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Abstract

In this thesis we study classes of static spherically symmetric solutions to the Einstein

and Einstein–Maxwell equations that may be used to model the interior of compact

stars. We also study the spherical accretion of fluids on to bodies in both general

relativity and the Newtonian theory of gravity. The condition for pressure isotropy

is obtained upon specifying one of the gravitational potentials and the electric field

intensity. A series solution was found after specifying a cubic form for the potential.

The pressure and energy density appear to be non–singular and continuous inside the

star. This solution admits an explicit equation of state that, in regions close to the

stellar centre, may be approximated by a polytrope. Another class of exact solutions

to the Einstein–Maxwell solutions was found with charge. These solutions are in the

form of hypergeometric functions with two free parameters. For particular parameter

values we recovered two previously known exact solutions that are reasonable models

for the interior of compact stars. We demonstrated two new solutions for other choices

of the parameters. One of these has well behaved pressure, energy density and electric

field intensity variables within the star. The other was rejected as unphysical on the

grounds that it has a negative energy density. This violates the energy conditions. We

obtained the mass accretion rate and critical radius of a polytrope accreting onto a D–

dimensional Schwarzschild black hole. The accretion rate, Ṁ , is an explicit function of

the black hole mass, M , as well as the gas boundary conditions and the dimensionality,

D, of the spacetime. We also found the asymptotic compression ratios and temperature

profiles below the accretion radius and at the event horizon. This generalises the

Newtonian expressions of Giddings and Mangano (2008) which examined the accretion
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of TeV black holes. We obtained the critical radius and accretion rates of a generalised

Chaplygin gas accreting on to body under a Newtonian potential. The accretion rate

is about 2 - 4 times greater than that for neutral hydrogen. The Rankine–Hugoniot

relations for shocked GCG flow were also found. We found general expressions for

the pressure and density compression ratios. Some post shock states imply negative

volumes. We suspect that these may be thermodynamically forbidden.
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Chapter 1

Introduction

“There is a theory which states that if ever anyone discovers exactly what the Universe

is for and why it is here, it will instantly disappear and be replaced with something

even more bizarre and inexplicable. There is another theory which states that this has

already happened.” – Douglas Adams, The Restaurant at the End of the Universe.

The discovery of dark energy, an unknown mechanism responsible for the late

time acceleration of the universe poses serious problems for the standard model of

cosmology. It appears that a successful explanation of this phenomenon requires one

to either introduce an exotic component into the energy budget of the universe, or

dethrone orthodox general relativity as the reigning theory of gravity.

In this thesis we explore two main themes. Firstly we looked at the existence and

physical reasonableness of exact solutions to the Einstein equations of general relativity

applicable to stellar interiors. Here we operated firmly in the arena of classical general

relativity. The second theme sees us explore extensions to this paradigm by considering

changes to the geometric sector of the theory as well as augmentations of the matter

sector. In this part we look at various modified scenarios where matter accretes onto

a massive object. These modifications were of two types. First we examine accretion

in the context of D–dimensional general relativity. Next we look at the accretion

of a generalised Chaplygin gas (GCG). The GCG is a promising candidate for dark

matter and/or dark energy. Since the dark sector’s existence was necessitated by
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astronomical observations we model the accreting process with a Newtonian field.

This facilitates comparison of data from accreting stars that do not generate extreme

spacetime curvature.

We briefly review the work conducted here. Chapters 2 and 3 form our first theme

and are concerned with finding and analysing exact solutions of the Einstein and

Einstein–Maxwell equations. These solutions are used to model the interior of static,

spherically symmetric stars. These solutions can be matched at the stellar boundary

to the Schwarzschild or the Reissner–Nordström solution. The matter content is taken

to a perfect fluid with isotropic pressure. This fluid may or may not be charged. These

systems are, in general, underdetermined and we specify a form for one or more of the

variables in order to obtain an exact solution.

In Chapter 2 we specified a cubic form for one of the gravitational potentials viz.

Z, and attempted to find new solutions. Using the method of Frobenius we obtained

a series solution to the pressure isotropy equation. The metric potentials, pressure

and energy density are non–singular and continuous. The behaviour of the pressure

and energy density is depicted graphically in Figs. 2.1 and 2.2. This solution has the

interesting feature of admitting an explicit equation of state. Close to the stellar core

this equation resembles a polytrope.

In Chapter 3 we considered charged, static stars and attempt to solve the Einstein-

Maxwell system by prescribing the potential Z and the electric field intensity E. We

obtained a class of charged solutions expressed in terms of hypergeometric functions

with two free parameters, viz. α and K. When α vanishes our solution describes

uncharged fluids. For certain parameter values the hypergeometric functions reduce

to algebraic expressions. For particular choices of K and α we regained some known

stellar models. We then obtained two new charged solutions. These were expressed in

terms of elementary functions. The first of these appears to be physically reasonable

and we illustrate the behaviour of the pressure, energy density and electric field in

Figs. 3.1, 3.2 and 3.3. The second new solution admits negative energy density and

must therefore be rejected as unphysical as it violates the strong and weak energy
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conditions.

Chapters 4 and 5 comprise the second major theme of this thesis. They are de-

voted to extending studies of steady, spherically symmetric accretion by considering

an alternative theory of gravity as well as an exotic form of matter. In chapter 4

we formulated the problem of a polytropic gas accreting onto a Schwarzschild black

hole in arbitrary dimensions. The gravitational model used is D–dimensional gen-

eral relativity. We determine analytically the critical radius, fluid velocity and sound

speed and subsequently the mass accretion rate. We then obtained expressions for the

asymptopic behaviour of the fluid density and temperature near the event horizon.

In chapter 5 we examined a generalised Chaplygin gas (GCG) accreting onto a

body in the Newtonian theory of gravity. The GCG is a dark matter and dark energy

candidate. We find analytical expressions for the critical radius and mass accretion

rate, Ṁ . These are compared to the rates for hydrogen accretion on to a star. We

also consider the possibility of shock fronts arising in the flow. The Rankine–Hugoniot

conditions for a GCG are obtained and analysed to express the post–shock behaviour

of the gas in terms of its pre–shock values.

The results obtained in this thesis, are summarised in the concluding chapter,

wherein suggestions for future work are outlined.
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Chapter 2

An exact isotropic solution

2.1 Introduction

Static solutions of the Einstein field equations for spherically symmetric manifolds

are important in the description of relativistic spheres in astrophysics. The models

generated may be used to describe highly compact objects where the gravitational field

is strong as in neutron stars. It is for this reason that many investigators use a variety

of mathematical techniques to attain exact solutions. One of the first models, satisfying

all the physical requirements for a neutron star, was found by Durgapal and Bannerji

(1983). Now there exist a number of comprehensive collections eg. Stephani et al.

(2003), Skea (1996), Delgaty and Lake (1998) of static, spherically symmetric solutions

which provide a useful guide to the literature. It is important to note that only a few of

these solutions correspond to nonsingular metric functions with a physically acceptable

energy momentum tensor.

In this chapter we seek a new exact solution to the field equations which can be

used to describe the interior of a relativistic sphere. We rewrite the Einstein equations

as a new set of differential equations which facilitates the integration process in §2.2.

We choose a cubic form for one of the gravitational potentials, which we believe has

not been studied before, which enables us to simplify the condition of pressure isotropy

in §2.3. This yields a third order recurrence relation, which we manage to solve from
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first principles. It is then possible to exhibit a new exact solution to the Einstein field

equations. We then show in §2.4 that the curvature and thermodynamical variables

appear to be well-behaved. We also demonstrate the existence of an explicit barotropic

equation of state. For small values of the radial coordinate close to the stellar core

the equation of state approximates a polytrope. We believe that a detailed physical

analysis of our solution is likely to lead to a realistic model for compact objects. Some

general comments relating to this exact solution are made in §2.5.

2.2 Static spacetimes

Since our intention is to study relativistic stellar objects it seems reasonable, on phys-

ical grounds, to assume that spacetime is static and spherically symmetric. This is

clearly consistent with models utilised to study physical processes in compact objects.

The generic line element for static, spherically symmetric spacetimes is given by

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θ dϕ2) (2.1)

in Schwarzschild coordinates.

For neutral perfect fluids the Einstein field equations can be written in the form

1

r2
[r(1− e−2λ)]′ = ρ (2.2a)

− 1

r2
(1− e−2λ) +

2ν ′

r
e−2λ = p (2.2b)

e−2λ

(
ν ′′ + ν ′2 +

ν ′

r
− ν ′λ′ − λ′

r

)
= p (2.2c)

for the line element (2.1) where the energy density ρ and the pressure p are measured

relative to the comoving fluid 4–velocity ua = e−νδa0 and primes denote differentiation

with respect to the radial coordinate r. In the field equations (2.2) we are using units

where the coupling constant 8πG
c4

= 1 and the speed of light is c = 1. An equivalent
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form of the field equations is obtained if we use the transformation

A2y2(x) = e2ν(r), Z(x) = e−2λ(r), x = Cr2 (2.3)

due to Durgapal and Bannerji (1983), where A and C are arbitrary constants. Under

the transformation (2.3), the system (2.2) becomes

1− Z

x
− 2Ż =

ρ

C
(2.4a)

4Z
ẏ

y
+

Z − 1

x
=

p

C
(2.4b)

4Zx2ÿ + 2Żx2ẏ + (Żx− Z + 1)y = 0 (2.4c)

where the overdot denotes differentiation with respect to the variable x. Note that

(2.4) is a system of three equations in the four unknowns ρ, p, y and Z. The advantage

of this system lies in the fact that a solution can, upon a suitable specification of Z(x),

be readily obtained by integrating (2.4c) which is second order and linear in y.

2.3 A new series solution

A large number of exact solutions are known for the system of equations (2.4) that

model a relativistic star with no charge. Many of these are listed by Stephani et al.

(2003) and Skea (1996). A comprehensive list of static solutions, that satisfy stringent

conditions for spherically symmetric perfect fluids, was compiled by Delgaty and Lake

(1998). The Einstein field equations in the form (2.4) are under-determined. From

inspection it is clear that the simplest solutions to the system (2.4) correspond to

polynomials forms for Z(x). As far as we are aware all exact solutions found previously

correspond to forms of the gravitational potential Z(x) which are linear or quadratic in

the independent variable x. Our approach here is to specify the gravitational potential

Z(x) and attempt to solve (2.4c) for the potential y. In an attempt to obtain a new
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solution to the system (2.4) we make the choice

Z = ax3 + 1 (2.5)

where a is a constant. We suspect that the cubic form (2.5) has not been considered

before because the resulting differential equation in the dependent variable y is difficult

to solve; quadratic forms for Z are listed by Delgaty and Lake (1998). The quadratic

form for the potential Z is simpler to handle and contains the familiar Tolman models.

With the specified function Z, the condition of pressure isotropy (2.4c) becomes

2(ax3 + 1)ÿ + 3ax2ẏ + axy = 0. (2.6)

The linear second order differential equation (2.6) is difficult to solve when a ̸= 0. We

have not found a solution for a ̸= 0 in standard handbooks of differential equations.

