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ABSTRACT 

Running has always been a popular hobby and exercise activity, in part because of its low 

participation barriers. In recent years, organized distance races have reported increases in 

children and young adult participants, with some even running full marathons. In addition, high 

school level cross country participation is increasing in a number of areas. This increased 

participation warrants particular attention in female athletes due to generally higher rates of 

injury, including those due to overuse and specialization. These early injuries can lead to higher 

likelihood of future injuries, growth plate disruption, and more psychological outcomes like 

burnout However, there is no general consensus among coaches, physicians, or athletic bodies 

about safe cumulative running loads at younger ages. There has and continues to be a great deal 

of research regarding running injuries and their etiologies in adults, considering, among other 

aspects, ground reaction forces, loading rates, and various kinematic factors. There is much less 

centered on running injuries in children that are not within the context of another sport 

(particularly soccer), and there is little data on how fatigue affects younger runners specifically.  

If there is a difference in how younger runners handle fatigue, then it is possible to address the 

issue through training strategies, and/or to encourage limits on distance or running volume, 

similar to the pitching limits enacted in youth baseball. The purpose of this study was to 

investigate how kinematics, kinetics, and muscle activations changed with fatigue in a group of 

young female distance runners. Eleven healthy girls aged 8-17 years participated in this study. 

Motion and ground reaction force data were collected before and after a 5-kilometer run at or 

near the subjects’ personal best pace. The resultant data was processed and characteristics such 

as joint angles, ground reaction forces, and cadence were compared via for pre and post run, as 

well as for the younger runners compared to the older runners. The data collected was also 



 

employed in a modeling simulation and static optimization to investigate changes in muscle 

forces. Results showed that the ankle joint mechanics were most significantly altered by fatigue, 

and that knee kinetics were most affected with fatigue by the runners’ age, potentially because of 

compensation for weaker knee strength typically exhibited by physically immature athletes. In 

addition, knee flexor forces increased and extensor forces decreased with fatigue, while changes 

to muscle forces around the hip and ankle were more dependent on the age of the runner, with 

younger runners at greater risk for injuries such as iliotibial band syndrome and stress fractures. 

These results suggest that performance and potentially injury avoidance in these young runners 

can be aided by strengthening the involved muscles to avoid imbalances, as well potentially 

limiting the running volume of younger runners. 
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CHAPTER 1: CONCERNS OF SPECIALIZATION, OVERUSE, AND FATIGUE IN 

YOUTH ATHLETES  

1. Guiding Questions 

There is a concern over a growing bifurcation as it relates to children and adolescents and 

physical activity. The rates of obesity in children and young adults have increased by 

approximately five and seven percent respectively for girls and boys over the last forty years 

(Abarca-Gómez et al. 2017). Conversely, an increasing number of children are specializing in a 

sport. While the specific definition of specialization may vary slightly depending on the context, 

it is generally understood to be when an athlete chooses to play one sport nearly or all-year-

round, and to the exclusion of other sports and activities. Studies have placed the number of 

specialized athletes participating in high school sports to be everywhere from 13.4% to 41.1%, 

and this group has been found to be at greater risk for injuries overall, but more so for overuse 

injuries, particularly ones that require more than a month’s worth of recovery. (Bell et al. 2016; 

Post et al. 2017; Pasulka et al. 2017; McGuine et al. 2017; Moseid et al. 2019). Girls tend to 

experience higher rates of overuse injuries, more often coming in individual sports like tennis 

and gymnastics. Some surveillance studies have track and field as the highest injury risk for 

young women, with an injury rate of 3.82 per 10,000 athletic exposures, with nearly 37% of all 

injuries in the sport being overuse injuries (Schroeder et al. 2015). 

Among the most prevalent concerns regarding specialization is burnout – both 

psychological and physical, leading to cessation of participation in what was originally a loved 

sport. The later type of burnout can often manifest in overuse injuries, which can be influenced 

by fatigue and the volume and repetition of homogeneous movement that comes with playing a 
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single sport so consistently. In addition, adolescent athletes are still in the early stages of fine-

tuning their biomechanics and neuromuscular control, which can also be exacerbated by fatigue. 

Research has demonstrated a higher incidence of both lower extremity and overuse injuries at 

increased levels of specialization (Bell et al. 2016; Pasulka et al. 2017; McGuine et al. 2017; 

Moseid et al. 2019). Overuse injuries can be particularly harmful if they result in physeal plate 

injuries, which in turn can lead to limb-length discrepancies and earlier onset of conditions such 

as osteoarthritis. Given the potential for long-term harm, there has been much discussion about 

limiting the volume and/or frequency of activity in younger athletes. Little League Baseball, for 

example, has developed regulations about how many pitches and how often a player can throw, 

and the specific rules vary with age. Tennis has also limited exposure to younger players, 

introducing age eligibility rules that allowed players between 14 and 18 to gradually increase the 

quantity and level of play, based on their age and performance. Ten years after the introduction 

found that the average length of a career as well as the odds of having a 10+ year career 

increased, even accounting for changes in areas like sports medicine and nutrition (Otis et al. 

2006).  

Running is a popular sport and an accessible leisure activity that is low in cost, and has 

numerous physiological benefits, including cardiovascular fitness, bone strengthening, and 

prevention of diseases like diabetes (Jenny & Armstrong 2013). Youth participation in activities 

like distance running and triathlons has been steadily increasing, with children running longer 

distances at earlier ages. In 2013, at least 70,000 children between six and seventeen participated 

in a half or full marathon (Running USA’s Annual Marathon Report | Running USA).  A survey 

of state cross country and track and field associations conducted by The National Federation of 

High School Associations ranks participation in cross country 5th  most popular among all 
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possible sports, and 4th among girls, with 472,597 and 221,616 athletes respectively (The 

National Federation Of State High School Associations 2015). There is also anecdotal evidence 

of middle and high school runners attempting full triathlons and even ultra-marathons – any race 

longer than 26.2 miles – distances.  Given that all of these numbers are potentially an 

underestimate, as they only account for official statistics and specific organizations, this 

represents a significant at-risk population. However, there is no current consensus on what safe 

levels of volume at these developmental stages are. There is increasing awareness that existing 

biomechanics research revolving around adults cannot simply be ‘scaled down’ and directly 

applied to children and adolescents, leading to an increased emphasis on conducting relevant 

studies on this population. However, most current investigations of the running biomechanics of 

youth are centered on sprinting and sports that happen to involve running, such as soccer (Mercer 

et al. 2010; Rozumalski et al. 2015; Rumpf et al. 2015).   

Valid research also has to take into account not only differences between the sexes, but 

variety between pubertal stages, as material properties of biological tissues change throughout 

the growth period. For example, the stiffness of tendons, including the patellar and Achilles 

tendons, increase during maturation (Meng & Untaroiu 2018). There is also evidence that 

kinematic and kinetic differences between boys and girls for dynamics movements like jumping 

and cutting widen some time during or shortly after puberty (Hewett et al. 2004; Quatman et al. 

2006). Combined with rapid growth and changes in muscular strength, it is important to 

determine how these characteristics influence injury risk in young runners.  

The purpose of this dissertation project was to examine the kinematics, kinetics, and 

muscle activations of female youth runners and how fatigue affects these biomechanical patterns. 

The results will hopefully begin to highlight differences between young and adult runners, 
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particularly young female runners, who tend to be understudied as a group, and who generally 

report more overuse-type injuries due to specialization than their male counterparts (Jayanthi et 

al. 2020). Based on the degree of observed differences, the results can be used for future 

guidelines on volume limits for younger runners, or used for mechanics corrections and/or 

strength training if the risk factors are modifiable.  

 

2. Literature Review 

2.1 Running biomechanics in adults and children  

Potential injury risk predictors for long distance runners are well studied in the adult 

population and include leg acceleration, knee and leg stiffness and step length and rate. While 

individuals with a history of tibial stress fractures were shown to have higher values of knee 

stiffness, lower knee stiffness has been associated with soft tissue injuries (Wen et al. 1997; J. 

Mizrahi et al. 2000; Milner et al. 2006; Wen 2007; Pohl et al. 2008; Edwards et al. 2009; 

Heiderscheit et al. 2011).  

In a female-specific study, fatigue induced by an exhaustive treadmill run resulted in 

decreased impact peak by an average of 6.6% and loading rates by 11.8% (van der Worp et al. 

2015). The changes in ground reaction forces were attributed to a decrease in cadence, increase 

in step length, and altered lower joint kinematics. These results could be viewed either as an 

active response by the runners to lessen impact forces as a protective function by employing soft 

tissue and muscles and absorb impact, or as simply a fatigue-induced deviation from optimal 

biomechanics. Runners who had been injured in the previous year also experienced higher 

impact peaks and loading rates (Gerlach et al. 2005), evidence to support the latter explanation. 

Through retrospective study (Milner et al. 2006), peak hip adduction, peak rearfoot eversion, and 
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absolute free moment, defined as the torque about a vertical axis resulting from the friction 

between the foot and the ground during stance phase, have been shown to be the best predictors 

of tibial stress fractures in female runners.  

In a comparison between the 1st and to the 30th minute of running on a treadmill, runners’ 

average stride rate decreased, maximal knee extension increased, and average impact 

acceleration on the shank - measured via accelerometer - increased by approximately 4 times 

gravitational acceleration. (Joseph Mizrahi et al. 2000). Decreased muscle activation is given as 

one potential factor for the increase in impact acceleration. Additionally, EMG indicated that in 

the fatigued state, activity of the gastrocnemius increased, while that of the tibialis anterior 

decreased. This is an important finding due to the role of the lower limb muscles during gait as 

shock absorbers in stabilizing the leg at and after heel strike. Also, imbalances in strength or in 

fatigue rates in the shank muscles can increase the bending and/or tension forces placed on the 

tibia, predisposing the athlete to an overuse injury. The changes in kinematics between novice 

and competitive runners as they fatigue were investigated as 15 of each group ran at 3.2km trial 

pace. The novice runners changed their kinematics to a larger degree, particularly their trunk lean 

and hip abduction (Maas, Bie, et al. 2018). Since the subjects in this study are training regularly, 

the degree to which their kinematics change should fall closer to that of the competitive runners 

as opposed to the novice ones.  

The physiological differences between youth and adult athletes are becoming 

increasingly well studied. For example, pre and early adolescents have not yet developed the 

anaerobic power or localized muscular strength necessary for events that involve more 

explosivity such as sprinting, jumping, and throwing, nor do they acclimate to extreme 

conditions like heat as readily. However, they are able to recover from such efforts more quickly 
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than adults (Bar‐Or 1995, p.). Boys, even at the late stages of adolescence, showed less fast-

twitch b fiber hypertrophy than adults under a 3-month training program (Fournier et al. 1982). 

Levels of muscular co-contraction also change with maturity. EMG were collected at the end of a 

4-minute treadmill exercise bout in a mixed group of seven to sixteen-year-olds for their vastus 

lateralis, hamstrings, tibialis anterior, and soleus muscles. Co-contraction 1) decreased with age 

and 2) the differences between age groups increased with speed. This co-contraction can be an 

indicator that the motor skills of the younger group are still underdeveloped, or that these 

muscles are counteracting a greater instability (Frost et al. 1997). Either case results in a higher 

metabolic cost and has implications for younger children running long distances. Simulating 

different levels of co-contraction of the leg muscles in OpenSim can provide insights into how 

this may change things like joint forces and moments. A potentially confounding factor in 

maturational studies like this is that the children were grouped solely according to age; when 

subjects include both boys and girls, the girls in the 15-16 range may be two or even three years 

removed from their peak height velocity (PHV), and the boys in the 10-12 group may still be five 

or more years away from theirs. It was also not specified whether or not the children were 

runners.    

