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Abstract: The (general) hypoexponential distribution is the distribution of a sum of independent
exponential random variables. We consider the particular case when the involved exponential
variables have distinct rate parameters. We prove that the following converse result is true. If for some
n ≥ 2, X1, X2, . . . , Xn are independent copies of a random variable X with unknown distribution
F and a specific linear combination of Xj’s has hypoexponential distribution, then F is exponential.
Thus, we obtain new characterizations of the exponential distribution. As corollaries of the main
results, we extend some previous characterizations established recently by Arnold and Villaseñor
(2013) for a particular convolution of two random variables.

Keywords: exponential distribution; hypoexponential distribution; characterizations

MSC: 62G30; 62E10

1. Introduction and Main Results

Sums of exponentially distributed random variables play a central role in many stochastic models
of real-world phenomena. Hypoexponential distribution is the convolution of k exponential distributions
each with their own rate λi, the rate of the ith exponential distribution. As an example, consider the
distribution of the time to absorption of a finite state Markov process. If we have a k + 1 state process,
where the first k states are transient and the state k + 1 is an absorbing state, then the time from the
start of the process until the absorbing state is reached is phase-type distributed. This becomes the
hypoexponential if we start in state 1 and move skip-free from state i to i + 1 with rate λi until state k
transitions with rate λk to the absorbing state k + 1.

We write Zi ∼ Exp(λi) for λi > 0, if Zi has density

fi(z) = λie−λiz, z ≥ 0 (exponential distribution).

The distribution of the sum Sn := Z1 + Z2 + . . . + Zn, where λi for i = 1, . . . , n are not all
identical, is called (general) hypoexponential distribution (see [1,2]). It is absolutely continuous and we
denote by gn its density. It is called the hypoexponetial distribution as it has a coefficient of variation
less than one, compared to the hyper-exponential distribution which has coefficient of variation greater
than one and the exponential distribution which has coefficient of variation of one. In this paper, we
deal with a particular case of the hypoexponential distribution when all λi are distinct, i.e., λi 6= λj
when i 6= j. In this case, it is known ([3], p. 311; [4], Chapter 1, Problem 12)) that

Sn = Z1 + Z2 + . . . + Zn has density gn(z) :=
n

∑
j=1

`j f j(z), z ≥ 0. (1)
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Here the weight `j is defined as

`j =
n

∏
i=1,i 6=j

λi
λi − λj

.

Please note that `j := `j(0), where `1(x), . . . , `n(x) are identified (see [5]) as the Lagrange basis
polynomials associated with the points λ1, . . . , λn. The convolution density gn in (1) is the weighted
average of the values of the densities of Z1, Z2, . . . , Zn, where the weights `j sum to 1 (see [5]).
Notice, however, since the weights can be both positive or negative, gn is not a “usual” mixture of
densities. If we place λj’s in increasing or decreasing order, then the corresponding coefficients `j’s
alternate in sign.

Consider the Laplace transforms ϕi(t) := E[e−tZi ], t ≥ 0, i = 1, 2, . . . , n. They are well-defined
and will play a key role in the proofs of the main results.

To begin with, let us look at the case when all Zi’s are identically distributed, i.e., λi = λ for
i = 1, 2, . . . , n, so we can use ϕ for the common Laplace transform. The sum Sn = Z1 + Z2 + . . . + Zn

has Erlang distribution whose Laplace transform ϕ̃, because of the independence, is expressed
as follows:

ϕ̃(t) = E
[
e−tSn

]
= ϕn(t) =

(
λ

λ + t

)n
.

If we go in the opposite direction, assuming that Sn has Erlang distribution with Laplace transform
ϕ̃, then we conclude that ϕi(t) = λ(λ + t)−1 for each i = 1, 2, . . . , n, which in turn implies that
Zi ∼ Exp(λ). By words, if Zi are independent and identically distributed random variables and their
sum has Erlang distribution, then the common distribution is exponential.

Does a similar characterization hold when the rate parameters λi are all different? The answer to this
question is not obvious. It is our goal in this paper to show that the answer is positive.

