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by

WILLIAM GREGORY JOHNSON

Under the Direction of Anu G. Bourgeois, Ph.D.

ABSTRACT

In recent decades, we are witness to an explosion of technology use and integration of

everyday life. The engine of technology application in every aspect of life is Computer Science

(CS). Appropriate CS education to fulfill the demand from the workforce for graduates is a

broad and challenging problem facing many universities. Research into this ‘supply–chain’

problem is a central focus of CS education research.

As of late, Educational Data Mining (EDM) emerges as an area connecting CS education

research with the goal to help students stay in their program, improve performance in their

program, and graduate with a degree. We contribute to this work with several research

studies and future work focusing on CS undergraduate students relating to their program

success and course performance analyzed through the lens of data mining.

We perform research into student success predictors beyond diversity and gender. We

examine student behaviors in course load and completion. We study workforce readiness



with creation of a new teaching strategy, its deployment in the classroom, and the analysis

shows us relevant Software Engineering (SE) topics for computing jobs. We look at cognitive

learning in the beginning CS course its relations to course performance. We use decision trees

in machine learning algorithms to predict student success or failure of CS core courses using

performance and semester span of core curriculum. These research areas refine pathways for

CS course sequencing to improve retention, reduce time-to–graduation, and increase success

in the work field.

INDEX WORDS: Education research, Educational data mining, CS student per-
formance, Software engineering education, Classification, Deci-
sion trees
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1 INTRODUCTION

Across all industries in most societies, computing usage is prevalent without question.

With this pervasive integration, a resulting large demand from our workforce for highly

skilled and knowledgeable Computer Science (CS) graduates creates an evident shortage.

While CS student enrollments have grown, universities are facing a difficult time to keep up

with increasing their faculty and other resources to respond in kind. With a large student

population, there exists a diverse set of learning aptitudes, leading to traditional methods

of CS content delivery, however, failing to meet the academic needs of this population [1–3].

Many have tried to address the need by using various techniques found in research such

as blended classrooms, hybrid learning, flipped classrooms, group learning, and Massive

Open On–Line Courses (MOOC) [4–6]. This has not been enough. Instead of focusing on

pedagogy and content delivery, we can instead look at the CS student factors like race, sex,

transfer status, prerequisite grades, and CS course sequencing to identify ways of improving

performance and educational experiences and outcomes.

Our focus is to observe our diverse student body, and through a variety of modalities,

identify predictors of student performance - good and bad. Recent CS educational research

is proving to offer more accurate findings to help design intervention systems and more

accurate advising [7–9]. Our discovery can lead to developing customized interventions and

learning techniques leading towards pathways of student success.

Georgia State University (GSU) has recently been recognized as one of the most inno-

vative universities in the nation with respect to transforming education experiences through
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analysis of student populations [10]. Recently in a 2021 U.S. News and World Report1, they

rank GSU third in the United States as most innovative and in the top ten over the last

five years. Additionally, GSU ranks tenth in the United States as having one of the most

diverse student populations [11]. The main reason for their achievements is the use of data

analytics to improve student retention, progression, and graduation rates for the general

population across all majors at GSU. This approach shows value from results seen in the

very populations that undergraduate education has traditionally failed - first generation,

underrepresented groups, and low income. We take this approach of using data analytics

focusing on the CS majors, and more specifically, the part of the program that is CS specific

and not the general core classes. In this manner, we can identify uniqueness for the CS disci-

pline, rather than being generalized across the entire university with all academic programs.

Our approach can be tailored for analysis in any other specific academic program or major

to help identify performance predictors for their students.

Our first analysis is examining the performance impact of the CS course load in a

given semester between two cohorts of CS students - transfer and native (non-transfer).

Our university supports a large number of transfer students from several two-year colleges

that offer an Associate Degree in CS. Recently in 2016, our university merged with a two-

year college that offers this degree and we anticipate an even larger number of transfer CS

students. It has been observed these students have fewer completed lower level CS classes,

but most all of the general core classes related to a Baccalaureate Degree.

Our second analysis investigates student predictors of performance in the CS algorithms

course. In particular, we focus on various factors to identify which ones are predictors of

their performance in the algorithms course, namely, race, sex, prerequisite GPA, transfer

status, and semester span between passing a prerequisite course and passing the algorithms

course. Using regression analysis with numerous models, we determine the most influential

predictors for a successful GPA in the algorithms course.

1https://www.usnews.com/best-colleges/rankings/national-universities/innovative (Accessed in Novem-
ber 2020).
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Our third analysis centers on a survey study involving our newly developed and novel

teaching approach in a Software Engineering (SE) course. We call our strategy and approach

to teaching SE, MACROVR: MAchine learning to select project team members; Cloud tech-

nologies required for project control, code versioning, and team communications; ROtational

schedules in Agile roles; an individual Video of the team project story board; and Rubrics for

all presentations (MACROVR). As this class is often taken towards the end of a four-year CS

degree program, the goal of our study is to determine if our novel approach better prepares

senior and graduating CS students for computing job interviews. We deliver a five–point

Likert scale survey to the students and assess the impact of our new teaching strategies,

pedagogical innovations, and project–based team learning.

In our fourth analysis, we examine the performance of a CS1 course relating to cogni-

tive thinking load. We ask students several interpretive questions relating to the CS major’s

qualifying chart. Using inferential analysis, we investigate if any correlation between survey

scores, race, gender, high school CS course offering, SAT math score, public/private high

school, and high school population numbers (independent variables) impact the student’s

final course grade (dependent variable) could be found. Our results support the null hypoth-

esis: there are no correlative factors from these independent variables and the course final

grade. This research shows a non–positive outcome. We discuss this work in our conclusions.

Our last research and analysis involves the interpretation of the CS core curriculum

related to classification and predictive models. In this work, we use machine learning decision

tree algorithms to examine prerequisite course performance and semester span (sequencing)

to build optimal paths for success or failure in a variety of CS core curriculum courses. This

data gives us new insight to add to domain knowledge for intelligent advisement, CS course

scheduling, and proactive alerting systems for increasing student retention and completion

of the CS program’s core curriculum.
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2 BACKGROUND

CS education research is a widely studied topic mostly focusing on classroom experience

reports, acumen of subject content, pedagogical improvements, and innovations to increase

student participation. There exists measurements of outcomes in these research topics and

as of late, data mining and machine learning enter the collective work as tools to make

predictions and observe new models of CS student success and identify points of struggle

or failure. This new area of knowledge extraction, Educational Data Mining (EDM), is an

analysis process with interdisciplinary appeal where data mining and machine learning are

used to expand knowledge for stakeholders in education settings [12].

Most EDM research centers around classification and prediction with large groups of

students across many academic programs as found in [13–17]. Another area of EDM appli-

cation is the K–12 education environments and mining student dynamic data from online

education experiences [18]. Some of the more recent EDM works include deep learning and

using tensorflow for prediction models with focus on grouped STEM academic programs [19].

Using these more advanced types of EDM techniques require large amounts of data, sub-

stantial computing resources, and a high level of secondary CS education to effectively apply

the tools.

The literature does not show much with EDM applied specifically to the CS academic

program. Our research is uniquely positioned to add work in this field particular to CS

students at GSU. With our recent works, the focus is trying to determine factors that affect

CS student performance with attributes such as CS or math course grade, semester span

between a prerequisite CS course as well as the applied CS course, and demographic identi-

fiers. We use several tools like Stata15, R, Excel, Python, and Java to gather descriptive and
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inferential statistics and then apply data mining techniques to relatively small data sets for

predictive models. It is our goal to expand this work with generative modeling that involves

automatically discovering and learning the regularities or patterns in our approximately 49k

CS students dataset.

Using this technique of modeling, we can generate very large amounts of synthetic data

that plausibly is drawn from our original dataset. We will discuss this in more detail in the

conclusions.
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3 RESEARCH DATA SETS

The data used in our analysis all originate from two categories: 1) the university’s

student data system, and 2) CS student surveys. The first category consists of undergraduate

students with a declared major of CS. The second category consists of a sub-group in the

first category’s population, but sources from online and paper-based surveys. The online

survey is created and delivered via email from the university’s Qualtrics system and our

paper-based survey is delivered in-person from a classroom setting.

Processing our datasets involves numerous steps to reach interpretations related to our

goals. These steps require preprocessing actions for machine learning analysis in Chapter 7,

and different transformations to reflect the descriptive and inferential analysis in Chapters

4, 5, and 6. Achieving an outcome of useful information from our data can be visualized

as a continuum beginning with unorganized and sparse data that we clean and transform.

Next, we apply data mining techniques for organization and analysis, and lastly we realize

patterns that deliver knowledge. This concept, known as Knowledge Discovery and Data

Mining (KDD) is shown in Figure 3.1.

In our Chapters 4, 5, and 7, the data originates from 239K records of student events,

spanning from 2008 - 2018, representing each individual course performance by a CS student.

Using a variety of transformation programs, the data was amalgamated to approximately

49K records of individual students that reflect their CS academic program activity across

math and CS courses. The data includes performance values from prerequisite courses in

mathematics and any completed CS course. Additional to demographics of gender and race,

we collect the transfer status and the semester (year, month) corresponding to an acquired

grade.
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Figure 3.1: Knowledge Discovery and Data Mining Continuum.

The second category of data is used for Chapter 6, where we perform an inferential

analysis related to teaching strategies in Software Engineering (SE) education. This data is

represented with a five-point Likert scale and sourced from the GSU Qualtrics system. The

anonymous participants were selected from students that completed the SE course and were

seeking a computing industry job. The survey reached a total of n=316 and we received

x=116 to be analyzed in our study. Additionally, the second category is used in another

study with beginning CS students. A paper-based survey was given to freshman/beginning

CS students taking our ‘CS1’ course. We collected n=238 survey responses with x=198 being

completed. This study, while not producing a positive outcome supporting our intuition and

hypothesis, is discussed in the conclusions and insight for future use is offered.

3.1 University’s Student Data System Composition

GSU’s student population, as reported in 2018, is highly diverse according to [11]. Over

55% of undergraduate students are non-white and receiving Pell Grants. Our dataset of CS

student population is reflective of this diversity with approximately 68% of undergraduates

in the non-white category as shown in Table 3.1. The time span for this dataset begins with



8

the Spring semester of 2018, and includes all three academic year semesters going back ten

years.

We find our CS student dataset’s racial composition beneficial for comparison to GSU

and most urban universities in the United States. With respect to diversity, GSU ranks

twelfth in the nation as reported by US News and World Report [20]. As shown in Table

3.1, the race groups are Asian, Black, other, and White. We group all races of American

Indian or Native Alaskan, Native Hawaiian or Pacific Islander, Multiracial, and Not-reported

as ‘other’ in our categories. We find racial groups in our CS population are higher in Asian

and White, but lower in Black and ‘other’ groups. This may be a result of a well known and

researched problem of the lower number of underrepresented groups in a Science, Technology,

Engineering, and Math (STEM) academic program.

From Table 3.2, the CS student dataset is lower for female and higher for male compared

to the GSU composition. Again, this may be a result of a well known and researched problem

of the lower number of underrepresented groups in a STEM academic program. Interestingly,

we discover the transfer and native percentages between the CS dataset and GSU population

recordings have a significant difference, comparatively. This may be a result of our geographic

location related to a large number of colleges granting two-year CS degrees and the recent

merger with Georgia Perimeter College in 20161.

Table 3.1: Racial Student Population Comparisons.

Source Asian Black Other White

CS Data 25.4% (12,425) 31.3% (15,310) 13.3% (6,505) 30% (14,675)

GSU2 13.2% (3,594) 42% (11,437) 19.8% (5,391) 25% (6,809)

1https://consolidation.gsu.edu/ (Accessed in October 2020).
2https://www.collegefactual.com/colleges/georgia-state-university/student-life/diversity (Accessed in

October 2020).
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Table 3.2: Other Student Population Comparisons.