There is no current consensus on acceptable levels of running volume by age – either in 

terms of a single running bout or weekly/monthly accumulated mileage. Advocates of allowing 

children to run marathon-distance events have relied on reported injury data from marathons 

(Roberts 2007). However, such reports can only capture injuries that happen during the course of 

a marathon and are not accounting for the mileage before the race, nor the potential overuse or 

other related injuries that may occur in the longer term. Conversely, professionals such as the 

International Marathon Medical Directors Association have issued statements suggesting that 
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marathons shouldn’t be undertaken until a runner’s eighteenth birthday (Rice et al. 2003). 

Between 1994 and 2007 a total of 225,344 children were treated in ERs for running-related 

injuries. The annual incidence was also found to be steadily increasing throughout the 

observational period, with those between the ages of 12 and 14 having the highest injury rate at 

45.8 per 100,000 (Mehl et al. 2011). In addition, the younger children were more likely to have 

traumatic injuries and fractures, with older children and adolescents, experiencing more overuse 

injuries.  

A retrospective study of a random cross section of 5-17 year-old patients at a Boston 

Children’s sports medicine clinic also found similar injury differences between the younger (five 

to 12 year-olds) and older (13 and over) children. Again, the younger children came in with more 

fractures and traumatic-type injuries, including physeal fractures, apophysitis, and 

osteochondritis dissecans. The adolescents were more likely to have overuse and soft tissue 

injuries, including meniscal tears, and spondylolysis (Stracciolini et al. 2013). This group also 

looked specifically at the differences in sports injuries between the population’s boys and girls. 

The girls were found much more likely to develop an overuse and/or soft tissue-related injury, 

whereas the boys were slightly more likely to experience a traumatic or bone-related injury. The 

girls also experienced three times as much patellofemoral knee pain, while osteochondritis 

dissecans was more common in boys. Both experienced similar rates of ACL injuries 

(Stracciolini et al. 2014). Given the combination of these two studies, it seems that males under 

13 are at increased risk of developing osteochondritis dissecans, and adolescent female athletes 

are at the highest risk of developing an overuse injury. Changes in muscular strength between the 

sexes also varies – before puberty, boys and girls gain upper and lower body strength in 
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relationship to changes in height, while boys strength continues to increase even after the 

pubertal phase (Parker et al. 1990). 

A longitudinal study focused on the implications of specialization as it affects the kinematics 

of the knee in female athletes matched 79 adolescent girls that played multiple sports with one 

that specialized in one of either basketball, soccer, or volleyball (DiCesare et al. 2019). Athletes 

were also designated as pre, mid, or post-pubertal and completed a drop vertical jump task on 

two lab visits at least six months apart. Small or non-existent variations in knee kinematics 

between the specialized and non-specialized athletes before puberty became significant post-

puberty. This included greater peak knee abduction angle and moment, and to a lesser degree the 

knee extensor moment. These biomechanics could elevate the risk of issues like ACL injury and 

patellofemoral pain. In addition, the drop jump movement was completed in a non-fatigued state, 

when landing biomechanics have a tendency to deteriorate from baseline. In addition, this was 

only a study of the knee joint, and therefore it would be beneficial to investigate changes in the 

kinematics of the hip and ankle joints as well as for other sports (running, tennis) and movements 

(cutting, sprinting).   

There have also been studies focused more specifically on lower extremity injury incidence 

in high school runners (Rauh et al., 2006). During the 2006 season, 38.5% of 421 runners 

sustained at least one injury, which was defined as any reported muscle, joint, or bone 

problem/injury of the back or lower extremity resulting from running in a practice or meet. Girls 

sustained a significantly higher overall injury rate (19.6 vs 15 per 1000 exposures for the boys). 

Predictors of injury for the girls included an injury during the summer before the season and 

having a quadriceps angle that exceeded 20°. For boys predictors included a history of multiple 

running injuries and a quadriceps angle greater than 15°. In 2014, Rauh further investigated 
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training-related risk factors for injury and found that runners who did not frequently alternate 

short and long mileage days, ran for eight weeks or less, and ran a higher percentage of miles on 

hills or irregular terrain were more likely to be injured during the season (Rauh 2014). Finally, a 

prospective study of factors leading to stress fractures in 748 competitive runners again found 

girls at higher risk, with 5.4% of girls and 4.0% of boys affected. The tibia was the most 

common site in girls, and the metatarsal in boys (Tenforde et al. 2013). Prior fracture was the 

biggest predictor of future fractures, underlining the need for and the benefits of preventing the 

initial injury from occurring. Low BMI increased risk for girls, but playing another sport, 

particularly basketball, seemed protective for the boys. These studies highlight the need for both 

sex and age-specific studies.  

Peak height velocity is not only the period of most rapid bone growth, it is also when  

bone mineral density is just coming off of its lowest levels (Faulkner et al. 2006) and the 

cartilage is not yet in its stronger, more mature form. Additionally, the most rapid periods of 

bone growth tend to precede the lengthening of muscle-tendon complex, which can cause an 

increase in tensile stress, even at resting positions. Flexibility in boys peaked after PHV, while 

they saw the greatest gains in measures of strength and explosiveness around the same time as 

their PHV (Philippaerts et al. 2006). It has also been theorized that the increase in muscle 

strength is a factor in stimulating bone growth during puberty. For 83 boys and girls between 

eight and eighteen assessed yearly for six times, peak lean tissue velocity preceded the femur’s 

cross-sectional area velocity and its peak section modulus velocity (Jackowski et al. 2009). The 

result was the same for both sexes, indicating that the tissue changes are maturity-level and not 

sex or chronological-age dependent.  
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During bouts of both high-intensity and intermittent high-intensity exercise, children exhibit 

less fatigue than adults as defined by force and/or power output (Ratel et al. 2006). Children also 

showed a smaller decline in step frequency than adults when it came to intermittent running.  

These results held for both males and females. However, fatigue resistance as measured by an 

isokinetic dynamometer showed slight differences. While fatigue resistance for the boys 

gradually declined into adulthood, it plateaued more suddenly around mid-puberty (Dipla et al. 

2009). Another characteristic that seems to differ according to sex is shock attenuation. Mercer et 

al studied eleven boys and seven girls (mean  SD of ages 10.5 ± 0.9 and 9.9 ± 1.1 years 

respectively), looking specifically at leg and head peak impact acceleration, as well shock 

attenuation, the ratio of these two measures (Mercer et al. 2010). The children ran on treadmills 

at a slow, fast, and preferred speed, as well as once over ground at their preferred speed.  While 

adult shock attenuation ranges from 80-90%, the children exhibited attenuation rates between 

66% and 76%.  While they had similar shock attenuation, the girls tended to have higher peak 

leg and head accelerations.  It was not clear whether this difference was due to anthropometric 

characteristics or running technique.   

The first study to compare pediatric gait when running overground to on a treadmill found 

small to no kinematic and EMG differences (Rozumalski et al. 2015). However, the children 

showed significantly higher hip extension and ankle plantarflexion moments and lower knee 

extension moments on the treadmill, likely due to a forward movement of the foot center of 

pressure and higher tendency to forefoot strike as opposed to more rearfoot striking when 

running overground.   

A second study was slightly more targeted, in that its subjects were athletes males age 8-16 

on sport-specialized school teams where running and/or sprinting was an important aspect of 
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their sport (Rumpf et al. 2015). Athletes were grouped by their maturational status. Subjects ran 

on a treadmill, where both vertical and horizontal forces were measured as they performed 

sprints.  The researchers then calculated bilateral limb asymmetry in these measures, as well as 

in work and power. All groups exhibited asymmetries of between 15% and 20% in horizontal 

and vertical force, as well as in power.  This is in comparison to levels of 2-10% in adults. In 

addition, pre-pubertal athletes demonstrated significantly higher power asymmetry.  

Fourchet et al. had eleven trained male adolescent runners run to exhaustion at a constant 

speed run and measured contact time and estimated spring mass model characteristics. With 

fatigue mean foot contact area, contact time, peak vertical ground reaction force, vertical 

displacement of the center of mass, and leg compression increased significantly. Flight time and 

leg stiffness decreased, and vertical stiffness, and stride parameters (frequency & length) did not 

change significantly. Leg compression was calculated by the equation  

∆𝐿 = 𝐿0 −  √[𝐿0
2 − (𝑉𝑓𝑜𝑟𝑤𝑎𝑟𝑑 ∗  

𝑇𝑐

2
 )

2

] +  ∆𝑧 

Where 𝐿0 = initial leg length, 𝑇𝑐 = contact time, and ∆𝑧 = the vertical displacement of the center 

of mass (Fourchet et al. 2015). Some of the differences between this study and those focused on 

more anaerobic and intermittent exercise and the reasons for these differences are worth 

exploring.   

The effect of shoe age on running biomechanics was investigated in boys between nine and 

twelve who participated in any sport at least once a week. After 4 months of use, the boys 

showed increased loading rate, which is in contrast to adults who showed no change in new 

versus used shoes. The used shoes also reduced the peak ankle dorsiflexion and increased the 

ankle plantarflexion at toe-off, which in this case was similar to adult results. These alterations in 
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kinematics came with a significant decrease in the peak ankle. Increased knee power absorption 

was observed in used shoes (Herbaut et al. 2017). A female shoe study looked at how children in 

adult shoes performed as opposed to in shoes manufactured specifically for their age group and 

found that the girls had higher impact forces (2.46 and 2.09 BW) and loading rates (105.85 and 

79.78 BW/s) than their adult counterparts. Both metrics were also higher when they were 

wearing youth sneakers (Forrest et al. 2012). Unfortunately, only kinetics were tested, so there is 

no way to determine if the changes were solely because of the shoes, or if the runners altered 

their running kinematics as well, which in turn affected the impact characteristics. 

2.2 Inverse Dynamics and Biomechanical Modelling   

Musculoskeletal models are a significant tool that allow for the exploration of joint 

kinematics and kinetics. More importantly, modelling allows for the estimation of muscle and 

joint contact forces, which can be impractical and/or invasive, particularly when studying youth 

populations. While EMG can be helpful, what the signal means in terms of the force developed 

by a muscle, can be affected by numerous factors including muscle length and fatigue, 

contraction type and velocity, and the contribution of synergistic muscles. As a solution, 

platforms are incorporating EMG and/or modeling to approximate the roles of individual 

muscles in movement and force production, as well as how they can coordinate to produce 

optimal, normal, or disordered movement. OpenSim, an open source software package 

developed and maintained by Simtk.org, enables users to build, exchange, and analyze such 

models. It employs sets of differential equations to describe aspects of the musculoskeletal 

system, such as muscular contraction dynamics. The dynamics of the system can either be found 

through an optimization problem (for example, to run at a specified speed, or to achieve a certain 
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movement), or it can be set to “track” motion data that has already been captured (Delp et al. 

2007).  

Existing models can be scaled in accordance with the subject’s measurements and/or 

marker data, by scaling based on the relative distances between the markers. The scaling step 

adjusts not only bone lengths, but masses, center of masses, muscle lengths, and tendon slack 

lengths. The next step is an inverse kinematics that uses motion capture data to determine the 

model’s movement and joint angles. The model kinematics are made consistent with measured 

kinetic data by minimizing the residual in the equation:  

�⃗�𝑒𝑥𝑡 =  ∑ 𝑚𝑖𝑎𝑖⃗⃗⃗⃗  

𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠

𝑖=1

−  �⃗�𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙   

The kinematics from this step are used to find muscle excitations through forward dynamics in 

computed muscle control (CMC). Static optimization calculates net joint moments into 

individual muscle forces for each point in time. OpenSim incorporates newly recorded 

movement data for individualized analysis in the .trc data format, and force plate data in the .sto 

or .mot format. This results in a simulation of the complete movement including the activations 

of the involved muscles. 