Software packages such as Mathematica have also not been helpful as they generate a

solution in terms of hypergeometric functions with complex arguments.

We attempt to find a series solution to (2.6) using the method of Frobenius. As the

point x = 0 is a regular point of (2.6), there exist two linearly independent solutions

of the form of a power series with centre x = 0. We therefore can write

y(x) =
∞∑
n=0

cnx
n (2.7)

where the cn are the coefficients of the series. For a legitimate solution we need to

determine the coefficients cn explicitly.

Substituting (2.7) into (2.6) yields

4c2 + (12c3 + ac0)x+ 4(6c4 + ac1)x
2 +

∞∑
n=2

{a[2n2 + n+ 1]cn + 2(n+ 3)(n+ 2)cn+3}xn+1 = 0.
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For this equation to hold true for all x we require

4c2 = 0 (2.8a)

12c3 + ac0 = 0 (2.8b)

6c4 + ac1 = 0 (2.8c)

a[2n2 + n+ 1]cn + 2(n+ 3)(n+ 2)cn+3 = 0, n ≥ 2. (2.8d)

Equation (2.8d) is a linear recurrence relation with variable, rational coefficients of

order three. General techniques of solution for difference equations are limited to the

simplest cases and (2.8d) does not fall into the known classes. However it is possible

to solve (2.8d) from first principles. Equations (2.8a) and (2.8d) imply

c2 = c5 = c8 = · · · = 0. (2.9)

From (2.8b) and (2.8d) we generate the expressions

c3 = −a

2

1

3.2
c0

c6 =
a2

22
2.32 + 3 + 1

6.3

1

5.2
c0

c9 = −a3

23
2.62 + 6 + 1

9.6.3

2.32 + 3 + 1

8.5.2
c0.

It is clear that the coefficients c3, c6, c9, . . . can all be written in terms of the coefficient

c0. These coefficients generate a pattern and we can write

c3n+3 = (−1)n+1
(a
2

)n+1

× (2.10)

[2(3n)2 + 3n+ 1] · · · [2(3.1)2 + 3.1 + 1][2(3.0)2 + 3.0 + 1]

{(3n+ 3) · · · (3.1 + 3)(3.0 + 1)}{(3n+ 2) · · · (3.1 + 2)(3.0 + 2)}
c0.

We can rewrite this in the form

c3n+3 = (−1)n+1
(a
2

)n+1
n∏

k=0

2(3k)2 + 3k + 1

(3k + 3)(3k + 2)
c0 (2.11)

8



where we have utilised the conventional symbol
∏

to denote multiplication. We can

obtain a similar formula for the coefficients c4, c7, c10, . . . From (2.8c) and (2.8d) we

have

c4 = −a

2

2.12 + 1 + 1

4.3
c1

c7 =
a2

22
2.42 + 4 + 1

7.4

2.12 + 1 + 1

6.3
c1

c10 = −a3

23
2.72 + 7 + 1

10.7.4

2.42 + 4 + 1

9.6.3

2.12 + 1 + 1

1
c1.

The coefficients c4, c7, c10, . . . can all be written in terms of the coefficient c1. These

coefficients generate a pattern which is clearly of the form

c3n+4 = (−1)n+1
(a
2

)n+1 [2(3.0 + 1)2 + (3.0 + 1) + 1][2(3.1 + 1)2 + (3.1 + 1) + 1]

{(3n+ 4) · · · (3.1 + 4)(3.0 + 4)}
×

[2(3.2)2 + (3.2 + 2) + 1] · · · [2(3n+ 1)2 + (3n+ 1) + 1]

{(3n+ 3) · · · (3.1 + 3)(3.0 + 3)}
c1. (2.12)

This may be expressed as

c3n+4 = (−1)n+1
(a
2

)n+1
n∏

k=0

2(3k + 1)2 + (3k + 1) + 1

(3k + 4)(3k + 3)
c1 (2.13)

where
∏

denotes multiplication.

From (2.9) we observe that the coefficients c2, c5, c8, . . . all vanish. The coefficients

c3, c6, c9, . . . are generated from (2.11). The coefficients c4, c7, c10, . . . are generated

from (2.13). Hence the difference equation (2.8d) has been solved and all non-zero

coefficients are expressible in terms of the leading coefficients c0 and c1. We can write
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the series (2.7) as

y(x) = c0 + c1x
1 + c3x

3 + c4x
4 + c6x

6 + c7x
7 + c9x

9 + c10x
10 + · · ·

= c0

(
1 +

∞∑
n=0

c3n+3x
3n+3

)
+ c1

(
x+

∞∑
n=0

c3n+4x
3n+4

)

= c0

(
1 +

∞∑
n=0

(−1)n+1
(a
2

)n+1
n∏

k=0

2(3k)2 + 3k + 1

(3k + 3)(3k + 2)
x3n+3

)
+

c1

(
x+

∞∑
n=0

(−1)n+1
(a
2

)n+1
n∏

k=0

2(3k + 1)2 + (3k + 1) + 1

(3k + 4)(3k + 3)
x3n+4

)
(2.14)

where c0 and c1 are arbitrary constants. Clearly (2.14) is of the form

y(x) = c0y1(x) + c1y2(x) (2.15)

where

y1(x) =

(
1 +

∞∑
n=0

(−1)n+1
(a
2

)n+1
n∏

k=0

2(3k)2 + 3k + 1

(3k + 3)(3k + 2)
x3n+3

)

y2(x) =

(
x+

∞∑
n=0

(−1)n+1
(a
2

)n+1
n∏

k=0

2(3k + 1)2 + (3k + 1) + 1

(3k + 4)(3k + 3)
x3n+4

)

are linearly independent solutions of (2.6). Therefore we have found the general solu-

tion to the differential equation (2.6) for the particular gravitational potential Z given

in (2.5). The advantage of the solutions in (2.15) is that they are expressed in terms of

a series with real arguments unlike the complex arguments given by software packages.
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2.4 Physical models

From (2.15) and the Einstein field equations (2.4) we generate the exact solution

e2λ =
1

ax3 + 1
(2.16a)

e2ν = A2y2 (2.16b)

ρ

C
= −7ax2 (2.16c)

p

C
= 4(ax3 + 1)

ẏ

y
+ ax2 (2.16d)

In the above the quantity y is given by (2.15), x = Cr2 and a is a constant. This

solution has a simple form and is expressed completely in terms of elementary func-

tions. The expressions given above have the advantage of simplifying the analysis of

the physical features of the solution, and will assist in the description of relativistic

compact bodies such as neutron stars.

Consider a relativistic sphere where 0 ≤ x ≤ R. We note that the functions ν

and λ have constant values at the centre x = 0, as do the functions ρ and p. Hence

the gravitational potentials and the matter variables are finite at the centre. Since

y(x) = c0y1(x) + c1y2(x) is a well defined series on the interval [0, R] the quantities ν,

λ, ρ and p are nonsingular and continuous. If a < 0 then the energy density ρ > 0.

The constants c0 and c1 can be chosen such that the pressure p > 0. The physical

reasonableness of ρ and p is demonstrated in Figs. 2.1 and 2.2.

Consequently the energy density and the pressure are positive on the interval [0, R].

At the boundary x = CR2 we must have

e−2λ(R) = aC3R6 + 1 = 1− 2M

R

for a sphere of mass M ; this ensures that the interior spacetime matches smoothly to

the Schwarzschild exterior. For the speed of sound to be less than the speed of light

we require that

0 ≤ dp

dρ
≤ 1

11
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Figure 2.1: Pressure, p, vs radial coordinate, x (for c1 = c0 = −a = 1).
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Figure 2.2: Density, ρ, vs radial coordinate, x (for c1 = c0 = −a = 1).
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in our units. This inequality will constrain the values of the constants a, c0, c1, A

and C. From this qualitative analysis we believe that the solution found can be used

as a basis to describe realistic relativistic stars. We believe that a detailed physical

analysis is likely to lead to realistic models for compact objects.

Our solution has the interesting feature of admitting an explicit barotropic equation

of state. We observe from (2.16c) that

x =

√
ρ

−7aC
, a < 0

and the variable x can be written in terms of ρ only. The function y in (2.14) can be

expressed in terms of ρ and the variable x is eliminated. Consequently the pressure p

in (2.16d) is expressible in terms of ρ only, and we can write

p = p(ρ).

Thus the solution in (2.16) obeys a barotropic equation of state. This highly desirable

feature is unusual for most exact solutions as pointed out in Stephani et al. (2003).

For small values of x close to the stellar centre we have y ≈ c0 + c1x. Then from

(2.16d) we have the approximation

p

C
≈ 4c1

c0 + c1
√

ρ
−7aC

(2.17)

Therefore for small values of x close to stellar centre (2.17) implies that we have the

approximate equation of state

p ∝ ρ−1/2

which is of the form of a polytrope.

We point out that the solutions presented in this paper may be extended to

anisotropic matter. In recent years a number of researchers have proposed models

corresponding to anisotropic matter where the radial component of the pressure differs

13



from the angular component. The physical motivation for the analysis of anisotropic

matter is that anisotropy affects the critical mass, critical surface redshift and stability

of highly compact bodies. These investigations are contained in the papers of Chaisi

and Maharaj (2005), Dev and Gleiser (2002, 2003), Herrera et al. (2002, 2004), Ivanov

(2002), Mak and Harko (2002, 2003), among others. It appears that anisotropy may

be important in fully understanding the gravitational behaviour of boson stars and

the role of strange matter with densities higher than neutron stars. Mak and Harko

(2002) and Sharma and Mukherjee (2002) have observed that anisotropy is a crucial

ingredient in the analysis of dense stars with strange matter. The simple form of our

solutions allows for extension to study such matter by adapting the energy momentum

tensor to include both radial and tangential pressures.

2.5 Discussion

The condition for pressure isotropy is reduced to a recurrence equation with vari-

able, rational coefficients of order three. We prove that this difference equation can

be solved in general. Consequently we can find an exact solution to the field equa-

tions corresponding to a static spherically symmetric gravitational potential in terms

of elementary functions. The metric functions, the energy density and the pressure

are continuous and well behaved which implies that this solution could be used to

model the interior of a relativistic sphere. The model satisfies a barotropic equation

of state in general which approximates a polytrope close to the stellar centre. The

approach used in this chapter has proved to be useful in other gravitational studies of

compact relativistic objects. Maharaj and Thirukkanesh (2006) considered isotropic

matter configurations with power law functions. Thirukkanesh and Maharaj (2006)

analysed charged isotropic compact bodies. Maharaj and Komathiraj (2007) found

new Einstein–Maxwell models consistent with neutron star densities. Thirukkanesh

and Maharaj (2009) specified one of the gravitational potentials and the electric field

to generate physically reasonable charged spheres. Clearly these, and other, investi-

14



gations depend crucially on the solution of the relevant recurrence relation resulting

from the method of Frobenius.
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Chapter 3

Relativistic stellar models

3.1 Introduction

We obtain a class of solutions to the Einstein–Maxwell equations describing charged

static spheres. Upon specifying particular forms for one of the gravitational potentials

and the electric field intensity the condition for pressure isotropy is transformed into

a hypergeometric equation with two free parameters. For particular parameter values

we recovered uncharged solutions corresponding to specific neutron star models. We

obtained two new charged solutions in terms of elementary functions for other param-

eter choices. The first of these solutions is physically reasonable as the metric and

thermodynamic variables remain nonsingular, finite and continuous for a wide range

of values of the radial coordinate. The second new solution admits a negative energy

density and violates the weak and strong energy conditions.