Let µ1, µ2, . . . , µn be positive real numbers, such that λi = λ/µi. Without loss of generality
suppose that µ1 > µ2 > . . . > µn > 0. Assume that X1, X2, . . . , Xn, for fixed n ≥ 2, are independent
and identically distributed as a random variable X with density f , f (x) = λe−λx, x > 0. Then (1) is
equivalent to the following:

Sn := µ1X1 + µ2X2 + · · ·+ µnXn has density gn(x) =
n

∑
j=1

`j

µj
f

(
x
µj

)
, x ≥ 0. (2)

Here the coefficients/weights are given as follows:

`j =
n

∏
i=1,i 6=j

µ−1
i

µ−1
i − µ−1

j

=
n

∏
i=1,i 6=j

µj

µj − µi
, j = 1, 2, . . . , n. (3)

We use now the common Laplace transform ϕ(t) := E[e−tXi ]. Please note that since µi 6= µj for
i 6= j, relation (2) implies that

ϕ(µ1t)ϕ(µ2t) · · · ϕ(µnt) =
∫ ∞

0
e−txgn(x) dx (4)

=
∫ ∞

0
e−tx

n

∑
j=1

`j

µj
f

(
x
µj

)
dx

=
n

∑
j=1

`j

∫ ∞

0
e−tx 1

µj
f

(
x
µj

)
dx =

n

∑
j=1

`j ϕ(µjt).

The idea now is to start with an arbitrary non-negative random variable X with unknown density
f and Laplace transform ϕ. If the Laplace transform of the linear combination Sn = ∑n

i=1 µiXi satisfies
(4), we will derive that ϕ(t) = λ(λ + t)−1. Thus, the common distribution of Xj, j = 1, 2, . . . , n is
exponential. More precisely, the following characterization result holds.
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Theorem 1. Suppose that X1, X2, . . . , Xn, n ≥ 2, are independent copies of a non-negative random variable
X with density f . Assume further that X satisfies Cramér’s condition: there is a number t0 > 0 such that
E[e−tX ] < ∞ for all t ∈ (−t0, t0). If relation (2) is satisfied for fixed n ≥ 2 and fixed positive mutually different
numbers µ1, µ2, . . . , µn, then X ∼ Exp(λ) for some λ > 0.

The studies of characterization properties of exponential distributions are abundant.
Comprehensive surveys can be found in [6–9]. More recently, Arnold and Villaseñor [10] obtained
a series of exponential characterizations involving sums of two random variables and conjectured
possible extensions for sums of more than two variables (see also [11]). Corollary 1 below extends the
characterizations in [10,11] to sums of n variables, for any fixed n ≥ 2.

Consider the special case of (2) when µj = 1/j for j = 1, 2, . . . , n. Under this choice of µj’s,
the formula for the weight `j simplifies to (see [4], Chapter 1, Problem 13)

`j =
n

∏
i=1,i 6=j

i
i− j

=

(
n
j

)
(−1)j−1.

Therefore, Theorem 1 reduces to the following corollary.

Corollary 1. Suppose that X1, X2, . . . , Xn, n ≥ 2, are independent copies of a non-negative random variable
X with density f . Assume further that X satisfies Cramér’s condition: there is a number t0 > 0 such that
E[e−tX ] < ∞ for all t ∈ (−t0, t0). If for fixed n ≥ 2,

X1 +
1
2

X2 + . . . +
1
n

Xn has density
n

∑
j=1

(
n
j

)
(−1)j−1 j f (jx), x ≥ 0, (5)

then X ∼ Exp(λ) for some λ > 0.

The exponential distribution has the striking property that if λ = 1 (unit exponential), then the
density f equals the survival function (the tail of the cumulative distribution function) F = 1− F.
Therefore, in case of unit exponential distribution, (2) can be written as follows:

S̃n := µ1X1 + µ2X2 + · · ·+ µnXn has density g̃n(x) :=
n

∑
j=1

`j

µj
F

(
x
µj

)
, x ≥ 0. (6)

We will show that (6) is a sufficient condition for X1, X2, . . . , Xn to be unit exponential.