2.2.1 Gait 

Several models have been developed with the express purpose of investigating 

kinematics, kinetics, and muscle activations during gait and running in particular. One such study 

compared Achilles tendon loading between females running barefoot with different foot strike 

patterns. Muscle forces for the gastrocnemius and soleus were estimated for 11 rear foot strikers 

(RFS) and 8 runners non-rear foot strikers. Peak Achilles tendon force occurred earlier in stance 

phase which contributed to a 15% increase in average Achilles tendon loading rate in the Non 
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RFS group. This group also experienced 11% greater Achilles tendon impulse with each step 

(Almonroeder et al. 2013). This results in a significant difference in accumulated stress on the 

Achilles, and is evidence that forefoot striking may not always be superior. However, these 

findings could also be used to guide training and conditioning programs to include more Achilles 

strengthening exercises for non-rearfoot strikers.  

Drs. Scott Delp and Tim Dorn have produced a number of models and simulations 

investigating muscle activations during gait. In 2008, Delp et al investigated contributions to 

both support and forward progression over a range of walking speeds. The key findings were that 

the gluteal muscles, vasti, hamstrings, gastrocnemius, and soleus were all primary contributors to 

support and progression, and that all of their contributions generally increased with walking 

speed with the exception of the gluteus medius (Liu et al. 2008, p. 2008). Skeletal alignment was 

also more important to support than muscles at slow walking speeds, whereas at faster speeds, 

muscular contribution increased, with contralateral soleus muscles providing the propulsion (Liu 

et al. 2008). A full body model based on a single male subject attempted to include the dynamics 

of arm motion and found that the arms acted more as a counterbalance to the lower body and did 

not meaningfully contribute to propulsion or support. The quadriceps were key contributors 

during breaking and support of the first half of stance, with calf muscles taking over propulsion 

and support for the second half (Hamner et al. 2010).  

Another study examined the changes in forces developed by the leg muscles when 

running at slow, medium, fast, and sprinting speeds (Dorn et al. 2012). The researchers 

combined the obtained gait data from nine subjects performing slow running to a full out sprint. 

They found that the greatest transition in muscle activity occurred at approximately 7 m/s, when 

running was increasingly powered by upper leg and hip muscles – the iliopsoas, gluteus 
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maximus, and hamstrings – and less by the plantarflexors, soleus, and gastrocnemius that 

predominate at lower speeds.  These results could be implemented in training programs. Broadly, 

it implies that training of the glutes and hamstrings should take precedence when working with 

sprinters. On an individual basis, the model could be used to identify relative weakness or 

imbalances in one of these muscles of importance. 

A single-subject study looked at the specific contributions of hamstrings and quadriceps 

to energy generation and dissipation at the knee joint during the phases of running. A lower-

extremity OpenSim model was employed to determine that the quads dissipated energy during 

flexion and generated energy during extension and the transition from swing to stance phase. The 

hamstrings dissipated energy during swing phase, and generated energy during stance and the 

transition from toe-off to swing in flight phase (Yeow 2013). Potential energetic differences in 

sign or magnitude in adolescent runners would provide clues for training and injury prevention 

through muscle activation. The Dorn, Schanache, and Pandy group also used OpenSim to isolate 

the mechanics of the hamstrings during a sprint. They modeled the motion of experienced 

sprinters to determine the musculotendon strain, velocity, force, power, and work, and how it 

was divided between the individual hamstring muscles. The setup included surface electrodes for 

EMG capture. Force generation was generally found to be proportional to the muscle’s cross-

sectional area, with the semimembranosus generating the highest force, power, and work. 

However, the long head of the biceps femoris experienced the highest peak strain and the 

semitendinosus exhibited the greatest lengthening velocity. From an injury perspective, peak 

musculotendon force and strains for the semitendinosus, semimembranosus, and the long head of 

the biceps femoris, were all observed around terminal swing, when most hamstring strains occur 

(Schache et al. 2012). 
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A comparison of joint power generation between youth and adult sprinters coming out of 

the blocks was undertaken by Debaere et al (Debaere et al. 2017). They theorized that 

differences in joint moments and powers would be the differentiators in increased sprint 

performance with age, particularly when coming out of the starting blocks. It stands to reason 

that performance of the task that relies most on the ability of the leg muscles to generate power 

would be most affected by the changes in pre and post maturational muscle strength, which is 

about fifteen for boys, but tends to vary more with girls (Abbassi 1998). The study included 14 

adult sprinters, and well as 18 sprinters between sixteen and eighteen and 11 sprinters under 16 

(average age ~15). In addition to tracking the sprint forces and kinematics, the athletes also 

performed a countermovement jump as a marker of explosive power. OpenSim was used to 

calculate joint angles, COM velocity, and lower-body net joint moments and powers. The adult 

sprinters generated significantly more knee power with higher hip flexion and knee extension 

during first stance, resulting in longer steps, where in the younger athletes, more power was 

generated at the hip with shorter steps. The power generation capabilities were also greater in the 

adult sprinters (Debaere et al. 2017). This study involved both sexes, which may be a 

confounding factor, as maturation occurs at different ages, and strength differences are much 

greater after puberty than before. As such, it would be interesting to determine if there is a sex-

based difference in percent change in the kinematics, power and/or moments pre and post 

maturation.  

Another study that involved children investigated the contributors to medio-lateral center 

of mass acceleration during 90° turns and walking (Dixon et al.). OpenSim was implemented to 

simulate these aspects of gait using experimental motion data. During the turn approach, outside 

limb soleus and gastrocnemius contribution to lateral COM acceleration was reduced, whereas 
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during the turn itself, inside limb soleus and gastrocnemius contribution increased, and gluteal 

contribution medially decreased when compared to straight walking, together helping accelerate 

the COM towards the new walking direction. 

2.2.2 Injury Prediction and Prevention  

 An early study took a lower limb model and employed it to calculate anterior tibial 

translation (ATT) in both a normal and ACL deficient knee. They then used the model to 

determine how much quadriceps and hamstring force was necessary to restore ATT to normal, or 

at the very least an acceptable standard (Shelburne et al. 2005). The force of the leg muscles in 

the deficient leg was either decreased (quadriceps) or increased (hamstrings). Ultimately, 

decreasing the quadriceps action was not enough to limit ATT, but increasing the hamstrings 

action was. It also decreased the knee extensor moment, but not to quite the same degree as the 

decrease in quadriceps force did. And within the hamstring muscles, the semimembranosus was 

the most effective at limiting ATT. This suggests that hamstring facilitation, as opposed to 

quadriceps avoidance is a more effective way to stabilize gait in ACL deficient individuals.  

Roldán et al wanted to simulate how the ACL itself behaves under a variety of 

conditions, including walking, cutting, and jumping (Roldán et al. 2017). They captured 12 

participants performing these activities and used the kinematic data in conjunction with a 3 

degree of freedom knee model to determine the tensile forces acting on the ACL in vivo. The 

ACL length was calculated by tracking the insertion points from the motion data, and strain was 

taken from the change from its unloaded length. The greatest elongation and highest tensile 

forces occurred during a maximal effort two-legged jump. Cutting actually produced lower peak 

tensile forces than walking, suggesting that ACL injury mechanisms of this type are more likely 

due to combination loads. 
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Another common disorder in runners is patellofemoral pain (PFP). However, determining 

the causality of the muscle forces, pain, and joint stresses has proven difficult. Besier at el  

(Besier et al. 2009) chose to use an EMG-driven knee model to estimate the muscle forces 

around the joint in pain-free and patellofemoral pain suffering individuals. The group 

hypothesized that those with PFP would have decreased action of the vastus medialis compared 

to the pain free group, and that all subjects would show similar activation patterns whether they 

were walking or running. In addition to the typical calibration and anatomical models, an EMG-

to-activation model and a Hill-type muscle model were used to capture muscle activation and 

muscle tendon dynamics and forces respectively. Neither hypothesis was found to be true, as the 

PFP and pain free subjects showed similar quadriceps force distribution, and the distribution of 

individual muscles changed from walking to running. Interestingly, the females in the study had 

larger hamstring and gastrocnemius forces in both walking and running, once normalized for 

height and bodyweight. Since females tend to have higher rates of patellofemoral pain, it may be 

that this increased muscle activity also changes the joint contact forces, leading to pain.    

2.2.3 Physical Therapy and Surgery Outcomes  

Another application for forward dynamics modelling is the simulation of the potential 

outcomes of therapy and surgery, as well as neurological conditions such as cerebral palsy. Fox 

et al  (Fox et al. 2018) chose to simulate the effect of muscle weakness and contracture on the 

neuromuscular control of normal gait in children. Since both neural and muscular issues affect 

gait in conditions like spastic cerebral palsy, the group was interested in whether the muscular 

deficiencies themselves prevented normal gait, or if it was possible to normalize gait via neural 

control. To this end, walking motion capture and force data for 10 typically developing children 

were collected, along with medial and lateral gastrocnemius, soleus, and tibialis anterior EMG. 
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Scaling was used for muscle forces in addition to segment geometry, with the former being 

scaled to the height squared. They then created multiple musculoskeletal models to simulate 

varying levels of weakness and contracture by reducing the maximal isometric force of the 

medial and lateral gastrocnemius, the soleus, and the tibialis anterior by 15 and 30 percent. They 

reduced the tendon slack lengths by 1.5 and 3 percent. The models that introduced only muscle 

weakness were still able to achieve normal gait through compensation of other muscles. In the 

contracture simulations, activity of the gastrocnemius muscles decreased, along with an increase 

in activity and force production from the tibialis anterior. This was most pronounced during mid 

stance and swing phase. 

   An earlier study focused on the how the crouch gait typically experienced by individuals 

with cerebral palsy affects muscle and joint contact forces (Steele, DeMers, et al. 2012). This is 

also one of the earlier demonstrations in how modeling can be a useful guide even as models are 

scaled down and applied to pre-maturational individuals. In this case, the subjects included three 

healthy children and nine children with cerebral palsy – exhibiting mild (20° – 30°) to severe (> 

50°) knee flexion. Motion analysis, EMG data, and modelling found that quadriceps force in 

severe crouch gait subjects nearly quadruple that found in the mild individuals. This is dangerous 

as it not only increases the stresses on the tibiofemoral joint, but on the patellofemoral joint and 

soft tissue like the patellar tendon. Similarly, the peak joint contact force in these individuals was 

up to six times that of the healthy children, while the subjects with the mild instances of crouch 

gait exhibited similar levels of tibiofemoral contact forces on the level of 2.5 – 3 times body 

weight (BW). Results like this are also helpful in determining when surgery may be worth the 

risks. The children with severe crouch gait are at much higher risk for knee pain and joint 

degeneration, whereas the individuals with more mild cases would be better served with physical 
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therapy. A similar group combined these two experiments and took both healthy children and 

children with cerebral palsy. They simulated muscle weakness again by reducing maximal 

isometric contraction strength until the model produced could no longer reproduce the original 

subject’s gait. Similar to the prior study’s findings, quadriceps force increased with crouch gait 

severity. Both hip abductor and ankle plantarflexor strength decreased linearly with crouch 

severity (Steele, van der Krogt, et al. 2012). From these results the gluteal muscles and the 

plantarflexors could be identified as targets for strengthening and physical therapy programs. 

Van der Krogt later developed a model that incorporated passive muscle properties and motor 

control aspects by developing a stretch reflex controller to add to a cerebral palsy model (Krogt 

et al. 2016). One can extrapolate from these applications to how they can be applied in an 

athletic context, to guide training and injury prevention programs.  