A variety of static solutions to the Einstein–Maxwell system of field equations has

been found with isotropic matter distributions with spherical symmetry. These exact

solutions need to be matched at the boundary of the relativistic star to the Reissner–

Nordström exterior spacetime. The matching of nonstatic charged perfect fluid spheres

to the Reissner–Nordström exterior is restricted by the Bianchi identities as shown by

Mahomed et al. (2003). Static exact solutions may be used to model the interior of

neutron stars as indicated in the treatments of Tikekar (1990), Maharaj and Leach
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(1996) and Komathiraj and Maharaj (2007). Charged stars with a spheroidal spatial

geometry have been analysed by Sharma et al. (2001), Gupta and Kumar (2005) and

Karmakar et al. (2007). Static charged solutions of the Einstein–Maxwell system

may be used to model cold compact objects [Sharma et al. (2006)], strange matter

and binary pulsars [Sharma and Mukherjee (2002)], and quark–diquark mixtures in

equilibrium [Sharma and Mukherjee (2001)]. Charged relativistic matter has been

shown to be consistent with the modelling of core–envelope stellar systems by Thomas

et al. (2005), Tikekar and Thomas (1998) and Paul and Tikekar (2005). The recent

treatments of Varela et al. (2010) and Thirukkanesh and Maharaj (2008) show that

a barotropic equation of state is consistent with dark energy stars and charged quark

matter. Some exact models with nonlinear quadratic equations of state have been

found by Maharaj and Mafa Takisa (2012), Mafa Takisa and Maharaj (2013) and

Feroze and Siddiqui (2011).

General methods have been proposed to solve the Einstein–Maxwell system for

static gravitational fields. Thirukkanesh and Maharaj (2009) generated a new class of

solutions in closed form by using a systematic series analysis. This approach generates

a number of difference equations which must be solved explicitly from first principles.

Solutions in terms of elementary functions are regainable by placing restrictions on

the parameters. In this work we reduce the solutions of the field equations to a

hypergeometric equation. We demonstrate that particular solutions, both with charged

and uncharged matter, may be extracted from the hypergeometric equation. Some

advantages of our approach compared to the series method are highlighted and we

illustrate the restrictions on solutions allowed on physical grounds.

In §3.2 we list the Einstein–Maxwell equations for a charged static fluid in a spheri-

cally symmetric spacetime. This nonlinear system is transformed into a more tractable

set of equations. A particular form is chosen for one of the metric potentials as well

as the electric field intensity. The system can be integrated easily and the equation

governing pressure isotropy is reduced to a hypergeometric differential equation with

two free parameters. In §3.3 we recover two known uncharged solutions that corre-
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spond to the neutron star models of Durgapal and Bannerji (1983) and Maharaj and

Mkhwanazi (1996). We then obtain two new exact solutions that describe charged

static spheres. Whilst these solutions are, in principle, incorporated in the class gen-

erated by Thirukkanesh and Maharaj (2008) establishing this correspondence is non–

trivial due to the series form of their solutions. Moreover it is not obvious whether

an infinite series will be nonsingular, bounded and continuous. In order for a charged

stellar model to be physically viable the gravitational functions must also match the

Reissner–Nordström metric at the star’s boundary and the sound speed must be sub-

luminal. The solutions presented here are special cases of the hypergeometric function

that can be represented by elementary functions. The simple form of our solutions

greatly facilitates a detailed analysis of their physical properties. Our first new so-

lution appears to be physically well behaved and the pressure, energy density and

electric field intensity are plotted. The second solution violates the strong and weak

energy conditions as the energy density remains negative throughout its domain. Our

findings are summarised in §3.4.

3.2 Basic equations

The interior of a dense star is described by the line element

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2
(
dθ2 + sin2 θdϕ2

)
(3.1)

in comoving coordinates (xa) = (t, r, θ, ϕ). It is convenient to introduce coordinates

x = Cr2, Z(x) = e−2λ(r), A2y2(x) = e2ν(r)

suggested by Durgapal and Bannerji (1983). Then (3.1) can be written as

ds2 = −A2y2dt2 +
1

4CxZ
dx2 +

x

C

(
dθ2 + sin2 θdϕ2

)
(3.2)
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where A and C are constants. Then the Einstein–Maxwell system of field equations

becomes

1− Z

x
− 2Ż =

ρ

C
+

E2

2C
(3.3a)

4Z
ẏ

y
+

Z − 1

x
=

p

C
− E2

2C
(3.3b)

4Zx2ÿ + 2Żx2ẏ +

(
Żx− Z + 1− E2x

C

)
y = 0 (3.3c)

σ2

C
=

4Z

x

(
xĖ + E

)2
. (3.3d)

In the above ρ is the energy density, p is the isotropic pressure, E is the electric field

intensity and σ is the charge density. Overdots indicate differentiation with respect to

the variable x.

We make the particular choice

Z(x) =
1 + kx

1 + x
(3.4)

where k is a real constant. In (3.4) we take k ̸= 1 to avoid negative energy densities

which are unphysical for barotropic stars. The choice (3.4) was also made by Ma-

haraj and Mkhwanazi (1996) in their analysis of uncharged relativistic stars. Upon

substituting (3.4) into (3.3c) we obtain

4(1 + kx)(1 + x)ÿ + 2(k − 1)ẏ +

(
1− k − E2(1 + x)2

Cx

)
y = 0. (3.5)

When E = 0, equation (3.5) is valid for uncharged stars. It is now convernient to

introduce a new independent variable X which helps to simplify the second order

equation (3.5). The relevant transformation is given by

1 + x = KX,K =
k − 1

k
, Y (X) = y(x).
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Then equation (3.5) can be written as

X(1−X)
d2Y

dX2
− 1

2

dY

dX
+

(
K

4
+

K2(1−K)E2X2

C(KX − 1)

)
Y = 0. (3.6)

We observe that (3.6) is simplified if we make the choice

E2 =
α

4

C

K2(1−K)

KX − 1

X2
(3.7)

where α is a constant. The electric field intensity E in (3.7) vanishes at the centre of

the star, and remains continuous and bounded in the interior of the star for a wide

range of values of the parameter K. Thus this choice for E is physically reasonable

and is a useful form to study the gravitational behaviour of charged stars. Equation

(3.6) now assumes the simpler form

X(1−X)
d2Y

dX2
− 1

2

dY

dX
+

(
K

4
+

α

4

)
Y = 0. (3.8)

for the choice (3.7). Note that (3.8) is a special case of the hypergeometric differential

equation.

3.3 Particular models

A variety of new solutions, in terms of elementary and special functions, are obtain-

able from (3.8) for particular values of α and K. Some values may reduce (3.8) to

solutions that have already been documented. Here we regain neutral stars with no

electromagnetic field.

As a first example we take α = 0 and K = −1(⇔ k = 1
2
). Then (3.8) becomes

X(1−X)
d2Y

dX2
− 1

2

dY

dX
− 1

4
Y = 0. (3.9)
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This equation admits the two linearly independent hypergeometric functions

Y1 = F

(
−1

2
− 1

2
;−1

2
;X

)
,

Y2 = X3/2F

(
1, 1;

5

2
;X

)
.

It is possible to express these solutions in terms of elementary functions and we get

y1(x) = (2 + x)1/2 (3.10a)

y2(x) = (2 + x)1/2 ln
[
(1 + x)1/2 + (2 + x)1/2

]2 − 2(1 + x)1/2 (3.10b)

in terms of the variables x and y used earlier. This solution was found previously by

Maharaj and Mkhwanazi (1996). As a second example we take α = 0 and K = 3(⇔

k = −1
2
). Then (3.8) becomes

X(1−X)
d2Y

dX2
− 1

2

dY

dX
+

3

4
Y = 0. (3.11)

In this case the two linearly independent hypergeometric functions are

Y1 = F

(
1

2
,−3

2
;−1

2
;X

)
,

Y2 = X3/2F

(
2, 0;

5

2
;X

)
.

These quantities are equivalent to the elementary functions

y1(x) = (2− x)1/2(2x+ 5) (3.12a)

y2(x) = (1 + x)3/2 (3.12b)

which correspond to the neutron star model of Durgapal and Bannerji (1983). We

have regained two exact solutions studied previously for particularly choices of the

parameter K. Other values of K will correspond to new solutions of the Einstein field

equations for uncharged matter.
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It is possible, upon integrating the hypergeometric equation (3.8), to generate new

solutions to the system (3.3) corresponding to a charged star where the hypergeometric

functions can be written in terms of elementary functions. We choose the parameter

values K = −2(⇔ k = 1
3
) and α = 1. The general solution to equation (3.8) is given

by

Y = c1F

(
−1

2
,−1

2
;−1

2
;X

)
+ c2X

−3/2F

(
1, 1;

5

2
;X

)
where F

(
−1

2
,−1

2
;−1

2
;X
)
and X−3/2F

(
1, 1; 5

2
;X
)
are linearly independent hypergeo-

metric functions and c1 and c2 are constants. In terms of the variables x and y we can

rewrite the solution as

y(x) = (2 + x)1/2
(
c1 + 2c2 ln

[
(1 + x)1/2 + (2 + x)1/2

])
− 2c2(1 + x)1/2. (3.13)

Then the exact solution to the Einstein–Maxwell system (3.3) is given by

e2λ =
1 + x

1 + 1
3
x

(3.14a)

e2ν = A2
(
(2 + x)1/2

(
c1 + c2 ln

[
(1 + x)1/2 + (2 + x)1/2

])
− 2c2(1 + x)1/2

)2
(3.14b)

ρ

C
=

28 + 15x

24(1 + x)2
(3.14c)

p

C
=

−(15x+ 16)

24(1 + x)2
+

1

2(2 + x)1/2
× (3.14d)

c1 + 2c2 ln
[
(1 + x)1/2 + (2 + x)1/2

]
c1(2 + x)1/2 − 2c2(1 + x)1/2 + 2c2(2 + x)1/2 ln [(1 + x)1/2 + (2 + x)1/2]

E2

C
=

1

12

x

(1 + x)2
(3.14e)

σ2

C
=

(3 + x)3

36(1 + x)5
. (3.14f)

The gravitational potentials ν and λ are well behaved and continuous in the interior

of the star. This is also true for the energy density ρ, the pressure, p, the electric field

intensity E and the charge density σ. These quantities remain finite and nonsingular.

