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Abstract

Predicting energy load is a growing problem these days. The need to study in advance how

electricity consumption will behave is key to resource management.

Especially interesting is the case of the so-called Smart Buildings, buildings born from the trend

towards sustainable development and consumption which is increasingly in vogue, becoming

mandatory by law in many countries.

One type of model that constitutes an important part of the state of the art are the models

based on Deep Learning. These models represented great advances in Artificial Intelligence

recently, since although they were born in the 20th century, it has not been until 10 years ago

that they have re-emerged thanks to the computational advances that allow them to be trained

by the general public.

In this Final Degree Project, advanced Deep Learning techniques applied to the problem of

load prediction in Smart Buildings are presented, mainly basing the development on the data

from the Alice Perry building of the National University of Ireland Galway, in collaboration

with the Informatics Research Unit for Sustainable Engineering of the same university.

The datasets used were obtained from the time series of aggregated electricity consumption

of the air handling units (AHUs) in the Alice Perry building. Along with this information,

historical weather data were also collected from the weather station in the same building in

order to study if these climatic variables help to a better prediction in the models.

Time series prediction on this energy load data will be made in two different ways with hourly

granularity: one-step prediction in which studying the previous observations an estimate of the

value of the load in the next hour is obtained and sequence prediction, in which we will try to

predict the behaviour of the series in the next hours from the previous values.
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Resumen

La predicción de carga energética es un problema al alza actualmente. La necesidad de estudiar

con antelación cómo se va a comportar el consumo eléctrico es clave para la gestión de recursos.

Especialmente interesante es el caso de los llamados Smart Buildings, edificios nacidos por la

tendencia hacia un desarrollo y consumo sostenible el cual cada vez está más en boga, llegando

a ser obligatorio por ley en muchos páıses.

Un tipo de modelos que constituyen una parte importante del estado del arte son los modelos

basados en Deep Learning. Estos modelos supusieron grandes avances en la Inteligencia Arti-

ficial recientemente, ya que aunque nacidos en el Siglo XX, no ha sido hasta escasos 10 años

cuando han resurgido gracias a los avances computacionales que permiten entrenarlos por el

público general.

En este trabajo de fin de grado se presentan técnicas avanzadas de Deep Learning aplicadas al

problema de la predicción de carga en Smart Buildings, principalmente basando el desarrollo en

los datos del edificio Alice Perry de la National University of Ireland Galway, en colaboración

con el grupo Informatics Research Unit for Sustainable Engineering de la misma universidad.

Los conjuntos de datos utilizados se obtuvieron datos sobre la serie temporal de consumo

eléctrico agregado de los aires acondicionados en el edificio Alice Perry. Junto a esta infor-

mación, se recopilaron también datos meteorológicos históricos de la estación meteorológica en

el mismo edificiocon el objetivo de estudiar si estas variables climáticas ayudan a una mejor

predicción en los modelos.

La predicción de series temporales sobre estos datos de carga energética se realizará en dos

modos con granularidad horaria: La predicción a un paso en la que estudiando las observaciones

anteriores se obtiene una estimación del valor de la carga en la próxima hora y predicción de

secuencias, en la que se intentará predecir el comportamiento de la serie en las próximas horas

a partir de los valores anteriores.
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For life is quite absurd

And death’s the final word

You must always face the curtain with a bow

Forget about your sin

Give the audience a grin

Enjoy it, it’s your last chance anyhow

Always look on the bright side of life - Eric Idle, Monty Python

Acknowledgements

To my two supervisors, Carlos & Belarmino for the humongous effort and help that they put

into this final degree project and their trust in my work.

To Desirée for helping me in Galway and helping me getting into the research scene.

To the IRUSE group, I want to thank everyone specially Marcus Keane for accepting me,

guiding me and treating me like another member of the group.

To my friends, who whenever I felt down or needed to get away, they were always there to cheer

me up, specially in these last hard months. Some of you have been with me since we were 6,

some of you we started university and some of you just came a couple years ago when sport

brought us together. It’s been (and will be) a pleasure to walk with you by my side.

Last, but not least, to my parents, Edith & Juan Luis for helping me getting through these

difficult times during my university degree. You have helped me to push through my studies

and wouldn’t have been able to complete them without your encouragement. I love you.

3



Contents

1 Introduction 7

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Problem Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Planning 9

2.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Research Process Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Cost estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Risk Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Revisiting Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Deep Learning 15

3.1 Deep Learning & Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.2 Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.3 Feed Forward Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.4 Convolutional Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.5 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.6 Other layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.7 Training process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.8 Training Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.9 Validation methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Case study 33

4.1 Available Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Techniques review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 NUIG Alice Perry dataset exploration . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3.1 Cleaning the dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.2 Weather NAs imputation . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4



4.3.3 Time codification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.4 Train Test Split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.5 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Testing on Benchmark: The Building Genome Project 2 . . . . . . . . . . . . . 46

5 Models for One-Step ahead prediction 48

5.1 Proposed models for one step ahead estimation . . . . . . . . . . . . . . . . . . 48

5.1.1 Model 1: Feed Forward Network . . . . . . . . . . . . . . . . . . . . . . . 48

5.1.2 Model 2: LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.3 Model 3: CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.4 Model 4: Hybrid LSTM+FFN . . . . . . . . . . . . . . . . . . . . . . . 50

5.1.5 Model 5: Hybrid CNN-LSTM + FFN . . . . . . . . . . . . . . . . . . . . 50

5.1.6 Model 6: Time Distributed CNN + FFN . . . . . . . . . . . . . . . . . . 51

6 Models for Sequence Prediction 53

6.1 The Many-to-One model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2 The Seq2Seq model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2.1 Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2.2 Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 Results for One-Step prediction 58

7.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.2 Predictions using Load and Timestamp as predictors . . . . . . . . . . . . . . . 59

7.3 Predictions using Load, Weather Variables and Timestamp as predictors . . . . 61

7.4 Final Repetitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.5 Testing the best architecture on the Building Genome 2 data . . . . . . . . . . . 64

8 Results for Sequence prediction 66

8.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8.3 Testing the best architecture on the Building Genome 2 data . . . . . . . . . . . 69

9 Conclusions & Further Work 73

9.1 Conclusions on Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

9.2 Conclusions on One-step models . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

9.3 Conclusions on Sequence models . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

9.4 Conclusions on the datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

9.4.1 Alice Perry dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

9.4.2 Building Genome 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

9.5 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5



A Appendix 76

A.1 Keras Key parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A.1.1 Compile parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A.1.2 Fit parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A.2 Keras Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A.2.1 LeakyReLU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A.2.2 Dense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.2.3 LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.2.4 Convolutional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A.2.5 Pooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A.2.6 Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A.2.7 Concatenate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A.3 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.4 Alice Perry Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.4.1 Auxiliar Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.4.2 Load reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.4.3 Removing cooling and holidays periods . . . . . . . . . . . . . . . . . . . 82
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1. Introduction

1.1 Motivation

Wang et al. [1] state that ”In recent years, the power industry has witnessed considerable

developments of data analytics in the processes of generation, transmission, equipment, and

consumption”. They also showed that number of publications growed from 2010 to 2017,

rapidly increasing from 2012. The availability of data, smart meters and the development of

new Machine Learning techniques made it possible to create data-driven models for the energy

consumption field.

From the perspective of the Degree in Computer Engineering, the interest relies in continuing

learning the Deep Learning techniques introduced in the Machine Learning Techniques and

Data Mining subjects, deepening the baseline knowledge taught in them. This final degree

project will be a first step into the research scene, motivating a literature review that will

help extend and strengthen not only the domain knowledge gained while doing the project but

researching competences.

The main idea behind the definition of this project is to study the performance of different deep

learning architectures for time series forecast, more specifically applied to energy load forecast

in smart buildings.

1.2 Problem Classification

In their review, Hamad et al. [2] propose four classes attending to the range of the load forecast:

• Long-term load forecasting (LTLF): for one year or more ahead, usually carried by

strategic planning projects.

• Medium-term load forecasting (MTLF): from one week to a year, this range is mainly

used for applications like maintenance schedule and fuel purchase planning.
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• Short-term load forecasting (STLF): from one hour to one week, allowing to carry

day-to-day applications.

• Ultra/very short-term load forecasting (VSTLF): from minutes to an hour ahead,

usually needed for real-time control.

According to Lin et al. ([3] trough [2]) there are two main families of models for load prediction

• Multi-factor forecasting methods: which focus on creating models that portray the

relationship between significant factors and the energy load in the system.

• Time series forecasting methods: which focus on using existing historical data to

build data-driven models. Within these models we can find three main families:

– Statistical models (SM): These methods assume independence and normality of the

residuals (there is an underlying probability distribution in the whole process). This

forces strong assumptions on the data which can result in a weaker predictive power,

but have great interpretability

– Machine learning models (ML) : Which do not assume any probability distribution,

thus their predictive power can be better than SMs. However, these methods can

lack interpretability (i.e. ensemble methods, neural networks).

– Hybrid models (HM): These methods present a mixture of the above mentioned,

using them together to model the data.

This Final Degree Project focuses on ML models, more precisely Deep Learning (DL) models

applied to short-term forecasting.
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2. Planning

2.1 Objectives

The aim of this project is the revision of the existing techniques of Deep Learning for the

prediction of time series in the domain of short and medium term prediction of energy demand

in buildings.

2.1.1 Tasks

In order to achieve this objective, the following tasks will be developed:

• Initial study of Deep Learning, fundamentals and operation of the basic techniques that

make up the advanced models.

• Study of existing literature and proposals for advanced neural network architectures for

time series forecasting.

• Validate the proposed techniques applied in real word data, the Alice Perry Building and

a public dataset.

– Data pre-processing and cleaning to enable Alice Perry data use in the problem of

time series prediction.

– Training and testing advanced deep learning architectures on these datasets

9



2.2 Research Process Planning

Figure 2.1: CRISP-DM cycle

This document presents a research project development carried as a continuation of my intern-

ship at the Informatics Research Unit for Sustainable Engineering (IRUSE) group (to whom we

are deeply grateful for providing the Alice Perry building data) at the National University of

Ireland Galway (NUIG), therefore the traditional software project management methodology

is not applicable.

However, according to Bob Hughes and Mike Cotterell [26] planning in uncertain projects (like

research) is worth doing as long as the resulting plans are seen as provisional. Hence, this

section presents a slightly diffuse but flexible scheduling and planning highly suitable for data

science projects, the Cross Industry Standard Process for Data Mining (CRISP-DM) model,

which consists of the following phases or stages:

1. Business Understanding: where the project objectives are set and understood

2. Data Understanding: where the data collection and familiarization takes place

3. Data Preparation: where the dataset is preprocessed, cleaned and set for modelling

4. Modelling: where models are tuned, calibrated , trained and validated

5. Evaluation: where the best models are considered and checked if they satisfy the business

objectives and needs

6. Deployment: where the final results are delivered, in a wide variety of forms, from a

report like this document to an industrial application
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Figure 2.1 shows the structure of a CRISP-DM project. This process is iterative, since each time

you step forward, revisiting previous phases is usually needed. Figure 2.2 shows an approximate

scheduling of the phases of this project where the where the main workload for each stage

will occur . However, as the CRISP-DM methodology is an iterative approach, for instance,

business understanding might be revisited when the evaluation stage is (mainly) taking place.

