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The main goal of the paper is to contribute to the agenda of developing an

algorithmic model for crystallization and measuring the complexity of crystals

by constructing embeddings of 3D parallelohedra into a primitive cubic network

(pcu net). It is proved that any parallelohedron P as well as tiling by P, except

the rhombic dodecahedron, can be embedded into the 3D pcu net. It is proved

that for the rhombic dodecahedron embedding into the 3D pcu net does not

exist; however, embedding into the 4D pcu net exists. The question of how many

ways the embedding of a parallelohedron can be constructed is answered. For

each parallelohedron, the deterministic finite automaton is developed which

models the growth of the crystalline structure with the same combinatorial type

as the given parallelohedron.

1. Introduction

The overarching goal of this paper is to contribute to the

agenda of developing a model for crystal growth (crystal-

lization) and methodology to measure crystal complexity

through deterministic finite automata (DFA). The problem of

crystallization is one of the fundamental and difficult

problems of crystallography. The geometric approach for

modeling crystalline structures is a local theory of regular

systems that was developed by B. N. Delone, his associates and

followers (Delone et al., 1976; Dolbilin, 1976; Dolbilin &

Schattschneider, 1998; Schattschneider & Dolbilin, 1998;

Baburin et al., 2018). Though significant progress has been

made in developing the local theory, rigorously proven results

have not yet been used by practicing crystallographers.

To some extent, the theory of DFA, particularly cellular

automata (CA) and structural automata (SA), may comple-

ment the local theory and narrow the gap between mathe-

matical theory and crystallography in the area of crystal

growth. CA and SA are instruments to model crystallization as

the result of attaching given blocks to each other according to

certain rules. The crystal growth is thus viewed as a dynamic

periodic process that can be described using an algorithm

consisting of a finite number of steps. Each step corresponds

to the attachment of a certain structure element (atom,

molecule, fundamental building block etc.) to the already

existing structure. Since the algorithm is finite, it can be

modeled by means of DFA which can be analyzed within the

framework of corresponding branches of computer science.

The crystallization is therefore considered as computation.

The basic idea of the approach is to model in terms of DFA

the growth of periodic orthogonal nets, i.e. nets that can be

obtained from a primitive cubic network (pcu net) by
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eliminating portions of its vertices and/or edges. The advan-

tage of orthogonal nets lies in their simplicity and relatively

easy visualization. Though by far not all crystal structures can

be described as based upon orthogonal nets, they are of the

utmost importance for crystal chemistry (Krivovichev, 2014a).

As was shown by Alexandrov et al. (2011), more than 75% of

all known metal–organic frameworks are based on ten types of

nets: dia, pcu, srs, ths, cds, lvt-a, pts, nbo, utp and mog. All

these nets are orthogonal by direct descent, i.e. can be

obtained from the pcu net by the elimination of some vertices

and edges. In mineralogy, the most important rock-forming

minerals such as quartz, feldspars and feldspathoids are based

upon orthogonal nets of different topologies and complexities.

Among all known zeolite framework types, about half are

based upon orthogonal nets and may be obtained by linkage

of blocks with orthogonal topologies. Many layered materials,

e.g. oxysalts and 2D coordination polymers, are based upon

2D orthogonal nets (Krivovichev, 2009).

The SA that were used to model the growth of orthogonal

nets by Krivovichev et al. (2012), Krivovichev (2014a) are

the modified versions of the crystal lattice automata first

suggested by Morey et al. (2002) for educational purposes. The

SA approach provides a relatively easy and transparent tool to

model the growth of orthogonal nets and to estimate their

complexities by counting the number of states in the corre-

sponding DFA. This measure may be viewed as reflecting an

algorithmic (dynamic) complexity in contrast to informational

(static) complexity, which is based on the application of

the Shannon information theory (Krivovichev, 2012, 2014b;

Hornfeck, 2020).

The idea of using finite automata (and in particular CA) in

the study of crystals and their growth has a long history. As far

as we know, it was first suggested by Alan Mackay (1976) and

since then used by many authors to investigate structures and

their defects (Krivovichev, 2004; Crutchfield, 2012; Varn et al.,

2013a,b etc.). The algorithmic approach to the growth of

crystals has many parallels with modern approaches to self-

assembly (Cartwright & Mackay, 2012) and molecular

computing (see, e.g., Adar et al., 2004).

The basic problem in the theory of orthogonal nets is the

evaluation of conditions for a specific net to be orthogonal.

From the mathematical point of view, this problem is

equivalent to the question of whether a given net can be

embedded into the pcu net. The idea of this work is to develop

a basic methodology for the solution of this problem through a

systematic study of basic periodic structures, namely, tiling of

the 3D Euclidean space (R3) by parallelohedra in the context

of embedding them into the pcu net and modeling by SA. To

be more precise, we study edge graphs of parallelohedra and

edge graphs of tilings by parallelohedra and show that they

can be embedded into the edge graph of the pcu net.

One of the innovative approaches of this work is that

though we develop SA that model 3D structures, we suggest

utilizing as a hosting pcu net not only the 3D pcu net, but also

the pcu net of an arbitrary dimension n (nD pcu net). As we

show, the 3D pcu net is ‘tight’ even for the rhombic

dodecahedron, i.e. the rhombic dodecahedron cannot be

embedded into the 3D pcu net though the crystal’s graph

satisfies some evident necessary conditions which reflect

properties of the 3D pcu net, i.e. the degree of any vertex in

the graph must not exceed 6, and the graph must not contain

cycles with an odd number of edges. It is also worth noting that

the higher the degree of vertices of the graph to be embedded

into the nD pcu net, the higher the dimension n of the hosting

nD pcu net must be.

One more thing we would like to draw attention to is that, in

this paper, not only are embeddings of parallelohedra (and

tilings by parallelohedra) into the pcu net constructed, but we

also answer the question of how many ways the embedding of

a parallelohedron can be constructed. The corresponding

statements are directly related to the capability of the auto-

maton to reproduce a periodic structure. To the best of our

knowledge, the general conditions under which SA uniquely

reproduce a space structure that is embedded into the nD pcu

net and under what conditions the structure is periodic are not

known.

To conclude the Introduction, we will outline the content of

the paper. In the second section, the main objects of our study

are briefly introduced: parallelohedra, nD pcu net and related

concepts. In the third section, the main theorems about

embedding of parallelohedra and tiling by parallelohedra are

proved. In the fourth section, the concepts of DFA and SA as

an example of DFA are introduced. For the tiling of R3 by a

parallelohedron, the SA is constructed as a model for the

growth of a structure that has the combinatorial type of the

given parallelohedron.

Our review of parallelohedra is based on the work of

Dolbilin (2012), and we follow Krivovichev (2014a) in the

review of the concepts of DFA, SA and 3D pcu net.

This work grew out of the talk presented by S. Krivovichev

at the workshop ‘Soft Packings, Nested Clusters and

Condensed Matter’ held at the American Institute of

Mathematics (AIM) in San Jose, California, USA, 19–23

September, 2016. It is the result of collaboration between a

crystallographer (SK) and a mathematician (MB), with an

important input from N. P. Dolbilin and M. M. Stogrin, which

explains its style, where we attempt to combine mathematical

rigor with crystallographic intuition.

2. Parallelohedra, pcu networks and related concepts

2.1. Parallelohedra and tiling in R3

Parallelohedra play an important role in mathematics. They

can be considered a model for fundamental cells in R3 and,

therefore, are also important in crystallography, chemistry and

physics. The concept, as well as the term, parallelohedron were

introduced by E. S. Fedorov (1885). He discovered all five

combinatorial types of parallelohedra (Fig. 1), namely, cube,

hexagonal prism, elongated dodecahedron, rhombic dodeca-

hedron and truncated octahedron, called by Coxeter (1973)

‘primary’ parallelohedra. The term parallelohedron reflects

the fact that if it is possible to tile (see the definition below) a
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space with parallel copies of a polyhedron, then any of its faces

have an equal opposite parallel face.