As previously mentioned, children can exhibit different and changing neuromuscular and 

musculoskeletal properties compared to adults, and in order to develop simulations that are 

accurate and are practically applicable, accounting for at least some of these aspects is necessary. 

Approaches have included subject-specific MRI information like muscle volume, optimal fiber 

length, and tendon slack length (Bolsterlee et al. 2015; Fox et al. 2018). Since this is not always 

possible, others have modified models using body size, height, and mass, or maximum isometric 

force (Folland et al. 2008; Knarr & Higginson 2015; Knarr et al. 2016; Krogt et al. 2016). 

Scaling muscle strength to height-squared is a particular example in previous simulation studies 

involving children. 

Leg length discrepancies (LLDs) can be congenital or acquired through injuries or 

procedures like hip replacements. Scaling one limb on an OpenSim model to generate different 

discrepancies can provide a guide as to the maximum allowable difference to allow the patient to 
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be able to continue to walk normally, and to minimize future damage and degeneration of the 

involved and contralateral joints. A study particularly focused on this problem as it relates to a 

total hip arthroplasty found that the ‘safe’ LLD was inversely related to the weight of the subject, 

with the range being 2.1 – 2.6 cm for individuals weighing 50 – 100 kg (Thote et al. 2015).  

Computational modelling has also been used to predict the outcomes of rotator cuff repair 

depending on the supraspinatus reinsertion point. Musculoskeletal models were constructed 

using a dynamic arm simulator via Matlab and OpenSim, with model parameters like muscle 

origin and insertion, glenohumeral joint center and center of mass averaged from various prior 

anatomical studies. Muscle forces and moment arms surrounding the shoulder joint were 

estimated from insertion 5 – 20 mm in 5 mm increments medially from the original insertion 

point. As the insertion point moved medially, the supraspinatus moment arm was reduced, 

particularly in abduction, resulting in a higher necessary force for humeral stabilization, placing 

increased load on the repaired tendon. Moving the insertion point also decreased the ratio of the 

compressive to shear force in the glenohumeral joint, lowering the joint’s stability (Leschinger et 

al. 2019). These findings necessitate a cost-benefit analysis of whether these detriments are 

worth attempting to decrease the tension on the reattached tendon in large rotator cuff tears. 

Muscle forces estimated from OpenSim can subsequently be used in other types of modeling, 

including Finite Element Analysis. One example of this looked at how footwear construction 

influenced the knee biomechanics, where individual bone geometry, motion analysis, OpenSim 

muscle contributions, plantar pressure, and cadaver data were all used as inputs for a finite 

element model to determine tissue stresses and strains in the joint (Liu et al. 2016). The process 

of this dissertation may provide a baseline for the improvement of equipment and footwear 

designed for particular populations, like female and youth athletes.  
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Taken all together, there is a clear need for more definitive answers on the potential 

effects of high-volume distance running in children and young adults. This will provide guidance 

to parents, coaches, and physicians, and further provide protection for athletes so that they can 

avoid injury in the short term and extend their potential and capability to participate in an activity 

well into adulthood. Computational modelling - and OpenSim in particular - allow for the 

estimation of muscle forces and joint loads so that we can progress towards this end and help 

develop guidelines, set safe limits on volume, and develop prehab and prevention programs to 

target weakness and imbalances that may be influenced by age or maturational status.  
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CHAPTER 2:  THE EFFECTS OF AGE AND FATIGUE ON KINEMATICS AND 

KINETICS OF FEMALE YOUTH RUNNERS  

Abstract  

The purpose of this study was to compare the kinematic and kinetic parameters of young 

female runners before and after a fatiguing run. Motion capture and ground reaction forces 

(GRF) were recorded before and after a 5-kilometer treadmill run at or close to personal best 

pace for eleven runners between the ages of 8 and 17. Spatiotemporal parameters, joint angles, 

GRF, net joint moments, and joint powers were calculated and compared. While it did not reach 

the level of significance, peak ankle moment and power and hip moment stood out as most 

affected, all decreasing with fatigue. In terms of age differences, the younger group demonstrated 

smaller peak knee moment, knee power generation and absorption, but greater maximum 

external ankle rotation and hip abduction.    

Introduction  

An increasing number of children and adolescents are training for and participating in 

long distance running events – in 2013, at least 70,000 children between six and seventeen 

participated in a half or full marathon (Running USA’s Annual Marathon Report | Running USA, 

n.d.). A 2019 survey of state cross country and track and field associations conducted by The 

National Federation of High School Associations ranks participation in cross country 5th most 

popular among all possible sports, and 4th among girls, with 488,640 and 219,345 athletes 

respectively (Howard & Gillis, 2010). There is also anecdotal evidence of middle and high 

school runners attempting full marathon and even ultra-marathon – any race longer than 26.2 

miles – distances.  Given that all of these numbers are likely an underestimate, as they only 
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account for official statistics and specific organizations, this represents a significant at-risk 

population.   

Potential injury risk predictors for long distance runners are well studied in the adult 

population and include leg acceleration knee and leg stiffness, and step length and frequency 

(Edwards et al., 2009; Heiderscheit et al., 2011; Milner et al., 2007; J. Mizrahi et al., 2000; 

Joseph Mizrahi et al., 2000; D Y Wen et al., 1997; Dennis Y Wen, 2007). While individuals with 

a history of tibial stress fractures were shown to have higher values of knee stiffness, lower knee 

stiffness has been associated with soft tissue injuries.  Since long distance running is an activity 

where both bone and soft tissue injuries are common, the implication of these two findings points 

to a middle range of optimal leg stiffness. Although adult research is useful in guiding research 

hypotheses for children and adolescents, results from these studies are often not directly 

applicable. Reasons for this include special considerations like evolving motor control strategies, 

imbalances in the maturation rate of bone and soft tissues, and sudden changes in weight and 

height. In addition, young runners are susceptible to injuries that fully-grown adults are not, 

including Osgood-Schlatter and Sever’s diseases. While there is evidence that adolescent female 

runners are more susceptible to tibial stress fractures (Tenforde et al., 2013),  there remains a gap 

in our knowledge about the risk profiles of pre and early adolescents who are running a large 

number of miles per week.   

However, there has been a measure of debate among pediatricians, parents, and sports 

professionals about safe levels of running volume and frequency with regard to age (Nelson et 

al., 1990; Rice et al., 2003; Roberts, 2005, 2007). These are issues of significance, as overuse 

injuries including tibial stress fractures, epiphyseal plate injuries, and patellofemoral syndrome 

are among the most common musculoskeletal problems in this group. Some of these injuries can 
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lead to long-term disabilities including growth deformities and chronic arthritis; therefore, 

identifying the individuals at high risk for these outcomes and the opportunity to prevent them is 

worthwhile.  

The majority of investigations into youth running gait are focused on short, maximal 

efforts like sprinting (Yanagiya et al., 2003)(Rumpf et al., 2015), including adult/youth 

comparisons (Aeles et al., 2018). Some have utilized EMG data, looking for differences between 

treadmill and overground running (Rozumalski et al., 2015), or differences in levels of co-

contraction in different age groups (Frost et al., 1997).  In one more directly distance-based 

comparison, Liley et al found that older female runners exhibited higher rearfoot eversion, knee 

internal rotation, and knee adductor moments than their younger counterparts (Lilley et al., 

2011). However, as the younger group included subjects between the ages of 18 and 24, it likely 

did not capture any individuals that were not already at a full maturational stage.  

The effects of fatigue on running mechanics have also been studied in adult runners, with 

a variety of outcomes depending on the population and the experimental setup. Some of the 

reasons for sometimes conflicting results are because there can be significant individual variation 

in biomechanics to begin with. For example, there have generally been smaller effects on ground 

reaction forces (Dierks et al., 2010; Luo et al., 2019), or in some cases even decreases (Gerlach 

et al., 2005). Step and stride length do tend to decrease with fatigue (Joseph Mizrahi et al., 2000; 

Williams et al., 1991). In addition, more experienced and faster runners tend to exhibit fewer and 

smaller kinematic changes with fatigue, with one of the bigger differences being greater hip 

abduction in novices (Luo et al., 2019, p.; Maas, Bie, et al., 2018). In a fatigued state, female 

runners have also been shown decreased dorsiflexion and increased knee flexion (Kellis & 

Liassou, 2009; Miller et al., 2007a).  
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The purpose of this study was to compare the kinematic (joint angles) and kinetic (ground 

reaction forces, and joint moments, and powers) parameters of young female runners of different 

age groups before and after a fatiguing run. Our hypothesis was that stride length would decrease 

and ground reaction forces would remain relatively similar across groups and time. Furthermore, 

we expected there would be an increase in knee flexion and decrease in dorsiflexion with fatigue, 

and that the younger runners would exhibit greater changes at the hip and knee joints than the 

older runners.  

Methodology 

Participants 

Eleven female children and young adults between the ages of eight and seventeen were 

recruited for this study. Participants were from Atlanta area middle and high school cross 

country teams and running clubs and recruited through flyers and word of mouth. All had been 

running one a week or more for at least a year and had experience running a timed distance of at 

least three kilometers. Of those who qualified via the inclusion criteria, those who had 

experienced a lower-extremity injury in the 6 months prior to data collection that kept them from 

competing or training for more than one week were excluded from the study. In order to 

participate, subjects had to have run a timed 5-kilometer distance within the past year, to ensure 

they were able to run the required distance, as well as to give a guide time for the treadmill run. 

Permission for recruitment and the study was obtained from the Georgia State University 

Institutional Review Board. A parental permission form for each subject was signed by the 

parent, with written assent obtained from the participants aged 11-17 years, and verbal assent 

obtained from the participants 10 or younger.  

Instrumentation  
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Participants ran over two AMTI force plates (Advanced Mechanical Technology Inc., 

Watertown, MA) embedded in the middle of a 10 m walkway, plus additional runway in order to 

properly accelerate. An eight-camera Vicon motion capture system (Vicon, Centennial, CO) 

captured kinematic data at a frequency of 100 Hz, accompanied by the VICON lower-body plug-

in-gait (PIG) marker placement on the subjects. PIG employs 16 reflective markers bilaterally at 

the anterior superior iliac spine, posterior superior iliac spine, thigh, knee, shank, ankle, heel, and 

toe (Figure 2). Ground Reaction Force (GRF) data were synchronically collected at a frequency 

of 1000 Hz.  

Experimental Design 

After arriving at the lab, the parent or guardian signed a parental permission form and the 

subjects 11 years or older signed a written assent form, with those under 11 giving informed 

verbal assent. Then the subject, with assistance from the guardian if needed, answered questions 

about their training, including the following:  

• How many days per week they run  

• How many miles per week they run  

• At what age they began participation in distance running  

• Other sports they participate in  

• Any prior injuries they have had that kept them from participating in physical 

activity.  

Participants’ height (m) and body mass (kg) were measured using a standard scale with a 

height rod. Anthropometry parameters such as leg length, knee width, and ankle width were 

measured on both sides of the body using a caliper and a tape measure. Based on average 

developmental ages, subjects were separated into 2 age groups to determine if there was a 
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difference in how fatigue affected younger, potentially pre or mid-pubertal runners (14 and 

under) compared with those aged 15-17 (Herman-Giddens 1997, Brix 2019). 