Source Female Male Transfer Native

CS Data 24.5% (11,994) 75.5% (36,921) 25% (12,315) 75% (36,600)

GSU3 58.9% (16,027) 41.1% (11,204) 7% (1,839) 93% (25,392)

3.2 Survey Data Composition

The data used in our secondary category consists of two subgroups of our CS student

population. One is from an online survey delivered from the university’s Qualtrics system

and the other is a paper-based survey delivered in-person from a classroom setting. The

online survey was given anonymously to the SE students over a period of time starting

in Fall 2017 until Spring 2019. The purpose of the online survey was not dependent on

attributes of the student demographics, but focused on the teaching strategies, pedagogical

content, and project-based team learning.

The paper-based survey given to the CS1 students was not anonymous therefore we

extracted demographic and pre-college data from the university’s data system and merged

this with the survey results. This study’s demographic composition is shown in Table 3.3.

We see the CS1 student population being significantly different from the CS dataset and

GSU’s recordings in the Asian, White, female, male, transfer, and native categories. This

may be the result of the CS1 course is taken from students other than declared CS majors,

thus the differences between the survey and CS dataset. We discuss this data and its impact

in the conclusions.

3https://www.collegetuitioncompare.com/edu/139940/georgia-state-university/enrollment (Accessed in

October 2020).
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Table 3.3: Dataset Student Population Comparisons.

Source Asian Black Other White Female Male Transfer Native

CS Data 16% 39% 13% 32% 44% 56% 25% 75%

CS1 Survey 40.1% 26.9% 12% 21% 31% 69% 12% 88%

GSU 13.2% 42% 19.8% 25% 58.9% 41.1% 7% 93%
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4 PERFORMANCE TRENDS COMPARING TRANSFER AND

NON-TRANSFER COMPUTER SCIENCE STUDENTS

The measures of undergraduate student success factors in CS are researched in a variety

of methods. Most rely on pedagogical interventions and the measurement of impact from

hybrid learning, flipped classrooms, and activities of face-to-face delivery. Using Machine

Learning (ML) and data mining to analyze and predict student success has mostly relied

on statistical and regression models based on grades and to some degree Learning Manage-

ment System (LMS) activity, while other research incorporates intelligent tutoring systems

(ITS) and recommender systems data. By analyzing eight years of CS course data from

our university’s student data system of Fall 2008 through Spring 2016, we use descriptive

analysis to compare the transfer with non-transfer student. The demographic and course

performance data is related to each Fall or Spring semester and we remove the Summer

semesters because GSU does not offer the full array of undergraduate CS courses in the

Summer semester. We show that transfer students tend to take a higher load of CS classes

per semester and their performance is consistently lower than that of non-transfer (native)

students. The data corpus includes demographics in gender diversity and underrepresented

groups. Our initial findings of pass/fail rates related to course load and transfer status are

reported in this chapter and we offer further research to incorporate more features with ML

techniques and data mining algorithms.

4.1 Introduction

The analysis of student success factors in undergraduate CS education are researched in

a variety of modalities. Using statistical regression, ML techniques, and data mining algo-
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rithms, many influencing features are found that result in using more advanced methods to

determine impact of the feature(s). CS educational research is proving to offer more accu-

rate findings for prediction and help with design of intervention systems and more accurate

advising to increase CS student retention and increase graduation rates [7–9].

This chapter focuses on the impact to pass/fail rates by examining two independent

features: 1) CS course load and 2) transfer versus non-transfer status. We indicate a pass

as an A+ to a C. We do not assign a grade of C- and the grades D, F, W and WF are

considered as fail status for the CS course. This is explained in Section 4.3. Our experience

in the department is that a majority of transfer students enroll in more than two CS courses

in a Fall or Spring semester. Our data shows a negative impact in taking more CS courses

in a semester and indicates a higher percentage of transfer students enroll in more than two

per semester. The observations of CS course load and the impact on pass/fail rates of CS

students is an area not readily found in the current literature. Searching for research of CS

course load impact to transfer and non-transfer students we find references in course areas of

accounting, natural resources and sciences, and wildlife related to US universities, but none

in CS education particular to CS course load [21–24].

Our university supports a large number of transfer students from several two-year col-

leges that offer an Associate Degree in CS. Recently in 2016, our university merged with a

two-year college that offers this degree and we anticipate even larger numbers of transfer CS

students. It has been observed these students have fewer completed lower level CS classes,

but most all of the general core classes related to a Baccalaureate Degree, as shown in Figure

4.1. Students with most all of their general core classes completed creates a concern for fin-

ishing their degree in four years by taking more than two CS courses a semester versus doing

well in the CS courses and giving them a chance for a higher GPA. From our current CS

course requirement sequence, once a CS student has completed data structures and systems

programming, the pool of available CS courses is large and this is where concern arises for

the effectiveness of CS learning by taking more than two CS courses in a semester. This fact

was made evident by an increasing population of transfer students as shown in Figure 4.2.
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Our conjecture is based upon observations of our undergraduate Director and her interac-

tions with students. There was also an increase in requests for an overload waiver to take

beyond the maximum eight credit hours in a semester.

Figure 4.1: Regular and CS Course Areas for BS Degree.

4.2 Methods

The dataset used for this research was created from the university’s database of CS

student enrollment and end of semester reporting. We extracted data containing the CS

course taken, the hours of the course, and the letter grade given to the student for each

Fall and Spring semester over the past ten academic years. The entire strata of student

classification is combined in our data (freshman, sophomore, junior, senior) and we excluded

all graduate student data.

The data has been de-identified by using a Java based program that initially extracted

the data from CSV files, then transformed in memory only, and finally loaded into the

database from each semester’s data file. The student ID was given a software generated index

while being transformed in memory, thus ensuring no reverse identification data would be

recorded somewhere or loaded into our database. As the extract, transform, loading (ETL)

program ran, data attributes were stored to allow only a CS GPA calculation be acquired.

However, the student’s overall school grade point average (GPA) cannot be calculated as
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only the CS course grades are examined and CS GPA is reported. The course points were

assigned based on Table 4.1 and the WF valued as a zero is used in the GPA computation.

In order to indicate a student record for a semester, it consists of the recorded semester

and year (”08” and ”01” for Fall or Spring, respectively), the record index, all course hours

with their assigned points, a DFWWF flag indicating the student has one or more fail (”1”

is true or ”0” is false), and a transfer flag with the same meaning as DFWWF flag. The WF

is included in the computation as value zero, but the W is not. In order to indicate what

type of CS course failure occurred and whether or not to include that failure into the CS

GPA, we store a W with point value of negative one and WF with point value of negative

two. Our schema allows for up to six CS courses taken in one semester to be in the study.

The CS student populations in the five and six CS course loads were very low, so these are

considered as outliers as indicated in Table 4.3. A single tuple in our dataset for a transfer

student with four courses (each as four hours), an A, B-, W, and WF, is shown in Table

4.2. The tuple in Table 4.2, indicates in the Fall of 2008, the student withdrew from course

3 (assigned a W), and withdrew failing from course 4 (assigned a WF), thus indicating a

failure in the FAIL field. When transforming the data to analyze fail versus pass rates we

use this DFWWF indicator to reduce computational complexity. The TX field is used to

indicate if a student has matriculated as a transfer student from another college or university

(”1” is true or ”0” is false).

Table 4.1: The Grading Scale.

Grade A+ A A- B+ B B- C+ C C- D F WF

Value 4.3 4.0 3.7 3.3 3.0 2.7 2.3 2.0 N/A 1.0 0.0 0.0

Table 4.2: A Single Tuple.

SEM IDX C1 P1 C2 P2 C3 P3 C4 P4 C5 P5 C6 P6 FAIL TX

08 2008 74 4 4.0 4 2.7 4 -1 4 -2 0 0 0 0 1 1
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4.3 Results

These initial findings validate our intuition concerning the CS course load and transfer

status related to pass/fail rates.

Figure 4.2: CS Student Population (Merger in 08/2016).

We analyze only the Fall and Spring corpus for knowledge discovery, because as stated

earlier, the Summer semester is a sub-group of the undergraduate CS course offerings. The

graph shown in Figure 4.3, indicates the percentage of each cohort relative to their total

population in the data corpus. Table 4.3 shows the CS population composition across the

CS course loads. Starting with two CS courses each semester, we find the transfer students

are registering for more than non-transfer with 27% compared to 12%. This data does not

indicate CS student classifications (freshman, sophomore, junior, senior), nor the level of the

CS course indicated in Figure 4.1.
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Figure 4.3: Percentages of Transfer/Non-Transfer Students in Various CS Course Loads.

Having established the CS course load variations, we moved to analyze the pass/fail rates

of students based on transfer versus non-transfer status. From Figure 4.4, the data shows

insignificant difference except when the transfer student registers with three CS courses.

Figure 4.4 shows a failure for the CS student in at least one CS class indicating some setback.

Table 4.3: Student Populations by Semester CS Course Load.

CS Cohort One Two Three Four Five Six Total Cohort

Transfer 3,114 1,655 991 421 45 2 6,228

Non-Transfer 9,851 1,509 821 229 36 2 12,460
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Figure 4.4: Transfer vs Non-Transfer Students With at Least One Failure Based on Their

CS Course Load.

Another indicator of student success is the CS GPA calculations shown in Figure 4.5.

We observed all course loads indicate a lower CS GPA for transfer students and at three and

four courses the GPA for transfer students being 0.35 and 0.13 points lower, respectively.

These two numbers show the largest delta in the CS GPA values. Regardless of the CS

course loads, transfer students score lower and at three CS courses, the data indicates the

largest CS GPA gap.
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Figure 4.5: µ CS GPA in Various CS Course Loads.

We continue our analysis of fail/pass differences by analyzing the fail rates of the cohorts

based upon their CS course load relative to how many D, F, W and WF, were obtained

in each group over a given CS course load. When we analyzed complete CS course fail rates

of the student, we see data shown in Figure 4.6. This indicates a cohort is demonstrating a

consistent failure related to their status. For course loads of two and higher, we consistently

see that transfer students have a higher rate of failing all their CS course load in a semester.
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Figure 4.6: Various Course Loads Where Failed All CS Courses in a Semester.

We see the need to analyze our dataset deeper in the actual course level and the require-

ments as shown in Figure 4.7, to be included in the model. Doing so examines the difficulty

of a CS course being taken by the cohorts to indicate why one performs poorly and one does

not. Currently our data includes performance in classes ranging from the introductory level

all the way to senior level classes. We expect to see even more striking results when focusing

on a common subgroup of students and/or courses.
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Figure 4.7: Computer Science Course Requirement Sequence.
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4.4 Conclusions

It is an undisputed fact that demand in society of K-12, CS learning, and four-year

university CS graduates is increasing [25,26]. With dependence on computer technology and

CS skills in higher demand from the workforce and the growing integration of autonomous

computing in everyday living, the issues that influence success factors of CS graduates is

ever more important. Much research has been done to analyze factors that influence this

number and create solutions to indicate and mitigate them. Using ML, deep learning, and

advanced data mining techniques are new areas in CS education data mining research. This

chapter examines two naive CS student features to indicate a serious problem:

Transfer students taking more than two CS courses:

A. Have a lower overall µ CS GPA.

B. Have a higher complete fail rate for CS course load.

We demonstrate this clearly with analysis of a large dataset of CS student data and

simple regression computations. We identify that transfer CS students do take more CS

courses than their non-transfer cohort resulting in negative impact to CS GPA. The driving

mechanisms of this trend is where we can expand our analysis and identify areas relating to

these issues with investigation of mitigating interventions focused on transfer students, thus

contributing to higher effectiveness and success factors for CS students and CS education.