Definition 2.1. Let T be a set of convex polyhedra

P1; . . . ;Pn . . . placed in Rd such that interior points of any two

polyhedra do not overlap, and the union of polyhedra is equal

to Rd. Then, the set T is called a tiling, and elements Pi are

called cells or tiles of tiling.

Definition 2.2. Assume P1; . . . ;Pn . . . is a tiling for Rd. It is

called a face-to-face tiling if any two tiles that have a non-

empty intersection intersect by the entire face for both poly-

hedra of dimension k (0 � k � d� 1).

Definition 2.3. A parallelohedron of dimension d is defined

as a closed convex d-dimensional polyhedron P inRd such that

the set of parallel copies of P is a tiling for Rd, i.e. there is a

tiling P1; . . . ;Pn . . . where each Pi can be obtained as the

result of the parallel shift of P. This tiling will be called a tiling

by parallelohedron P.

In this paper, we will consider only face-to-face tilings by

parallelohedra.

Remark 2.1. (i) Face-to-face tiling T by the parallelohedron

P is uniquely defined by the parallelohedron P and its position

in Rd. (ii) Face-to-face tiling T by the parallelohedron P is a

lattice tiling, i.e. there is a lattice with integer coefficients �P =

f
Pd

1 �iei; �i 2 Zg, such that T = Pþ�P.

Definition 2.4. For a given parallelohedron P, the lattice �P

as defined above will be called a lattice of the tiling by P or just

a lattice of P.

The concept of a facet vector will play a significant role in

our future discussions.

Definition 2.5. Assume P is a parallelohedron with center O,

T is a tiling by P and m is a number of hyperfaces of P. If Pi

(i ¼ 1; . . . ;m) is a parallel copy of P adjacent to P by a

hyperface and centered at point Oi, then the vector ti = ~OOiOOi is

called a facet vector for P.

Remark 2.2. It is not hard to prove that among all facet

vectors of parallelohedron P inR3, there are three vectors that

form the basis of the lattice of P. We defined a facet vector as

the vector connecting centers of adjacent parallelohedra;

however, it is more convenient to find it by connecting

corresponding vertices of parallel hyperfaces.

The Minkovski theorem (Minkovski, 1897) as stated below

is important for the theory of parallelohedra.

Theorem 2.1. If P is a d-dimensional parallelohedron, then

(i) P is centrally symmetric; (ii) all hyperfaces of P are

centrally symmetric.

We will end this subsection with the definition of the graph

of a tiling.

Definition 2.6 (graph of a tiling). For a given parallelo-

hedron P and the tiling of R3 by P, the graph of parallelo-

hedron P (the graph of the tiling by P, respectively) is the

graph whose vertices are vertices of P (all vertices of the

tiling’s cells, respectively). The edges of the graph are all edges

of P (the union of all edges of parallel copies of P in the tiling,

respectively). This graph is also called an edge graph of the

parallelohedron (of the tiling, respectively).

If the tiling of R3 by parallelohedron P is given, then �P

stands for the infinite graph of the tiling as defined above. ��P

stands for the finite graph of P itself.

2.2. pcu networks and related definitions

An ideal orthogonal network (net) is defined as a network

in R3 with edges of equal length and an angle between adja-

cent edges of 90�. Adjacent edges are defined as having only

one vertex/node in common. A full ideal orthogonal network

or a primitive cubic network (pcu net) is an ideal orthogonal

network with a maximum degree (6 for R3) in every vertex/

node (Delgado-Friedrichs et al., 2003). Some examples of

orthogonal nets are given in Fig. 2.

For convenience, we can always assume that the equal edge

length of a pcu net is 1. It is usually assumed that a pcu net is a

3D object or a 2D object. This concept of the pcu net as a 3D

object can be easily extended to the n-dimensional primitive

cubic net (nD pcu net) as follows:

Definition 2.7. (nD pcu net). The n-dimensional primitive

cubic net is defined as an n-dimensional grid or a geometric

graph in Rn whose nodes (vertices) are all points of Zn, and
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Figure 2
Examples of orthogonal nets (Krivovichev, 2014a).

Figure 1
Five Fedorov parallelohedra: cube, hexagonal prism, elongated dodeca-
hedron, rhombic dodecahedron, truncated octahedron.



edges are all intervals that connect nodes and have length 1.

We will call the edges of the graph ‘unit’ edges.

If the dimension of the nD pcu net is not specified, it is

assumed by default that n ¼ 3, i.e. the pcu net stands for a

traditionally defined 3D object. A unit cube in Zn will also be

called a unit cube cell of the nD pcu net.

Definition 2.8. We say that a polyhedron can be embedded

into the nD pcu net if there is a combinatorial isomorphism of

the graph of the polyhedron and a subgraph of the nD pcu net.

We will call this isomorphism an embedding of the polyhedron

into the nD pcu net.

We say that a tiling can be embedded into the nD pcu net if

there is a combinatorial isomorphism of the graph of the tiling

and a subgraph of the nD pcu net. We will call this

isomorphism an embedding of the tiling into the nD pcu net.

Remark 2.3. (i) If a polyhedron (tiling by a polyhedron,

respectively) is embedded into the nD pcu net, then the image

(range) of the above-defined isomorphisms will also be called

an embedding of the polyhedron (tiling by the polyhedron,

respectively) into the nD pcu net. (ii) Assume we have two

embeddings of a polyhedron (or tiling by a polyhedron) into

the nD pcu net. If there is a symmetry of the nD pcu net that

maps the range of one embedding onto the range of another

embedding, we will consider them the same embeddings. (iii)

If a polyhedron (or tiling by a polyhedron) is embedded into

the nD pcu net, and we map the graph of the polyhedron

(tiling by the polyhedron, respectively) by combinatorial

automorphism onto itself and embed it in the same way as the

original embedding, then these two embeddings will be

considered the same embeddings. (iv) As was noted in

Remark 2.1, tiling by a parallelohedron is a lattice tiling, i.e. T

= Pþ�P. We will consider embeddings that ‘preserve’ this

structure, i.e. if f is an embedding and Q = Pþ �, then f ðQÞ =

f ðPÞ þ t for some vector t. All embeddings of parallelohedra

as defined below satisfy this property.

3. Embeddings of parallelohedra into an nD pcu net

In this section, it is proved that face-to-face tiling of R3 by any

parallelohedron, except the rhombic dodecahedron, can be

embedded into the pcu net. We also prove that the rhombic

dodecahedron cannot be embedded into the 3D pcu net.

However, we show that the rhombic dodecahedron and tiling

by it can be embedded into the 4D pcu net.

We prove that embedding of the hexagonal prism is unique,

and both the elongated dodecahedron and truncated octa-

hedron can be embedded in two different ways.

Remark 3.1. (i) Once the embedding of the parallelohedron

P is established, the method of proof and construction of the

corresponding tilings’ embeddings are very similar for all

parallelohedra, except the tiling by the rhombic dodeca-

hedron. Namely, as was mentioned in Section 2, the lattice �P

for the parallelohedron P can be found such that �P þ P is a

tiling uniquely determined by the position of P. Once the

embedding f of P into the pcu net is established, lattice �0f ðPÞ
can be found such that �0f ðPÞ þ f ðPÞ is an embedding of a tiling

by P defined by f. Basis vectors of lattice �0f ðPÞ can be chosen as

the images of three facet vectors that form the basis of �P. (ii)

Because of this observation, for the hexagonal prism and

elongated dodecahedron, we only provide vectors that form

bases for �P and �0f ðPÞ accompanied by self-explanatory

pictures of the corresponding embeddings. Since both

embeddings of the truncated octahedron are more compli-

cated constructions, we discuss in greater detail the embedding

of tiling for one of the embeddings (‘matchbox’ embedding).

We also show the basis for �0f ðPÞ and some fragments of the

tiling for the second possible embedding (‘cutout corners’

embedding). Considering the observation above, these

detailed discussions may not seem necessary, but we believe it

will give a good understanding of how the embedding is

constructed and of the edge configuration at each vertex for

the corresponding SA.

