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Highlights: 

1. We train and validate by the first time one High-throughput mt-QSAR model 
using TOPS-MODE. 

2. The model correctly classifies 8,258 out of 9,000 multiplexing assay endpoints 
of 7903 drugs.. 

3. We determined the values of EC50 and Cytotoxicity for the anti-microbial / anti-
parasite drug G1. 
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ABSTRACT 
________________________________________________________ 
Quantitative Structure-Activity (mt-QSAR) techniques may become 
an important tool for prediction of cytotoxicity and High-throughput 
Screening (HTS) of drugs to rationalize drug discovery process. In 
this work, we train and validate by the first time mt-QSAR model 
using TOPS-MODE approach to calculate drug molecular descriptors 
and Linear Discriminant Analysis (LDA) function. This model 
correctly classifies 8,258 out of 9,000 (Accuracy = 91.76%) 
multiplexing assay endpoints of 7903 drugs (including both train and 
validation series). Each endpoint correspond to one out of 1418 
assays, 36 molecular and cellular targets, 46 standard type measures, 
in two possible organisms (human and mouse). After that, we 
determined experimentally, by the first time, the values of EC50 = 
21.58 µg/mL and Cytotoxicity = 23.6 % for the anti-microbial / anti-
parasite drug G1 over Balb/C mouse peritoneal macrophages using 
flow cytometry. In addition, the model predicts for G1 only 7 positive 
endpoints out 1,251 cytotoxicity assays (0.56% of probability of 
cytotoxicity in multiple assays). The results obtained complement the 
toxicological studies of this important drug. This work adds a new 
tool to the existing pool of few methods useful for multi-target HTS 
of ChEMBL and other libraries of compounds towards drug 
discovery. 
 

1. Introduction 
The drug cytotoxicity tests are screening methods that typically uses permanent cell lines for ranking acute 

toxicities of parent compounds based on the basal cytotoxicity theory chemicals exert their acute toxic 
effects by interfering with basic cellular functions that are common to all mammalian cells [1].  In vitro drug 
cytotoxicity may be variable among different cell lines; thus one parameter for cell death is the integrity of 
the cell membrane, which can be measured by the cytoplasmic enzyme activity released by damaged cells 
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[2]. Specifically, macrophages are phagocytic cells that recognize and kill microbial and tumor targets by 
cell-to-cell contact or through secretion of a wide array of products including reactive oxygen species, 
reactive nitrogen intermediates, cytokines, chemokines, etc. [3]. The macrophages execute numerous 
functions such as antigen presentation, cytokine production, phagocytosis, migration, and the production of 
ROS [4]. Important drug cytotoxicity assays measure the increase in the number of macrophages due to 
injection of one sterile irritant agent, such as thioglycollate, several days prior to harvesting the cells. The 
resulting peritoneal cells are referred to as elicited macrophages. A commonly used source of mouse and rat 
macrophages is the peritoneal cavity. Two types of macrophages from the peritoneal cavity are used, 
resident and elicited [5]. The experimental results obtained by many groups worldwide that carry out assays 
of drug cytotoxicity / biological effects over different cell lines including macrophage cells are available for 
public research in the database ChEMBL at: https://www.ebi.ac.uk/ChEMBLdb [6]. ChEMBL contains 
>10,000 outcomes for assays of drugs related somehow to macrophage with different degrees of curation 
(outputs obtained after using macrophage as keyword in a simple search). In this context, the search of 
computational models to predict the possible results for new drugs in all these assays have become a goal of 
the major importance to reduce experimentation costs. Besides, many drugs have been assayed only for 
some selected tests out of the many possible assays described so data mining of ChEMBL is a very 
interesting source of new knowledge [7].  

In special, Quantitative Structure-Activity Relationships (QSAR) and specifically Quantitative Structure-
Toxicity Relationships (QSTR) have been widely used to predict toxicity from chemical structure and 
corresponding physicochemical properties [8]. Unfortunately, almost current QSAR/QSTR models are able 
to predict new outcomes only for one specific assay. In our opinion, we can circumvent this problem using 
multi-target QSAR (mt-QSAR) techniques to model complex datasets determined in multiplexing assay 
conditions (mj) as is the case of ChEMBL [9, 10]. There are many types of molecular descriptors that can be 
used, in principle, to seek mt-QSAR or mt-QSTR models able to predict drug activity and cytotoxicity. For 
instance, entropy measures are very flexible parameters that can be used in many situations in QSAR/QSTR 
modeling. In a very recent work [11], we used entropy measures to train and validate for the first time a 
QSTR model that correctly classifies 8,806 out of 9,001 (Accuracy = 91.1%) multiplexing assay endpoints 
of 7903 drugs (including both training and validation series). We have fit the classifier using LDA. The best 
equation found was:  
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This model is expected to give different classification probabilities of the compound for different 
conditions mj: organisms (ot), biological assays (au), molecular or cellular targets (te), or standard type of 
activity measure (sx). Consequently, S(mj) = S(di, au, cl, ot, te, sx) is a real-valued variable used here to score 
the propensity of the drug to be active in multiplex pharmacological assays in selected mj. The different 
parameters in the equation were introduced to codify specific information that is known to be determinant in 
the final value of biological activity. The statistical parameters for the above equation are: Number of cases 
(N), Canonical Regression coefficient (Rc), Chi-square statistic (χ2), and error level (p-level) < 0.05 [12]. 
Each endpoint corresponds to one out of 1443 assays, 32 molecular and cellular targets, 46 standard type 
measures, in two possible organisms (human and mouse). In Table 1, we resumed all the statistical 
parameters of this model, other models published before, and a new model we are going to present in this 
work. 

Table 1 comes about here 
We have also determined experimentally, for the first time, the values of EC50 = 8.21 µg/mL and 

Cytotoxicity = 26.25 % for the antimicrobial / antiparasitic drug G1 on Balb/C mouse thymic macrophages 
using flow cytometry. In addition, we have used the new model to predict G1 endpoints in 1,283 assays 
finding a low average probability of p(1) = 0.50% in 152 cytotoxicity assays. Last, we have used the model 
to predict average probability of the interaction of G1 with different proteins in macrophages. Interestingly, 
the Macrophage colony-stimulating factor receptor, the Macrophage colony-stimulating factor 1 receptor, 
the Macrophage migration inhibitory factor, Macrophage scavenger receptor types I and II, and the 
Macrophage-stimulating protein receptor, have also very low average predicted probabilities of p(1) = 0.092, 
0.038, 0.077, 0.026, 0.2, 0.106, respectively. Both experimental and theoretical results show a moderate 
cytotoxicity of G1 over thymic macrophages. 
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In other work [13], we have developed one mt-QSTR model based on the spectral moments of on 
stochastic matrix. The model with only four variables is able to assign each drug to 1 out of 2 possible 
activity classes: active (C = 1) or non-active compounds (C = 0), given the molecular structure and several 
multiplex assay conditions mj. A general data set consisting of >10,000 multiplexing assay endpoints has 
been downloaded from the public ChEMBL database [6, 14]. In any case, after a careful curation of the 
dataset we have retained 9,001 multiplexing assay endpoints (statistical cases) after the elimination of all 
cases with missing information or very low representation. In order to find the mt-QSTR model, we have 
used the LDA module of the software package STATISTICA 6.0 [15]. This classifier presented good results 
in both training and external validation series with an overall Accuracy higher than 90%. According to 
previous reports in the QSTR literature, the Accuracy values higher than 75% are acceptable [16-22]. The 
reader should be aware that N here is not the number of compounds but the number of statistical cases. See 
also Table 1 for comparative purposes. The best equation found was:  

( ) ( ) ( ) ( ) ( )
05.021.543874.06611

221514.20569.00127.02668.07488.0
2

5555
*

<===

−∆⋅+∆⋅−∆⋅−=

pRN

tsomS

c

iiii
ji

χ

ππππ
 

Another important method for mt-QSAR studies is TOSS-MODE; which was introduced by Estrada et al. 
[23-27] and implemented in the software MODESLAB (renamed as TOPS-MODE). TOPS-MODE have 
been demonstrated to be successful in both QSAR [28-32] and QSTR models [33-36]. More recently TOPS-
MODE have been applied to High-throughput mt-QSAR studies by our group [37] and also Molina & 
Speck-Planche et al. [38]. In a previous paper [39], we have trained and tested an Artificial Neural Network 
(ANN) model for the first time, in order to perform a multiplexing prediction of drugs effect on macrophage 
populations. In so doing, we have used the TOPS-MODE approach to calculate drug molecular descriptors 
and the software STATISTICA to seek different ANN models such as Linear Neural Network (LNN) and 
Multi-Layer Perceptrons (MLP). The LNN was best model found with Ac = 93.0% (8,258 out of 9,000 
assay endpoints) for7903 drugs in training and test series, see also the Table 1.  
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 Each endpoint corresponds to one out of 1418 assays, 36 molecular or cellular targets, 46 standard type 
measures, in two possible organisms (human and mouse). Secondly, we have determined experimentally, for 
the first time, the values of EC50 = 11.41 µg/mL and Cytotoxicity = 27.1 % for the drug G1 over Balb/C 
mouse spleen macrophages using flow cytometry. In addition, we have used the LNN model to predict the 
G1 activity in 1,265 multiplexing assays not measured experimentally (including 152 cytotoxicity assay 
endpoints).  Both experimental and theoretical results point out a low macrophage cytotoxicity of G1 over 
spleen macrophages.  