The features used in this research were chosen based on protecting the student identity

and observations of academic advising to the undergraduate CS student. The detrimental

effects and the realization in this study is reason for further investigation. Working together

with our four-year university, more features will be gathered to be used in our continued

analysis. Within the CS department, we advise CS students against registering for more than

two CS courses in a semester. However, our university advising system has a goal for students

to graduate within four to six years and can be in conflict with the department at times.

By demonstrating the impact of indicators and importance of increasing the number of CS

graduates, our work can be used in advanced intervention systems and targeted advisement
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resources for undergraduate CS students to do well and finish within a four-year time period.

Discovery of knowledge with student success related to a D, F, W, or WF in one of their CS

courses is demonstrated with transfer and non-transfer status. This is inspiration to discover

other knowledge from dominate features in a larger dataset.
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5 PREDICTORS OF PERFORMANCE IN COMPUTER SCIENCE

ALGORITHMS

In this study, we identify predictors of student performance (both good and poor) in an

algorithms course. We focus on the algorithms course due to its integral nature within the CS

discipline. Typically, features of race and/or gender are considered in such studies. However,

we explore these combined with other features that can serve as predictors, specifically:

1. transfer status,

2. GPA of a prerequisite discrete math course, and

3. the semester span between discrete math and algorithms.

The goal of the study is to analyze these additional features in statistical regression

models to identify if there are predictors of academic performance that exist for the algo-

rithms course. The dataset we use includes approximately 49,000 CS students from GSU, a

US based, R1, diverse university with over 55% of undergraduate students being non–White,

over 58% being female, and 30% first generation students receiving Pell grants. Through

our investigation, we achieve our goal by finding that additional predictors of performance

in our algorithms course do exist. We show that all features considered have impact on

performance, however, we see that grades in the prerequisite course as the most dominant

predictor, even more so than race and gender.

Using these findings, one can design and deliver qualitative measurements that support

mixed methods research through CS course assessments and offer interventions targeting

the subgroups as defined with combined co–features. Our approach can be used to analyze



24

a combination of predictors for other CS courses, or it can be generalized for use in other

disciplines of study.

5.1 Introduction

The study of algorithm design and analysis is an integral component of most CS under-

graduate programs. A good foundation in this area bridges the early portion of the program

to advanced areas in CS. Thus, it is imperative to determine the best approaches to over-

come possible learning differences among student subgroups, especially for underrepresented

groups in the discipline. By testing several regression models and identifying significant

predictors of performance in algorithms, this approach can be generalized across many of

the CS program’s courses. Prior to the algorithms course, a pathway in most CS programs

leads the student through a knowledge area (KA) of Discrete Structures, as described in the

guidelines of the ACM and IEEE Computer Society curriculum report [27]. This path via

discrete structures content can include programming classes, a discrete math course delivered

from the math department or a logic-focused course delivered through the CS department

and possibly a separate data structures course. The pathway we use is shown in Figure 5.1.

Figure 5.1: Pathway for Algorithms Course.

Our study tries to answer the following general research question:

RQ1: Do other features exist, beyond diversity and gender, that are predictors of performance

in the algorithms course?
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Once we answer this RQ1 question, CS course assessments that involve related content

can be designed and implemented as early interventions targeting our identified subgroups.

Additionally, we discuss what quantitative and qualitative data we can gather and analyze

that support our efforts to understand why some indicators work together better. Addi-

tionally, this work can show why some CS students finish their degree with overall higher

performance compared to other CS students. Much like the work from Danielsiek et al., to

determine CS students’ misconceptions in an algorithms course using content topics [28], an

example of similar work can be repeated and combined with our findings in subgroups as

determined by methods we use to find performance predicting features from our algorithms

course.

5.2 Background

Numerous recent works analyze influence upon retention from diversity population data

in STEM. From their qualitative analysis, they present programs or interventions to address

low populations of diversity groups that finish a STEM related Baccalaureate Degree. Her-

nandez et al. [29], found underrepresented students that participated in an undergraduate

research experience along with faculty mentoring over several semesters increased their re-

tention and graduation of a STEM degree. Research from Rheingans et al. [30], compares

two groups, with one being in a Scholars program for STEM women and the other being

their peers not participating in the program. Their intervention involved development of the

Scholars students with leadership, mentoring, and community-building activities within the

group. Their analysis covered ten years of data and shows the Scholars program yielding im-

provement in areas of grades, time-to-graduation, and retention. Townsend and Sloan [31],

developed a similar Scholars program at DePauw University to increase participation of low-

income, first-generation students interested in CS. Their in-depth work includes programs

similar to Rheingans et al., but their focus is CS specific. They use a bridge program for the

cohorts incorporating a Summer research project before their Fall matriculation.
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Other research and intervention programs specifically focus on women in CS. These

programs address gender differences and deeper beliefs and understandings of the causes of

the low percentage of women in CS [32–35]. West et al. [36], research and address the lack of

diverse employees, particularly women, in the artificial intelligence (AI) areas across numer-

ous technology companies. Their report defines and examines diversity in more dimensions

beyond race and gender. Their definitions include non-binary gender and power or position

in the workplace, elucidating the harsh realities that AI is being designed, developed, and

deployed in our society with very little input from diversity. The report solidifies that di-

versity issues in CS and technology need a very early intervention to reduce this widening

gap.

One similar work from Babes-Vroman et al. [32], shows a comparative study of gender

bias effect when taking a sequence of four CS classes that required CS prerequisite and sub-

sequent courses. Their study involved binary gender and the effects within their sequencing

pathway upon four specific CS courses: 1) Introduction to Programming, 2) Data Structures,

3) Computer Architecture, and 4) Algorithms. Their findings reveal that females with prior

experience in computing, either self-taught or instructor led, as well as making a B or higher

in Introduction to Programming, were more likely to continue with the Data Structures

course. Their contribution shows a need for more recruitment of women interested in CS

and to offer an introductory CS bridge course over the Summer before a new CS student’s

Fall matriculation [32].

As of late, diversity is a more complex issue in definition and biases in the technology

field and many realize this at an early time in the CS person’s education and profession as

found in research from [33, 34, 37, 38]. We aim to support this research beyond race and

gender with investigating the influence of additional student features. Lastly, a large study

by Hellas et al. [39], from 2018, gives a systematic literature review of predicting academic

performance, defining core study factors, and trends for values used in prediction research.

The composition of observed disciplines in the study show 35% of the 357 reviewed papers

are specific to CS from the authors’ high-level synthesis of categorization factors. We identify
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our work to be aligned with their consensus of thematic analysis and preferred choice of data

features found in our RQ1.

5.3 Methods

Our population source is GSU, a public US based, R1, diverse university with over 32%

of undergraduate students being Black or African American, 8.5% Hispanic, over 58% being

female, and over 30% being first generation. Additionally, our ranking recognizes us as one

of the most ethnically diverse universities in the United States [11]. This is a close match to

the population of underrepresented minorities in undergraduate CS programs, making it a

prime set of students to analyze. The data originates from an extraction of our university’s

student data system. It is comprised of undergraduate students with a declared major of CS.

The time span for our dataset begins with the Spring semester of 2018, and includes all other

semesters going back to Fall of 2008. The attributes collected include demographics: gender,

race, and transfer status, and student data: course identifier, the semester and year of each

course, and their achieved letter grade in completed courses. All student classifications are

combined in our dataset (freshman, sophomore, junior, senior) and we exclude any graduate

student data. We create a computed attribute from the semester span between completing a

prerequisite course from either the CS or math department, and successfully completing the

algorithms course. We call the attribute ‘Time-To-Algorithms’ (TTA) with integer values in

the range of: [1, +∞).

This large dataset of 236,266 records represents the varying course completion records

for all CS declared majors over the time span. With this corpus, it was de-identified as one

complete process as defined through our Institutional Review Board (IRB) lab protocol1.

Amalgamation of the varying course records represents an entire corpus of 48,915 unique

CS students. The subset of this as extracted and transformed gives us a total of 1,432

records representing CS students that successfully completed a prerequisite course from

the CS (Cohort CS) or math (Cohort MA) department, a CS data structures course, and

1IRB: H19494
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subsequently, the CS algorithms course. As shown in Table 5.1, the race groups are Asian,

Black, other, and White. From Table 5.1, the study population is consistently distributed

for the ‘other’ and ‘White’ categories, and has a difference in the ‘Black’ category, and

significant difference in the ‘Asian’ category. We discover both female and male populations

are consistently distributed among our cohorts. Interestingly, the transfer status between

the two cohorts is a higher ratio for the Cohort MA students.

Table 5.1: Population Comparisons.

Feature Corpus Cohort CS Cohort MA

Asian 16% (7,635) 30% (245) 39% (136)

Black 39% (19,251) 27% (221) 19% (68)

Other 13% (6,286) 10% (84) 11% (37)

White 32% (15,743) 33% (263) 31% (109)

Female 44% (21,482) 14% (116) 15% (54)

Male 56% (27,422) 86% (697) 85% (296)

Transfer 25% (12,315) 30% (245) 41% (145)

Native 75% (36,600) 70% (586) 59% (205)

Our investigation methods use multiple regression models in Stata15 [40]. We analyze

the µ GPA of the prerequisite course, diversity (race, gender, transfer status), and sequencing

(TTA) that lead to the algorithms course. At our institution, we offer two options for

the discrete math course, one taught in the CS department and the other in the math

department (hereafter referred to as Cohort CS and Cohort MA, respectively). Both have

the KA discrete structures content topics and lead to the algorithms course, however, in our

institution, we observe the Cohort CS have more foci of combinatorics, algorithmic analysis

with Big O, and logic. Within the Cohort MA, we observe heavy foci on mathematical

proofs, less combinatorics and logic, and no algorithmic analysis. We introduce a control

variable of race as Asian, Black, other, White, coded as ordinal values. A threat to validity
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of our data is being structured in its current form to not allow for race to be represented as

dichotomous variables, e.g., Asian and non-Asian, Black and non-Black, etc.

The multiple regression models test the predictors, Xi, and illustrate the most statis-

tically relevant one(s) for the outcome performance: (GPAO) for each observation in the

algorithms course. Our predictors are:

X1 : race (Ordinal: Asian, Black, other, White)

X2 : gender (Dichotomous: female or male)

X3 : transfer status (Dichotomous: transfer or native)

X4 : GPAP of Cohort CS or Cohort MA (Ratio)

X5 : Time-To-Algorithms (TTA) (Interval: Low (1-3), Med (4-5), High (6+) is the

number of semesters between passing a prerequisite and the algorithms course.)

The various factors we observe and test derive from the model in Figure 5.2. The

formulation is:

Y =
∑

βiXi + β0

with Y = GPAO and β0 is the predicted starting value that minimizes the squared deviations

between the predictor, Xi and outcome, GPAO value for each observation.
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Figure 5.2: Multiple Regression Model.

Our analysis disproves the null hypothesis, H0 and supports the alternative hypothesis,

Ha. Our H0 is: -there are no predictors (Xi), that influence the outcome GPAO from the

algorithms course. We express these as:

H0 : h1(t) = h0(t), for all t ∈ [0, ρ]

Ha : h1(t) 6= h0(t), for some t ∈ [0, ρ]

High statistical power is determined with three independent factors, two controls, and

initial sample sizes - Cohort CS is 1,312 and Cohort MA is 805. We perform numerous

verification steps to validate the data sets for hetroskedasticity using Cameron and Trivedi’s

decomposition of IM-test and Breusch-Pagan/Cook-Weisberg test for constant variance [41,

42]. The IM-test reveals existence of hetroskedasticity in H0 for each respective cohort. We

also check the independence of observations using the Durbin-Watson statistic, and validate

linearity using two-way scatter plots on all Xi predictors [43].
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We determine the critical F value2 is 4.3650, with Df1=5, Df2¿120 and α=0.05 (95.0%

confidence level). Wald F-test values to validate significance are shown in Table 5.2. We

identify and remove outliers using added-variable plots, and check the residuals are approxi-

mately normally distributed with a Normal P-P plot and Normal Q-Q plot. With these tests

complete, our sample sizes become - Cohort CS is 796 and Cohort MA is 344 giving N =

1,140. In Table 5.2, we observe the significance statistic value for each Xi and illustrate for

the Cohort CS, X1 and X4 do not support H0, thus supporting Ha. The Cohort MA shows

only X4 as supporting Ha, thus requiring deeper analysis in the model comparisons.