 

Table 1. Mean (SD) of subject characteristics 

 N Age 

Height 

(m) 

Weight 

(kg) 

8-14 5 11.8 (2.5) 1.43 (0.13) 31.8 (8.2) 

15-17 6 16 (0.9) 1.63 (0.07) 53.4 (3.8) 

Total 11 14.1  1.54 (0.14) 43.6 (12.7) 

 

Subjects were asked not to run in the 24 hours before data collection, so as to limit 

baseline fatigue without unnecessarily impacting any training the subjects may need to complete. 

Subjects were instructed to wear their typical running attire, with either fitted tights or shorts that 

ended at least 2-3 inches above the knee in order to aid in marker placement and reduce marker 

obstruction. After the aforementioned data was collected, the runners were provided an 

opportunity for a self-directed stretch and warm up on the treadmill for familiarization. After 

warmup, subjects were marked and a total of 16 retroreflective markers were placed in 

accordance with the VICON lower body plug-in-gait model (Figure 1).  
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Figure 1 Vicon Plug-in Gait Marker Placement 

  

After warm up and marker placement, subjects ran down the gait lab walkway in order to 

obtain at least 3 acceptable foot contacts from each limb with the force plate. Each trial used for 

analysis was checked to ensure that the subject was within 0.5 m/s of their average speed (Table 

2). After collection, subjects performed a 5K on a treadmill in or next to the biomechanics lab. 

The run was completed at a pace at or near their personal best given on the intake questionnaire. 

Upon completion of the treadmill run, subjects were inspected for loose and/or missing markers. 

Loose markers were secured, and missing markers were replaced on the areas pre-marked with 

ink on the skin or tape on clothing. With as little time passing as possible, post-run data was then 

collected in the same manner as the pre-run data.  

Data Analysis  

 Measured parameters  

 Vicon Nexus (Vicon, Centennial, CO) was used for processing the raw data of the running 

trials and calculating the spatiotemporal parameters. VICON Polygon (Vicon, Centennial, CO) 

generated the pertinent gait parameters, and compared to those produced by OpenSim (NCSRR, 
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Palo Alto, CA). Relevant gait spatiotemporal parameters compared include stride length and 

cadence. Stride length was measured in meters as the anterior-posterior distance between 

successive foot strikes of the right or left foot as determined by the heel marker. Foot strike was 

defined as the beginning of a gait cycle and identified using either the heel or toe depending on the 

participant’s foot strike pattern. Also included were peak hip and knee flexion and extension, peak 

ankle dorsiflexion and plantarflexion, peak hip abduction and adduction, and peak ankle internal 

and external rotation. Ground reaction forces (GRF) were normalized by body weight. Peak joint 

powers and moments for the hip, knee, and ankle were normalized by body weight and leg length. 

VICON Plug-in-gait was used to calculate time-distance parameters and lower-limb kinematics, 

and kinetics.    

Statistical analysis  

The aspects examined were spatiotemporal variables, including stride length and cadence, 

as well as peak kinematic variables, ground reaction forces, net moments, and powers. For each 

subject, the three best trials for each condition were averaged. Differences were tested using a 

two-way mixed analysis of variance with one dependent factor (time: pre vs post run) and one 

independent between subjects factor (age: young vs old children). The significance level was set 

at  = 0.05. SPSS 22 (IBM Corp., Armonk, NY) was used to conduct statistical analysis. 

Results 

The overall analysis revealed a significant interaction between age and time (F(1,9) = 

357.60, p = 0.041); also, there was a trend for significance pre and post-run (F(1,9) = 196.88, p = 

0.055). 

Spatiotemporal parameters 
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While cadence did decrease to some degree post-run, stride length remained almost 

exactly the same. There was similarly no significant effect of age on these spatiotemporal 

parameters (Table 3). The younger group did appear to have a slightly shorter stance viewed as a 

percent of the gait cycle.  

 

Table 2. Mean ± standard deviation of pre and post-run cadence, stride length, ground reaction forces, and trial 

speed. 

 Pre Post p 

Cadence (steps/min) 177.82 ± 9.99 171.51 ± 14.40 0.336 

Stride Length (m) 2.21 ± .27 2.21 ± .33 0.946 

Peak GRF (xBW) 2.45 ± .15 2.40 ± .08 0.302 

Speed  (m/s) 3.42 ± .36 3.51 ± .47 0.124 

 

Table 3. Mean ± standard deviation of cadence, stride length, ground reaction forces, and trial speed by age 

group 

 Younger Older p 

Cadence (steps/min) 184 ± 11.27 172.55 ± 4.98 0.187 

Stride Length (m) 2.01 ± .26 2.31 ± .27 0.316 

Peak GRF (xBW) 2.47 ± .11 2.43 ± .19 0.411 

Speed  (m/s) 3.48 ± .41 3.46 ± .34 0.122 

 

Kinematic variables  

Contrary to our hypothesis, there was no significant difference in knee kinematics with 

pre and post, nor were there differences between the age groups, only a small non-significant 

decrease in swing phase knee flexion. There were also small changes in peak plantarflexion 

(+24.4) and dorsiflexion (-5.5) (Figure 2). The younger group also showed nearly significant 

amounts more hip abduction and external ankle rotation (Error! Reference source not found.). 
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Pre run 

Post run 

 

Figure 2. All-subject averages as a percentage of gait for pre-run (red) and post-run (blue) joint angles, moments, and 

powers in the sagittal plane of the hip, knee and ankle.  

 

 P
o

w
er

 (
W

/k
g

) 
  
  
  

  
  
  

  
  
  

  
  
M

o
m

en
t 

(N
m

/k
g

) 
  
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  

A
n
g

le
 (
)

 



40 

 

 

 

 

 

 

Figure 3. Joint angles, moments, and powers in the sagittal plane for the younger group (pink) and older group 

(navy). 

 

Figure 4. Pre and post run age differences in hip abduction and external ankle rotation in degrees. 
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Kinetic Variables  

Peak ground reaction forces decreased only slightly after the run (Figure 5). The 

difference between the age groups was also minimal. At the joints, the ankle was most affected 

by fatigue, with both ankle moment and ankle power increasing noticeably but not quite reaching 

the set significance level (Table 4). Meanwhile, hip adduction moment decreased, and aside from 

a slight increase in knee power and moment, there were no notable differences in any other of the 

kinematic variables measured based solely on fatigue.  
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Figure 5. Ground reaction forces in the anteroposterior (AP), mediolateral (ML), and vertical directions as a 

percentage of the gait cycle . 

 Pre-run 

             Post-run 
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Figure 6. Averaged normalized ground reaction forces in the vertical direction for the younger (pink) and older 

(navy) groups. 

 

 

 

 

 

 

 

 



44 

 

 

 

 

Table 4. Pre and post peaks for the kinetic variables most affected by fatigue. 

 
Pre Post 

 

F p 

Ankle power 12.51 ± 3.41  13.68 ± 2.17 4.71 0.058 

Ankle moment 2.06 ± .45 2.24 ± .34 4.16 0.072 

Hip add moment 11.32 ± 4.09 10.5 ± 3.23 4.26 0.069 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Differences between ages pre and post run for hip abduction and external ankle rotation (degrees) and 

knee power generation and absorption (W/kg). 

Regression Analysis  

 A simple regression was performed to determine the relationships between age and 

cadence, ankle rotation, and knee moment. There was a significant relationship for cadence 

(F(1,9) = 7.61, p = 0.22) with an R2 of 0.458, and knee moment (F(1,9) = 9.39, p = 0.13), with an 

R2 of 0.511. Cadence decreased 2.5 steps/min for every year, and knee moment increased 0.19 
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Nm/kg with every year. There was not a significant relationship between age and ankle rotation 

(F(1,9) = 4.93, p = 0.53), R2 = 0.282. 

Discussion 

The results of the study characterize the differences in lower limb kinematics and kinetics 

before and after an all-out distance run in girls at different age levels. Looking only at fatigue 

effects, there were small but not significant changes before and after the run. While this confirms 

our hypothesis with regards to ground reaction forces, it runs counter to our other hypotheses. 

For example, stride length remained essentially unchanged. There was also very little change in 

knee kinematics, both by age and by fatigue. This is surprising given this seems to be one of the 

changes that are generally consistent across adult studies. One result that did produce similar 

trends to adult studies, although not to a significant degree, was the increase in plantarflexion 

during swing phase (Maas, De Bie, et al., 2018) and decrease in dorsiflexion (Kellis & Liassou, 

2009), which were more statistically significant in adult female runners.  

One potential explanation for the small changes before and after the run is that the 

protocol did not sufficiently produce fatigue in the subjects, or at least not universally across all 

of them. This may also explain the small degree of changes in spatiotemporal parameters, since 

most adult-based studies typically find some significant difference in this area. Similar studies 

have allowed for self-selected speeds (Brown et al., 2014; Miller et al., 2007b; Williams et al., 

1991), or a universal speed performed until fatigue (Luo et al., 2019). Others pre-fatigued 

selected muscles (Christina et al., 2001; Kellis & Liassou, 2009), employed the Borg scale 

(Koblbauer et al., 2014; Maas, Bie, et al., 2018), or VO2max (Gerlach et al., 2005) as a measure of 

fatigue. Protocols involving heart rate monitors are another potential solution to gauging fatigue 

levels.   
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When separating groups by age, the dependence of changes with fatigue produced 

unexpected results with kinematics in hip abduction and external ankle rotation. The increase in 

hip abduction with the younger runners mirrored the differences found between novice and 

competitive runners (Maas, Bie, et al., 2018). This may point to the fact that some of the 

differences between younger and older runners may be influenced by the amount of time they 

have been engaged in running, rather than by maturational differences. Increases in eversion 

have been found in adults (Dierks et al., 2010), so it’s not immediately clear why there is such a 

difference between the older and younger runners. Results did confirm our hypothesis at the knee 

joint. These results coincide with findings of studies examining the mechanics of young sprinters 

(Debaere et al., 2017). Compared to their older counterparts, younger sprinters tend to 

demonstrate smaller knee extension moment at sprint starts. In addition, a smaller percentage of 

their total lower-body power is derived from their knees compared to their hips and ankles. Other 

studies looking at sprinting as a whole also found that sprinting performance was much more 

dependent on ankle power generation during stance for younger sprinters, whereas knee power 

was a bigger contributor to performance in adults (Aeles et al., 2015, 2018). From our results, it 

appears that this applies for power absorption during running as well. Girls don’t typically reach 

full ability to generate power until about the age of 12 (Malina et al., 2004). This is derived from 

not-yet fully developed ability to generate power, particularly in the knee extensors (Gissis et al., 

2006). This shifts the power generation during stance phase to the ankle, which could become 

more pronounced with fatigue, since the knee is acting from a position of relative weakness to 

begin with.  

One of the limitations in this study is the number of subjects. A number of the age-related 

differences were close to reaching the significance level, with effect sizes ranging from 0.29 for 
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knee power generation to 0.36 for ankle rotation. As mentioned there can be wide variability in 

runner’s kinematics, therefore studies with larger groups are necessary in order to generate 

robust group trends and meanwhile examine the potential influence of individual variations. 

Another limitation was that subjects were grouped by age with the assumption that the average 

girl finishes puberty around the age of 14 years. To this end, the employment of MRI, 

maturational status questionnaires, or onset of menarche can better divide runners into 

appropriate maturational groups, as age is not a perfect proxy for this measure. An instrumented 

treadmill in conjunction with a motion capture system would also allow for better control over 

the subjects’ speed when measurements are taken, provide more foot falls to choose from, and 

would allow for easier data collection at multiple points along the run. Multi-year prospective 

studies performed with groups of runners that takes regular kinematic and kinetic measurements 

and tracks injuries can provide still more detail as far as potential injury markers.  