In all these previous works, we have used different machine learning (LDA, LNN, and MLP) to seek mt-
QSARs for CHEMBL cytotoxicity dataset. We determined also the effect of G1 over spleen and thymic 
macrophages. However, the LDA model using TOPS-MODE and the cytotoxicity of G1 over peritoneal 
macrophages have not been reported yet. In this work we reported the first mt-QSAR model for drug 
cytotoxicity using CHEMBL data set, TOPS-MODE descriptors, and LDA technique to seek the model. 
Next, we report, by the first time, the experimental study of the effect of the drug G1 over Balb/C mouse 
peritoneal macrophage population using flow cytometry. Last, we carry out the prediction of other 
multiplexing assay endpoints for G1, not experimentally determined in this work. We also present by the 
first time a comparative table with the results obtained with different models developed before and in this 
work. The results obtained are very important because they complement the toxicological studies of this 
important anti-bacterial, anti-fungal, and anti-parasite drug.  

2. Materials and Methods 
2.1.  Computational methods 

In order to seek the High-throughput mt-QSAR model we used the LDA module of the software package 
STASTICA 6.0 [15]. The model developed presented the general form.  
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Where, S(mj) = S(di, au, cl, ot, te, sx) is a real-valued variable that scores the propensity of the drug to be 
active in multiplex pharmacological assays of the drug depending on the conditions selected mj. The 
statistical parameters used to corroborate the model were: Number of cases (N), Canonical Regression 
coefficient (Rc), Chi-square statistic (χ2), and error level (p-level); which have to be < 0.05 [12].  

2.2. Biology assays 
2.2.1. Peritoneal macrophages isolation and cell culture. 
Peritoneal macrophages were obtained from mice euthanized by cervical dislocation. The peritoneal of the 

animals were surgically exposed using a midline incision. Peritoneal fluid was harvested by injecting 10 mL 
of ice-cold PBS into the peritoneal cavity followed by syringe aspiration. Cell suspensions were washed 
twice by centrifugation. Cell viability (over 95%) was determined using trypan blue exclusion. Macrophage 
numbers were adjusted to 1 × 106 cell/mL and plated 100 µL/ well in 96-well flat-bottomed tissue culture 
plates (UNIPARTS, Toluca, México). Cells were incubated in RPMI 1640 complete medium containing 
10% FBS, and incubated for 24 h at 37 °C under 5% CO2 in a humidified chamber. Non-adherent cells were 
removed by gently washing with PBS and fresh RPMI 1640 complete medium was replaced. The efficiency 
of macrophage enrichment was monitored by 7AAD assay and routinely exceeded 90%. Cells were 
equilibrated for 24 h before commencing the experiment. 

2.2.2. Reagents, antibody, and determination of cytotoxicity percentage by flow cytometry analysis 
The active compound 1-5-Bromofur-2-il-2-bromo-2-nitroethene (G1), CAS number 35950-55-1, was 

kindly supplied from the CBQ, Sample purity was 99.93%. The percentage of formation of cytotoxicity cells 
was determined by evaluating 7-Amino-actinomycin D (7AAD) stained preparations of macrophages treated 
with the dosed chemical (G1) at 10, 8, 6, 4 and 2 µg/mL in 24 h. G1 was dissolved in dimethylsulfoxide 
(DMSO), Macrophages were stained with  phycoerythrin (PE), labelled monoclonal antibodies according to 
the manufacturers' instructions. Flow cytometry was performed using a FACalibur cytometer (Becton 
Dickinson, México). Thereafter, FACS data were analyzed with FlowJo 7.6.5 software. Both, anti-CD14 
antibody (used to label CD14 receptor) and 7 –aminoactinomycin (7-AAD) at 5 µg/mL viability solution 
were purchased from BD (BD Biosciences, México). In all cases, dimethyl sulfoxide (DMSO); which was 
purchased in turn from Sigma–Aldrich Co. (DF, México). was used as the diluting solvent, and dosage 
solutions were prepared immediately prior to testing. Incubations were carried out in triplicate; solvent 
controls were run with each experiment. Conditions of maintenance, treatment, and procedures carry out 
with animals, Female Balb/C mice, have been published before [39], follow the national normative  [40], 
please see a detailed description in the supplementary material file (SM1) of this work. 

3. Results and Discussion 
3.1. Multiplexing model of drug effect over macrophage 
3.1.1. Model training & validation 

It is well known that biological outcomes in multiplex cell viability assay for drugs effect over different 
cellular lineages depend not only on drug structure but also on the set of assay conditions selected (mj) 
[42]. In this work we developed a simple High-throughput mt-QSAR model with only four variables able 
to assign each drug to 1 out of 2 possible activity classes: active (C = 1) or non-active compounds (C = 0); 
given the molecular structure and several multiplex assay conditions mj. This model is expected to give 
different classification probabilities of the compound for different: organisms (ot), biological assays (au), 
molecular or cellular targets (te), or standard type of activity measure (sx). It is also desirable to use an 
algorithm that takes into consideration the different degrees of accuracy or level of curation (cl) in the 
experimental data. We fit the classifier using LDA. The best equation found was:  

( ) ( ) ( ) ( ) ( )
05.016.45717.06747

50372.46819.02122.22617.08261.5
2

5555
*

<===

−∆⋅+∆⋅−∆−⋅=

pRN

stomS

c

iiii
ji

χ

µµµµ
 

S(mj) = S(di, au, cl, ot, te, sx) is a real-valued variable that scores the propensity of the drug to be active in 
multiplex pharmacological assays of the drug depending on the conditions selected mj. The statistical 
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parameters for the above equation are: Number of cases (N), Canonical Regression coefficient (Rc), Chi-
square statistic (χ2), and error level (p-level); which have to be < 0.05 [12]. The different parameters in the 
equation were introduced to codify specific information that is known to be determinant in the final value of 
biological activity. This discriminant function presented good results both in training and external validation 
series with overall Accuracy higher than 90%. According to previous reports in the QSAR literature [16-22] 
values Accuracy higher than 75% are acceptable. All the statistical data of this model are resumed in Table 
1. The reader should be aware that N here is not number of compounds but number of statistical cases. One 
compound may lead to 1 or more statistical cases because it may give different outcomes for alternative 
biological assays carried out in diverse sets of multiplex conditions defined by the ontology mj => (au, cl, ot, 
te, sx). This type of ontology introduced here allows us to clearly define the multiplex conditions for one 
assay in our dataset following the same line of thinking used for other ontology-like datasets in the literature 
[43]. The above equation was written in a compact form. At follow we expand the equation n order to better 
explain the meaning of the different parameters: 
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The first parameter *µi
5 = p(a)·p(c)·std

µ
i
5 codify the influence of the chemical structure of the compound 

over the biological activity. It is known that the spectral moment of order 5 codify information about all 
types of structural fragments with five or less bonds in the molecule. In addition to the topological 
information wµi

5 codify also information about the physicochemical properties of the atoms and bonds in the 
molecule. It depends on the type of atomic or bond weights wij used. In our equation we set wij equal to the 
values of standard bond distance (std) in order to incorporate geometrical information [33-35, 44, 45].   
Consequently, *µi

5 codify the effect of the structure of the drug over the biological activity but depending on 
the type of assay carry out. In this sense, we pre-multiplied µi5 by the parameters p(au) and p(cl). The 
parameter p(a) is a probability (a priori) that codify the propensity of one assay to yield positive results. We 
defined p(au) = nl(au)/ntot(au); where n1(au) and ntot(au) are the number of positive or total results for the ith 
pharmacological assay ai in the ChEMBL dataset studied, respectively. The parameter p(cl) is a probability 
(a priori) of confidence for a given data value into the ChEMBL dataset studied. We defined p(c) as follow 
p(c) = 1, 0.75, or 0.5 for data values reported as being curated at expert, intermediate, or auto-curation level 
respectively. In Table 2 we give some example of assays and their p(au) values. In the Table SM1 of the 
online supplementary material file we list exhaustive values of these parameters.  