We analyze four regression models among the five Xi predictors (independent variables

and control variables) with the first model as X4 and subsequent models adding another Xi

in each round of testing. Once each Xi becomes part of a test, all regression models with

different values are cumulatively observed. From Table 5.2, we observe the β0 values for

Cohort CS and Cohort MA are not significantly different indicating the two cohort samples

are similar. This indicates testing with the same multiple regression models with each Xi

can be done in both cohorts to reveal their significant predictors.

2www.statisticshowto.datasciencecentral.com/tables/f-table
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Table 5.2: F-test Values for Predictor Influence.

Xi Data P > |t | Prerequisite Cohort

X1 race 0.003 Cohort CS:

X2 gender 0.168 F (5,790) = 25.59

X3 trans 0.325 IM-test: (P > 0.4528)

X4 GPAP 0.000 P > χ2 = 0.9592

X5 TTA 0.035 β0 = 2.179133

X1 race 0.135 Cohort MA:

X2 gender 0.494 F (5,338) = 16.48

X3 trans 0.046 IM-test: (P > 0.7079)

X4 GPAP 0.000 P > χ2 = 0.5628

X5 TTA 0.063 β0 = 2.204454

Bold Xi indicate significant predictor.

5.4 Results

Analysis of regression models for Cohort CS and Cohort MA are shown in Table 5.3. In

this table, we show the final regression model as it answers RQ1. We omit the prior multiple

models for brevity. This final model for each cohort indicates the statistical influence of each

Xi independent variable upon our dependent variable, GPAO, the algorithms course final

grade.
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Table 5.3: Error Reporting and βi Coefficients for Multiple Regression Model Testing

(Robust Standard Errors in Parenthesis).

Xi Data Final CS Model Final Math Model

X1 race

0.0612**

(0.021)

β1=0.131023

0.040

(0.028)

β1=0.0731431

X2

gender

(female=1)

-0.098

(0.071)

β2=-0.0470125

-0.066

(0.096)

β2=0.1025506

X3

transfer

status

(transfer=1)

-0.032

(0.053)

β3=-0.0332792

-0.146*

(0.073)

β3=-0.0986949

X4 GPAP

0.299***

(0.033)

β4=0.3063027

0.362***

(0.045)

β4=0.396663

X5 TTA

-0.024*

(0.012)

β5=-0.072960

-0.034

(0.018)

β5=-0.0905834

N 796 344

R2 0.127 0.187

adj. R2 0.122 0.175

RMSE 0.681 0.659

Associated Table 5.2 - P > |t |: *p < 0.05, **p < 0.01, ***p < 0.001.
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Cohort CS: We observe in Table 5.3 for this cohort, the race, GPAP (prerequisite

course GPA), and TTA have influence on the performance in the algorithms course grade,

GPAO. Race and the GPAP show positive influence, indicated where p and β1 are positive.

We interpret the higher the GPAP value, a good performance is expected in GPAO, whereas,

the race attribute is positive and influential. We need deeper analysis to determine what

specific race subgroups have higher influence on a good performance in GPAO. Note the

TTA has significance and both its p and β5 are negative. Since we coded an interval variable,

TTA, where ‘1’ is Low, ‘2’ is Med, and ‘3’ is High, this means if a CS student has a ‘3’ value

for TTA, a poor performance (bigger negative influence) is expected in GPAO. At this

point, we need to mention one threat to our results is that observations of TTA High can

include CS students that have failed and repeated the prerequisite course, the algorithms

course, or are part-time CS students. This is a threat in most universities where students

are given a ‘repeat and replace’ option or do not have capacities to be full-time students.

If we observe Table 5.4, the µGPAO is lower for all race and gender with the TTA High,

except for the Asian and White females. Again, we need deeper analysis in the race and

gender subgroups to determine the bigger influences upon µGPAO where co-features of these

two work better together as a predictor of performance in the algorithms course. Here is

where the regression model data and subgroup population dissections indicate a need for

personalized instruction targeting these subgroups (Black/other female with TTA High)

with interventions and qualitative measurements to study any influences upon their GPAO

values.

Cohort MA: Similarly for this cohort, we observe in Table 5.3, the GPAP and transfer

status have influence on the performance in GPAO, however, race and TTA do not. This

interprets as the higher a GPAP value, a good performance is expected in GPAO. The

transfer status is coded as ‘1’ where a student is transfer. We see a negative value for

p and β3 implying when a student is transfer, a poor performance impact in GPAO is

expected. If we observe Table 5.4, the GPAO behavior is similar to the Cohort CS where

TTA High lowers the µGPAO. Shown in Table 5.1, we see group percentages across the two
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cohorts are similar demographically, and exhibit similar characteristics with the µGPAO,

but our regression model does not place significance on the TTA in the Cohort MA. This

area indicates further a need for inferential analysis with testing new regression models and

separating different race groups as dichotomous, gender subgroups with co-features, and

TTA to determine this behavior.

Table 5.4: TTA µGPAO for Cohorts (CS and MA).

Race

Gender

CS

Low

CS

Med

CS

High

MA

Low

MA

Med

MA

High

Asian M 3.28 3.22 2.89 3.25 3.24 2.97

Asian F 3.21 3.10 3.33 3.44 2.93 3.00

Black M 3.07 3.00 2.79 3.07 3.07 2.57

Black F 2.97 3.13 2.56 3.83 3.13 3.35

Other M 3.11 3.08 2.90 3.29 3.10 2.94

Other F 3.27 3.00 2.50 4.30 3.39 3.35

White M 3.34 3.55 3.25 3.41 3.37 2.95

White F 3.07 3.32 3.68 3.46 3.18 3.23

In support of our alternative hypothesis, Ha, we see there are alternate Xi predictors

that influence GPAO of the algorithms course in the observations and thus reject the null

hypothesis, H0. This gives us validation in answering RQ1.

5.5 Conclusions

In this study we have analyzed and discussed CS specific students and identified the most

influencing features affecting the performance in subgroups taking an algorithms course. We

have answered RQ1 with statistical regression models showing features of diversity, gender,

prerequisite GPA, transfer status, and TTA are predictors of subgroup’s µGPAO in an

algorithms course.
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Within our population, we identified two cohorts based upon a prerequisite course of

discrete math taught in the CS and math departments. With these two cohorts, we created

subgroups through testing of multiple regression models using the Stata15 statistical software

[40]. Taking our evidence of the most influential predictors, βi, future work can develop and

evaluate targeted interventions to address deficit areas in the subgroups. Also, removing

the part-time CS students can add strength to our dataset for these subgroups in showing a

truer representation of TTA impact. Taking proven predictors in race and gender subgroups

and giving them extra interventions to promote higher performance in a prerequisite course

can increase performance in the subsequent algorithms course. New research in areas of

undergraduate student prediction models for retention, course planning, and time-to-degree

as found in [44, 45] use data analytics of student data across all disciplines in large R1

universities. Combining existing general student prediction models with our CS focused

research can be specifically applied towards CS students to predict retention, the time-to-

graduation, and course performance. Considering the big data set that we used, it would be

beneficial to design and study personalized course plans, and determine if there are possible

longitudinal trends among the CS student subgroups.

Unquestionably, there is a need for more qualitative data research at the beginning of a

CS student’s journey, especially in our identified subgroups. More recent reports and articles

from the ACM Retention Committee [46–48] show even smaller numbers of Black and Latinx

students at an average of 7.45% graduation with a CS degree from 2015. This ACM report

explains an amorphous problem in understanding the undergraduate CS student. Our work

reveals features of these students which can aid in propagating the pipeline of CS graduates

for a more diverse computing workforce.
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6 TEACHING STRATEGIES IN SOFTWARE ENGINEERING TOWARDS

INDUSTRY INTERVIEW PREPAREDNESS

The Software Engineering (SE) curriculum in undergraduate computer science (CS)

education is designed to train students in the process of software and systems development.

Traditionally, topics such as software development methodologies, industry nomenclatures,

and solution analysis are delivered through lectures and group projects. We propose a

novel approach in teaching SE that we call MACROVR: MAchine learning to select project

team members; Cloud technologies required for project control, code versioning, and team

communications; ROtational schedules in Agile/Scrum roles; an individual Video of the

team project story board; and Rubrics for all presentations. Our teaching strategy with this

approach utilizes the latest technologies currently employed in industry and corresponds to

soft skills commonly assessed in interviews.

The goal of our study is to measure if using the MACROVR approach contributes to

preparedness for a computing job interview. Most often, this course is taken towards the end

of a four-year CS degree program while students are job hunting or seeking an internship

in the computing industry. We use an anonymous, fifteen question survey instrument sent

to volunteers that indicated they are seeking a computing job and have successfully com-

pleted the SE course. The sample is comprised of three sections of the SE course using the

MACROVR approach (135 students) and four sections that did not use all of the required

strategies and technologies, which we call MACROVR-lite (184 students). Our two cohorts,

MACROVR and MACROVR-lite, are each given the same survey questions. We analyze

their Likert scale data responses using non-parametric methods. Our findings indicate the
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MACROVR approach better prepares students with the skills and highly valued qualities

for success in computing industry interviews.

6.1 Introduction

According to a Collabnet/VersionOne1 2019 report, when developing software systems,

97% of industry uses the Agile methodology and of those, 54% employ the Scrum technique.

This has been a shift from the previous waterfall model methodology as shown in Figure 6.1.

Recognizing this change, we see that many Software Engineering (SE) courses have adapted

their course content focus on a more industry-relevant Agile methodology.

Figure 6.1: Two Models of Software Engineering Methodology.

We posit a CS student is better positioned to enter the workforce with a career in com-

puting when the latest technologies are utilized in the classroom, in conjunction with training

students to efficiently work in a team environment. In the case of a SE course, this would be

Agile with Scrum, along with project based learning, using a version control system for team

1https://explore.versionone.com/state-of-agile/13th-annual-state-of-agile-report
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code sharing, managing the system through a cloud-based project management system, and

incorporating key areas of team experiences in collaboration and communication. Search-

ing through several career opportunity resources seeking SE positions, such as GlassDoor2,

Indeed3, and ACM Career and Job Center4, we find key areas like Git, Agile/Scrum, team

problem solving, and web services being advertised as desirable skill sets and knowledge for

new hires in industry. In 2017, Ford et al., concluded that technical interviewers care greatly

if candidates can demonstrate CS technical skills with verbal and written clarity [49]. Our

MACROVR approach teaches beyond technical skills to include team presentations among

peers, team collaboration and communication, and working through group consensus to

deliver a software system, thus preparing them for the soft skills interview areas. Much

research has looked at incorporating one or two of these components in SE courses, but do

not analyze any impact upon a student’s industry readiness [50–55]. We choose to integrate

Agile/Scrum components in combination with the complementary skills mentioned above

and then evaluate if this approach helps prepare students for a computing job interview.

Undeniably, knowledge and experiences CS students obtain from courses in their degree

program is critical to articulate their skill and value during a computing job interview. Our

teaching strategy incorporates additional techniques in the SE course to aid in SE career

readiness. In our course, we employ machine learning (ML) to form teams in project-based

learning (PBL), require cloud technologies for project management, rotational Scrum roles,

detailed rubrics, and individual and student team presentations of their project. By inte-

grating these teaching strategies and technology requirements into our SE course, students

are exposed to a wide view of current practices of the computing industry.