Further investigations could help determine whether variances in gait are the result of 

inherent differences in muscular capabilities from the start, or in the neuromuscular responses to 

fatigue. And within that fatigue, are the alterations due to central nervous system and pathway 

factors, peripheral to the neuromuscular junction and occurring within the muscle itself, or some 

combination thereof. General consensus for repeated maximal voluntary contractions is that 

fatigue progresses along with age through adulthood. However, it is not clear that we can assume 

the same for long-term, non-maximal activity that depends more on slow-twitch fibers. A study 

of maximal voluntary isometric contraction concluded that while children and adolescents 

experience more central fatigue than adults, adolescents experience more peripheral fatigue 

given equal amounts of central fatigue (Piponnier et al., 2019). When incorporating gender 

differences, fatigue rates for females during intermittent high-intensity exercise appear to reach 
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adult levels more abruptly, somewhere during mid adolescence (Dipla et al., 2009). Such results 

underscore the importance of dividing children into pre-pubertal, adolescent, and young adult 

categories, particularly when discussing athletic performance and training.   

Conclusions 

This study showed that as younger runners progress during a run, the most significant 

changes in both kinematics and kinetics occur at the ankle joint, particularly as it pertains to 

plantarflexion and dorsiflexion. More power was being generated by the ankle as opposed to the 

knee in the younger group, and it appears that this trend increases along the run. Coaches and 

parents of younger runners should be cognizant of such differences, and perhaps consider adding 

knee extensor strengthening exercises to both protect the ankle and optimize running 

performance.  
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CHAPTER 3. THE EFFECTS OF AGE AND FATIGUE ON MUSCLE FORCES IN 

FEMALE YOUTH RUNNERS  

Abstract  

There is disagreement between stakeholders in the well-being and performance of young 

athletes how much running volume is appropriate and at what age, and whether too much too 

soon can produce negative long-term outcomes. To investigate the effects of fatigue on young 

female distance runners, the motion and ground reaction forces of 10 girls between the ages of 8 

and 17 were recorded before and after an all-out 5-kilometer run. The inverse kinematics and 

static optimization tools in the OpenSim modeling software were used to estimate the muscle 

forces, and how they changed with fatigue. Muscle forces were significantly different before and 

after the run, particularly at the knee. Fatigue affected the age groups differently at the hip 

abductors and the ankle joint, with the younger runners typically exhibiting higher muscle forces 

as a percentage of their body weight, with steeper decreases post-run. These results have 

implications and suggest that age-based volume limits may be beneficial for young runners.  

Introduction  

Running is one of the earliest and most instinctual types of exercise we learn to engage 

in. It is a popular sport and an accessible leisure activity that is low in cost, and has numerous 

physiological benefits, including cardiovascular fitness, bone strengthening, and prevention of 

diseases like diabetes (Jenny & Armstrong, 2013). Cross country and track and field are one of 

the biggest areas of high school sports participation, especially among girls (Post et al., 2017). 

While shorter, more intense bouts of running have always been common and part of games 

children play, in the past few years, young athletes are running more often, for longer distances, 

and more competitively. Significant numbers are even starting to run ultramarathons, with 
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distances that exceed even the 26.2 miles traversed in a marathon (Scheer et al., 2020). Despite 

this, there is no current set of guidelines as to what volume of running is safe at what ages of 

development, similar to a sport like baseball with its recommended pitch counts and rest days.  

One way to inform potential participation recommendations is investigating how 

biomechanics change with fatigue in younger populations. Motion analysis has provided some 

information as to what characteristics change with fatigue in adult runners, including increased 

hip and knee range of motion (Luo et al., 2019), and decreased stride frequency (Joseph Mizrahi 

et al., 2000). There have also been comparisons between different levels of experience and 

training that show novice runners exhibit greater changes in biomechanics with fatigue than their 

competitive counterparts (Maas et al., 2018), and that faster marathoners maintain peak knee 

flexion magnitudes during stance phase better than slower runners (Chan-Roper et al., 2012). 

One study that looked directly at muscle activations at various speeds and across various age 

ranges in children, found that the younger the age group, the more likely they were to 

demonstrate high levels of co-contraction at both the thigh and the shank, and therefore a higher 

metabolic cost of locomotion (Frost et al., 1997).   

Studies of running using OpenSim have looked at which muscles contribute to propulsion 

and support, finding for example that the quadriceps were most responsible for breaking, 

whereas the soleus and gastrocnemius were most involved in propulsion and support (Hamner et 

al., 2010). Others have found that for most of the muscles they looked at, force generated per 

unit of activation was significantly related to running speed (Arnold et al., 2013). Dorn et al 

validated the accuracy of OpenSim force estimations matching EMG data to muscle forces at 

various running speeds. At a running speed of about 3.5 m/s, for example, peak force developed 

by the muscles ranged from .17 times bodyweight for the tibialis anterior to 6.7 times 
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bodyweight for the soleus.  A child-specific application, individual maximal isometric forces 

were applied to a model investigating the estimated muscle forces during gait for individuals 

with cerebral palsy, where maximum muscle forces ranged between approximately 0.1 

(dorsiflexor) and 1.8 (hip extensor) times subject bodyweight during walking (Kainz et al., 

2018).   

There are studies investigating differences in running biomechanics between children and 

adults, but a number of them focus on either sprinting or its role of running in the context of 

another sport. Fewer still have investigated changes related to fatigue. No studies exist 

investigating the potential long-term outcomes of pre-maturational long-distance running. The 

use of modeling that allows for estimation of joint loads and muscle contributions has potential 

to become a tool in talent identification, performance enhancement, and injury-risk assessment. 

As an initial step to this end, the purpose of this study was to use a musculoskeletal model of the 

lower extremity to estimate muscle forces during running in young female runners, as well as 

how they may change with fatigue. The hypothesis of this study was that: 1) muscle forces at the 

knee will decrease for both younger and older female school-age runners, 2) decreases in knee 

muscle forces will be greater for the younger group of runners and 3) younger runners will see 

changes with fatigue at the ankle joints, particularly those involved in dorsiflexion. 

Methodology 

Participants 

Eleven female children and young adults between the ages of eight and seventeen were 

recruited for this study. One subject was excluded from the study as the error result of the inverse 

kinematic tool could not be reduced to an acceptable level. Participants were from Atlanta area 

middle and high school cross country teams and running clubs and recruited through flyers and 
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word of mouth of coaches and teammates. All had been running for at least a year and had 

experience running a distance of at least five kilometers. Those who had experienced a lower-

extremity injury in the 6 months prior to data collection that kept them from competing or 

training for more than one week, or those who had not had a training week of at least 10 miles 

were excluded from the study. The study protocol was approved by the Georgia State University 

Institutional Review Board. A parental permission form for each subject was signed by the 

parent, with written assent obtained from the participants aged 11-17 years, with verbal assent 

obtained from subjects under 10 years.  

Table 5. Mean (SD) of subject characteristics. 

 N Age Height (m) Weight (kg) 

     

8-14 4 12 (0.1) 1.46 (0.14) 32.8 (9.2) 

15-17 6 16 (0.9) 1.63 (0.07) 53.4 (3.8) 

Total 10 14.4 1.56 (0.13) 45.1 (12.2) 

 

Instrumentation  

Participants ran over two AMTI force plates (Advanced Mechanical Technology Inc., 

Watertown, MA) embedded in the middle of a 10 m walkway. As studies have shown no 

significant difference in kinematics due to fatigue by limb, left or right strikes were noted but 

analyzed as the same. An eight-camera VICON motion capture system (Vicon, Centennial, CO) 

captured kinematic data at a frequency of 100 Hz, accompanied by the VICON lower-body plug-

in-gait (PIG) marker placement on the subjects. PIG employs 16 reflective markers bilaterally at 

the anterior superior iliac spine, posterior superior iliac spine, thigh, knee, shank, ankle, heel, and 
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toe. Ground Reaction Force (GRF) data were collected simultaneously at a frequency of 1000 

Hz.  

Vicon Nexus (Vicon, Centennial, CO) was used for processing the raw data of the 

running trials and calculating the spatiotemporal parameters. VICON Polygon (Vicon, 

Centennial, CO) generated the pertinent gait parameters, and compared to those produced by 

OpenSim (NCSRR, Palo Alto, CA). OpenSim was also used to generate contact and muscle 

force predictions from marker data. Custom and open source Matlab (The Mathworks, Inc., 

Natrick, MA) programs and toolboxes were used to convert kinematic and kinetic data for use in 

OpenSim.  

Experimental Design 

Participants’ height (m) and body mass (kg) were measured using a standard scale with a height 

rod. Anthropometry parameters such as leg length, knee width, and ankle width were measured 

on both sides of the body using a caliper and a tape measure. Based on average developmental 

ages, subjects were separated into 2 age groups to determine if there was a difference in how 

fatigue affected younger, potentially pre or mid-pubertal runners (14 and under) compared with 

those aged 15-17. The subjects also answered questions about their training, including the 

following:  

• How many days per week they run  

• How many miles per week they run  

• At what age they began participation in distance running  

• Other sports they participate in  

• Any prior injuries they have had that kept them from participating in physical 

activity.  
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Subjects were asked not to run in the 24 hours before data collection, so as to limit 

baseline fatigue without unnecessarily impacting any training the subjects may need to complete. 

Subjects were instructed to wear their typical running attire, with either fitted tights or shorts that 

ended at least 2-3 inches above the knee in order to aid in marker placement and reduce marker 

obstruction. After the aforementioned data was collected, the runners were provided an 

opportunity for a self-directed stretch and warm up on the treadmill for familiarization. After 

warmup, subjects were marked and a total of 16 retroreflective markers were placed in 

accordance with the VICON lower body plug-in-gait model.   

After warm up and marker placement, subjects ran down the gait lab walkway in order to 

obtain at least 3 acceptable foot contacts with the force plate. After collection, subjects 

performed a 5K within 30 seconds of their personal best pace on a treadmill in or next to the 

biomechanics lab. Upon completion of the treadmill run, subjects were inspected for loose and/or 

missing markers. Loose markers were secured, and missing markers were replaced on the 

designated marked areas on skin or clothing. With as little time passing as possible, post-run data 

was then collected in the same manner as the pre-run data, with all subjects running within 0.5 

meters per second of their pre-run collection speed.   

Modelling  

The marker trajectories and force data collected were employed to estimate joint reaction 

and muscle forces, and muscle forces in the OpenSim software (Opensim 4.1, Oracle 

Corporation). The model adapted for this study was the Gait2392 generic plug-in-gait (PiG) 

model developed by Arnold, Rajagopal, Dunne, and Carty. This is a lower extremity model that 

takes the original Gait2392 Opensim model and incorporates the VICON plug-in-gait marker set. 

The default model has a mass of 40.928 kg, which was scaled to the individually collected 
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subject weight (Error! Reference source not found.). The inertial properties of body segments, 

joint articulations, muscle moment arms, muscle attachments, and muscle length properties were 

scaled as a function of both length and body mass. 

 

Figure 8. Scaled opensim model (Subject 8) 

 

Marker positions (.trc) and motion (.mot) files for each trial were obtained through the 

export pipelines provided within the VICON Nexus Software. The marker positions were used as 

inputs in the inverse kinematics tool which goes frame by frame through the trial markers to best 

reproduce the motion captured in the lab environment in the model with minimal marker and 

coordinate errors. The c3d2OS script in the MOtoNMS (Mantoan et al., 2015) Matlab toolbox 

transformed the Nexus produced .csv file containing forces, moments, and center of pressure into 

a format (.mot) suitable for input into OpenSim for static optimization.  

