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Abstract

We investigate the role of Lie symmetries in generating solutions to differential equations

that arise in particular physical systems. We first provide an overview of the Lie analysis

and review the relevant symmetry analysis of differential equations in general. The

Lie symmetries of some simple ordinary differential equations are found t. illustrate

the general method. Then we study the properties of particular ordinary differential

equations that arise in astrophysics and cosmology using the Lie analysis of differential

equations. Firstly, a system of differential equations arising in the model of a relativistic

star is generated and a governing nonlinear equation is obtained for a linear equation

of state. A comprehensive symmetry analysis is performed on this equation. Secondly,

a second order nonlinear ordinary differential equation arising in the model of the early

universe is described and a detailed symmetry analysis of this equation is undertaken.

Our objective in each case is to find explicit Lie symmetry generators that may help in

analysing the model.
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Chapter 1

Introduction

Most physical situations involving the rates of change can be modelled with differential

equations. It is therefore crucial that we analyse differential equations in a systematic

manner. The solutions to these equations may be found using either numerical or ana­

lytical methods. While great advances have been made in numerical methods, analytic

solutions tend to be more desirable than the numeric ones.

One of the most important methods of finding analytical solutions of nonlinear problems

is through symmetry analysis. In this dissertation we undertake a Lie symmetry analysis

of some important differential equations arising in Mathematical Physics.
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1.1 Outline

Lie was a Norwegian mathematician who, through his dedication, commitment and con-

tributions to the development of mathematics, is considered to be one of the greatest

mathematicians of the nineteenth century. As a result we begin our study by reviewing

his inspirational and motivating life story.

In Chapter 2 we outline the basic ideas behind the Lie analysis. We illustrate, through

examples, the method of finding Lie point symmetries. As some equations do not have

the required number of point symmetries various extensions of the classical Lie approach

have been considered. One such extension involves finding so-called hidden symmetries

(Abraham-Shrauner 1993, Abraham-Shrauner and Guo 1992 and Abraham-Shrauner and

Guo 1994) which have been shown to lead to solutions of a number of equations that do

not possess Lie point symmetries with suitable Lie algebras. This is done through the

reduction or the increase of the order of a differential equation. Again, using examples,

we illustrate how the reduction and the increase of order are undertaken. In this disser-

tation we apply the reduction and the increase of order of ordinary differential equations

extensively in an attempt to find solutions to some important differential equations.

In Chapter 3 we consider the following system of field equations

1- Z . P---2Z - (1.1 )
x C

4ZY Z - 1 P (1.2)-+-- -
Y x C

4Zx2 y+ 2Zx2y+ (Zx - Z + 1) y 0 (1.3)
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arising in astrophysics and we briefly explain how it is generated. We generate a new

master equation by eliminating Z in (1.1) - (1.3) to obtain a third order nonlinear

ordinary differential equation in y only. We then perform a comprehensive symmetry

analysis of this resulting equation.

In Chapter 4 we consider a second order nonlinear ordinary differential equation, viz.

2HH + 6H2iI - iI2 + aH2 = b (1.4)

which arises in cosmology. Again we perform a symmetry analysis of this equation. In

addition we subject the equation to the Painleve integrability test. Ultimately we apply

nonlocal symmetries to reduce the equation to quadratures.

We conclude with a brief discussion of our results in Chapter 5.

1.2 Sophus Marius Lie

Sophus Marius Lie was born in 1842 in Norway. He mastered all his school subjects

equally well and consequently did not find it easy to choose his career when he finished

school. Ultimately, he pursued the study of mathematics and natural sciences. When he

read the works of the geometers Poncelet and Plucker, he was so inspired that he began

to publish an uninterrupted stream of research papers for many years (Yaglom 1988).

In 1870 Lie visited Paris with the aim of meeting Jordan and Darboux. He was highly

influenced by Darboux's profound works on differential geometry, particularly the com­

bination of differential geometry and the theory of differential equations. When the
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Franco-Prussian war broke out in 1871 Lie, while wandering the French countryside,

was suspected to be a German spy because of his poor French and strange appearance

and was therefore arrested and imprisoned. While in prison he spent considerable time

making various mathematical jottings on some aspects of Plucker's line geometry. He

worked on his doctoral thesis which, after leaving prison, he submitted to the University

of Kristiana. Darboux used his influence to have Lie released from prison (Cantwell 2002

and Yaglom 1988).

While in Paris, Lie met Jordan whose research was centred around the theory of groups.

He was greatly impressed with Jordan's conviction on the importance of this theory in

the future development of mathematics. In fact it led to Lie being one of those who

introduced group theoretic concepts into all branches of mathematics. Lie devoted his

entire life to the study of the theory of continuous groups and the notion of symmetry.

(Continuous groups are now known as Lie groups). It was during his time that the con­

cept of symmetry, which had long been the concern of artists, evolved into a fundamental

idea in mathematics and science. Lie was one of the scientists that contributed most

notably to this evolution. He also used the concept of invariance, which is integrally

intertwined with the concept of symmetry, to make a significant impact to the field

of differential equations in his theory of transformation groups (Yaglom 1988). Today

symmetry analysis constitutes the most important widely applicable method for finding

analytical solutions of non-linear problems (Cantwell 2002). Lie's theory rested on his

discovery of the intimate connection between continuous groups and specific algebraic

systems now known as Lie algebras.
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Lie never ran out of ideas and his whole life was filled with intense creative work. When

writing, Lie carefully set down details and provided many examples. Hence most of his

papers and books were very long. He believed quite sensibly that any natural mathe­

matical theory should be transparent, and that difficulties in mathematics usually arise

not from the essence of the problem but from badly conceived definitions. Lie valued

his students and any -and-coming mathematicians. He gave ideas generously to the

potential mathematicians he met on the way (Yaglom 1988).

Lie was one of the last great mathematicians of the nineteenth century. He died in Oslo

on February 18, 1899 (Yaglom 1988).

1.3 Definitions

Here we provide various definitions of the concepts pertinent to our approach so that the

subsequent analysis can easily be followed. For further information, we refer the reader to

Bluman and Anco (2002), Bluman and Kumei (1989), Cantwell (2002), Dresner (1999),

Hydon (2000) and GIver (1993).
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1.3.1 Lie Groups

Group

A group C is a set of elements with a law of composition cP between elements satisfying

the following conditions (Bluman and Anco 2002, Bluman and Kumei 1989 and Olver

1993):

CLOSURE: If a and b are elements of C, so is cP(a, b).

ASSOCIATIVITY: For any elements a, band c of C

cP(a,cP(b,c)) = cP(cP(a,b),c). (1.5)

IDENTITY ELEMENT: C contains a unique element I, called an identity element, such

that for any element a of C

cP(a, I) = a = cP(I,a). (1.6)

INVERSE ELEMENT: For any element a of C there exists a unique element in C denoted

by a-I such that

(1.7)

The element a-I is called the inverse of a.

If two elements a and b of a group satisfy the condition

cP(a, b) = cP(b, a)

6
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they are said to commute. If all the elements of a group commute with each other, the

group is called an Abelian group.

Group of transformations

A set of transformations

x=X(x,c:)

defined for each x in D c R, depending on the parameter c: lying in the set 5 c R, with

</J(c:,5) defining a composition of parameters c: and 5 in 5, forms a group of transfor­

mations on D if (Bluman and Anco 2002):

(i) for each parameter c: in 5 the transformations are one-to-one onto D.

(ii) 5, with the law of composition </J, forms a group.

(iii) x = x when c: = I, i.e.

X(x,I) = x.

(iv) If x = X(x, c:), X= X(x, </J(C:, 5)).

Lie group of transformations

A one-parameter Lie group of transformations is a group of transformations which

satisfies the following conditions in addition to the above:

(i) E is a continuous parameter, i.e. S is an interval in R.
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(ii) X is infinitely differentiable with respect to x in D and an analytic function of £ in

s.

(iii) 1(£,0) is an analytic function of £ and 0 and £ E S, 0 E S.