Theorem 2. Suppose that X1, X2, . . . , Xn, n ≥ 2, are independent copies of a non-negative random variable
X with distribution function F. Assume also that X satisfies Cramér’s condition: there is a number t0 > 0 such
that E[e−tX ] < ∞ for all t ∈ (−t0, t0). If relation (6) is satisfied for fixed n ≥ 2, then X ∼ Exp(1).

Setting µj = 1/j for j = 1, 2, . . . , n, we obtain the following corollary of Theorem 2.

Corollary 2. Suppose that X1, X2, . . . , Xn, n ≥ 2, are independent copies of a non-negative random variable
X with distribution function F. Assume also that X satisfies Cramér’s condition: there is a number t0 > 0 such
that E[e−tX ] < ∞ for all t ∈ (−t0, t0). If for fixed n ≥ 2,

X1 +
1
2

X2 + . . . +
1
n

Xn has density
n

∑
j=1

(
n
j

)
(−1)j−1 jF(jx) x > 0, (7)

then X ∼ Exp(1) for some λ > 0.
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We organize the rest of the paper as follows. Section 2 contains preliminaries needed in the
proofs of the theorems. The proofs themselves are given in Section 3. We discuss the findings in the
concluding Section 4.

2. Auxiliaries

We will need the Leibniz rule for differentiating a product of functions. Denote by v(k) the kth
derivative of v(x) with v(0)(x) := v(x). Let us define a multi-index set ααα = (α1, α2, . . . , αn) as an
n-tuple of non-negative integers, and denote |ααα| = α1 + α2 + . . . + αn. Leibniz considered the problem
of determining the kth derivative of the product of n smooth functions v1(t)v2(t) · · · vn(t) and obtained
the formula (e.g. [12])

dk

dtk

(
n

∏
i=1

vi(t)

)
= ∑
|ααα|=k

(
k!

α1!α2! · · · αn!

n

∏
i=1

v(αi)
i (t)

)
. (8)

Here the summation is taken over all multi-index sets ααα with |ααα| = k. Formula (8) can easily be proved
by induction.

Lemma 1. Assume that v(t) = ∑∞
i=0 aiti is a functional series, such that for some t̃0 > 0, the kth order

derivative v(k)(t) exists for all t ∈ (−t̃0, t̃0). Then for arbitrary positive real constants µ1, µ2, . . . , µn, we have

dk

dtk

(
n

∏
i=1

v(µit)

) ∣∣∣
t=0

= k! ∑
|ααα|=k

n

∏
i=1

µ
αi
i aαi . (9)

Proof. Formula (9) is proved by applying Leibniz rule (8) to ∏n
i=1 v(µit).

In addition to (9), we will need some properties of Lagrange basis polynomials `j collected below.

Lemma 2 (see [13]). Let λ1, λ2, . . . , λn be positive real numbers, such that λi 6= λj for i 6= j. Denote

`j =
n

∏
i=1,i 6=j

λi
λi − λj

j = 1, 2, . . . , n.

Then, for n ≥ 2, we have the following:

(i)
n

∑
j=1

`j = 1.

(ii)
n

∑
j=1

`jλ
k
j = 0 for any k, 1 ≤ k ≤ n− 1.

(iii)
n

∑
j=1

`j

λk
j
≥

n

∑
j=1

1
λk

j
for any k, 1 ≤ k ≤ n− 1, where the equality holds if and only if k = 1.

Proof. Claim (i) follows by integrating (1) over z > 0. Claim (ii) is proved in Corollary 1 of [13].
To prove claim (iii) we involve ααα, the multi-index set as in (8). For k ≥ 1, we have ααα = ααα′ ∪ ααα′′, where

ααα′ = {|ααα| = k : only one index in ααα equals k and all others are zeros}
ααα′′ = {|ααα| = k : no single index in ααα equals k}.