Early tasks, although important, take less time in the diagram because I became familiar with

the data during my IRUSE internship.

Figure 2.2: Gantt diagram for the project

2.2.1 Cost estimation

Only one reference on cost estimation for Data Mining was found [27]. However, this paper

was rather confusing and had strong assumptions, basing some of its metrics in estimating the

cost of misclassifying one observation. That estimation in particular is too difficult for the data

this project was carried with, so that approach is not viable.

However, trying to estimate the overall project costs is beneficial in terms of planning is always

necessary, at least a time estimation to stay on track. This hour duration estimation was showed

in Figure 2.2. Table 2.1 shows an identification of each task and subtask with the estimated

hours for each one of them, distributing them so they sum up to the 300 hours planned for a

final degree project (according to official documentation).
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Task Subtask
Estimated Duration

in hours / percentage
Total
duration

Business
Understanding

Meeting with Maintainers 5 (1.6%)
25 (8%)Literature Review 15 (4.8%)

Setting objectives 5 (1.6%)

Data
Understanding

Choosing the datasets 5 (1.6%)
15 (4.8%)Reading dataset

documentation
5 (1.6%)

Data Visualization 5 (1.6%)

Data
Preparation

Choosing variables 10 (3.2%)
25 (8%)Cleaning outliers 7 (2.25%)

Filling Missing Values 8 (2.58%)

Modelling

Studying Deep Learning 35 (11.3%)

140 (45.3%)
Choosing candidate models 35 (11.3%)
Learning Framework
(Python & Keras)

35 (11.3%)

Model implementation 35 (11.3%)
Evaluation Testing the models 70 (22.6%) 70 (22.6%)
Deployment Document writing 35 (11.3%) 35 (11.3%)
Total 310

Table 2.1: Hour estimation for each subtask

However, the level of uncertainty in research projects and my lack of expertise in them make

this estimations too unstable. In fact, research projects have many risks involved, since you

walk into the unknown. Instead, the estimation duration should be regarded more like a

percentage than like an absolute estimation, since risks can increase the duration of the project

by unexpected amounts of time.

2.2.2 Risk Identification

In fact, risk identification is much more interesting in this sort of projects than time estimation.

Table 2.2 shows the identified risks for the project, their likelihood of happening and their

severity.
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Task Potential Risk Likelihood Severity

Business
Understanding

Not able to meet mantainers Low Low
Lack of literature Very Low High
Objectives unclear Medium Critical

Data
Understanding

Lack of existing data Low Critical
No documentation on data
or hard to understand

Medium High

Data
Preparation

High Data complexity High Low
Inability to clean data Low Medium
Inability to use data Low Critical

Modelling

No information on DL Very Low Critical
No models suitable for the
problem

Very Low Critical

Coding takes longer
than expected

High Medium

Unable to implement
some models

High Low

Evaluation
Testing was not
done properly

High Medium

Testing takes
longer than expected

High Medium

Deployment Not able to delivery on time Medium Critical

Levels

Very Low
Low
Medium
High

Low
Medium
High
Critical

Table 2.2: Risk identification

2.2.3 Revisiting Planning

This section reviews if the risks listed in table 2.2 happened and what were the consequences in

the planning. Table 2.3 shows the consequences of the identified risks that ended up happening
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Task Potential Risk Happened? Consequences

Business
Understanding

Not able to meet mantainers Yes Online meetings due to the coronavirus outbreak
Lack of literature No
Objectives unclear No

Data
Understanding

Lack of existing data No
No documentation on data
or hard to understand

Yes
Very few of the public
datasets met the requirements

Data
Preparation

High Data complexity No

Inability to clean data Yes/No
Data preprocessing took quite longer than expected
being a very challenging task

Inability to use data No

Modelling

No information on DL Yes/No
Information was available but very deep knowledge
was required to meet the objectives and took longer
than expected

No models suitable for the
problem

No

Coding takes longer
than expected

Yes
Understanding Keras to the depth required
for this kind of research took longer than expected

Unable to implement
some models

Yes
Not in terms of implementation but the computational
resources were not enough to train some of them

Evaluation
Testing was not
done properly

Yes
Some trials were done with wrong
parameters or different setup than the final one
so they had to be discarded

Testing takes
longer than expected

Yes Models took much longer han expected to train

Deployment
Not able to delivery
document on time

No

Table 2.3: Risk identification revisited

In addition to all the identified risks, the coronavirus outbreak had a big impact in the de-

velopment of the project, since I had to return from Ireland and developing without physical

meetings took longer due to the necessity of scheduling an online meeting each time a decision

had to be taken. The estimated impact of all the events listed above was around 30 to 40%

more time than the scheduled in table 2.1, specially in the Data Preparation and the Model

Testing periods.
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3. Deep Learning

3.1 Deep Learning & Artificial Neural Networks

Deep Learning models, are part of the family of ML methods. These methods are widely used

in Regression and Classification problems. Although there are many DL approaches, the focus

of this project will be Artificial Neural Networks (ANNs).

The first Artificial Neural Network model was proposed in 1943 by Warren S. McCulloch &

Walter Pitts [4] as a mathematical model to represent neural/mental activity. Further work was

carried by Alexey Ivakhnenko and Lapa [5] in 1967 when they proposed supervised feed-forward

multilayer neural network.

However, it wasn’t until recent times when Deep Learning got a place in the State of the

Art in multiple applications. In 1986, David E. Rumelhart, Geoffrey E. Hinton & Ronald J.

Williams [6] presented the backpropagation algorithm applied to ANN which allowed to train

the neurons that make up the network weights based on the error they made when predicting an

observation. This work proved that it was possible to train multiple layer perceptrons (MLP)

with a fast, simple and no hyperparameter dependant algorithm like backpropagation. However,

computational power still fell short. These multiple layer architectures are also referred as Deep

Neural Networks or DNNs.

When talking about the breaktrough that caused the comeback of Deep Learning people usually

refer to AlexNet [7]. In this 2012 project, Alex Krizhevsky, Ilya Sutskever & Geoffrey E. Hinton

trained a Convolutional Neural Network (CNN) with a multipleGPU implementation in CUDA.

They also included new features such as using the Rectified Linear Unit or ReLU [8] as the

activation function instead of the sigmoid function. They used their model for the ImageNet

2012 contest, in which it achieved top-1 and top-5 test set error rates of 37.5 % and 17.0 %5

while the best performance achieved during the previous edition was 47.1% and 28.2% . This

motivated more work in the field due to the fact that they used a supervised approach only

training with backpropagation.

Nevertheless, in this Final Degree Project the main objective is to work with Time Series. Many
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models have been applied to this particular kind of data, but the Recurrent Neural Network

(RNN) architecture is the most popular one.

RNNs were popularized by Hopfield in 1982. However, RNNs architectures suffered from

the vanishing gradient problem [9](where the gradients calculated for updating the network’s

weights went towards small values, preventing the network from being further trained). It was

in 1997 when Sepp Hochreiter and Jürgen Schmidhuber proposed a novel RNN achitecture,

Long Short-Term Memory (LSTM) cells [10]. This architecture solved the problem of vanish-

ing gradients by introducing an internal state into the cells, where important information is

stored and kept through time. LSTMs can reset this internal state and update it with relevant

new information.

In the following sections, further theoretical explanation on the main three architectures used

in this Final Degree Project and their foundations will be carried out.

3.1.1 Perceptron

The basic unit of a neural network is the simple perceptron or neuron.

Figure 3.1: Diagram of a Neuron with three inputs which contains a set of weights W , one for
each input X and an activation function F for outputing its value

A neuron is a simple unit representing a mathematical function based on the McCulloch-Pitts

model [4]. It consists on a set of weights W , one for each input in X. The idea is to make a

basic calculation by adding each input multiplied by its corresponding weight and then output

a value by applying an activation function to that sum. The original activation function was the

binary activation, trying to emulate the biological neurons excitation and information exchange.

F (x) =

{
1, x ≥ 0

0, x < 0
(3.1)
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3.1.2 Activation Functions

In this section, the considered Activation Functions (AFs) for the project are explained along-

side the reasons to finally using them or not.

Sigmoid

Figure 3.2: Sigmoid activation function

The sigmoid function is a non-linear AF used in neural networks. It’s a non linear activation,

derivable continuous with a positive derivative in any point. It’s defined by the following

formula:

σ(x) =
1

1 + e−x
(3.2)

Neal ([11] trough [12] ) highlights the main advantages of the sigmoid functions as, being easy

to understand and are used mostly in shallow networks.

However, according to Nwankpa [12]: ”the Sigmoid AF suffers major drawbacks which include

sharp damp gradients during backpropagation from deeper hidden layers to the input layers,

gradient saturation, slow convergence and non-zero centred output thereby causing the gradient

updates to propagate in different directions. Other forms of AF including the hyperbolic tangent

function was proposed to remedy some of these drawbacks suffered by the Sigmoid AF ”.

Despite the fact that this AF used to be one of the most if not the most popular, these drawbacks

alongside the existence of new and better approaches make it not suitable for practical use.

Hyperbolic Tangent

Hyperbolic tangent is usually applied over the output of LSTMs, as further sections show (see

Figure 3.10), in order to limit their output between 1 and -1. It arose as a solution for the
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drawbacks for the sigmoid AF.

Figure 3.3: Hyperbolic tangent (tanh) function

This is a trigonometric function, and is not usually expressed with another formula, however,

it’s defined as follows:

tanh(x) =
ex − e−x

ex + e−x
(3.3)

Rectified Linear Unit

The Rectified Linear Unit (commonly known as ReLU) was an activation function proposed

by Hahnloser in [8]. Dahl et al. [13] showed that usung the ReLU function improves the error

rate when using ReLUs instead of sigmoids as activation functions.
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Figure 3.4: Rectified Linear Unit activation function

It’s defined as follows:

F (x) =

{
x, x ≥ 0

0, x < 0
(3.4)

According to [12], this function rectifies the values of the inputs less than zero thereby forcing

them to zero and eliminating the vanishing gradient problem observed in the sigmoid AFs. But

the main advantage of ReLU comes also from a computational cost perspective, since it does

not make any calculations (i.e. divisions or exponentials) ([14] through [12]).

LeakyReLU

However, ReLUs suffer the problem known as Dying ReLUs. The hard 0 activation value in

the ReLU makes the gradient 0 whenever the neuron is not activated. According to Maas et

al. [15] if the neuron is not initially activated, its weight might not get updated due to the

zero gradient, so the weights value get stuck and the network can’t improve its predictions. In

the same paper,Leaky ReLU was proposed as a way of overcoming this problem. Instead of

forcing a 0 value when the input is negative, a small value is returned, controlled by the leaking

parameter α. This makes the gradient not 0 in the entire AF domain.
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Figure 3.5: Leaky ReLU activation function with α = 0.03

It’s defined by the following equation:

F (x) =

{
x, x ≥ 0

x ∗ α, x < 0
(3.5)

3.1.3 Feed Forward Networks

Feed Forward Networks or FFNs are ANNs composed by Dense layers (Figure 3.6) of simple

perceptrons or neurons, which propagate the information forward into the next layer (each

neuron outputs its value to all neurons in the next layer). We talk about Dense or Fully

Connected layers where all neurons are mapped to all neurons in the next layer.