1.3.2 Lie Algebras

Vector field

A vector field V on a set M assigns a tangent vector Vlx to each pointx E M, with Vlx

varying smoothly from point to point. In local coordinates (Xl, ... , xm ) a vector field

has the form

where each c;i(X) is a smooth function of x (GIver 1993).

Commutator

(1.9)

If Cl and C2 are vector fields then their commutator (also known as a Lie bracket) is

defined as follows (Cantwell 2002, Hydon 2000 and GIver 1993):

As an example we consider the following two vector fields (Hydon 2000):

(1.10)

Cl
0

(1.11 )-
ox

C2
0 3 0

x-+-y-. (1.12)ox 4 ay

8



The commutator for the two vector fields is given by

(~) (x~ + ~y~) - (x~ + ~y~) (~)ox ox 4 ay ox 4 ay ox
a
ox

Lie algebra

A Lie algebra is a vector space, L, on which commutation is defined and satisfies the

following conditions (Hydon 2000 and Olver 1993):

BILINEARITY:

where k1 and k2 are constants.

If [G1 , G2] = 0 then we say G1 and G2 commute. If all the elements of L commute L is

called an Abelian Lie algebra.

9



Solvable Lie algebra

A solvable Lie algebra L is a Lie algebra with the derived series

such that L(k) = 0 for some k > 0 (Jacobson 1979).

1.3.3 Infinitesimal transformation

We consider a one-parameter transformation

x X(x, y, A)

Y(x, y, A) (1.13)

where A is a continuous parameter. By taking the Taylor series expansion of this trans-

formation about the point A = Aa, we generate

x + (OX) (A - Aa) + ...
OA >'=>'0

Y + (OY) (A - Aa + ...
OA >'=>'0

(1.14)

(1.15)

The partial derivatives with respect to the group parameter A evaluated at A = Aa are

referred to as the infinitesimals (Cantwell 2002) and are functions of x and y. We

10



denote them by

(OX) ~(x, y)
oA A='>-O

(aY) = 7](X, y).
oA A=AO

(1.16)

(1.17)

Considering the values of A sufficiently close to AO, the coordinates of the transformation

can be expressed as follows

x + ~ (x, y) (A - Ao)

y = y + 7](x, Y)(A - Ao)

(1.18)

(1.19)

where terms of second and higher degree in (A - Ao) have been neglected. This transfor-

mation is known as an infinitesimal transformation (Dresner 1999).

1.3.4 Invariance under transformation

An invariant is that which remains unchanged when its constituents change. The

concept of invariance has a physical basis in the conservation laws of mechanics.

A function f is said to be invariant under a Lie group if and only if

f(1;, y) = f (X(x, y, A), Y(x, y, A)) = f(x, y) (1.20)

l.e. the function must read the same when expressed in the new variables (Cantwell

2002).

A simple example of invariance under a continuous transformation is the rotation of a

circle about an axis that is normal to its centre.

11



1.3.5 Symmetry

A symmetry is an operation which leaves invariant that upon which it operates. A

symmetry of a geometrical object is a transformation which leaves the object apparently

unchanged.

Consider the transformation of infinitesimal form

i = 1, ... , n (1.21)

where E is a parameter of smallness. The equation (1.21) can be written as

where

is a differential operator called the generator of the transformation (1.21).

We consider a particular case where

o 0
G = ~ox + 1] oy .

(1.22)

(1.23)

(1.24)

Under the action of the infinitesimal transformation generated by G, a function f(x, y)

becomes

1(x, y)

If the form of f is unchanged, i.e.

(1 + EG)f(x, y)

(
of Of)f + E ~ ox + 1] oy .

!(x, y) = f(x, y),

12
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or

of of
~ ox + TJ ay = 0, (1.27)

then G is called a symmetry of f. Mathematically all symmetries represent invariance

under transformations. Some of these symmetries may be translations, reflections and

rotations. Such symmetries are generally referred to as geometric. However, there are

symmetries that may not have such a simple geometrical interpretatior .

13



Chapter 2

Lie Theory of Differential Equations

2.1 Lie point symmetries of ordinary differential

equations

A point symmetry is a symmetry in which the infinitesimals depend only on coordinates

(Cantwell 2002). We describe a Lie point symmetry as a point symmetry that depends

continuously on at least one parameter, i.e. the parameter(s) can vary continuously over

a set of scalar nonzero measure.

Lie point symmetries of ordinary differential equations are of the form

a a
G=~-+7]­ax ay

where the coefficients ~ and 7] are functions of x and y only.

14
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To be able to apply a point transformation to an nth order ordinary differential equation

where

E ( , 11 (n)) - 0x,y,y,y, ... ,y - (2.2)

, dy
y = dx'

11 _ d2y
Y =-2'dx

etc, we need to know how derivatives transform under the' rrfinitesimal transformation

x x + e~(X, y)

y + ET](X, y)

which has a generator given by

[) [)
G = ~(x, y)-;;- + T](x, y)-;:;-.

uX . uy

In terms of the quantities x and fj we have, for the first derivative,

dfj d(y + eT])
dx d(x + e~)

dy dT]
-+E­
dx dx

1 + ed~
dx

(y' +eT]') (I-E( +e2(2 - ...)

(2.3)

(2.4)

which we have terminated at O(e2
). Note that primes refer to total differentiation with

respect to x. For the second derivative we have

15



d ' d
~ + c:- (r/ - y'~')
dx dx

1 + c:~'

y" + c: (TJ" - 2y"( - y'(') .

Similarly, we obtain

d3y
dx3

d4y
dx4

ylfl + c: (TJIfI - 3y'" ( - 3y"(' - y'(")

(2.5)

and so on. In general we generate the formula (Leach 1995)

d~~ = yen) + c: (TJ(n) - t ery(i+l)~(n-i))
dx i=l

where the superscript (i) denotes dd
i

. and er is the number of combinations of n objects
x 2

taken i at a time.

To deal with the infinitesimal transformations of equations and functions involving deriv-

atives, we need the extensions of the generator G. We indicate that a generator G has

been extended by writing

a
G + (TJ' - y'() ­

ay'

G[l] + (TJ" - 2y"( - y'~") ~
ay"

(2.6)

(2.7)

for the first and the second extensions respectively. When generating an extension of G

we have to extend G such that all the derivatives appearing in the equation or function

are included in the extension. For an nth order differential equation, the nth extension

is of the form (Mahomed and Leach 1990)

G[n] = G +t {TJ(i) - t ( i ) y(i+l_j)~(j)} ~.
i=l j=l' ay( )

J

16



The generator

a a
G=~-+7]-

ax ay

is a symmetry of the differential equation

E ( '" (n)) - 0,x,y,y,y, ... ,y -

if and only if

(2.8)

(2.9)

(2.10)

which means that the action of the nth extension of G on E is zero when the original

equation is satisfied.

We next illustrate the method of finding the symmetries of some ordinary differential

equations.

2.2 Examples

As a first example, we determine the symmetries of the following second order ordinary

differential equation

y" + 3yy' + y3 = o. (2.11)

which is a special case of the modified Painleve-Ince equation given by (Abraham-

Shrauner 1993)

y" + ayy' + f3 y3 = O.

17



Equation (2.11) also arises in the study of the modified Emden equation (Abraham-

Shrauner 1993 and Leach et al. 1988). We use the second extension

C[2] = c~ + ~ + ( '- y'()~ + (Tt - 2y"( - y'(')~ (2.12)
':, ox TJ oy TJ oy' oy"

of G since the equation (2.11) is a second order differential equation. When G[2] acts on

the differential equation (2.11) we obtain

3y'TJ + 3y2TJ + 3YTJ' - 3yy'( + TJ" - 2y"( - y'C = 0

which is subject to

y" = -3yy' _ y3.