According to Proposition 5 in [13] we obtain, for n ≥ 2 and k ≥ 1, the following chain of relations:
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n

∑
j=1

`j

λk
j

= ∑
|ααα|=k

1
λα1

1 λα2
2 · · · λ

αn
n

(10)

= ∑
|ααα′ |

1
λα1

1 λα2
2 · · · λ

αn
n

+ ∑
|ααα′′ |

1
λα1

1 λα2
2 · · · λ

αn
n

=
n

∑
j=1

1
λk

j
+ ∑
|ααα′′ |

1
λα1

1 λα2
2 · · · λ

αn
n

≥
n

∑
j=1

1
λk

j
.

Clearly, the equality in (10) holds if and only if k = 1. The proof is complete.

The properties in Lemma 2 can be easily verified, as an illustration, for n = 2, k = 1,
and k = 2. Indeed,

2

∑
j=1

`j =
λ2

λ2 − λ1
+

λ1

λ1 − λ2
= 1,

2

∑
j=1

`jλj =
λ2λ1

λ2 − λ1
+

λ1λ2

λ1 − λ2
= 0,

2

∑
j=1

`j

λj
=

λ2

(λ2 − λ1)λ1
+

λ1

(λ1 − λ2)λ2
=

λ2 + λ1

λ1λ2
=

2

∑
i=1

1
λi

,

2

∑
j=1

`j

λ2
j

=
λ2

(λ2 − λ1)λ
2
1
+

λ1

(λ1 − λ2)λ
2
2
=

λ2
2 + λ2λ1 + λ2

1
λ2

1λ2
2

=
2

∑
i=1

1
λ2

i
+

1
λ1λ2

.

3. Proofs of the Characterization Theorems

In the proofs of both theorems we follow the four-step scheme.

• Consider X1, X2, . . . , Xn for n ≥ 2 to be independent copies of a non-negative random variable X
with density f . Suppose µ1 > µ2 > . . . > µn are positive real numbers.

• Assume the characterization property

Sn = µ1X1 + µ2X2 + · · ·+ µnXn has density gn(x) =
n

∑
j=1

`j

µj
f

(
x
µj

)
, x ≥ 0,

where `j is given in (3).
• For the Laplace transform ϕ(t) = E[e−tX ], t ≥ 0, obtain the equation

ϕ(µ1t)ϕ(µ2t) · · · ϕ(µnt) =
n

∑
j=1

`j ϕ(µjt). (11)

• Using Leibniz rule for differentiating product of functions and properties of Lagrange basis
polynomials, show that (11) has a unique solution given by ϕ(t) = (1 + λ−1t)−1 for some λ > 0
and conclude that

X1, X2, . . . , Xn are Exp(λ) random variables.
Proof of Theorem 1. Recall that (see (4))

ϕ(µ1t)ϕ(µ2t) · · · ϕ(µnt) =
n

∑
j=1

`j ϕ(µjt).
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Dividing both sides of this equation by ϕ(µ1t)ϕ(µ2t) · · · ϕ(µnt), we obtain

1 =
n

∑
j=1

(
`j

n

∏
i=1,i 6=j

ψ(µit)

)
, (12)

where ψ := 1/ϕ. Consider the series

ψ(t) =
∞

∑
k=0

aktk, (13)

which, as a consequence of Cramér’s condition for ϕ, is convergent in a proper neighborhood of t = 0.
To prove the theorem, it is sufficient to show that

ψ(t) = 1 + λ−1t, λ > 0. (14)

We will prove that (12) implies (14) by showing that the coefficients {ak}∞
k=0 in (13) satisfy a0 = 1,

a1 = λ−1 > 0, and ak = 0 for k ≥ 2. Notice first that

a0 =
1

ϕ(0)
= 1. (15)

Denote

Ψj(t) :=
n

∏
i=1,i 6=j

ψ(µit) and H(t) :=
n

∑
j=1

`jΨj(t) =
∞

∑
k=0

hktk.

