undetected or improperly 

treated wrist fracture can increase the risk for early onset of cartilage degeneration and eventual 

development of osteoarthritis. Furthermore, one bone improperly aligned can affect the 

kinematics and load distributions of the surrounding joints potentially leading to restricted range 

of motion, pain, weakness, and stiffness. However, the evidence on the impact of degenerative 

changes in patients suffering from residual mal-alignment on functional outcomes is 

inconclusive. Additionally, the pathomechanics and clinical significance of this pathology is 

poorly understood and thus it is unclear whether anatomical restoration is a key component for 

the management of wrist injuries and limiting the progression of osteoarthritis.  

There have been different approaches used to examine the relationship between joint mal-

alignment and osteoarthritis in the biomechanical literature. Previous studies have investigated 

this relationship but were limited by 2D approaches (radioulnar line method, subluxation ratio 

method, epicenter method and the radioulnar ratio method) that do not take advantage of CT 

volumetric data. 186 This limitation resulted in researchers developing 3D techniques which were 

employed to examine joint congruency and joint mechanics of the wrist. However, these studies 

are also limited because of their small cohorts of patients, short follow-up times, and static wrist 
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positions. 30,187 At this time, recent advances in 4DCT (3D + time) imaging can examine subtle 

bony changes that cannot readily be seen in 2D radiographs and static 3DCT. Dynamic 

instabilities that only occur during motion can now be detected using 4DCT. 

Our lab previously developed an image-based tool to non-invasively measure 3D 

implications of altered bony alignment on the surrounding wrist joints which may provide insight 

into the relationship between joint alignment and cartilage degeneration. This joint congruency 

technique has been previously employed in a cadaveric population examining the effect of distal 

radii dorsal angulation on joint surface area. 151 Recently, the joint congruency technique has 

been used to examine the long-term effects of distal radius fractures with follow-up times of 8-10 

years. 30 This finding demonstrated the use of this image-based 3D measurement tool in a clinical 

population (in vivo) and therefore, it has the potential to be used in this work to characterize the 

effect of a scaphoid deformity on the joint mechanics as they are poorly understood. 

Additionally, studies using 3DCT images are limited to static wrist positions and this work 

employed a novel 4DCT (3D and time) approach that allows for the detection of subtle bony 

changes during wrist motion which cannot be seen in static 3DCT.  

Therefore, the purpose of this thesis was to employ a previously developed joint congruency 

technique to determine if changes in 3D joint space can lead to the development of early 

osteoarthritis. These findings will further our understanding on the effect of joint alignment after 

a wrist fracture on joint congruency.   

1.7 Objectives and hypothesis  

1.7.1 Objectives  
1. To employ CT imaging to determine the 3D implications (joint space area (JSA)) of 

altered bony alignment on the joint contact area of joints surrounding the scaphoid in 

patients with scaphoid malunions a minimum of four years post-fracture.  

2. To employ 4DCT to examine the JSA of the distal-radial joint (DRUJ) and radio-carpal 

joints in cohort of patients with distal radius fractures a minimum of one year compared 

to a cohort of healthy patients. 

3. To employ 4DCT to examine the JSA of DRUJ and radio-carpal joints at three wrist 

positions during extension/flexion motion in cohort of patients with distal radius fractures 

a minimum of one year compared to a cohort of healthy patients. 
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1.7.2 Hypotheses 
1. a. Scaphoid malunion will alter JSA and load distributions at mid-term follow-up. 

b. The changes in JSA will lead to the development of degenerative changes in the wrist 

as early as four years post-fracture. 

2. a. Distal radius fractures will alter JSA of DRUJ and radiocarpal joints compared to the 

age-matched healthy cohort. 

b. The changes in JSA will lead to the degeneration of DRUJ and radiocarpal joints.  

3.  Distal radius fractures will alter JSA in the radiocarpal joints across wrist extension/ 

flexion but not in the DRUJ which is largely responsible for pronation/supination. 

1.8 Overview  
Chapter 2 describes the use of a previously developed joint congruency technique to examine the 

effect of scaphoid malunion on 3D joint congruency of the joints surrounding the scaphoid.  

 

Chapter 3 describes the use of the joint congruency technique and 4DCT images to examine the 

effect of distal radius fractures on dynamic joint congruency during extension/flexion  

 

Chapter 4 provides a general discussion of the work in this thesis and describes ongoing and 

future studies.  



   
 

   
 

31 

Chapter 2 – The Effect of Scaphoid Malunion on Joint 
Congruency 

 

2 Overview  
There is little attention on scaphoid malunion in literature, and it is a potential complication of 

scaphoid non-union surgical treatment or in association to ligamentous injuries. Gaining a 

better understanding of the clinical impact of malunion will help define surgical interventions at 

restoring joint congruency and preventing the development of degenerative changes of the wrist. 

This in vivo study aims to employ a previously developed joint congruency technique to advance 

the biomechanical assessment of scaphoid malunion.  

2.1 Introduction 
Fracture characteristics including orientation, translation, and location are key 

considerations in the evaluation of scaphoid fractures as they contribute to the assessment of 

fracture stability and consequently, potential for fracture union.  Clinical studies have found that 

the risk of non-union may be up to 20% with displaced fractures while biomechanical evaluation 

has found increased interfragmentary motion distal to the scaphoid apex may contribute to the risk 

of non-union. 188, 189 Unsurprisingly, the risk of non-union increases precipitously with greater 

displacement and instability of the fracture; however, occasionally, the fracture will heal in a 

malunited position despite unfavorable alignment.  

As discussed in Chapter 1 section 1.2.2.2, the pathomechanics surrounding this deformity 

is less understood and the clinical consequences (pain, limited range of motion, development of 

degenerative changes in the wrist) are controversial. Additionally, as stated in Chapter 1 section 

1.2.2.2, the carpal bones are closely inter-connected and the alignment of one can, in theory, affect 

the kinematics and joint loading of adjacent carpal bones. This is thought to potentially lead to 

pain, limited range of motion and abnormal cartilage wear. A previous study examined long-term 

outcomes of operative and non-operative management of scaphoid malunions and found similar 

outcomes between operative and non-operative treatment suggesting that mal-alignment may not 

play such a pivotal role in wrist function. 190 A corrective osteotomy to restore anatomical 

alignment in a healed scaphoid may expose patients to an unnecessary risk of non-union as the 

scaphoid has a tenuous blood supply.  Because the consequences of malunion are not completely 
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understood, this surgical dilemma is further exacerbated when treating younger patients who have 

only minimal symptoms. 190 While this relationship has been investigated in the biomechanical 

literature, the literature describing the clinical impact of malunion is controversial.  There is also 

no clear consensus regarding what degree of scaphoid deformity or carpal malalignment can be 

tolerated without clinically compromising wrist function. 

Chapter 1 section 1.5 also explored several imaging techniques utilized to visualize carpal 

contact mechanics. Computed tomography (CT) is clinically employed when assessing scaphoid 

fractures to measure the height-to-length ratio (in the sagittal plane) to characterize the amount of 

deformity present. As previously described in Chapter 1 section 1.5.3, CT has shown to be superior 

to radiographs due to their higher sensitivity allowing for an accurate evaluation of displacement 

and deformity post-fracture but also has limitations including a higher dose and inferring motion 

from static positions. As stated in Chapter 1 section 1.2.2.2, the H/L ratio is shown to be a reliable 

measure of the humpback deformity. 74 Three-dimensional CT imaging was used to characterize 

the extent of scaphoid deformity on the joint mechanics and loading distributions of the 

surrounding carpals which may provide insight into the relationship between bone alignment and 

abnormal loading leading to the onset of cartilage degeneration.  

As mentioned in Chapter 1 section 1.4.4, our lab has previously developed an image-based 

technique to accurately and non-invasively measure 3-dimensional joint space area (JSA). 152 This 

measure provides a clinical tool that can be used to characterize joint interaction and takes 

advantage of the volumetric dataset provided by the CT scan. Joint space narrowing is a key feature 

in radiographic degeneration. The JSA in this study is similar in that it measures joint space, but it 

does so in three dimensions and is quantified. It is unclear however, if altered JSA is in fact related 

to degenerative signs of arthritis or if altered JSA is a precursor to degenerative changes. Therefore, 

the purpose of this chapter was to examine the changes in JSA over time, and post-injury. This 

study employed CT imaging to determine the 3D implications of altered bony alignment on the 

JSA of joints surrounding the scaphoid in patients with scaphoid malunions, a minimum of four 

years (average 7±2.1 years) post-fracture (Objective 1).  