Definition 3.1. For a given parallelohedron P and a given

embedding f of P into the pcu net, lattice �0f ðPÞ as defined

above in Remark 3.1 will be called a lattice of the embedding

of tiling by P.

We state some facts related to 4-cycles and 6-cycles in the

pcu net that are used in proofs for parallelohedra embeddings

in the form of two easy-to-prove lemmas (Lemmas 3.1 and

3.2).

Definition 3.2. Four 4-cycles in the pcu net C1, C2, C3, C4 will

be called a 4-4 clique if they have a common vertex; C1 has

common edges with C4 and C2; Ci (where i ¼ 2; 3) has

common edges with Ci�1 and Ciþ1; C4 has common edges with

C3 and C1. The first number 4 shows that there are four cycles

in the clique, the second 4 indicates that each cycle in the

clique is a 4-cycle.

Lemma 3.1. (i) Any 4-cycle in the pcu net is a perimeter of a

square face of a unit cube cell and, therefore, it always belongs

to a unit cube cell. (ii) Two adjacent edges in the pcu net that

belong to the same line cannot be the edges of the same

4-cycle. (iii) A 4-4 clique can be situated (up to orientation) in

the pcu net only in two different patterns – either in one plane

as shown in Fig. 3(a), or in two perpendicular planes (two

cycles in each plane) as shown in Figs. 3(b), 3(c). (iv) Three

4-cycles in the pcu net that have exactly one common vertex

and pairwise common edges can be uniquely (up to orienta-

tion) situated in the pcu net.

Lemma 3.2. (i) Any 6-cycle in the pcu net rests either in one

unit cube cell, or in two unit cube cells adjacent by a common

face. If it rests in two unit cube cells, then all six vertices belong

to two adjacent square faces of the unit cube cells that belong

to the same plane. (ii) If AB and AD are two adjacent

perpendicular edges of a fixed unit cube cell in the pcu net,
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then there are four ways to design a 6-cycle with edges AB and

AD such that all cycles belong to the same fixed unit cube cell

(Fig. 4). (iii) If AB and AD are two adjacent perpendicular

edges of a unit cube cell in the pcu net, then there are two

different ways to design a 6-cycle with edges AB and AD such

that the entire cycle does not belong to one unit cube cell [Fig.

5(c)]. (iv) If AB and AD are two adjacent edges of a unit cube

cell in the pcu net that belong to the same line, then there are

four ways to design a 6-cycle with edges AB and AD. Any

design belongs to two unit cube cells adjacent by the square

face. (v) There are only three types [listed below in Figs. 5(a),

5(b), 5(c)] of embeddings of the hexagon into the pcu net. We

call the embedding as shown in Fig. 5(a) an ‘angle shape’

embedding (‘angle shape’ 6-cycle); as shown in Fig. 5(b) a

‘hexagon shape’ embedding (‘hexagon shape’ 6-cycle); and as

shown in Fig. 5(c) a ‘one plane’ embedding (‘one plane’

6-cycle). (vi) If AB and AD are two adjacent perpendicular

edges of a unit cube cell in the pcu net, then there are ten

different ways to design a 6-cycle with edges AB and AD: two

‘one plane’ cycles, two ‘hexagon shape’ cycles and six ‘angle

shape’ cycles.

3.1. Embedding of a hexagonal prism into a pcu net

Theorem 3.1. The hexagonal prism can be embedded into

the pcu net. The face-to-face tiling by the hexagonal prism can

be embedded into the pcu net.

Proof. Assume Q is a hexagonal prism as shown in Fig. 6(a).

Let us take a 2� 1� 1 parallelepiped � in the pcu net

comprised of two adjacent unit cubes as shown in Fig. 6(b). All

vertices Ai, Bi ði ¼ 1; . . . ; 6Þ and edges that connect vertices of

the hexagonal prism are mapped on the corresponding

vertices A0i, B0i and corresponding edges of two adjacent unit

cubes in the pcu net as shown in Fig. 6(b). The above-defined

mapping is an embedding of the prism into the pcu net.

Let us show bases for two lattices �P and �0f ðPÞ (Remark

3.1) that define tiling by the hexagonal prism and embedding f

of the tiling, respectively. A basis for the lattice �P of the tiling

can be chosen as e1 = ~A1A5A1A5, e2 = ~A1A3A1A3 and e3 = ~A1B1A1B1. Assume

A01 is the origin ð0; 0; 0Þ in the pcu net [Fig. 6(b)], the x axis is

along the edge A01A05, the y axis is along the edge A01A03 and the

z axis is along the edge A01B01. Then vectors e01 = ½2; 0; 0�, e02 =

½1; 1; 0� and e03 = ½0; 0; 1� form the basis of the lattice �0f ðPÞ. In

Fig. 7, we demonstrate the projection of the tiling on the plane

that contains the upper base of the prism and the embedding

of this projection. &

Theorem 3.2. Embedding of the hexagonal prism into the

pcu net is uniquely defined.

Proof. As follows from Lemma 3.2 point (v), a hexagon can

be embedded into the pcu net in three different ways (up to

orientation). Using Lemmas 3.1 and 3.2, it is easy to prove that
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Figure 3
4-4 clique.

Figure 4
Embedding of a hexagon.

Figure 5
(a) Angle shape embedding, (b) hexagon shape embedding, (c) one plane
embedding.

Figure 6
Embedding of a hexagonal prism.

Figure 7
(a) Projection of a tiling by a hexagonal prism and (b) embedding of this
projection.



if the hexagonal base is embedded as the ‘angle shape’ or

‘hexagon shape’ embedding [Lemma 3.2 point (v)], the

embedding cannot be extended to the graph of the entire

prism.

Therefore, the only way to embed the hexagonal base while

embedding hexagonal prisms is to do it as the ‘one plane’

embedding. Assume we have the ‘one plane’ embedding

ABCDEF of a hexagonal base where edges AB and AF are

perpendicular. Let us take the vertex A and an edge AA0 of a

4-cycle adjacent to AB that is an image of the rectangular face

of the prism. This edge is perpendicular to the plane of the

‘one plane’ embedding. When the direction of AA0 is chosen,

all six 4-cycles that are images of rectangular faces of the prism

are uniquely defined, which, in turn, uniquely defines the

second 6-cycle that is the image of the second hexagonal base

of the prism. &

3.2. Embedding of an elongated dodecahedron into a pcu net

In this subsection, two methods to embed the elongated

dodecahedron into the pcu net are designed. As follows from

Lemma 3.1, a 4-4 clique can be situated (up to orientation) in

the pcu net only in two different patterns – either in one plane

or in two perpendicular planes (two 4-cycles in each plane).

While embedding four rhombi faces with a common vertex of

the elongated dodecahedron onto the 4-cycles that do not

belong to the same plane, we can ‘bend’ the image in two

different ways and in two different directions. The results of

these ‘bendings’ are the same as far as the embedding is

concerned (Remark 2.3).

It is also shown that the designed methods are the only

possible methods to embed the elongated dodecahedron.

Each of these methods can be extended to the embedding of

tiling by the elongated dodecahedron.

Theorem 3.3. An elongated dodecahedron can be

embedded into the pcu net.

Proof. Method 1. Assume ��ED is the graph of the elon-

gated dodecahedron GA1 . . . A8B1 . . . B8F where F and G

stand for two common vertices of four rhombi as shown in Fig.

8(a) (G is not visible in the picture). Let us now take the

2� 2� 1 parallelepiped G0A01 . . . A08B01 . . . B08F 0 as shown in

Fig. 8(b).

Mapping any vertex Ai, Bi (i ¼ 1 . . . 8), F, G and edges of

the elongated dodecahedron onto the corresponding nodes A0i,

B0i, F 0, G0 and edges of the 2� 2� 1 parallelepiped in the pcu

net as shown in Fig. 8 establishes the required embedding.