This behaviour is depicted in Figs. 3.1, 3.2 and 3.3. In Fig. 3.3 we have plotted
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Figure 3.1: Energy density, ρ, vs radial coordinate, x (for c1 = c2 = A = C = 1)
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Figure 3.2: Pressure, p, vs radial coordinate, x (for c1 = c2 = A = C = 1)

the electric field intensity E2 close to the centre and note that after reaching a local

maximum the function decreases as the boundary is approached. The simple form of

this solution makes a detailed analysis of the physical features of the model feasible.

It is important to observe that not all exact solutions derivable from (3.8) will be

physically reasonable. For example if we take K = 1
2
(⇔ 2), α = 5

2
then we find

Y = c1F

(
1

2
,−3

2
;−1

2
;X

)
+ c2X

3/2F

(
2, 0;

5

2
;X

)

or in terms of the variables x and y:

y(x) = c1(2− x)1/2(2x+ 5) + c2(1 + x)3/2. (3.15)
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Figure 3.3: Square of electric field intensity, E2, vs radial coordinate, x (for c1 = c2 =
A = C = 1)

The energy density in this case is given by

ρ

C
= −

3 + 13
8
x

(1 + x)2
.

Therefore the energy density ρ is negative. Consequently this solution is not very

useful for matter that has to satisfy the weak and strong energy conditions. This

example demonstrates the difficulty of finding Einstein–Maxwell solutions that satisfy

all the conditions for physical acceptability for a dense relativistic star.

3.4 Discussion

The solution of the Einstein–Maxwell system of field equations describing charged

static spheres was reduced to solving the equation governing pressure isotropy. Upon

specifying one of the gravitational potentials, Z(x), and the electric field intensity,

E(x), this equation can be solved in terms of hypergeometric functions with two free

parameters, K and α. For specific parameter values the hypergeometric functions

reduce to elementary functions. Charged and uncharged solutions were extracted. In

particular, the uncharged solutions of Maharaj and Mkhwanazi (1996) and Durgapal

and Bannerji (1983) were recovered by setting α = 0, K = −1 and α = 0, K = 3
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respectively.

Two new charged solutions were obtained. For α = 1, K = −2 we obtained an

exact solution in terms of algebraic functions. The gravitational potentials, pressure,

energy density, electric field intensity and charge density are non–singular, finite and

continuous over a wide range of values of x, the transformed radial coordinate. This

behaviour is depicted in Figs 3.1 and 3.2. The behaviour of the electric field intensity

is physically acceptable as illustrated in Fig. 3.3.

The other new charged solution was found by setting α = 5
2
, K = 1

2
. The cor-

responding energy density is negative and this model is unphysical as it violates the

weak and strong energy conditions. This caveat serves as a reminder to practitioners

that not all exact solutions of the Einstein–Maxwell system are physically reasonable

despite the under–determined character of this problem.

Our technique employed in this chapter can be regarded as complementary to

the series solution method used by Thirukkanesh and Maharaj (2009). The simple,

algebraic form of the exact solutions admitted by this treatment simplifies the task of

determining the physical viability of these stellar models. We believe that this method

can be generalised for other specified forms of the gravitational potential.
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Chapter 4

Accretion onto a

higher–dimensional black hole

4.1 Introduction

The problem of spherical accretion [Frank et al. (2002), Shu (1992)] of a perfect fluid

onto a Schwarzschild black hole [Shapiro and Teukolsky (1983), Michel (1972)] is gen-

eralised to D–dimensions. In a seminal paper Bondi (1952) solved the problem of a

polytropic gas accreting onto a central object under the influence of gravity. This

work generalises the earlier results of Bondi and Hoyle (1944) and Hoyle and Lyttle-

ton (1939) which investigated pressure–free gas being dragged onto a massive central

object. There has been some confusion in distinguishing these cases in the literature.

The latter case is usually referred to as Lyttleton–Hoyle accretion whilst the former

is termed Bondi accretion. The key distinction between the two cases is that the

gas and the accretor are in the same inertial rest–frame in Bondi accretion whilst in

Lyttleton–Hoyle accretion the gas has a finite velocity at infinity (see Edgar (2004)).

Both studies are performed in the regime of Newtonian gravity. Detailed treatments

of the accretion problem can be found in any of the standard texts by Shapiro and

Teukolsky (1983), Shu (1992) or Frank et al. (2002) The first study of accretion in a

general relativistic context was undertaken by Michel (1972). This was followed by
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more comprehensive treatments determining the luminosity and frequency spectrum

[Shapiro (1973a)] the influence of an interstellar magnetic field on the accretion of ion-

ized gas [Shapiro (1973b)] and accretion onto a rotating black hole [Shapiro (1974)].

Accretion onto a charged black hole was considered in Michel (1972) and more fully

investigated by de Freitas Pacheco (2011). Spherical winds and shock transitions were

studied in Blumenthal and Mathews (1976).

Higher–dimensional accretion onto TeV black holes was studied in Giddings and

Mangano (2008). Their treatment, however, was restricted to D–dimensional Newto-

nian gravity. Higher dimensional theories arise from extensions to the standard model

of particle physics that are believed to lead to the unification of all four fundamental

forces.

Since general relativity, and indeed Newtonian gravity, is a classical, low energy

theory it is unclear whether it will still provide an accurate description of gravita-

tional interactions at extremely high energies. Semi–classical theories simply assume

the validity of some gravitational theory at high energies. This is the rationale be-

hind exploring general relativity in higher dimensional spacetimes. Accordingly we

extend the analysis of Giddings and Mangano (2008) to D–dimensional general rel-

ativity which may be a more appropriate gravity model for TeV black holes. Other

gravitational theories have been postulated, and Lovelock and Gauss–Bonnet gravity

in particular have been demonstrated to be low energy limits of various string theories.

A future extension of this work will be to examine accretion onto higher dimension

black holes in these particular theories.

The accretion of phantom matter in 5–dimensions was studied by Sharif and Abbas

(2011). In this chapter we restrict our attention to steady, spherical accretion of

the more conventional polytropic gas onto a point mass in D–dimensional general

relativity.
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4.1.1 Units and conventions

We use the following values for physical constants and the accreting system’s param-

eters:

c = 3.00× 1010cm.s−1

G = 6.674× 10−8cm3.g.−1s−2

kB = 1.380× 10−16erg.K−1

M = M⊙ = 1.989× 1033g

m = mp = 1.67× 10−28g

a∞ = 106cm.s−1

n∞ = 1cm−3

T∞ = 102K (4.1)

4.2 Basic equations

The spacetime exterior to a Schwarzschild black hole in D–dimensions is described by

the line element

ds2 = −A(r)dt2 + A−1(r)dr2 + r2dΩ2
(D−2) (4.2)

where

A(r) :=

(
1− 2M

(D − 3)rD−3

)
(4.3)

and dΩ2
(D−2) is the line element on a unit D − 2 sphere, viz.

dΩ2
(D−2) = dθ2(1) +

D−2∑
n=2

dθ2(n)

(
n∏

m=2

sin2 θ(m−1)

)
(4.4)

We use comoving coordinates (xa) = (t, r, θ1, θ2, · · · , θD−2) and units where c = 1 and

(D − 3)GD = 1. The D–dimensional Newton’s constant is defined as

GD = VD−4G =
2π(D−4)/2

Γ((D − 4)/2)

rD−4

D − 4
G
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where Γ is the gamma function. Equation (3.1) is adapted from an extension of the

Schwarzschild black hole into D–dimensions [Tangherlini (1963)].

We consider the steady–state radial inflow of gas onto the central mass M . The

gas is approximated as a perfect fluid described by the energy–momentum tensor

T ab = (ρ+ p)uaub + pgab (4.5)

where the fluid D–velocity is

ua = dxa/ds (4.6)

and ρ and p are the fluid proper energy density and pressure respectively. We also

define the proper density of rest mass n and the flux of rest mass Ja = nua. All these

quantities are evaluated in the local inertial rest frame of the fluid. The spacetime

curvature is dominated by the compact object and we ignore the self–gravity of the

fluid. If no particles are created or destroyed then particle number is conserved and

∇aJ
a = ∇a(nu

a) = 0 (4.7)

where ∇a denotes the covariant derivative with respect to the coordinate xa. Conser-

vation of energy and momentum is governed by

∇aT
a
b = 0. (4.8)

We define the radial component of the D–velocity, v(r) := u1 = dr/ds. Since uau
a =

−1 and the velocity components vanish for a > 1 we have

(u0)2 =
v2 + A

A2
. (4.9)

Equation (4.7) for our problem is

1

rD−2

d

dr

(
rD−2nv

)
= 0. (4.10)
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The a = 0 component of (4.8) is

1

rD−2

d

dr

(
rD−2(ρ+ p)v

(
A+ v2

)1/2)
= 0. (4.11)

The a = 1 component can be simplified to

v
dv

dr
= −dp

dr

A+ v2

ρ+ p
− M

rD−2
. (4.12)

These expressions generalise those obtained by Michel (1972) for spherical accretion

onto a Schwarzschild black hole. Those equations are naturally recovered when D = 4:

1

r2
d

dr

(
r2nv

)
= 0 (4.13a)

1

r2
d

dr

(
r2(ρ+ p)v

(
Ã+ v2

)1/2)
= 0 (4.13b)

v
dv

dr
= −dp

dr

Ã+ v2

ρ+ p
− M

r2
(4.13c)

where

Ã := 1− 2M

r2
.

4.3 Analysis

In the spirit of the original calculation [Bondi (1952)] we obtain the mass accretion

rate from a qualitative analysis of (4.10) and (4.12). For an adiabatic fluid there is no

entropy production and the conservation of energy is governed by

Tds = 0 = d
(ρ
n

)
+ pd

(
1

n

)
(4.14)

which implies the relation

dρ

dn
=

ρ+ p

n
. (4.15)
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The adiabatic sound speed, a, is

a2 :=
dp

dρ

=
dp

dn

n

ρ+ p
. (4.16)

We rewrite the continuity and momentum equations as

1

v
v′ +

1

n
n′ = −(D − 2)

r
(4.17)

vv′ + (A+ v2)
a2

n
n′ = − M

rD−2
(4.18)

This implies

v′ =
N1

N

n′ = −N2

N
(4.19)

where

N1 =
1

n

(
(A+ v2)

(D − 2)a2

r
− M

rD−2

)
, (4.20a)

N2 =
1

v

(
(D − 2)

v2

r
− M

rD−2

)
(4.20b)

N =
v2 − (A+ v2)a2

vn
. (4.20c)

At large r we demand the flow be subsonic i.e. v < a and since the sound speed is

always subluminal i.e. a < 1 and we have v2 ≪ 1. The denominator is thus

N ≈ v2 − a2

vn
(4.21)

and so N > 0 as r → ∞. At the event horizon rH = ( 2M
D−3

)1/D−3 and

N =
v2(1− a2)

vn
. (4.22)
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Since a < 1 we have N < 0, and we must have N = 0 for some rs where rH < rs < ∞.