The hypothesis of this study stated in Chapter 1 was that the characteristic humpback 

deformity would alter 3D joint space at the radiocarpal and midcarpal joints surrounding the 

scaphoid as early as four years post-fracture (Hypothesis 1a). As the bones of the wrist are highly 

congruent and interconnected, it was assumed that disruption of one bone (scaphoid) as a result of 

trauma/malalignment would significantly affect adjacent bones and surrounding joints. 
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Additionally, previous studies that suggest that the scaphoid is the most mobile in displacement 

under load, resulting in altered contact force and contact area. 191 The assumption is that altered 

alignment and JSA leads to initiation and progression of osteoarthritis (Hypothesis 1b), similar to 

the change in mechanics seen with scapholunate or scaphoid non-union advanced collapse. 192 

2.2 Materials and Methodology 
Patients who had scaphoid fractures treated at the Roth|McFarlane Hand and Upper Limb 

Center between November 2005 and November 2013 and had scaphoid Computed Tomography 

(CT) scans conducted were included in a database of scaphoid fractures. These cases were 

reviewed and subjects meeting the eligibility criteria for malunion were contacted to participate 

in this follow-up study. The inclusion criteria were healed scaphoid fractures (minimum 50% 

union on CT scan) with a Height-to-Length (H/L) greater than 0.6 on the central CT image, and 

the ability to participate in a clinical follow-up. 74 Both operative and non-operative treatments 

were included with no preferences for fracture location and orientations. For this study, the 

exclusion criteria were age less than 16 years at the time of injury, concomitant injury to the 

ipsilateral upper extremity, a scaphoid non-union and any neurological disorder that affected 

hand function. 

The H/L ratio was measured using a standard approach that has been described 

previously and has been shown to have high intra- and interobserver availability. 74 These 

measures were conducted by a single fellowship-trained hand surgeon on a central CT slice 

(verified by toggling between slices to find the slice that had the largest outer circumference). A 

line positioned along the volar aspect of the scaphoid was a measure of the proximal to distal 

length of the scaphoid.  The maximal height was determined perpendicular to this line and the 

H/L ratio calculated. 193 

One hundred and two patients were eligible to participate in the study. Thirty-one patients 

declined, were unreachable, or unable to participate in this study (declined: n=4, unreachable: 

n=24, incarcerated: n=1, deceased: n=2). The remaining 71 patients agreed to complete 

questionnaires only. Thirty-seven patients agreed to undergo functional testing and follow-up CT 

imaging in addition to completing questionnaires. Of this group, 25 presented for clinical visits 

while 12 cancelled their appointments or failed to present. Twenty-four of those who presented 

for clinical testing and CT testing participated in all facets of assessment (one was not able to 

participate in the CT imaging due to scheduling conflicts). The average age of this group was 

41±16 years (range: 16-64 years) and the average length of follow-up was 7 ±2.1 years (range: 4-
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12 years) post-fracture. Fourteen of the 24 patients had baseline CT scans (at the time of 

fracture) and follow-up CT scans (minimum of 4 years post-fracture) and were included in this 

study. The final number of participants in this study was 14.  

2.2.1 CT Scanning  
Follow-up CT scans were acquired using a 64-slice CT scanner (GE Discovery CT750 HD, 

Waukesha, WI) with the wrist in radial deviation and positioned such that the long axis of the 

scaphoid was perpendicular to the axis of the scanner (slice thickness=0.625mm, pixel spacing 

approximately 0.4 x 0.4mm, 50mA, 120 kVp). 193 CT slices in this study were also used to detect 

radiographic signs of degeneration using the coronal and sagittal images. A single reviewer 

assessed the coronal and sagittal images for arthritic changes at the radioscaphoid (RS), 

scaphocapitate (SC) and scapho-trapezium-trapezoid (STT). The degree of arthritis was graded 

according to the Kellgren-Lawrence scale: grade 0: normal joint without evidence of arthritis; 

grade 1: minimal joint space narrowing (JSN) with some osteophytic lipping; grade 2: osteophytes 

and possible JSN; grade 3: osteophytes and JSN with possible bony deformity; and finally, a grade 

4: large osteophytes, marked JSN and severe sclerosis. 194 The same analysis was carried out for 

the last CT obtained during the initial follow-up for all patients. These results were compared to 

those obtained from long-term follow-up images to detect any new changes.  

2.2.2 Joint Congruency  
Figure 2.1 shows an overview of the experimental protocol and data analysis. This analysis 

was conducted on the previously acquired baseline CT scans (acquired at time of fracture) and the 

follow-up CT scan. The DICOM data (Digital Imaging and Communications in Medicine) 

obtained from the CT scan were imported into Mimics 21.0 (Materialise, Leuven, Belgium). 

Three-dimensional reconstructions of the carpus, distal radius and ulna were created using a 

threshold-based semiautomatic segmentation that accurately represented the corresponding 

bone/soft tissue boundary. A previously developed inter-bone distance algorithm was used to 

measure relative 3D joint space reduction over time (between baseline and follow-up). 150 Briefly, 

the algorithm calculates minimum inter-bone distances between opposing bone surfaces using a 

point-to-point distance measurement. Inter-bone distances are displayed using a colored proximity 

contour map (0 mm=red, 2 mm=blue). A threshold value of 2.0 mm was selected because it 

approximately captured the entire articular surface of the joints surrounding the scaphoid and has 

been previously used to measure articular cartilage in the scaphoid and lunate fossae and along the 
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interfossal ridge. 195 In this study, high proximity was characterized as having an inter-bone 

distance less than 0.5 mm and corresponded to red-yellow on the color-bar, and low proximity was 

characterized as having an inter-bone distance between 1.0 mm and 2.0 mm, which corresponded 

to green-blue. Joint Space Area (JSA) was defined as the area on the surface of the scaphoid facet 

of the distal radius that is within 2.0 mm of the opposing surface for the radioscaphoid joint. 

Similarly, for the scaphocapitate joint, inter-bone distances were calculated between the scaphoid 

and capitate (scaphotrapezium joint: scaphoid and trapezium; scaphotrapeziodal joint: scaphoid 

and trapezoid).  Note that for visualization the scapho-trapezium-trapezoid joint JSA is shown 

together. The JSA was reported for each joint, for baseline and follow-up CT scans and is a CT-

derived measure of joint contact area.  

2.2.3 Statistical Methods  
A repeated-measures analysis of variance (ANOVA) test with a Bonferroni correction to detect 

statistical differences in the measured joint space area for inter-bone distance (less than 0 mm, 0.5 

mm, 1.0 mm, 1.5 mm, and 2.0 mm) in the baseline and follow-up scenarios. Statistical significance 

was initially set at p<0.05 and then corrected by a Bonferroni correction factor which accounted 

for multiple comparisons.  
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Figure 2.1. Flowchart showing Data Analysis for the Joint Surface Area. 
A color-bar is shown (0-2 mm: red-blue) corresponds to high, medium, low and ultra-low 
proximity.  

2.3 Results  
The fracture characteristics and demographic data for all participants (n=14, mean age at 

injury:42 (range:16–64), mean age at long-term follow-up:49 (range:20–70), M:11 F:4) are 

shown in Table 2.1.   

The proximity maps of each participant for each joint are shown in Figure 2.2 (A: 

Radioscahoid Joint, B: Scaphocapitate Joint, C: the Scapho-Trapezium-Trapezoid Joint). The 

Kellgren Lawrence (KL) osteoarthritis grades at baseline and follow-up for all participants 

(n=14) were listed in Figure 2.2 and indicates that there are “none” or “doubtful” degenerative 

changes in these wrists. The mean Joint Space Area (JSA) was compared between the baseline 
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and follow-up for each joint being examined and is shown in Figure 2.3 (A: Radioscahoid Joint, 

B: Scaphocapitate Joint, C: Scaphotrazepoid Joint, D: Scaphotrapezium Joint).   

 The results demonstrated a small increase in measured JSA at the radioscaphoid (Figure 

2.3A) and scaphotrapezoid joints (Figure 2.3C) between baseline and follow-up scenarios (for all 

inter-bone distances examined) (p>0.05).  Figure 2.3B shows a significant increase in JSA four 

years after fracture at the scaphocapitate joint (inter-bone distances less than 1.5 mm and 2 mm) 

(p<0.05). Joint space area also significantly increased four years post-fracture at the 

scaphotrapezium joint (Figure 2.3D) for inter-bone distance less than 2mm (p<0.05). 
 