The layers between the first and the output layers are called hidden layers, and they are not

always included (this is known as a single layer network) in the ANN.

Although they showed good performance for tabular data, FFNs fell short for other problems,

like pattern recognition in handwritten Zip codes. That’s why in 1980, Fukushima [16] proposed

his Neocognitron as a primitive Convolutional Neural Network, and in 1989, Waibel et al.

released their Time-Delay Neural Network (TDNN) used for phoneme recognition, as a way to

capture the time-dependant structure of the data.
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Figure 3.6: Example of a Dense or Fully connected Layer

Figure 3.7: Diagram of a 2 Dense Layers DNN

3.1.4 Convolutional Networks

Convolutional Neural Networks or CNNs [17] are special type of Neural Networks, which has

shown exemplary performance on several competitions related to Computer Vision and Image

Processing. Some of the exciting application areas of CNN include Image Classification and

Segmentation, Object Detection, Video Processing, Natural Language Processing, and Speech

Recognition.

The motivations behind convolutions in ANNs are many. But the two most important ones,as
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LeCun exposed in the LeNet paper [18] considered by many as the first CNN, FFNs present

too many parameters when analizing images with hundreds of pixels, and they can’t analyse

the structure of the data (when flattening an image input, the structure of the original pixels

and their distribution gets lost). However, LeCun in the same paper claims that the main

deficiency of unstructured nets for image or speech recognition applications is that hey have

no built-in invariance with respect to relocations or local distortions of the input (see [18] for

further details).

Convolutions

In Convolutional layers the input is a tensor with any dimension (1D,2D,3D...). The idea of

convolutions is to apply a filter to extract features from the input data. Since we are working

with time series data, 1D convolutions will be applied. Figure 3.8 shows an example of a 1D

convolution.

Figure 3.8: 1D-Convolution example over a 1D vector

The values of the convolution (-1 and 1 in the example) are learnt by the network through

backpropagation.

Pooling

After applying convolutions and extracting features, pooling layers are applied to make a sum-

mary of those features and reduce the dimensionality. These two layers are usually applied

one after another, concatenating them and finally feeding the input into a FFN by flattening

the last layer. Figure 3.9 shows an example of Max Pooling, the choice for this Final Degree

Project.
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Figure 3.9: Max Pooling example over a 1D vector

3.1.5 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a class of ANN where connections between neurons

are not only in a forward direction but also backward, making cycles in the ANN graph. This

allows to return information to previous layers for future inputs, allowing for a time-distributed

architecture. RNNs started with Rumerlhart’s 1986 [6] work, leading to Elman nets [19] y

Jordan nets [20]. However, the most popular architectures are the Long Short-Term Memories

and the Gate Recurrent Units. In this project, Long Short-Term memories will be the core

architecture, due to the time series nature of the energy load data.

Long Short-Term Memory Networks

Long Short-Term memories [10] came up as a solution for the vanishing gradient in neural

networks. Their solution was to include a memory cell c and a hidden state h that kept

important information throughout the training process and enabling transmission during the

sequence chain, making it able to reset it aswell if more relevant information showed up.

To achieve this, the forget gate outputs a 1 or a 0 thanks to the sigmoid function σ depending

on if the information on the cell state is decided to be kept or not.

The next output is provided by σ in the update gate and tanh in the candidate gate. Using the

product of these two values, and then adding it with the product of the forget gate output and

the previous cell state, we get the updated memory cell value.

The last step is to calculate the hidden state, by applying the tanh over the cell state and

multiplying the resulting value by the output from the output gate. Figure 3.10 shows the

pipeline for this process. Every time a σ or tanh function is going to be applied as an AF, a

different set of weights and bias is applied to the input before the AF.
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Figure 3.10: LSTM Cell pipeline. Figure adapted from https://en.wikipedia.org/wiki/
Long short-term memory

The LSTM pipeline can be described by the following equations:

ft = σ (Wfxt + Ufht−1 + bf )

it = σ (Wixt + Uiht−1 + bi)

ot = σ (Woxt + Uoht−1 + bo)

c̃t = tanh (Wcxt + Ucht−1 + bc)

ct = ft x ct−1 + it x c̃t

ht = ot x tanh (ct)

ŷt = ht

Figure 3.11 shows an unrolled version of the diagram in figure 3.10. The hidden state is fed

into the next into the next timestamp, and the cell state is transferred in a kind of conveyor

belt, updated only when the forget gate decides that new information is more important to be

kept.
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Figure 3.11: LSTM Unrolled Graph. Adaptation from Figure 6.13 from [21]

3.1.6 Other layers

Dropout

Published by Google[22] in 2014, this technique emerged as a solution to palliate over-fitting.

The idea is to temporarily cancel some neurons during training ruled by a dropout chance.

Figure 3.12 shows an ANN with two neurons dropouted. They won’t be used neither in the

forward propagation nor on the backward propagation in that training round. However, dropout

is not permanent, each time different neurons are blocked. This makes the network not rely on

specific neurons, thus reducing overfitting due to heavily influencing characteristics

Figure 3.12: Dropout Example
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Concatenation

Sometimes, two models are merged to create a Hybrid model. In order to merge models, a

concatenate layer is used. In this layer, both model outputs are merged in order to be fed to

another layer.

Figure 3.13: Concatenate Layer example

Flattening

Flattening layers are used after a convolutional block, so the convolutions+pooling output can

be fed into a dense layer. Figure 3.14 shows a diagram of this layer’s behaviour.

Figure 3.14: Flatten Layer example

3.1.7 Training process

Once the topology of the network is set, the training process begins. The training and test

splits from the data available must be hermetic so the algorithm does not see the test data at
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any stage of the training process.

Epochs

An epoch is a whole pass (forward and backward) over all the training sample. Multiple epochs

are necessary in the training process due to the iterative nature of gradient descend based

methods like backpropagation.

Mini-Batches

Training set is usually divided in subsamples called mini-batches. The idea is to calculate the

gradient for small portions of the sample instead of the entire sample. This allows to take more

precise steps when approaching the minimum of the cost function. However, determining the

mini-batch size is not trivial. If the minibatch is too small, the training process will take too

long, and if it’s too big the descend calculation might not be optimal. Usually batch size is set

as powers of two due to the binary nature of memory management in computers.

Figure 3.15: Train sample division in batches and epoch representation

Keras considerations: There is a key parameter for training networks for sequence predic-

tion, the shuffle parameter, set to True by default. This will create batches automatically

by shuffling the samples. However, when training for sequence data, it is better to set this

parameter to False. This will group observations in batches sequentially, which leads to more

representative calculations of the gradient per batch.

Loss Function

The loss function tells the neural network about how well (or how bad) its predictions are doing.

It takes as inputs the real response values and the predicted response values and computes values

based on the difference between these two arguments.

The direction of descent is calculated through the derivative of this function. Since we are

handling continuous data, in this project the choice was Mean Square Error Loss (also known

as Quadratic loss or L2 loss), defined as follows:

LMSE(y, ŷ) =

∑n
i=1(yi − ŷi)2

n
(3.6)
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Optimizer

The function of the optimizer is to calculate the magnitude of the update values for the weights

in the ANN. Many optimizers exist, although the adaptive gradient methods seem to be the most

popular ones [23]. Adam [24] came as a solution to unify AdaGrad and RMSprop. Its strengths

rely on using the history of gradient values to adapt the learning rate and the magnitude of

the update value for the weights using moving averages and squared gradients. In Figure 3.16

the algorithm extracted from the original paper is showed.

Figure 3.16: Original adam algorithm (extracted from [24])

3.1.8 Training Algorithms

When training DNNs, there are many alternatives depending on what the training environment

is (data driven, simulation environments, etc). In this project, backpropagation algorithms will

be used.

Backpropagation

Backpropagation [6] algorithm is used when training neural networks based on data. The idea

behind the algorithm is the following iterative process:

1. Present a training input and propagate it to get an output based on the weights (forward

propagation).
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2. Compare predicted value and real value to calculate an error.

3. Calculate the gradient of the error with respect to the network weights .

4. Update the weights based on the gradient (backward propagation)

However, the problem of very deep neural networks is that the concatenation of derivatives of

successive layers results in very small gradients, which can result into the vanishing gradient

problem, where the network gets stuck and can’t update its weights. This problem is (in fact

it was so common that it motivated the LSTM development) present in RNNs too.

The vanishing gradient comes from the fact that weights are updated through the gradient, this

is, the derivative of the loss function with respect to the weights. In order to backpropagate

this error, gradients are concatenated through the rule chain, thus, the first layers of a DNN

depend on the gradient of the last values.

Figure 3.17 shows the computational graph of a two layer FFN, which is just a simplified math-

ematical representation concatenating outputs. Underneath the chain rule for the backprop

algorithm is showed to update the first layer weights.

Figure 3.17: Computational Graph for a two layer FFN

As it can be seen, the derivative of the sigmoid is present twice, when calculating the partial

derivative of ŷ and Y0. What does this imply? When a DNN is very deep, many sigmoid

derivatives will be multiplied sequentially. Figure 3.18 shows the values this derivative, σ′(x),

takes:
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Figure 3.18: Sigmoid function and its derivative

σ′(x) takes small values, and non zero values only when the input is close to zero. This and the

chain rule are the causes of the vanishing gradient phenomenon. If the network is very deep,

many small values will be multiplied, as Figure 3.19, therefore the first layers weight updating

gets stuck due to a very small gradient value.

Figure 3.19: Computational graph for a Deep neural network

This can also be caused by small weights initialization. The same happens the other way round

with other activation functions or when weights take very large values ; big gradients will cause

exploding gradients

Backpropagation Through Time

Backpropagation Through Time, or BPTT, is the Backpropagation version for RNNs. BPTT

works by unrolling the RNN. Each time consists of one copy of the network which gets fed the

previous timestep information alongside new information. Errors are calculated and accumu-

lated for each time step. The network is rolled back up and the weights are updated.
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Figure 3.20: Unrolling graph

The iterative process goes as follows

1. Get the sequence of input values and the corresponding sequence of output values

2. Unroll the network and calculate errors in each timestep, accumulate them and calculate

gradients.

3. Roll up the network

4. Update weights

However, this approach has its drawbacks. The longer the sequence, the higher the computa-

tional cost. This also can cause vanishing/exploding gradients, since a long unrolling is like

having a neural network with many layers, thus calculating many derivatives falls into the same

faults as the very deep neural networks.