(2.13)

(2.14)

We recall that primes in (2.13) refer to total derivatives and so the first and the second

total derivatives of ~ and TJ can be expressed in terms of partial derivatives as follows

( o~ ,o~
(2.15)-+y-

ox oy

~"
02~ 2' 02~ '2 02~ IIO~

(2.16)ox2 + y oxoy + Y oy2 + Y oy

TJ'
OTJ ,OTJ

(2.17)-+y-
ox oy

TJ"
02TJ 2' 02TJ '2 02 TJ 11 OTJ (2.18)ox2 + y oxoy + Y oy2 + Y oy'

Substituting (2.14) - (2.18) in (2.13) and simplifying gives

Equation (2.19) is an identity in x, y and y', i.e. it holds for any arbitrary choice of x,

y and y' (Dresner 1999). Since ~ and TJ are functions of x and y only, we must equate

18



the coefficients of the powers of y' to zero. We obtain the following system of partial

differential equations known as the determining equations (Dresner 1999, Hydon 2000):

Integrating equation (2.20), we find that

~ = ay + b

(2.20)

(2.21 )

(2.22)

(2.23)

(2.24)

where a and b are arbitrary functions of x. We substitute (2.24) in (2.21) and solve to

obtain

'rJ = a' y2 - ay3 + cy + d

where c and d are also arbitrary functions of x.

Substituting (2.24) and (2.25) in (2.22) we have

3cy + 3d + 3b'y + 2c' + 3a"y - b" = O.

(2.25)

(2.26)

Since a, b, C and d depend on x only, we can now equate the coefficients of powers of y

to zero. This yields

a" + b' + c = 0

b" - 2c' - 3d = O.

Now we substitute (2.24) and (2.25) in (2.23) to obtain

(2.27)

(2.28)

3cy3+ 3dy2+ 3a"y3 + 3c'y2 + 3d'y + y2a'" - a"y3 + c"y + d" - cy3 + 2b'y3 = O. (2.29)

19



Again we equate the coefficients of powers of y to zero and obtain

y3 a" + b' + e = 0 (2.30)

y2 alii + 3e' + 3d = 0 (2.31)

yl e" + 3d' = 0 (2.32)

yO d" = O. (2.33)

It is now possible to solve the differential equations (2.33), (2.32), (2.28) and (2.27), in

that order. For simplicity we use (2.27) and (2.28) to find a and b instead of (2.30) and

(2.31). From (2.33) we have

We substitute (2.34) in (2.32) and solve to obtain

3A l 2
e = --2-X + A3 x + A4 .

Substituting (2.34) and (2.35) in (2.28) and solving yields

Finally we substitute (2.35) and (2.36) in (2.27) and solve to obtain

(2.34)

(2.35)

(2.36)

Ai 4 A 2 3 A 3 3 A 4 2 As 2
a = -x - -x - -x - -x - -x + A7 x + AB (2.37)
42222 '

where Ai, A 2 , A 3 , A 4 , As, A 6 , A 7 and AB are arbitrary constants of integration. We then

substitute (2.36) and (2.37) in (2.24) to find

~(x, y) =

(2.38)

20



and we substitute (2.34), (2.35) and (2.37) in (2.25) to produce

7](X,y)

As a result the generator, G, of the infinitesimal transformation is

G

(2.40)

which is an eight-parameter symmetry.

Any n-parameter symmetry may be separated into none-parameter symmetries by let-

ting particular parameters take on specific values. Usually we set one parameter equal

to one and the rest equal to zero in turn. If we do this in (2.40) we generate the following

eight one-parameter symmetries (Mahomed and Leach 1985)

a
ax
a 3 a

y--y -
ax ay

a (2 3) axy-+ y -xy -
ax ay

21



Gs

( 12 ) a (1 2 3 2) ax - -x y - + - x y - xy -
2 ax 2 ay

1 2 a (1 2 3 2 ) a--x y- + -x y - xy + y -
2 ax 2 ay

(
3 2 1 3 ) a (1 3 3 3 2 2 ) a-x - -x y - + -x y - -x y + 1 -
2 2 ax 2 2 ay

(
2 1 3 ) a (1 3 3 3 2 2 ) ax - -x y - + -x y - -x y + xy -

2 ax 2 '). . ay

(
1 4 1 3) a (3 2 1 -l 3 3.- x y - - x - + x Y - -.r y --~. 'j + x
4 2 ax 4 ',:

'2. '1)

From (2.41) we can generate, after some tedious calculations, the following nonzero Lie

brackets

[G1,G2] G2

[G1,G4 ] G1 - G3

[G1,GS] -G3

[G1,G6] 3G4

[G1,G7] 2G4 + Gs

[G1,GS] G6 - 3G7

[G2 ,G4 ] G2

[G2 ,GS] -G2

[G2 ,G6 ] 3G3 - G1

[G2 ,G7] G3

[G2,GS] Gs - G4

[G3 ,GS] -G3

[G3 ,G6 ] -G4 - 2Gs

22



[G 3 ,Gg] -G7

[G4 ,G6] 2G7

[G4 ,G7] G7

[G4 ,Gg] Gg

[GS,G6] 2G7 - G6

[GS,Gg] -Gg

[G6,G7] Gg

for the corresponding Lie algebra. We deduce that the Lie algebra is 8l(3, R) and that

(2.11) is linearisable to (Mahomed and Leach 1985)

y" = o. (2.42)

(It is well-known that all second order equations admitting an eight-dimensional Lie

algebra are linearisable).

As a second example we determine the symmetries of the following differential equation

(Spiegel 1958)

y" + 2yy'3 = O.

The action of G[2] on this equation results in

and we must take (2.43) into account. This leads to

(2.43)

(2.44)
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Equating the coefficients of powers of y' to zero leads to the following set of partial

differential equations:

Integrating equations (2.49) and (2.48) gives

ax +b

a'x2 + ex + d

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

where, in this case, a, b, e and d are arbitrary functions of y. Substituting (2.50) and

(2.51) into (2.46) and (2.47) yields (after equating the coefficients of powers of x to zero)

the following set of equations:

a"

6ay + b" - 2e

2a - e"

2b + 4by - 2ey - d"

The solution of the system (2.52) - (2.55) is

o

o

o

o.

(2.52)

(2.53)

(2.54)

(2.55)

a

e

(2.56)

(2.57)
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b

d

(2.58)

(2.59)

We are now in a position to find the coefficient functions

~(x,y)

,- . i -,I + A8 (2.60)

and

The generator of the infinitesimal transformation is

G (
20130260 (1 4 0)Al X - + -xy - - -y - + xy- - -y -
ox 3 ox 9 ox . oy 3 oy

(
20 IsO (1 3 0)+A2 xy - - -y - + x- - -y -
ox 3 ox oy 3 oy

(
0 2 4 0 20) (0 1 3 0)+A3 +xy- + -y - + y - + A4 x- - -y -
ox 3 ox oy ox 3 ox

(
30 0) (20 0)+As Y -+y- +A6 Y -+-
ox oy oy oy

o 0
+A7y-+As-

ox ox
(2.62)

which is an eight-parameter symmetry. Consequently the eight one-parameter symme-

tries are

GI
0

-
ox

G2
0

y-
ox

G3
2 0 0
y-+-

ox oy

G4
3 0 0

Y -+y-
ox oy
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Gs - (x _ ~y3) ~
3 ox

G6 ( 2 4) a 2a- xy+-y -+y-
3 ox ay

G7 ( xy2 _ ~ ) ~ + (x _ ~y3) ~
3 ox 3 ay

G8 (2 1 3 2 6) a ( 1 4) a (2.63)x + -xy - -y - + xy - ;::U -
3 9 ox J ay

with nonzero Lie brackets given by

[Gl,GS] - G l

[G l ,G6] - G2

[G l ,G7] - G3

[G l ,G8] - G4 + 2Gs

[G2,GS] G2

[G2,G7J - G4 - Gs

[G2,G8] - G6

[G3,G4J - G3

[G3,G6J - 2G4+ Gs

[G3,G8J - G7

[G4,G6J - G6

[G4,G7] - -G7

[GS,G7] - G7

[GS,G8J - G8

[G6,G7] - -G8 (2.64)
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for the corresponding Lie algebra which is, again, sl(3, R). Thus the equation (2.43) can

be linearised.