In order to avoid discontinuities in the flow we must have N = N1 = N2 = 0 at r = rs

i.e.

N1 =
1

ns

(
(As + v2s)

(D − 2)a2s
rs

− M

rD−2
s

)
= 0 (4.23a)

N2 =
1

vs

(
(D − 2)

v2s
rs

− M

rD−2
s

)
= 0 (4.23b)

N =
v2s − (As + v2s)a

2
s

vsns

= 0 (4.23c)

where vs := v(rs), as := a(rs) etc. At the critical point that satisfies equations (4.23)

we have

v2s =
a2s

1 + (D − 1)/(D − 3)a2s
(4.24)

=
M

D − 2

1

rD−3
s

. (4.25)

To obtain the mass accretion rate we write the continuity equation explicitly in the

form of a conservation equation. Integrating equation (4.10) over a (D−1)–dimensional

volume we obtain

2π(D−1)/2

Γ ((D − 1)/2)
rD−2mnv = Ṁ (4.26)

where Ṁ is an integration constant, independent of r, having dimensions of mass per

unit time. Ṁ is the higher dimensional generalization of the Bondi accretion rate.

Equations (4.10) and (4.11) can be combined to yield

(
ρ+ p

n

)2(
1− 2M

(D − 3)rD−3
+ v2

)
=

(
ρ∞ + p∞

n∞

)2

, (4.27)

which is the D–dimensional generalization of the relativistic Bernoulli equation. We

now introduce the polytrope equation of state

p = Knγ (4.28)
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where the adiabatic index γ satisfies 1 < γ < 5
3
. The energy equation (4.14) can be

integrated to obtain

ρ =
K

γ − 1
nγ +mn (4.29)

where mn is the rest–energy density. Using (4.16) we re–write the Bernoulli equation

(4.27) as

(
1 +

a2

γ − 1− a2

)2(
1− 2M

(D − 3)rD−3
+ v2

)
=

(
1 +

a2∞
γ − 1− a2∞

)2

. (4.30)

At the critical point rs this must satisfy

[
(D − 3) + (D − 1)a2s

(D − 3)

](
1− a2s

γ − 1

)2

=

(
1− a2∞

γ − 1

)2

(4.31)

where we have used the critical velocity and sound speed viz. equations (4.24) and

(4.25). For large, but finite r i.e. r ≥ rs the baryons should still be non–relativistic

i.e. T ≪ mc2/k = 1013K for neutral hydrogen. In this regime we expect a ≤ as ≪ 1.

Expanding (4.31) to leading order in as and a∞ we obtain

a2s ≈
2(D − 3)

(3D − 7)− γ(D − 1)
a2∞. (4.32)

We thus obtain the critical radius rs in terms of the black hole mass M and the

boundary condition a∞:

rD−3
s =

M

D − 2

1 + (D − 1)/(D − 3)a2s
a2s

≈
[
(3D − 7)− (D − 1)γ

2(D − 2)(D − 3)

]
M

a2∞
(4.33)

Reintroducing the normalised constants this reads,

rD−3
s ≈

[
(3D − 7)− (D − 1)γ

2(D − 2)(D − 3)

]
(D − 3)GDM

a2∞
(4.34)
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where GD = VD−4G = 2π(D−4)/2

Γ((D−4)/2)
rD−4

D−4
G is the D–dimensional Newton’s constant. From

(4.16), (4.28) and (4.29) we have

γKnγ−1 =
ma2

1− a2/(γ − 1)
. (4.35)

For a2/(γ − 1) ≪ 1 we have n ∼ a2/(γ−1) and

ns

n∞
≈
(

as
a∞

)2/(γ−1)

. (4.36)

We are now in a position to evaluation the accretion rate, Ṁ . Since Ṁ is independent

of r, equation (4.26) must also hold for r = rs. We use the critical point to determine

the D–dimensional Bondi accretion rate,

Ṁ =
2π(D−1)/2

Γ [(D − 1)/2]
rD−2mnv

=
2π(D−1)/2

Γ [(D − 1)/2]
rD−2
s mnsvs

=
2π(D−1)/2

Γ [(D − 1)/2]
λmn∞M (D−2)/(D−3)a(1−D)/(D−3)

∞ (4.37)

where we have defined the dimensionless accretion eigenvalue

λ :=

(
1

D − 2

)(D−2)/(D−3) [
(3D − 7)− (D − 1)γ

2(D − 3)

]−[(3D−7)−(D−1)γ]/[2(D−3)(γ−1)]

.

(4.38)

We rewrite the D–dimensional accretion rate explicitly in terms of GD, the gravita-

tional constant,

Ṁ =
2π(D−1)/2

Γ [(D − 1)/2]
λmn∞ [(D − 3)GDM ](D−2)/(D−3) a(1−D)/(D−3)

∞ (4.39)

Note that the accretion rate scales as Ṁ ∼ M (D−2)/(D−3). This extends the familiar

result of Bondi (1952) where Ṁ ∼ M2 and suggests potentially observable hints of the

presence of higher dimesions.
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4.4 Asymptotic behaviour

We obtain the flow characteristics for rh < r ≪ rs and at the event horizon r = rh.

4.4.1 Sub–Bondi radius

The gas is supersonic at distances below the Bondi radius so v > a when rh < r ≪ rs.

From (4.30) we obtain an upper bound on the radial dependence of the gas velocity

viz.

v2 ≈ 2M

(D − 3)rD−3
. (4.40)

We now estimate the gas compression on these scales using (4.26), (4.39) and (4.40):

n(r)

n∞
= λ

(
D − 3

2

)1/2 [
(D − 3)GDM

a2∞rD−3

](D−1)/2(D−3)

. (4.41)

Assuming a Maxwell–Boltzmann gas, p = nkBT , we find the adiabatic temperature

profile using (4.28) and (4.41):

T (r)

T∞
= λγ−1

(
D − 3

2

)γ−1/2 [
(D − 3)GDM

a2∞rD−3

](D−1)(γ−1)/2(D−3)

. (4.42)

4.4.2 Event horizon

At the event horizon r = rH =
(

2M
D−3

)1/(D−3)
. Since the flow is supersonic as we are

well below the Bondi radius, the fluid velocity is still described by v2 ≈ 2M
(D−3)rD−3 . At

rH , v
2
H := v2(rH) ≈ 1, i.e. the flow speed at the horizon equals the speed of light.

Using (4.26), (4.39) and (4.40) we obtain the gas compression at the event horizon:

nH

n∞
= λ

(
D − 3

2

)(D−2)/(D−3)(
c

a∞

)(D−1)/(D−3)

. (4.43)
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Again assuming a Maxwell–Boltzmann gas, p = nkBT , we find the adiabatic temper-

ature profile at the event horizon using (4.28) and (4.43):

TH

T∞
=

[
λ

(
D − 3

2

)(D−2)/(D−3)(
c

a∞

)(D−1)/(D−3)
]γ−1

(4.44)

4.5 Discussion

We have determined the Bondi radius and accretion rate for a polytropic gas accreting

onto a D–dimensional Schwarzschild black hole. Our expressions are fully general–

relativistic and can be compared to the higher dimensional Newtonian terms obtained

by Giddings and Mangano (2008). We have not considered compactification of higher

dimensions and leave this as a future project. Upper bounds for higher dimensions have

been established in the literature and their effects on black hole accretion, as well as

other physical processes, will be restricted to the compactification scale. Beyond this

length scale we expect conventional 4–dimensional physics to dominate. The luminos-

ity, frequency spectrum and energy conversion efficiency of D–dimensional accretion

should also be determined. The effects of black hole rotation and the presence of mag-

netic fields can also be included. At the energy levels relevant to higher dimensional

black holes, the environment may consist of more exotic matter than polytropic gases.

Scalar field accretion, for example, could be investigated. In addition it is unclear

whether Einstein gravity is the appropriate low energy limit of higher–dimensional

theories. In this light an investigation of accretion in Einstein–Gauss–Bonnet and

Lovelock gravity may be instructive.
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Chapter 5

Chaplygin gas accretion

5.1 Introduction

In this chapter we consider the accretion of a generalised Chaplygin gas (GCG) onto

a star. We determine the critical point of the gas flow and obtain the mass accretion

rate, Ṁ . We then examine the behaviour of the gas when it experiences a shock. After

obtaining the Rankine–Hugoniot conditions we determine the post–shock behaviour

of the gas in terms of its pre–shock properties. The flow properties during a shock are

then obtained.

We treat the gas as a fluid and the terms will be used interchangeably. It should

be evident that we are not attempting a kinetic theory formulation of Chaplygin gas

dynamics but are content with regarding the gas as a fluid.

5.1.1 Chaplygin gases and their generalisations

The discovery of the late–time acceleration of the universe led to the coincidence

problem [Zlatev et al. (1999)] viz. why does dark energy start to dominate the energy

budget of the universe at low redshifts? Invoking the cosmological constant as a can-

didate is problematic due to its tenuous interpretation as the vacuum energy density, a

quantity predicted to be 120 orders of magnitude larger than the observed dark energy

density!
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Quintessence models prescribe a class of dynamically evolving scalar fields to ac-

count for dark energy. These models are, however, generically plagued by the need to

fine tune the scalar field potentials at the time of matter–radiation equality.

The coincidence problem may be resolved by a change in the dark energy equation

of state. This has the advantage of obviating the need to fine tune model parameters.

The generalised Chaplygin gas (GCG), proposed by Bento et al. (2002), is a fluid with

a dynamical equation of state given by

p = − A

ρα
(5.1)

where A is a positive constant and α is a dimensionless parameter confined to the

range 0 ≤ α ≤ 1. The pressure, p, and the energy density, ρ, are functions of the

scale factor, a(t). The GCG has a number of highly attractive features. It smoothly

interpolates between an early, dust–dominated phase, where ρ ∼ a−3, and a later de

Sitter phase where, p ∼ ρ. In the intervening period the universe experiences a stiff

phase, where p = ρ. The case α = 1 corresponds to the original Chaplygin gas. Bilić

et al. (2002) developed an inhomogenous generalisation of the Chaplygin gas which

may provide a unifying account of dark matter and dark energy that remains consistent

with structure formation scenarios. The equation of state arising from the action of a

Nambu–Goto d–brane in a (d+1, 1)–dimensional spacetime has the same form as that

of a GCG [Bento et al. (2002)]. The Chaplygin gas is the only gas known to admit a

supersymmetric generalisation [Jackiw (2000)]. The GCG thus provides a promising

avenue to investigate the phenomenology of string and brane–inspired cosmologies.