Truncated Backpropagation Through time

Truncated Backpropagation Through Time, or TBPTT, addreses the problem of too long se-

quences in BPTT. The idea is to process the sequence by lots, calculating the gradient for

subsequences of the input sequence instead of doing it as a whole. It’s ruled by two parameters,

k1 for the input sequence size and k2 for the accumulated steps for BPTT. It goes as follows:

1. Get the sequence of k1 input values and the corresponding sequence of output values

2. Unroll the network and calculate errors in each timestep, accumulating them for k2 steps

3. Roll up the network and calculate gradient of the error

4. Update weights

All k1, k2 ∈ N value combinations restricted to k1, k2 < n are possible. However, Keras imple-

mentation forces k1 = k2 = k, where k is equal to the choice of window size for previous values

to use as predictors.
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3.1.9 Validation methodology

In order to test model performance, the following metrics will be used:

Error measurements for one-step ahead prediction

RMSE: √√√√ 1

N

N∑
i=0

(yt − ŷt)2 (3.7)

CVRMSE:

1

ȳ

√√√√ 1

N

N∑
i=0

(yt − ŷt)2 (3.8)

CVRMSE provides an indication on how much does the errors variate with respect to the mean

over one (if multiplied by 100, the percentage of deviation would be obtained). This allows for

comparison between datasets, since dividing by the mean gets the scale of the data out of the

statistic value.

Error measurements for sequence prediction

Time-RMSE (as proposed by [25]):√√√√ 1

N

N∑
t=0

1

scope

scope∑
i=0

(yt[i]− ŷt[i])2 (3.9)

Time-CV(RMSE) (as a proposal for CV(RMSE) adaptation):√√√√ 1

N

N∑
t=0

1

scope

scope∑
i=0

(yt[i]− ŷt[i])2
ȳ2t

(3.10)
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4. Case study

4.1 Available Datasets

According to Wang et al., due to the private nature of Energy Load data, many companies are

hesitant to release their data [1]. In the same paper, they showcased a table with Open Load

Datasets. Table 4.1 shows the information they gathered about the most popular open energy

load datasets

Name Brief Description Frequency Duration

Custom Behavior Trials
Smart meter read data
Pre- and post-trial survey data

Every 30 min 2009/9-2011/1

Low Carbon London
Smart meter read data
Electricity price data
Appliance and attitude survey data

Every 30 min 2013/1-2013/12

PecanStreet
Residential electricity consumption data
Electric vehicle charging data

Every 1 min 2005/5-2017/5

Building Data Genome
Non-residential building smart meter data
Area,weather and primary use type data

Every 1 hour 2014/12-2015/11

UMass Smart Residential electricity consumption data Every 1 min One day

Ausgrid Residents
General consumption data
Controlled load consumption data
PV output data

Every 30 min 2010/7-2013/6

Ausgrid Substation Substation metering data Every 15 min 2005/5-

GEFCom 2012
Zonal load data
Temperature data

Hourly 2003/1-2008/6

GEFCom 2014
Zonal load data
25 weather station data

Hourly 2005/1-2010/9

ISO New England
System load data
Temperature data
Locational marginal pricing data

Hourly 2003/1-

NUIG Alice Perry
Air Handling Units load data
Weather Station data

Hourly 2018/5-2020/2

Tucson Electrical Power
Tucson (Texas) Area Load Data
Tucson Airport Weather station

Hourly 2015/07-2018/07

Table 4.1: Open Energy Load datasets from the Wang et al. [1] review
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For this project, in table 4.1 a basic description on how they used the datasets and two key

points that were needed for this project; the existance of weather data in the dataset and if it

was a residential building or not.

Name Type of forecast in references Weather Data? Residential Building?
Custom Behavior Trials Short term No Yes
Low Carbon London Short term No Yes
PecanStreet No references No Yes
Building Data Genome No references Yes No
UMass Smart Ultra short term No* Yes
Ausgrid Residents No references No Yes
Ausgrid Substation No references No Not a Building
GEFCom 2012 Short & Medium Term Yes US Utility with 20 zones
GEFCom 2014 Short & Medium Term Yes AUS Utility with 10 zones
ISO New England Short Term Yes Not a Building (Zones)

NUIG Alice Perry Short Term Yes No
Tucson Electrical Power Short Term Yes Not a Building (Zones)
*There is a new version of the dataset

Table 4.2: Information available in each dataset and type of source
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4.2 Techniques review

Name Techniques used in references

Custom Behavior Trials

Thefting detection with customer clustering & SVM [28]
Pattern extraction and customer classification with K-SVD and SVM [29]
Deep Learning household load prediction using pools of neighbours [30]
Clustering customer behaviour, reducing dimensionality with Markov models [31]
Load forecast with a non-parametric approach [32]
Load forecast with Clustering+MLP [33]
Load forecast with Boosted Quantile Regression [34]
Behavior indicators through a cross-domain feature selection and coding approach [35]
Load profiling with Clustering [36]
Household characteristic extraction with Unsupervised learning and regression [37]
Household Load data compression and reconstruction [38]
Socio-demographic Information Identification from Load data with Convolutional Networks [39]

Low Carbon London
Costumer clustering with C-Vine Copula Mixture Model [40]
Peak Load Estimation with clustering and quantile-based probabilistic approach [41]

PecanStreet X
Building Data Genome X

UMass Smart*
Power Consumption Profiling with Time-Frequency (TF) based clustering [42]
Layered clustering for load profiling (local clusters into global) [43]

Ausgrid Residents X
Ausgrid Substation X

GEFCom 2012

Load forecast with ARX,Echo State Networks and Wavelets
while tuning with genetic algorithms [44]
Load Forecast via quantile regression averaging on sister models [45]
Load forecast with parametric models [46]
Load forecast in two stages using nonlinear Lasso and Splines [47]
Hierarchical load forecasting with Gradient boosting machines and Gaussian processes [48]
Electric load forecasting and backcasting with Kernel regression, random forests and splines [49]
Load forecast with Gradient Boosting based splines [50]
Weather station selection with GEFCom benchmark model [51]

GEFCom 2014

Probabilistic load forecasting using kernel density estimation (KDE) and quantile regression [52]
Probabilistic load forecasting semi-parametric regression, simulation and quantiles [53]
Probabilistic load forecasting with forecast combination and residual simulation [54]
Probabilistic load forecasting with a hybrid model of kernel density
estimation and quantile regression [55]
Probabilistic load forecasting with non parametric Nadaraya–Watson estimators [56]
Probabilistic load forecasting with Lasso [57]
Probabilistic load forecasting with Generalized additive models and Quantile regression [58]
Load forecasting with Tao’s benchmark model** incorporating
recency effect through moving averages [59]

ISO New England Paper cited [59][60] [61] but none of those papers used the dataset.
North Carolina Electric
Membership Corporation
(NCEMC)

Incorporating Rel.Humidity info into Tao’s benchmark model [60]
Incorporating Wind info into Tao’s benchmark model [62]
Temperature scenario generating with bootstraping,date shifting,
fourier transformations among ohters [61]

NUIG Alice Perry (private dataset) Load prediction with LSTM and seasonal clustering [63]
Tucson Electrical Power LSTM for short term load forecast [64]
*There is a new version of the dataset
** Tao’s benchmark model was used as basic model for the GEFCom 2014, a vanilla linear model

Table 4.3: Techniques review

Table 4.2 represents a paper review in which a short summary on what techniques were used

in each paper from [1] and dataset and for what purpose is shown. As it can be seen,at the

time of these papers, Deep Learning is still emerging in the Load Forecast field and there are

not many approaches using these models.
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However, later work from authors like Marino et al.[65], Wilms et al.[66] or Gasparin et al. [25]

shows that DNNs, specifically RNNs have remarkable performance in the Load Forecast field,

even outperforming some of the methods listed in Table 4.2. In this project DNNs architectures

will be presented an tested on a real world problem, the NUIG Alice Perry dataset.

4.3 NUIG Alice Perry dataset exploration

In this dataset there are 824338 observations in minutely format corresponding to the aggre-

gated load of the NUIG’s Alice Perry building Air Handling Units (AHUs) heating energy

load. A weather station in the same building provides 16731 observations in hourly data for

ten variables (’Batt [V]’, ’PTemp [oC]’, ’AirTemp [oC]’, ’RH [%]’, ’Slr [kW/m2]’, ’Slr [kJ/m2]

Tot’, ’WindSpeed [m/s]’,’WindDir [deg]’, ’Gust 3s Avg [m/s]’, ’BP [mBar]’). A group of sparse

observations corresponding to a 2016 day were discarded.

Figure 4.1: Load data in the original scale (minutely data). Gaps represent missing values

The AHUs load data, in kWh, is aggregated into hourly data using the mean. Afterwards, it is

merged (outer merge) with the weather station data, making the final dataset with 15270 hourly

observations, which presents missing values or NAs in the distribution indicated by Table 4.3.

Figure 4.2 shows a time series plot portraying the location of the NAs. Figure 4.3 shows the

time series for weather variables.
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Varaible Mean σ Minimum Maximum
Timestamp 2018-05-24 15:00:00 2020-02-19 20:00:00
Load 4.111483 4.373992 -4.65141 22.7941
AirTemp [oC] 9.973651 4.880410 -3.1177 29.4605
BP [mBar] 1010.784819 12.828838 946.091 1045
Batt [V] 13.538727 0.392777 8.82636 13.9718
Gust 3s Avg [m/s] 4.267261 2.268860 0 16.8267
PTemp [oC] 14.522938 5.307262 0.785 37.2435
RH [%] 83.855687 12.643092 26.2922 100
Slr [kJ/m2] Tot 5.752758 9.602083 0 54.2645
Slr [kW/m2] 0.095862 0.160034 0 0.9065
WindDir [deg] 199.253634 89.598314 0 350.942
WindSpeed [m/s] 2.651774 1.435264 0 10.1618

Table 4.4: Statistics for variables in the hourly dataframe

Varaible Number of NAs
Timestamp 0
Load 1500
Record 789
Batt [V] 811
PTemp [oC] 811
AirTemp [oC] 811
RH [%] 811
Slr [kW/m2] 811
Slr [kJ/m2] Tot 811
WindSpeed [m/s] 811
WindDir [deg] 811
Gust 3s Avg [m/s] 811
BP [mBar] 811

Table 4.5: NAs by variable after merging datasets and aggregating by hourr

As it can be seen in Figure 4.3, there are negative values for load. According to data providers,

the load is estimated with the following formula:

∆T = Maximum Airflow ∗ Valve % (4.1)

Where ∆T = Tflow − Treturn. Due to Load being estimated, then it maybe the case that

Tflow − Treturn inverts when the heating valve is closed so what should be warmer/colder is the

other way round (and this depends on the design of the hydronics network).
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Figure 4.2: Full Hourly data series for load data. Blank spaces represent NAs in load data, and
red values represent missing values in the weather data

4.3.1 Cleaning the dataset

As seen in Figure 4.2, between May and September both in 2018 and 2019 the time series takes

very small values. These months are the warmer ones, and the time series represent energy

consumption from the AHUs in heating mode. Therefore it doesn’t make sense to study the

heating load in these months, thus they will be removed.