We notice that the procedure of finding symmetries of ordinary differential equations is

highly systematic and thus amenable to programming with symbol manipulation soft­

ware. A variety of software tools are available for analysing ymmetries of differential

equations (Hereman 1994). In this thesis we use the package Program LIE (Head 1993),

hereinafter referred to as LIE.

2.3 Hidden symmetries

Few equations admit the required number of point symmetries to enable reduction to

quadratures. In an attempt to overcome this limitation, various extensions of the classical

Lie approach have been devised. One such extension is due to the observance of the so­

called hidden symmetries - point symmetries that arise unexpectedly due to decreasing

and/or increasing the order of a differential equation (Edelstein et al. 2001).

Hidden symmetries have been shown to lead to the solutions of a number of equations

that do not possess sufficient Lie point symmetries with the appropriate Lie algebras.

Increasing the order of an equation can give rise to Type I hidden symmetries and

the reduction of order can give rise to Type II hidden symmetries (Abraham-Shrauner

1993). We illustrate the techniques of the reduction and the increase of order by means

of examples.

27



2.3.1 Reduction of order

If a differential equation

has a symmetry

E (x, y, , y(n)) = 0

a a
G = ~(x, y) ox + TJ(x, y) ay

(2.65)

(2.66)

we can obtain an equation of order (n - 1) in a systematic manner. This is achieved by

using the zeroth order and first order differential invariants which are two characteristics

associated with G[l). The characteristics are obtained by solving the following system of

ordinary differential equations

dx dy dy'

~ TJ TJ' - y'e
(2.67)

If we integrate the equation involving the first two terms we obtain the characteristic

u = f(x, y) and the equation involving the first and the third (equally the second and

the third) terms gives the characteristic v = g(x, y, y'). Since Gu = 0 we call u the zeroth

order invariant. Similarly v is called the first order differential invariant since G[l)V = o.

A key feature of the Lie method is that all higher derivatives can be expressed in terms

of u, v and the derivatives of v with respect to u. As a result equation (2.65) reduces to

F ( (n-l)) - 0u,v, ..... ,v -, (2.68)

i.e. it reduces to an equation of order one less than the original. If the reduced equation

has a symmetry, the order of the equation can be reduced again. The process can be

repeated until the original differential equation is reduced to an algebraic equation. This
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reduction of order reduces an nth order equation to a set of n first order equations

provided there is a sufficient number of symmetries with the appropriate Lie algebra.

As an example we reduce the order of

(2.69)

a simplified Ermakov-Pinney equation (Ermakov 1880 and Pinney 1950). The equation

(2.69) has the following three symmetries

a
ox

a a
2x-+y-

ox ay

2 a a
x ox + xy ay'

with nonzero commutation relations

(2.70)

(2.71 )

(2.72)

(2.73)

and hence form the Lie algebra sl(2, R). If we use Cl to reduce the order we obtain the

following system

In this case it is trivial to identify

dx dy dy'

1 0 0

u y

(2.74)

v
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Now we can write

dv

du

and so we have, for the second derivative,

dv /du
dx dx

y"
y'
y"

v

(2.76)

" dv
y = v duo (2.77)

Thus if we adopt the zeroth order invariant u and the first differential invariant v as new

variables (Dresner 1999), equation (2.69) is reduced to

dv u-3

du v
(2.78)

which is a first order ordinary differential equation and is easily solved by separating the

variables.

Similarly, if we reduce the order of (2.69) using C3 we obtain the invariants

y
u

x
(2.79)

v

The reduced equation is then given by

which is (2.78) again.

,
xy - y.

dv u-3

du v
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If we use G2 to reduce the order of (2.69), the invariants are

u

v

Y
X 1/ 2

y'x 1/ 2 .

(2.82)

(2.83)

From the invariants (2.82) and (2.83), the reduced equation is

1
dv u-3 +-

2'u
du 1v--

2u

which cannot be easily solved.

(2.84)

This example illustrates the importance of choosing the correct symmetry to reduce the

order of an equation. If an equation admits two symmetries with the Lie algebra

(2.85)

where A is a nonzero constant usually scaled to one, then reduction of order via Gj will

usually result in the reduced equation being difficult to solve (this is due to the fact

that the transformed form of Gi is not a symmetry of the reduced equation). However,

reduction via Gi will usually result in an equation that is easy to solve as the transformed

form of Gj is a symmetry of the reduced equation. This serves to make an important

point - it is not just the number of symmetries that determines whether an equation can

be reduced to quadratures but rather the Lie algebra of the symmetries.

We also note that although the existence of a symmetry enables the order of an equation

to be reduced, this does not necessarily mean that we shall be able to find an expression

for the solution of the reduced equation. However, in the case of a first order differential

equation, in theory the solution exists.
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2.3.2 Increasing the order

Unlike in the reduction of order, for the increase of order we are not governed by the

symmetries of the equation under analysis. In fact, the approach is to increase the order

in a manner that imposes a particular symmetry on the new higher order equation. Thus

we are guaranteed that the new equation will have at least one symmetry.

As a first example we revisit equation (2.43)

y" + 2yy'3 = O.

We use the standard transformation

x p

(2.86)

y
q'

q
(2.87)

As a result we expect the new equation to admit

8
Cl =q­

8q

as a symmetry (Abraham-Shrauner et al. 1995). From (2.87) we find that

I q" q'2
y----

q q2

and

" q'" q"q' q'3
Y = --3-+2-.

q q2 q3

We substitute (2.89) and (2.90) in (2.86) to obtain

q'" q"q' q'3 q' (q" q'2 ) 3
- - 3- + 2- + 2- - - - = 0
q q2 q3 q q q2
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which "simplifies" to the third order nonlinear ordinary differential equation

(2.92)

The form (2.92) is more complicated than the original differential equation (2.86). This

indicates that raising the order does not necessarily lead to simplification.

However, there are situations where the higher order differential equation is indeed in

a simpler form. To illustrate this we consider the nonlinear second order differential

equation

y" + 3yy' + y3 = 0

agam. Using (2.87), (2.89) and (2.90), (2.93) becomes

q'" q"q' q'3 q' (q". ql2) q'3
- - 3- + 2- + 3- - - - + - = 0
q q2 q3 q q q2 q3

which simplifies to

q'" = 0,

a third order linear differential equation.

2.3.3 Nonlocal symmetries

(2.93)

(2.94)

(2.95)

Hidden symmetries manifest themselves as nonlocal symmetries of the original equation.

Nonlocal symmetries are those in which the infinitesimals depend on integrals containing

the dependent (and the independent) variables. These symmetries are important as they

have been linked with with integrable models (GIver 1993).
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2.4 Transformation of symmetries

Besides the number of symmetries of a differential equation, we also need to identify

the Lie algebra of the symmetries. After finding the symmetries we work out the Lie

brackets so as to identify the Lie algebra. Sometimes the Lie algebra obtained from the

symmetries of a particular differential equation cannot be easily identified as belonging

to a particular Lie group. To classify the Lie algebra we often need to make a change

of basis (Govinder 1993). Lie algebras have standard representations that have already

been worked out (Edelstein et al 2001). For example, in the case of sl(2, R) the standard

representation is

a
ox
a a

x-+y-
ox ay
2 a a

x ox + 2xy ay' (2.96)

Let us assume that the Lie algebra has been identified. We want to transform the

symmetries revealed by a particular equation into the standard representation. This

transformation is then used to transform the equation into the standard representative

equation for that Lie algebra, a form in which we hope that the solution is more evident.

We illustrate the symmetry transformation procedure with a simple example.

We want to transform the two equivalent representations of sl(2, R) into each other, i.e.

a
ox
a a

x-+y-
ox ay
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2 a ax - +2xy-
OX ay

into

a
oX

a a
2X oX + Y ay

2 a a
T3 - X oX + XY aY'

Since we are looking for a point transformation we set

X F(x, y)

(2.97)

(2.98)

Y

We operate on (2.99) with RI to obtain

C(x, y). (2.99)

To obtain TI we must set

of a ac a
--+-­
ox ox ox ay

(2.100)

From (2.101) we have

of

ox
ac
ox

1

o.