Table 2 comes about here 
  The other three terms in the equation express the structural dissimilarity between one specific compound 

and a group of active compounds that have been assayed in specific multiplex conditions defined by the sub-
ontology mj => (ot, te, sx). We quantify this effect in terms of the deviation ∆µ

i
5(mj) = std

µ
i
5 - <

std
µ

i
5(mj)>. 

This deviation terms represent the hypothesis: H0 the structural dissimilarity between one compound with 
respect to the average of all compounds in a group predict the final behavior of the compound. For instance, 
∆µ

i
5(ot) = std

µ
i
5 - <std

µ
i
5(ot)> measure the deviation from the average value <µ

i
5(ot)> of µi

5 for all active 
compounds (C = 1) assayed in the organism ot => t = 1, 2 for Human or Mouse, respectively. The two 
possible values for this parameter are <µ

i
5(o1)> = 18139.7, and <µi

5(o2)> = 18149.6. This type of model able 
to model/interpret cross-species activity is of the major  importance in order to reduce assays in humans 
[46]. By analogy, ∆µi

5(te) = std
µ

i
5 - <std

µi5(te)> is the dissimilarity between the structure of compound ith 
(expressed by stdµi5) with respect to all compounds active against the molecular or cellular target te. In 
Table 3 and Table 4 we give the values of <µi

5(te)> and <µi
5(sx)> for the different targets or standard 

measure types respectively. 
Please insert both Table 3 and Table 4 near here 

3.1.2. Domain of application of the model 
A QSAR model is only valid within its calibration domain or domain of applicability (DA), and new 

objects must therefore be assessed as belonging to this domain before the model is applied [47]. The valid 
DA can easily be defined with the LDA model, as outlined in previous works [48]. In this data set, a total of 
only 355 out 9000 total objects (statistical cases) fall outside of the DA. This DA may be geometrically 
defined as the rectangular area inside the 5% confidence bound for the ± 2 residuals interval and the 
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leverage limit of h = 3·p’/N = 3·(Nv + 1)/N = 3·(4 + 1)/6746 = 0.00223. Where, Nv is the number of 
variables in the model and N the number of cases used to train it. The DA can be visually illustrated in the 
so called Williams’ graph (see Figure 1) [49]. All of the remaining 8645 objects (96.1% of the data set) fall 
within the valid DA. We found similar error for both train and prediction sub-sets with 6747 and 2253 
objects (6747 + 2253 = 9000) respectively. Interestingly, 93.8% of drugs tested in some macrophage 
cytotoxicity assay lie within the DA as well. Similar behavior was found for other sub-sets of objects (see 
Table 5).  

Figure 1 comes about here 
In order to predict the classification of one compound one have to substitute in the High-throughput mt-

QSAR model in first instance the structural parameter of the compound µ
i
5 is not sufficient to obtain 

different outputs for the same compound assayed in diverse conditions. In addition, we have to substitute the 
parameters characteristics of the given assay conditions p(au), p(cl), <µ

i
5(ot)>, <µi

5(te)> , and <µi
5(sx)> .   

The models is expected to be more accurate for those mj based on the more representative as possible 
number of cases (Nj); taking into consideration the influence of Nj in multiplex assays [50]. In Tables 2, 3, 
and 4 we report values of these parameters. In total we analyzed Na = 1418 assays, Nt = 36 molecular or 
cellular targets, Ns = 46 standard types of biological activity measures. Considering that we have determined 
this values independently our High-throughput mt-QSAR model is able to predict a huge number of 
combinations of biological assay conditions mj. However, we strongly recommend using the model only for 
those mj with at least 10 known cases. The number Nj of mj that fulfill this stronger requisite are: Na = 437 
assays, Nt = 22 targets, Ns = 20. The max number of outputs with this constrain Smax = Na x Nt x Ns x No = 
437 x 22 x 20 x 2 = 384,560 multiplex conditions mj. Notably, No = 2 is the number of organisms 
susceptible to be studied with this model - Human (Homo sapiens) and Murine (Mus musmuculus). 
Consequently, our model is expected to be successful in the predictive extrapolation of experimental data 
from Murine species to Human. 

Table 5 comes about here 
3.2. Experimental-Theoretic Study of G1 anti-microbial drug 
3.2.1. Experimental results 
The compound G-1 is one of the members of a new family of furylethylene derivatives with both anti-

bacterial and anti-fungal properties [51]. More recently anti-parasite activity has been also reported [52]. 
The compound was synthesized in the laboratories of the Chemical Bioactives Center (CBQ) at the 
Universidad Central de Las Villas (UCLV), Cuba. Nitrovinilfurans compounds are widely used in medicine, 
industry and agriculture Interest in the study of these compounds has increased in recent years due to the 
potent microcidal activity shown by compounds with this type of chemical structure Nitrofurans constitute 
an important group of chemicals with antimicrobial properties that are currently used in human and 
veterinary medicine [53]_ENREF_14.  

3.2.2. Cytotoxicity assays 
The cytotoxicity is defined as the response of toxicity of a compound on the cell. The kinetic cell viability 

measurement provides the temporal information as to when a drug of interest induces its cytotoxic effect 
[54]. Quantifying cell viability or cytotoxicity is crucial for understanding cancer biology, compound 
toxicity and cellular response to cytokines and other biological questions [55].The specific method used will 
greatly influence the interpretation of the data [56, 57]. In our study we used only the detection of membrane 
integrity by staining with 7AAD and flow cytometry.  Several parameters were analyzed for dramatic views 
on the cytotoxicity of the drug. Viability dye 7AAD is routinely used in four-color flow cytometry assays, 
and therefore its use in conjunction with fixation should be carefully evaluated [58]. The analyses with flow 
cytometry were performed; in order to follow the percentage of live macrophages present in the 
macrophages populations treated with G1 at different concentrations we observed changes in the viability of 
the macrophages after 24 hours. The assay shows a significant increase of dead cells, Cytotoxicity (%) = 
23.6%, compared to the group untreated (2.85 %) and the DMSO group (3.23%) at cmax = 10 µg/mL. The 
treatment of 6 and 8 µg/mL results in a dose-dependent significant increase in cytotoxicity (16.5%) and 
(19.4%) respectively (Figure 2). The percent of cytotoxicity is similar in concentrations 2 and 4 µg/mL 
(approximately 10%). It is noted further that there is an increased cytotoxicity in a dose-dependent this 
phenomenon has been reported in several studies using other drugs [59]. These resulted indicate slight 
toxicity of G1 (10 pg / mL) because the percentage of cytotoxicity calculated was 23.6% <50%. Furthermore 
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the estimated EC50 for this product was 21.82. [60]. In other studies with the product in lymphocyte 
populations the concentration 15µg/mL was observed cytotoxicity [61]. 

Figure 2 comes here 
 Identification of ‘viable’ or ‘healthy’ cells by light-scatter (a common practice as perceived in a core 

laboratory) is purely empirical, and relies on the shape of the Forward Scatter vs. Side Scatter (FSC / SSC) 
cluster. Essentially, gating is set on the cloud-like distribution of cells with low to medium side-scatter, 
excluding cells with low forward scatter and high side-scatter. Sometimes this procedure provides a 
remarkable correlation between the percentage of excluded cells and the percentage of dead cells as 
identified by a viability stain such as 7-aminoactinomycin D (7-AAD) or propidium iodide (PI) [62]. 
Secondly, we investigated the MFI on highly homogenous macrophages populations defined by the 
expression of CD14, obtained from the peritoneal macrophage of healthy mouse. These macrophages were 
exposed to different concentrations of G1 with DMSO. In Figure 3, we depict a pseudo-color smooth 
projection of mean Intensity Fluorescence (MFI). This Figure represents plot FSC vs. SSC after exposure of 
G1 at 10µg/mL. In Figure 3A shows a 11.4% of the cell population of the total acquisition. The figure 3B 
has shown the cell population alone. The 3C and 3D shows the regions (R2 and R3) of macrophages labeled 
with CD14Pe (98.6%) of the total population. This figure shows the similarity of the dispersion values using 
foward (FSC) and side scatter (SSC). Cytotoxicity studies were used both forward scatter and side scatter 
because has shown high correlation [63]. This same methodology was used to represent the regions (R4, R5) 
stained with 7AAD this cell population represents 53.3% of total (3E; 3F).The SSC-H +, FSC-H + shows no 
significant differences at p <0.05 compared to control. On the other hand no significant differences are 
observed in CD14Pe+7AAD+ at 10µg/mL compared to control (CN) which shows that there is some 
cytotoxicity in macrophages thus corresponds to the results of cytotoxicity percentage calculated for this 
population. It is known from literature that the forward light scatter versus side scatter 90th is a measure of 
cell size and cell granularity respectively, the Latter Being dependent upon the presence of intracellular 
structures that change the refractive index of light [64]. The number of labeled cells with 7AAD indicates a 
slight cytotoxicity G1 but the actual calculation of cytotoxicity was 23.6%. Statistical analysis also confirms 
that there are slight cytotoxicity since no significant differences between the treated and control. 