Table 2.1. Demographic factors of participants with scaphoid malunions (n=14).  
*Motor Vehicle Accident (MVA) 
Patient Gender  H/L 

ratio 
Age  
at 
Injury 

Age at 
Long-
term 
follow
-up 

Follow 
up time 
(years) 

Injured 
wrist  

Domi
nant 
hand 

Mechan
ism of 
Injury 

DISI 

106773-2 Male  0.622 16 20 4.35 Right  Yes  Punch No 
106773-3 Male  0.621 26 31 5.5 Right  Yes Sports  No 
106773-4 Male  0.604 60 66 5.5 Right No  Sports  No 
106773-8 Male  0.656 32 39 7.16 Left No Fall No 
106773-9 Male 0.671 53 64 11.17 Right  No Fall No 
106773-12 Male  0.649 49 56 7.02 Right  Yes  Fall No 
106773-14 Female  0.650 60 66 5.31 Right  Yes  Fall No 
106773-15 Female  0.663 64 70 4.89 Left No Fall No 
106773-16 Male 0.610 17 23 6.35 Right  Yes  Sports  No 
106773-19 Male 0.609 46 51 5.59 Left No MVA* No 
106773-20 Female  0.699 59 65 6.09 Right  Yes  Fall No 
106773-21 Male 0.660 33 46 6.29 Right  Yes Sports No 
106773-22 Male  0.629 37 43 6.14 Left No Fall No 
106773-23 Male 0.618 34 42 8.07 Right Yes Sports No 
106773-24 Female 0.654 55 61 6.84 Right  Yes Fall No 
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Figure 2.2 (A) 
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 Figure 2.2 (B) 
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Figure 2.2 (C) 

 

 
 
Figure 2.2 (A-C). Joint Congruency Maps for the Radioscaphoid, Scaphocapitate, and 
Scaphotrapezium-trapezoid (STT) Joints for all Specimens (n=14).  
A color-bar is shown (0-2 mm: red-blue) corresponds to high, medium, low and ultra-low 
proximity. Kellgren Lawrence osteoarthritis grades are also shown for each participant at 
baseline and at long-term follow-up.  
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Figure 2.3 (A) Radioscaphoid Joint 

 
 
Figure 2.3 (B) Scaphocapitate Joint  
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Figure 2.3 (C) Scaphotrapezoid Joint 

 
 
Figure 2.3 (D) Scaphotrapezium Joint  

  

Figure 2.3 (A-D). Joint Surface Area for each Joint (inter-bone distances less than 2.0 mm) 
for all Specimens (n=14).  
Bars represent mean, and error bars represent standard deviation of mean.  
 

2.4 Discussion 
With a scaphoid malunion, it is unclear how significantly the angulation or humpback 

within the scaphoid alters carpal mechanics.  The important question is whether the malunion 

alters the joint mechanics enough to cause early osteoarthritis. The results of this study indicate 

that there is a significant difference in joint space area (JSA) with differences less than 2mm at 
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the scaphotrapezium and scaphocapitate joints when comparing the baseline and follow-up scans 

of the wrist as early as 4 years post-fracture. Additionally, there were no signs of degenerative 

changes (as measured using the KL grading) for any of the participants in this study at an 

average of 7 years post-fracture (minimum of 4 years). While commonly used, the KL grading 

may not be sensitive to early arthritis and it is therefore unclear whether or not these changes in 

JSA relate to degenerative changes (previous study suggested that the development of post-

traumatic osteoarthritis occurs at a minimum of 5 years (average 7.1 years) 196 or if it is the case 

that these two measures are not associated.   

Scapholunate Advanced Collapse (SLAC), as defined in Chapter 1 section 1.2.1.5, 

represents a characteristic degenerative pattern in the wrist after a chronic scapholunate (SL) 

injury and is well characterized by a progression of proximal migration of the capitate between 

the scaphoid and lunate. The pattern of degeneration that will appear is unclear; however, it is 

suspected that a similar progression of degeneration as seen after SL injury might also appear, 

however an important distinction must be made. With a scaphoid non-union, and scapholunate 

injury, the carpus ‘collapses’ because there is either a gap between the two halves of the 

scaphoid or between the scaphoid and lunate. With a scaphoid malunion, as defined in Chapter 1 

section 1.2.2, the carpus might not necessarily ‘collapse’ or maybe not to the same extent as the 

radial column of the carpus remains solid. This proximal migration of scaphoid along with the 

trapezoid, trapezium, capitate bones could explain the increased JSA (within close proximity) or 

a reduced joint space narrowing.  

This study did not find any signs of degenerative changes in these joints. Possible 

explanations for this discrepancy are primarily biomechanical. The capitate articulates with 

scaphoid and lunate and both midcarpal joints play a vital role in load transmission between the 

distal and proximal row. It is possible that the load is preferentially transferred through the 

lunocapitate joint rather than the scaphocapitate joint. Therefore, the lunocapitate might be 

subjected to higher contact under loading but this joint was not examined in this study. These 

variations in load distributions can explain changes in contact area, which is one of the primary 

mechanical factors associated with OA development. 197,198 

Current literature discussed in Chapter 1 section 1.2.2.2 does not clearly define whether 

the malunion alters the joint mechanics enough to cause early osteoarthritis. In addition to there 

being conflicting reports of the clinical significance of scaphoid malunions, there are also very 

few studies that focus on this pathology specifically in the context of an acute fracture healing in 
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a malunited position as previously described in Chapter 1 section 1.3.2. Much of the literature 

focuses on scaphoid non-unions that are treated surgically and then heal in a malunited position, 

making it unclear whether the changes seen are due to the malunion or because of the non-union. 

This study focused on a population of patients that had a primary scaphoid malunion to try to 

detect changes in joint loading as a result of the mal-aligned scaphoid. As well, we were able to 

compare baseline and follow-up CT image which reduces inter-subject variability and examines 

the same joint over time.  

We employed H/L ratios as a measure of angular deformity because it is dependent on 

CT orientation (the longitudinal axis of the scaphoid), thickness of CT slices, and has intra- and 

inter-rater reliability. 70 However, this parameter is two-dimensional and limited in interpreting 

the multiplanar deformity of scaphoid and carpal instability, which is critical for assessing 

treatment options and planning surgical correction. 199 Also, the H/L ratio > 0.6 is an arbitrary 

number and has not demonstrated the ability to distinguish between different clinical results in 

previous studies. 84 Furthermore, there is no consistency in the H/L ratio value used to define 

scaphoid malunion which can make comparisons of findings across studies difficult. A previous 

study used a H/L ratio > 0.65 to define scaphoid malunion. 200 

A limitation of this study was that our small sample size did not allow us to examine the 

amount of deformity or severity of the malunion and amount of change in joint loading (JSA) by 

stratifying cases into mild, moderate and severe malunion. This study presented results using a 

small number of not severely malunited cases and we acknowledge that a larger sample size and 

severely malunited cases could have captured more information on altered joint contact 

mechanics. In addition, this study evaluated joint contact mechanics at the radial ulnar position 

and other positions such as the dart thrower’s motion, extreme extension or extreme flexion 

could provide further useful data in the future.  

2.5 Conclusion  
This study provided carpal contact mechanics data that illustrate the effects of scaphoid 

malunion at a minimum of 4 years post-fracture. The results from this study demonstrated 

significant differences in joint congruency between baseline and a minimum of four years post-

fracture at the scaphocapitate and STT joints. However, radiographic evidence of degeneration 

was not found at a mid-term follow-up. This study provides a first step in determining the three-

dimensional consequences of scaphoid malunion on surrounding joint mechanics. These findings 

are of importance to furthering knowledge on the clinical significance of scaphoid malunion. The 
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relationship between measurable deformity and clinical symptoms and long-term sequelae is not 

clearly defined in the literature and in this study, therefore, it is not possible to, at this point, 

create operative guidelines of when and how to intervene surgically. The study presented in the 

next chapter will extend the use of the joint congruency technique and employ a 4DCT approach 

to examine another common upper extremity injury, distal radius fractures at wrist positions 

during motion.  
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Chapter 3 Four-Dimensional Computed Tomography to Measure 
Distal Radial-Ulnar and Radio-Carpal Joint Congruency After 

Distal Radius Fractures 
 

3 Overview 
Previous studies investigating the effect of distal radius fracture mal-alignment have focused 

solely on the distal radioulnar joint and forearm rotation using static imaging. The wrist is 

extremely interconnected and experiences different joint positions during tasks of daily living. 

Therefore, the impact of distal radius fracture on the surrounding joint mechanics during wrist 

extension/flexion motion needs to be considered. This in vivo study employs a 4DCT approach to 

better visualize the mechanical abnormalities of individuals with distal radius fractures compared 

to healthy individuals.  

3.1 Introduction 
Distal radius fractures (DRF) are common orthopedic injuries accounting for 75% of all 

forearm fractures and subject to a high rate of misdiagnosis 201,202. Complications arising from 

DRF occur in nearly 30% of patients and are a consequence of either the initial injury or subsequent 

treatment. 89 As highlighted in Chapter 1 section 1.2.3.5, one of the major complications after a 

DRF is the radius healing in mal-aligned positions, called malunion, which is seen in up to 33% 

of cases. 203 Chapter 1 section 1.2.4.1 also described the distal radial deformities used to confirm 

a suspected malunion and these measurements included radial shortening, dorsal tilt, and loss of 

radial inclination. The residual incongruity during fracture healing may lead to joint stiffness and 

long-term morbidity; therefore, the restoration of articular congruity is a key component for the 

management of these injuries. 204  Additionally, abnormal carpal mechanics resulting from 

articular surface incongruity and joint instability may cause irreversible cartilage degeneration. 89 

Current literature discussed in Chapter 1 section 1.2.4.2, is controversial regarding the relationship 

between residual deformity and long-term clinical and radiographic outcomes including post-

traumatic osteoarthritis development. It is unclear whether altered joint congruency and mechanics 

is an important contributor to patient outcomes post-fracture.   