By (12) we have H(t) ≡ 1 and therefore h0 = 1 and hk = 0 for all k ≥ 1. Equating hk’s to the
corresponding coefficients of the series in the right-hand side of (12), we will obtain equations for
{ak}∞

k=0. As a first step, note that

hk =
1
k!

H(k)(t)|t=0 =
1
k!

n

∑
j=1

`jΨ
(k)
j (t)

∣∣
t=0, k ≥ 1. (16)

Next, we apply Leibniz rule for differentiation. To fix the notation, let us define a multi-index
set ααα−j = (α1, . . . , αj−1, αj+1, . . . , αn), 1 ≤ j ≤ n as a set of (n− 1)-tuples of non-negative integer
numbers, with |ααα−j| = α1 + . . . + αj−1 + αj+1 + . . . + αn. Applying Lemma 1 for fixed k ≥ 1 and fixed
1 ≤ j ≤ n, we obtain

Ψ(k)
j (t)

∣∣
t=0 = k! ∑

{|ααα−j |=k}

n

∏
i=1,i 6=j

µ
αi
i aαi . (17)

Introduce the set Λk,j := {ααα−j : |ααα−j| = k} and partition it into three disjoint subsets as follows:

Λk,j = Λ′k,j ∪Λ′′k,j ∪Λ′′′k,j,

where for k ≥ 1

Λ′k,j = {|ααα−j| = k : only one index in ααα−j equals k, all others are zeros}
Λ′′k,j = {|ααα−j| = k : k ≥ 2 and exactly k of the indices in ααα−j equal 1, all others are zeros}
Λ′′′k,j = {|ααα−j| = k : k ≥ 3 and there is an index αi with 2 ≤ αi < k}.

For example, if n = 5, k = 3, and j = 5, then Λ′3,5 = {(3, 0, 0, 0), (0, 3, 0, 0), (0, 0, 3, 0), (0, 0, 0, 3)},
Λ′′3,5 = {(1, 1, 1, 0), (1, 1, 0, 1), (1, 0, 1, 1), (0, 1, 1, 1)}, and Λ′′′3,5 = {(1, 2, 0, 0), (1, 0, 2, 0), . . . , (0, 0, 2, 1)}.
Referring to (16) and (17), we have for k ≥ 1
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hk =
n

∑
j=1

`j ∑
Λk,j

n

∏
i=1,i 6=j

µ
αi
i aαi

 (18)

=
n

∑
j=1

`j

∑
Λ′k,j

(·) + ∑
Λ′′k,j

(·) + ∑
Λ′′′k,j

(·)


=:

n

∑
j=1

`j
(
S1,j + S2,j + S3,j

)
, say.

For the term S2,j in the middle, since a0 = 1, we have S2,j = 0 when k = 1 and for any k ≥ 2

S2,j = ∑
Λ′′k,j

n

∏
i=1,i 6=j

µ
αi
i aαi

= an−1−k
0 ak

1 ∑ ′(µi1 µi2 · · · µik )

= ak
1µ−1

j ∑ ′(µjµi1 µi2 · · · µik )

where the summation in ∑ ′ is over all k-tuples (with ijth component dropped) i1, . . . , ij−1, ij+1 . . . , ik,
such that im ∈ {1, 2, . . . , n} and i1 < i2 < . . . < ik. Using that ∑n

j=1 `jµ
−1
j = 0 by Lemma 2(ii) with

λi = µ−1
i , we obtain for any k ≥ 2

n

∑
j=1

`jS2,j = ak
1

(
n

∑
j=1

`jµ
−1
j

)
∑ ′′(µi1 µi2 · · · µik ) = 0. (19)

Here the summation in ∑ ′′ is over all k-tuples i1, i2, . . . , ik, such that im ∈ {1, 2, . . . , n} and
i1 < i2 < . . . < ik. For the first term S1,j in the last expression of (18), we have for any k ≥ 1

S1,j = ∑
Λ′k,j

n

∏
i=1,i 6=j

µ
αi
i aαi = an−2

0 ak

n

∑
i=1,i 6=j

µk
i

= ak

(
n

∑
i=1

µk
i − µk

j

)
.