Method 2. Embedding by the second method is shown in

the self-explanatory Fig. 9. For consistency, we keep the same

notations for the vertices of the elongated dodecahedron as in

Method 1. &

Remark 3.2. For convenience, we use parentheses in nota-

tions for points in R3 and square brackets for vectors.

Theorem 3.4. Tiling by an elongated dodecahedron can be

embedded into the pcu net.

Proof. Assume P is an elongated dodecahedron and P0 is its

image as designed in Theorem 3.3, Method 1 [Fig. 8(b)]. Let us

introduce a system of coordinates and the origin in the pcu

net. Assume A01 is the origin ð0; 0; 0Þ [Fig. 8(b)], the x axis is

along the edge A01A07, the y axis is along the edge A01A03 and the

z axis is along the edge A01B01.

By connecting corresponding points that belong to the

parallel edges in three pairs of parallel centrally symmetric

faces, we find a basis for the lattice �P of the elongated

dodecahedron. Though not any three pairs of parallel faces

can be taken to form a basis, vectors that correspond to two

pairs of parallel hexagonal faces and one pair of square faces

will form a basis. The following three vectors form a basis:

e1 = ~A1A7A1A7 corresponds to face 1 and the face parallel to face 1

(face k 1), e2 = ~A1A3A1A3 (face 2 and face k 2) and e3 = ~A1FA1F (face 3

and face k 3).

The corresponding vectors in the pcu net that form a basis

for the lattice of the embedding of P (Definition 3.1) are e01 =
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Figure 8
Embedding of an elongated dodecahedron by Method 1.

Figure 9
Embedding of an elongated dodecahedron by Method 2.

Figure 10
Embedding of an elongated dodecahedron tiling. Shift of P0 by e03.



½2; 0; 0�, e02 = ½0; 2; 0� and e03 = ½1; 1; 1�. Shifts of P0 by all linear

combinations with integer coefficients of the vectors e01, e02 and

e03 define the embedding of tiling by P. For example, all shifts

of the parallelepiped P0 by the integer multiples of vector e01
create an infinite strip of parallelepipeds P0 þ �ie

0
1 along the x

axis. All shifts of the created strip by the integer multiples of

vector e02 create one layer of parallelepipeds where the

corresponding ‘layer’ of tiling by P is embedded. The shift of

P0 by e03 is shown in Fig. 10.

In a similar way, the embedding designed in Method 2 can

be extended to the embedding of tiling by P. &

Theorem 3.5. There are only two ways to embed the elon-

gated dodecahedron into the pcu net.

Proof. We use Fig. 8 and Fig. 9 as reference pictures for

embedding by Method 1 and Method 2, respectively. We

would like to emphasize that we do not know what the images

of embeddings look like and, therefore, images of the elon-

gated dodecahedron as shown in Fig. 8(b) and Fig. 9 cannot be

used to substantiate the proof. We start with two different

patterns of 4-cycle embeddings and uniquely restore both

embeddings of the elongated dodecahedron. We use notations

A0i and B0i for images of the corresponding vertices (Ai and Bi)

of the embedding under consideration.

As stated in Lemma 3.1 point (ii), there are two ways to

position a 4-4 clique. Hence, four rhombi faces of the elon-

gated dodecahedron that have a common vertex F can be

embedded in two ways that have to be considered separately –

case 1 [Fig. 8(b)] and case 2 (Fig. 9). Since these proofs are

very similar, in order to demonstrate arguments used in both,

we present here only the proof of case 2 as it is more

complicated compared with case 1.

Case 2. Assume that the 4-4 clique, the image of four

rhombi with the common vertex F, is situated in two

perpendicular planes as shown in Fig. 9. Currently, we assume

that the rest of the picture, besides four 4-cycles B01B02F 0B08,

B02F 0B04B03, B08F 0B06B07 and B06B05B04F 0, does not exist. Let us take

two adjacent 4-cycles B01B02F 0B08 and B02F 0B04B03 with a common

vertex F 0, and two perpendicular edges B01B02 and B03B02 that

have a common vertex B02. Since B1B2 and B3B2 are edges of a

hexagonal face of the elongated dodecahedron, a 6-cycle that

is the image of the hexagonal face must be adjacent to two

chosen 4-cycles (along edges B01B02 and B03B02). For two

perpendicular edges by Lemma 3.2 [Figs. 4(a)–4(d) and Fig.

5(c)], there are ten possible ways to design a 6-cycle with these

edges: two ways that result in two ‘one plane’ 6-cycles, and

eight ways that result in a cycle that belongs to the same unit

cube with the given edges.

Let us show that in the design of the elongated dodeca-

hedron’s embedding, only the first two ways are possible.

There are two adjacent unit cubes with perpendicular edges

B01B02 and B03B02. Each cube contains four ‘one cube’ 6-cycles.

First, let us consider cube B01B02B03B04F 0B08A08A01 as shown in

Fig. 9. Since the hexagonal face of the elongated dodeca-

hedron does not have F as a vertex, the 6-cycle B01B02F 0B04B03A01

that has F 0 as a vertex must be excluded from consideration.

Since B08A08 is not an edge (B08 already has degree 3), two

6-cycles B01B08A08A01B03B02 and B01B02B03B04A08B08 are not possible.

And, finally, since A08B04 is not an edge (B04 already has

degree 3), the cycle B01B02B03B04A08A01 is not possible.

Let us consider now four possible ways to design a 6-cycle

in the second unit cube that is adjacent to the cube

B01B02B03B04F 0B08A08A01 and has two common perpendicular

edges B01B02 and B03B02 with it.

Following the order of Figs. 4(a)–4(d), we construct four

‘one cube’ 6-cycles adjacent to 4-cycles B01B02F 0B08 and

B02F 0B04B03 (Fig. 11).

Let us show that none of these four patterns can be

continued in order to design the embedding of the elongated

dodecahedron. Indeed, for patterns (a), (b) and (d) in Fig. 11,

edges B07B08 and B01B08 must be edges of the 6-cycle that is an

image of face 1 [Fig. 8(a)]. Since these two edges belong to the

same line, it can only be a ‘one plane’ 6-cycle. However, in this

case, one more edge must be adjacent to the vertex B01. It is

impossible, because this edge already has degree 3. A similar

situation arises with pattern (c). Edges B05B04 and B03B04 must be

the edges of the same 6-cycle that can only be the ‘one plane’

cycle. It implies that another edge must be adjacent to B03. This

is impossible, since B03 already has degree 3.

We conclude that the ‘one cube’ 6-cycle with edges B01B02
and B03B02 as the image of the hexagonal face does not exist.

Hence, it can only be the ‘one plane’ 6-cycle. As shown in

Fig. 12, there are two possible ways to continue designing the

embedding of the elongated dodecahedron using the ‘one

plane’ 6-cycles.

Since both perpendicular planes with two pairs of the initial

4-cycles are equivalent, both ways to attach a 6-cycle as shown

in Fig. 12 are also equivalent. Assume that the 6-cycle is

adjacent as shown in Fig. 12(a) and let us refer again to Fig. 9

to continue the proof. First, with the already positioned 4-

and 6-cycles, there is only one option to design the 6-cycle

B03B04B05A05A04A03. Indeed, we have two edges B03B04 and B05B04
that belong to the same line; therefore, this 6-cycle is a ‘one

plane’ cycle. The already designed edge B03A03 uniquely

determines the plane for this 6-cycle.
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Figure 11
Four ‘one cube’ 6-cycles adjacent to 4-cycles B01B02F 0B08 and B02F 0B04B03.