As stated in Chapter 1 section 1.2.3.3, radiographs are commonly used by clinicians to 

evaluate anatomical restoration and to monitor the development of osteoarthritis after a DRF. 

Radiographic degenerative changes are frequently reported in patients who have suffered a DRF, 
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but the long-term clinical impact of these changes has not been clearly defined. Current literature, 

discussed in Chapter 1 section 1.2.4.2 has shown conflicting reports on the correlation between 

well reduced fracture (according to standard radiographic measures on the radial height, radial 

inclination, volar tilt, etc.) and functional outcomes or patient satisfaction. Therefore, the clinical 

evidence linking incongruity to post-traumatic arthritis is inconclusive. However, the validity of 

these findings is questionable as radiographs are limited by the anatomical complexity of the    

wrist. 205 Chapter 1 section 1.5 explored the advantages as well as the challenges of several imaging 

techniques. As stated in Chapter 1 section 1.5.1, the challenge is that the wrist is very complex and 

relying on two-dimensional (2D) projection-based images limits the clinician in assessing the 

extent of the mal-alignment and the consequences of mal-alignment on the surrounding joints in 

the wrist. Additionally, symptoms arising from malalignment may only occur when a patient is 

performing a functional task with their wrist. 206 Since, radiographs are static in nature, they are 

do not present dynamic instabilities and these patients continue to have debilitating wrist pain. 207  

Studies have reported better measurement accuracy of articular surface displacements 

when using three-dimensional (3D) measurements (CT) compared to the standard 2D    

radiographs. 208 Even though volumetric images can be used to create 3D models, many studies 

have continued to examine joint alignment from 2D slices obtained from 3DCT, using the 

radioulnar line method, subluxation ratio method, epicenter method and the radioulnar ratio 

method. 186 Conversely, previous studies have examined the consequence of the wrist fracture in 

3D as discussed in Chapter 1 section 1.3.3. But these studies are limited to a small case series 

(Crisco et al.: n=9, Kihara et al.: n=6 cadaveric wrists) and short follow-up times of 1 year or less 

(Crisco et al.: 10-month follow-up), which may not capture the 3D degenerative changes that occur 

over time. 29,209  

Previous studies also focused solely on DRUJ and did not investigate the impact of the 

fracture on the surrounding joint mechanics. Radiocarpal joint mechanics can play an important 

role in the functional dysfunction associated with distal radius malunions and radiocarpal post-

traumatic arthritis is common after a wrist fracture. 210 Therefore, the effect of distal radius 

malunion on the in vivo contact patterns of the radiocarpal joints needs to be further examined in 

a larger cohort. 

Studies have demonstrated deviations from normal wrist kinematics at the extreme 

positions of motion post-injury using 3D measurements. As discussed in Chapter 1 section 1.3.3,  

several studies have investigated the in vitro effect of distal radius malunion on contact patterns 
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(contact area and centroid location) of the DRUJ during forearm rotation. 151,209 These studies were 

limited to cadaveric wrist simulators and focused on one of the distal radial deformities (dorsal 

angulation). Other studies have inferred the in vivo effect of motion on joint contact mechanics 

from static positions. However, static testing cannot detect the mechanical abnormalities 

throughout the full range of motion, and thus the contact patterns at intermediate positions of the 

motion are not examined.  

Four-dimensional Computed Tomography (4DCT) allows for a kinematic assessment of 

active wrist motion capturing subtle positional bone changes with high temporal and spatial 

resolution. 211,212 Four-dimensional CT, previously described in Chapter 1 section 1.5.4, is an 

imaging technique where joint motion is acquired using a dynamic sequential scanning 

technique. The images are acquired while the joint is moving allowing for a dynamic assessment 

of the joint mechanics, such as identify areas with focal loading and potential for pain with load 

bearing movement. The 4DCT approach enables 3D volume sequences to be obtained over time 

while the wrist is in motion. 213 Zhao et al. validated the 4DCT technique using the bead-based 

and bone-based registrations and found the accuracy to be consistent with other static and 

dynamic image-based kinematic techniques. 201 However, this study was limited by two 

cadaveric specimens, and segmentation and registration inaccuracy (0.943 and 0.376 mm 

respectively). 201 

Recent advances in 4DCT imaging (3D and time) can examine subtle bony changes that 

cannot readily be seen in 2D radiographs and static 3DCT. Using 4DCT, we are now able to detect 

dynamic instabilities that only occur during motion. Therefore, the purpose of this chapter was to 

extend the findings from our previous studies to now examine the effect of DRF on dynamic joint 

congruency in a cohort of patients who have previously suffered a DRF and compare those results 

with an age-matched healthy cohort (Objective 2). This chapter also examines the differences in 

the joint surface area (JSA) due to differences in wrist position (extension/flexion) in the healthy 

population and determine if these trends were also reflected in the fractured population (Objective 

3). A previous study has employed clinical 3DCT to examine one static position of the wrist (full 

pronation) and found that at an average of 8 years post-fracture, JSA was reduced in the radiolunate 

joint when comparing the injured and uninjured wrists. 30 While this finding was novel and 

demonstrated the use of this image-based 3D measurement tool in a clinical population (in vivo), 

the study was limited to a small cohort of patients and only one static position. Using 4DCT, these 

changes in JSA can be shown dynamically during wrist motion.  
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One hypothesis of this study stated in Chapter 1 was that patients with healed distal radius 

fracture will demonstrate altered joint contact mechanics so that either the JSA will decrease 

indicating areas of point loading and potential pain (Hypothesis 2a). This may predispose the wrist 

joint to the development of early osteoarthritis that ultimately changes the kinematic behavior of 

the interconnected wrist bones during in vivo extension/flexion (Hypothesis 2b). The other 

hypothesis of this study stated in Chapter 1 was that patients with a healed DRF will demonstrate 

altered joint contact mechanics in the radiocarpal joints across extension/flexion such that the JSA 

will decrease (Hypothesis 3). 

 

3.2 Materials and Methodology 

3.2.1 Participants 
This is a Level 3 Case Control Study. Patients who had previous DRFs treated at the 

Roth|McFarlane Hand & Upper Limb Centre were identified and included in the injured cohort. 

These cases were reviewed and subjects meeting the eligibility criteria were contacted to 

participate in the study. The inclusion criteria were healed DRFs, minimum of one-year post-

fracture, and ability to participate in a clinical follow-up.   For this study, the exclusion criteria 

were less than 18 years old at the time of injury, a concomitant injury to the ipsilateral hand or 

wrist, presence of metal pins/plates and any neurological disorder that affected hand function. 

Seventeen patients had consented to undergo functional testing and 4DCT imaging in addition to 

completing questionnaires. Of this group, 14 presented for clinical testing and CT testing, while 

three cancelled their appointments or failed to present. Healthy individuals with no previous 

wrist fractures were also recruited to participate in the study. These cases were reviewed, and 

subjects were age-matched to the 11 individuals with DRF (age matching range is age ± 5). 

Twenty-two participants (11 individuals with distal radius fractures and 11 healthy controls) 

were included in this study. Prior to study participation, each participant signed a consent to 

participate. Participants were seen for a follow-up assessment by a fellowship-trained hand 

surgeon (N.S) at our institution. The study protocol was approved by the ethics review board of 

our institute and hospital and complied with the Declaration of Helsinki of 1975, revised 2000. 

3.2.2 4D CT Imaging  
A CT scanner (Revolution CT Scanner, GE Healthcare, Waukesha, Wisconsin, USA) was 

used to acquire kinematic scans of the distal forearm and hand using a routine wrist scan protocol 
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(80 kV, 125 effective mA, 0.35 s rotation time, axial). The CT scanner imaged a 16 cm volume, 

configured as 128, 1.25 mm thick slices, repeatedly at 0.35 s intervals over a duration of 24.5 s for 

a total of 70 volumes at 2.86 Hz. The voxel size was 0.625 × 0.625 × 1.25 mm. For the purposes 

of this study, three passes of flexion-extension were performed (extreme extension to extreme 

flexion was the first pass (25 volumes, 8.75 s), extreme flexion to extreme extension was the 

second pass (25 volumes, 8.75 s), and extreme extension to extreme flexion was the third pass (20 

volumes, 7.0 s), resulting in a total time of 24.5 s per motion and 25 frames of motion per pass. 

Three passes of motion were obtained to ensure the total range of motion was captured if the 

participant moved too slowly or if they missed the trigger to begin motion at the start of the scan. 