Figure 3 comes here 
In Table 6, we show the average values of Mean fluorescence intensity (MFI) in SSC and/or FSC 

scattering mode, for all samples (Negative Control, DMSO, and CD14Pe phenotypic marker macrophages 
exposed to G1).for all concentration of product G1. MFI and cell count (Event count) in FSC scattering 
mode give an idea of cellular size, while the same parameters but in SSC scattering mode measure internal 
cellular damage [65]. The events average in the dose 10 µg/mL was 1034. Moreover, the respective averages 
of MIF in quadrant 2 (Q2) for FSC and SSC are 550.83 ± 103 and 313.83 ± 94.4 (see Figure 3). In 
conclusion it was observed events classified by size and granularity for this concentration.  
 At a given a concentration, each experiment was carried out two times (repeated two times) using different 
animals (three animals) and the measure obtained for each animal was replicated three times (see materials 
and methods). Table 6 we show the averages of repetitions. We used the software STATISTICA for both 
means and ANOVA analysis [66]. The results show not significant differences (p ≤ 0.05) between the mean 
values of MFI for G1-treated samples at different concentrations (2 - 10 µg/mL) with respects to the 
negative control (NC) and DMSO groups. In particular, there are not significant differences between the 
mean values of MFI for G1-treated samples labeled with anti-CD14Pe and stained with 7AAD (living 
macrophages) with respects to both control groups (see Table 6). The ANOVA analysis was carry out 
applying Tukey’s method. We confirm that there not significant differences for treated samples of living 
macrophages with respect to control groups. The numbers of cells are in a range between 500 and 1500 
events in general. The Figure 4 shows significant differences between groups. 

Table 6 and Figure 4 comes about here 
In addition, CD14 PE was used as a macrophages marker in the presence of 7AAD; as described in the 

Materials and methods section. In total, 52.7% of macrophages were marked with CD14Pe and 7AAD. The 
MFI average was 32.55 ± 9.3 and 130.35 ± 29.4 respectively. It means that more than 45% of macrophage 
were still alive after treatment with G1 at the higher concentration cmax = 10 µg/mL. In Figure 5, we show 
two parameters CD14Pe (FL2) and 7AAD (FL3) of the population of macrophages at this concentration. 
These additional results are consistent with the previous paragraph. 
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Figure 5 comes here 
Finally, EC50 calculations using different methodologies have been shown below. The results show that the 
best dose-response curve was the Five parameter logistic (1/Y2) with an R2 = 0.956. The Root Mean Square 
Error (RMSE = 0) and EC50 = 21.82. This study calculated the EC50 being observed that these values differ 
with relation to the methodology applied (Tabla 7). Fitting nonlinear models to observed data is often 
complicated by non-constant or heterogeneous variability. Heterogeneous variability or heteroscedasticity 
occurs in most types of observed data. This is especially true for biochemical assays where concentration or 
dose is the predictor. The best curve fit is reached when the curve is pulled as close as possible to each data 
point without breaking the actual curve model. The nonlinear least square algorithm accomplishes this task. 
The nonlinear (or linear) least square algorithm assumes that all points have the same variability, so all 
points influence the curve fit equally [67]._ENREF_49 The nature of the data entails a variation of the 
dependent variable that changes over the data is known as heterocedasticity. Many methods of regression 
analysis is based on the assumption of equal variances, but MasterPlex ReaderFit software used to calculate 
the EC50 offers 4 different weighting algorithms to account for heterocedasticity. The five parameter logist is 
the optimal model equation and weighting algorithm with different parameters (Root Mean Square Error 
(RMSE), R-Square, and Standard Deviation of % Recovery). One way to counterbalance no constant 
variability is to make them constant again.  To accomplish this, weights are assigned to each standard 
sample data point.These weights are designed to approximate the way measurement errors are distributed.  
By applying weighting, points on the lower part of the curve are given more influence on the curve again. 
One of algorithms of assigning weights: is 1/Y2 – Minimizes residuals (errors) based on relative Mean 
Fluorescence Intensity and Relative light Unit, (MFI/RLU) values. Many functions have been tried as curve 
models for immunoassays, but few of them possess all of these properties. The need for a curve model that 
accommodates asymmetry has been necessitated by improvements in instrument and laboratory technology. 
The development of sandwich assays led to dose–response curves that tend to be more asymmetric than 
earlier types of assays. Additionally, because of improvements in signal-to-noise ratios, asymmetry is an 
issue even for assays whose dose–response relationships are not as highly asymmetric. The reason for this is 
that even modest levels of lack-of-fit error caused by fitting mildly asymmetric data to a symmetric model 
can dominate the pure error due to random variation in low-noise modern assays. For symmetric 
immunoassay and bioassay data, it can be argued that no curve model has been as successful as the four-
parameter logistic function. Despite its utility, the 4PL function is generally not an adequate curve model for 
much of the asymmetric response data commonly observed in immunoassay and bioassay applications. The 
five-parameter logistic function, which includes a fifth parameter, permits asymmetry to be effectively 
modeled [68]. The formula for analysis is: 
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 In conclusion two of the highest concentrations showed some cytotoxicity but I note that the EC50 is above 
the concentrations used in our study. In general, the cytotoxicity EC50 values for each compound were lower 
after 24h exposure. The best method used for the analysis was the 5PL using (1/Y2). The Figure 6 displays 
MasterPlex program used to calculate the EC50. It observes where the parameters that makes up the formula 
of equation 5PL. 

Figure 6 come here 
This study evaluated the cytotoxicity by calculating the percentage of cytotoxicity and EC50 by Equation 5 
PL. The best equation showed a R = 0.95. A comparison between the MFI of the groups treated with the 
negative control for parameters that reads the flow cytometer. The evaluated product showed slight 
cytotoxicity 
3.2.3. Prediction of G1 cytotoxicity for other assays  

In total we predicted 1,265 multiplexing assay endpoints for G1 biological activities. Notably the model 
predict very low probability (0.28) for G1 cytotoxicity (cutoff of TC50 < 100 µM) against human 
macrophages. The model also predicts only 7 positive endpoints for G1 out of 1,251 cytotoxicity assays 
(0.56% of probability of cytotoxicity in multiple assays), see Table 8. Interestingly, the predictive 
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probability obtained for this compound in the cytotoxicity assay against WEHI cell line was 0.84. WEHI cell 
line is a biological model for leukemia and has been used to test anti-carcinogenic activity [69].   

Several predictions were conducted in J774 macrophages cell line (170 assays). In all cases the model 
predicts low probability of G1 to present cytotoxicity effect against J774 macrophages. Macrophages are 
highly motile cells capable of chemotaxis and pathogen engulfment [70]. J774 and Raw 264.7 macrophage 
cell lines; which are well-established model systems in cell biology and immunology. The resistance of 
passive J774 cells to expansion of their surface areas is about one order of magnitude higher than that of 
human neutrophils [71]. The J774 has been used [72] to assess drugs anti-parasitic activity against diverse 
parasite species such as Plasmodium parasites, Trypanosoma brucei brucei, and Leishmania mexicana 
mexicana. Other research reported this cell line to assess anti-leishmanial activity of compounds against 
both the promastigote and intracellular amastigote stages of Leishmania infantum and L. donovani [73]. This 
is of a great importance if we know that the G1 have been demonstrated experimentally to be active against 
bacteria and parasites [74].  

Table 8 comes about here 
Some of these positive results in predictive tests included the evaluation of the cytotoxicity in RAW264.7 

(Monocytic-macrophage leukemia cells) cell lines. The same Table 8 shows that the G1 could inhibit with 
89% of probability such cells in some specific assay conditions. However, the model predicts low 
probabilities of cytotoxicity in other assays using RAW264.7 cell. The RAW264.7 cell line was derived 
about 30 years ago from a tumor developing cells in a BAB/14 mouse, a BALB/c IgH congenic strain, 
inoculated with Abelson murine leukemia virus (MuLV), a defective transforming virus containing the v-abl 
tyrosine kinase oncogene, and replication-competent Moloney (Mo-MuLV) that served as helper virus [75] 
In addition, because of ease of cell propagation, high efficiency for DNA transfection, sensitivity to RNA 
interference, possession of receptors for many relevant ligands, and other properties, RAW264.7 has been 
chosen by the Alliance for Cellular Signaling as the primary experimental system for their large-scale study 
of signaling pathways [68, 76].  
  