(2.101)

(2.102)

from which

From (2.102) we have

dx dy dF
1 0 1

F = f(y) + x.

C = g(y).

35

(2.103)

(2.104)

(2.105)



We now use these forms of F and G in our subsequent calculations to transform R2 into

T2 . The relevant equations are

fJF fJF
x-+y-

fJx fJy
fJG fJG

x-+y-
fJx fJy

Substituting (2.104) in (2.106) we obtain

F

~G.
2

(2.106)

(2.107)

x + yf'(y) = f(y) + x

which gives

f(y) = ky

where k is an arbitrary constant of integration. Similarly, we find that

1
g(y) = my"2

with m being a constant. Therefore (2.104) and (2.105) become

F

G

ky+x

1
my"2.

(2.108)

(2.109)

We now transform R3 into T3 • The relevant equations are

2fJF fJF
x -+2xy-

fJx ay
2fJG fJG

x -+2xy-
fJx fJy

Substituting (2.108) in (2.110) we obtain

FG.

(2.110)

(2.111)

x2+ 2kxy = (ky + X)2
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which is equivalent to

which implies

k = O.

Equation (2.111) is identically satisfied. Therefore we have

F(x, y)

G(x, y)

if we let m = 1. This implies

x

y

can be used to transform (2.97) into (2.98).

x

1
y"2

x

1 .
y"2

(2.112)

(2.113)

(2.114)

(2.115)

We can use the above approach (although it is far more tedious) to linearise (2.11) and

(2.43) to y" = O. Having established the necessary tools, we are now in a position to

analyse some physically interesting differential equations.
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Chapter 3

Lie analysis of an equation arising in

astrophysics

3.1 Stellar model

Systems of nonlinear differential equations appear in modelling physical phenomena aris­

ing in relativistic astrophysics. Exact solutions to these equations are essential to describe

the gravitational interactions, and to study the physical features of the model. For the

relevant background to the Einstein field equations and relativistic astrophysics, we refer

the reader to the standard references in Misner et al. (1973), Schutz (1980) and Shapiro

and Teukolsky (1983). Particular exact solutions applicable to problems arising in as­

trophysics are listed by Delgaty and Lake (1998), Krasinski (1997) and Stephani et al.

(2003). A particular application of physical significance is the description of a dense
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star where general relativistic effects cannot be ignored; further details can be found in

Maharaj and Leach (1996), Mukherjee et al. (1997) and Sharma et al. (2001) amongst

others.

The behaviour of a relativistic star is described by the following system of equations

1'12 [1' (1- e- 2A )]' p (3.1)

1 2z/__ (1- e-2A ) + _e-2A p (3.2)
1'2 l'

( v' X)e-2A v" + V,2 + -:;: - v'X- -:;: p (3.3)

in a spherically symmetric space-time which is static. Primes denote differentiation with

respect to the radial coordinate 1'. The functions v = v(1') and A = A(1') represent the

gravitational potentials; p = p(1') and p = p(1') are the energy density and pressure

respectively. The equations (3.1) - (3.3) may be represented in a number of equivalent

forms to make the integration easier. It is convenient to use the transformation

x

Z(x)

(3.4)

(3.5)

(3.6)

due to Durgapal and Bannerji (1983) where A and C are constants. Under the transfor-

mation (3.4) - (3.6), the Einstein field equations (3.1) - (3.3) take the form

1- Z dZ
---2-

x dx

4Z~ dy + Z -1
ydx x

2 d
2
y 2 dZ dy (dZ )4Zx -+2x --+ x--Z+1 y

dx2 dx dx dx
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C

o
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We utilise the form (3.7) - (3.9) in our analysis of a dense star.

For a realistic stellar model it is necessary to impose conditions on the matter distribu­

tion. On observational grounds we often impose the barotropic equation of state

p = p(p)

relating the energy density p to the pressure p. A special case of (3.10) is

p=p

(3.10)

(3.11)

which is called the stiff equation of state. If (3.11) holds then the speed of sound is

equal to the speed of light, and this equation of state is physically relevant (Stephani

et al. 2003). We observe that apart from the case p ex: r- 2 with a linear equation of

state in (3.10), closed form solutions to the field equations are not known. It is for this

reason that we perform a Lie analysis in this model in an attempt to obtain a deeper

understanding of the underlying differential equations.

3.2 Standard representation for a third order

equation

It is possible to eliminate Z from the system of equations (3.7) - (3.9), when (3.11) is

true, and we generate an ordinary differential equation in y only.

With the assistance of (3.11) in (3.7) - (3.9) we can find the following expressions for Z
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d dZ. f d· d··an - m terms 0 y an Its envatIves:
dx

Z

dZ

dx

xyy' + y2

y2 + 2xyy' + 2x2y'2 - 2x2yy"
2xyy" + yy'

2x2yy" - 2x2y'2 - 2xyy' - y2 .

(3.12)

(3.13)

where primes denote differentiation with respect to x. Differentiating (3.12) and equating

to (3.13) generates the following third order nonlinear differential equation

(3.14)

Equation (3.14) is the master equation governing the evolution of the model.

We analyse (3.14) for symmetries using LIE and we find that the symmetries are

a
x­ax

a
y ay'

(3.15)

(3.16)

While these symmetries do commute, since the master equation is third order, the number

of symmetries is insufficient. We therefore transform equation (3.14) to the standard

representative equation in which form we hope that the solution will be possible to find.

The Lie bracket of the symmetries (3.15) and (3.16) is

. (3.17)

so that the Lie algebra is 2A I . There are two standard representations (Edelstein et al.

2001), viz.
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and

U3
fJ

(3.20)-
fJX

U4
fJ

(3.21)
fJY'

We will have to consider each representation in turn to determine the most appropriate

one.

Using the point transformation

x

Y

F(x, y)

C(x, y)

(3.22)

(3.23)

we want to transform (3.15) and (3.16) into (3.18) and (3.19), i.e. Cl -* Ul and C2 -* U2 .

Proceeding as in the previous chapter we begin with Ul and Cl. The relevant equations

to solve are

fJF fJF
x-+O-

fJx fJy

x fJC + OfJC
fJx fJy

o

1.

(3.24)

(3.25)

From (3.24) we have the following characteristic equations

dx dy dF
x 0 0

and the characteristics are y = Cl and F = C2. Hence we can write

F = f(y).

From (3.25) we have the following characteristic equations

dx dy dC
x 0 1
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with the characteristics y = C3 and C - log x = C4. This implies the relationship

C = g(y) + logx.

Using U2 and C2 we have:

(3.29)

which gives

and therefore

8F 8F
O-+y-

8x 8y
8C BC

O-+y-
8x 8y

F = constant

x = constant.

o

F

(3.30)

(3.31)

This implies that in this case we cannot transform (3.15) and (3.16) into (3.18) and

(3.19).

Now we want to transform (3.15) and (3.16) into (3.20) and (3.21), i.e. Cl -+ U3 and

BF BF
x-+O- = 1

Bx 8y
8C 8C

x 8x + 0 8y = O.

From (3.32) we get the following characteristic equations

dx dy dF

x 0 1

(3.32)

(3.33)

(3.34)

which generate the characteristics y = Cl and F - log x = C2. Therefore we can write

F = f(y) + logx.
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To determine C we use (3.33) and we get the following characteristic equations

dx dy dC

x 0 0

which give y = C3 and C = C4. Consequently we can write

C = g(y).

Using C2 and U4 we have

8F 8F
O-+y-=O

8x 8y

8C 8C
o8x + Y 8y = 1.

Equations (3.35) and (3.38) give

J'(y) = 0

and therefore

f(y) = constant.

On setting this integration constant equal to zero we get, from (3.35),

F = logx.

Equations (3.37) and (3.39) give

9(y) = log y + constant.