There are also some dates that will be removed. These weeks correspond to the periods the

Alice Perry building is closed during winter holidays. Therefore, removing this weeks with a

different behaviour should improve the overall performance. Figure 4.4 shows, in purple, the

removed periods from the dataset. Figure 4.5 shows the final data with these periods removed.
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Figure 4.3: Full Hourly data series for weather data. Blank spaces represent NAs in the series
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Figure 4.4: Full Hourly data series for load data. Purple shows the dates that will be dismissed
due to their different behaviour from what the main series represents

Figure 4.5: Final full Hourly data series for load data after preprocessing

4.3.2 Weather NAs imputation

In order to fill the gaps in Figure 4.3, information from a nearby weather station placed in

Atherny, 25km to the east from Galway city. Data is provided by Met Éireann and available

at their official website.
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However, this dataset does not contain all the variables the NUIG weather station has. Table

4.6 shows the correspondence between both datasets and the conversion needed in order to fill

the NAs in the NUIG dataset. These variables will be used as predictors for the Energy Load

forecast, and the rest of the available variables will be discarded.

Variable NUIG Name Met Éireann Name Conversion/Observations

Barometric
Pressure

BP [mBar] msl

Met.ie variable is measured at sea level. NUIG
measures at 21m above the sea level, so the
difference in pressure of 21m of height must be
added before filling

Relative
Humidity

RH [%] rhum No conversion needed

Wind
Speed

WindSpeed [m/s] wdsp
Met.ie provides windspeed in knots (kt),
conversion to m/s is needed
(1knot=0.5144m/s)

Air
Temperature

AirTemp [oC] temp No conversion needed

Solar
Radiation

Slr [kW/m2] Not Available
This variable is not provided by Met.ie. However,
authors supsect it’s key to the problem,
therefore it will be included as a predictor

Table 4.6: Table of correspondence between NUIG dataset and Met.ie dataset

In order to impute the NAs for the Solar Radiation variable, regression using the other variables,

SARIMA models and using Load mean values for Day-Hour combinations were tested, but none

of them was successful. Therefore, filling the gap with the data from the same period but from

2020 was the way to go, which gives a noisy but similar pattern to what the 2019 period

should’ve been

As Figure 4.3 shows, there is a sudden drop before the NA gap (on the 5206 observation,

corresponding to the date of 13:00 @ 2018-12-27), and it is believed to be caused by a problem

with the sensor. Therefore, this value will also be treated as a missing value and imputed with

the weather dataset. Figure 4.6 shows the weather variables with their imputed values coloured

in maroon.
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Figure 4.6: Weather data after imputation. Maroon colour indicates the filled values

4.3.3 Time codification

In order to use the categorical data (Hourt and Dayt) to predict Loadt, we need to transform

these variables. We can’t use the Hourt rawly as an integer, since integers reflect a preset

canonical order that hours influence does not necessarily follow.

One-Hot

One option is to use One-Hot encoding. Table 4.7 shows an example for hour one-hot codifi-

cation.
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Hourt Hour==1 Hour==2 Hour==3

...

Hour=24
1 1 0 0 0
3 0 0 1 0
5 0 0 0 0

...
24 0 0 0 1

Table 4.7: Example of One-Hot encoding

The same goes for the day of the week. One-hot has a big problem: the dimensionality of the

problem erupts, adding 33 variables when coding Hour and Weekday. The sparsity of the

dataset increases since there will be only two 1s for each timestamp (one representing the hour

and one representing the weekday).

Cyclical

The alternative to one-hot is cyclical sine-cosine transformation. This transformation imposes

a cycle in the structure (Fig. 4.7) of the hours of the day, making the values on the interval

ends adjacent, so the 23:00 and the 00:00 of the following day take adjacent values. The same

goes for the Weekday (Fig. 4.8), making Sunday and Monday adjacent.

Figure 4.7: Hour Codification
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Figure 4.8: Weekday Codification

This approach has two main advantages: it only takes two variables to represent the full set of

values for each possible combination of hour and weekday (4 for Hour and weekday in cyclical

codification against the 33 needed for One-hot encoding) and portrays a cyclical structure in

the timestamp codification, making consecutive days (like Monday and Sunday, as seen in figure

4.8 take similar values .

4.3.4 Train Test Split

The Train-Test split on figure 4.9 will be taken into consideration. As we can see, the load

series has a different behaviour from November 2019 onwards, taking higher values and having

more variability. Due to this, the gap before January 2020 will be used as the separator for

the second train test split. This will allocate some of this different behaviour data into the

train set. Therefore, this leads to a 87.62% — 12.48% train-test split over 9472 non missing

observations
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Figure 4.9: Train (blue) and Test (orange) split

4.3.5 Normalization

Normalization can boost predictive performance. In this case, the Load variable will be nor-

malized so it has mean equal to zero and variance equal to one. (same process will be applied

to weather variables when they are used). Figure 4.10 shows the series values once it’s been

normalized.

Figure 4.10: Train (blue) and Test (orange) split normalized
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4.4 Testing on Benchmark: The Building Genome Project

2

In order to provide robust models, results should also be tested on a public benchmark so

everyone can compare their findings. However, since the Big Data era started pretty recently,

specially in Energy Load Management, there are not many options for this. As it was showed

in table 4.1 there are not many public datasets. However, the University of Singapore alongside

the University of Princeton created the Building Genome Project, and they just released the

second version of this benchmark proposal [67]. As the authors state, the repository contains

3,053 energy meters from 1,636 buildings. The time range of the times-series data is the two

full years (2016 and 2017) and the frequency is hourly measurements of electricity, heating and

cooling water, steam, and irrigation meters.

To see if the model adjust fine to other data, it’ll be tested on the building Wolf education

Tammie from that repository. Wolf buildings represent buildings from the University of Dublin,

so their close location to the NUIG makes them suitable for testing and comparing. It is also

an educational building with electricity reading, so this makes it our choice. The periods

corresponding to winter holidays (last weeks of december) were removed since they have a

different behaviour from the rest of the series. Figure 4.4 shows the train test split after

preprocessing the dataset. Table 4.8 shows main statistics for the data

µ σ Minimum Maximum No obs
Timestamp 2016-01-01 00:00:00 2017-12-31 23:00:00

17544
electricity reading 82.92 21.98 0 148.485

Table 4.8: Main statistics for the Wolf education Tammie building
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Figure 4.11: Load series for the Wolf education Tammie building

Figure 4.12: Train Test split for the Wolf education Tammie building
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5. Models for One-Step ahead prediction

The main purpose of this chapter is to showcase some DNN architectures in order to see which

one performs the best in the data.

5.1 Proposed models for one step ahead estimation

5.1.1 Model 1: Feed Forward Network

As Wang et al. [68] state, MLPs are often used as baseline models. However, these models

incorporate modern techniques like Dropout or ReLUs as activation functions. The baseline

model will be a two layered MLP, as seen in Figure 5.1.

Figure 5.1: Model 1 scheme
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5.1.2 Model 2: LSTM

LSTMs are the most popular architecture when it comes to time series data. Many load forecast

projects use LSTMs as the core of their proposal [64] [65]. In this project a basic LSTM model

will be used in order to see if it improves the FFN predictions, and check if more complex

approaches (presented in the following sections) improve this model. Figure 5.2 shows the two

layered LSTM network used in this project.

Figure 5.2: Model 2 scheme

5.1.3 Model 3: CNN

According to Ismail et al. [69], complex CNN based architectures like ResNet have been applied

to Time series data. In fact, Gamboa ([70] through [69]) states that motivated by the success

of these CNN architectures in these various domains, researchers have started adopting them

for time series analysis. Figure 5.3 shows a two CNN-Pool block neural network, which are fed

into a hidden fully conected layer before the final output.

Figure 5.3: Model 3 scheme
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5.1.4 Model 4: Hybrid LSTM+FFN

This architecture was proposed by Andrew Loder and Mark C. Lewis [64], which proved to

outperform the FFN and the LSTM architectures in particular subsets of the data, like Winter

periods. However, when working with many variables as this project’s datasets have, the Dying

ReLUs phenomenon showed up, so instead of using the ReLU activation, the Leaky ReLU is

incorporated into the model. Figure 5.4 shows the architecture of this model.

Figure 5.4: Model 4 scheme

In this architecture, the left input in Figure 5.4 takes the continuous historical values such as

past Load data or weather information, which are fed into a LSTM network. On the right

input, the timestamp encoding is fed into a dense layer.

Both outputs are then concatenated and fed into a dense layer, which will then be fed into the

final output layer.

5.1.5 Model 5: Hybrid CNN-LSTM + FFN

In order to try to improve Model 4, a convolutional layer and a pooling layer will be added in

this architecture, applied over the outputs of the LSTM layers.
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Figure 5.5: Model 5 scheme

The idea is to combine both CNNs and LSTM trying to exploit the best characteristics of each

architecture.

5.1.6 Model 6: Time Distributed CNN + FFN

As an alternative to the addition of convolutions after the LSTM layers in Model 5, Model 6 is

a new proposal inspired by an architecture used to process video data. A similar architecture

was successfully tested by authors in [71].

Figure 5.6: Model 6 scheme

Figure 5.7 shows how the Time Distributed CNN works. Input data is split into subsequences

of 8 hours, so each day is composed of 3 subsequences. Convolutions are applied to each

subsequence, and their output is then fed to a LSTM layer.
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Figure 5.7: Representation of Time Distributed CNN workflow
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6. Models for Sequence Prediction

In the previous chapter, models for one-step ahead prediction were showcased. However, some-

times a sequence prediction is required, in order to get an idea of how the behaviour will be for

the next several hours, not just the following one. In this chapter, two main architectures are

explained and tested to see what performance they give in the problem we are facing

6.1 The Many-to-One model

This architecture takes a sequence (in our case a sequence of two variables, F and Y ,

[y0, y1, . . . , yt−1] as the last 60 previous load values and [f1, f2, . . . , ft] as the codification for

the dates) as input and outputs one single value as output. However, this can be adapted

to sequence prediction as figure 6.1 shows. In fact, the previous chapter models were many

to one, but in order to achieve a finer tuning, exclusively LSTM based architecture will be

considered. The advantage of this approach against the One-to-One model is that the input is

a full sequence of values, thus the network is able to capture the pattern in the input sequence.
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Figure 6.1: Many to one architecture and its adaptation to sequence prediction

Nevertheless, as seen in figure 6.1, this architecture is only able to output one value. In order

to predict a sequence, the prediction for the previous step must be reinjected as the latest value

for the sequence. This creates a very challenging scenario, since predictions will be based on

predictions. In order to solve this problem, Seq2Seq models can be applied.

6.2 The Seq2Seq model

The Secuence to Secuence Model, usually referred as seq2seq was introduced in 2014 by

Sutskever et al. [72] in the Machine Translation context. The idea is to be able to generate

outputs of flexible length given a set of previous values with a different length. This approach is

also known as Many to Many. Previous work [65] [66] has proven the viability of this approach

The baseline model will be the Encoder-Decoder model. This model consists of two submodels,

the encoder and the decoder.
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6.2.1 Encoder

The Encoder model takes any sequence of a fixed length and learns a hidden representation of

this vector as its output. Later on, this output is fed into the decoder model, conditioning its

output.

6.2.2 Decoder

The function of the decoder is to output the predictions based on the encoder representation

of the input vector. This is known as conditional output; given a learned representation of

the input vector, the outputs are retrieved. Figure 6.2 shows the scheme of this model.