Components in the MACROVR approach are chosen based upon the author’s past

twenty-three year industry experience as a software engineer in a major Fortune 500 US

corporation and several US federal government agencies. They used many Agile/Scrum

techniques in their job, managed software development teams, and conducted numerous

2https://www.glassdoor.com/Job/jobs.htm?sc.keyword=software+engineer
3https://www.indeed.com/q-software-engineer-jobs.html
4https://jobs.acm.org/jobs/results/keyword/Entry+Level+Software+Engineer
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technical and soft skill interviews for new CS graduates seeking a computing position. We

concur and include researched areas and attributes as being important to computing job

interviews and industry skills as found in [52,56]. Recent, seminal work from Oguz et al., find

the perspectives of industry identify recent graduates with a lack of soft skills, limited use of

current tools, and little exposure to real life projects as important gaps between SE education

and workforce [57]. Again, we use countermeasures in these areas with our approach through

team presentations among peers, required technology, and instructor vetted projects. The

CS technical skills students acquire from CS program courses like algorithmic computations,

object-oriented coding principles, and system architectures are considered to be utilized by all

students in any SE course, so they are not studied specifically in the MACROVR approach.

Our motivation is to evaluate if teaching real-world SE experiences through MACROVR

contributes to a CS student’s career readiness. We measure the effect of our strategy through

a fifteen question survey, approved by GSU’s IRB5, using a five-point Likert scale [58]. To

guide our research, we develop the following research question:

RQ2: Does teaching SE using the MACROVR approach better prepare students for a

computing job interview?

To answer our research question, our survey asks CS students that finish the SE course if

they feel our teaching strategies help with career readiness by preparing them for computing

job interviews. This voluntary, anonymous online survey contains questions relating to

specific MACROVR course components and some that are common in all SE courses taught

at our university. We form two cohorts where the first is students that successfully complete

the SE course requiring all components of the MACROVR approach be used (three sections,

135 students). The second cohort is students that successfully complete the SE course where

the instructors may or may not use all the MACROVR approach components (four sections,

184 students). We call these cohorts MACROVR and MACROVR-lite, respectively. All

survey responses result from semesters of Fall 2017, through Fall 2019, from the SE courses.

5IRB: H19266
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We do not include the Summer semesters due to the shorter time for delivery of the

course content, only one section being offered, and typically being taught by a graduate

teaching assistant. The semesters being surveyed in this work are taught, face-to-face by

faculty instructors, usually three each Fall and Spring semester. All volunteers taking the

survey either graduated with a four-year CS degree and were actively looking for a full-

time computing job through interviews or remained enrolled while actively interviewing to

secure an internship in computing. The same survey is given to both cohorts to preserve

our experimental group (MACROVR) and the control group (MACROVR-lite). Since the

control group is taught without requirements of using all the MACROVR components, the

data results indicate which ones may have been used when comparing to our experimental

groups’ results. Our results show when the experimental group is taught with all required

components of the MACROVR approach, students are better prepared for a computing job

interview.

6.2 Background

Much research in SE education relates to learning strategies, active teaching techniques

[59], investigation on gaps between academia and the software industry [57], and authenticity

of the SE course content [56]. Many report research on the effectiveness when using Project-

based learning (PBL) in SE education [56,60,61]. Garc̀ıa-Peñalvo et al. in 2019, research the

broader area of active learning that includes PBL and concludes SE courses using PBL give

students a better understanding of the concepts involved when used in the classroom [62].

Additionally in 2018, Garc̀ıa-Holgado et al., found using similar teaching strategies increased

student’s performance in SE courses by 20% [63]. We adopt a similar pedagogical strategy

in our research and introduce several new techniques within PBL and then measure their

effect related to our goal - CS student preparedness for computing job interviews.

One strategy researched is collaboration in SE teams [64]. Chowdhury et al., use the

IBM WatsonTM Personality Insights service to analyze their student teams use of a collabo-
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ration platform from Slack6. They find the participation of a teams’ communications highly

correlate to their self and team evaluations, both good and bad, as well as their team grade

for each Agile/Sprint cycle in the SE course. We require the use of Slack’s team collaboration

platform for our SE course in the MACROVR approach.

Teaching SE while using a software version control system such as GitHub7 has been

shown to benefit students [52]. Feliciano et al., find there are numerous challenges with

using GitHub as a learning platform and its wide use in industry makes it an important

part of the CS student’s SE education. They also expand its use beyond the team project

work, utilizing it to disseminate course assignment materials and lab content with related

discussions. They conclude the students benefit from using this platform and incorporate

their team content as part of their personal, online presence. Eraslan et al., find many

problems using Git based version control systems in teaching SE [53]. They identify seven

categories of errors and poor practices from students using Git. Their research is the most

recent (2020) and comprehensive list of Git usage artifacts in the literature and gives us a new

basis to consider Git as an integral part of SE education along with measurable instruments.

By contrast in the MACROVR approach, we require Git usage in all project teams and

require the instructor be a member of each to monitor submissions of a team’s code and

documentation, indicating levels of progress.

We find formation of student teams a significant factor for SE project success as reported

by [50,65–67]. Dzvonyar et al., develop and use a hierarchical criteria for team composition

and through a manual selection process by instructors, form the student teams [50]. Bosnic et

al., conduct a ten-year study of matching student teams to projects and find the ‘first come,

first serve’ method or teaching staff directed were not effective [68]. They realize a system

of student pre-course questionnaires and student’s proposals of projects based on platform

groupings (standalone, web, or mobile) as a better solution. Conversely, we form teams using

several ML algorithms basing on student skills, CS aptitudes, and semester course load. We

6https://slack.com/features
7https://github.com/features
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design projects requiring specific component technologies that all students enrolled in the

course should possess, and teams choose a project using a lottery system. We offer details

of these component technologies in Section 6.3.2, and sample project descriptions in Section

6.3.4.

Soft skills in SE education are considered important for student preparation and readi-

ness for industry. Abad et al., analyze data gathered from SE students over three semesters

and investigate the amount of authenticity that can be achieved in PBL courses in SE ed-

ucation [56]. Their work investigates seven ‘authentic’ activities with Why?, What?, and

How? explored in each activity. Interestingly, their work indicates ‘soft-skills’ like planning,

problem understanding, negotiation, and organizational as the most statistically significant

for CS students to be prepared for industry.

Hogan et al., find CS students presenting their work in front of peers improve soft

skills like communications [69]. We posit our MACROVR approach supports soft skills

and amplifies them through teaching elements requiring a rotation of Scrum roles: -Project

Manager, Scrum Master, Senior Programmer, Junior Programmer, QA/Testing, in each

Sprint cycle. This encourages students to work on different aspects of their project for a

period of time and broaden their understanding of software engineering principles.

Through our literature review, we are not able to identify any other research studies

that consider a holistic approach in delivering the SE course, to better prepare students for

the workforce. We find most research focuses on just one or a few strategies. We incorporate

into our MACROVR approach numerous teaching strategies, technical requirements, and

communication skills to ready a CS student for their first real-world experience, namely,

a computing job interview.

6.3 Course Structure

The SE course using our MACROVR approach has several foundations to enable the

project team formation and introduce project technology requirements. Using a variety

of strategies, we organize the course to simulate a real-world environment where software
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engineers face many abstract ideas, must use critical thinking to understand project team

goals, and must integrate/communicate with a group of unfamiliar individuals. Technology

requirements in our approach include a cloud-based version control system with bug report-

ing, an Agile/Scrum management system, and integrating a communication system through

using an instant messaging system.

In the first two weeks using MACROVR, we introduce concepts of Agile/Scrum in

lectures and give three short assessments to build the ML models for project teams formation.

We discuss the technical requirements for projects like web services, a database element,

and using an object oriented programming (OOP) language. The second week has team

formation and team meeting time given at the end of each class session (usually fifteen or

twenty minutes) for questions with the instructor, to establish meeting times for each group

to interact face-to-face, and give the instructor interactions with the teams to check their

project’s current sprint progress. At the beginning of each sprint cycle, the instructor gives

a rubric for appropriate preparation time and provides a partial structure to complete their

tasks as shown in Figure 6.2. At the end of the semester, each student prepares an individual

video of the project story board according to the rubric as shown in Figure 6.3. The rubrics

serve as an important component of the MACROVR approach and is similar to the project

requirements or specifications one would see in industry.
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Figure 6.2: End of Sprint Rubric for Grading Team Project Presentations.
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Figure 6.3: End of Semester Rubric for Grading Individual Video Presentations.
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6.3.1 Project Team Formation

With the MACROVR approach, we form project teams by ranking the students using

several ML models. Based upon a student’s current course workload and three individual

assessment scores we develop a heuristic for choosing students for a project team as shown

in Figure 6.4. Most class populations are close to a multiple of five, allowing five or six

students per team. Typically, a MACROVR class size is fifty and we compute the total

number of combinations (n=50, r=5 ), to form five-person teams as 2,118,760 choices. This

computation formula is:

C(n, r) =
n!

r!(n− r)!

Figure 6.4: Assessment Structure for Team Composition.

Using ML with these four attributes, we create supervised training data through rank-

ing some students as one (novice) to five (very knowledgeable) based on their scores and

course workload in contrast to [50, 68]. Using five ML classifiers: 1) Gaussian Naive Bayes,

2) K-Nearest Neighbor, 3) Decision Tree, 4) Nearest Centroid, and 5) Linear Discriminant

Analysis, we take the arithmetic mean of these five rankings for grouping into classifications,

one to five. We cross-validate our ML algorithms using the holdout method with a 20 / 80
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split. After teams selection, we make a schedule of rotations with respect to all Scrum roles

(project manager, Scrum master, senior programmer, junior programmer, QA/tester) and

give teams the rubric for their first project presentation. We show a sample of one team’s

rotation schedule in Table 6.1. We did not include race and gender attributes in the team for-

mation algorithms or as independent variables in our regression analysis because this research

intent is examining teaching strategies and using technology components, then measuring

their effect for CS student readiness with computing job interviews in the workforce.

Table 6.1: Sample Team Rotation Schedule with Scrum Roles.

TeamX Sprint1 Sprint2 Sprint3 Sprint4 Sprint5

Person1 Project

Mgr*

Scrum

Master*

Senior

Prog.

Junior

Prog.

Testing and

QA

Person2 Scrum

Master*

Senior

Prog.

Junior

Prog.

Testing and

QA

Project

Mgr*

Person3 Senior

Prog.

Junior

Prog.

Testing and

QA

Project

Mgr*

Scrum

Master*

Person4 Junior

Prog.

Testing and

QA

Project

Mgr*

Scrum

Master*

Senior

Prog.

Person5 Testing and

QA

Project

Mgr*

Scrum

Master*

Senior

Prog.

Junior

Prog.

* indicates a team presenter (active role) at end of sprint

6.3.2 Team Project Requirements

In the second week, the class instructor presents a pool of team projects with descriptions

and recommendations of platforms for implementation (samples shown in Section 6.3.4).

Each team randomly selects a sealed, envelop with a number forming a lottery selection
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from the list of projects. Most are web, but several are desktop or can be mobile app centric.

Each must incorporate at least one web service API, and a database (SQL or No SQL)

to maintain application and/or user state. The instructor gives a brief project description,

possible associated web service API, and other requirements like GUI based interfaces, and

recommended OOP languages. Some script languages like JavaScript are allowed, but cannot

not comprise the majority of the code base.

Technology requirements for projects in our MACROVR approach include cloud-based

version control management (GitHub7), a group communication systems (Slack6), and the

project’s progress and activity management using Scrum (ZenHub8). End of sprint cy-

cle’s team presentation incorporates SE course content timed with teaching progress like:

conceptual models, test case scenarios with test cases, UML activity diagrams, object class

diagrams, and UML state diagrams specific to their project as well as metric reporting (burn

down and velocity) of their project progress from the ZenHub system.

The first sprint involves building a Scrum backlog with user stories mostly comprised of

investigation and research for the project’s technology requirements and setup of the team

members in GitHub, ZenHub, and Slack. Additionally, the first sprint requires a global

system concept model review by the instructor before their first presentation (end of sprint

one) to allow constructive feedback. This is important to start each team with a realistic

and correct direction for their system development and implementation in the lifetime of the

course.