The first instance of extreme extension/flexion was analyzed in this study.  In addition to these 

kinematic scans, a static scan with the wrist in 30 degrees of supination was acquired (0.35 × 0.35 

× 0.625 mm for the scan, 125 mA, 120 kVp). The total exposure time for three passes per motion 

was 24.5 s, resulting in a dose length product (DLP) of 713.64 [mGy-cm]. Alternatively, the total 

skin dose was 0.067 Gy from the hand scans and the threshold for skin erythema from radiation 

exposure is 2 Gy. Thus, the skin dose from the research study was ten times lower than the 

threshold. The speed of the scan was approximately 22°/s for extension/flexion. During imaging, 

the individuals were lying in prone with their arm outstretched inside of the scanner. The 

participants also wore protective gear (lead apron, neck band and protective eyeglasses). The 

scatter radiation dose measured under lead apron, 0.013 mSv, was representative of what the 

participants received from the research study. The average person receives a higher annual dose 

of 3 mSv from natural background radiation and cosmic radiation from outer space. This value is 

231 times higher than the dose in our research study, therefore, the effects from this scatter dose 

were negligible. 

3.2.3 Radiographic Evaluation 

Follow-up radiographs (posteroanterior and lateral views) were obtained from each 

participant (follow-up mean: 5 months, range: 3-10 months). Plain radiographs were used to 

measure the Radial Inclination (RI), Dorsal Angulation (DA) and Ulnar Variance (volar +, dorsal 

-) (UV). All measurements were performed by a fellowship-trained hand surgeon (M. M). 

Overall, distal radius alignment was determined to be unacceptable if RI <15°, if DA >10°, or if 

there was ≥3 mm of UV positive using the guidelines written by the American Society for 

Surgery of the Hand (ASSH). The follow-up radiographs were also classified according to the 
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Müller AO system 214, which is a widely used classification system for DRFs in clinical research 
215. This system classifies fractures into 3 types: A (extra-articular), B (partial articular), and C 

(complete articular) which describes the joints involved 214.   

Evidence of osteoarthritis in the radioscaphoid (RS), radiolunate (RL) and distal radioulnar 

joint (DRUJ) were assessed by grading the follow-up CT images using the Kellgren and Lawrence 

(KL) Grading system: 0- None, 1- Doubtful, 2- Minimal, 3- Moderate, 4- Severe 194. Grades were 

based on the presence of joint space narrowing, osteophytes, sclerosis, and deformity of bone ends 
194. The follow-up CT images (coronal views) obtained from each participant were used to assign 

KL grades to the injured and uninjured cohorts. Kellgren Lawrence Osteoarthritis (KL OA) scores 

were used to predict long-term degenerative changes (as defined by a grade of greater than 2 on 

the KL OA scale). 

3.2.4 Image Analysis  
In this current study, three static phases of the extension/flexion motion were of interest. 

The 3DSlicer software (version 4.11.0) was used to visualize 25 frames of data. Three static 

phases of the extension/flexion motion of interest were maximum extension, neutral and 

maximum flexion. The joint angles at each position of interest were recorded using a 

standardized approach employing a digital goniometer in 3DSlicer. The static phases were 

chosen as they show the joint contact mechanics at the extreme positions of the range of motion. 

This is important because carpal ligaments are more prone to strain and injuries in these 

positions 216,217. 

3.2.5 Joint Congruency 
The data analysis process was similar to the analysis described in Chapter 2 section 2.2.2. 

The DICOM images (Digital Imaging and Communications in Medicine) obtained from the CT 

scan were imported into Mimics 21.0 (Materialise, Leuven, Belgium). Three-dimensional 

reconstructions of the carpus, ulna, and radius were created using a semi-automatic threshold-

based segmentation technique to reconstruct the outer most bony surface. A previously 

developed inter-bone distance algorithm was used to measure relative 3D joint space area (mm2) 
218. In this current study, Joint surface area (JSA) was defined as the area on the surface of the 

scaphoid facet on the distal radius that is within 2.0 mm of the opposing surface for the 

radioscaphoid, radiolunate and distal radioulnar joints. The JSA was normalized to the 

individual’s total static JSA of the scaphoid fossa, lunate fossa, and sigmoid notch of the distal 
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radius. The mean JSA % for the healthy and injured cohorts were reported. The effect of the 

range of motion and the effect of fracture on measured JSA % (inter-bone distances less than 2.0 

mm) was examined.  

3.2.6 Functional and Pain Assessment  
After CT scanning, individuals underwent functional tests to examine their grip strength 

and range of motion. The data was collected from each individual in the healthy and injured 

cohort and inputted into IMB SPSS Statistics software version 25. The clinical outcome 

measurements were grip strength recorded using a hand dynamometer (Alyatus), static joint 

angles at extreme flexion, neutral and extreme extension positions recorded using the 

goniometer. 

3.2.7 Statistical Analysis  
To detect differences in JSA % between health status and joint position, a Univariate 

ANOVA (Analysis of Variance) was conducted (IMB SPSS Statistics software version 25) for 

each joint of interest; p-value=0.05 was considered significant. This test examined the interaction 

between the independent variables of health status (uninjured and injured) and joint position 

(extreme flexion, neutral and extreme extension) to the dependent variable of JSA % at each inter-

bone distances, 0 mm, 0.5mm, 1.0mm, 1.5mm, 2.0mm. To compare clinical outcomes between 

the healthy and fracture cohorts, a Paired T-Test analysis was conducted for grip strength, range 

of motion (static and dynamic extension and flexion angles) and pain. 

 

3.3 Results 
Table 3.1 shows the demographic data for all participants in the injured and the healthy 

(control) cohorts, as well as the age at time of injury (n=22, mean age of distal radius fracture 

cohort: 71± 16 years (range:60-84 years), mean length of follow-up was 12 years±13 (range:1-47 

years) post-fracture, mean age of the healthy control cohort: 68± 9 years (range:60-84 years)). The 

injured cohort consisted of five extra-articular, four intra-articular and one partial DRF (one 

fracture was not classified; no injury films).  

The KL scores for the injured and uninjured cohorts are listed in Table 3.3. Overall, seven out 

of the 11 injured participants were considered to have unacceptable radiographic distal radius 

alignment according to the ASSH guidelines (Table 3.2). The injured cohort demonstrated 
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degenerative changes in the DRUJ (n=6) and radiocarpal joints (n=10). The uninjured cohort also 

demonstrated degenerative changes in DRUJ (n=5) and radiocarpal joints (n=10).  

 The individual’s grip strength, static and dynamic extension and flexion angles, and patient 

rated wrist evaluation (PRWE) scores for the age-matched injured and healthy cohorts are listed 

in Table 3.4. There was a significant difference in grip strength between the injured cohort (mean: 

23 Kg) and healthy cohort (mean: 32 Kg) (p<0.05). The mean joint angles for the injured cohort 

was F 45° (range: 20°-68°) to E 65° (range: 41°-71°) and for the healthy control cohort was F 48° 

(range: 32°-68°) to E 62° (range: 45°-74°); no significant differences were found at extreme flexion 

(p>0.05) and at extreme extension (p>0.05).  

Figure 3.1 shows the changes in percent mean JSA % (inter-bone distances less than 2.0 mm) 

in each joint for injured (n=11) and healthy (n=11) participants at the A) distal radioulnar joint, B) 

radioscaphoid joint and C) radiolunate joint. There was a significant difference between the 

healthy and injured participants for the mean JSA (%) across wrist extension/flexion motion in 

only the DRUJ at inter-bone (p<0.05) whereas there were no statistical differences found between 

joint space area during extension, neutral, and flexion at the radiolunate (p>0.05) or radioscaphoid 

joint (p>0.05) The largest difference between the healthy and fracture patients observed for the 

DRUJ was at maximum flexion showing a difference of approximately 20% (19.6 mm2). When 

examining differences JSA % between extension, neutral and flexion, there was a difference in 

JSA at the radiolunate joint (p<0.05) but not at the radioscaphoid joint(p>0.05) and DRUJ (p>0.05) 

in the healthy cohort, but after fracture, this finding was only true for the radioscaphoid joint 

(p<0.05).  
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Table 3.1. Demographic factors and injury characteristics of participants in the injured cohort 
(n=11) and the age-matched healthy (control) cohort (n=11). 