On setting this constant to vanish we get

C = logy.
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From (3.41) and (3.43) we conclude that

x

Y

logx

logy

(3.44)

(3.45)

is the relevant transformation for the symmetries. We now wish to transform the equa-

tion.

From the transformation (3.44) - (3.45) we obtain the expressions

These give the forms

Y'

Y"

y'

y"

xy'

y
2 "

Y'_y'2+~.
Y

~Y'
x

:2 (Y" + y,2 _ Y') .

(3.46)

(3.47)

(3.48)

(3.49)

From (3.47), and using (3.48) and (3.49) we find

3

Y'" = 3Y" - 3Y'Y" - y,3 + 3y,2 _ 2Y' + ~yfff.
Y

From (3.14), and using (3.48) and (3.49), we get

(3.50)

yfff = Y (6y"2 + 10y,2y" _ 10Y'y" + 2y,4 _ 12y'3 - 5Y" + 5Y'). (3.51)
2x3 (1 + Y')

Eliminating y'" in (3.50 ) and (3.51) finally gives

2Y'Y'" + 2y
fff

- 6y"2 _ 4y,2y" + 10Y'y" - y" + 8y,3 - 2y,2 - Y' = 0 (3.52)

which is a third order nonlinear equation in Y. We note here that (3.52) is simpler than

(3.14).
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When (3.52) is analysed for symmetries, LIE provides the following symmetries

a
ax
a

ay'

(3.53)

(3.54)

i.e. (3.20) and (3.21). This is a good confirmation that our transformation is correct.

Unfortunately the new form of the equation is not any easier to analyse.

We note here that for both the master equation (3.14) and the transformed equation

(3.52) the required number of symmetries to enable reduction to quadratures is not at-

tained since an nth order equation must possess at least n symmetries for this reduction.

To overcome this limitation we reduce and/or increase the order of the transformed

equation using its symmetries in an attempt to reveal any hidden symmetries.

3.3 Reduction of order of a third order equation

We now consider the transformed third order equation

2Y'ylll + 2Y'" - 6y,,2 - 4y,2y" + 10Y'y" - Y" + 8y'3 - 2y,2 - Y' = 0 (3.55)

rather than the original equation (3.14). We apply reduction of order to generate a

second order equation which, hopefully, will reveal a sufficient number of symmetries, in

which case this equation may be integrable (see section 2.3.1).

Firstly we use the symmetry

(3.56)
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The reduction variables obtained via Cl are

u Y

v Y'. (3.57)

In terms of the new variables u and v we obtain

2v2v" + 2vv" - 4VV,2 + 2V,2 - 4v2v' + 10vv' - v' + 8v 2
- 2v - 1 = 0 (3.58)

which is a second order nonlinear equation. When we analyse (3.58) for symmetries, LIE

only gives the symmetry

(3.59)

i.e. the transformed form of C2

We now reduce the order of (3.55) using the symmetry

(3.60)

This time the reduction variables are

u X

v Y' (3.61)

The reduced equation, in terms of the variables u and v, is

2vv" + 2v" - 6V,2 - 4v2v' + 10vv' - v' + 8v 3 - V = O.

We analyse (3.62) for symmetries and LIE gives only one symmetry
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i.e. the transformed form of G1.

We notice here that both reduced second order equations (3.58) and (3.62) do not reveal

a sufficient number of symmetries and therefore they cannot be reduced to quadratures

using Lie point symmetries.

3.4 Increase of order

We now attempt to increase the order of the reduced second order equations (3.58) and

(3.62). This approach is influenced by the results of Edelstein et al. (2001).

We firstly consider equation (3.58):

2V2V" + 2vv" - 4VV,2 + 2V'2 - 4v2v' + 10vv' - v' + 8v2 - 2v - 1 = O.

As before we let

u p

(3.64)

to ensure that the new equation has

v

a
q­aq

q'

q
(3.65)

as a symmetry. In terms of the new dependent variable q, (3.64) becomes
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which is a third order nonlinear equation. When analysing (3.66) for symmetries LIE

gives the following two symmetries

a
ap
a

qaq'

Next we consider the equation (3.62):

2vv" + 2v" - 6V,2 - 4v2v' + 10vv' - v' + 8v3 - V = O.

(3.67)

(3.68)

(3.69)

Again we utilise the transformation (3.65) and generate the following third order non-

linear equation

When analysing (3.70) for symmetries LIE gives the following two symmetries

(3.71)

(3.72)

The number of symmetries for both third order differential equations is insufficient.

As this approach has failed we now again consider the transformed third order equation

(3.52):

2y'ylll + 2ylll - 6y"2 - 4y,2y" + 10Y'y" - Y" + 8y,3 - 2y,2 - Y' = 0 (3.73)

and apply an increase of order to generate a fourth order equation using the transforma-

tion

x p
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y q'

q
(3.74)

The result is the following fourth order nonlinear equation in terms of q:

When we analyse (3.75) for symmetries, LIE gives the following three symmetries

(3.75)

Xl
[J

(3.76)-
[Jp

X2

[J
(3.77)q-

[Jq

X3

[J
(3.78)pq [Jq.

Not only is the number of symmetries too few but from the nonzero commutation rela-

tions of the symmetries (3.76) - (3.78), given by

we see that the algebra is not solvable.
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3.5 Reduction of order of a fourth order equation

While the number of symmetries is still too few, we embark on reduction of order with

the hope of finding type II hidden symmetries. We consider the fourth order equation

(3.75):

(3.80)

and apply the reduction of order using the symmetry

(3.81)

given by (3.76). This suggests that we introduce new variables u and v such that

q u

q' v. (3.82)

Consequently we obtain a third order nonlinear differential equation
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(3.83)

When we analyse (3.83) for symmetries, LIE gives only one symmetry

(3.84)

We now reduce the order of (3.83) using the symmetry (3.84). Here we use the transfor-

mation

v us

Vi t. (3.85)

We obtain the following second order nonlinear differential equation

When analysing (3.86) for symmetries, LIE gives no symmetry.

We again consider the fourth order equation (3.75)
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(3.87)

and reduce the order using the symmetry

(3.88)

given by (3.78). As this is not as simple as before, we provide a few details. The first

extension of X 3 is

[1] _ 0 , 0
X 3 - pq oq + (q + pq) oq"

The characteristic equations are

(3.89)

dp dq

o pq

dq'

q+pq'
(3.90)

The first term provides the zeroth order invariant

u=p. (3.91)

Using the theory of quasi-linear differential equations (Raisinghania and Aggarwal1981,

Zachmanoglou and Thoe 1986) we combine q' times the second term and -q times the

third term to obtain

q'dq - qdq'
pqq' _ q2 _ pqq'

Now, this and the second term in (3.90) give

q'dq - qdq'
_q2

d (~). (3.92)
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From (3.93) we get the following first differential invariant

q' 1
v = - - -logq.

q p

Using (3.94) and (3.91) we obtain

(3.94)

V'

v"

VIII

q" q'2 1 q'
- - - + - log q - -
q q2 p2 pq

q'" q"q' q" q'2 q' 2 q'3
- - 3- - - + - ....... 2- - -logq+ 2-
q q2 pq pq2 p2q p3 q3

q"" q"I q' q"I q"2 q"q'2 q" q"q'
- - 4- - - - 3- + 12- + 3- + 3-
q q2 pq q2 q3 p2q pq2

q'4 q'3 q'2 q' 1
-6- - 2- - 3- - 6- + 6-logq.

q4 pq3 p2q2 p3q p4
(3.95)

From (3.94) and (3.95) we obtain

q'

q"

qlll

q""

q
qv + -logq

p
I q'2 q' q

qv + - + - - - log q
q P p2

" q"q' q" q'2 q' q'3 q
qv + 3- + - - - - 2- - 2- + 2-log q

q p pq p2 q2 p3

III q'" q' q'" q"2 q"q'2 q" q"q'
qv + 4- + - + 3- - 12-- - 3- - 3-

q p q q2 p2 pq
q~ qa ~ q~ q

+2- +3- +6- +6- - 6-logq.
pq2 p2q p3 q3 p4

(3.96)

(3.97)

(3.98)

(3.99)

Using (3.96) - (3.99) in (3.87) we obtain the following third order nonlinear differential

equation

54

(3.100)



We analyse (3.100) for symmetries and LIE gives only one symmetry

1 8
VI = --.

u8v
(3.101 )

We now reduce the order of (3.100) using the symmetry (3.101). The zeroth order

invariant is

and the first differential invariant is

S=U

t = uv' + v.