In order to obtain muscle force estimates, static optimization was performed on the scaled 

models. The static optimization tool uses the known motion of the model to solve the equations 

of motion for the unknown generalized forces  
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∑ (𝑎𝑚𝐹𝑚
0)𝑅𝑚,𝑗 =  𝜏𝑗

𝑛

𝑚=1

 

 

while minimizing the following for each joint: 

∑ (𝑎𝑚)𝑝

𝑛

𝑚=1

 

where n is the number of muscles in the model, 𝑎𝑚 is the activation level of muscle m at a 

discrete time step, 𝐹𝑚
0 is the mucle’s maximum isometric force, 𝑅𝑚,𝑗 is the muscle’s moment 

arm, 𝜏𝑗  is the generalized force (torque) around the jth joint, and p is a user defined constant. 

External load was applied as the ground reaction force files extracted using the toolbox ( 

 Figure 9). The analysis tool was also used to calculate muscle moment arms.   

 

 

  Figure 9. Inputs and outputs of the OpenSim static optimization tool. 
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Figure 10. Example moment arm output for subject 1. 

Statistical Analysis  

There were two groups (younger: 8-14 years and older: 15-17 years), and two time points 

(pre- and post-run conditions). The model contained 86 muscle actuators. Since the model 

separates certain muscles (for example the gluteal minimums, medius and maximus are each 

composed of 3 actuators), these were summed together for the purposes of this analysis. The 

primary muscles of interest were the main hip and knee flexors and extensors, as well as the 

main ankle dorsiflexors and plantarflexors, although all muscles were submitted for analysis. All 

forces were also normalized by body weight. Differences were tested using a two-way (2 group x 

2 time) mixed analysis of variance with one within-subjects factor (time) and one between-

subjects factor (group). The significance level was set at  = 0.05. SPSS 22 (IBM Corp., 

Armonk, NY) was used to conduct statistical analysis. 

Results 

In the multivariate analysis, there was a significant difference in muscle forces pre and 

post run (F(1,7) = 13658.99, p = 0.007). There was also a significant interaction between the age 
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level of the runner and how muscle activity changed pre and post run (F(1,7) = 3399.77, p = 

0.013).  

Fatigue  

The largest changes before and after the run were exhibited at the knee joint. While the 

biceps femoris force was significantly greater post-run, the quadriceps force decreased, along 

with the pectineus muscle (Table 5).  

Table 6. Significant muscle forces pre and post run (SD) 

Muscle Pre Post F P 

Biceps Femoris (BW) 1.82 (1.02) 3.60 (1.71) 17.610 0.004 

Quadriceps (BW) 1.34 (.86) 1.17 (.83) 12.090 0.010 

Pectineus (BW) .80 (.38) .63 (.18) 9.065 0.020 

 

Age level 

Fatigue affected the two age levels quite differently pre and post run. Muscles most 

significantly affected include the gluteus medius and minimus, the sartorius, tensor fasciae latae, 

gracilis, flexor digitorum, peroneus brevis and longus, and extensor digitorum and hallucis 

longus. Comparisons of the significant pre and post maximum muscle forces for each group are 

depicted below, in multiples of bodyweight.  
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Figure 11. Estimated muscle forces with significant age differences (in times bodyweight). 

  

Regression Analysis  

 Simple regression analysis to predict normalized force based on age was found to be 

statistically significant for a number of muscles, including the TFL (F(1,8) = 81.28,  p < 0.001), 

quadriceps femoris (F(1,8) = 24.43,  p = 0.001), rectus femoris (F(1,8) = 78.92,  p < 0.001),  and 

tibialis anterior (F(1,8) = 35.27,  p < 0.001), with a 16%, 26%, 52%, and 63% decrease 

respectively with each passing year. This approach could be clarifying in future studies with 

multiple subjects for each age to minimize the influence of potential outliers.  

Discussion  

Results from the same group in Chapter 2 did not show large differences in kinematics or 

peak ground reaction forces before and after a five-kilometer run. However, there were some 

notable age-related differences in kinetics, particularly at the knee. Older runners exhibited 

greater amounts of power generation and absorption, as well as a higher moment. However, the 
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post-run results counter the hypothesis. Changes in the normalized quadriceps forces and the 

biceps femoris forces decreased and increased respectively for both age groups, not differentially 

as one would assume, given the connected data and the fact that force generation capabilities 

become more developed with maturity. The inverse change for knee flexion and extension is 

troubling for potential imbalance around the knee joint and for the onset of patellofemoral pain. 

This suggests all age groups would benefit from quadriceps strengthening exercises, or cross 

training and off-season activities such as biking.  

For the differences in muscle forces between the age groups, there are three main aspects 

of concern. First, the younger group was found to be operating at higher muscle forces relative to 

their body weight, potentially increasing stresses on the joints as well as the tendons, putting 

them at higher risk of overuse injuries. In the future, isolating adolescent runners may be prudent 

given their unique set of risk factors. For instance, there is evidence that all biological tissues do 

not grow and change at the same time or at the same rate – for example strength increasing by a 

larger factor than the cross sectional area of its associated tendon (Hawkins & Metheny, 2001). 

Studies of muscle activity in children during walking and running indicates that levels of co-

contraction are negatively related to age, suggesting that some of the higher muscle forces may 

simply be due to higher levels of co-contraction in the younger age group (Frost et al., 1997).   

The decrease in tensor fascia latae force and apparent compensation by the gluteus 

medius and minimus muscles both occurred just prior to foot contact. These changes may place 

the younger group at higher risk for iliotibial band syndrome, which is the most common running 

injury of the lateral knee (Lavine, 2010) and the cause of 7% of female high school running 

injuries (Tenforde et al., 2011). Prevention strategies in this group could include stretching 

and/or hip strengthening exercises.  
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Similarly, there is a change in the overall balance at the ankle towards the dorsiflexors 

and away from the plantarflexors. This can lead to repeated bending of the tibia, aggravated over 

longer periods with higher running volume. In addition, if development of the tendons happens 

to lag behind growth of the tibia, the relevant musculotendon units are now acting from a 

stretched resting position, which has been documented at the quadriceps femoris in late 

adolescent males (Charcharis et al., 2019). These factors would further increase tensile forces 

that can contribute to mid and distal tibial stress fractures. In addition, this ankle imbalance has 

been associated with increased shank acceleration and impact, adding to the potential 

accumulation of stress in the area (J. Mizrahi et al., 2000). 

Limitations 

As this was a simulation, results could have been checked against EMG recordings, 

however, the results are within range of studies measuring activity in adult runners (Dorn et al., 

2012). This study could have also benefited from a larger subject base, since there seemed to be 

a fair amount of variability, particularly in the younger subject group. Future studies could also 

investigate the effects of altering the length of the muscle-tendon unit to mimic growth 

conditions and investigating its effects using forward dynamics. Future results can be further 

refined by obtaining individual-specific maximal muscle forces, as has been done in studies 

performing simulations of children with cerebral palsy (Hegarty et al., 2019).  

Since static optimization considers each instant in time individually, it doesn’t account 

for the anticipatory muscle activations that may occur during running. In addition, the model can 

potentially overestimate the baseline level excitations of larger muscles and underestimating 

those of smaller muscles, however, the muscles examined in this study are on a relatively similar 

scale, and despite the listed limitations in this simulation approach, this study provides 
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meaningful initial insights into the muscular strategies of growing female athletes that can be 

further studied and validated, possibly with EMG data. 

Conclusion 

Overall, evidence from this study points to the idea that younger runners may especially 

benefit from hip and ankle strengthening exercises to avoid imbalances that may predispose them 

to injury. In addition, due to the repetitive and high-volume nature of distance running, young 

and adolescent runners may especially benefit from de-loading periods and more gradual 

increases in weekly and monthly running volume. Based on the simulation results which are 

currently the first estimates of how different age runners handle fatigue differently on a muscular 

level, they may also benefit from more careful monitoring of their running load.  
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APPENDICES  

Appendix A 

   Appendix A.1 

 
Table 7. Descriptive statistics for spatiotemporal, kinematic, and kinetic variables. 

 

Age Mean 

Std. 

Deviation N 

PreCad older 172.56 4.98 6 

younger 184.13 11.27 5 

Total 177.82 9.99 11 

PostCad older 171.67 3.69 6 

younger 171.33 22.39 5 

Total 171.51 14.40 11 

PreStride older 2.31 .27 6 

younger 2.09 .25 5 

Total 2.21 .27 11 

PostStride older 2.32 .25 6 

younger 2.07 .39 5 

Total 2.21 .33 11 

Pre_GRF older 2.43 .19 6 

younger 2.47 .11 5 

Total 2.45 .15 11 

Post_GRF older 2.33 .31 6 

younger 2.50 .15 5 

Total 2.40 .26 11 

Pre_K_Flex older 94.10 23.64 6 

younger 102.33 9.85 5 

Total 97.84 18.35 11 

Post_K_Flex older 98.81 15.34 6 

younger 106.41 13.34 5 

Total 102.26 14.30 11 

Pre_M older 3.44 .63 6 

younger 2.70 .62 5 

Total 3.10 .71 11 

Post_M older 3.44 .88 6 



74 

 

 

 

 

younger 2.51 .40 5 

Total 3.02 .83 11 

Pre_PG older 11.21 4.11 6 

younger 7.89 2.23 5 

Total 9.70 3.66 11 

Post_PG older 11.29 2.99 6 

younger 7.67 2.56 5 

Total 9.64 3.27 11 

Pre_PA older 14.40 1.41 6 

younger 11.25 3.70 5 

Total 12.97 3.03 11 

Post_PA older 15.09 4.19 6 

younger 10.99 4.01 5 

Total 13.23 4.45 11 

Pre_Dorsi older 31.71 4.09 6 

younger 27.73 7.98 5 

Total 29.90 6.18 11 

 

 
Table 8. Within subjects analysis of variance results 

  Sum of 

Squares 

df Mean 

Square 

F Sig. Partial 

Eta 

Squared 

time cadence 255.800 1 255.800 1.184 .305 .116 

stridel 0.000054 1 0.000054 .005 .946 .001 

GRF .008 1 .008 1.049 .333 .104 

Knee_Flex 105.160 1 105.160 2.039 .187 .185 

Knee_M .049 1 .049 .565 .471 .059 

Knee_PG .026 1 .026 .013 .912 .001 

Knee_PA .251 1 .251 .040 .846 .004 

Ankle_DF 158.992 1 158.992 1.205 .301 .118 

Ankle_Pf 2861.334 1 2861.334 3.275 .104 .267 

Ankle_int 26.481 1 26.481 1.019 .339 .102 

Ankle_ext 12.242 1 12.242 .511 .493 .054 

Ankle_M .172 1 .172 4.157 .072 .316 

Ankle_P 7.744 1 7.744 4.708 .058 .343 

Hip_flex .298 1 .298 .014 .908 .002 

Hip_ext 7.895 1 7.895 1.011 .341 .101 
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Hip_add 4.155 1 4.155 .395 .545 .042 

Hip_abd 22.502 1 22.502 2.375 .158 .209 

Hip_M .130 1 .130 4.259 .069 .321 

Hip_P .010 1 .010 .006 .938 .001 

 

 

 

 
Table 9. Between subjects analysis of variance results 

  Sum of 

Squares 

df Mean 

Square 

F Sig. Partial Eta 

Squared 

Age cadence 172.190 1 172.190 2.039 .187 .185 

stride .304 1 .304 1.932 .198 .177 

GRF .060 1 .060 .742 .411 .076 

Knee_Flex 342.024 1 342.024 .668 .435 .069 

Knee_M 3.824 1 3.824 4.715 .058 .344 

Knee_PG 65.604 1 65.604 3.756 .085 .294 

Knee_PA 71.510 1 71.510 3.997 .077 .308 

Ankle_DF 31.966 1 31.966 .322 .584 .035 

Ankle_Pf 1738.742 1 1738.742 1.291 .285 .125 

Ankle_int 401.580 1 401.580 1.322 .280 .128 

Ankle_ext 1892.695 1 1892.695 5.062 .051 .360 

Ankle_M .117 1 .117 .392 .547 .042 

Ankle_P 6.953 1 6.953 .444 .522 .047 

Hip_flex 3.505 1 3.505 .035 .856 .004 

Hip_ext 76.074 1 76.074 .846 .382 .086 

Hip_add 6.681 1 6.681 .357 .565 .038 

Hip_abd 98.281 1 98.281 4.687 .059 .342 

Hip_M .401 1 .401 1.422 .264 .136 

Hip_P .008 1 .008 .001 .976 .000 

 

 

  Appendix A.2 
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Figure 12. Means and standard deviations for maximum muscle forces for young and older runners, and the 

group as a whole. 