Injured Participants Healthy Participants 

Participant 
ID  

Gender  Age 
at 
Injury  

Age at 
Follow-
up 

Follow-
up time 
(years) 

AO 
Classification 

Participant 
ID  

Gender Age 

1A Female 65 66 1 2R3A3 1B Female  61 

2A Female 59 73 2 2R3A2 2B Male 73 
3A Female 58 61 10 2R3C2 3B Male 57 

4A Female 76 68 8 2R3A3 4B Male  71 
5A Female 58 84 2 2R3C2 5B Female 80 

6A Female 63 60 12 2R3C3 6B Female 56 
7A Female 64 75 13 2R3C2 7B Female 73 

8A Female 65 77 15 2R3B1 8B Male 72 

9A Male 15 80 47 No injury 
films 9B Female 76 

10A Female  67 62 10 2R3A2 10B Female 57 
11A Female 66 77 7 2R3A2 11B Male  75 
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Table 3.2. Radiographic measurements taken at long-term follow-up (mean: 5 months, range: 3-
10 months).  
Radiographic alignment measurements included Radial Inclination (RI), Dorsal Angulation 
(DA), Ulnar Variance (mm)- measured from the line tangential to the lunate fossa and 
perpendicular to the radial shaft compared to the line tangential to the distal articular surface of 
the ulna. positive variance (+) is when the ulna is longer than the tangential line from the lunate 
fossa while negative variance (-) is when the ulna is shorter than the tangent (UV). The 
radiographic measurements highlighted in red are classified as unacceptable according to 
previous studies (RI <15°, DA >10° and UV ≥3 mm) 
 
Injured Participant  RI DA UV 

1A 12 8.5 1mm+ 
2B 21.9 11.2 2mm+ 
3A 20.6 30.2 4mm+ 
4A 19.5 2.9 volar 1mm+ 
5A 23.5 14.2 volar 0 
6A 26.7 5.4 volar 3mm + 
7A 27.6 25 3mm + 
8A 18 4.1 0 
9A 21.3 6.3 1mm+ 
10A 17.3 25.9 6mm+ 
11A 25 3.1 volar 1mm+ 
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Table 3.3. Joint Congruency Maps for the Distal Radioulnar, Radioscaphoid and Radiolunate 
Joints at the Extremes of Wrist Extension-Flexion for Age-Matched Injured (n=11) and Healthy 
Participants (n=11).  
A color-bar is shown (0-2 mm: red-blue) corresponds to high, medium, low and ultra-low 
proximity.  

 
Health 
status 

Injured  Healthy   

ID 1A (mal-union) 1B 
Joint Distal 

radio-
ulnar 

Radio-
scaphoid 

Radio-lunate Distal 
radio-
ulnar 

Radio-
scaphoid 

Radiolunate 

Maximum 
Extension 

 
  

   
Neutral 

      
Maximum 
Flexion 

      
ID 2A (mal-union) 2B 
Joint Distal 

radio-
ulnar 

Radio-
scaphoid 

Radio-lunate Distal 
radio-
ulnar 

Radio-
scaphoid 

Radiolunate 

Maximum 
Extension 

      
Neutral 

      
Maximum 
Flexion 

 
     

ID 3A (mal-union) 3B 
Joint Distal 

radio-
ulnar 

Radio-
scaphoid 

Radio-lunate Distal 
radio-
ulnar 

Radio-
scaphoid 

Radiolunate 

KL: 1 KL: 1 

KL: 2 KL: 1 

KL: 1 KL: 1 

KL: 2 KL: 1 
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Maximum 
Extension 

 
  

 
  

Neutral 

      
Maximum 
Flexion 

      
ID 4A 4B 
Joint Distal 

radio-
ulnar 

Radio-
scaphoid 

Radio-lunate Distal 
radio-
ulnar 

Radio-
scaphoid 

Radiolunate 

Maximum 
Extension 

      
Neutral 

      
Maximum 
Flexion 

      
ID 5A (mal-union)  5B 
Joint Distal 

radio-
ulnar 

Radio-
scaphoid 

Radio-lunate Distal 
radio-
ulnar 

Radio-
scaphoid 

Radiolunate 

Maximum 
Extension 

 
     

Neutral 

 
     

Maximum 
Flexion 

      
ID 6A (mal-union) 6B 
Joint Distal 

radio-
ulnar 

Radio-
scaphoid 

Radio-lunate Distal 
radio-
ulnar 

Radio-
scaphoid 

Radiolunate 

KL: 3 KL: 2 

KL: 2
  

KL: 2 

KL: 2
  

KL: 2 

KL: 2
  

KL: 2 

KL: 2
  

KL: 3 

KL: 2
  

KL: 1 
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Maximum 
Extension 

      
Neutral 

      
Maximum 
Flexion 

      
ID 7A (mal-union) 7B 
Joint Distal 

radio-
ulnar 

Radio-
scaphoid 

Radio-lunate Distal 
radio-
ulnar 

Radio-
scaphoid 

Radiolunate 

Maximum 
Extension 

 
     

Neutral 

 
  

   
Maximum 
Flexion 

 
  

   
ID 8A 8B 
Joint Distal 

radio-
ulnar 

Radio-
scaphoid 

Radio-lunate Distal 
radio-
ulnar 

Radio-
scaphoid 

Radiolunate 

Maximum 
Extension 

      
Neutral 

      
Maximum 
Flexion 

      
ID 9A  9B 
Joint Distal 

radio-
ulnar 

Radio-
scaphoid 

Radio-lunate Distal 
radio-
ulnar 

Radio-
scaphoid 

Radiolunate 

KL: 3
  

KL: 1 

KL: 3
  

KL: 2 

KL: 4
      

KL: 1  

KL: 2
  

KL: 1 

KL: 2
  

KL: 2 

KL: 2
   

KL: 1 
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Maximum 
Extension 

    
  

Neutral 

    
  

Maximum 
Flexion 

    
  

ID 10A  (mal-union) 10B 
Joint Distal 

radio-
ulnar 

Radio-
scaphoid 

Radio-lunate Distal 
radio-
ulnar 

Radio-
scaphoid 

Radiolunate 

Maximum 
Extension 

 
   

  

Neutral 

 
  

 
  

Maximum 
Flexion 

    
  

ID 11A 11B 
Joint Distal 

radio-
ulnar 

Radio-
scaphoid 

Radio-lunate Distal 
radio-
ulnar 

Radio-
scaphoid 

Radiolunate 

Maximum 
Extension 

 
  

 
  

Neutral 

      
Maximum 
Flexion 

      

KL: 4
  

KL: 2 

KL: 4
  

KL: 3 

KL: 3
  

KL: 1 KL: 2
  

KL: 3 

KL: 2
  

KL: 1 

KL: 3
  

KL: 2 
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Table 3.4. Functional and pain assessment of participants in the injured cohort (n=11) and the age-
matched healthy (control) cohort (n=11).  
Range of motion measures were taken on the injured wrist and were compared to the same side 
wrist in the healthy cohort.  

Injured Participant Healthy Participant 

ID Static 
Extensi
on (°) 

Static 
Flexio
n (°) 

Dynami
c 
Extensi
on (°) 

Dynam
ic 
Flexion 
(°) 

Grip 
Streng
th 
(Kg) 

PRW
E 

ID Static 
Extensi
on (°) 

Static 
Flexio
n (°) 

Dynami
c 
Extensi
on (°) 

Dynam
ic 
Flexion 
(°) 

Grip 
Streng
th 
(Kg) 

PRW
E 

1A 60 25 62.5 32.6 14 36.5 1B 65 80 74 42.1 26 0 
2A 50 65 71.1 38.5 23 10 2B 60 70 64.7 49.9 42 18 
3A 50 75 65 47.2 20 5 3B 60 70 68.7 31.9 40 0 
4A 70 60 57.7 37.2 26 26.5 4B 70 70 69.2 35.5 43 0 
5A 77 55 66.9 46.3 24 3 5B 70 50 55.5 57.9 19 54 
6A 86 66 62.3 68.1 23 3.5 6B 75 65 71.6 61.9 40 0 
7A 50 55 53.9 43.6 28 12 7B 55 85 57 59 28 0 
8A 55 60 40.5 42.6 30 2.5 8B 65 75 66.6 42 34 0 
9A 55 87 71.3 52.5 20 0 9B 70 70 51.5 68.1 24 0 
10A 60 30 55.6 20 20 0 10B 60 50 57 46.8 18 65 
11A 75 55 57.7 61.7 23 41 11B 66 32 45.3 37.3 40 1 
Avera
ge 

63 58 60 45 23 13 Avera
ge  

65 65 62 48 32 13 
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Figure 3.1. (A) 

Figure 3.1. (B) 
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Figure 3.1. (C) 

 

Figure 3.1 (A-C). Changes in percent mean joint surface areas (inter-bone distances less 
than 2.0 mm) in each joint for injured (n=11) and healthy (n=11) participants.  
Bars represent mean and error bars represent standard deviation of the sample. 
A)   Average Contact Area Percentage For the Distal Radioulnar Joint in Healthy and Fracture 

Patients 
B)   Average Contact Area Percentage For the Radioscaphoid Joint in Healthy and Fracture 
Patients 
C)   Average Contact Area Percentage for the Radiolunate Joint in Healthy Patients and Fracture 

Patients 
 

3.4 Discussion 
This study investigated the use of 4DCT to measure the effect of DRF and joint mal-

alignment on the dynamic joint congruency for the following joints of interest: DRUJ, 

radioscaphoid, and radiolunate joints. This study evaluated the dynamic signs of injury by 

visualizing the JSA during in vivo wrist extension/flexion motion. The results demonstrated that 

the joint congruency at the DRUJ was affected by the health status such that the JSA at the 

DRUJ significantly decreased in individuals with DRFs. This study demonstrated no effect of 

joint position on JSA percentage at the DRUJ supporting the notion that extension/flexion is a 
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radiocarpal driven motion. The results also demonstrated joint position (extreme flexion, neutral 

and extreme extension) affected JSA % at the radioscaphoid joint for both the healthy and 

injured cohorts. This, however, was not the case at the radiolunate where only differences in JSA 

% throughout wrist flexion were found in the healthy cohort and only observed a trend of 

decreased JSA % from extension to flexion in the fracture cohort. Individuals with DRF also 

demonstrated decreased grip strength but no differences were found in range of motion, pain, and 

degenerative changes in the wrists when compared to the healthy cohort.  