4.  Conclusion 
mt-QSAR techniques are become an important tool for prediction of cytotoxicity and High-throughput 
Screening (HTS) of drugs to rationalize drug discovery process. The results obtained through this new 
theoretically mt-QSAR methodology coincides with the experimental data G1 drug, in this sense; we can 
conclude that our model applies both to predict the biological activity of a drug as its cytotoxicity. This work 
adds a new tool to the existing pool of few methods useful for multi-target HTS of ChEMBL and other 
libraries of compounds towards drug discovery. 
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TABLES TO BE INSERTED IN THE TEXT 
Table 1. Overall results of the classification model and comparison with othe mt-QSTR models 

Descriptors Technique Set Stat. a % Sub-set n0 n1 Ref. 
Spectral LDA t Sp 97.4 n0 3438 90 This work 
Moments   Sn 85.6 n1 464 2755  

   Ac 91.8 total    
  cv Sp 97.9 n0 1138 25  
   Sn 85.0 n1 163 927  
   Ac 91.7 total    

 LNN t Sp 92.5 n0 3262 266 [39] 
   Sn 93.9 n1 197 3022  
   Ac 93.1 total      
  cv Sn 93.1 n1 1015 75  
   Sp 92.2 n0 91 1072  
   Ac 92.6 total      
 MLP t Sn 94.3 n1 3037 182  
   Sp 92.8 n0 255 3273  
   Ac 93.5 total      
  cv Sn 94.1 n1 1026 64  
   Sp 93.2 n0 79 1084  
   Ac 93.7 total      

Stochastic LDA t Sp 94.5 n0 3325 195 [13] 
moments   Sn 82.9 n1 554 2684  

   Ac 88.9 total    
  cv Sp 95.3 n0 1116 55  
   Sn 83.3 n1 179 893  
   Ac 89.6 total    

Entropies LDA t Sp 96.5 n0 3398 122 [11] 
   Sn 85.1 n1 482 2756  
   Ac 91.0 total    
  cv Sp 96.2 n0 1127 44  
   Sn 85.6 n1 154 918  
   Ac 91.1 total    

a Sensitivity = Sn% = 100 * n1(correct)/n1(total), Specificity = Sp% = 100 * n0(correct)/n0(total), and Accuracy = Ac = 100 * 
n(correct)/n(total) = 100 * [n1(correct) + n0(correct)]/n(total)  for different mj = organism, endpoint types, or targets. 
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Table 2. Some examples p(a) values for different assays  

ID of au 
i p(au) n1 ntot Cutoff Relation Type Units Assay Description 

1002955 0.263 54 208 81814.3 > Ki nM Inhibition of MMP12 
964734 0.263 54 208 81814.3 < IC50 nM Inhibition of MMP12 
924957 0.263 54 208 81814.3 < log(1/Ki)   Inhibition of MMP12 
970762 0.743 74 100 21281.7 < IC50 nM Inhibition of TGH 

660813 0.711 68 96 2992.4 < IC50 nM 

Inhibitory activity 
against recombinant 
human Chemokine 
receptor type 3 
(CCR3) expressed in 
chinese hamster 
ovary cells 

1776768 0.821 77 94 55936.7 < ID50 nM 
Cytotoxicity against 
mouse J774 cells 

1261026 0.821 77 94 55936.7 < EC50 nM 
Cytotoxicity against 
mouse J774 cells 

940865 0.021 1 93 30.1 > Inhibition % 
Inhibition of CCR1 
at 10 uM 

1674458 0.430 39 92 73346.2 < TC50 uM 

Cytotoxicity against 
mouse RAW264.7 
cells after 24 hrs by 
MTT assay 

1175699 0.430 39 92 73346.2 < IC50 nM 

Cytotoxicity against 
mouse RAW264.7 
cells after 24 hrs by 
MTT assay 

1657211 0.430 39 92 73346.2 < IC50 
ug 
mL-1 

Cytotoxicity against 
mouse RAW264.7 
cells after 24 hrs by 
MTT assay 

860201 0.224 16 75 1961.4 > Ki nM Inhibition of CSF1R 
1025517 0.224 16 75 1961.4 < IC50 nM Inhibition of CSF1R 

1664436 0.413 30 74 12.7 > Inhibition % 

Inhibition of mouse 
recombinant iNOS at 
1 mM after 40 mins 
by colorimetric assay 

867926 0.840 62 74 229.4 < IC50 nM 

Inhibition of LPS-
induced TNFalpha 
production in human 
monocytes 

1285558 0.222 15 71 178344.1 > Ki nM 
Inhibition of mouse 
recombinant iNOS 

957262 0.222 15 71 178344.1 < IC50 nM 
Inhibition of mouse 
recombinant iNOS 

921708 0.130 8 68 2046.7 > 
Selectivity 
ratio 

  Inhibition of cFms 

998565 0.130 8 68 2046.7 < IC50 nM Inhibition of cFMS 
i ChEMBL ID for the assay au 
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Table 3. Values of <µi

5(te)> for all molecular or cellular targets studied 
te Target name <µi

5(te)> n1 ntotal 
1 RAW264.7 (Monocytic-macrophage leukemia cells) 20060.3 1630 3376 
2 C-C chemokine receptor type 3 23855.95 700 1185 
3 J774 (Macrophage cells) 16309.1 601 1001 
4 Cyclooxygenase-2 14102.64 558 1061 
5 C-C chemokine receptor type 1 20864.24 440 825 
6 Nitric oxide synthase, inducible 13168.54 420 1082 
7 J774.A1 (Macrophage cells) 22090.65 375 694 
8 MCSFreceptor  16919.75 343 752 
9 Matrix metalloproteinase 12 13775.03 280 566 
10 Acyl coenzyme A:cholesterol acyltransferase 12571.06 271 486 
11 Macrophage migration inhibitory factor 11088.6 257 461 
12 Macrophage-stimulating protein receptor 16863.76 74 159 
13 Monocytes 12711.64 68 84 
14 Dipeptidyl peptidase IV 16785.55 50 116 
15 EL4 (Thymoma cells) 24952.45 48 128 
16 Interleukin-8 15053.32 40 107 
17 Interleukin-5 21910.88 28 74 
18 C-C motif chemokine 5 32323.55 27 34 
19 Macrophage colony-stimulating factor 1 receptor 25464.67 21 29 
20 RAC-alpha serine/threonine-protein kinase 13962.93 12 38 
21 Serine/threonine-protein kinase TAO3 21791.05 12 26 
22 PMNL (Polymorphonuclear leukocytes) 18763.72 12 15 
23 Macrophages 42504.04 9 24 
24 Monocytes (Monocytic cells) 18649.45 7 15 
25 Scavenger receptor type A 48625.99 6 21 
26 eosinophils (Eosinophils) 15608.45 6 11 
27 WEHI (Macrophages) 13590.42 5 8 
28 Human macrophage cell line 16607.23 4 6 
29 EOL1 (Eosinophilic cells) 8907.19 2 6 
30 Granulocyte colony stimulating factor receptor 23935.49 1 2 
31 Macrophage scavenger receptor types I and II 11803.07 1 2 
32 Macrophage metalloelastase 16403.66 1 2 
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Table 4. Values of <µi

5(s)> for different standard type measures of biological activity 
sx Standard Type <µi

5(s)> n1 ntot sx Standard Type <µi
5(s)> n1 ntot 

1 IC50 960.45 3641 6070 23 Ratio EC50 494.89 8 23 
2 Inhibition 810.03 809 1997 24 TC50 1203.74 7 15 
3 Activity 892.48 721 1615 25 Ratio CC50/IC50 734.58 7 12 
4 K i 748.39 355 1045 26 NO formation 318.8 6 19 
5 EC50 1123.73 176 218 27 TD50 619.19 6 11 
6 CC50 964.87 143 205 28 Ratio IC50 955.38 5 34 
7 Selectivity 761.4 83 240 29 Emax 1299.51 4 10 
8 ED50 1208.73 42 75 30 LD50 809.01 4 5 
9 ID50 727.11 39 67 31 Count 390.21 4 6 
10 Kd 1016.32 37 92 32 Initial rates 354.7 4 12 
11 Ratio 743.76 21 92 33 SI 811.54 4 12 
12 GI50 607.89 19 60 34 MNTD70 557.23 3 12 
13 Efficacy 994.28 16 33 35 Specific activity 1051.26 3 6 
14 Km 759.45 15 57 36 Selectivity index 772.11 3 6 
15 Selectivity ratio 869.72 12 41 37 kcat 501.13 2 11 
16 FC 3483.18 12 20 38 IC90 1421.46 2 3 
17 NOHA 271.55 12 37 39 RBA 1078.46 2 7 
18 MNTD90 524.19 10 12 40 Ratio Ki 970.76 2 3 
19 Fold change 558.31 10 35 41 Kb 1214.19 1 3 
20 Residual activity 1167.52 9 18 42 pIC50 809.49 1 1 
21 LC50 841.72 8 22 43 Kinact 423.27 1 2 
22 Survival 642.2 8 18 44 Cytotoxicity 366.49 1 3 
n1=number of active(C=1) cases for standart type ,n (Total)= Total cases for standart type 
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Table 5. Results of the study of Domain of Applicability (DA) for the model 