Furthermore, since ∑n
j=1 `j = 1 by Lemma 2(i) with λi = µ−1

i , we have for any k ≥ 1

n

∑
j=1

`jS1,j = ak

n

∑
j=1

`j

(
n

∑
i=1

µk
i − µk

j

)
(20)

= ak

n

∑
i=1

µk
i

n

∑
j=1

`j − ak

n

∑
j=1

`jµ
k
j

= ak

(
n

∑
i=1

µk
i −

n

∑
j=1

`jµ
k
j

)
=: akck.

Lemma 2(iii) with λi = µ−1
i implies that c1 = 0 and ck < 0 for any k ≥ 2. It follows from

(18)–(20) that

hk = ckak +
n

∑
j=1

`jS3,j, (21)

where c1 = 0 and ck < 0 for k ≥ 2.
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Let k = 1. Since h1 = 0 and the sets Λ′′1 and Λ′′′2 are empty, we obtain c1a1 = 0, where c1 = 0.
Hence, there are no restrictions on the coefficient a1, other than a1 > 0, since X has positive mean.
Therefore, there is a number λ−1 > 0 such that

a1 = λ−1 > 0. (22)

Let k = 2. Since the set Λ′′′2 is empty, Equation (21) yields h2 = c2a2 = 0, where recall that c2 < 0.
Thus, a2 = 0. Next, applying (21) and taking into account that hk = 0 for k ≥ 2, we will show by
induction that ak = 0 for any k ≥ 2. Assuming ak = 0 for k = 2, 3, . . . , r, we will show that ar+1 = 0.
Indeed, by (21) we have

hr+1 = cr+1ar+1 +
n

∑
j=1

`j ∑
Λ′′′r+1,j

n

∏
i=1,i 6=j

µ
αi
i aαi

 = cr+1ar+1,

because at least one index αi, satisfies 2 ≤ αi ≤ r and hence aαi = 0, by assumption.
Therefore, hr+1 = cr+1ar+1 = 0 and, since cr+1 < 0, we have ar+1 = 0, which completes the
induction. Hence,

ak = 0 for any k ≥ 2. (23)

The Equations (15) and (22)–(23) imply (14), which completes the proof of the theorem.

Proof of Theorem 2. Taking into account (6), similarly to (4) and using integration-by-parts, we obtain

ϕ(µ1t)ϕ(µ2t) · · · ϕ(µnt) =
∫ ∞

0
e−txgn(x) dx =

∫ ∞

0
e−tx

n

∑
j=1

`j

µj
F

(
x
µj

)
dx

=
n

∑
j=1

`j

∫ ∞

0
e−tx 1

µj
F

(
x
µj

)
dx

=
1
t

n

∑
j=1

`j

µj

(
1− ϕ(µjt)

)
.

Using the fact that ∑n
j=1 `j/µj = 0 (see Lemma 2(ii)), this simplifies to

ϕ(µ1t)ϕ(µ2t) · · · ϕ(µnt) = −1
t

n

∑
j=1

`j

µj
ϕ(µjt). (24)

Dividing both sides of (24) by −ϕ(µ1t)ϕ(µ2t) · · · ϕ(µnt)/t, for t > 0, we obtain

− t =
n

∑
j=1

`j

µj

n

∏
i=1,i 6=j

ψ(µit), (25)

where, as before, ψ = 1/ϕ. Consider the series ψ(t) = ∑∞
k=0 aktk, which is convergent by

assumption. To prove the theorem, it is sufficient to show that ψ(t) = 1 + t, t ≥ 0, or, equivalently,
that the coefficients {ak}∞

k=0 of the above series satisfy a0 = 1, a1 = 1, and ak = 0 for k ≥ 2.
Clearly, a0 = 1/ϕ(0) = 1. Recall that

Ψj(t) :=
n

∏
i=1,i 6=j

ψ(µit) and denote −Q(t) :=
n

∑
j=1

`j

µj
Ψj(t) = −

∞

∑
k=0

qktk.