Grading from the rubric requires each project team to upload their presentation files

into our learning management system (LMS) for feedback and suggestions to improve soft

skills areas for the next sprint presentation. A rubric for the team presentation is shown in

Figure 6.2. Some research indicates that collaboration, fair cooperation, and communication

are the most important student skills and is a problem in teams of PBL, especially in SE

education [64]. In order to mitigate some of these negative effects, the MACROVR strategy

uses a sliding scale of grade impact from each end of sprint presentation. The more active

8https://www.zenhub.com/product
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roles (project manager and Scrum master) carry more responsibility, thus have the majority

of earned points for the grade of a presentation. We weight the project manager at 45%,

the Scrum master at 25% and other members equally at 10% each. Grading with this style

of scaled points puts emphasis on active and passive roles during a sprint. It encourages

team leadership and strong communications from the active roles. Referring back to Table

6.1, we ensure each team member will have a chance to experience all team roles in the

Scrum methodology over the semester time period. The total course grading for a student is

weighted as 50% for presentations with the rotating Agile roles and 50% equally split among

exams.

6.3.3 Survey Questions

Each Likert scale question gives the participant a choice: Strongly Agree, Agree, Neutral,

Disagree, Strongly Disagree, or N/A. We separate the responses for analysis in two cohorts

from students in MACROVR or MACROVR-lite SE courses taught in Fall 2017, through

Fall 2019. Both cohorts receive the same set of questions to allow us a statistical comparison

in their opinions, interests, or perceived efficacy as it relates to the RQ2.

From the fifteen survey questions, we show in Table 6.3, there is a threat of Type 2

errors in our analysis to use a parametric testing model with the distribution of student

responses being unevenly distributed. We observe several histogram graphs to verify this

non-normal distribution. We choose a two non-parametric test, Kruskal-Wallis9 to analyze

our data. The general descriptive analysis of our n=319 is shown in Table 6.2, and in Section

6.4 we interpret the results of our tests.

9https://www.statisticshowto.datasciencecentral.com/kruskal-wallis/



51

Table 6.2: Survey Data Composition.

Event MACROVR MACROVR-lite

Sent 135 184

Complete 87 29

Incomplete 18 1

Refusal 5 3

Participation 64.4% 15.8%

The percentage of participation from our cohorts, shown in Table 6.2, indicate instruc-

tors of MACROVR-lite sections of the course may not have encouraged their students to

respond to the survey with similar enthusiasm as instructors of the MACROVR sections. We

present the data separately as percentages based upon each respective cohort’s participation

shown in Figures 6.5 and 6.6.
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Table 6.3: Survey Questions.

No. Survey Question

(1) The use of team projects better prepared me for interviews.

(2) The use of Agile and Scrum methodologies in class better prepared me for interviews.

(3) The single and final project presentation in class better prepared me for interviews.

(4) The topics covered in class better prepared me for interviews.

(5) The single and final project document better prepared me for interviews.

(6) † The Agile SCRUM team roles being rotated better prepared me for interviews.

(7) † Having end-of-sprint presentations better prepared me for interviews.

(8) † Using cloud based project and control management tools better prepared me for

interviews.

(9) † The in-class team activities related to Agile and Scrum better prepared me for

interviews.

(10) The in-class team activities related to course topics (UML, test cases, state models)

better prepared me for interviews.

(11) † Using a web API (remote) better prepared me for interviews.

(12) † Incorporating a database system into my project better prepared me for interviews.

(13) † Incorporating a cloud based system for project team communications better pre-

pared me for interviews.

(14) † Incorporating a GIT / repository system better prepared me for interviews.

(15) † Creating a video of the project storyboard better prepared me for interviews.

† MACROVR specific survey question.
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6.3.4 Sample Projects

Several successfully completed applications by student project teams are given from the

instructor list below. We use these and other projects in the MACROVR approach. Note

that some require multiple teams communicating and coordinating project resources among

two or three teams. This requires a small amount of product management from the instructor

to help with setup and configuration as a ‘monitoring’ member of their Slack, GitHub, and

ZenHub systems. Additionally, the instructor helps the multiple team projects with the

abstract concept of a ‘test harness interface’ to initially connect different applications before

full implementation.

Our sample list of team projects include:

• Attend-In: Mobile (Android) application to use the geo-location from a student’s

mobile device’s IP address for time and attendance in college classrooms. It is designed

so an instructor can setup their classes from a web browser or desktop application,

class times, and campus buildings. The application will convert building address to

geo-location. The web services recommended is IPStack10. This project has two teams

requiring combined work. One for the Android application built using Android Studio,

one for an instructor application with back end database in a web hosted system like

Google Firebase11.

• Client Care: A desktop or web browser application to help a non-profit organization

with client intake and management for providing services. One team to build a system

to register a client’s information and show if already registered for an available service.

A second team for back end database and GUI to manage the services. This non-profit

might offer services to include a food pantry, educational class for: 1) personal finance,

2)resume writing, 3) job interviewing and 4) MS Office training, and a clothing closet

for professional and business clothing. Recommended web service would be screen

10https://www.gps-coordinates.net/gps-coordinates-converter
11https://firebase.google.com/docs/hosting
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scraping for food banks data12 or interview skills on Udemy13 to give case workers a

resource in the application.

• Baby Buddy: Mobile (Android) application to use near field communications, (NFC)

with a RFID tag to log your baby or pet as an occupant of your vehicle. It detects

movement with accelerometers once baby registers as ‘checked in’ and when stopped.

If Baby-Buddy is not checked out through the NFC tag and vehicle is stopped after a

time limit, alarms are sent to registered contacts and 911 at the central system. This

is all potentially hosted from Amazon Web Services. The same database will be used

for check-in and check-out of baby’s NFC tag. Recommended web services are Google

GPS on the mobile application and Amazon web services for texting and database.

This project has two teams requiring combined work. One for the Android application

using Android Studio and a second for the back end database and communication to

the web services.

• Food Oasis: Mobile (Android) application to find small popup or unknown food

sources offering quality items in food deserts and swamps. A good example is at

Georgia Food Oasis in FaceBook, but it requires a FaceBook account and uses your

personal data and computer GPS location data in undisclosed ways. The design is

a small footprint of user information for finding good, fresh food sources with web

services of Google GPS and Firebase. This project has two teams requiring combined

work. One for mobile app and a second for the back end database and communication

to the food sources. The back end system will need a GUI to register and maintain

food sources (vendor data).

• Food Saver: A complimentary project to Food Oasis. This is a desktop or web

browser application to allow grocery stores or popup food providers a mechanism to

register themselves as offering fresh, quality food. Recommend web services include

12https://www.feedingamerica.org
13https://www.udemy.com
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Google GPS and Google Firebase. One team can build the desktop or web browser

application that will connect to a back end system built by a team in Food Oasis.

6.4 Results

In this section, we present our statistical analysis, show our descriptive and inferential

data, and discuss threats to validity. The composition of data from our cohorts’ responses

are previously shown in Table 6.2. We present the descriptive analysis in Table 6.4, and

inferential analysis in Table 6.5, where we indicate the survey question’s correlation to our

RQ2 and show the most influential indicators. Lastly, we discuss threats to the validity of

our findings, both internal and external.

6.4.1 Interpretation of Results

The highest mean score, and closest to Strongly Agree response, are questions 2, 12,

and 14; -two requirements, 12 and 14 are in the MACROVR approach. Question 2 indicates

a high mean score and if we look at its Likert scale scores in Figure 6.5, the MACROVR

cohort shows there are 0% NA responses and the third highest, 55.4% Strongly Agree in

the entire corpus. The highest Strongly Agree response, 59.3% is in the MACROVR cohort

indicating use of a database component in the MACROVR approach realizes a benefit in

computing job interviews. This high mean value for question 12, could result from students

taking a database fundamentals course prior to the SE course being studied. Inferential

analysis of question 11, using a Web API, in both cohorts indicate highly significant (Table

6.5), but descriptively, the MACROVR approach shows as a much higher correlation; -

Strongly Agree, 36.4% and Agree, 31.8% in contrast to MACROVR-lite Strongly Agree, 14.8%

and Agree, 22.2% respectively. Simple descriptive analysis supports our RQ2 showing the

MACROVR approach responses (x=87) is three times the amount of the MACROVR-lite

approach responses (x=29).
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Table 6.4: Survey Question Descriptive Statistics.

No. Obs Mean Std.Dev Min Max

(1) 111 3.982 1.206 1 5

(2) 107 4.093 1.178 1 5

(3) 109 3.817 1.270 1 5

(4) 111 3.901 1.206 1 5

(5) 108 3.593 1.215 1 5

(6) † 108 3.796 1.372 1 5

(7) † 108 3.935 1.162 1 5

(8) † 99 3.929 1.197 1 5

(9) † 98 3.755 1.293 1 5

(10) 108 3.954 1.171 1 5

(11) † 98 3.878 1.204 1 5

(12) † 109 4.312 0.959 1 5

(13) † 100 3.890 1.180 1 5

(14) † 109 4.156 1.148 1 5

(15) † 93 3.419 1.362 1 5

† MACROVR specific survey question.
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Figure 6.5: Percentages of MACROVR Survey Responses by Likert Value.

Figure 6.6: Percentages of MACROVR-lite Survey Responses by Likert Value.
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An indicator supporting the use of the video component might simply be an outlier in

the MACROVR-lite cohort. Looking at the results of survey question 15, as shown in Figure

6.6, we see this cohort gives 25.9% of NA choice, the highest over all other questions. We also

see they give 14.8% Disagree and 22.2% Strongly Disagree for the same question. Compar-

ing to the MACROVR cohort for the video component question, the NA is 0%, Disagree is

8.7%, and Strongly Disagree is 4.3%. These responses indicate the individual video compo-

nent has a stronger connection to students in the MACROVR approach. Another indicator

supporting the MACROVR approach versus MACROVR-lite is question 14. The support

for GIT/repository in both cohorts show the MACROVR cohort has a combined support

(Strongly Agree with Agree) of 72% versus 55.5% of similar support in the MACROVR-lite

cohort. This indicates both cohorts use GIT/repository, but our experimental group, the

MACROVR cohort verify it better prepares them for computing job interviews. Our holistic

approach, combining all MACROVR components, shows advantage over using only some of

them. We normalize all percentages shown in Figures 6.5 and 6.6 relative to the respective

cohort’s response sizes.

The Wilcoxon rank-sum (Mann-Whitney) test indicates several of our survey questions

reject the H0 hypothesis. In Table 6.5, we see the same questions: 1, 3, 4, 5 ,6, 7, 8, 9, 10,

11, and 14, reject the H0 hypothesis. This indicates the findings in our survey responses for

these questions show significant acceptance of the alternative hypothesis, Ha, and their Likert

data substantiate our RQ2 that the MACROVR approach is reporting as more effective in

preparing students for computing job interviews.
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Table 6.5: Survey Question Inferential Statistics (Mann-Whitney).

No. MACROVR Obs MACROVR-lite Obs p-value z score

(1) 85 26 0.0009*** -3.309

(2) 83 24 0.0133* -2.476

(3) 82 27 0.0070** -2.695

(4) 84 27 0.0039** -2.885

(5) 81 27 0.0156* -2.418

(6) † 82 26 0.0001*** -3.824

(7) † 83 25 0.0038** -2.891

(8) † 75 24 0.0002*** -3.782

(9) † 74 24 0.0004*** -3.565

(10) 82 26 0.0356* -2.102

(11) † 74 24 0.0006*** -3.451

(12) † 84 25 0.3305 -0.973

(13) † 76 24 0.0627 -1.862

(14) † 82 27 0.0032** -2.948

(15) † 73 20 0.1090 -1.603

*p < 0.05, **p < 0.01, ***p < 0.001

† MACROVR specific survey question.