Figure 6.2: Encoder-Decoder model, showing the conditional output ŷ given the Encoder Input

6.2.3 Training

Training the Encoder first

In [65], authors claim that pretraining the encoder first can improve model performance . The

way of training it is through teacher enforcing, treating it like a One-to-one model. Figure 6.3

shows this process
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Figure 6.3: Encoder pretraining

Training the Encoder-Decoder together

Once the encoder is trained, it’s plugged into the decoder for a combined training. The sequence

input, consisting on both the series y and the time codification f , are fed into the encoder,

which outputs its LSTM layers hidden and cell states into the decoder. The decoder takes

the date codification as input and outputs the load prediction for that date given the encoder

representation. Then the errors of the decoder output are backpropagated through the decoder

and the encoder, tuning both at the same time. Figure 6.4 shows how this model is structured.

Figure 6.4: Example of a 3 layered Encoder-Decoder Keras graph
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Inference

Once the Seq2Seq is trained, the inference mode works as follows:

1. The encoder takes the sequence of previous values and encodes it.

2. The encoder provides the first predicted value, ŷt

3. The decoder takes the encoder hidden states and sets its own hidden states to this values

4. The decoder takes the date codification for the t + k date and outputs the ŷt+k load

prediction. This can be repeated as many times as it is necessary, outputing a sequence

as long as it is desired (60 timesteps for our problem).

Figure 6.5: Encoder-Decoder combined training and inference
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7. Results for One-Step prediction

7.1 Experiment Setup

In order to determine which architecture is best for this problem, hyperparameter tuning is

necessary, since ANNs are strongly influenced by hyperparameters. The experiment consist in

trying 6 hyperparameter combinations generated by the following code:

#Let p0 be the baseline hyparameters for any model

def generate_params(p0):

p1=p0.copy()

p1["nneurons"]=[nn*2 for nn in p0["nneurons"]]

p2=p0.copy()

p2["epochs"]=p0["epochs"]-10

p3=p0.copy()

p3["epochs"]=p0["epochs"]+20

p4=p0.copy()

p4["nneurons"]=[nn*2 for nn in p0["nneurons"]]

p4["epochs"]=p0["epochs"]-10

p5=p0.copy()

p5["nneurons"]=[nn*2 for nn in p0["nneurons"]]

p5["epochs"]=p0["epochs"]+20

p6=p0.copy()

p6["batch_size"]=2*p0["batch_size"]
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return([p0,p1,p2,p3,p4,p5,p6])

The idea behind this function is to adjust the number of epochs, the number of neurons in each

layer and both at the same time, where p0 are the baseline hyperparameters for any model.

The experiment setup was to try the 6 hyperparameter sets for each combination of Model and

Time Codification, and repeat this 5 times, since ANNs don’t provide the same set of weights

in each training session due to the random weight initialization. This leads to 6models ∗
6hyperparameters ∗ 2time codifications ∗ 5repetitions ∗ 2data scaling = 720 models trained.

This experiments will be repeated both normalizing and without normalization to check if this

technique has any impact on the result.

7.2 Predictions using Load and Timestamp as predictors

Firstly, experiments for prediction using only the load and the date codification are carried.

Table 7.1 shows what information goes into what part according to the model figures listed

in Chapter 5. Variables under the X column are fed as a sequence, giving the last 24 values.

Variables under the F column are fed as the codification for the predicted value

Model X F
1 FFN Load, Timestamp*
2 LSTM Load, Timestamp
3 CNN Load, Timestamp
4 Hybrid Load Timestamp*
5 Hybrid CNN Load Timestamp*
6 TDCNN Load Timestamp*

Table 7.1: Information Input for the models

*Only the previous timestamp, not the last 24

As we can see on Tables 7.2, 7.3, 7.4 and 7.5 , the best result was achieved with a LSTM-

OneHot with 64 and 32 neurons in the hidden layers, training for 35 epochs and with a batch

size of 64, having an RMSE of 1.595 and a CVRMSE of 0.17752. FFN, although worse, does

not fall away from the LSTM.

Overall results show that normalization needs less epochs and a smaller batch. Results show

also that normalization has a small (yet, positive) impact on the RMSE, specially small with

LSTMs which show robustness against this data manipulation.
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RMSES CVRMSE Exec.Time
Model Timecod Nneurons Epochs Batch Size

CNN cyclical [64, 32, 16] 35 128 1.906040 0.212018 176.558853
one-hot [128, 64, 32] 55 64 1.897358 0.211052 208.552271

FFN cyclical [128, 64] 25 64 1.863744 0.207313 83.063449
one-hot [128, 64] 55 64 1.619176 0.180109 85.664667

Hybrid cyclical [128, 64, 256, 128] 55 64 1.867077 0.207684 1267.967084
one-hot [128, 64, 256, 128] 55 64 1.663299 0.185017 1306.944632

HybridCNN cyclical [128, 64, 32, 128, 64] 25 64 1.996928 0.222128 1292.251001
one-hot [64, 32, 16, 64, 32] 25 64 1.677877 0.186638 1335.998616

LSTM cyclical [128, 64] 25 64 1.604173 0.178440 1240.101786
one-hot [64, 32] 25 64 1.595908 0.177520 1221.504934

TDCNN cyclical [16, 8, 8, 4, 4] 55 64 2.813699 0.312981 275.349462
one-hot [16, 8, 8, 4, 4] 35 64 2.654933 0.295321 279.651737

Table 7.2: Results for the best model (minimum RMSE) in 5 repetitions for each combination
of Model and Time codification when Normalizing

RMSES CVRMSE Exec.Time
Model Timecod Nneurons Epochs Batch Size

CNN cyclical [64, 32, 16] 35 64 1.973173 0.219485 214.384258
one-hot [64, 32, 16] 45 128 1.961693 0.218208 254.634455

FFN cyclical [64, 32] 65 64 1.958445 0.217847 97.572238
one-hot [64, 32] 45 64 1.830539 0.203619 102.943558

Hybrid cyclical [64, 32, 128, 64] 45 128 1.885263 0.209707 1592.585992
one-hot [64, 32, 128, 64] 35 64 1.644207 0.182893 1611.872176

HybridCNN cyclical [64, 32, 16, 64, 32] 35 64 2.059688 0.229109 1722.782609
one-hot [64, 32, 16, 64, 32] 35 64 1.742375 0.193813 1654.376513

LSTM cyclical [128, 64] 35 128 1.629172 0.181220 1104.582622
one-hot [64, 32] 45 256 1.607642 0.178826 1074.407139

TDCNN cyclical [64, 64, 32, 128, 64] 45 128 1.936302 0.215384 561.597254
one-hot [128, 128, 64, 256, 128] 65 64 1.697899 0.188865 575.507865

Table 7.3: Results for the best model (minimum RMSE) in 5 repetitions for each combination
of Model and Time codification without Normalizing
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Epochs Batch Size RMSES CVRMSE Exec.Time
Model Timecod

CNN cyclical 37.0 76.8 1.934368 0.215169 177.891940
one-hot 45.0 76.8 1.949985 0.216906 209.169296

FFN cyclical 33.0 76.8 1.891293 0.210377 83.516319
one-hot 39.0 64.0 1.627932 0.181083 87.378668

Hybrid cyclical 41.0 76.8 1.876094 0.208687 1265.674493
one-hot 35.0 76.8 1.672440 0.186033 1272.337924

HybridCNN cyclical 33.0 64.0 2.020484 0.224748 1302.131533
one-hot 29.0 64.0 1.707840 0.189971 1319.763845

LSTM cyclical 33.0 64.0 1.627249 0.181007 1206.960614
one-hot 39.0 64.0 1.623657 0.180607 1221.635948

TDCNN cyclical 31.0 64.0 2.915580 0.324314 271.010226
one-hot 35.0 80.0 2.705825 0.300982 276.634850

Table 7.4: Results for the average RMSE for each combination of Model and Time codification
when Normalizing

Epochs Batch Size RMSES CVRMSE Exec.Time
Model Timecod

CNN cyclical 45.0 76.8 1.991736 0.221550 213.672466
one-hot 45.0 89.6 1.980683 0.220321 254.836670

FFN cyclical 57.0 64.0 1.969477 0.219074 97.754769
one-hot 47.0 64.0 1.909636 0.212418 100.217364

Hybrid cyclical 49.0 115.2 1.948947 0.216791 1590.007433
one-hot 47.0 64.0 1.689889 0.187974 1606.031159

HybridCNN cyclical 49.0 64.0 2.073111 0.230602 1660.540998
one-hot 39.0 76.8 1.760850 0.195868 1660.683182

LSTM cyclical 47.0 179.2 1.645595 0.183047 1123.512699
one-hot 49.0 179.2 1.617658 0.179940 1127.541415

TDCNN cyclical 51.0 76.8 1.955215 0.217488 569.087073
one-hot 61.0 64.0 1.719208 0.191236 568.993024

Table 7.5: Results for the average RMSE for each combination of Model and Time codification
without Normalizing

7.3 Predictions using Load, Weather Variables and Times-

tamp as predictors

The same experiments were repeated 5 times, but this time the weather variables were fed into

the models aswell, in the configuration showed in Table 7.6. This time only normalized data

will be considered.
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Model X F
1 FFN Load, Weather, Timestamp
2 LSTM Load, Weather, Timestamp
3 CNN Load, Weather, Timestamp
4 Hybrid Load, Weather Timestamp
5 Hybrid CNN Load, Weather Timestamp
6 TDCNN Load, Weather Timestamp

Table 7.6: Information Input for the models with weather variables

Nneurons Epochs Batch Size RMSE CVRMSE Execution Time
Model Timecod

CNN cyclical
one-hot [64, 32, 16] 65.0 64.0 2.085355 0.231706 262.699489

FFN cyclical [128, 64] 35.0 64.0 2.852427 0.316936 100.249671
one-hot [128, 64] 35.0 64.0 3.366133 0.374015 102.776267

Hybrid cyclical [64, 32, 128, 64] 35.0 64.0 2.167315 0.240813 1589.026310
one-hot [128, 64, 256, 128] 65.0 64.0 1.810200 0.201133 1643.041508

HybridCNN cyclical [64, 32, 16, 64, 32] 45.0 64.0 2.312751 0.256972 1652.556967
one-hot [128, 64, 32, 128, 64] 65.0 64.0 2.023087 0.224787 1666.456431

LSTM cyclical
one-hot [64, 32] 65.0 128.0 2.437552 0.270839 1082.160527

TDCNN cyclical
one-hot

Table 7.7: Minimum RMSE achieved for each combination of Model and Time codification.
Blank spaces represent combinations that were not trainable due to the lack of power in the
computer the experiments were carried with

As it can be seen, including weather information doesn’t seem to improve prediction. In fact, the

dimension of the data gets so big for some models that the machine can’t handle it. Surprisingly,

while the one-hot should be giving bigger dimensions, pandas & numpy handle it better than

cyclical codification in terms of memory management. This could be due to one-hot providing

highly sparse matrix (29 out of 31 values in each row are zeros), and these librarys have high

efficient data structures for sparse data.
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Epochs Batch Size RMSE CVRMSE Execution Time
Model Timecod