Endpoints 
Sub-seta 

DA 
count 

Total Sub-set 
count 

DA 
% 

Train 6481 6747 96.1 
CV 2164 2253 96.0 
Positive effect 4134 4309 95.9 
Negative effect 4511 4691 96.2 
Cytotoxicity 1174 1251 93.8 
Human 3405 3506 97.1 
Mouse 5234 5485 95.4 
IC50 4313 4494 96.0 
EC50 166 180 92.2 
All 8645 9000 96.1 

a Positive effect indicates that C = 1, this sub-set includes all 
cytotoxicity endpoints together with other biological effects.
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Table 6. Effect on cytotoxicity for G1-treated samples at different concentrations vs. control groups 
Group 1 Macrophage Group 2 
Conc of G1 Cytometry  NC    DMSO   
µg/mL Parameter Mean1 Mean2 t p Mean1 Mean2 t p 
10 MFI 502.9 548.8 -0.57 0.59 502.9 480.1 0.35 0.73 
 MFI SSC 416.0 432.0 -0.11 0.92 416.0 426.0 -0.10 0.92 
 MFI SFC 669.2 665.5 0.09 0.93 669.2 604.8 1.44 0.18 
 Anti-CD14PE 38.6 21.2 2.06 0.08 38.6 29.9 1.94 0.08 
 7AAD 157.7 166.0 -0.18 0.86 157.7 174.8 -0.55 0.59 
 Anti-CD14PE + 7AAD 91.5 93.6 -0.07 0.95 91.5 108.1 -0.99 0.35 
8 MFI 516.9 548.8 -0.44 0.68 516.9 480.1 0.60 0.56 
 MFI SSC 409.0 432.0 -0.17 0.87 409.0 426.0 -0.18 0.86 
 MFI SFC 688.5 665.5 0.76 0.48 688.5 604.8 1.99 0.07 
 Anti-CD14PE 41.2 21.2 2.65 0.04 41.2 29.9 2.82 0.02 
 7AAD 153.2 166.0 -0.33 0.75 153.2 174.8 -0.78 0.45 
 Anti-CD14PE + 7AAD 89.5 93.6 -0.17 0.87 89.5 108.1 -1.31 0.22 
6 MFI 537.7 548.8 -0.14 0.89 537.7 480.1 0.89 0.39 
 MFI SSC 444.0 432.0 0.08 0.94 444.0 426.0 0.17 0.86 
 MFI SFC 705.3 665.5 0.84 0.43 705.3 604.8 2.16 0.06 
 Anti-CD14PE 38.9 21.2 2.27 0.06 38.9 29.9 2.16 0.06 
 7AAD 175.2 166.0 0.19 0.85 175.2 174.8 0.01 0.99 
 Anti-CD14PE + 7AAD 116.2 93.6 0.85 0.43 116.2 108.1 0.53 0.61 
4 MFI 498.8 548.8 -0.69 0.52 498.8 480.1 0.30 0.77 
 MFI SSC 474.2 432.0 0.30 0.78 474.2 426.0 0.49 0.63 
 MFI SFC 594.5 665.5 -0.56 0.60 594.5 604.8 -0.13 0.90 
 Anti-CD14PE 42.8 21.2 2.40 0.05 42.8 29.9 2.67 0.02 
 7AAD 214.5 166.0 0.89 0.41 214.5 174.8 1.14 0.28 
 Anti-CD14PE + 7AAD 138.7 93.6 1.25 0.26 138.7 108.1 1.50 0.17 
2 MFI 497.2 548.8 -0.69 0.52 497.2 480.1 0.27 0.79 
 MFI SSC 398.5 432.0 -0.25 0.81 398.5 426.0 -0.29 0.78 
 MFI SFC 668.2 665.5 0.08 0.94 668.2 604.8 1.48 0.17 
 Anti-CD14PE 40.7 21.2 2.41 0.05 40.7 29.9 2.50 0.03 
 7AAD 199.7 166.0 0.80 0.45 199.7 174.8 0.85 0.41 
 Anti-CD14PE + 7AAD 124.8 93.6 1.18 0.28 124.8 108.1 1.09 0.30 

Mean1=mean group 1; mean 2= mean group2 
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Table 7. Results of Dosis vs. Effect EC50 curve fitting by different algorithms 

Curve Fitting R2 RMSE a b c d e 
5PL (1/Y2) * 0.9588 0.0000 47.85819 -7.1792. 21.8259 130.5090 0.5185 
5PL (1/Y) 0.1833 5.8115 47.7578 -12.029 18.2210 -76.5320 0.3032 
4PL (1/Y) 0.9583 1.2316 -214.1114 -3.7650 25.8656 47.8645  
Log-Log 0.6222 2.3871 0.0948 1.1722    

Quadratic (1/Y) 0.9526 0.9381 -0.1505 0.9424 46.5202   
Linear (1/Y) 0.8154 1.4961 -0.8616 50.7310    

* Best fit model, 5PL is Five Parameters Logistic, 4PL is Five Parameters Logistic 
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Table 8. Theoretic-experimental determination of some endpoints for G1 cytotoxicity in multiplexing assays 
C p(1) Type Rel Cutoff  Units Assay Description b 
Endpoints for G1 cytotoxicity experimentally determined in this work 
0 0 EC50 < 21.58/10 µg 7ADD mouse peritoneal macrophages after 24h  
0 0 Cytotoxicity > 23.6 / 50 % 7ADD mouse peritoneal macrophages after 24 hrs at 10 
0 0 Cytotoxicity > 19.4 / 50 % 7ADD mouse peritoneal macrophages after 24 hrs at 8 µg/mL 
0 0 Cytotoxicity > 16.5 / 50 % 7ADD mouse peritoneal macrophages after 24 hrs at 6 µg/mL 
0 0 Cytotoxicity > 9.6 / 50 % 7ADD mouse peritoneal macrophages after 24 hrs at 4 µg/mL 
0 0 Cytotoxicity > 9.9 / 50 % 7ADD mouse peritoneal macrophages after 24 hrs at 2 µg/mL 
0 0 MFI < p < 0.05 % 7ADD mouse peritoneal macrophages after 24 hrs at 10 