By (25) we have Q(t) ≡ t and therefore q1 = 1 and qk = 0 for all k 6= 1. We will express qk in terms of
aj’s. Proceeding as in the proof of Theorem 1, applying Leibniz rule for differentiating a product of
functions, and using the same notation, we obtain for k ≥ 1 that
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− qk =
n

∑
j=1

`j

µj

(
S1,j + S2,j + S3,j

)
.

As with (19), applying Lemma 2(ii), we obtain

n

∑
j=1

`j

µj
S2,j = ak

1

(
n

∑
j=1

`j

µ2
j

)
∑ ′′(µi1 µi2 · · · µik ) = 0, (26)

where the summation in ∑ ′′ is over all k-tuples i1, . . . , ik, such that im ∈ {1, . . . , n} and i1 < . . . < ik.
Furthermore, since ∑n

j=1 `j = 1 and ∑n
j=1 `j/µ2

j = 0 by Lemma 2, we have for any k ≥ 1

n

∑
j=1

`j

µj
S1,j = ak

n

∑
j=1

`j

µj

(
n

∑
i=1

µk
i − µk

j

)
(27)

= ak

n

∑
i=1

µk
i

n

∑
j=1

`j

µj
− ak

n

∑
j=1

`jµ
k−1
j

= −ak

n

∑
j=1

`jµ
k−1
j

=: −akdk.

It follows from (26) and (27) that for k ≥ 1,

− qk = −akdk +
n

∑
j=1

`j

µj
S3,j. (28)

Let k = 1. Since q1 = 1 and the set Λ′′′1 is empty, we obtain a1d1 = 1, where d1 = 1 by Lemma 2(iii).
Therefore, a1 = 1. Let k = 2. Since Λ′′′2 is empty, Equation (28) yields q2 = d2a2 = 0, where d2 > 0 by
Lemma 2(iii). Thus, a2 = 0. Assuming ak = 0 for 2 ≤ k ≤ r, we will show that ar+1 = 0. Indeed,

qr+1 = dr+1ar+1 +
n

∑
j=1

`j

µj
S3,j = dr+1ar+1,

because at least one index αi, satisfies 2 ≤ αi ≤ r, in which case aαi = 0, by assumption.
Therefore, qr+1 = dr+1ar+1 = 0 and, since dr+1 < 0, we have ar+1 = 0, which completes the induction
proof. Hence, ak = 0 for any k ≥ 2. Since a0 = a1 = 1 and ak = 0 for k ≥ 2, we obtain ψ(t) = 1 + t,
which clearly completes the proof of the theorem.

4. Concluding Remarks

Arnold and Villaseñor [10] proved that if X1 and X2 are two independent and non-negative
random variables with common density f and E[X1] < ∞, then

X1 +
1
2

X2 has density 2 f (x)− 2 f (2x), x > 0,

if and only if X1 ∼ Exp(λ) for some λ > 0. Motivated by this result, we extended it in two directions
considering: (i) arbitrary number n ≥ 2 of independent identically distributed non-negative random
variables and (ii) linear combination of independent variables with arbitrary positive and distinct
coefficients µ1, µ2, . . . , µn. Namely, our main result is that

Sn = µ1X1 + µ2X2 + . . . + µnXn has density gn(x) =
n

∑
j=1

`j

µj
f

(
x
µj

)
x ≥ 0,
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where `j = ∏n
i=1,i 6=j µj(µj − µi)

−1, if and only if Xi ∼ Exp(λ) for some λ > 0.
In this paper, we dealt with the situation where the rate parameters λi are all distinct from each

other. The other extreme case of equal λi’s is trivial. The obtained characterization seems of interest on
its own, but it can also serve as a basis for further investigations of intermediate cases of mixed type
with some ties and at least two distinct parameters (see [2]). Of certain interest is also the case where
not all weights µi’s are positive (see [1]).
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