Previous studies, described in Chapter 1 section 1.3.3, have investigated the effect of 

health status on joint congruency after DRFs. Crisco and colleagues found that the JSA at the 

DRUJ during forearm rotation significantly decreased by approximately 25% or 56 mm2 in the 

malunited forearm compared to the contralateral uninjured arm. 187 This study only recruited 

patients with mal-aligned DRFs, examined forearm rotation, and had contralateral wrists as their 

control group which can explain the larger difference found between the injured and uninjured 

wrists in their study. 187 Our data did follow a similar trend, where JSA at the DRUJ significantly 

decreased by approximately 20% and 10% at extreme flexion and at extreme extension, 

respectively, in the injured cohort compared to the healthy cohort. Recently, a study from our 

group employed 3DCT using static, fully pronated images and found a smaller reduction 

(approximate 3%) in JSA at the DRUJ when comparing injured and uninjured wrists. This 

previous study included patients with mild mal-alignment, which is similar to the injured cohort 

in this study. 30  

This previous study examined the overall joint congruency at the radiocarpal joints and 

found similar locations for the high contacting regions but asymmetric amounts (surface area) of 

the high contacting regions when comparing the injured and non-injured wrists. 30 The purpose 

of this previous study was to test the feasibility of applying the inter-bone distance technique to 

the radiocarpal joints and thus was limited to a small case series and a single static position. 30 

While there were no significant differences in JSA at the radiocarpal joints between the injured 

and healthy cohorts in our current study, there were asymmetric differences in joint congruency 

post-fracture.   

Radiocarpal joint mechanics can play an important role in the dysfunction associated with 

distal radius malunions. It has been suggested that residual deformity of the joint may affect 

loading mechanics and potentially cause pain, loss of motion, diminished grip strength, and an 
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increase in the risk for post traumatic arthritis which commonly occurs at the radiocarpal      

joint. 210 This is consistent with our findings of increased incidence of arthritis at the radiocarpal 

joints in the injured cohort (n=10). Our study also demonstrated a decrease in grip strength in the 

injured cohort, but no differences in symptoms of pain, range of motion and arthritis at the DRUJ 

and radiocarpal joints. This may be due to the age of the patient population and the long follow-

up period (mean= 12 years). The age of the patient population is a limitation of this study. 219  

 Several studies have measured JSA across multiple static positions for wrist motions. 

Rainbow et al. demonstrated that the contact areas of the lunate and scaphoid on the radius 

significantly decreased 39% ± 22% and 66% ± 13%, respectively, when the wrist was in extreme 

flexion from neutral grip in healthy patients (n=12). 216 Additionally, the contact areas of the 

lunate and scaphoid significantly increased 45% ± 22% and 13% ± 16%, respectively, in extreme 

extension from neutral grip. 216 Our data followed a similar trend and found significant 

differences in the JSA % at the radiolunate joint across the joint positions in healthy wrists but 

not in injured wrists. These findings indicate that the radiocarpal joint is largely responsible for 

extension/flexion. Furthermore, changes in the joint congruency post-fracture demonstrate the 

effect of the altered anatomy of the distal radius and joint mal-alignment on wrist mechanics.  

Additionally, the scaphoid and lunate do not contribute equally to wrist extension/flexion 

and these bones do not function as a unit. Evidence supporting this notion does exists, but studies 

are limited to invasive techniques, in vitro models, and static positions. 36,131 These studies also 

investigated the kinematic patterns rather than assessing the joint congruency and its differences 

in healthy participants and post-fracture. 36,131 This study demonstrated the interactions between 

these articulating bone surfaces in vivo. The radiolunate joint also demonstrated greater 

congruence at extension compared to the radioscaphoid in our healthy cohort. This may be the 

result of its hemi-moon shape. 

Limitations of the study are the small series of patients included, use of a convenience 

sample (no preference for mild or severe mal-alignment). The mal-alignment in this cohort of 

patients was mild which may explain no significant degenerative changes when comparing the 

injured cohort with the uninjured cohort. JSA is not a direct measure of cartilage contact. The 

JSA are inferred contact region because it does not consider cartilage thickness. This study did 

not consider the loading conditions that are reflective of functional loads experienced during 
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activities of daily living. Since patients experience symptoms under loading, it is important to 

determine what the effect of weight-bearing is on the joint mechanics of the wrist. 

3.5 Conclusion 
This study gives insight into a dynamic assessment of wrist biomechanics post-fracture 

across extension/flexion motion using 4DCT. The results from this study demonstrate that post-

fracture, joint congruency decreased at the distal radioulnar joint when compared to the healthy 

control population. Additionally, wrist position was found to have a significant effect on 

radioscaphoid JSA in both the injured and uninjured cohorts but only in the uninjured 

participants in the radiolunate joint. This study demonstrates the use of a non-invasive tool that 

can be used to examine the effect of wrist fracture on surrounding joint contact mechanics. This 

is an important step in the quest to determine causal relationship between joint structure and 

patient function. 
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Chapter 4 – General Discussion and Conclusion 

 

4 Overview 
This chapter will outline the objectives and hypotheses stated in Chapter 1 of this thesis. The 

major conclusions of each study as well as their strengths, weaknesses and future directions are 

summarized.  
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4.1 Summary 
The purpose of this work was to expand the current knowledge of the impact of joint mal-

alignment after wrist fractures on joint congruency and mechanics, and to examine if changes in 

joint congruency and mechanics relate to the development of osteoarthritis. Presented in this 

thesis are the results of two in vivo studies: the first examines 3D implications of a scaphoid 

malunion on joint congruency and mechanics, four years post-fracture; and the second examines 

joint congruency and mechanics across wrist extension/flexion in patients with and without a 

previous distal radius fracture. The specific objectives previously stated in Chapter 1 have been 

achieved.  

The following is a list of the thesis objectives: 

1. To employ CT imaging to determine the 3D implications (joint space area (JSA)) of 

altered bony alignment on the joint contact area of joints surrounding the scaphoid in 

patients with scaphoid malunions a minimum of four years post-fracture.  

2. To employ 4DCT to examine the JSA of the distal-radial joint (DRUJ) and radio-carpal 

joints in cohort of patients with distal radius fractures a minimum of one year compared 

to a cohort of healthy patients. 

3. To employ 4DCT to examine the JSA of DRUJ and radio-carpal joints at three wrist 

positions during extension/flexion motion in cohort of patients with distal radius fractures 

a minimum of one year compared to a cohort of healthy patients. 
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4.2 Chapter 2: The Effect of Scaphoid Malunion on Joint 
Congruency 

The first objective of this thesis was to employ CT imaging to determine the 3D implications 

(JSA) of altered bony alignment on the joint contact area of joints surrounding the scaphoid in 

patients with scaphoid malunions a minimum of four years post-fracture. This objective was 

achieved using an in vivo study that included fourteen subjects with previous unilateral 

malunited scaphoid fractures. Three-dimensional inter-bone distance (joint space), a measure of 

joint congruency and 3D alignment, was quantified from reconstructed computed tomography 

bone models of the carpus. 

The results presented in Chapter 2 demonstrate a significant difference in measured joint 

space area (and therefore corresponding reduced 3D joint space) at the scaphotrapezoid, 

scaphotrapezial and scaphocapitate joints when comparing the baseline and follow-up scans of 

the wrist.  In addition, the results demonstrate no changes in degeneration of the wrist joints at an 

average of 7 years post-fracture (minimum of 4 years). These results confirm the thesis 

hypothesis scaphoid malunion will alter JSA and load distributions at mid-term follow-up 

(Hypothesis 1a). The results reject the hypothesis, however, that the changes in JSA will lead to 

the development of degenerative changes in the wrist as early as four years post-fracture 

(Hypothesis 1b). 
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4.3 Chapter 3: Four-Dimensional Computed Tomography to 
Measure Distal Radial-Ulnar and Radio-Carpal Joint 
Congruency After Distal Radius Fractures 

The second objective of this thesis was to employ 4DCT to examine the JSA of the distal-

radial joint (DRUJ) and radio-carpal joints in a cohort of patients with previous distal radius 

fractures a minimum of one year, compared to a cohort of healthy patients. This objective was 

achieved using an in vivo study that included patients with and without a previous distal radius 

fracture (11 fractures: 11 healthy controls). Unilateral 4DCT images were acquired while 

participants actively moved their wrist from full extension to flexion. Three-dimensional 

reconstructions were created and used with a previously developed inter-bone distance algorithm 

to measure 3D joint space.  