Bhattacharya and Debnath (2012) studied the thermodynamic behaviour of a gen-

eralisation of the GCG called the modified Chaplygin gas (MCG). This has the equa-

tion of state

p = − A

ρα
+Bρ (5.2)

where A and B are positive constants. A number of authors have studied the accretion

of Chaplygin gases. Bhadra and Debnath (2012) investigated Schwarzschild and Kerr–
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Newman black hole accretion of two extended classes, viz. the new variable modified

Chaplygin gas (NVMCG) and the generalized cosmic Chaplygin gas (GCCG). The

NVMCG has the equation of state

p = A(a)− B(a)

ρ
(5.3)

where the coefficients A and B are functions of the scale factor a(t). The GCGG obeys

the equation of state

p = − 1

ρα

[
C +

(
ρ1+α − C

)−w
]

(5.4)

where the constant C is defined as

C =
A

1 + w
− 1. (5.5)

Babichev et al. (2011) studied the accretion of a Chaplygin gas onto a Reissner–

Nordström black hole. If a naked singularity is present here then no steady accretion

is possible and the gas forms a static fluid atmosphere.

Jamil (2009) looked at a GCG with a bulk viscous pressure contribution, i.e. p =

A
ρα
+Π, where Π is the bulk viscous term. This gas exhibits phantom–like behaviour and

will lead to a decrease in the mass of the accreting black hole provided the generalised

second law of thermodynamics (GSL) is broken. If the GSL remains true then the

black hole mass will increase.

Kremer (2003) investigated the dynamics of a Chaplygin gas model of dark en-

ergy while Zhai et al. (2006) considered a GCG with bulk viscosity as a dark energy

candidate.

5.1.2 Constraints on Chaplygin gas models

Bedran et al. (2008) investigated the temperature evolution of a universe sourced by a

MCG. The current temperature of the microwave background, T0, and its temperature

at decoupling, Tdec, imply that the Chaplygin parameter should satisfy α = 1
4
.
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Bento et al. (2003) obtained constraints on the GCG via the locations of the peaks

and troughs of the CMB power spectrum from WMAP and BOOMERanG data. In

order for the sound speed to remain bounded by the speed of light we require 0 < α ≤ 1.

Sandvik et al. (2004) point out that a GCG cannot, by itself, account for the observed

matter power spectrum. Beca et al. (2003) however included an additional baryonic

matter component and succeeded in reproducing the 2dF large scale structure data.

Silva and Bertolami (2008) determined the expected constraints on the GCG from

future Type 1a supernovae and gravitational lensing data. Bento et al. (2003) show

that the existing data from the CMB is sensitive to the values of the Hubble parameter,

h, and spectral index, ns. The derived constraint α ≤ 0.6 rules out a pure Chaplygin

gas model which is specified by α = 1. Similar conclusions were reached by Amendola

et al. (2003) using a more comprehensive likelihood analysis of WMAP data.

The adiabatic accretion of dark matter on black hole seeds in galaxy haloes was

examined by Peirani and de Freitas Pacheco (2008). Under typical dark halo conditions

the critical radius, rs, is about 30 − 150 times larger than the event horizon radius,

rh, and the accretion rate is about 5 times larger than the Bondi accretion rate for

non–relativistic and non–interacting particles. Cold dark matter thus comprises at

most 10% of the mass accreted on to a halo black hole and the bolometric quasar

luminosity function is largely determined by the baryonic accretion history.

The accretion of dark matter onto intermediate–mass black holes (IMBHs) was

investigated by Pepe et al. (2012). IMBHs are hypothetical objects with masses of

the order (102 − 104)M⊙. These objects were proposed as means of accounting for

the super–Eddington luminosities of ultraluminous X–ray sources (ULXs) and are

believed to exist in the centre of globular clusters. Pepe et al. (2012) showed that if

dark matter is collisionless or has a very low sound speed the accretion rate no longer

scales like Ṁ ∼ M2 as in the original case [Bondi (1952)] but rather as the square

of the mass enclosed by the critical radius. Since this radius is often well outside the

cluster core the mass can be much greater than the IMBH mass and the accretion rate

is, accordingly, enhanced by factors of 104 − 106. This larger accretion rate will lead
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to IMBHs with masses much greater than 104M⊙. These masses are well beyond the

upper limits determined from observations. Pepe et al. (2012) conclude that either

IMBHs do not exist, or dark matter must have a sound speed of at least the order

a ∼ 10km.s−1. Guzmán and Lora-Clavijo (2011) reach the same conclusion using

numerical simulations of time–dependent accretion on to supermassive black holes.

Conclusive evidence of the existence of IMBHs has implications for the nature of dark

matter. In particular the quoted lower bound of the sound speed must be obeyed by

the collisional dark matter candidates like the GCG.

The possibility of collisional dark matter should be thoroughly investigated and in

this regard we further consider the formation of shocks as a GCG is accreted. We use

the Newtonian theory of gravity as it has a wide range of applicability to astrophysical

objects and permits shocked flows when the supersonic gas impacts on the stellar

surface.

5.2 The generalised Chaplygin gas

Consider the barotropic equation of state

p = − A

ρα
(5.6)

where A > 0 and α is a dimensionless parameter confined to the range 0 < α ≤ 1.

Here p is the pressure and we take ρ to be the mass density. These are both functions

of position, r, and (5.6) is an inhomogeneous fluid. The equation of state (5.6) behaves

in a similar manner to the GCG, (5.1), defined by Bento et al. (2002). This motivates

our use of the name GCG for the fluid defined above. When α = 1 this describes the

original Chaplygin gas. The parameter α allows one to interpolate between cold dark

matter and dark energy. When α = 0 the pressure is a negative constant and the

Chaplygin gas mimics the behaviour of dark energy and may be used to describe the

late time acceleration of the universe on very large scales. When α = 1 the pressure

tends to vanish at very high densities. This is characteristic of cold dark matter, a
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pressure–free fluid which clumps and creates steep gravitational potentials resulting

in the formation of large scale structure, clusters and galaxies. The GCG provides a

relatively simple means to unify the dark sector of the universe.

The sound speed, a, is defined by

a2 :=
dp

dρ
(5.7a)

= α
A

ρα+1
(5.7b)

= −α
p

ρ
(5.7c)

and is always positive. The specific internal energy, ε, can be found from the first law

of thermodynamics, viz.

dε+ pdV = TdS (5.8)

Here V is the specific volume, T is the temperature, S is the specific entropy and ε has

dimensions of energy.mass−1. If the gas flow is adiabatic there is no entropy generation

and dS = 0. After rewriting the specific volume, V , in terms of the density, ρ = V −1,

equation (5.8) reads

dε− p

ρ2
dρ = 0. (5.9)

We introduce the GCG equation of state and integrate (5.9) to find the specific internal

energy

ε =
1

α+ 1

A

ρα+1
(5.10a)

= − 1

α+ 1

p

ρ
. (5.10b)

The specific enthalpy, w, follows from the thermodynamic relation

dw = TdS + V dp (5.11)
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which, for a GCG, is given by

w = − α

α+ 1

A

ρα+1
(5.12a)

=
α

α+ 1

p

ρ
. (5.12b)

5.3 Accretion

Consider the steady, spherically symmetric accretion of the GCG onto a body of mass,

M . The gas velocity u, pressure p and mass density ρ are functions of distance, r,

from the central mass. The continuity and Euler equations for the flow are

1

r2
d

dr

(
ρur2

)
= 0 (5.13)

ρu
du

dr
= −dp

dr
− ρ

GM

r2
. (5.14)

These encompass conservation of mass and momentum in a Newtonian accreting sys-

tem. If the gas is at rest far away from the body we have the boundary condition

u∞ = 0. (5.15)

The gravitational field of the mass, M , accelerates the gas from zero initial velocity.

The self–gravity of the gas is negligible and the mass gain of the central object is

insignificant. By invoking the identity

dp

dr
=

dp

dρ

dρ

dr

= a2
dρ

dr

we can re–write (5.13) and (5.14) as

u′

u
+

ρ′

ρ
= −2

r
(5.16)

uu′ + a2
ρ′

ρ
= −GM

r2
(5.17)
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where primes denotes derivatives with respect to r. We obtain a formal solution of

this system, viz.

u′ =
u

u2 − a2

(
2a2

r
− GM

r2

)
(5.18)

ρ′ =
ρ

u2 − a2

(
−2u2

r
+

GM

r2

)
. (5.19)

We seek the solution where the flow velocity, u(r), reaches its local sound speed, a(r),

at some critical point r = rs. This critical point is hence known as the sonic point of

the flow and is defined by the condition

(
u2 − a2

)
|rs = 0 (5.20)

at r = rs. In order to avoid singularities in the flow we impose the following conditions

2a2

r
− GM

r2
= 0 (5.21)

−2u2

r
+

GM

r2
= 0 (5.22)

at the sonic point r = rs. These sonic point conditions imply that

u2
s = a2s =

GM

2rs
(5.23)

where us := u(rs) and as := a(rs).
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5.3.1 Sonic point evaluation via the Bernoulli equation

We obtain explicit expressions for the sonic point, rs, and critical velocity, us(= as),

by integrating the Euler equation (5.14):

u
du

dr
+

1

ρ

dp

dr
+

GM

r2
= 0

u
du

dr
+

a2

ρ

dρ

dr
+

GM

r2
= 0

1

2
u2 +

∫
a2

ρ
dρ− GM

r
= E (5.24)

The integration constant E is independent of r and equation (5.24) is in essence the

Bernoulli equation of fluid dynamics. At this stage we have not used any properties

peculiar to the GCG, and (5.24) is quite general. The nature of the gas being accreted

will enter the problem via the sound speed. For a GCG we have

∫
a2

ρ
dρ = − α

α+ 1

A

ρα+1

=
−1

α+ 1
a2. (5.25)

The Bernoulli number, a constant of the motion, is thus

E =
1

2
u2 − 1

α+ 1
a2 − GM

r
. (5.26)

At large distances from the central mass the gas is at rest, u∞ = 0 and the gravitational

force is negligible. The Bernoulli number is hence

E =
1

2
u2
∞ − 1

α+ 1
a2∞ − GM

r∞

= − 1

α+ 1
a2∞ (5.27)

We thus obtain the Bernoulli equation for GCG accretion

1

2
u2 − 1

α+ 1
a2 − GM

r
= − 1

α+ 1
a2∞, (5.28)
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which holds true for all values of r and is an expression of energy conservation. We

obtain the critical velocity, us(= as), by evaluating (5.28) at the sonic point, rs:

1

2
u2
s −

1

α+ 1
a2s −

GM

rs
= − 1

α+ 1
a2∞, (5.29)

After substituting (5.23) into (5.29) we find the critical velocity,

u2
s = a2s =

2

3α+ 5
a2∞. (5.30)

After substituting (5.30) into (5.23) we obtain the sonic point,

rs =
3α+ 5

4

GM

a2∞
. (5.31)

Observe that the sonic point and critical velocity are determined solely by the mass of

the accretor, the gas sound speed – or, equivalently, its density – and the GCG param-

eter, α. The theoretical range of α constrains the critical radius for GCG accretion to

lie between

5

4

GM

a2∞
≤ rs ≤ 2

GM

a2∞
. (5.32)

The critical radius for polytrope accretion onto a mass is given by Bondi (1952), and

Shapiro and Teukolsky (1983). Since the polytrope index satisfies 1 ≤ γ ≤ 5/3 this

critical radius falls within the range

0 ≤ rs ≤
1

2

GM

a2∞
. (5.33)

The lower limit, where the sonic point shrinks to zero, represents the accretion of

monatomic hydrogen(γ = 5
3
), which always occurs at subsonic velocities. This is

quantitatively distinct from the accretion of a GCG which always possesses a finite

critical radius and, hence, a transonic solution.
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5.3.2 The accretion rate, Ṁ

Integrating (5.13) over a volume in spherical polar coordinates yields the expression

4πr2ρu = Ṁ (5.34)

where Ṁ is an integration constant with dimensions of mass.time−1. This is the accre-

tion rate of the system and is independent of r. The use of the symbol Ṁ is purely

historical and represents the flux of mass flowing through a volume element. It is

not to be confused with the rate of change of mass of the accretor, dM
dt
, which we

have assumed to be negligible from the outset. The accretion rate, Ṁ , is equivalent

to a quantity arising in fluid dynamics known as the discharge, [Landau and Lifshitz

(1987)].