CNN cyclical
one-hot 47.0 89.6 2.253633 0.250404 258.794594

FFN cyclical 39.0 64.0 3.714221 0.412691 100.036803
one-hot 45.0 76.8 3.718279 0.413142 103.913929

Hybrid cyclical 43.0 76.8 2.245731 0.249526 1594.831875
one-hot 45.0 64.0 1.970037 0.218893 1606.658120

HybridCNN cyclical 51.0 64.0 2.533662 0.281518 1662.550046
one-hot 49.0 76.8 2.384882 0.264987 1608.775339

LSTM cyclical
one-hot 49.0 128.0 2.537884 0.281987 1125.982756

TDCNN cyclical
one-hot

Table 7.8: Average RMSE for each combination of Model and Time codification. Blank spaces
represent combinations that were not trainable due to the lack of power in the computer the
experiments were carried with

7.4 Final Repetitions

As Table 7.2 indicates, the best model is the LSTM with one-hot encoding, training for 65

epochs and a batch size of 128. This set of parameters will be used in 5 final repetitions to try

to get the minimum RMSE possible The minimum achieved was an RMSE of 1.593951 and a

CVRMSE of 0.1772. Figure 7.1 shows the predicted time series vs the real time series for the

test data.
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Figure 7.1: Time series prediction for the test data with the best model

7.5 Testing the best architecture on the Building Genome

2 data

The same model was trained and tested on the Wolf education Tammie building only using

Load and Timestamp as predictors, achieving an RMSE of 3.46 (in the original scale) and a

CVRMSE of 0.0401. Figure 7.2 presents the predicted values for this building, achieving a

much better prediction than for the Alice Perry data. This low CVRMSE when using the same

model reflects that the NUIG dataset is much more challenging than the available datasets,

due to the big variation in the data, having a lot of outliers and many missing values.

Figure 7.2 shows how much better fitting was provided with the same model for the Building

Genome 2 data than the fitting obtained in Figure 7.1.
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Figure 7.2: Real (blue) vs Predicted (orange) for the Wolf education Tammie building with
the best model
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8. Results for Sequence prediction

8.1 Experiment Setup

Multiple layered LSTM models were tested for each architecture. All models were trained using

the hyperbolic tangent as an activation function. Every model was trained at 30 epochs and

using a batch size of 64 for the MTO and a batch size of 128 for the Seq2Seq model. Every

combination of hyperparameters was tested 5 times, due to the stochastic nature of the weight

updating process, and then averaged to get an estimator of the RMSE.

The networks were tested to predict using the 60 previous observations the 60 following ones.

8.2 Results

Figure 8.1 shows the results for the five repetitions of each combination of hyperparameters. As

we can see, Many-to-One models are much more stable in terms of weight calculation, having

much less dispersion in the repetitions. This is probably due to the fact that the Seq2Seq

model is bigger by definition, since it’s composed of two submodels (although the encoder was

pretrained, but by definition the seq2seq model will have more parameters).
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Figure 8.1: Encoder-Decoder different models Time-RMSE on Test. X-axis ticks represent the
combinations for Algorithm-Batch Size-Epochs-Number of layers-Neurons per layer-Timestamp
codification
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Time-RMSE CVRMSE Execution Time
Algo. Batch Size Epochs NoLayers Neurons Time Cod.

MTO 64 30 2 128 64 cyclical 7.725562 0.818659 1152.657166
one-hot 7.039355 0.750309 1146.410642

16 8 cyclical 4.255968 0.469146 644.930541
one-hot 4.518206 0.488365 634.186083

32 16 cyclical 7.817810 0.853784 686.002445
one-hot 6.935232 0.760880 678.409734

64 32 cyclical 5.852846 0.663232 822.437546
one-hot 5.875786 0.647162 806.877860

3 16 8 4 cyclical 5.917021 0.654249 914.205121
one-hot 5.870928 0.644215 912.040296

32 16 8 cyclical 6.842274 0.740326 962.612950
one-hot 6.626617 0.714234 964.576747

S2S 128 30 2 128 64 cyclical 6.960216 0.708390 1421.530302
one-hot 6.811868 0.695569 1410.228048

16 8 cyclical 7.771836 0.798580 626.538593
one-hot 7.752938 0.789764 640.614926

32 16 cyclical 7.393806 0.753349 653.313766
one-hot 7.224111 0.738680 660.806733

64 32 cyclical 7.540910 0.770091 893.147289
one-hot 6.965215 0.709630 905.810530

3 16 8 4 cyclical 8.016221 0.820358 850.189411
one-hot 7.235989 0.739930 847.862240

32 16 8 cyclical 7.525386 0.770729 902.373420
one-hot 7.222317 0.743517 936.223573

Table 8.1: Average RMSE over 5 repetitions for combinations showed in Figure 8.1, with the
minimums highlighted in black

As it can be seen, the best combination of hyperparameters (on average and on minimum) is

the Many-to-One two layered model with 16 and 8 neurons, with a batch size of 64, trained for

30 epochs and using cyclical encoding for the date codification. This is, in fact, the smallest

network in terms of parameters, since the cyclical encoding uses only four variables to code the

timestamps.

Final Repetitions

Using the best combination of hyperparameters, 5 repetitions were made in order to look for

the best weight tuning. Figure 8.2 shows the sequence prediction skipping 60 observations for

the best model after repetitions, which had a RMSE of 3.45 and a CVRMSE of 0.35. Figure

8.3 shows 4 different close-up day load predictions graphs.

As it can be seen, the curve fitting captures the general behaviour of the series, however, when it

comes to estimate the load peaks and drops the net doesn’t capture the information. The main

reason for this problem could be that these peaks and drops do not correspond to a pattern and

are influenced by external factors of which no record is kept or known. Another possible reason

is that as seen in Figure 4.9 the test split has a different distribution from the majority of the
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train split, reaching higher peaks. Therefore, in order to palliate this effect more data needs to

be recollected in 2020 (thus waiting until its generated) and then train with more recent data.

However, it must be taken into account that this chapter was based on predicting with predic-

tions, which is vastly challenging compared to the previous chapter but LSTMs still managed

to get a good prediction.

Figure 8.2: Sequence Prediction for MTO

8.3 Testing the best architecture on the Building Genome

2 data

Just as it was tested in section 4.4, the best architecture was applied to the Wolf education

Tammie building data, but this time for sequence prediction. This time the model achieved a

RMSE of 12.802 (in the original scale) and a CVRMSE of 0.1436. Figure 8.4 using sequences

but skipping the 60 intermediates so that there is a possible comparison with the original series

& 8.5 shows sequence prediction closeup for 4 different sequences. Prediction according to de

CVRMSE is much better for this data too when it comes to sequence prediction.
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Figure 8.3: Sequence Prediction for 4 different days
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Figure 8.4: Sequence Prediction for MTO for the Wolf education Tammie building
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Figure 8.5: Sequence Prediction for 4 different days for Wolf education Tammie building
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9. Conclusions & Further Work

This project has explored advanced deep learning techniques for time series energy load predic-

tion, from their theoretical foundations to their performance analysis in the energy load. Work

has proven the more complex architectures are not always the best option when the sample

size is small. The project’s main objectives have been covered succesfully, ranging from data

preprocessing to time series one-step and sequence prediction for energy demand forecast in

two real world examples.

9.1 Conclusions on Deep Learning

One of the main project subtasks was to gain strong knowledge and foundations in the Deep

Learning Techniques used for building complex models. This goal has been achieved through a

comprehensive study shown in Chapter 3. Based on that study, several deep learning architec-

tures were selected to test their short (one-step ahead) and mid-term (i.e. sequence) forecast

capabilities. The first type has been termed one-step models, while the later has been termed

sequence prediction models.

9.2 Conclusions on One-step models

From advanced architectures to the baseline FFN have been studied in depth, proving the

feasibility of these models in energy load prediction. The main conclusions to be drawn from

these models are:

• The best model was the LSTM model, followed closely by the FFN.

• Normalization seems to slightly improve the RMSE. It also reduces the number of epochs

needed but implies a smaller batch size (that is, fewer runs over the sample but smaller

steps in these runs).

• Adding exogenous information (in this case, weather data) does not improve predictive

performance, at least in one of the tested scenarios. However, this might be dued to the
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sample size (less than 10000 observations) is small to tune models with many predictors

or because the hyperparameter tuning needs to be more complex and allow to search for

bigger networks.

• This applies to complex models themselves which didn’t improve the LSTM model. The

main reason behind this is that some specific hyperparameters like the number of layers,

convolution/pooling size and stride or activation functions were not tuned, thus they

might be able to achieve a better performance in the future.

9.3 Conclusions on Sequence models

S2S and MTO architectures were studied in order to see which one was more suitable for

the sequence prediction problem. As it was showed, sequence prediction is not an easy task,

specially when working with real world, not trivial data. The main conclusions to be drawn

from these models are:

• The best architecture was the Many to One.

• Smaller models tend to work better than larger ones. No conclusions on the causes can be

drawed because the main reason behind this might be either smaller models work better

on sequence prediction or due to the small data sample size.

• In fact, smaller models in each familly usually work better due to the lack of data.

• Encoder-Decoder models seemed to perform poorly compared to the Many to One. This

could be due to the Encoder-Decoder being, by definition, bigger than the MTO, since it

has got double layers (each LSTM layer in the Encoder forces an associated layer in the

Decoder).

• Even in this challenging problem, the Many to One model was able to achieve a decent

performance. The main issue is that the model was not able to capture sudden peaks in

the energy demand.

9.4 Conclusions on the datasets

9.4.1 Alice Perry dataset

• The dataset seems to be very challenging, having a lot of irregularities such as outliers,

missing data and different behaviours. This doesn’t happen in most of the datasets the

literature uses (table 4.1).

• Difficult, extensive and careful pre-processing was necessary for the suitability of these

data for predictive models.
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• More data is required for a finer tuning. Maintenance records and other relevant informa-

tion could be included into the dataset to achieve a better performance. Unfortunately,

in order to collect more data, waiting until more observations are generated is necessary.

9.4.2 Building Genome 2

• The dataset is clean and accessible to everybody, which makes it extremely suitable for

this field of research

• The models used on the chosen building proved that they are viable as a load prediction

methodology for this kind of data.

9.5 Further Work

The advanced methodology exposed in this document opens the door for many interesting

options to continue working on:

• Finer hyperparameter tuning, personalized for each architecture. An extensive literature

review on hyperparameter tuning should be carried out since as this Final Degree Project

showed, ANNs are extremely sensitive to them.

• To increase sample size. However as commented above, this requires waiting. A different

approach could be to try transfer learning, but similar data must be used for this.

• To test these models against the existing results in literature. Some of the work reviewed

in table 4.2 used different models for load prediction but including other techniques to

improve predictive performance, such as clustering or probabilistic forecasting.

• Adapt the presented models and experiments for comparing results from the existing

literature. The existing work in literature performs load prediction but adapted to hier-

achical prediction, load profiling using clustering, probabilistic predictions among others.

In order to compare the results, the same techniques must be applied and combined with

the ones presented in this Final Decree Project. There is a particular interest in com-

paring these techniques with the results proposed by [63] which uses the same data but

including seasonal clustering and will be published shortly.