Using the same argument for edges B05B06 and B07B06 we used

for B01B02 and B03B02 to define B01B02B03A03A02A01, we can claim that

the 6-cycle B07B06B05A05A06A07 is a ‘one plane’ cycle. Since the

edge B05A05 of this cycle is already designed, we know the plane

where this 6-cycle B07B06B05A05A06A07 is situated. Two 6-cycles

B01B02B03A03A02A01 and B07B06B05A05A06A07 uniquely define the

6-cycle B01B08B07A07A08A01 and two 4-cycles A01A08G0A02 and

A08A07A06G0. Finally, with the already designed cycles, two

4-cycles A02A03A04G0 and A04A05A06G0 are uniquely defined. As a

result, we get a unique embedding as shown in Fig. 9. &

3.3. Embedding of a rhombic dodecahedron into a 4D pcu
net

Theorem 3.6. A rhombic dodecahedron cannot be

embedded into the 3D pcu net.

Proof. Let us take a rhombic dodecahedron (Fig. 13) and its

vertex Y of degree 4. Assume there is an embedding of the

rhombic dodecahedron into the pcu net. By Lemma 3.1 point

(iii), four rhombic faces (e.g. faces 1, 2, 4, 5) can be mapped

either onto four 4-cycles in one plane as shown in Fig. 3(a), or

onto four 4-cycles in two perpendicular planes as shown in

Fig. 3(b). In both cases, there are two 4-cycles that belong to

the same plane. Assume these cycles are 10 (the image of 1)

and 20 (the image of 2). Faces 1 and 2 have a common edge YS

(with image Y 0S0). Since 10 and 20 are on the same plane, the

4-cycle that has edges Q0S0 and T 0S0 (4-cycle 30) cannot be

adjacent to vertex S0. Hence, the rhombic dodecahedron

cannot be embedded into the pcu net. &

Though the rhombic dodecahedron cannot be embedded

into the pcu net, it is known that Theorem 3.7 below holds

true. The constructions of the embedding of the rhombic

dodecahedron and tiling by it are used in the next section to

develop the SA representing the tiling by the rhombic

dodecahedron.

Theorem 3.7. A rhombic dodecahedron and tiling by the

rhombic dodecahedron can be embedded into the 4D pcu net

(Definition 2.7 for n ¼ 4).

Proof. Let us take the 4D unit cube ½0; 1�4 with the edge

graph denoted by �. If we exclude vertices O, D0 and edges

incident to these vertices from �, we obtain the graph �1

(Fig. 14). It is combinatorially equivalent to the graph of the

rhombic dodecahedron, i.e. the rhombic dodecahedron can be

embedded into the 4D pcu net.

Assume that point O is the origin of the 4D pcu net, the x

axis is in the direction of vector ~OAOA, the y axis is in the

direction of vector ~OBOB, the z axis is in the direction of vector
~OCOC, and the upper part of the picture is a parallel shift along

the t axis by the unit vector [0, 0, 0, 1]. Then, points marked

without a ‘prime’ symbol have the following coordinates O =

(0, 0, 0, 0), A = (1, 0, 0, 0), B = (0, 1, 0, 0), F = (1, 1, 0, 0), C =

(0, 0, 1, 0), E = (1, 0, 1, 0), G = (0, 1, 1, 0), D = (1, 1, 1, 0). For all

points that are marked with the ‘prime’ symbol, the fourth

coordinate 1 is added to the coordinates of the corresponding

points marked with the same letter without the ‘prime’

symbol.

To prove that tiling by the rhombic dodecahedron can be

embedded into the 4D pcu net, let us introduce matrix

M ¼
1

2

1 1 �1 �1

1 �1 1 �1

1 �1 �1 1

0
@

1
A

that defines a linear mapping from R
4 onto R3 [‘projection’

along the main diagonal of ½0; 1�4 that connects points

ð0; 0; 0; 0Þ and ð1; 1; 1; 1Þ].

It is easy to check that Mð½0; 1�4Þ is a rhombic dodeca-

hedron. Let us denote it as P. M maps points O, D0 onto the

origin, and edges of ½0; 1�4 adjacent to O and D0 are mapped

inside P. Hence, M establishes isomorphism between �1 and

the edge graph of P. The inverse of this isomorphism is

denoted by f. Since M is a linear mapping, then for any vector v
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Figure 13
Rhombic dodecahedron.

Figure 12
Two ‘one plane’ 6-cycles adjacent to 4-cycles B01B02F 0B08 and B02F 0B04B03.

Figure 14
½0; 1�4 and embedding of a rhombic dodecahedron into a 4D pcu net.



in R4 Mð½0; 1�4 þ vÞ = Mð½0; 1�4Þ + MðvÞ. Vectors e1 = ½1; 0; 1�,

e2 = ½0; 1; 1� and e3 = ½�1; 0; 1� form a basis of the lattice �P of

tiling by P. Vectors e01 = ½1; 0;�1; 0�, e02 = ½1;�1; 0; 0� and e3 =

½0;�1; 0; 1� such that Mðe0iÞ = ei ði ¼ 1; 2; 3Þ form a basis for

the lattice of embedding ~ff (extension of f) of tiling by P that

can be defined in the following way. For any given integers �i

ði ¼ 1; 2; 3Þ, the edge graph of a rhombic dodecahedron

Pþ
P3

1 �iei maps by ~ff onto f ðPÞ þ
P3

1 �ie
0
i. It is easy to see

that ~ff is well defined, i.e. for a vertex that belongs to adjacent

cells, the image of this vertex is the same, irrespective of the

cell to which it is considered to belong.

Let us note that the images of facet vectors under embed-

ding ~ff shift centrally symmetric parallel 4-cycles in �1 onto

each other. For example, e01 shifts C0CGG0 onto A0AFF 0,

e02 shifts B0BGG0 onto A0AEE0, and e03 shifts FBGD onto

A0O0C0E0. &

3.4. Embedding of a truncated octahedron into a pcu net

In this subsection, we will show that the truncated octa-

hedron and tiling by the truncated octahedron can be

embedded into the pcu net only in two different ways.

The image of the truncated octahedron obtained with the

first method can be perceived as placed onto the surface of the

2� 2� 2 cube in the pcu net with two cutout opposite

corners. We call it a ‘cutout corners’ embedding.

The image developed with the second method can be

perceived as placed onto the surface of the 2� 3� 1

parallelepiped in the pcu net. We call this image a ‘matchbox’

(‘matchbox’ embedding). The same notations for the vertices

of the truncated octahedron are used for both methods. Since

the ‘cutout corners’ embedding is a more complicated

construction, the notation of the vertices of the truncated

octahedron (and the ‘cutout corners’ embedding) is chosen

to make it easy to perceive this embedding. Namely, all

nodes of the embedding at the lower base of the 2� 2� 2

cube are denoted by letters A0i (i ¼ 1; . . . 9), by B0i (i ¼ 1; . . . 8)

at the middle ‘level’, and by C0i (i ¼ 1; . . . 9) at the upper

base such that A0i, B0i and C0i belong to the same line [Fig.

15(b)].

Theorem 3.8. A truncated octahedron can be embedded

into the pcu net.

Proof. Method 1. The ‘cutout corners’ embedding. Let us

take the 2� 2� 2 cube in the pcu net as shown in Fig. 15(b).

We indicate by bold lines the images of the truncated octa-

hedron’s edges under the suggested mapping.

For the ‘cutout corners’ method, we included more expla-

nations than for other parallelohedra to substitute to some

extent the proof of the theorem that the ‘cutout corners’

embedding is unique (Theorem 3.10).

Face 1 [Fig. 15(a)] of the truncated octahedron is mapped

onto 6-cycle B08C08C09C06B06B07 in the 2� 2� 2 cube. Face 2 is

mapped onto 20 = A07B07B06B05A05A06. Face 3 is mapped onto 30 =

A01B01C01C08B08A08.

There is one hexagonal face marked 4 in Fig. 15(a) that has

a common edge with face 1. Face 4 is mapped onto 40 =

C02C03C04C05C06C09.

Face 1 also has three adjacent square faces, namely, faces 8,

7 and 6 as shown in Fig. 15(a). Face 8, besides being adjacent to

1, is also adjacent to hexagonal faces 2 and 4; therefore, 80 must

have adjacent cycles 10, 20 and 40. This requirement determines

80 = B06C06C05B05.