6.4.2 Threats to Validity

Although our data collection is sourced from multiple semesters, our research treats

them as one group. We acknowledge the validity of new discovery in the MACROVR ap-

proach requires maturation and a longitudinal study as is the case in most research. Re-

visiting this survey in future CS student cohorts, refining the components of MACROVR,
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without losing the intention and relevance in the computing industry can mitigate this threat.

However, our study is to determine if using the MACROVR approach better prepares stu-

dents for interviews, as compared to a MACROVR-lite approach. Establishing benefits of

the MACROVR approach opens investigation into new methods to optimize the method

and delivery. Another threat is pre-test and post-test analysis. This research conducts only

post-test, as students require exposure to the MACROVR approach in order to form opinion

of its efficacy in preparedness in a computing job interview. One mitigation ‘pre-test’ would

involve mock interview questions with specific relations to components of the MACROVR

approach, collection of performance data in the course, and inferential analysis.

Extraneous variables such as the details of the computing job focus as well as the

practical industry conducting the interview is not in this research. We do not ask specifically

in the survey what are the details and duties of the SE job like building cybersecurity

components versus web UI components. Also we do not ask from what industry the interview

originates like healthcare versus communications versus gaming. Our assumptions that all

computing job interviews relate to SE positions in similar ways threaten the external validity

or our findings. Mitigation of this area would involve future surveys to include groupings of

computing job details and industry as demographic data to be collected and thus, creating

an internal threat to longitudinal research with this original data.

Students are known to try and ’game’ a system to gain an advantage over others. The

team formation algorithms do not have mitigation mechanisms for such adversarial data when

classifying the students as ’novice’ or ’expert’ levels. The ML algorithms assume honesty

in answering questions, not deception. A student indicating they do not know an answer,

when they in-fact do, can be incorrectly classified as ’novice’ and paired with true ’expert’

students, giving that team more ’expert’ members than others. This can be mitigated with a

different set of survey questions with more free-form answering instead of specific answer(s)

from multiple choice questions and additional attributes related to off-campus employment

or part-time enrollment status.
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The study of SE education effectiveness in industry is a vast challenge, but analysis of

teaching specifics in the application of the MACROVR approach shows help in minimizing

the scope in this challenge. This case study supports preparing CS students for industry by

using several techniques and technologies from the MACROVR approach when teaching SE.

We see promise in our measures to strengthen the validity of our findings by continuing to

refine and compare SE education practice and computing industry readiness. The computing

industry and workforce readiness is a moving target, but with identifying threats to validity,

we increase awareness of this change and the need to constantly examine, collect, and research

SE education.

6.5 Conclusions

In this study we analyze a novel approach to teaching Software Engineering (SE) that in-

tegrates numerous researched techniques for industry readiness in SE education. Specifically,

we incorporate Agile/Scrum, team formation in project-based learning (PBL), Git version

control, and team communication and collaboration. Combining these researched and proven

strategies as effective in the computing workforce with our techniques of AI team formation,

rotation of team roles, rubrics, and video reporting, we present the MACROVR approach.

We report upon Likert scale data responses from a fifteen question survey and with

descriptive and inferential analysis, positively answer our research question in that the

MACROVR approach better prepares a CS student for a computing job interview. Our anal-

ysis validates this research in eleven out of fifteen survey questions supporting Agile/Scrum,

using machine learning to form student teams for PBL, project technologies integrated in

the cloud, rotational Scrum roles, rubrics, and student video recordings; -the MACROVR

approach. Within the CS student population, we identified two cohorts: 1) students being

taught SE topics and concepts requiring use of all components in our MACROVR approach

and, 2) students being taught SE utilizing some, but not all components, we call MACROVR-

lite. From the total population of n=316, the responses give us an analysis sample size of

x=116. From this sample size, we investigate the effect of using real-world SE experiences
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through CS technical skills and soft skills. Using teaching strategies from the MACROVR

approach is improving preparedness in students for computing job interviews.
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7 CLASSIFICATION USING DECISION TREES FROM COMPUTER

SCIENCE COURSE PERFORMANCE AND SEMESTER SPAN

Using decision trees, we analyze the GSU dataset of CS student records (approximately

49K) with the goal to classify success or failure based upon several CS core curriculum course

grades and their semester spans. Decision trees are a non-cyclic connected graph that forms

a tree. The tree has internal nodes that correspond to a logical test on some attribute and

connecting branches that represent an outcome of the test, usually success or failure. Using

this type of structure, the decision tree becomes a classifier for the dataset and selected

attributes under investigation.

Our choice of the selected attributes is guided by the CS prerequisite course chart

shown in Figure 7.1. We queried our 49K dataset to determine prerequisite courses (cs2720,

cs3210, and cs3320) with all success, passing grade, as shown in Figure 7.2 and selected CS

courses matched as dependent courses. We analyze our extracted student data in a pathway

constructed from these prerequisite courses and the respective dependent courses including

the semester sequence of all courses. The tree builds with the corresponding dependent

course grade and the semester span between the prerequisite course semester sequence and

their respective dependent course sequence. We discuss these actions in detail in Section 7.2.

Most decision trees produce a classification of success or failure using Quinlan’s Iterative

Dichotomiser 3 (ID3) [70]. With ID3, it is implied all values exist for all attributes, i.e., no

missing values. Quinlan later created the C4.5 algorithm to compensate for missing values

[71]. We are using the R language and its implementation for decision tree classification

algorithm is Classification and Regression Trees (CART) [72].
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7.1 Background

The main goal of the research in this chapter is to examine GSU’s Computer Science

Core Curriculum (CSCC) courses, shown in Figure 7.1, in a novel manner and determine

factors of success or failure. We determine this based upon demographic data, course perfor-

mance, course sequencing (prerequisite related to dependency), and semester span derived

from the course sequencing. Many studies have looked at prediction of student performance.

In 2019, Zhang and Wu analyze student behavior of course achievement in chapter test-

ing [73]. They combine chapter test scores with lab scores in a CS ‘C’ programming course.

Their work compares ID3, C4.5, and CART to form decision trees for prediction of students

passing or failing the course. They found the CART algorithm gave the best accuracy in

predicting if the student passed or failed the course. Their accuracy is reported as 90% using

the CART algorithm.

In another study, Liao et al., uses clicker data gathered in three CS courses applied

with Peer Instruction pedagogy. Their goal involves predicting low-performing students in

beginning CS courses [74]. Similar to our study using lower level CS prerequisite courses,

they find using support vector machine algorithms to mine the clicker data gives a 62%

accuracy in predicting a failing student. Others like Dhanpal et al., apply graph clustering

algorithms to predict student performance based upon recent GPA values over a three-year

period [75].

Our work in this area is to determine accuracy of our model using a CS student’s GPA

values from CS courses along with their behavior in course sequencing with predicting success

of failure of these CS courses. The student behavior related to selecting a CS course at a

specific time can be influenced by things outside of their control such as availability of a CS

course when needed, personal events that require reducing course loads, and the effectiveness

of the learning they receive in a classroom. These attributes are difficult if not impossible

to capture in a dataset for analysis. However, by using the semester span that is influenced

by these and depends upon sequencing of a student taking a CS course, we see potential to
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realize new knowledge related to student behavior aiming to improve classification accuracy

when predicting if they finish a program successfully or not.

Figure 7.1: Computer Science Core Curriculum (fall 2019).

7.2 Methods

Our applied heuristic to determine success or failure selected from attributes of the

dataset is done using supervised learning where we consider the intersection of two criteria.

The first is a selection status of success when a student passes with a grade of ‘C’ or higher

in three prerequisites CS courses: -data structures (cs2720), computer organization and pro-

gramming (cs3210), and system-level programming (cs3320). The second selection criteria is

the student must complete (without withdrawal) all four dependent CSCC required courses

that includes algorithms (cs4520), software engineering (cs4350), programming language

concepts (cs4330), and computer architecture (cs4210). To summarize, if a student passes

the three prerequisites (cs2720, cs3210, cs3320) and complete the four dependent required
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courses, they are extracted. We establish the ground truth data from this extracted set by

classifying as success if the student passes the three prerequisites and all four dependents

and classify as failure if the student passes the three prerequisites and fails one of the four

dependents.

We compute the semester span by using Figure 7.1 as a guide. This heuristic utilizes

the prerequisite course of cs2720 and its dependent courses cs4520, cs4350, and cs4330. We

select the prerequisite course cs3210 because of the dependent course cs4210. We chose to

keep cs3320 as a selection criteria because the course does have content related to other

four-thousand level CS courses in our dataset and is a required course. We feel the topics in

cs3320 influence courses beyond the four, four-thousand level courses.

Computing the semester span is different for cs4210 from cs4520, cs4350, and cs4330.

The cs4210 course computes the semester span with the prerequisite semester sequence from

cs3210. The cs4520, cs4350, and cs4330 all use the prerequisite semester sequence from

cs2720 in their computation for semester span. The computation is how many semesters

transpire from completing the prerequisite course and completing the dependent course.

Again, we capture the ‘completed’ semester sequence regardless if the student passed or failed

the course because this value indicates student behavior and dependency in our decision tree.

GSU offers a ‘repeat and replace’ for courses and this can influence the semester sequence

values. We capture an attribute in our dataset we call the ‘DFWFsequence’ that indicates the

semester sequence the failure for a CS course occurs. Additionally, we capture the number

of failures for all CS courses taken, the withdrawal semester sequence, and frequency of a

CS course withdrawal. Because there are a very small number of observations with these

attributes, we do not consider them in computing our decision tree. In our future work,

we discuss generative modeling using many attributes of ground truth data and these are

considered descriptively valuable enough to be included in the modeling.
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Figure 7.2: Sample Sizes in Attribute Selection from Dataset for Decision Tree Computa-

tions.

Several criterion are used to refine the calculations for attribute selection. These calcula-

tions are based on information gain for the ID3 algorithm, gain ratio for the C4.5 algorithm,

and the Gini Index if we use the CART algorithm. Also, gain ratio is used to overcome some

of the bias introduced when partitioning the data [76]. The R decision tree algorithm uses

CART and relies on the Gini Index value. With our sample size S having k observations,

each has n decision attributes. Each pj represents a relative probability of the decision at-

tribute’s value j in sample S. Where C is the number of classes in the tree branch indicated

by our binomial classifier (success or failure). If we divide the sample S into two datasets,

S1 and S2, we would have our Gini Index formula:
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Ginisplit(S) =
k1
k
∗Gini(S1) +

k2
k
∗Gini(S2)

The more generalized formulation is:

Gini = 1−
C∑

j=1

(pj)
2

Predictions in our model to classify the success or failure outcome can be visualized

with a confusion matrix. Figure 7.3 shows the result or our model’s classification. A true

positive is where the model correctly predicted Failure=198. The false positive is where the

model incorrectly predicted Failure=82. The false negative is where the model incorrectly

predicted Success=6. The true negative is where the model correctly predicted Success=13.

Figure 7.3: Our Confusion Matrix with Split Ratio of 80%.

The accuracy formula derived from a confusion matrix is:

Accuracy =
TP + TN

n
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The accuracy in our confusion matrix is computed as:

198 + 13

299
= 70.57%

We discuss the output of the confusion matrix related to our model in section 7.3.