We determine the accretion rate by evaluating (5.34) at the sonic point, rs,

Ṁ = 4πr2susρs. (5.35)

From the definition of the GCG sound speed, (5.7), we have

ρ ∝ a−2/(α+1)

ρ

ρ∞
=

(
a

a∞

)−2/(α+1)

. (5.36)

Substituting (5.30), (5.31) and (5.36) into (5.35) we obtain

Ṁ = 4πλsρ∞a∞

(
GM

a2∞

)2

(5.37)

where we define the dimensionless accretion eigenvalue,

λs =

(
1

2

)(α−1)/2(α+1)(
3α+ 5

4

)(3α+5)/2(α+1)

. (5.38)

Equations (5.37) and (5.38) quantify the accretion rate of a GCG onto a central mass
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under the influence of Newtonian gravity. It extends the mass accretion formula of

Bondi to Chaplygin gases and may be used to model the growth of astrophysical objects

in non–baryonic environments. Our result may be used to constrain the Chaplygin

parameter α and, in principle, falsify a class of unified dark sector candidates. The

accretion eigenvalue for GCG lies in the range

2.47 ≤ λs,GCG ≤ 4. (5.39)

The corresponding limits for the accretion eigenvalue of a polytrope (see Bondi (1952),

Shapiro and Teukolsky (1983)) are

0.25 ≤ λs,Bondi ≤ 1.12. (5.40)

We now compare the accretion rates for GCG and polytropic gases accreting on to

a star of mass M . In both cases the accretion rate, Ṁ scales as

Ṁ ∼ ρa−3(GM)2 (5.41)

For a polytrope this is

Ṁ ∼ ρ(5−3γ)/2(GM)2 (5.42)

and for hydrogen (γ = 5
3
) we have

Ṁ ∼ (GM)2. (5.43)

Equation (5.41) for a GCG is

Ṁ ∼ ρ(3α+5)/2(GM)2 (5.44)
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Ignoring coefficients of order unity we find

Ṁα=0 ∼ ρ5/2(GM)2 (5.45a)

Ṁα=1 ∼ ρ4(GM)2 (5.45b)

The accretion rate of a GCG on to a star of mass M is approximately a factor of

ρ
5/2
∞ − ρ4∞ times greater than the rate for hydrogen.

5.4 Shock waves

The transonic solution outlined above describes a GCG accelerating from rest towards

a star under the influence of Newtonian gravity. After passing through the critical

point the gas flow becomes supersonic. Upon impacting on the surface of the star the

gas will experience a rapid deceleration and will flow subsonically. This deceleration

from supersonic to subsonic speeds is a definitive characteristic of shocked flows. An

accreting gas in a Newtonian potential will necessarily experience a shock. This be-

haviour is in contrast to accretion under general relativity where the gas is expected

to pass through the event horizon at supersonic speeds. Observable shock waves may

only arise if there is further structure between the event horizon and the critical point.

The presence of an accretion disc is one such scenario where shocks are expected.

5.4.1 The Rankine–Hugoniot conditions

An elegant account of the the physics of shock waves can be found in Landau and

Lifshitz (1987). Our analysis largely follows this treatment. An authoritative study of

shock wave phenomena can be found in Zel’dovich and Raizer (2002).

Shock fronts typically occur in regions significantly smaller than the characteristic

length scales of a system. As a supersonic fluid gets compressed its density profile

steepens. Eventually the density length scale reaches the order of the mean free path

of the fluid and the steepening cannot continue. At this point the bulk viscosity of
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the fluid becomes significant and irreversible, dissipative processes begin. Ordered

kinetic energy is converted into chaotic thermal motion and the fluid velocity rapidly

becomes subsonic, resulting in the formation of a shock front [Frank et al. (2002), Shu

(1992)]. This front is usually approximated as a discontinuity in the fluid flow. The

dynamics of a shock front are determined, in the most general case, by the Navier–

Stokes system of equations. The inviscid form of this system is known as the Euler

system of equations. These laws can be expressed as total differentials depicting the

conservation of mass flux, momentum flux and energy flux. One then integrates these

expressions over an infinitesimal distance to relate the pre–shock and post–shock gas

properties. The integrated equations are known as the Rankine–Hugoniot equations.

They have more general validity than the differential Euler equations which describe

the fluid flow locally. The presence of a shock results in the increase of entropy and

viscosity even if the gas was initially adiabatic and inviscid. The post–shock flow

characteristics arise in order to balance the energy budget due to the generation of

entropy and viscosity. Eventually the gas will relax to an adiabatic, inviscid flow.

Since we are approximating the shock front as a sharp discontinuity we cannot

describe the details of the dissipitative processes that occur (fluid variables experience

infinite gradients here). It is sufficient here to describe the jumps in pressure, density

and velocity. A more detailed formulation of the shock front problem must include a

precise description of the entropy and viscosity generating mechanisms and treat the

shock front as a layer with finite thickness. In this case the Euler equations do not

hold locally at all points of the flow. It is for this reason that the Rankine–Hugoniot

equations, being integrals, are more general descriptions of shocked gases.

The Euler equations for a fluid accreting onto a central mass, M , are

1

r2
d

dr

(
ρur2

)
= 0 (5.46a)

ρu
du

dr
= −dp

dr
−ρGM

r2
(5.46b)

1

r2
d

dr

[
ρur2

(
ε+

1

2
u2

)
+ pur2

]
= −GM

r2
ρu (5.46c)
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where the symbols have their usual meaning. After substituting (5.46a) into (5.46c)

we obtain

ρu
d

dr

(
ε+

1

2
u2 +

p

ρ
− GM

r

)
= 0 (5.47)

From (5.10b) the specific internal energy, ε, of a GCG can be expressed as a function

of its pressure, p, and density, ρ, viz.

ε = − 1

α+ 1

p

ρ
.

Thus (5.47) can be written as the total differential,

d

dr

(
α

α+ 1

p

ρ
+

1

2
u2 − GM

r

)
= 0 (5.48)

or

d

dr

(
w +

1

2
u2 − GM

r

)
= 0 (5.49)

where we have introduced the specific enthalpy, w, using (5.10b). The energy equation

(5.49) can also be written in so–called thermodynamic form

− 1

α+ 1

1

ρ

(
dp

dr
+ α

p

ρ

dρ

dr

)
= 0 (5.50)

or

− 1

α+ 1

1

ρ

(
dp

dr
− a2

dρ

dr

)
= 0 (5.51)

which emphasises the role of the GCG sound speed, a, defined by (5.7c).

Given that we are interested in the behaviour in a small neighbourhood about the

infinitesimally thin shock front we can neglect the spherical geometry on this scale and

treat the gas flow as one–dimensional. Introducing x, the distance coordinate along

the direction of the gas flow, which we define to be orthogonal to the shock front,
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equations (5.46a), (5.46b) and (5.49) become

d

dx
(ρu) = 0 (5.52a)

d

dx

(
ρu2 + p− GM

x

)
= 0 (5.52b)

d

dx

(
w +

1

2
u2 − GM

x

)
= 0 (5.52c)

respectively. The shock front is defined to lie at the origin of the x–axis. We can

integrate a variable dQ
dx

over a small distance centred on x = 0 and consider the limit

as the length shrinks to zero i.e.

[Q]21 := Q2 −Q1

= lim
ϵ→0

∫ 0+ϵ

0−ϵ

dQ

dx
dx.

(5.53)

If Q remains continuous at x = 0, i.e. at the shock front, then [Q]21 = 0. A shock will

occur when Q experiences a discontinuous change from a pre–shock value, Q1, to its

post–shock value, Q2. We integrate (5.52) accordingly to obtain the Rankine–Hugoniot

equations,

[ρu]21 = 0 (5.54a)[
p+ ρu2

]2
1

= 0 (5.54b)[
w +

1

2
u2

]2
1

= 0. (5.54c)

Note that the gravitational field does not explicitly enter into (5.54) as it is an external

force imposed on the gas and will remain continuous throughout the shock. The

gravitational field does, however, play a crucial in determining the dynamics of the

gas flow. (Note that the self–gravity of the gas is a priori insignificant compared to
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the gravitational field of the accreting mass.) Expanding (5.54) we find

ρ1u1 = ρ2u2 (5.55a)

p1 + ρ1u
2
1 = p2 + ρ2u

2
2 (5.55b)

w1 +
1

2
u2
1 = w2 +

1

2
u2
2 (5.55c)

which expresses the fact that mass flux, momentum flux and energy flux are conserved

in shocks. The Rankine–Hugoniot relations (5.55) are valid for general fluid types.

5.4.2 Chaplygin gas shocks

We introduce the specific volume, V := ρ−1, and define the conserved mass flux

J := ρ1u1 = ρ2u2. (5.56)

From (5.56) we can express the pre and post–shock velocities in terms of J and V i.e.

u1 = JV1 (5.57a)

u2 = JV2 (5.57b)

From (5.55b) we have

p1 + ρ1u
2
1 = p1 + J2V1. (5.58)

Similarly

p2 + ρ2u
2
2 = p2 + J2V2. (5.59)

Combining (5.55b), (5.58) and (5.59) we find

J2 =
p2 − p1
V1 − V2

(5.60)
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which relates the pre and post–shock pressures and volumes via the conserved mass

flux, J . Equation (5.55c) can now be rewritten as

w1 − w2 +
1

2

(
u2
1 − u2

2

)
= 0

w1 − w2 +
1

2
J2
(
V 2
1 − V 2

2

)
= 0

w1 − w2 +
1

2

(
p2 − p1
V1 − V2

)(
V 2
1 − V 2

2

)
= 0

w1 − w2 +
1

2
(p2 − p1) (V1 + V2) = 0. (5.61)

This is known as the shock or Hugoniot relation. From the definition

w = ε+ pV (5.62)

we can find an alternative formulation of (5.61) in terms of the energy difference, viz.