On the basis of the conclusions presented above, the project objective have been satisfactorily

fulfilled and are set out in this document, completing the Final Degree Project for the Degree

in Computer Engineering at the University of Valladolid.
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A. Appendix

A.1 Keras Key parameters

A.1.1 Compile parameters

• optimizer= optimizer used for calculating weight updates based on the gradient. As

mentioned, ’’adam’’ will be used.

• loss= loss function to be optimized, in this case the ’’MSE’’ representing the mean

squared error.

A.1.2 Fit parameters

• shuffle: this parameter regulates shuffling the sample when keras builds the mini-

batches. By default, this parameter is set to true. This will make consecutive samples

fall in different batches, thus the gradient calculation by batch will be less precise. Hence,

this parameter must be set to false when working with time series data.

• epochs & batch size: these two parameters regulate the number of iterations over the

sample (epochs) and the mini-batch size

• validation split: in order to check models before using the test partition, saving a

validation sample is an option to study the evolution during the training phase. However,

since hyperparameter tuning is automatized and the available sample is not a big one,

this parameter will be set to zero.

A.2 Keras Layers

A.2.1 LeakyReLU

The way of incorporating this activation function layer into the model is to add a LeakyReLU()

and setting activation=None in the previous layer. The key parameter is alpha which regulates
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the negative values of the activation function

A.2.2 Dense

Call with Dense(). Key parameters:

• units=number of neurons in each layer

• activation=activation function used in the fully conected layer

A.2.3 LSTM

Call with LSTM. Key parameters

• units=number of neurons in each layer

• activation=activation function used in the fully conected layer

• input shape= usually Number of Samples x Sequence Length x Number of Variables.

If set to (None,None,Number of variables) arbitrary length for the input sequence will

be accepted when predicting

• return sequences= this parameter is key for the architecture nature. If set to true, each

time one value from the input sequence is fed into the LSTM, an output is generated,

setting a One-to-One situation. If set to false, only when the last value is processed an

output will be generated, setting a Many-to-one situation

Input Shape

The LSTM input must be formatted into a 3D Tensor including number of samples x timesteps

x variables as seen in Figure A.1 before feeding it into the LSTM layer
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Figure A.1: LSTM tensor shape

A.2.4 Convolutional

Call with Conv1D(). Key parameters:

• filters=number of convolutions to be applied over each input sequence

• kernel size=size of each one of the convolutions

• strides= stride length when applying convolutions

A.2.5 Pooling

Call with MaxPooling1D(). Key parameters:

• pool size=pooling window size

• strides=stride length when applying pooling

• padding=the input vector is padded on the ends so the output keeps the shape of the

input

A.2.6 Dropout

Call with Dropout(rate=x), where rate indicates the chances of dropping out a neuron.

A.2.7 Concatenate

Call with concatenate([Output1,Output2], axis=1)
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A.3 Code

Code is available at the following repositories : Link to Repository 1 Link to Repository 2

in jupyter-notebook format. However, the Alice perry data is not of public domain, so only

examples using the Building Genome data will be available there, although the code is the same

except for the df (dataframe) assignation. In case the repository is not available please contact

any of the authors.

A.4 Alice Perry Data Preprocessing

A.4.1 Auxiliar Functions

import pandas as pd

import numpy as np

import datetime as dt

import matplotlib.pyplot as plt

import time as clock

plt.rcParams["figure.figsize"]=(20,10)

# Aggregates data into hourly granularity.

def aggregate_by_hour(df,timecol="Timestamp"):

df[timecol] = pd.to_datetime(df[timecol])

time = df.Timestamp.dt

group= df.groupby([time.year,time.month,time.day,time.hour]).mean()

grouptime=

pd.to_datetime([dt.datetime(year=k[0],month=k[1],day=k[2],hour=k[3]) for k

in group.index])

group= group.reset_index(drop="True")

group[timecol] = grouptime

return(group)

# Places NaN values in the negative values of the dataframe

def negative_to_na(df,feature):

index=df["AHUs_Heating_LPHW_energy_kWh"]<0

df[feature].loc[index]=np.nan

return(df)

# Fills the dataset with NaN between non consecutive observations

def na_in_gaps(df,freq="H"):

dates = pd.DataFrame()
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dates["Timestamp"] =

pd.date_range(start=df["Timestamp"].iloc[0],end=df["Timestamp"].iloc[-1],freq=freq)

return(pd.merge(dates,df,on="Timestamp",how="left"))

# Gets the time codification for the Timestamp

def get_time_codification(df,variables=["weekday","hour"],mode="cyclical"):

if mode=="one-hot":

weekday_oh = pd.get_dummies(df["Timestamp"].dt.weekday,prefix="Weekday_")

hour_oh = pd.get_dummies(df["Timestamp"].dt.hour,prefix="Hour_")

month_oh = pd.get_dummies(df["Timestamp"].dt.month,prefix="Month_")

dict_oh = {"weekday":weekday_oh,"hour":hour_oh,"month":month_oh}

output = pd.concat([dict_oh[v] for v in variables],axis=1)

output.insert(0,"Timestamp",df["Timestamp"])

return output

elif mode=="cyclical":

weekday_cos =

pd.Series(np.cos(df["Timestamp"].dt.weekday*2*np.pi/6),name="weekday_cos")

weekday_sin =

pd.Series(np.sin(df["Timestamp"].dt.weekday*2*np.pi/6),name="weekday_sin")

hour_cos =

pd.Series(np.cos(df["Timestamp"].dt.hour*2*np.pi/23),name="hour_cos")

hour_sin =

pd.Series(np.sin(df["Timestamp"].dt.hour*2*np.pi/23),name="hour_sin")

month_cos =

pd.Series(np.cos((df["Timestamp"].dt.month-1)*2*np.pi/11),name="month_cos")

month_sin =

pd.Series(np.sin((df["Timestamp"].dt.month-1)*2*np.pi/11),name="month_sin")

dict_sin = {"weekday":weekday_sin,"hour":hour_sin,"month":month_sin}

dict_cos = {"weekday":weekday_cos,"hour":hour_cos,"month":month_cos}
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output = pd.concat([dict_sin[v] for v in variables]+[dict_cos[v] for v

in variables],axis=1)

output.insert(0,"Timestamp",df["Timestamp"])

return output

# Plots in two colors the chosen variable according to a boolean mask

def

plot_masked_var(df,mask,var="Load",color="red",colorbase="#1f77b4",output=plt):

dfcopy=df.copy()

dfcopy[var][mask==0]=np.nan

output.plot(df["Timestamp"],df[var],color=colorbase)

output.plot(dfcopy["Timestamp"],dfcopy[var],color=color)

A.4.2 Load reading

#Dataset with AHUs information

df_load=pd.read_csv("../data/AlicePerry/ahusHeating.csv")

#Dataset with weather information

df_weather=pd.read_csv("../data/AlicePerry/weather/weather_station_processed2020.csv",

sep=";").drop(["Unnamed: 0","Record"],axis=1)

df_weather["Timestamp"]=pd.to_datetime(df_weather["Timestamp"])

#Joining both datasets

df=pd.merge(df_load,df_weather,on="Timestamp",how="left")

df=df.rename(columns={df.columns[1]:"Load"})

df_with_nas=df.copy()

#Checking Nas

print(df.isna().sum())

# Plotting the load variable

plt.plot(df["Timestamp"],df["Load"])

nas=df.isna()["Batt [V]"]

plot_masked_var(df,nas)

#Plot weather variables
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fig, axes = plt.subplots(10,figsize=(20,20))

for s in range(len(axes)):

axes[s].set_ylabel(df.columns[s+2])

axes[s].plot(df["Timestamp"],df.iloc[:,s+2],color="darkgreen")

A.4.3 Removing cooling and holidays periods

time=df["Timestamp"]

#Holiday period mask

closed=(df["Timestamp"]>dt.datetime(2018,12,25)) &

(df["Timestamp"]<dt.datetime(2019,1,2)) |

(df["Timestamp"]>dt.datetime(2019,12,25)) &

(df["Timestamp"]<dt.datetime(2020,1,2))

#Cooling period (mostly summer) mask

cooling=((df["Timestamp"]<dt.datetime(2018,9,15))) |

(df["Timestamp"]>dt.datetime(2019,5,5)) &

(df["Timestamp"]<dt.datetime(2019,8,13))

mask=closed | cooling

plot_masked_var(df,mask,color="purple")

df["Load"].loc[mask]=np.nan

A.4.4 Reading Met Éireann

df_met_or=pd.read_csv("../data/AlicePerry/hly1875.csv").rename({"date":"Timestamp"}

,axis="columns")

df_met=df_met_or.copy() #making a copy to save original data

df_met=df_met.replace(r’^\s*$’, np.nan, regex=True) # Fixing some wrong values

for col in df_met.columns[1:]:

df_met[col] = df_met[col].astype(float) #From string to float

df_met["Timestamp"]=pd.to_datetime(df_met["Timestamp"]) # Datetime to pandas

time class

matchmask=(df_met["Timestamp"]>=df["Timestamp"].iloc[0]) &

(df_met["Timestamp"]<=df["Timestamp"].iloc[-1]) #Getting the same dates as

our dataframe
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df_met=df_met.loc[matchmask]

A.4.5 Imputing NAs with Met Éireann

Barometric Pressure

pressure_dif=1010.73-1013.25 #Difference of pressure between 21meters and

0meters, since NUIG is measured at 21

df.loc[fillingindex,"BP

[mBar]"]=df_met["msl"].loc[fillingindex].values+pressure_dif

#Sudden drop fix in one single observation

df["BP [mBar]"].iloc[5206]=df_met["msl"].iloc[5206]+pressure_dif

Relative Humidity

df.loc[fillingindex,"RH [%]"]=df_met["rhum"].loc[fillingindex].values

Wind Speed

knots_to_ms=0.514444

df.loc[fillingindex,"WindSpeed

[m/s]"]=df_met["wdsp"].loc[fillingindex].values*knots_to_ms

Air Temperature

df.loc[fillingindex,"AirTemp [oC]"]=df_met["temp"].loc[fillingindex].values

df["AirTemp [oC]"]=df["AirTemp [oC]"]+3.5 #Error in the meter

Solar Radiation

datestofill=df["Timestamp"].loc[fillingindex]

fillingdates=datestofill+dt.timedelta(days=365) #Same period from the next year

df_weather.index=df_weather["Timestamp"]

df.loc[fillingindex,"Slr [kW/m2]"]=df_weather.loc[fillingdates,"Slr

[kW/m2]"].values

plot_masked_var(df[4000:7000],fillingindex[4000:7000],"Slr [kW/m2]")
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Plotting after filling

clean=df.isna().sum()==0

cleancols=list(df.columns[clean][1:])

fig, axes = plt.subplots(len(cleancols),figsize=(20,20))

print(cleancols)

for s in range(len(cleancols)):

axes[s].set_ylabel(cleancols[s])

plot_masked_var(df,fillingindex,cleancols[s],output=axes[s],color="#A70961"

,colorbase="darkgreen")
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