µg/mL 0 0 MFI < p < 0.05 % 7ADD mouse peritoneal macrophages after 24 hrs at 8 µg/mL 
0 0 MFI < p < 0.05 % 7ADD mouse peritoneal macrophages after 24 hrs at 6 µg/mL 
0 0 MFI < p < 0.05 % 7ADD mouse peritoneal macrophages after 24 hrs at 4 µg/mL 
0 0 MFI < p < 0.05 % 7ADD mouse peritoneal macrophages after 24 hrs at 2 µg/mL 
Predicted multiplexing endpoints for G1 cytotoxicity 
0 0.28 TC50 < 100 µM Cytotoxicity against human macrophages 
1 0.84 ED50 < 11.4 µM CAM WEHI cell line by MTT assay 
1 0.63 IC50 < 33.4 µM Cytotoxicity against WEHI cell lines. 
1 0.72 EC50 < 164.7 uM CAM RAW264.7 cells (MMLC) assessed as cell survival 
1 0.69 EC50 < 23.83 ug ml-1 CAM RAW264.7 cells (MMLC) by MTT colorimetric assay 
1 0.89 IC90 < 13.1 µM Cytotoxicity against rat RAW264.7 cells by MTT assay 
1 0.78 EC50 < 10.2 µM In vitro cytotoxicity against J774.2 cells after 72 h incubation. 
1 0.60 IC50 < 26.7 µM CAM J774 cells expressing RANKL signaling by Alamar 
1 0.63 IC50 < 143.8 µM Cytotoxicity against J774.1 cell line after 48 hrs 
1 0.74 EC50 < 9.19 uM Cytotoxicity against macrophage cell line (J774) 
0 0.33 CC50 < 133.23 µM CAM RAW264.7 cells after 48 hrs by MTT assay 
0 0.37 CC50 < 28.87 uM CAM J774A1 cells assessed as cell viability after 72 hrs by 
0 0.37 CC50 < 50 ug.ml-1 Cytotoxicity against human J774A1 
0 0.40 CC50 < 79.03 ug.ml-1 CAM J774A1 cells after 48 hrs by Geimsa staining method 
0 0.44 CC50 < 76.79 ug ml-1 CAM J774A1 cells after 24 to 72 hrs by MTT assay 
0 0.44 CC50 < 57.64 ug ml-1 CAM J774A1 cells after 72 hrs by MTT assay 
0 0.45 CC50 < 42.49 ug ml-1 CAM J774A1 cells 
0 0.46 CC50 < 43.1 ug ml-1 CAM J774A1 cells by MTT assay 
0 0.39 IC50 < 90.93 uM  Cytotoxicity against LPS-stimulated mouse RAW264.7 cells 
0 0.40 IC50 < 68.76 ug ml-1 CAM J774A1 by MTT assay 
0 0.42 IC50 < 13.34 ug ml-1 CAM J774A1 cells by rapid colorimetric assay 
0 0.42 IC50 < 236.7 uM Cytotoxicity against LPS-stimulated mouse RAW264.7 cells 
0 0.42 IC50 < 30.94 uM Cytotoxicity in mouse RAW264.7 cells 
0 0.43 IC50 < 6.76 ug ml-1 In vitro cytotoxicity of compound against EL4. mouse 
0 0.43 IC50 < 73.35 uM CAM RAW264.7 cells after 24 hrs by MTT assay 
0 0.43 IC50 < 231.62 uM CAM J774 cells after 24 hrs by by resazurin reduction test 
0 0.44 IC50 < 23.8 ug ml-1 CAM J774A1 cells after 72 hrs by cell-titer assay 
0 0.44 IC50 < 48.22 uM CAM RAW264.7 cells assessed as cell viability after 24 hrs 
0 0.45 IC50 < 103.9 uM Cytotoxicity against LPS-stimulated mouse RAW264.7 cells 
0 0.45 IC50 < 10 uM CAM RAW264.7 cells assessed as cell viability after 24 hrs 
0 0.45 IC50 < 6.3 ug ml-1 Cytotoxicity against human EL4 cells 
0 0.46 IC50 < 57 uM CAM RAW264.7 cells assessed as reduction in cell viability 
0 0.46 IC50 < 175 ug ml-1 CAM J774A1 cells after 24 hrs by trypan blue exclusion assay 
0 0.46 IC50 < 42.72 uM CAM RAW264.7 cells by MTT assay 
0 0.47 IC50 < 207.5 uM CAM macrophage RAW264.7 cells after 48 hrs by MTT 
0 0.49 IC50 < 12.17 ug ml-1 CAM RAW264.7 cells after 2 days by MTT assay 
0 0.50 IC50 < 27.5 uM CAM RAW264.7 cells after 72 hrs by resazurin assay 
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0 0.25 Inhibition > 17.3 % CAM J774A1 cells assessed as reduction in metabolic activity 
0 0.37 LC50 < 12.28 ug ml-1 CAM RAW264.7 cells 
0 0.09 MNTD70 < 88.51 uM CAM RAW264.7 cells assessed as maximum non-toxic dose 
0 0.12 Survival > 68.14 % CAM RAW264.7 cells assessed as cell survival rate at 10 uM 
0 0.12 Survival > 94 % CAM RAW264.7 cells at 21 uM 
0 0.33 Activity > 100 % CAM J774 macrophage assessed as cell viability at 1 ug/mL 
0 0.35 Activity > 65.3 % CAM J774A1 cells assessed as macrophage number at 40 to 
0 0.35 Activity > 64.3 % CAM J774A1 cells assessed as macrophage number at 2.3 
0 0.35 Activity > 23.27 % CAM J744A.1 cells at 0.5 ug/mL by MTT assay 
0 0.35 Activity  > 99.5 % CAM J774A1 cells assessed as macrophage number at 4 
0 0.35 Activity  > 5 % CAM J774A1 cells assessed as dead cells at 10 uM by Sytox 
0 0.35 Activity  > 94 % CAM J774A1 cells assessed as live viable cells at 10 uM by 
0 0.35 Activity > 93 % CAM J774A1 cells assessed as live cells at 50 uM by calcein 
0 0.35 Activity > 58.9 % CAM J774A1 cells assessed as live cells at 100 uM by calcein 
0 0.35 Activity > 94.4 % CAM J774A1 cells assessed as macrophage number at 10.5 
0 0.35 Activity > 73.4 % CAM J774A1 cells assessed as macrophage number at 3 
0 0.35 Activity > 16 % CAM J744A.1 cell assessed as survival rate at 10 uM 
0 0.35 Activity > 12.3 % CAM J774A1 cells assessed as macrophage number at 3.2 
0 0.35 Activity > 55.9 % CAM J774A1 cells assessed as macrophage number at 1.7 
0 0.35 Activity  > 50 % CAM J774 macrophage at 40 uM 
0 0.36 Activity  > 100 % Cytotoxicity against murine J774 cells (MC) assessed as cell 
0 0.36 Activity  > 100 % Cytotoxicity against murine J774 cells assessed as cell 
0 0.36 Activity > 100 % Cytotoxicity against murine J774 cells assessed as cell 
0 0.39 Activity > 11.35 % CAM J744A.1 cells at 0.005 ug/mL by MTT assay 
0 0.39 Activity > 12.35 % CAM J744A.1 cells at 0.05 ug/mL by MTT assay 
0 0.41 Activity > 70.83 % CAM J744A.1 cell assessed as survival rate 
0 0.43 Activity > 0.95 % CAM J774 cells at 100 uM relative to 5-
0 0.43 Activity > 42.21 % Unspecific cytotoxicity against murine J774 macrophages at 
0 0.43 Activity > 41.5 % CAM J774 cells assessed as cell viability at 100 ug/ml by 
0 0.44 Activity  > 50 % CAM J774 macrophage at 400 uM 
0 0.44 Activity  > 88.2 % CAM J774 cells infected with Mycobacterium bovis BCG 
0 0.44 Activity  > 0.76 % CAM J774 macrophages at 2.1 uM after 24 hrs by resazurin 
0 0.44 Activity > 4.89 % CAM J774 macrophages at 8.6 uM after 24 hrs by resazurin 
0 0.44 Activity > 18.88 % CAM J774 macrophages at 21.7 uM after 24 hrs by resazurin 
0 0.44 Activity > 51.8 % CAM J774 cells at 400 uM after 48 hrs by MTT assay 
0 0.44 Activity > 2.11 % CAM J774 macrophages at 4.3 uM after 24 hrs by resazurin 
0 0.45 Activity > 51.17 % CAM J774 cells assessed as cell viability at 100 ug/mL after 
0 0.45 Activity > 95.34 % CAM RAW264.7 cells assessed as cell viability at 1 uM after 
0 0.45 Activity > 48.86 % CAM J774 cells assessed as cell viability at 10 ug/ml by MTT 
0 0.46 Activity  > 95.42 % CAM RAW264.7 cells assessed as cell viability at 100 uM 
0 0.46 Activity  > 75.95 % Cytotoxicity against Mycobacterium bovis Bacillus Calmette-
0 0.47 Activity  > 81.68 % Cytotoxicity against Mycobacterium bovis Bacillus Calmette-
0 0.47 Activity > 89 % Cytotoxicity against Mycobacterium bovis Bacillus Calmette-
0 0.47 Activity > 93.57 % CAM J774 cells assessed as cell viability at 1 ug/ml by MTT 
0 0.33 IC50 < 6 uM Cytotoxicity against EL-4 cell line (mouse thymoma cells) 
0 0.39 IC50 < 21.41 uM Inhibition of Bacillus anthracis lethal toxin-induced 
1 0.54 IC50 < 221.07 uM CAM J774 cells after 48 hrs by MTT assay 
1 0.54 IC50 < 2256.3 uM CAM J774 cells after 24 hrs by resazurin assay 
1 0.54 IC50 < 565.75 ug ml-1 CAM J774 cells after 24 hrs by MTT assay 
1 0.55 IC50 < 508.6 uM CAM RAW264.7 cells assessed as cell viability after 4 hrs by 
1 0.56 IC50 < 25.51 uM In vitro CAM J774 macrophages. 
1 0.56 IC50 < 736.2 uM CAM J774 cells assessed as cell viability after 48 hrs by 
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1 0.57 IC50 < 72.79 uM CAM J774 macrophages after 48 hrs by MTT assay 
1 0.58 IC50 < 0.24 uM Inhibitory concentration required for cytotoxicity in J774.2 
1 0.58 IC50 < 416.67 ug ml-1 CAM J774 cells after 24 hrs 
a Cutoff used was the threshold value recommended by REACH for this assay (in experimental outcomes) or the average value 
for all compounds in ChEMBL for this assay (in predicted outcomes). The J774 cell lines are Macrophage Cells (MC) and 
RAW264.7 is a murine macrophage-like cells (MMLC). CAM is Cytotoxicity Against Macrophage. 
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Table 9. Theoretic prediction of some endpoints for G1 interaction with human protein targets 
Target name ID p(1) Res. Lev. Type Rel Cutoff Units 
C-C chemokine receptor type 3 3473 0.78 -0.63 0.002 Emax > 56.25 % 
C-C chemokine receptor type 3 3473 0.63 -0.53 0.002 Kb > 0.01 uM 
C-C chemokine receptor type 1 2413 0.71 -0.58 0.001 ED50 < 0.00.1 uM 
Matrix metalloproteinase 12 4393 0.66 -0.55 0.001 IC50 < 5.8 uM 
Interleukin-8 2157 0.64 -0.54 0.000 IC50 < 5.3 uM 
MSR I and II 5811 0.63 -0.53 0.001 IC50 < 38.3 µM 
Acyl-CoA: cholesterol Acyltransferase 2265 0.64 -0.54 0.001 IC50 < 21.3 µM 
MSPR 2689 0.62 -0.52 0.001 Activity  > 78.67 % 
MSPR 2689 0.60 -0.52 0.000 Kd > 9.74 uM 
MCSFreceptor 1844 0.62 -0.52 0.001 Activity  > 100.33 % 
MCSFreceptor 1844 0.61 -0.52 0.000 IC50 < 1.38 µM 
MMIF 2085 0.70 -0.57 0.001 IC50 < 65.1 µM 
MMIF 2085 0.60 -0.51 0.001 Activity  > 36 % 
a MMIF is Macrophage Migration Inhibitory Factor, MCSF is Macrophage Colony Stimulating Factor, MSPR is Macrophage-
Stimulating Protein Receptor,  MSR is Macrophage Scavenger Receptor I and II  
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FIGURES TO BE INSERTED IN THE TEXT 