Square face 7, besides being adjacent to 1, is also adjacent to

hexagonal faces 3 and 5; therefore, 70 must have adjacent

cycles 10, 30 and 50. This requirement determines 70 =

A08B08B07A07 and 50 = A01A02A09A06A07A08 such that 70 is adjacent to

10, 20, 30 and 50.

Square face 6 adjacent to 1 is also adjacent to hexagonal

faces 4 and 3; therefore, 60 = C01C02C09C08.

So far, we have mapped eight faces (with edges and

vertices) of the truncated octahedron onto nodes and

edges of the 2� 2� 2 cube in the pcu net. To complete the

embedding as shown in Fig. 15, we continue the mapping

following the rule that the edge of the adjacent by the common

edge faces in the truncated octahedron is mapped onto the

adjacent by the common edge closed cycles of the 2� 2� 2

cube.

Method 2. The ‘matchbox’ embedding. Let us take the

2� 3� 1 parallelepiped P0 in the pcu net as shown in Fig.

16(b). Here all marked lines indicate images of the truncated

octahedron’s edges under the suggested mapping. Fig. 16 is a

self-explanatory picture that shows the construction of the

‘matchbox’ embedding on the assumption that all vertices Ai,
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Figure 15
‘Cutout corners’ embedding of a truncated octahedron.

Figure 16
‘Matchbox’ embedding of a truncated octahedron.



Bi, Ci of the truncated octahedron and edges that connect

these vertices are mapped onto the corresponding vertices A0i,

B0i, C0i and the corresponding edges. &

Theorem 3.9. A tiling by the truncated octahedron can be

embedded into the pcu net.

Proof. As follows from Remark 3.1, both embeddings of the

truncated octahedron as described in the previous theorem

can be extended to the embeddings of the tiling by the trun-

cated octahedron. We discuss these embeddings in more detail

below.

(i) ‘Matchbox’ embedding of tiling by the truncated octa-

hedron. We introduce a system of coordinates and the origin

in the pcu net. Let A02 be the origin ð0; 0; 0Þ (Fig. 16), the x axis

is along the edge A02A06, the y axis is along the edge A02C03 and

the z axis is along the edge A02A01.

The following vectors form the basis for �P: e1 = ~A2C3A2C3

corresponding to face 5 and parallel to it face 4; e2 =
~B1A7B1A7 (face 2 and face k 2); and e3 = ~B4A7B4A7 (face k 7 and face 7).

The corresponding vectors that form the basis for �0f ðPÞ
are vectors: e01 = ~A02C03A02C03 = ½ð0; 3; 0Þ � ð0; 0; 0Þ� = ½0; 3; 0�;

e02 = ~B01A07B01A07 = ½ð2; 0; 1Þ � ð0; 1; 1Þ� = ½2;�1; 0�; and e03 = ~B04A07B04A07 =

½ð2; 0; 1Þ � ð1; 2; 0Þ� = ½1;�2; 1�.

By adding to P0 all vectors that are multiples with integer

coefficients of e01, we develop an infinite strip in the pcu net of

copies of P0 in the direction of the y axis as shown in Fig. 17.

We show the projection of shifting P0 by e02 on plane z ¼ 0 in

Fig. 18(a). P0 and P0 þ e02 are at the same horizontal level. To

illustrate how the embedding is constructed, we develop five

strips of tiling that are the result of shifts of the above-

designed strip by multiples with integer coefficients of e02. The

projection of these five strips on the plane z ¼ 0 is shown in

Fig. 18(b). The projection of the shift of P0 by e3 is shown in

Fig. 19. P0 is one unit lower than P0 þ e03.

All parallel and centrally symmetric around the center of P0

cycles that are images of the truncated octahedron can be

moved onto each other by adding a linear combination with

integer coefficients of e01, e02 and e03 to the corresponding

parallel cycle.

For example, cycle A02B02B03B04A04A09 is shifted onto cycle 10 =

B08C08C09C06B06B07 by vector e04 = ~A02B08A02B08 = ½ð1; 1; 1Þ � ð0; 0; 0Þ� =

½1; 1; 1� = e01 þ e03. The result of the shift is demonstrated in

Fig. 20.

(ii) ‘Cutout corners’ embedding of tiling by the truncated

octahedron. It is convenient to keep the same origin in the pcu

net as in the previous case but choose different directions for

the x axis, y axis and z axis. Let A02 be the origin ð0; 0; 0Þ [Fig.

15(b)], the x axis is along the edge A02A01, the y axis is along

the edge A02A06 and the z axis is along the edge A02B02. Unlike

the previous case, where all images of hexagonal faces are

‘one plane’ embeddings, faces 1 and k 1 are embedded as a

‘hexagon shape’. This is the reason to choose a different basis

of �P .
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Figure 18
(a) Projection of shift of P0 by e02. (b) Projection of strips that occur as
shifts by multiples of e02.

Figure 17
Truncated octahedron tiling embedding. Shift of P0 by e01 along the y axis.

Figure 19
Truncated octahedron tiling embedding. Projection of shift of P0 by e3.

Figure 20
Truncated octahedron tiling embedding. Shift of P0 by e4.



The facet vector e1 = ~A2B8A2B8 that shifts face k 1 onto face 1 is

the first vector of the basis of �P. The corresponding vector

for the basis of �0gðPÞ (g stands for the ‘cutout corners’

embedding) is vector e01 = [1, 1, 1]. We choose two other

vectors for the basis of �P to be e2 = ~B2A6B2A6 (shifts face k 2 onto

face 2) and e3 = ~A4A1A4A1 (shifts face k 3 onto face 3). The

corresponding vectors for the basis of �0gðPÞ are e02 = ½0; 2;�1�

and e03 = ½2;�1; 0�.

We show fragments of the ‘cutout corners’ tiling embedding

in Fig. 21. &

Below are the outlines of proofs of several theorems from

which it follows that there are only two ways to embed the

truncated octahedron as described above.

Theorem 3.10. If, in the embedding of the truncated octa-

hedron into the pcu net, one of the images of a hexagonal face

is the ‘hexagon shape’ 6-cycle, then the embedding is uniquely

defined by the ‘hexagon shape’ 6-cycle. It does not contain any

‘angle shape’ 6-cycles, i.e. only ‘one plane’ or ‘hexagon shape’

6-cycles can be the image of a hexagonal face of the truncated

octahedron.

Proof. The proof is a step-by-step construction of the

images of the truncated octahedron faces starting with the

‘hexagon shape’ 6-cycle. As the result, we obtain, uniquely

defined by the initial choice of the ‘hexagon shape’, the 6-cycle

embedding as shown in Fig. 15. We omit the details of this

lengthy proof. Several options to attach the 6-cycle or 4-cycle

are considered at every step. We show that only one of these

options reflects a combinatorial structure of the truncated

octahedron and does not lead to a dead end in the construc-

tion. &

Theorem 3.11. For any embedding of the truncated octa-

hedron into the pcu net, the ‘angle shape’ 6-cycle is not the

image of any hexagonal face of the truncated octahedron, i.e.

only ‘one plane’ or ‘hexagon shape’ 6-cycles can be the image

of a hexagonal face of the truncated octahedron under any

embedding into the pcu net.

Proof. The technique of this proof is similar to that of

Theorem 3.10. &

Theorem 3.12. The embedding of the truncated octahedron

into the pcu net is uniquely defined, provided the ‘hexagon

shape’ 6-cycle is not the image of any hexagonal face. It is a

‘matchbox’ embedding as constructed in Theorem 3.8 with

Method 2.

Proof. We provide a brief sketch of the proof below.

(i) It is easy to see that, up to symmetry, there are four

different ways to attach a 4-cycle and the ‘one plane’ 6-cycle

along the common edge. We listed all these patterns in the first

row of Fig. 22. In the second and third rows, we show six

possible ways to arrange two ‘one plane’ 6-cycles and one

4-cycle such that these arrangements preserve the structure of

the truncated octahedron. We did not include equivalent

patterns that could be obtained in different ways in Fig. 22.