(3.102)

(3.103)

In terms of the new variables sand t we obtain the following second order nonlinear

equation

We analyse (3.104) for symmetries and LIE gives no symmetry.

(3.104)

Note that we do not reduce the order of the fourth order equation (3.75) via (3.77) as

this will result in the original third order equation (3.52).

3.6 Discussion

It is remarkable that, while the Lie theory of symmetry analysis is (regarded as) the

most important and widely applicable method for finding solutions to nonlinear problems
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(Cantwell 2002), it could not in this case be used to solve the equations considered in this

chapter. Also through the reduction and the increase of order, no hidden symmetries

could be revealed. Govinder (1993) does highlight the fact that it is not always possible

to find the analytical solutions to equations. Equation (3.14)

and hence the system of Einstein field equations

(3.105)

1- Z dZ
---2-

x dx

4Z~ dy + Z -1
ydx x

2d2y 2dZ dy (dZ )4Zx -+2x --+ x--Z+1 y
dx2 dx dx dx .

p

C
p

C

o

(3.106)

(3.107)

(3.108)

are therefore some examples of ordinary differential equations for which the analytical

solutions are not easy to find in a systematic manner. This may explain why so few

exact solutions exist in the literature.
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Chapter 4

Lie analysis of an equation arising in

cosmology

4.1 Early universe models

Nonlinear ordinary differential equations often arise in modelling the early universe in

cosmology. It is necessary to obtain exact solutions to such equations to describe the

behaviour of gravity and to study the temporal evolution of the cosmological model.

A special application of physical interest is the profile of the scale factor in the very

early universe when the gravitational field is strong. This occurs in the creation of

an open inflationary universe (Dadhich and Kembhavi 2000). For relevant background

to cosmology and the early universe the reader is referred to Bailin and Love (1999),

Narlikar (2002), Peacock et al. (1990) and Straumann (2004).
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In the early universe it is necessary to incorporate a scalar field into a generalised action

to fully describe rapid inflationary growth. To investigate gravity with a scalar field we

take the generalised action to be

1= Jj(R)ygd4x

. where j(R) is a function of the scalar curvature R (Dadhich and Kembhavi 2000). In

the search for solutions to the field equations researchers often choose

j(R) = R + aR2
- 2),

where a couples gravity to the scalar field, and the parameter). is the gravitational con­

stant. This assumption leads to a higher derivative theory which describes the creation

of an open inflationary model (Coleman and de Luccia 1980, Hartle and Hawking 1983).

Of physical interest here is the behaviour of the· scale factor in this theory of gravity

coupled to a scalar field.

A typical ordinary differential equation arising from the field equations in this scenario

in early universe cosmological models is of the form

2HH" + 6H2H' - H,2 + aH2 = b (4.1)

where H = H(t) is related to the scale factor and the parameters a and b are constants.

4.2 Lie analysis

We now perform a Lie analysis on the nonlinear ordinary differential equation (4.1)

2HH" + 6H2H' - H,2 + aH2 = b
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in an attempt to obtain an analytic form for H(t). When we analyse (4.2) for symmetries,

LIE gives only one symmetry

Due to the lack of symmetries we search for hidden symmetries.

4.2.1 Increase of order

We consider the second order equation (4.2)

2HH" + 6H2H' - H,2 + aH2 = b.

(4.3)

(4.4)

We apply the increase of order to generate a third order equation which may hopefully

reveal a sufficient number of symmetries. We use the transformation

t S

H
R'
R' (4.5)

We obtain the following third order nonlinear equation in terms of the variable R:

When we analyse (4.6) for symmetries, LIE gives the following two symmetries

which is an insufficient number of symmetries.
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4.2.2 Reduction of order

We now consider the third order equation (4.6)

We apply the reduction of order to generate a second order equation u, ing the symmetry

given by (4.7). It is convenient to introduce new variables u and v defined by

(4.10)

u

v

R

R'.

(4.11)

(4.12)

The resulting equation in terms of the variables u and v is

When we analyse this equation via LIE we obtain only one symmetry

(4.13)

(4.14)

Again in this case the number of symmetries is insufficient. As we have pointed out

before, we do not use (4.8) to reduce the order of (4.6) since this will result in the

original second order equation (4.1).

We note that the Lie approach has not yielded any informative results. We therefore

undertake another test for integrability.
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4.3 The Painleve integrability test

Firstly we investigate rescaling to reduce the number of parameters to a minimum in

2HH" + 6H2H' - H,2 + aH2 = b.

a 2

We let H -7 ay and t -7 (3x. Then after division by (32' (4.15) becomes

b(32
2yy" - y,2 + 6a(3y2 y' + a(32 y2 = -2 .

a

If we set (32 = ~, a2 = ~ and 'Y = 6a(3, (4.16) may be written in the form
a a

which contains only one parameter 'Y.

(4.15)

(4.16)

(4.17)

As (4.17) is an autonomous nonlinear ordinary differential equation, we subject it to the

Painleve test. We implement the Painleve test in terms of the standard ARS algorithm

as summarised in standard sources such as Ablowitz et al. (1978, 1980a, 1980b). We

recall that the Painleve test consists of three parts. The first is the determination of

the leading order behaviour of the dependent variable (we speak in terms of a single

ordinary differential equation as is the case for (4.17)). This establishes those terms

of the equation which contribute to the leading order behaviour. In the case that the

leading order behaviour reveals a movable singularity, be it polelike or branchlike, an

independent arbitrary constant is introduced. For an nth order equation the general

solution requires additional n - 1 constants of integration. On the assumption of a

series expansion about the singularity in terms of a power series of either integral or

rational powers the additional arbitrary constants initially appear in linear combination
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with the leading order term already determined. This fortunate coincidence simplifies

the calculation of the possible powers at which these n - 1 arbitrary constants intrude.

Provided the resonances, as these powers are termed, are integral or rational, the next

stage of the test begins.

A series commencing at the leading order power and expanding in powers commensurate

with the resonances as well as the leading order term is substituted into the full equation

to ensure that there is consistency. The analysis for the resonances introduces arbitrary

coefficients in an expansion encompassing the leading order terms only. The complete

test requires that this arbitrariness persists when all of the terms in the equation are

considered.

If the equation satisfies the requirements of the test, there is sufficient cause to believe

that it is integrable in terms of analytic functions (algebraic functions in the case that the

leading order power or resonances are rational). The reader is referred to the extensive

analysis required to establish integrability provided in lnce (1956).

To determine the leading order behaviour we make the substitution

x = x - xo (4.18)

where Xo is the location of the putative movable singularity, into (4.17). We require that

to the leading order

(4.19)
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and it is evident that just the first and the second terms are involved. We have

p

To determine the resonance we substitute

-1

3,
(4.20)

(4.21)

into the dominant terms. For p, to be arbitrary we require that

(4.22)

2r
2

- r - 3 = ° 3
r = -1 ­, 2' (4.23)

The resonance r = -1 is a characteristic of the analysis. The second resonance indicates

that a series expansion in half-integral powers of X is required, i.e. we look to the

possession by (4.17) of the weak Painleve property.

A critical feature of the Painleve test is the establishment that the non-dominant terms

do not disrupt the consistency of the preceding analysis. In the case of (4.17) this happens

not to be a problem since the non-dominant terms enter at X- 2 and XO and the single

arbitrary constant required in the expansion enters at X- 5
/

2
. If we make the substitution

into (4.17), we find that

3
ao =-,,

00

Y = LaiXi- 1

i=O

1
al = a2 = 0, a3 is arbitrary, a4 = 3,' etc.