ε1 − ε2 +
1

2
(p1 + p2) (V1 − V2) = 0. (5.63)

Recall that the specific enthalpy of a GCG is given by (5.12b) which we now rewrite

as

w =
α

α+ 1
pV. (5.64)

Substituting (5.64) into (5.61) and re–arranging terms we obtain

V2

V1

=
(α− 1)p1 + (α+ 1)p2
(α+ 1)p1 + (α− 1)p2

(5.65)

which is the Hugoniot relation for a GCG. Observe that (5.65) depicts the trajectory

of a shocked system from an initial point (p1, V1).

From (5.60) and (5.65) we obtain the mass flux density, J , viz.

J2 = − 1

2V1

[(α+ 1)p1 + (α− 1)p2] (5.66)

which we use to find the propagation velocities of the shock, relative to the gas.
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Upstream of the shock wave we have

u2
1 = J2V 2

1

= −1

2
(p1V1)

[
(α+ 1) + (α− 1)

p2
p1

]
= −1

2

(
p1
ρ1

)[
(α+ 1) + (α− 1)

p2
p1

]
=

1

2

(
a21
α

)[
(α+ 1) + (α− 1)

p2
p1

]
(5.67)

where we have used the pre–shock sound speed (5.7c) viz.

c21 = −α
p1
ρ1

.

We similarly obtain the post–shock velocity,

u2
2 = J2V 2

2

= −1

2
(p2V2)

[
(α+ 1) + (α− 1)

p1
p2

]
= −1

2

(
p2
ρ2

)[
(α+ 1) + (α− 1)

p1
p2

]
=

1

2

(
a22
α

)[
(α+ 1) + (α− 1)

p1
p2

]
. (5.68)

The ratios of post to pre–shock densities and pressures can be expressed succinctly

in terms of the pre–shock Mach number,

M1 :=
u1

a1
. (5.69)

Substituting (5.69) into (5.67) yields

p2
p1

=
2α

α− 1
M2

1 −
α+ 1

α− 1
. (5.70)
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Substituting this result into the Hugoniot relation (5.65) yields the density ratio,

ρ2
ρ1

=
V1

V2

=
(α+ 1)p1 + (α− 1)p2
(α− 1)p1 + (α+ 1)p2

=
(α+ 1) + (α− 1)p2/p1
(α− 1) + (α+ 1)p2/p1

=
(α− 1)M2

1

(α+ 1)M2
1 − 2

. (5.71)

From (5.68) and (5.70) we can express the post–shock Mach number M2 := u2

a2
in

terms of M1,

M2
2 =

(α+ 1)M2
1 − 2

2αM2
1 − (α+ 1)

. (5.72)

Upon inspection of (5.71) it is clear that negative specific volumes are admitted in

the limit of very strong shocks i.e. ρ2
ρ1

→ α−1
α+1

as M2
1 → ∞. It is unclear how to

interpret this statement. Whilst it is mathematically precise its physical content may

be questioned. As we are considering a fluid with negative pressure some caution

with the analysis is advised. Gao and Law (2012) studied a broad class of phenom-

ena described by Rankine–Hugoniot relations for relativistic combustion waves. They

obtained systems with negative pressure and imaginary volumes downstream. A more

rigorous analysis of the formation of weak shocks determined that these states were

indeed unphysical as they violated the second law of thermodynamics. Another state

was found to be consistent with the the entropy increase law if the gas developed a

rarefaction shock. Shock waves are usually compressive and the presence of a rar-

efaction shock required an unusual feature like a negative pressure. We suspect that

a detailed analysis of the thermodynamic properties of GCG shocks is necessary in

order to assess the range of validity of our results. This is beyond the scope of this

thesis and will be explored in future work.
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5.5 Discussion

In this chapter we examined the spherical accretion of a GCG onto an astrophysical

body under the regime of Newtonian gravity. The GCG was treated as a unified

model for dark matter and dark energy. We obtained analytical expressions for the

critical radius, mass accretion rate and eigenvalues. These were compared with the

corresponding values for the accretion of a polytropic gas. A GCG accretes onto a star

at a rate approximately 2 - 4 times greater than neutral hydrogen.

We then considered the possibility of shocks in GCG accretion. The Rankine–

Hugoniot relations for this problem were derived. The Hugoniot relation describing

the relationship between pre and post–shock pressures and specific volumes were de-

duced. The pressure and density compression ratios for GCG shocks were derived.

These results require careful interpretation as some of these states may only arise from

thermodynamically forbidden processes. We leave a detailed study of the entropy in-

crease of weakly shocked GCGs as a task for future investigation. If the speed of sound

becomes sufficiently high the GCG may start to mimic the behaviour of relativistic

gases like those analysed by Gao and Law (2012). We suspect that this investigation

will constrain the permissable values of the GCG parameters and provide hints as to

the viability of Chaplygin gas models as dark sector candidates. A number of further

avenues of investigation may be explored. If a stellar object has non–zero angular mo-

mentum then accreting matter will, in general, form an accretion disk. The properties

of rotating accretion systems are distinct from those of the simpler, spherical case.

This problem lies beyond the scope of this thesis and we leave it as a project for future

work. In our formulation of the shock wave problem we have assumed that the GCG

is accreted at relatively low velocities. If the sound speed became sufficiently high

our model would break down. We would then have to utilise the special relativistic

form of the Rankine–Hugoniot equations, outlined in Taub (1948) and Thorne (1973).

Our task here was to investigate the properties of shocked GCG flow and a detailed

analysis of relativistic accretion would form a natural extension of this work.
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Chapter 6

Conclusion

One of our aims was to find and analyse new exact solutions of the Einstein and

Einstein–Maxwell equations. These solutions may be used to model the interior of

compact stars. The condition for pressure isotropy was central to our investigations.

As our systems were under–determined we specified forms for one of the gravitational

potentials, Z and, where applicable, the electric field intensity, E. We utilised two,

complementary techniques to solve the pressure isotropy condition, viz. the method

of Frobenius, and transformation to a hypergeometric function.

We assumed the spacetime was static and spherically symmetric. We also explored

the possibility of unifying seemingly disparate exact solutions as special cases of more

general classes of solutions. We generated new solutions and demonstrated their phys-

ical reasonableness by plotting their behaviour. We believe that these solutions are

new and may provide realistic models for dense, static stars.

Our second major aim was the exploration of accretion in cases with either exotic

matter or exotic gravity. For the first case we considered a polytropic gas accreting

onto a D–dimensional Schwarzschild black hole. In the second case we looked at a

generalised Chaplygin gas (GCG) accreting onto a body with a gravitational field

described by Newtonian theory. The GCG was used as a proxy for dark matter and

dark energy as it has been shown to demonstrated promise in accounting for these

phenomena. We further explored the possibility of shock waves in the GCG flow. In
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both studies we obtained analytical expressions for the gas accretion rates and critical

radii.

In particular we point out our specific results:

• We specified a cubic form for one of the gravitational potentials. We solved

the differential equation governing pressure isotropy by assuming the existence

of a power series solution. The pressure isotropy condition was thus reduced

to a third order difference equation. The pressure and energy density appear

to be continuous and non–singular over a large range of radial distances. This

behaviour was depicted in Figs. 2.1 and 2.2 for fiducial values of the solution’s

parameters. Our model satisfies a barotropic equation of state which can be

approximated as a polytrope for radial distances close to the stellar centre. The

method of Frobenius was shown to be a powerful technique for extracting exact

solutions of the Einstein field equations. We believe that our solution is original.

• We prescribed the metric potential Z as well as the electric field E. This trans-

formed the condition for pressure isotropy into a hypergeometric differential

equation. The general solution to this equation is written in terms of hyper-

geometric functions. These particular special functions possess two free param-

eters, K and α, corresponding to the metric potential, Z, and electric field, E,

respectively. For particular choices of these parameters the hypergeometric func-

tions are reduced to algebraic functions. We recovered two known solutions, viz.

Durgapal and Bannerji (1983) and Maharaj and Mkhwanazi (1996). We also

obtained two new exact solutions expressed in terms of algebraic functions. The

first of these, parametrised by K = −2 and α = 1 appears to be well behaved.

The pressure, energy density and electric field were plotted in Figs. 3.1, 3.2 and

3.3. We believe this solution is original and may serve as a model for a charged,

compact star. The second new solution, described by K = 1
2
and 5

2
, is unphysi-

cal. The energy density is negative and this violates the strong and weak energy

conditions. The simple form of the algebraic functions greatly facilitated the

physical analysis of these new solutions. These results also demonstrate that,
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despite the freedom of these under–determined systems, unphysical solutions

may often occur.

• We determined the critical radius and mass accretion rate for a polytrope ac-

creting onto a D–dimensional Schwarzschild black hole. We also found explict

expressions for the gas compression and temperature profile both below the criti-

cal radius and at the event horizon. The accretion rate Ṁ is clearly dependent on

the mass and dimensionality of the black hole. This is to be contrasted with the

result of Bondi (1952) which showed that Ṁ ∼ M2. Our result also generalises

the study of Giddings and Mangano (2008) which obtained the mass–dependent

accretion rate of matter accreting via the Newtonian gravity potential of a D–

dimensional TeV black hole.

• We obtained analytical expressions for the critical velocity, radius and mass

accretion rate of a GCG under the influence of a Newtonian potential. By

comparison with values typical for neutral hydrogen we showed that a GCG will

accrete approximately 2 - 4 times faster onto a star. We derived the Rankine–

Hugoniot conditions relating GCG parameters before and after a shock wave.

The Hugoniot relation describing the relationship between pre and post shock

pressure and specific volume was determined. We obtained the pressure and

density compression ratios for GCG shocks in general and examined the case of

strongly shocked flows. We suspect some of these states may be energetically

forbidden as they predict negative volumes.

There is great scope for extending our study of exact solutions modelling com-

pact stars. One can specify other forms for the gravitational potentials to generate

series solutions of the pressure isotropy condition. These series solutions may then

be subjected to stringent physical analysis. The stability of these solutions needs to

be determined. A growing body of work in this direction is already underway eg.

Thirukkanesh and Maharaj (2006), Maharaj and Thirukkanesh (2006), Maharaj and

Komathiraj (2007).
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A number of extensions to our study of higher dimensional accretion are possible.

One can attempt to work out the effect of extra dimensions on the luminosity, frequency

spectrum and energy conversion efficiency of the the accretion flow. More exotic

matter, like a scalar field, cound be investigated. Unlike general relativity, Lovelock

gravity and its special case, Einstein–Gauss–Bonnet gravity, have been demonstrated

to be low energy limits of particular string theories. It may be feasible to study the

effects of accretion on to higher dimensional black holes described by those gravity

theories.

If a star is rotating then matter falling in its potential will form an accretion disk.

It should be instructive to extend our study of spherical GCG accretion to systems

with non–zero angular momentum. We have assumed non–relativistic energies for the

GCG. If the sound speed becomes significantly large then our description of shock

waves becomes invalid. One can expand our study of GCG shocks by determing the

appropriate special relativistic Rankine–Hugoniot conditions.
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