Note that the pattern shown in Fig. 22(3-a) cannot be

continued to the embedding of the truncated octahedron.

Indeed, let us take vertex A that is already the vertex of two

adjacent 6-cycles and has degree 3. A must also be a vertex of

the 4-cycle that is the image of a face of the truncated octa-

hedron. Since no new edges can be adjacent to A, two out of
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Figure 21
P0 and shift of P0 by: (a) e01, (b) e02, (c) e03.

Figure 22
Row I: four ways to attach a 4-cycle and ‘one plane’ 6-cycle along the
common edge; rows II, III: six ways to attach two ‘one plane’ 6-cycles and
one 4-cycle.

Figure 23
Restoring ‘matchbox’ embedding from pattern (2-a).



three edges BA, JA, KA must be the edges of the new 4-cycle

adjacent to A. Since KA is already an edge of two 6-cycles, it

cannot be KA. At the same time, BA and JA belong to the

same line, hence there is no 4-cycle with these two edges.

In most cases, starting with patterns from Fig. 22 [(1-a) to

(4-b) excluding (3-a)], it is clear how the next cycle can be

adjacent to the vertex under consideration. If it cannot be

done, then the argument and the pattern when it cannot be

done are the same as in the previous case. For this reason, we

discuss only two more cases, listing them in the order in which

the cycles are constructed. We add in parentheses the vertex to

which the new cycle is adjacent.

The first case is (2-a), when at each step there is only one

option to construct the next cycle.

Let us take the (2-a) pattern A8A9B9B10B11B12B7B6A6A7 as

shown in Fig. 23.

A8A9B9B10B11B12B7B6A6A7 ) (A8) - A8A9A10A11A12A7

and (B7) - B7B12B5B6 ) (A9) - A9A10A1B1B10B9 and (A7) -

A7A12A5A6 ) (B10) - B10B1B2B11 and (A10) - A10A1A2A11 )

(B11) - B11B2B3B4B5B12 and (A11) - A11A2A3A4A5A12) (A6)

- A6A5A4B4B5B6 and (A1) - A1A2A3B3B2B1 ) (A4) -

A4A3B3A4.

In a similar way, we show that patterns (1-a), (1-b), (4-a)

and (4-b) in Fig. 22 can be completed to become the embed-

ding of the truncated octahedron.

For patterns (1-b) and (4-a), there are two different options

to proceed at some step. In any of the cases (1-a), (1-b), (2-a),

(4-a) and (4-b) the final construction will be a ‘matchbox’

embedding. &

For all patterns listed in rows two and three of Fig. 22

[except patterns (1-b), (4-a) and (3-a)], every next step is

uniquely determined by the previous steps of constructing the

embedding without the ‘hexagon shape’ 6-cycle.

Now we formulate the last theorem of the subsection that

immediately follows from all the theorems discussed above.

Theorem 3.13. There are two and only two embeddings of

the truncated octahedron into the pcu net. One contains only

‘one plane’ 6-cycles and 4-cycles; the second contains only two

‘hexagon shape’ 6-cycles, ‘one plane’ 6-cycles and 4-cycles.

Both embeddings do not contain ‘angle shape’ 6-cycles.

4. SA representation of the tiling by a parallelohedron

The main objective of this section is to construct SA that

represent the edge graphs of tilings by parallelohedra. The SA

that represents a given tiling by the parallelohedron accepts

words that correspond to the paths in the edge graph of the

embedding (and, therefore, of the tiling itself) and rejects

words that do not.

4.1. DFA and SA

In this subsection, we briefly discuss the definition of the

DFA and the SA as an example of a DFA. Here we follow the

work of Krivovichev (2014a) and Hopcroft et al. (2001).

As defined by Hopcroft et al. (2001), DFAA consists of five

components, i.e.A = (Q, R, d, q1, F) where Q = f1; 2; 3; 4 . . . ng

is a finite set of states; R is a finite set of transitional or input

symbols; d is a transition function of two arguments (state and

input symbol); the value of d is a new state; q1 is an initial or

start state; F is a set of final or accepting states. The set F is a

subset of Q.

The set of input symbols is called an alphabet. The sequence

of input symbols is a word or a string. We describe how the

DFA processes strings and decides whether to accept a

sequence of input symbols (Hopcroft et al., 2001). Let us take

a word a1 . . . an and the start state q1. By finding the value

dðq1; a1Þ = q2 of the transition function d, the automaton

processes the first input symbol a1. The second symbol a2 is

processed by evaluating dðq2; a2Þ and obtaining the new state

q3. The automaton continues in this manner finding states

q1 . . . qn such that dðqi; aiÞ = qiþ1 for each i (1 � i � n). If

qnþ1 2 F, then the string a1 . . . an is accepted by A, and if

qnþ1 =2 F, the string a1 . . . an is not accepted (rejected).

Note that, by the definition of the DFA, the domain of the

function d is the set Q� R. This finite automaton is called a

complete DFA. However, for problems related to modeling

crystalline structures and other areas, a slightly different

notion is used by some authors, like in the work of Morey et al.

(2002). The transition function is defined on a subset of Q� R,

and this type of DFA is called a partial DFA. When no tran-

sition is defined, the automaton halts. Since we consider only

partial DFA where Q = F, assume for simplicity that Q = F in

the definition of the accepted strings for a partial DFA. In

this case, a word a1 . . . an is accepted if and only if dðqi; aiÞ is

defined for each i (1 � i � n), i.e. the automaton does not

halt.

There are two efficient ways to describe the structure of a

DFA: as a state diagram where vertices are states and edges

are input symbols; and as a transition table (matrix) where

labels of rows are states, labels of columns are input symbols,

and an intersection is a value of function d.

If W is a set of all words that DFA A accepts, we call W =

LðAÞ a formal language of DFA A, or we say that A recog-

nizes W. Note that A generates W by listing all possible

pathways of changing states. The production rules (formal

grammar) for the words from LðAÞ are defined as a state

diagram or a transition matrix. If a DFA recognizes all

possible words from a given alphabet, it is called a universal

automaton AU for the given alphabet.

In Fig. 24, we give a self-explanatory example of these two

ways to represent a DFA with a partially defined transition

matrix and Q = F. The DFA with a partially defined transition

function accepts abcbc and bcccbc, though it rejects aba or bbc

strings.

Two finite automata are considered equivalent if they have

the same alphabet and accept the same set of strings, i.e. have

the same language.

Using the example of partial DFA A defined in Fig. 24, we

will demonstrate how to construct a complete DFA that is

equivalent to the given partial DFA. Assume the set of states

Q0 for complete DFAA
0
is obtained from the set of states Q of
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partial A by adding just one state that will be denoted by the

symbol ‘-’, i.e. Q0 = Q[ {‘-’}. Let us take the transition matrix

forA as shown in Fig. 24 and add to this matrix another row at

the bottom that consists of five symbols ‘-’. This new transition

matrix determines the transition function d with the domain

Q0 � R for the complete DFAA
0
. Q is a set of accepting states

for A
0
. It is easy to show that the finite automata A

0
and A are

equivalent. We used this example to demonstrate how to

construct an equivalent complete DFA for a given partial

DFA. A similar construction can be done for any partial DFA.

In particular, it can be constructed for any SA that will be

defined and discussed below.

For the description of crystal growth, Shevchenko et al.

(2008) and Krivovichev et al. (2012) suggested using a partial

DFA called structural automata or crystal structure automata.

The concept was introduced by Morey et al. (2002). In SA,

each state is a class of equivalent vertices in the pcu net with a

certain configuration of edges incident to each vertex (class of

vertices). The set of symbols R of an SA is defined as a set of

vectors of length 1 incident to the fixed vertex in the nD pcu

net or directed edges that indicate directions in the pcu net.

The transition function identifies a transition from state qi to

state qj via the vector v that belongs to the set R: dðqi; vÞ = qj.