We cross-validate our classification by using the holdout method with a 20/80 split. We

experimented with varying holdout percentages where training data was modeled with 70%,

75%, and 80%, but the prediction accuracy is optimal at the 25/75 split. Our algorithm for

determining an optimal tree for knowledge discovery is shown in Algorithm 1.
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Algorithm 1 Decision Tree Pruning

Input: Decision trees D = 〈T1, T2, T3〉

Output: Pruned decision tree

// T1 has SR 70%, T2 has SR 75%, T3 has SR 80%

1 Build and observe all tree’s accuracy and Kappa, select best

2 Plot the best tree from set D

3 Examine root node logical test

if Step3 = sensible AND root node frequency ≤2 then

4 Select tree from Step3

5 go to Step11

6 else

7 Pre-prune root node

8 go to Step2

9 end

1111 Perform Complexity Parameter (CP) operation, obtain best cross-validation value

12 Rebuild classification tree selected in Step3 using the CP value (post-pruning)

13 Plot the new tree

14 Compare analysis between two trees (Step2, Step13)

15 Select best based on size, number of binomial paths, sensibility
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7.3 Results

We begin with showing a subset of output results generated from the R confusion matrix:

Confusion Matrix and Statistics

Reference

Prediction failure success

failure 198 82

success 6 13

Accuracy : 0.7057

Kappa : 0.1366

’Positive’ Class : failure

Interpretations for the Kappa1 value is the indication of rating agreement between the

supervised learning classification and prediction model’s classification. The closer the Kappa

value is to 100%, indicates a higher agreement between the prediction and reference data.

Even though our model produces a 70.57% accuracy, the Kappa value of 13.66% is low. One

can explain this because of the heuristic to determine supervised learning observations in our

dataset resulted in success=981, and failure=516, shown in Table 7.1. The confusion matrix

in our prediction model is success=13, and failure=198, showing a large variation from the

supervised.

Perhaps our model would be better to use a ‘quality’ indicator based upon another

heuristic such as class size ratio of students to faculty instructor and if taught by a faculty

or graduate student. Intuition tells us using these attributes could impact prediction models

for a student’s success or failure. Currently, it is not possible to capture these attributes,

preprocess them, and analyze in a decision tree model.

The dataset’s descriptive statistics are shown in Table 7.1. It indicates that each of our

chosen attributes related to student performance results in a ‘C+’ grade or higher. The span

1http://john-uebersax.com/stat/kappa.htm (Accessed in October 2020).
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columns indicate values representing the semester from completing a prerequisite CS course

and the semester of completion in the respective dependent CS course. It is interesting to

see that even though cs4520, cs4350, and cs4330 share the same prerequisite course, the

software engineering course (cs4350) appears from the Mean value to take the least time

for students to complete. This dataset is from years 2008 through 2018, and the newly

activated requirement of taking cs4520 prior to cs4350 might explain why their span’s Mean

values are similar compared to the cs4330 span value. The negative values for span could

be indicating students were granted permission from the university to take the prerequisite

course simultaneously with the dependent course, but failed the prerequisite course and

repeated, thus replacing the semester sequence with a later occurrence or a repeat to replace

a ’C’ grade.
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Table 7.1: Descriptive Statistics.

Stat. cs4520

grade

cs4350

grade

cs4330

grade

cs4210

grade

cs4520

span

cs4350

span

cs4330

span

cs4210

span

Min. 0.0 0.0 0.0 0.0 -2.0 -2.0 -11.0 -6.0

1st Q 2.7 3.0 2.3 2.3 1.0 1.0 2.0 1.0

Med. 3.3 3.0 2.7 3.0 3.0 3.0 3.0 2.0

Mean 3.149 3.305 2.745 3.003 2.997 2.764 3.244 2.34

3rd Q 4.0 4.0 3.3 4.0 4.0 3.0 4.0 3.0

Max. 4.3 4.3 4.3 4.3 20.0 20.0 23.0 15

NA’s 323 315 321 254 323 315 321 280

Success=981, Failure=516 (Supervised Learning).

We present three models of our decision trees visualized in Figures 7.4, 7.5, and 7.6.

Using Algorithm 1, each decision tree, incorporating all attributes, derives the same tree

size of four. Observing the terminal nodes marked as success, we see Model 2, in Figure

7.5, offers the highest success rate of 30% and the highest Kappa value of 23.95%. Next, we

take Model 2 and apply the R algorithm to compute Complexity Parameter (CP) to find an

optimal value closest to the cross-validation level as shown in Figure 7.7. Applying this to our

selected decision tree, it produces a very similar tree with little significant difference as shown

in Figure 7.8. We observe the Kappa value decreases and the accuracy decreases. Referring

back to our Algorithm 1, we perform a pre-pruning of the cs4330 grade and regenerate the

decision tree.
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Figure 7.4: Decision Tree All Attributes Split Ratio = 70%.

Figure 7.5: Decision Tree All Attributes Split Ratio = 75%.
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Figure 7.6: Decision Tree All Attributes Split Ratio = 80%.

Figure 7.7: Complexity Parameter Computation with Model 2, Shown in Figure 7.5.
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Figure 7.8: New Decision Tree of Model 2, after CP Algorithm Applied.

Our new decision tree, shown in Figure 7.9, displays the larger detailed tree after we

perform a pre-pruning of the cs4330 grade. We remove this attribute because it appears in

all three models and the newly generated model after a CP is applied to the Model 2. Our

Algorithm 1 states if it is ‘sensible’ or has ‘sensibility’ to make a decision to keep a node

logical test in the decision tree or re-build without that attribute. We delete the cs4330

grade because of its relatively small value all the binomial splits at the root node in each

model we build and present.
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Figure 7.9: New Decision Tree of Model 2, with Pre-pruning ‘cs4330’ Attribute.

The new decision tree in Figure 7.9 shows a new high success prediction probability

of 40.2% in the second from the right terminal node. Observing this discovery, we can

formulate a more readable flowchart of the entire tree shown in Figure 7.10. Interpretation

of our decision tree with a flowchart representation gives us new knowledge for describing

success pathways for the CS student. The root node and others that show a very low GPA

(1.5, 1.85) as their binomial choice indicate this attribute’s information gain is the highest

when split on this low GPA value. One can interpret as a large number of different grade

values with the best bifurcation of occurrence being at this low value. Perhaps a better grade

value is to create an ordinal range to normalize the large variety of grade values. This new

understanding showing pathways can be described in the following narrative:

1. Computer Architecture grade is greater than or equal to 1.5
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2. Algorithms grade is greater than or equal to 1.85

3. Software Engineering grade is greater than or equal to 1.5

4. Computer Architecture grade is greater than or equal to 2.5

5. Race is Black, Asian , or other

6. Programming Language Concepts span is greater than or equal to 3

7. Algorithms grade is greater than or equal to 3.85

8. Race is Black (Success classification with prediction of 40.2%)

Figure 7.10: Flowchart of New Decision Tree from Figure 7.9.
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Using the aforementioned heuristic, we can use our new understanding and create ac-

tionable recommendations by making changes within our decision tree and reanalyzing. Per-

forming a repeat of our Algorithm 1, and heuristic, we find more ways to increase the

pathways of success for our CS students.

7.4 Conclusions

In this study, we have analyzed CS student data to build a decision tree classification

model. We looked at numerous attributes in our dataset and determined to focus on the Com-

puter Science Core Curriculum (CSCC) courses in our program. The dataset was analyzed

and we were able to extract a representative sample of 1,497 student records that contained

demographic attributes, GPA of CS courses, and a semester sequence that occurred in our

time span of 10 years.

Analyzing these attributes, we use them in the R programming language with statisti-

cal libraries to analyze and compute classifications using the CART algorithm for decision

trees. This analysis gives us varying degrees of prediction accuracy and our final best ac-

curacy achievement is 72.24%. The supervised learning data reveals interesting pathways

for semester sequencing relating to the demographic subgroups of students. Additionally,

producing knowledge from these decision trees reveals optimal pathways for success in com-

pleting the CSCC courses. With this understanding of our CS student population, we can

design, implement, and test intervention activities. These can relate to reducing the semester

span between a CS prerequisite course and its dependent course as well as supporting pro-

grams for new CS students that are transferring from other universities and colleges. Building

on this work, additional student attributes can be gathered, analyzed, and interpreted for

new understanding and realization of successful pathways for the CS student population and

applied in other academic populations.
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8 CONCLUSIONS

In this dissertation, we study the challenges facing the undergraduate CS student’s path-

way to graduation at Georgia State University (GSU). These express themselves through data

attributes in our the university’s data system and surveys that measure teaching strategies

in course delivery and outcomes. Investigating these planes of data realization with data

mining, statistical regression, and classification models, we discover new knowledge where

known inequities exist, intuitively, but are not always quantifiable. Multiple research works

comprise this dissertation with foci on a global problem of meeting a growing workforce

demand for computer science Baccalaureates.

Firstly, this dissertation addresses realistic problems of inequities with transfer students

and prerequisite courses being taught in departments other than CS. We show transfer

students at GSU take heavier loads of CS courses and suffer with lower GPA and more

frequent failures. Additionally, we find a difference in the outcome performance of a CS

algorithms course that is dependent upon a prerequisite course that is accepted from the

mathematics department or CS department at GSU. Looking into the analysis, we find the

students taking the prerequisite course not in the CS department have lower performance

in the algorithms course and a longer semester span before successfully completing the CS

course.

Secondly, this dissertation studies the effect a novel teaching strategy has upon CS stu-

dent’s seeking a computing industry job. Developing teaching strategies, utilizing technology

platforms in the classroom, and employing machine learning algorithms gives us the ability

to measure effect and outcome. We create the MACROVR approach that shows students

taking software engineering under this teaching strategy and approach have greater success
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in computing industry interviews. Our research supports the GSU initiative1 of embedding

a ‘college to career’ mechanism into courses for preparing CS students entering the practice

reality in the workforce.

Thirdly, this dissertation considers a study involving an early CS1 course at GSU re-

lated to a student’s interpretation of a graphical chart. Our study’s purpose is to test the

hypothesis that if a beginning CS student can successfully answer questions relating to our

prerequisite chart found in Figure 8.1, their performance in the CS1 course will be higher.

Our study, approved by IRB2 delivered a paper survey to students in the first two weeks of

the CS1 course. We collected their course performance at the end of the semester and ran

several regression models with the demographics, survey score, and CS1 course GPA. The

analysis results did not give correlations related to our hypothesis. Since no correlations

could be found, the research was stopped.

Figure 8.1: CS Prerequisite Chart for CS1 Course Study.

1https://success.gsu.edu/initiatives/college-to-careers (Accessed in November 2020).
2IRB: H20340
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This study can be revisited with a different survey instrument and perform pretest and

post-test surveys. Using a more qualitative approach, may yield valuable knowledge about

the first year CS student. Also tracking their progress with follow-up surveys or course

assessments in additional lower level CS courses would contribute to a predictive model for

optimal pathway and decrease time-to-graduation.

Lastly, this dissertation shines the light of classification into our CS dataset. We wish to

understand the bottlenecks of our CS student’s pathway to success by analyzing CS course

performance and sequencing of the required courses. Pathway analysis using data mining

and machine learning in CS datasets is not that easily found in research. Our first step with

building a classification decision trees based upon this data has established the beginning

structure related to analysis in our dataset. In order to understand the CS student journey

at GSU and find areas where improvements can be given and tested for effect, we need a

much larger dataset representing undergraduate CS students.

Garnering a very large dataset of CS student data is a daunting task and most student

research relies on small, specific datasets or synthetically created datasets. In order to use big

data mining techniques, one must posses a very large dataset that is robust and representative

of the characteristics in the population being studied. A new area of established research

known as a Generative Adversarial Network (GAN) emerges to use generative models and

neural networks combined that can create a very large plausible, synthetic dataset based

upon a ground-truth dataset. Recent works in research have been found and prove to deliver

very large generated datasets of in numerous formats like tabular and relational [77, 78].

Other research has addressed the data security and privacy concerns with synthetic data

from generative modeling [79, 80], thus opening new research that builds upon the work in

this dissertation.

It is our hope this new area of research will open avenues in data analysis of CS students

and give us the ability to create and establish predictive models to be used for finding

optimized pathways for our CS students and students in other academic programs. The

possibilities are hopeful to use these new techniques, strategies, and algorithms to build a
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very large, publicly available dataset for continued research to improve pathways of success

for our students.
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