 
Figure 1. Analysis of the Domain of Application of the model 
 
Figure 2. Dose-Response of cytotoxicity in Balb/C mouse peritoneal macrophages marked with 
CD14Pe/7AAD exposed to different concentrations of G1 
 
Figure 3. Pseudo-color smooth projection of MFI values over FSC vs. SSC plot after administration of G1 
at cmax. Total cell populations (A) or Macrophages population (C.B.D.E.F) 
 
Figure 4.  Effect of G1 on Balb/C mouse macrophages culture primary and were exposed to different 
concentrations ((10, 8, 6, 4, and 2 µg/mL) for a period of 24 hours The results are expressed as Mean 
Intensity Fluorescence (MFI) of control values N = 6 animals per group and 1.106 Cell; NS= Not 
Statistically significant differences p ≤ 0.05 for the same groups.  Dark Green=macrophages labeled with 
CD14PE and stained with 7AAD (Dead), Dark Purple = macrophages labeled CD14 PE (live) 
 
Figure 5. Results of flow cytometry for Balb/C mouse peritoneal macrophages exposed to G1 at 10 µg/mL 
 
Figure 6. Masterplex interface illustrating MFI vs. conc. effect of G1 in Balb/c mouse peritoneal 
macrophages (A) and Sigmoidal curve representative of the 5PL model (B). 
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2.2. Biology assays 
2.2.1. Reagents and antibody 
1-5-Bromofur-2-il-2-bromo-2-nitroethene (G1); CAS number 35950-55-1, was kindly 

supplied from the CBQ, Sample purity was 99.93%.  G1 was dissolved in 
dimethylsulfoxide (DMSO), which was purchased in turn from Sigma–Aldrich Co. (DF, 
México). Macrophages were stained with  phycoerythrin (PE), labelled monoclonal 
antibodies according to the manufacturers' instructions. Flow cytometry was performed 
using a FACalibur cytometer (Becton Dickinson, México). Thereafter, FACS data were 
analyzed with FlowJo 7.6.5 software. Both, anti-CD14 antibody (used to label CD14 
receptor) and 7 –aminoactinomycin (7-AAD) at 5 µg/mL viability solution were 
purchased from BD (BD Biosciences, México). 

2.2.2. Animals.  
Female Balb/C mice weighing 18–20 g were purchased from the UNAM-Harlan 

laboratories (DF, México). All animals (n=6) were allowed to acclimate to our 
laboratory facilities for at least 7 days before their inclusion in an experiment. They 
were housed in standard laboratory conditions (22 3 °C; relative humidity 50–55%; 12h 
light/dark cycle) and given ad libitum access to food and water. This work agreed with 
Ethical Principles in Animal Research adopted by México [40]. 

2.2.3. Peritoneal macrophages isolation and cell culture. 
Peritoneal macrophages were obtained from mice euthanized by cervical dislocation. 

The peritoneal of the animals were surgically exposed using a midline incision. 
Peritoneal fluid was harvested by injecting 10 mL of ice-cold PBS into the peritoneal 
cavity followed by syringe aspiration. Cell suspensions were washed twice by 
centrifugation. Cell viability (over 95%) was determined using trypan blue exclusion. 
Macrophage numbers were adjusted to 1 × 106 cell/mL and plated 100 µL/ well in 96-
well flat-bottomed tissue culture plates (UNIPARTS, Toluca, México). Cells were 
incubated in RPMI 1640 complete medium containing 10% FBS, and incubated for 24 h 
at 37 °C under 5% CO2 in a humidified chamber. Non-adherent cells were removed by 
gently washing with PBS and fresh RPMI 1640 complete medium was replaced. The 
efficiency of macrophage enrichment was monitored by 7AAD assay and routinely 
exceeded 90%. Cells were equilibrated for 24 h before commencing the experiment. 

2.2.4. Determination of cytotoxicity percentage by flow cytometry analysis 
In all cases, dimethyl sulfoxide (DMSO) was used as the diluting solvent, and dosage 

solutions were prepared immediately prior to testing. Incubations were carried out in 
triplicate; solvent controls were run with each experiment. The percentage of formation 
of cytotoxicity cells was determined by evaluating 7-Amino-actinomycin D (7AAD) 
stained preparations of macrophages treated with the dosed chemical (G1) at 10, 8, 6, 4 
and 2 µg/mL in 24 h.  

( ) ( )5)event Ma  tal7AAD*)/(To - *(Ma100=%tyCytotoxici ⋅  
 

 Where, Ma* = Positive Macrophages labeled CD14PE, 7AAD*= Positive 7AAD (Dead 
macrophages), Total event Ma = Total macrophages labeled and unlabeled CD14 with 
CD14. Briefly, 1X 106 cells were washed twice with 1 mL ice-cold PBS. Cytotoxicity 
was determined using flow cytometry with a FACSCalibur cytometer (Becton 
Dickinson, USA) equipped with an argon-ion laser at 488 nm wavelength. Tubes 21 and 
22, isotypic controls and tubes with antibodies alone were used to adjust PMT and 
fluorescence compensation. Fluorescence compensations were also occasionally 
adjusted with Compbeads (BD Biosciences) by determining the median of both positive 
and negative populations. Percent cytotoxicity was determined by the following formula 
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[41], where Ma mean macrophages count, the symbol * indicates a positive answer to 
CD14Pe  and Negative mean negative to 7ADD staining for living cells.  

Last, was fitted a response curve vs. concentration (MFIi vs. ci) in order to calculate 
the EC50 values using the software MasterPlex 2010, 2.0.0.73 created for the MiariBio 
group (www.miraibio.com). The MasterPlex includes Readerfit to calculate the EC50 
and adjust the curve. ReaderFit is a free online application for adjustment of the curve 
that allows two fitting curves and optionally interpolates unknown values of the curve. 
The ReaderFit contain several equations for the model: 4 parameters logistic (4PL), 5 
parameters logistic (5PL), quadratic log-logit, log-log or linear and one out four 
optional weighting algorithms: 1/Y, 1/Y2, 1/X and 1/X2 to minimize the error. In our 
case, Y variable contains the different Mean Fluorescence Intensity (MFIi) response 
values and X the different concentrations (ci) for different samples. The parameters of 
5PL model are: A, B, C, D, and E. A is the MFI value for the minimum asymptote. B is 
the Hill slope. C is the concentration at the inflection point. D is the MFI for the 
maximum asymptote. E is the asymmetry factor (E ≠ 1 for a non-symmetric curve). MFI 
is the. MFI values are obtained after exposition of the biological sample to one volume 
of 100 µL of G1 at different ci values. This equation is represented through a sigmoid 
curve: 
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Where, MFI = Mean Fluorescence Intensity, A= is the MFI/RLU value for the 
minimum asymptote 
B = is the hill slope, C = EC50 is the concentration at the inflection point, D is the 
MFI/RLU value for the maximum asymptote, and E is the asymmetry factor. 
2.2.5. Statistical Analysis of experimental assays 

Data were analyzed using Statistica 6.0 software. Significant differences between 
treatments were determined by analysis of variance (ANOVA), followed by t test. 
Statistic significances were accepted when P < 0.05. The Tukey test with 95% 
confidence was applied to compare the means.  
 

Note: the references cited here appear in the main body of the paper. 
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