The results presented in Chapter 3 indicate that, post-fracture, there was a decrease in the 

joint congruency at the distal radioulnar joint when compared to the healthy control population. 

This finding rejects the hypothesis that distal radius fractures will alter JSA of DRUJ and 

radiocarpal joints compared to the age-matched healthy cohort (Hypothesis 2a); although it was 

significantly proven for JSA in the DRUJ, JSA in radiocarpal joints did not demonstrate a 

significant difference. The results also demonstrated a significant decrease in grip strength, but 

no difference in the range of motion, pain, and degenerative changes. This finding also rejects 

the hypothesis that the changes in JSA will lead to the degeneration of DRUJ and radiocarpal 

joints (Hypothesis 2b). In addition, this study found that wrist position had a significant effect on 

radioscaphoid JSA in both the injured and uninjured cohorts but only in the uninjured 

participants in the radiolunate joint. This is suggestive of the hypothesis that distal radius 

fractures will alter JSA in the radiocarpal joints across wrist extension/ flexion, but not in the 

DRUJ, which is largely responsible for pronation/supination (Hypothesis 3). 
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4.4 Strengths and Limitations 
The studies conducted in Chapter 2 and Chapter 3 had several strengths, including the 

analysis of joint mechanics in vivo, the avoidance of potential alterations of tissue properties 

when using cadaver material, the incorporation of actual muscular forces, and the ability to 

evaluate the long-term effects of healing and surgical intervention. Both studies implemented the 

scanning protocol in a large cohort of patients. Studies measured 3D joint space using volumetric 

data obtained from CT imaging and thus did not rely on 2D radiographs that are limited by the 

anatomical complexity of the wrist. Furthermore, these studies applied a previously developed 

inter-bone distance (3D joint space) technique to the radiocarpal and midcarpal joints to 

determine the impact of the fracture on the highly integrated joints surrounding the fractured 

bone within the wrist. This CT-based technique allows for a non-invasive characterization of 

wrist injuries to visually examine 3D joint mechanics.  

These studies are not without limitations. First, static positions were used from 3DCT and 

4DCT acquisitions. The study did lay the groundwork of the feasibility of using dynamic 4DCT 

to acquire images and create 3D reconstructions of the wrist bones, but these static positions 

cannot address the altered joint mechanics at intermediate positions. Second, the JSA metric, 

which indicates joint space narrowing used to monitor the development of osteoarthritis, is not a 

direct measure of joint contact area because cartilage is poorly imaged with CT. Third, CT, often 

used by clinicians to evaluate complex fractures and confirm suspected malunions, expose 

participants to extra radiation dose; furthermore, CT scans can be time-consuming and 

uncomfortable for participants who are typically asked to undergo multiple scans. Fourth, these 

studies present no data regarding joint mechanics under physiological loading conditions; 

however, this area of research is important because patients suffering from wrist fractures usually 

experience pain when they load their wrist during activities of daily living.  
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4.5 Current and Future Directions 
This thesis provides insight into the effect of joint alignment on joint contact mechanics 

using static (3DCT) and dynamic (4DCT) CT imaging. The two studies have extended the use of 

a previously developed joint congruency technique (joint space mapping) in vivo in a cohort of 

patients. These studies discussed in Chapter 2 and Chapter 3 were able to successfully 

reconstruct and analyze volumetric data from 3DCT and 4DCT images of the wrist, respectively. 

These image-based measures provided valuable information on the changes in joint mechanics as 

a result of a wrist fracture and associated patient outcomes such as wrist pain, function and 

degenerative changes in the wrist.  However, the 3D reconstructions were created using 

semiautomatic segmentation and manual registration techniques; this process was time-

consuming, and the accuracy was user-dependent. 

Current directions of ongoing studies focus on overcoming the limitations of the studies in 

Chapters 2 and 3. First, some studies are focusing on using machine learning and AI algorithms 

to develop a technique for automatic segmentation and semi-automatic registration in order to 

implement a more efficient data analysis strategy. These studies will not only increase the 

accuracy and quality of the 3D reconstructions but also allow researchers to create these 

reconstructions at a faster rate.  

Second, studies examining the role of acquisition time and wrist speed are important to 

reduce dose exposure and avoid image blurring. Chapter 3 used speeds that were comfortable to 

the participants who have recently took off their cast and may be in pain. Current ongoing 

studies using in vitro cadaveric testing focusing on different wrist speeds is beneficial in 

determining which speeds do not produce blurry images. These studies will optimize the 

scanning speed to realistically represent physiological wrist motion and allow for conclusions to 

be generalized to typical wrist motions during activities of daily living. 

Third, standardizing the data collection will lead to more accurate and repeatable results. 

Chapter 3 was a feasibility study to determine if previously developed segmentation and 

registration algorithms can be applied to 4DCT acquisitions and produce results. The participants 

in this study either moved too fast creating blurry images or too slow so not capturing the entire 

range of motion during the short acquisition time. Current ongoing studies are focusing on 

standardizing the data by determining the angular velocity using degree intervals or second 

intervals throughout the range motion which can be used to compare data between participants. 
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Future directions will aim to evaluate the effectiveness of the surgical outcomes 

according to the H/L ratio; since the study in Chapter 2 did not distinguish between types of 

surgical procedure performed on each subject. Additionally, future work would need to 

distinguish between the severity of malunion (mild, moderate and severe) and the observed 

changes in joint mechanics and patient outcomes such as range of motion and degenerative 

changes. The Chapter 2 study also did not examine clinical outcome measures related to hand 

function and patient rating of wrist pain and disability. Future work will be needed to investigate 

how these joint contact changes relate to wrist function. 

Wrist movements are rarely planar during activities of daily living and considered to be 

essential for rehabilitation after wrist injury. The studies in Chapters 2 and 3 do not adequately 

represent joint positions of the wrist that patients experience in their daily lives. However, 

Chapter 2 focused on one static position and Chapter 3 focused on one wrist motion. More 

specifically, Chapter 3 focused on the flexion and extension motion which occurs in one plane. 

Future studies need to consider obtaining functional range of motion scans of more complex 

movements that involve multiple planes, which would provide valuable information on joint 

mechanics. Future work also needs to consider loading the wrist with typical loads experienced 

in their daily lives.  

Finally, our lab in the past years mainly focused on creating 3D reconstructions of the 

wrist and efforts should be made to develop a 4DCT grading system which can be used as a 

clinical tool for surgeons to see the instability in real time in wrist injury population. In addition, 

there are many theories in the literature about the movement of the individual wrist bones, but no 

conclusive theory has been accepted. However, more accurate kinematic data from 4DCT 

imaging can examine subtle bony movements and refine mechanisms. 
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4.6 Conclusion 
There have been high rates of arthritis after an orthopaedic injury and thus a greater 

understanding of what causes the development of arthritis and how it progresses is needed. It has 

been assumed that mal-alignment after wrist fractures leads to the development of post-traumatic 

osteoarthritis and poor functional outcomes. However, the mechanistic pathways between mal-

alignment and development of post-traumatic osteoarthritis are not clearly understood due to 

limitations in current techniques. The present work in this thesis is an essential first step in 

generating image and functional data of patients suffering a wrist fracture. The studies used 

image-based measures to further our understanding of the relationship between joint structure 

(and mal-alignment) and joint contact mechanics after a wrist fracture to limit the progression of 

osteoarthritis and restore joint function at the wrist. Eventually, this research will be used to 

inform clinical guidelines relating to fracture mal-alignment that can guide treatments and ensure 

better patient outcomes.  
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Appendix A — Glossary 
Active Motion   Muscle forces move a joint 
Arthritis   A degenerative disorder affecting a joint  
Biomechanics   The study of forces produced  
Computed Tomography Three-dimensional medical imaging method   
Distal     Away from origin or attachment point 
Dynamic   Images in motion (real-time) 
Extension   Increases the angle between two body parts 
Flexion   Decreases the angle between two body parts 
Humpback   The lateral intrascaphoid angle increased due to the shortening of  

   the palmar cortical length 
In-Vitro   Experiment conducted within a living body  
In-Vivo    Experiment conducted outside a living body 
Joint Congruency  Relative positions of two bone surfaces articulating in a joint 
Kinematics   The study of motion 
Kinetics   The study of forces  
Malunion   Healing of a fracture in a non-anatomical position  
Passive   External forces move a joint 
Static     Contains one-time frame  
Union    Healing of a fracture 
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