(4.24)

(4.25)

The expansion indicated by the dominant terms is consistent with the full equation. We

therefore conjecture that the equation(4.17) is integrable in terms of algebraic functions.

This success suggests that the symmetry approach needs to be revisited.
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4.4 Reducing the order using nonlocal symmetries

We have conjectured that equation (4.17) is integrable, so we now use nonlocal symme-

tries to reduce it to quadratures. Govinder and Leach (1995) give an algorithm that is

used to determine nonlocal symmetries.

The determination of integrability in practice i.s facilitated by the Lie analysis for the

existence of Lie symmetries. We examine (4.17)

(4.26)

for Lie point symmetries using LIE and the following single symmetry obtained is

o
VI =­ox (4.27)

i.e. the transformed form of (4.3). The symmetry (4.27) is sufficient only to reduce

(4.26) to the first order ordinary differential equation

(4.28)

after using the reduction variables

u y

v = y'

obtained from VI' Equation (4.28) is not obviously reducible further.

(4.29)

In the absence of a second Lie point symmetry we examine (4.17) for the existence of

nonlocal symmetries. Since (4.17) is autonomous, we assume the specific structure

(4.30)
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in which the functional dependence of ( is not restricted (Govinder and Leach 1995).

The condition that r 2 be a symmetry of (4.17) is given by

r~](LHS of (4.17))1(4.17)=0 = 0

and generates the equation

which is a linear second order ordinary differential equation in (. We have

C y" y' ,
- = -2- + - --y
(' y' y 2

which can be integrated to yield

y 1
(= Ao+ Al1y,2 exp [-2,1 ydX] dx,

(4.31)

(4.32)

(4.33)

(4.34)

where Ao and Al are constants of integration. Thus in addition to the Lie point symmetry

(4.27), we have the nonlocal symmetry

r2= (I :2exp [-~'1ydX] dX) :X· (4.35)

In the reduction of order of (4.17) using (4.27), (4.35) becomes the exponential nonlocal

symmetry

U [1 IU ] f)A2 = -exp --, -du-,
v 2 v ov

(4.36)

in which the nonlocal part of (4.35) is expressed in terms of the invariants of VI as

1ydx = 1y~~dY = 1~du.
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The exponential nonlocal symmetry (4.36) may be used for a further reduction of order

of (4.28). The associated Lagrange's system for the invariants of (4.36) is

du dv dv'

o - (~) - ~ _uv' _ ~'Y'~
v v v2 2 v

and the invariants are

p u

(4.38)

q
v 2 1

vv' - - + -'Y'uv.
2u 2

(4.39)

The algebraic equation resulting from the second reduction of order of (4.28) using (4.39)

is simply

p2 + 2pq - 1 = 0,

i.e. the original second order ordinary differential equation

2HH" + 6H2H' - H,2 + aH2 = b

(4.40)

(4.41)

is reducible to an algebraic equation. However, reversing the various transformations to

obtain a solution in terms of the original variables Hand t is not a trivial exercise. This

is expected as the equation passes the weak Painleve Test and not the full version.
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Chapter 5

Conclusion

The main focus of this dissertation was to systematically explore the analytical solutions

of some physically relevant differential equations arising in Mathematical Physics. We

undertook a Lie point symmetry analysis of the system of field equations

1- Z . P (5.1)---2Z -
x C

4ZY Z - 1 P (5.2)-+-- -
Y x C

4Zx2y+ 2Zx2y+ (Zx - Z + 1) y 0 (5.3)

arising in astrophysics and the second order ordinary differential equation

2HH + 6H2iI - iI 2 + aH2 = b

which arises in cosmology.

(5.4)

In Chapter 1 we summarised the life story of Sophus Lie (according to Cantwell 2002

and Yaglom 1988) as one of the pioneers of the approach adopted in this dissertation.
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Definitions of some concepts were also given with the aim of clarifying the approach.

In Chapter 2 we outlined some basic ideas behind the Lie symmetry analysis. The

approach adopted in this dissertation makes extensive use of Lie point symmetries. We

therefore began by illustrating the method of finding this type of symmetries. To be

able to reduce an nth order ordinary differential equation to quadratures using Lie point

symmetries the equation must have at least n point symmetries. Due to a limitation

that some equations have an insufficient number of point symmetries, some extensions

of the classical Lie point symmetry analysis that attempt to force equations to reveal

the so-called hidden symmetries have been devised, viz. the reduction of order and the

increase of the order of a differential equation. Some simple examples were therefore

used to illustrate the reduction and the increase of orders of equations.

The beauty of the method of the reduction of order is that if an ordinary differential

equation admits an m-parameter Lie group of transformations whose Lie algebra is solv-

able, then its order can be reduced by m. In the various increases of order we used the

transformation

u p

v
q'
q

(5.5)

This transformation guaranteed that the resulting higher order equation in p and q (and

derivatives of q with respect to p) would admit the Lie point symmetry

(5.6)

It is valid to ponder the importance of requiring the presence of (5.6) as opposed to any
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other symmetry.

After all, since we are dealing with just a single symmetry, we could require any form.

The reason for insisting on (5.6) is due to its occurrence as the only symmetry for nth

order linear equations which does not require a solution of the equation. All other

symmetries of a linear equation rely on the solution of the equation. Thus if we require

a symmetry of the form

(i.e. the resulting equation is required to be autonomous) we could be restricting the

possible outcomes to linear equations which have a constant as a particular solution.

Clearly this is far too restrictive. (See Abraham-Shrauner et al (1995) for an illustrative

example).

In Chapter 3 we considered the system of equations (5.1) - (5.3). We eliminated Z and

this resulted in the new master equation in y only governing the evolution of the stellar

model

(5.7)

Due to the lack of a sufficient number of symmetries we then transformed (5.7) into a

standard representative equation of the Lie algebra 2A1 and obtained

2y'ylfl + 2ylfl - 6y"2 - 4y,2y" + 10Y'y" - y" + 8y'3 - 2y,2 - Y' = O. (5.8)

We then considered the transformed equation (5.8) for the rest of the symmetry analysis

69



undertaken. We reduced and increased the order of this equation but none of the resulting

equations had a sufficient number of point symmetries.

We remarked that finding the analytical solutions of the new master equation (5.7) and

therefore of the system of Einstein field equations (5.1) - (5.3) in a systematic manner is

quite an involved exercise and concluded that the existence of so few exact solutions to

this system of equations in the literature may therefore be attributed to this fact. The

future challenge is to devise and / or employ other approaches in an attempt to overcome

the limitations of the Lie point symmetry approach.

In Chapter 4 we considered a second order nonlinear ordinary differential equation, viz.

2HH + 6H2 iI - iI 2 + aH2 = b. (5.9)

When we performed a Lie symmetry analysis of this equation, LIE only provided one

symmetry, viz.

(5.10)

We then searched for any hidden symmetries by increasing the order of (5.9) and there-

after decreasing the order of the resulting third order equation. In both cases the number

of point symmetries obtained was insufficient. Due to the failure of the Lie approach,

we transformed equation (5.9) into a one parameter differential equation

(5.11)

For this equation LIE provided one point symmetry, viz.

(5.12)
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which is a transformed form of Cl. We undertook the Painleve integrability test on the

second order equation (5.11). The equation passed the weak version of the test and we

therefore conjectured that the equation was integrable in terms of algebraic functions.

Integrability suggested the use of nonlocal symmetries since this type of symmetries has

been linked with integrable models. The local symmetry obtained was

f 2= (I :2 exp [~,1ydx] dX) :x

and this was a second symmetry of the second order equation (5.11).

Using the two symmetries (5.12) and (5.13) we could reduce the equation

and therefore the original equation

2HiI + 6H2iI - iI2+ aH2 = b

into an algebraic equation

p2 + 2pq - 1 = O.

(5.13)

(5.14)

(5.15)

From (5.15) it was obvious that generating a solution in terms of the original variables

Hand t was not a simple exercise.
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