For each vector v in R, there is an opposite vector v, i.e. an SA

is a bi-directional automaton. Any state (vertex) from Q may

be an initial state, and any state from Q is an accepting state.

This definition can be extended to the nD pcu net. Unless

specified differently, it is assumed that n ¼ 3.

The simplest example of SA construction is related to the

pcu net itself. As we have already noted, the pcu net can be

defined as Z3 where all nodes are connected by unit edges, i.e.

for every node there are six orthogonal edges that connect this

node with the adjacent ones. Vectors in R = fa; a; b; b; c; cg

constitute a standard orthonormal basis for R3 plus their

opposite vectors. The diagram for the SA that generates the

pcu net is very simple: a one vertex state. There is only one

edge configuration for every vertex with six loops

fa; a; b; b; c; cg, and all vertices are equivalent (Fig. 25). Using

the language of the SA, we say that all words formed in the

alphabet R = fa; a; b; b; c; cg are accepted. Hence, the SA that

represents the pcu net is a universal automaton.

As another example of an SA besides the pcu net, we show

the structure of RUB-15. The tetrahedral layer in the structure

of RUB-15, its nodal and orthogonal representation (embed-

ding into the pcu net) as well as three different configurations

of edges at vertices that this network contains are shown in

Fig. 26. The state diagram and the transition matrix for the SA

representation of RUB-15 are shown in Fig. 27.

We would like to note that while discussing the embedding

of the tiling by the truncated octahedron, we obtained the

orthogonal network of RUB-15 [Fig. 18(b)] in the plane z ¼ 0.
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Figure 24
Example of a DFA (Krivovichev, 2014a).

Figure 25
pcu net as the universal language of the SA (Krivovichev, 2014a).

Figure 26
Tetrahedral layer in the structure of RUB-15 (upper left), its nodal (lower
left) and orthogonal (upper central) representations. The orthogonal
network contains three different vertex configurations (upper right). The
central lower part shows the state diagram of the respective DFA.
Modified after Krivovichev (2014a).

Figure 27
The orthogonal version of the RUB-15 2D network with words assigned
to the vertices (left), its state diagram (upper right) and transition matrix
(lower right). Modified after Krivovichev (2014a).



4.2. SA representation of face-to-face tiling by a parallelo-
hedron

In this subsection, we develop the SA that represents the

embedding and serves as a model for the corresponding

crystal growth for each tiling by the parallelohedron. Though

the rhombic dodecahedron cannot be embedded into the 3D

pcu net, we suggest using the embedding into the 4D pcu net

(as designed in the previous section) to construct the SA

representing the elongated dodecahedron.

Since the embedding of face-to-face tiling by the cube is the

pcu net itself, the universal SA as described in Fig. 25 repre-

sents face-to-face tiling by the cube.

For simplicity, we adopted the concept of SA to construct

the DFA representing tilings by parallelohedra, though,

generally speaking, the SA is a partial DFA. Each SA is

constructed by identifying Q with equivalence classes of

transitionally equivalent vertices of the tiling with a certain

configuration of incident edges. We denote elements of Q by

natural numbers. For the hexagonal prism, elongated

dodecahedron and truncated octahedron, R is a set of

vectors that form an orthonormal basis in the pcu net plus

their opposite vectors, i.e. R = fa; a; b; b; c; cg. In the case of

the rhombic dodecahedron, the set R consists of four

unit vectors that form an orthonormal basis in the 4D pcu net

plus their opposite vectors, i.e. R = fa; a; b; b; c; c; d; dg. For

n 2 Q and v 2 R, dðn; vÞ is an equivalence class adjacent to n

in the direction of v, provided ðvÞ represents a directed edge

of the edge graph of the embedding. The set of the accepting

states is equal to Q. Any state can be taken as the initial

state.

For each parallelohedron, Tables 1–4 represent a tiling by a

given parallelohedron. As we have already noted, a complete

DFA equivalent to an SA can be constructed by adding a

single non-accepting state ‘-’ to Q. Hence, if we add an addi-

tional row of symbols ‘-’ to each of the Tables 1–4, we will

construct transition tables that define complete DFA equiva-

lent to corresponding SA. To have a better understanding why

the transition function is defined or not defined on some pairs

of the state and input symbol, we demonstrate what a

configuration of edges for each element from Q is, i.e. in which

directions incident edges exist for a given class of equivalent

vertices. In the SA constructed for each parallelohedron

below, any state can be taken as the initial state.

There are two states in Q for the embedding of tiling by the

hexagonal prism constructed in Theorem 3.1. Table 1 defines

the SA that represents this tiling. Configurations of edges are

shown in Fig. 28.

There are four states in Q for the embedding of tiling by

the elongated dodecahedron constructed in Theorems 3.3

(Method 1) and 3.4. Table 2 defines the SA that represents this

tiling. Configurations of edges are shown in Fig. 29.

There are six states in Q for the embedding of tiling by the

truncated octahedron constructed in Theorems 3.8 and 3.9.

Table 3 defines the SA that represents this tiling. Configura-

tions of edges are shown in Fig. 30.

There are three states in Q for the embedding of tiling by

the rhombic dodecahedron constructed in Theorem 3.7. Table

4 defines the SA that represents this tiling. Since we embedded
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Table 1
SA for a tiling by a hexagonal prism.

State a a b b c c

1 - 2 2 2 1 1
2 1 - 1 1 2 2

Table 2
SA for a tiling by an elongated dodecahedron.

State a a b b c c

1 2 2 3 3 - 4
2 1 1 4 4 - -
3 4 4 1 1 - -
4 3 3 2 2 1 -

Table 3
SA for a tiling by a truncated octahedron.

State a a b b c c

1 - 2 4 3 - 6
2 1 3 5 6 - -
3 2 - 1 4 - 5
4 6 5 3 1 - -
5 4 - 6 2 3 -
6 - 4 2 5 1 -

Table 4
SA for a tiling by a rhombic dodecahedron.

State a a b b c c d d

1 2 - 2 - 2 - 2 -
2 3 1 3 1 3 1 3 1
3 - 2 - 2 - 2 - 2

Figure 28
States’ configurations for tiling by a hexagonal prism.

Figure 29
States’ configurations for tiling by an elongated dodecahedron.

Figure 30
States’ configurations for tiling by a truncated octahedron.



tiling by the rhombic dodecahedron into the 4D pcu net, we

give the description for the configuration of edges at every

class of equivalent vertices: state 1: abcd; state 2: abbccdd;

state 3: abcd.

5. Summary

The analysis of the embeddings of tilings of 3D Euclidean

space by Fedorov parallelohedra into the pcu net shows that

the edge graphs of four out of five tilings are orthogonal in 3D,

whereas the fifth one (tiling by the rhombic dodecahedron) is

non-orthogonal in 3D, but orthogonal in 4D. If we define the

complexity of the SA as the number of its states, tiling by the

cube (the pcu net itself) is the simplest one containing one

state only. Tiling by the hexagonal prism is the second in

simplicity (two states), tiling by the elongated dodecahedron is

the third (four states), whereas tiling by the truncated octa-

hedron is the fourth (six states). Tiling by the rhombic

dodecahedron cannot be compared directly with the other

four, since it is orthogonal in a 4D but not in a 3D space. This

raises an interesting question of comparative complexity

measures for the nets existing in spaces of different dimen-

sionalities. This methodological topic requires further

exploration.

The advantage of using orthogonal nets in crystal growth

models is that their SA can easily be programmed as existing

on a cubic lattice. In the future, one may ask the following

questions: (i) How many different SA exist in R3 with two,

three, four and five states? (ii) How are these automata related

to the existing topologies? (iii) Is there any correlation

between the SA complexity and the occurrence of respective

nets in real structures (inorganic and metal–organic)? (iv)

Does combinatorial topological symmetry have an influence

upon the occurrence of the algorithmically simplest nets? It is

our intention to elaborate on these questions in the near

future.
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