 

Muscle Group Mean SD N 

glut_med younger 5.56 1.72 4 

older 4.14 1.06 5 

Total 4.77 1.50 9 

Post_glut_med younger 6.52 2.66 4 

older 3.46 .42 5 

Total 4.82 2.31 9 

glut_min younger 3.35 .62 4 

older 2.07 .31 5 

Total 2.64 .80 9 

post_glut_min younger 2.74 1.06 4 

older 1.73 .31 5 

Total 2.18 .87 9 

semimem_r younger 2.37 2.60 4 

older 1.69 .58 5 

Total 1.99 1.68 9 

post_semimem_r younger 2.67 1.66 4 

older 1.80 .47 5 

Total 2.19 1.16 9 

semiten_r younger 1.18 .43 4 

older .70 .22 5 

Total .91 .40 9 

post_semiten_r younger 1.13 .28 4 

older 1.01 .16 5 

Total 1.06 .21 9 

bifem younger 2.49 1.28 4 

older 1.28 .16 5 

Total 1.82 1.02 9 

post_bifem younger 4.36 2.23 4 

older 3.00 1.02 5 

Total 3.61 1.71 9 

sar_r younger .70 .22 4 

older .37 .03 5 

Total .52 .22 9 

post_sar_r younger .64 .24 4 
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older .38 .03 5 

Total .50 .20 9 

add_long_r younger 1.25 .30 4 

older 1.21 .27 5 

Total 1.23 .27 9 

post_add_long_r younger 1.13 .35 4 

older 1.30 .46 5 

Total 1.23 .40 9 

add_brev_r younger 1.58 .97 4 

older .58 .28 5 

Total 1.02 .82 9 

post_add_brev_r younger .99 .32 4 

older .88 .17 5 

Total .93 .24 9 

add_mag younger 4.40 2.98 4 

older 2.12 .70 5 

Total 3.13 2.24 9 

post_add_mag younger 3.10 1.13 4 

older 2.03 .28 5 

Total 2.51 .92 9 

tfl_r younger 1.27 .55 4 

older .62 .06 5 

Total .91 .48 9 

post_tfl_r younger 1.14 .36 4 

older .64 .04 5 

Total .86 .34 9 

pect_r younger 1.07 .45 4 

older .58 .12 5 

Total .80 .38 9 

post_pect_r younger .74 .23 4 

older .54 .07 5 

Total .63 .18 9 

grac_r younger .75 .26 4 

older .42 .02 5 

Total .57 .24 9 

post_grac_r younger .72 .31 4 

older .43 .03 5 
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Total .56 .24 9 

glut_max younger 5.44 3.03 4 

older 3.03 .67 5 

Total 4.10 2.30 9 

post_glut_Max younger 5.72 3.46 4 

older 3.67 1.02 5 

Total 4.58 2.49 9 

iliacus_r younger 3.70 .77 4 

older 2.60 .40 5 

Total 3.09 .80 9 

post_iliacus_r younger 3.84 1.71 4 

older 2.54 .42 5 

Total 3.12 1.29 9 

psoas_r younger 4.24 1.79 4 

older 3.16 .36 5 

Total 3.64 1.26 9 

post_psoas_r younger 4.02 1.38 4 

older 2.80 .46 5 

Total 3.34 1.11 9 

quad_fem_r younger 1.81 1.19 4 

older .97 .13 5 

Total 1.34 .86 9 

post_quad_fem_r younger 1.50 1.25 4 

older .91 .15 5 

Total 1.17 .83 9 

rect_fem_r younger 5.15 1.89 4 

older 3.22 .16 5 

Total 4.08 1.54 9 

post_rect_fem_r younger 4.54 2.59 4 

older 3.09 .31 5 

Total 3.74 1.77 9 

vas_med_r younger 4.42 3.51 4 

older 2.44 .94 5 

Total 3.32 2.48 9 

post_vas_med_r younger 1.65 .90 4 

older 2.50 .98 5 

Total 2.12 .99 9 
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vas_lat_r younger 2.53 2.54 4 

older 1.76 .87 5 

Total 2.10 1.72 9 

post_vas_lat_r younger 1.41 1.12 4 

older 1.36 .64 5 

Total 1.38 .82 9 

vas_int_r younger 2.85 2.81 4 

older 1.50 .44 5 

Total 2.10 1.89 9 

post_vas_int_r younger 1.21 .75 4 

older 1.93 .93 5 

Total 1.61 .89 9 

gas younger 4.90 4.73 4 

older 1.76 .93 5 

Total 3.15 3.40 9 

post_gas younger 5.48 5.34 4 

older 2.02 1.05 5 

Total 3.56 3.81 9 

soleus_r younger 7.01 6.60 4 

older 1.25 1.05 5 

Total 3.81 5.11 9 

post_soleus_r younger 3.06 2.21 4 

older 1.54 1.57 5 

Total 2.22 1.93 9 

tib_post_r younger 5.05 5.13 4 

older .61 .38 5 

Total 2.59 3.92 9 

post_tib_post_r younger 3.11 2.50 4 

older 1.58 .65 5 

Total 2.26 1.79 9 

flex_dig_r younger 1.61 .78 4 

older .56 .21 5 

Total 1.03 .75 9 

post_flex_dig_r younger 1.03 .56 4 

older .57 .28 5 

Total .77 .47 9 

flex_hal_r younger .95 1.04 4 
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older .28 .14 5 

Total .58 .73 9 

post_flex_hal_r younger .66 .37 4 

older .32 .09 5 

Total .47 .30 9 

tib_ant_r younger 3.75 2.70 4 

older 1.60 .27 5 

Total 2.56 2.01 9 

post_tib_ant_r younger 2.90 .93 4 

older 1.68 .17 5 

Total 2.22 .87 9 

per_brev_r younger 1.59 .97 4 

older .62 .31 5 

Total 1.05 .81 9 

post_per_brev_r younger 1.72 .59 4 

older 1.13 .09 5 

Total 1.39 .48 9 

per_long_r younger 2.90 2.28 4 

older .57 .49 5 

Total 1.61 1.89 9 

post_per_long_r younger 2.78 1.77 4 

older 1.20 .40 5 

Total 1.90 1.40 9 

ext_dig_r younger 1.77 .52 4 

older 1.02 .34 5 

Total 1.35 .56 9 

post_ext_dig_r younger 2.25 .85 4 

older 1.11 .18 5 

Total 1.62 .80 9 

ext_hal_r younger .52 .14 4 

older .25 .09 5 

Total .37 .18 9 

post_ext_hal_r younger .64 .37 4 

older .33 .07 5 

Total .47 .29 9 
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Table 10. Within subjects muscle force analysis results 

 Muscle Sum 

of 

Squar

es 

df Mean 

Square 

F Sig Partial Eta 

Squared 

time glutmed .086 1 .086 .069 .801 .010 

glumin 1.015 1 1.015 3.915 .088 .359 

semimem .193 1 .193 .218 .655 .030 

semiten .077 1 .077 1.401 .275 .167 

bi_fem 14.294 1 14.294 17.610 .004 .716 

sar .003 1 .003 1.149 .319 .141 

add_long .001 1 .001 .015 .905 .002 

add_brev .094 1 .094 .689 .434 .090 

addmagn 2.143 1 2.143 2.228 .179 .241 

tfl .013 1 .013 1.494 .261 .176 

pect .149 1 .149 9.065 .020 .564 

grac .001 1 .001 .540 .486 .072 

glutmax .949 1 .949 2.100 .191 .231 

illi .007 1 .007 .012 .917 .002 

psoas .375 1 .375 1.754 .227 .200 

quad .149 1 .149 12.090 .010 .633 

rec_fem .609 1 .609 3.123 .121 .308 

vas_med 8.115 1 8.115 4.486 .072 .391 

vas_lat 2.575 1 2.575 3.651 .098 .343 

vas_int 1.645 1 1.645 1.246 .301 .151 

gastr .789 1 .789 .115 .744 .016 

soleus 14.793 1 14.793 2.106 .190 .231 

tib_post 1.054 1 1.054 .217 .656 .030 

flex_digi .376 1 .376 1.991 .201 .221 

flex_hal .070 1 .070 .263 .624 .036 

tib_ant .660 1 .660 .862 .384 .110 

perv_brev .468 1 .468 3.664 .097 .344 

per_long .286 1 .286 .349 .573 .048 

ext_dig .360 1 .360 3.872 .090 .356 

ext_hal .045 1 .045 2.476 .160 .261 
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Table 11. Between subjects muscle force analysis results 

Muscle Sum of 

Squares 

df Mean Square F Sig Partial Eta 

Squared 

glutmed 22.341 1 22.341 5.904 .045 .458 

glumin 5.820 1 5.820 11.748 .011 .627 

semimem 2.645 1 2.645 .755 .414 .097 

semiten .421 1 .421 4.326 .076 .382 

bi_fem 7.379 1 7.379 2.796 .138 .285 

sar .385 1 .385 8.697 .021 .554 

add_long .021 1 .021 .101 .760 .014 

add_brev 1.397 1 1.397 3.729 .095 .348 

addmagn 12.490 1 12.490 3.367 .109 .325 

tfl 1.439 1 1.439 8.059 .025 .535 

pect .521 1 .521 5.086 .059 .421 

grac .416 1 .416 5.902 .045 .457 

glutmax 22.062 1 22.062 2.329 .171 .250 

illi 6.413 1 6.413 5.799 .047 .453 

psoas 5.883 1 5.883 2.711 .144 .279 

quad 2.262 1 2.262 1.748 .228 .200 

rec_fem 12.612 1 12.612 2.943 .130 .296 

vas_med 1.415 1 1.415 .290 .607 .040 

vas_lat .775 1 .775 .237 .641 .033 

vas_int .444 1 .444 .152 .708 .021 

gastr 48.350 1 48.350 3.009 .126 .301 

soleus 58.880 1 58.880 3.732 .095 .348 

tib_post 39.494 1 39.494 4.202 .080 .375 

flex_digi 2.548 1 2.548 9.181 .019 .567 

flex_hal 1.134 1 1.134 4.181 .080 .374 

tib_ant 12.684 1 12.684 4.565 .070 .395 

perv_brev 2.707 1 2.707 5.631 .049 .446 

per_long 16.991 1 16.991 5.717 .048 .450 

ext_dig 3.943 1 3.943 9.360 .018 .572 

ext_hal .389 1 .389 6.720 .036 .490 
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Figure 13. Linear regressions for cadence, ankle rotation, and knee moment on age. 

  

  Appendix B.2 

 



85 

 

 

 

 

 

 



86 

 

 

 

 

 

Figure 14.  Linear regressions for normalized tensor fasciae latae, quadriceps femoris, rectus femoris, and 

tibialis anterior forces on age. 
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